
Alternative Tests for Correct Specification of
Conditional Predictive Densities
Barbara Rossi1 and Tatevik Sekhposyan2

March 28, 2015

Abstract

We propose new methods for evaluating predictive densities in an environment where the

estimation error of the parameters used to construct the densities is preserved asymptotically

under the null hypothesis. The tests offer a simple way to evaluate the correct specification

of predictive densities. Monte Carlo simulation results indicate that our tests are well sized

and have good power in detecting misspecifications. An empirical application to the Survey

of Professional Forecasters and a baseline macroeconomic model shows the usefulness of our

methodology.
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1 Introduction

Policy institutions are becoming interested in complementing point forecasts with an accurate

description of uncertainty. For instance, they are interested not only in knowing whether

inflation is below its target, but also in understanding whether the realized inflation rate was

forecasted to be a low probability event ex-ante. In fact, if researchers underestimate the

uncertainty around point forecasts, it is possible that an event with a fairly high likelihood

of occurrence is forecasted to be a very low probability event. An accurate description of

uncertainty is therefore important in the decision making process of economic agents and

policymakers. The interest in density forecasting has emerged in the survey by Elliott and

Timmermann (2008) as well as in their recent book (Elliott and Timmermann, 2014), and has

inspired several empirical contributions that have proposed new approaches to improve the

forecasting performance of predictive densities, e.g. Ravazzolo and Vahey (2014), Aastveit,

Foroni and Ravazzolo (2014), and Billio, Casarin, Ravazzolo and van Dijk (2013). The

objective of this paper is to provide reliable tools for evaluating whether the uncertainty

around point forecasts, and predictive densities in general, are correctly specified.

Many central banks periodically report fan charts to evaluate and communicate the

uncertainty around point forecasts (e.g., see the various issues of Bank of England Inflation

Report or the Economic Bulletin of the Bank of Italy3). Fan charts provide percentiles

of the forecast distribution for variables of interest. Typically, central banks’ fan charts

are the result of convoluted methodologies that involve a variety of models and subjective

assessments, although fan charts can be based on specific models as well.4

INSERT FIGURE 1 HERE

Figure 1 plots fan charts for US output growth (left panel) and the Federal Funds rate

(right panel) based on a representative macroeconomic model widely used in academia and

policymaking (discussed in detail later on). The fan charts display model-based forecasts

made in 2000:IV for the next four quarters. The shaded areas in the figures depict the deciles

of the forecast distribution and provide a visual impression of the uncertainty around the

point forecasts (in this case, the median, marked by a dashed line). Over the four quarterly

horizons, uncertainty about output growth and interest rate forecasts has a very different

3These publications are available at http://www.bankofengland.co.uk/publications/Pages/inflationreport

and https://www.bancaditalia.it/pubblicazioni/econo/bollec, respectively.
4See for instance Clements (2004) for a discussion on the Bank of England fan charts.
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pattern: the uncertainty surrounding output growth forecasts is constant across horizons,

while for interest rates it depends on the horizon. The dark, solid line in the figures plots

the actual realized value of the target variable. Clearly, forecasts of interest rates were

very imprecise (the realization is outside every forecast decile except for one-quarter-ahead

horizon), whereas the model predicts output growth more accurately. In order to evaluate the

model-based forecast distributions, it is important to understand whether it is the description

of uncertainty that was inaccurate or the realized values were indeed low probability events.

Currently available methodologies test whether the empirical distribution belongs to a

given parametric density family with parameters evaluated at their pseudo-true values. Our

paper derives new tools to evaluate whether predictive densities are correctly specified by

focusing on evaluating their actual forecasting ability conditional on models’estimated para-

meter values. In other words, we test whether the predictive densities are correctly specified

given the considered parametric model and its estimation technique. Accordingly, our test

does not require an asymptotic correction for parameter estimation error. Importantly, our

tests do not require the model to be dynamically correctly specified nor its disturbances to

be serially uncorrelated; however, for completeness, we also discuss a version of the tests

that hold when the model is dynamically correctly specified.

The advantage of this approach relative to the existing literature is that it allows the

researcher to evaluate whether the density forecast is correctly specified conditional on the

actual parameter estimates. In contrast, most of the literature focuses on testing the correct

specification of predictive densities evaluated at the pseudo-true parameter values, which may

not be representative of the models’actual forecasting ability in finite samples. We propose

an approach where parameter estimation error is maintained under the null hypothesis, as in

Amisano and Giacomini (2007). However, our approach is very different, as the latter focus

on model selection by comparing the relative performance of competing models’predictive

densities, whereas we focus on evaluating the absolute performance of a model’s predictive

density.

Maintaining parameter estimation error under the null hypothesis has two advantages:

(i) there is no need to correct the asymptotic distribution of test statistics for parameter

estimation error, since that is maintained under the null hypothesis; and (ii) the asymp-

totic distribution of the test statistics at the one-step-ahead horizon is nuisance parameter

free and the critical values can be tabulated when the model is dynamically correctly speci-

fied.5 We derive our tests within a class of Kolmogorov-Smirnov and Cramér-von Mises-type

5Note that (ii) is not unique to cases where parameter estimation error is maintained under the null
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tests commonly used in the literature and show that all our proposed tests have good size

properties in small samples.

When misspecification of the predictive density is detected, an important step is to under-

stand the source of the misspecification. Many tests that exist in the literature concentrate

on testing for correct specification of predictive densities by testing a joint hypothesis of uni-

formity and independence. Lack of uniformity implies an incorrect unconditional probability

(on average) that the actual realizations of the target variable match the model’s predictive

density. Lack of independence refers to a situation where, even if on average realizations are

compatible with the model’s predictive density (i.e., the unconditional probability is correct),

the pattern of the rejections is non-random. Thus, the rejection of the correct specification

could be driven either by the lack of uniformity or independence, and it is important to

identify the source. To uncover the source of the misspecification, we: (i) propose new tests

of uniformity robust to violations of independence; (ii) discuss some tests of serial correlation

robust to violations of uniformity that are available in the literature and could be used. The

tests can be applied to either one-step-ahead or multiple-step-ahead predictive densities.

Our paper is related to a series of contributions which test whether observed forecasts

could have been generated by a given distribution. Diebold et al. (1998, 1999) introduced

the probability integral transform (PIT) into economics as a tool to test whether the em-

pirical predictive distribution of surveys or empirical models matches the true, unobserved

distribution that generates the data. Their approach tests for properties of the PITs, such

as independence and uniformity, by treating the forecasts as primitive data, that is without

correcting for estimation uncertainty associated with those forecasts. Additional approaches

proposed in the literature for assessing the correct calibration of predictive densities are the

non-parametric approach by Hong and Li (2005) and the bootstrap introduced by Corradi

and Swanson (2006 a,b,c).6 The null hypothesis in the latter is that of correct specification

of the density forecast at the pseudo-true (limiting) parameter values. Although this frame-

work enables predictive density evaluation when the models are dynamically misspecified, it

does not necessarily capture the actual measure of predictive ability that researchers are in-

terested in, as in small samples the pseudo-true parameter values may not be representative

of the actual marginal predictive ability of the regressors. In the approach we propose, the

hypothesis; in fact, it also holds when parameter estimation error is asymptotically irrelevant, or when one

uses martingalization techniques, as in Bai (2003).
6Hong, Li and Zhao (2007) provide with an out-of-sample counterpart of the Hong and Li (2005) in-sample

tests. See also Bontemps and Meddahi (2012) for in-sample tests of distributional assumptions.
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main test statistic is the same as Corradi and Swanson’s (2006a) one, although the null hy-

pothesis is very different: it targets evaluating density forecasts at the estimated parameter

values (as opposed to their population values). A more recent alternative has been proposed

by González-Rivera and Sun (2014); they use graphical devices to implement a test of correct

specification. The proposed methods work when models are dynamically correctly specified,

however, when parameter estimation error is asymptotically relevant, the asymptotic dis-

tribution is not nuisance parameter free and a bootstrap procedure is proposed. Our test,

instead, does not require a bootstrap procedure, and its critical values are readily available

in the case when the models are dynamically correctly specified.7

We provide empirical applications of our proposed tests to the density forecasts in the

Survey of Professional Forecasters (SPF) as well as those produced by a baseline DSGE

model. We find that predictive densities are, in general, misspecified.

The remainder of the paper is organized as follows. Section 2 introduces the notation and

definitions. Section 3 presents results for tests of correct specification of density forecasts

robust to dynamic misspecification and Section 4 discusses issues related to the practical

applicability of our test. In Section 5, we provide Monte Carlo evidence on the performance

of our tests in small samples. Section 6 analyzes the empirical applications to SPF and

DSGE density forecasts and Section 7 concludes.

2 Notation and Definitions

We first introduce the notation and discuss the assumptions about the data, the models and

the estimation procedure. Consider a stochastic process {Zt : Ω → Rk+1}Tt=1 defined on a
complete probability space (Ω, F, P ). The observed vector Zt is partitioned as Zt = (yt, X

′
t)
′,

where yt : Ω → R is the variable of interest and Xt : Ω → Rk is a vector of predictors. Let

1 ≤ h <∞.We are interested in the true but unknown h−step-ahead conditional predictive
density for the scalar variable yt+h based on Ft = σ(Z ′1, ..., Z

′
t)
′, which is the true information

set available at time t. We denote this density by φ0 (.).8

7We should note that allowing for dynamic misspecification under the null makes the test robust to

violations of independence, which is important since the test can then be used for evaluating multi-step

ahead densities. This is different from the large number of tests suggested in the literature which are

not applicable to test the correct calibration of multi-step-ahead densities (e.g. Diebold et al., 1998, and

Gonzalez-Rivera and Sun, 2014).
8The true conditional forecast density may depend on the forecast horizon. To simplify notation, we omit

this dependence without loss of generality given that the forecast horizon is fixed. Furthermore, we use the
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We assume that the researcher has divided the available sample of size T + h into an in-

sample portion of sizeR and an out-of-sample portion of size P , and obtained a sequence of h-

step-ahead out-of-sample density forecasts of the variable of interest yt using the information

set =t, such that R + P − 1 + h = T + h and =t ⊆ Ft. Note that this implies that the
researcher observes a subset of the true information set. We also let =tt−R+1 denote the
truncated information set between time (t−R + 1) and time t used by the researcher.

Let the sequence of P out-of-sample estimates of conditional predictive densities evalu-

ated at the ex-post realizations be denoted by
{
φt+h

(
yt+h|=tt−R+1

)}T
t=R
. The dependence

on the information set is a result of the assumptions we impose on the in-sample parameter

estimates, θ̂t,R. We assume that the parameters are re-estimated at each t = R, ..., T over a

window of R data including data indexed t−R+ 1, ..., t (rolling scheme).9 In this paper we

are concerned with direct multi-step forecasting, where the predictors are lagged h periods.

In addition to being parametric (such as a normal distribution), the distribution φt+h (.) can

also be non-parametric (as in one of the empirical applications in this paper).

Consider the probability integral transform (PIT), which is the cumulative density func-

tion (CDF) corresponding to φt+h (.) evaluated at the realized value yt+h:

zt+h =

∫ yt+h

−∞
φt+h

(
y|=tt−R+1

)
dy ≡ Φt+h

(
yt+h|=tt−R+1

)
.

Let

ξt+h (r) ≡
(
1
{

Φt+h

(
yt+h|=tt−R+1

)
≤ r
}
− r
)
,

where 1 {.} is the indicator function and r ∈ [0, 1]. Consider Ψ (r) = Pr {zt+h ≤ r} − r and
its out-of-sample counterpart:

ΨP (r) ≡ P−1/2
T∑
t=R

ξt+h (r) . (1)

Let us also denote the empirical probability distribution function of the PIT by

ϕP (r) ≡ P−1
T∑
t=R

1
{

Φt+h

(
yt+h|=tt−R+1

)
≤ r
}
. (2)

symbols φ0(.) and φt(.) to denote generic distributions and not necessarily a normal distribution.
9The choice of the estimation scheme (rolling versus recursive) depends on the features of the data: in the

presence of breaks, one would favor a rolling scheme that allows a fast update of the parameter estimates, at

the cost of a potential increase in estimation uncertainty relative to a recursive scheme when there are not

break. As discussed in Giacomini and White (2006), our proposed approach is also valid for other classes of

limited memory estimators.
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3 Asymptotic Tests of Specification

This section presents results for the case of one-step-ahead forecasts when the densities are

dynamically correctly specified; we then generalize the tests to the presence of misspecifica-

tion and serial correlation. The generalized case could also apply to the h > 1 step-ahead

forecasts. All the proofs are relegated to Appendix A. The tests we propose have an as-

ymptotic distribution that is free of nuisance parameters in the one-step-ahead forecast case

when the models are dynamically correctly specified. In this case the critical values can

be tabulated. We also discuss tests that are valid for multi-step-ahead forecasts and in the

presence of dynamic misspecification. Both of these cases introduce serial correlation in the

dynamics of the PITs.

In order to maintain parameter estimation error under the null hypothesis, we state our

null hypothesis in terms of a truncated information set, which expresses the dependence of

the predictive density on estimated parameter values (as in Amisano and Giacomini, 2007).

We focus on testing φt+h
(
y|=tt−R+1

)
= φ0 (y|Ft), that is:

H0 : Φt+h

(
y|=tt−R+1

)
= Φ0 (y|Ft) for all t = R, ..., T, (3)

where Φ0 (y|Ft) ≡ Pr (yt+h ≤ y|Ft) denotes the distribution specified under the null hypoth-
esis.10 The alternative hypothesis, HA, is the negation of H0. Note that the null hypothesis

evaluates the correct specification of the density forecast of a model estimated with a given

window size, R, as well as the parameter estimation method chosen by the researcher.

We are interested in the test statistics:

κP = sup
r∈[0,1]

ΨP (r)2 , (4)

CP =
∫ 1
0

ΨP (r)2 dr. (5)

Note that the κP test statistic is basically the same as the V1T test statistic considered

by Corradi and Swanson (2006a) when applied to predictive densities (the latter consider

the absolute value of ΨP (r), while we consider its square). Note, however, that we derive

10Note that the null hypothesis depends on R. In other words, the null hypothesis jointly tests density

functional form and estimation technique. It might be possible that correct specification is rejected for a

model for some values of R and not rejected for the same model for some other choices of R. This is reasonable

since we are evaluating the model’s performance when estimated in a given sample size, so the estimation

error is important under the null hypothesis. Alternatively, one could construct a test that is robust to the

choice of the estimation window size as suggested in Inoue and Rossi (2012) and references therein.
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the asymptotic distribution of the test statistic under a different null hypothesis. Corradi

and Swanson (2006a) focus on the null hypothesis: HCS
0 : Φt+h(y|=t) = Φ0(y|=t, θ†) for

some θ† ∈ Θ, where Θ is the parameter space. That is, the latter test the hypothesis of

correct specification of the predictive density at the pseudo-true parameter value. Thus, the

limiting distribution of their test reflects parameter estimation error and, therefore, is not

nuisance parameter free. In addition, they allow for dynamic misspecification under the null

hypothesis. This allows them to obtain asymptotically valid critical values even when the

information set may not contain all the relevant past history. Dynamic misspecification also

affects the limiting distribution of their test statistic by contributing additional nuisance

parameters.

Under our null hypothesis (eq. 3) instead, the limiting distribution of the test statistic

is nuisance parameter free when the model is dynamically correctly specified. The reason

is that we maintain parameter estimation error under the null hypothesis, which implies

that the asymptotic distribution of the test does not require a delta-method approximation

around the pseudo-true parameter value.

To clarify our null hypothesis, we provide an example.

Example: As a simple example, consider yt+1 = ct + xt + εt+1, εt+1 ∼ iid N(0, 1) and

xt ∼ iid N(0, σ2x), and εt+1, xt are independent of each other. We assume for simplicity that

the variance of the errors is known and equals one. The researcher instead considers a model

yt+1 = βxt + et+1, et+1 ∼ iid N(0, 1). Moreover, the researcher is estimating the coeffi cient

β with a window of size R. We set ct such that our null hypothesis (eq. 3) holds. That is,

the estimated PIT is: ∫ yt+1

−∞
φt+1

(
y|=tt−R+1

)
dy,

where φt+1
(
y|=tt−R+1

)
is N

(
β̂t,Rxt, 1

)
, whereas the PIT that generated the data is:∫ yt+1

−∞
φt+1 (y|Ft) dy,

where φt+1 (y|Ft) is N (ct + xt, 1). Under the assumption that the variance is known, a

suffi cient condition for the null hypothesis to hold is that the conditional means from true

DGP and the estimated model are the same. More in detail, the null hypothesis is imposed

by assuming:

ct + xt = β̂t,Rxt,
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that is,11

ct =

(
R−1

∑t
j=t−R+1

[
xj−1 −

(
R−1

∑t
s=t−R+1 xs−1

)] [
yj −

(
R−1

∑t
s=t−R+1 ys

)]
R−1

∑t
j=t−R+1

[
xj−1 −

(
R−1

∑t
s=t−R+1 xs−1

)]2 − 1

)
xt.

Thus, the null hypothesis in eq. (3) does not test the correct specification of the forecast-

ing model evaluated at the true parameter values (relative to the data generating process);

rather, the null hypothesis in eq. (3) tests the correct specification of the forecasting model

evaluated at the parameter values obtained conditional on the estimation procedure. We

argue that the latter is an appropriate approach to evaluate the correct specification of den-

sity forecasts, since it jointly evaluates the proposed model and its estimation technique,

including the estimation window size. The methodology only requires that the conditional

mean be estimated based on a finite number of observations.12

Suppose, instead, the true data generating process is: yt = α + xt + εt where xt ∼ iidχ21

and εt ∼ iidN(0, 1). Let the researcher estimate the a misspecified model that includes only

a constant treating the forecast distribution as normal. Note that the null hypothesis does

not hold even if the error term is normal, since the misspecification results in an actual error

term that is a combination of xt and εt. Thus, since the data is generated as a mixture of

a chi-squared and normal distribution, and we are testing whether it is a normal, the null

hypothesis does not hold.

3.1 One-step-ahead Density Forecasts and Dynamically Correctly

Specified Models

This sub-section presents results for the case of one-step-ahead forecasts when the densities

are dynamically correctly specified; the next sub-section generalizes the tests to the presence

of misspecification and serial correlation. Let h = 1. First, we derive the asymptotic

distribution of ΨP (r) for one-step-ahead density forecasts under Assumption 1.13

11The data under the null hypothesis are mixing, and thus satisfy our Assumption 1, for the following

reason: let gt ≡ (xt, ct, εt)′. Since E (gt) = 0 and E (gt|gt−1,gt−2, ...) = 0 then gt is a martingale difference
sequence and has finite variance, thus it is white noise (Hayashi, p. 104).
12The results in this paper also carry over to the fixed-estimation scheme, where the conditioning infor-

mation set is =R1 , or to any other information set based on a bounded number of observations R, provided
R is finite.
13Note that if P/R→ 0, our test would be the same as the existing tests as parameter estimation uncertainty

becomes irrelevant in those cases (see Corradi and Swanson, 2006b). This result would hold even for recursive

estimation schemes as long as P/R→ 0. However, we test a different null hypothesis than the existing tests.
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Assumption 1.

(i)
{
Zt = (yt, X

′
t)
′}T
t=R

is strong mixing with mixing coeffi cients α (m) of size−λ/ (λ− 1) ,

where λ ∈ (1, 3/2);

(ii) Φ0 (yt+h|Ft) is continuous, differentiable and has a well defined inverse;
(iii) Fd (., .) and F (.) are respectively the joint and the marginal distribution func-

tions of the random variable Φ0 (yt+h|Ft), i.e. Pr (Φ0 (yt+h|Ft) ≤ r1,Φ0 (yt+h+d|Ft+d) ≤ r2) =

Fd (r1, r2), Pr (Φ0 (yt+h|Ft) ≤ r) = F (r), and F (r) is continuous;

(iv) R <∞ as P, T →∞.

Assumption 1(i) allows for short memory heterogeneous data. The assumption is similar

to that in Theorem 1 in Giacomini and White (2006), which allows for some types of mild

non-stationarity induced by changes in distributions over time, yet rules out I(1) processes, a

useful extension to the existing literature, since the parametric tests of correct specification

that allow for dynamic misspecification under the null assume covariance stationary data.

Assumption 1(ii) and 1(iii) are similar to those maintained in Inoue (2001), Assumption B.

These assumptions require the PITs, as well as the marginal and joint distributions of the

PITs, are well-defined.14 Assumption 3(iv) assumes the estimation window size stays finite

as the total sample size grows. Note that the assumption potentially allows forecasts to be

conditioned on a finite set of future values of some variables of interest (i.e. “conditional

forecasts”).

Dynamic correct specification is characterized by Assumption 2(a):

Assumption 2.

(a) yt+h|=tt−R+1 ≡ yt+h|Ft for all t = R, ..., T, where ≡ denotes equality in distribution;
and (b) Φ−1t+1

{
zt+1|=tt−R+1

}T
t=R

has non-zero Jacobian with continuous partial derivatives.

We show the following result:

Theorem 1 (Asymptotic Distribution of ΨP (r)) Under Assumptions 1, 2, and H0 in

eq. (3): (i) {zt+1}Tt=R is iid U (0, 1); (ii) ΨP (r) weakly converges as a variable in the

space ([0, 1]× R) to the Gaussian process Ψ (.), with mean zero and auto-covariance function

E [Ψ (r1) Ψ (r2)] = [inf (r1, r2)− r1r2] .
14The assumption is on the unobserved true distribution, though under the null it also ensures that the

proposed distribution has a well defined limiting distribution.

10



The result in Theorem 1 allows us to derive the asymptotic distribution of the test statis-

tics of interest, presented in Theorem 2. The latter shows that the asymptotic distribution

of our proposed test statistics have the appealing feature of being nuisance parameter free.

Theorem 2 (Correct Specification Tests) Under Assumptions 1, 2 and H0 in eq. (3):

κP ≡ sup
r∈[0,1]

ΨP (r)2 ⇒ sup
r∈[0,1]

Ψ (r)2 , (6)

and

CP ≡
∫ 1
0

ΨP (r)2 dr ⇒
∫ 1
0

Ψ (r)2 dr. (7)

The tests reject H0 at the α ·100% significance level if κP > κα and CP > Cα. Critical values

for α = 10%, 5% and 1% are provided in Table 1, Panel A.

INSERT TABLE 1 HERE

Note that one could be interested in testing correct specification in specific parts of the

distribution.15 For example, one might be interested in the tails of the distribution, which

correspond to outliers, such as the left tail where r ∈ [0, 0.25), or the right tail where

r ∈ [0.75, 1), or both: r ∈ {[0, 0.25 ∪ 0.75, 1]}. Alternatively, one might be interested in the
central part of the distribution, for example r ∈ [0.25, 0.75]. We provide critical values for

these interesting cases in Table 1, Panel B.

Note also that our κP test has a graphical interpretation. In fact,

α = Pr

{
sup
r∈[0,1]

ΨP (r)2 > κα

}
= Pr


[

sup
r∈[0,1]

|ΨP (r)|
]2
> κα

 = Pr

{
sup
r∈[0,1]

|ΨP (r)| > √κα

}
.

Thus, from eqs. (1) and (2),

1√
P

ΨP (r) ≡ P−1
T∑
t=R

(
1
{

Φt+h

(
yt+h|=tt−R+1

)
≤ r
}
− r
)

= ϕP (r)− r.

Furthermore,

α = Pr

{
sup
r∈[0,1]

|ΨP (r)| > √κα

}
= Pr

{
sup
r∈[0,1]

|ϕP (r)− r| >
√
κα/P

}
.

15See Franses and van Dijk (2003), Amisano and Giacomini (2007) and Diks, Panchenkob and van Dijk

(2011) for a similar idea in the context of point forecasts and density forecast comparisons.
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This suggests the following implementation: plot the cumulative distribution function of

the PIT, eq. (2), together with the cumulative distribution function of the uniform, r (the

45-degree line), and the critical value lines: r ±
√
κα/P . Then, the κP test rejects if the

cumulative distribution function of the PIT is outside the critical value lines. It also follows

from this argument that the critical values of the test statistic sup
r∈[0,1]

|ΨP (r) | would be √κα.

It is interesting to compare our approach to Diebold et al. (1998). While our null

hypothesis is different from theirs, the procedure that we end up proposing is very similar

to theirs in that both their implementation and ours abstract from parameter estimation

error. Thus, our approach can be viewed as a formalization of their approach, albeit with

a different null hypothesis. An additional advantage of our approach is that the confidence

bands that we propose are joint, not pointwise.

The previous discussion suggests that we could also apply our approach to likelihood-ratio

(LR) tests based on the inverse normal transformation of the PITs. It is well known that,

when the forecast density is correctly specified, an inverse normal transformation of the PITs

(ζt+h) has a standard normal distribution (Berkowitz, 2001).16 As noted in the literature,

the latter approach has typically abstracted from parameter estimation uncertainty. When

focusing on the traditional null hypothesis, HCS
0 , ignoring parameter estimation error leads

to size distortions. Note that the size distortion is not only a small sample phenomenon,

but persists asymptotically. The next result shows that, since parameter estimation error is

maintained under our null hypothesis H0, eq. (3), there is no need to correct the asymp-

totic distribution and the implied critical values of the likelihood ratio tests to account for

parameter estimation error.

Corollary 3 (Inverse Normal Tests) Let Φ−1 (.) denote the inverse of the standard nor-

mal distribution function. Under Assumptions 1,2 and H0 in eq. (3): ζt+1 ≡ Φ−1 (zt+1) is

iidN (0, 1) .

Thus, one could test for the correct specification of the density forecast by testing the

absence of serial correlation and the correct specification of the moments of ζt+h. For exam-

ple, the researcher could estimate an AR(1) model for ζt+1 and test that the mean and the

slope are both zero, and that the variance is one. The advantage of this approach is that

it is informative regarding the possible causes underlying the misspecification of the density

forecast and it may perform better in small samples. The disadvantage of the approach is

16González-Rivera and Yoldas (2012) provide an extension of this test to multivariate out-of-sample pre-

dictive densities.
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that, unlike the κP and CP tests, it focuses on specific moments of the distribution rather

than the whole (non-parametric) cumulative distribution function.

Finally, note that our approach provides not only a rationale to the common practice

of evaluating the correct specification of density forecasts using PITs without adjusting for

parameter estimation error (Diebold et al., 1998), but also a methodology for implementing

tests robust to the presence of serial correlation as well as dynamically misspecified models.

This is a more general case and we consider it in the next section.

3.2 Multi-step-ahead Forecasts and Dynamic Mis-specification

When considering h-step-ahead forecasts, h > 1 and finite, as well as when h = 1 for models

that are dynamically misspecified, an additional problem arises, as both of these cases involve

serial correlation in the PITs.17 Thus, we need to extend our results and allow the forecasts

to be both serially correlated and potentially misspecified under the null hypothesis; that is,

Assumption 2 does not hold.

Under dynamically misspecified null or when evaluating h-step-ahead conditional predic-

tive densities, we show that ΨP (r) weakly converges (considered as variables in the space

[0, 1]× R) to the Gaussian process Ψ (., .), with mean zero and an auto-covariance function

that depends on the serial correlation in the PITs.

Theorem 4 (Correct Specification Tests under Serial Correlation) Under Assump-

tion 1 and H0 in eq. (3): (i) {zt+h}Tt=R is U (0, 1); (ii) ΨP (r) weakly converges as a variable

in the space [0, 1] × R) to the Gaussian process Ψ (.), with mean zero and auto-covariance

function E [Ψ (r1) Ψ (r2)] = σ (r1, r2) , where σ (r1, r2) =
∞∑

d=−∞
[Fd (r1, r2)− F (r1)F (r2)].

Furthermore,

κP ⇒ sup
r∈[0,1]

Ψ (r)2 ,

CP ⇒
∫ 1
0

Ψ (r)2 dr.

For a given estimate of σ (r1, r2), the critical values of κP and CP can be obtained via

Monte Carlo simulations.18 Note that, although in the case of dynamically misspecified mod-

els our method has less computation advantages relative to Corradi and Swanson (2006c),

as the limiting distribution of our test too depends on nuisance parameters, still our test is

17In fact, h-step-ahead forecasts are serially correlated of order at least (h− 1) .
18In the Monte Carlo as well as in the empirical application we obtain the critical values of our tests using

Newey and West’s (1987) HAC estimator for the covariance of the PITs.
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different because it considers a different null hypotheses. In addition, given that we main-

tain parameter estimation under the null, our test has wider applicability, since it does not

require designing the appropriate bootstrap that correctly mimics the contribution of para-

meter estimation error to the asymptotic distribution and prove its validity, which could be

challenging in many instances.

However, there are several other solutions proposed in the literature that one could use

within our approach as well. A first approach is to discard data by reducing the effective

sampling rate to ensure an uncorrelated sample (Persson, 1974 and Weiss, 1973). This can

be implemented in practice when models are dynamically correctly specified by creating sub-

samples of predictive distributions that are at least h periods apart. However, this procedure

may not be possible in small samples, since the sub-samples may significantly reduce the

size of the sample. In those cases, one may implement the procedure in several uncorrelated

sub-samples of forecasts that are at least h periods apart and then use Bonferroni methods

to obtain a joint test without discarding observations (see Diebold et al., 1998). However,

it is well-known that Bonferroni methods are conservative; thus the latter procedure, while

easy to implement, may suffer from low power.

4 How to Use Our Tests?

Suppose the researcher decides to use the tests described in Theorem 2. If the tests reject,

the rejection could be due to the violation of either independence or uniformity. If the

researcher is concerned that the data may not be independent, he/she could use our test

for uniformity robust to violations of independence. As discussed in Section 3.2, the latter

test is not nuisance parameter free, so the implementation is more challenging and requires

simulating the critical values. Alternatively, one could test for serial correlation in a way that

is robust to uniformity. Among the tests that could be implemented, one could consider the

Ljung-Box Q or Box-Pierce Q-test statistics (Box and Pierce, 1970) or the BDS test proposed

by Brock, Dechert and Scheinkman (1987). The Q-test detects auto-correlation in a linear

framework whereas the BDS test is a non-parametric test of independence and identical

distribution against an unspecified alternative. Note that serial correlation implies lack of

independence but serial uncorrelatedness does not necessarily imply independence. If the

PITs are not serially correlated, the researcher should feel more comfortable in applying the

critical values provided in our paper. Note, however, that in this case, independence could

still be violated.
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5 Monte Carlo Evidence

In this section we analyze the size and power properties of our proposed tests in small samples

for both correctly specified and misspecified forecasting models. Note that comparisons with

alternative methods (such as Corradi and Swanson, 2006c or González-Rivera and Yoldas,

2012), are not meaningful since we focus on a null hypothesis that is different from theirs.

5.1 Size Analysis

To investigate the size properties of our tests we consider several Data Generating Processes

(DGPs). The forecasts are based on model parameters estimated in rolling windows for

t = R, ..., T + h. We consider several values for in-sample estimation window of R =

[25, 50, 100, 200] and out-of-sample evaluation period P = [25, 50, 100, 200, 500, 1000] to eval-

uate the performance of the proposed procedure. While our Assumptions require R finite, we

consider both small and large values of R to investigate the robustness of our methodology

when R is large. The DGPs are the following:

DGP S1 (Baseline Model): We estimate a model yt = βxt−1 + et, et ∼ iidN(0, 1). The

data is generated by yt = µt + xt−1 + εt, εt ∼ iid N(0, 1) and xt ∼ iid N(0, 1),where

µt =

(
R−1

∑t
j=t−R+1

[
xj−1 −

(
R−1

∑t
s=t−R+1 xs−1

)] [
yj −

(
R−1

∑t
s=t−R+1 ys

)]
R−1

∑t
j=t−R+1

[
xj−1 −

(
R−1

∑t
s=t−R+1 xs−1

)]2 − 1

)
xt.

DGP S2 (Extended Model): We parameterize the model according to the realistic situa-

tion where the researcher is interested in forecasting one-quarter-ahead U.S. real GDP growth

with the lagged term spread from 1959:I-2010:III. We estimate a model yt = βxt−1 + et,

et ∼ iidN(0, 1), while the data has been generated with the DGP: yt = µt + γxt−1 + εt,

εt ∼ iidN (0, 1) , xt = 0.2 + 0.8xt−1 + νt, νt ∼ iid N(0, 1.082) independent from εt, γ = 0.48

and

µt =

(
R−1

∑t
j=t−R+1

[
xj−1 −

(
R−1

∑t
s=t−R+1 xs−1

)] [
yj −

(
R−1

∑t
s=t−R+1 ys

)]
R−1

∑t
j=t−R+1

[
xj−1 −

(
R−1

∑t
s=t−R+1 xs−1

)]2 − γ
)
xt.

DGPs S1-S2 are based on one-step-ahead forecast densities. DGP S3 considers the case

of h-step-ahead forecast densities where the PITs are serial correlated by construction.

DGP S3 (Serial Correlation): The DGP is yt = µt + xt−1+ εt + ρεt−1, εt ∼ iidN(0, 1),

xt ∼ iid N(0, 1), ρ = 0.2 and µt is as defined in DGP S1. The estimated model is: yt =

βxt−1 + et, et ∼ iid N(0, 1 + ρ2).
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The results are shown in Table 2. The table shows that our tests performs well in finite

samples, with mild under-rejections in DGP S2. In the case of serial correlation, DGP S3,

the asymptotic distribution of the tests in Theorem 3 approximated using HAC-consistent

variance estimates tends to over-reject, although mildly.19

INSERT TABLE 2 HERE

5.2 Power Analysis

To investigate the power properties of our tests, we consider the case of constant misspeci-

fication in the following DGP.

DGP P: The data are generated from a linear combination of normal and χ21 distributions:

yt = µt + xt−1 + (1− c) σ̂tη1,t + c
(
η22,t − 1

)√
2, where xt, η1,t and η2,t are iidN (0, 1) random

variables that are independent of each other and µt is as defined in DGP S1. The researcher

tests whether the data result from a normal distribution, i.e. considers the model yt =

βxt−1 + et, et ∼ iidN(0, σe). When c is zero, the null hypothesis is satisfied. When c

is positive, the considered density becomes a convolution of a standard normal and a χ21
distribution (with mean zero and variance one), where the weight on the latter becomes

larger as c increases.20

The results shown in Table 3 suggest that our proposed specification tests (κP , CP ) have

good power properties in detecting misspecification in the predictive density.21

INSERT TABLE 3 HERE

6 Empirical Analysis

This section provides an empirical assessment of the correct specification of widely-used

density forecasts: the Survey of Professional Forecasters’(SPF) density forecasts of infla-

tion and output growth, and density forecasts of the seven macroeconomic aggregates in a

representative macroeconomic model.

19The size of the test might be improved by finite sample corrections. For instance, one could use a version

of the block bootstrap suggested by Inoue (2001).
20Note that

(
η22,t − 1

)√
2 is a chi-squared distribution with zero mean and variance one, that is, it has the

same mean and variance as the normal distribution we have under the null hypothesis, although the shape

is different.
21Unreported results show that the test still has power when we consider smaller sample sizes, e.g. T = 100.
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6.1 Evaluation of SPF Density Forecasts

Diebold et al. (1999) evaluate the correct specification of the density forecasts of inflation

in the SPF.22 In this section, we conduct a formal test of correct specification for the SPF

density forecasts using our proposed procedure and compare our results to theirs. In addition

to inflation, we also investigate the conditional density forecasts of output growth.

We use real GNP/GDP and the GNP/GDP deflator as measures of output and prices.

The mean probability distribution forecasts are obtained from the Federal Reserve Bank of

Philadelphia (Croushore and Stark, 2001). In the SPF data set, forecasters are asked to

assign a probability value (over pre-defined intervals) of year-over-year inflation and out-

put growth for the current (nowcast) and following (one-year-ahead) calendar years. The

forecasters update the assigned probabilities for the nowcasts and the one-year-ahead fore-

casts on a quarterly basis. The probability distribution provided by the SPF is discrete,

and we base our results on a continuous approximation by fitting a normal distribution.

The realized values of inflation and output growth are based on the real-time data set for

macroeconomists, also available from the Federal Reserve Bank of Philadelphia.23

The analysis of the SPF probability distribution is complicated since the SPF question-

naire has changed over time in various dimensions: there have been changes in the definition

of the variables, the intervals over which probabilities have been assigned, as well as the time

horizon for which forecasts have been made. To mitigate the impact of these problematic

issues, we truncate the data set and consider only the period 1981:III-2011:IV. We use the

year-over-year growth rates of output and prices calculated from the first quarterly vintage

of real GNP/GDP and the GNP/GDP deflator in each year to evaluate the density forecasts.

For instance, in order to obtain the growth rate of real output for 1981, we take the 1982:I

vintage of data and calculate the growth rate of the annual average GNP/GDP from 1980

to 1981. We consider the annual-average over annual-average percent change (as opposed to

fourth-quarter over forth-quarter percent change) in output and prices to be consistent with

the definition of the variables that SPF forecasters provide probabilistic predictions for.

The empirical results are shown in Table 4. Asterisks (‘*’) indicate rejection at the 5%

significance level based on the critical values in Theorem 2 (reported in Table 1, Panel A),

22The SPF provides two types of density forecasts: one is the distribution of point forecasts across fore-

casters (which measures the dispersion of point forecasts across forecasters), and the other is the mean of

the probability density forecasts (which measures the average of the density forecasts across forecasters). We

focus on the latter.
23The data are available at http://www.philadelphiafed.org/research-and-data/real-time-center.

17



while ‘†’indicates rejection at 5% significance level based on the critical values in Theorem

4. The latter are simulated conditional on the data (i.e. conditional on the HAC estimate

of the variance-covariance matrix of the PIT, with a truncation parameter equal to 3). The

tests which are robust to violations of independence (based on Theorem 4) as well as the

ones that maintain independence under the null reject correct specification for both output

growth and inflation, except for output growth at the one-year-ahead forecast horizon. The

test robust to the violation of independence under the null favors correct specification for

the current year forecast of the output growth as well.

INSERT TABLE 4 HERE

Our results are important in light of the finding that survey forecasts are reportedly

providing the best forecasts of inflation. For example, Ang et al. (2007) find that sur-

vey forecasts outperform other forecasting methods (including the Phillips curve, the term

structure and ARIMA models) and that, when combining forecasts, the data put the highest

weight on survey information. Our results imply that survey forecasts still do not provide

correct forecasts for the whole distribution of inflation.

Figure 2 plots the empirical CDF of the PITs (solid line). Under the null hypothesis in

Theorem 2, the PITs should be uniformly distributed; thus the CDF of the PITs should be

the 45 degree line. The figure also reports the critical values based on the κP test. If the

empirical CDF of the PITs is outside the critical value lines, we conclude that the density

forecast is misspecified. Clearly, the correct specification is rejected in all cases except the

one-year-ahead density forecast of GDP growth. The figure also provides a visual analysis of

the misspecification in the PITs: the survey typically overpredicts future large realizations

(both positive and negative) of output growth and inflation.

For comparison, Figure 3 reports results based on Diebold et al.’s (1998) test. Panel A

plots the empirical distribution of the PITs of output growth for both the density nowcast

(left-hand panel) and the one-year-ahead density forecast (right-hand panel). In addition

to the PITs, we also provide the 95% confidence interval (dotted lines) using a normal ap-

proximation to a binomial distribution similar to Diebold et al.’s (1998). Both nowcast and

one-year-ahead density forecasts of output growth are misspecified, although misspecification

is milder in the case of one-year-ahead output growth. Figure 3, Panel B, shows the PITs

for inflation. According to this test, both the density nowcast and one-year-ahead forecast

overestimate tail risk. This phenomenon is more pronounced for the nowcast. Overall, the

results obtained by using Diebold et al.’s (1998) test are broadly similar to those obtained
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by using the test that we propose in this paper, with one important exception. In the case of

one-year-ahead GDP growth forecasts, our test based on Theorem 2 does not reject, whereas

the Diebold et al. (1998) test does, despite the fact that both rely on iid assumptions. The

discrepancy in the results is most likely due to the fact that the latter test is pointwise,

whereas we jointly test the correct specification across all quantiles in the empirical distrib-

ution function: thus our test has larger critical values than the latter, in order to correctly

account for the joint null hypothesis.

INSERT FIGURES 2 AND 3 HERE

6.2 Evaluation of a Baseline Macroeconomic Model

Macroeconomic models are widely used in central banks for policy evaluation and forecasting.

Several recent contributions have focused on the ability of Dynamic Stochastic General

Equilibrium (DSGE) models to produce good out-of-sample point forecasts. In particular,

Smets and Wouters (2007) show that the forecasts of their model that they propose are

competitive relative to Bayesian VAR forecasts. Edge, Kiley and Laforte (2010) evaluate

the predictive ability of the Federal Reserve Board’s model (Edo), and Edge and Gürkaynak

(2010) provide a thorough analysis of the forecasting ability of the same model using real-

time data. The main result in the latter is that point forecasts of macroeconomic models

perform similarly to that of a constant mean model, but both are biased; the reason why

they perform similarly is because volatility was low during the Great Moderation sample

period they consider, and, therefore, most variables were unpredictable. Edge, Gürkaynak

and Kısacıkoğlu (2013) extend the results of Edge and Gürkaynak (2010) to a longer sample

and Gürkaynak, Kısacıkoğlu and Rossi (2013) analyze the point forecasting ability of the

models relative to reduced-form models, and find that the latter perform better than the

DSGE model at some forecast horizons.

While the contributions discussed above focus on evaluating how accurate macroeco-

nomic models’point forecasts are, central banks are becoming more and more interested in

analyzing the uncertainty around the point forecasts that macroeconomic models provide.

In this section, we focus on evaluating density forecasts of a baseline DSGE model, a task

that only a few recent contributions have performed. Christoffel, Coenen and Warne (2010)

study the performance of density forecasts of the European Central Bank’s model (NAWM)

and find that it tends to overestimate nominal wages. Wolters (2012) evaluates point and

density forecasts for US inflation and concludes that the models overestimate uncertainty
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around point forecasts. Bache, Jore, Mitchell and Vahey (2011) combine density forecasts of

inflation from VARs and a macroeconomic model using the linear opinion pool. They find

that allowing for structural breaks in the VAR produces well-calibrated density forecasts

for inflation but reduces the weight on the macroeconomic model considerably. Our paper

differs from the literature as we evaluate the model-based density forecasts using our novel

PIT-based test and compare its results with those based on the PIT-based tests proposed

by Diebold et al. (1998).

We focus on the Smets and Wouters (2007) model as our benchmark model. The model

is a real business cycle model with both nominal as well as real rigidities; in fact, it features

sticky prices and wages as well as habit formation in consumption and cost of adjustment in

investment.24 We recursively re-estimate the model (using exactly the same data and priors)

in fixed rolling window of 80 observations and produce a sequence of 80 out-of-sample density

forecasts.25 The model includes seven observables and seven shocks; we separately evaluate

the forecast densities for each of the target variables. We focus on the one-quarter-ahead

forecast horizon.26

Table 5 reports the empirical results for the correct calibration of the model’s density

forecasts. The last two columns report the value of the κP and CP tests that we propose in

this paper. Asterisks ‘*’indicate rejection at the 5% significance level based on the critical

values in Theorem 2 (reported in Table 1, Panel A), while ‘†’ indicates rejection at 5%
significance level based on the critical values in Theorem 4 with a HAC estimate of the

covariance matrix. According to the critical values in Theorem 2, the density forecasts of

investment, inflation, hours and wages are well calibrated, although those of the remaining

variables are not. When one allows for serial correlation under the null (that is, using the

critical values implied by Theorem 4), then invesment, hours and wages pass the test of

correct calibration. Since the Ljung-Box test rejects that the PITs are uncorrelated for all

24See Section I in Smets and Wouters (2007) for a detailed description of the model.
25Smets and Wouters (2007) approximate the deciles of the predictive densities based on Gaussian kernel

estimates, given the DSGE’s assumption of normally distributed errors. We obtain the PITs using a linear

interpolation for the inter-decile range.
26The sample period is from 1966:I to 2004:IV. The first one-quarter-ahead out-of-sample forecast is for

1985:I. From the 80 observations in each rolling window, 4 are used for pre-sampling: they are not included

in the likelihood. The total number of out-of-sample periods is 80. The model is estimated using Dynare.

We create a sample of 150,000 draws for each rolling window estimation, discarding the first 20% of the

draws. We use a step-size of 0.2 for the jumping distribution in the Metropolis-Hastings algorithm, resulting

in rejection rates hovering around 0.4 across various estimation windows.
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variables besides consumption and inflation (at least in one of the moments —see the results

reported in the same table) at 5% significance level and all of them at 10% significance level,

the version of our test that maintains serial correlation under the null is the appropriate one.

Figure 4 displays the cumulative distribution of the PITs for each the observables, to-

gether with critical values for correct calibration based on the κP test in Theorem 2. The

figures show that there are too few realizations of consumption, output growth and the fed-

eral funds rate in the lowest quantiles of the distribution; that is, the model overpredicts the

lower tail values of the target variable. For the remaining variables, the test suggests proper

calibration. For comparison, Figure 5 shows the estimated PDF of the PITs, together with

critical values based on Diebold et al. (1998). Diebold et al.’s (1998) methodology produces

results similar to ours, except for hours worked and real wage forecasts, which are correctly

specified according to our test and misspecified according to Diebold et al.’s (1998) test.27

Again, the most likely reason for the discrepancy appears to be the different nature of the

test: our test is joint across deciles whereas the latter is pointwise.

INSERT FIGURES 4 AND 5 HERE

7 Conclusions

This paper proposes new tests for predictive density evaluation. The techniques are based

on Kolmogorov-Smirnov and Cramér-von Mises-type test statistics. We provide critical

values of the tests for dynamically correctly specified models as well as tests that focus on

specific parts of the predictive density. We also propose methodologies that can be applied to

dynamically misspecified models and multiple-step-ahead forecast horizons. Our empirical

analyses uncover that both SPF output growth and inflation density forecasts as well as

DSGE-based forecasts of several macroeconomic aggregates are misspecified.

27Note that this is a fair comparison, since both Figures 4 and 5 are constructed under the maintained

assumption of independence.
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Appendix A. Proofs

The appendix provides the proofs for Theorems 1, 2, 4 and Corollary 4.

Proof of Theorem 1. (i) The true joint conditional predictive density of {yt+1}Tt=R can
be decomposed as φ0 (yT+1, ..., yR|FR) = φ0 (yT+1|FT )φ0 (yT |FT−1) ...φ0 (yR+1|FR), where R

is finite by Assumption 1(iv) (which guarantees that we condition on a finite information set).

Let q (zR+1, ..., zT+1|FR) denote the conditional joint density of the probability integral trans-

forms. Then, given that yt+1 = Φ−1t+1(zt+1|=t), where =t ⊆ Ft, we can re-write the joint den-
sity of the PITs as q (zR+1, ..., zT+1|FR) = φ0

(
Φ−1R+1(zR+1|=R)|FR

)
...φ0

(
Φ−1T (zT |=T−1)|FT−1

)
×

...× φ0
(
Φ−1T+1(zT+1|=T )|FT

)
.

By using the change of variables formula and Assumption 2(b),

q (zR+1, ..., zT+1|FR) =

∣∣∣∣∣∣∣∣
(
∂Φ−1R+1(zR+1|=R)/∂zR+1

)
...

(
∂Φ−1R+1(zR+1|=R)/∂zT+1

)
... ... ...(

∂Φ−1T+1(zT+1|=T )/∂zR+1
)

...
(
∂Φ−1T+1(zT+1|=T )/∂zT+1

)
∣∣∣∣∣∣∣∣

× φ0
(
Φ−1R+1(zR+1|=R)|FR

)
...φ0

(
Φ−1T (zT |=T−1)|FT−1

)
φ0
(
Φ−1T+1(zT+1|=T )|FT

)
= (1/φR+1 (yR+1|=R)) ... (1/φT (yT |=T−1)) (1/φT+1 (yT+1|=T ))×

× φ0 (yR+1|FR) ...φ0 (yT |FT−1)φ0 (yT+1|FT ) ,

where the last equality holds because the Jacobian is lower triangular provided we are in a

conditional forecasting framework and thus {yt+1,..., yT+1} /∈ =t at any time t. Then,

q (zR+1, ..., zT+1|FR) =
φ0 (yR+1|FR)

φR+1 (yR+1|=R)
× ...× φ0 (yT |FT−1)

φT (yT |=T−1)
× φ0 (yT+1|FT )

φT+1 (yT+1|=T )
.

Now suppose that =t = =tt−R+1, where =tt−R+1 contains only data available from time

t−R+ 1 to time t. In other words, =tt−R+1 differs from =t because the rolling window does
not use all the available information in the sample. If φt+1 (yt+1|=t) = φt+1

(
yt+1|=tt−R+1

)
=

φt+1 (yt+1|Ft) (the condition imposed by Assumption 2(a)), i.e. when =tt−R+1 contains all
relevant past information, then we could re-write the above as

q (zR+1, ..., zT+1|FR) =
φ0 (yR+1|FR)

φR+1 (yR+1|=R1 )
× ...× φ0 (yT |FT−1)

φT
(
yT |=T−1T−R

) × φ0 (yT+1|FT )

φT+1
(
yT+1|=TT−R+1

)
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It follows that, under the null, each ratio yields a U(0, 1) variable (since the PDF is the

unit line), thus the joint distribution is a multivariate U(0, 1). In addition, since the joint

distribution is the product of the marginals, then {zt+1}Tt=R is iid U(0, 1).

(ii) Under H0, zt+1 is uniformly distributed on [0, 1]. The result follows from Theorem 4

noting that, from Inoue (2001 p.161, letting r = 1 in his notation), under iid, the covariance

simplifies to σ (r1, r2) = F0 (r1, r2)−F (r1)F (r2) = min (r1, r2)−r1r2, where the last equality
follows from Shorack and Wellner (1986, p.131) and the fact that {zt+1}Tt=R is uniform.
Proof of Theorem 2. The theorem follows from Theorem 1 by the Continuous Mapping

theorem.

Proof of Corollary 3. The theorem follows directly from part (i) in Theorem 1 and

Berkowitz (2001).

Proof of Theorem 4. (i) Under Assumption 1(ii) and H0 in eq. (3), by Lemma 1 in

Bai (2003), {zt+h}Tt=R is U (0, 1). (ii) Clearly, Assumption 1(i) satisfies assumption (i) in

Theorem 1 in Giacomini and White (2005), as they require strong mixing of the same size,

with λ > 1. If Zt is strong mixing with coeffi cients of size α(m), so is any measurable function

of Zt such that g(Zt, ..., Zt−R), where R is finite (White, 2001, Theorem 3.49); in our context,

g(Zt, ..., Zt−R) is the cumulative distribution function and R is finite by Assumption 1(iv).

Furthermore, in what follows, we show that (i) also satisfies Inoue’s (2001) Assumption A.

Since g(Zt, ..., Zt−R) is strong mixing with α(m) of size − λ
λ−1 then α(m) = O(m−

λ
λ−1−ε) for

some ε > 0 (White, 2001, Definition 3.45). That is, there exists a constant B <∞ such that
|α(m)|

m
− λ
λ−1−ε

≤ B for every m (Davidson, 1994, p.31). Assumption A in Inoue (2001) requires

that
∞∑
m=1

m2α (m)
γ

4+γ <∞ for some γ ∈ (0, 2) . Note that

∞∑
m=1

m2α (m)
γ

4+γ ≤
∞∑
m=1

m2

∣∣∣∣ α (m)

m−
λ
λ−1−ε

∣∣∣∣ γ
4+γ

m−
λ
λ−1−ε

≤ B
γ

4+γ

∞∑
m=1

m2m−
λ
λ−1−ε ≤ B

∞∑
m=1

m2− λ
λ−1 ,

where B ≡ B
γ

4+γ <∞. The series
∞∑
m=1

m2− λ
λ−1 is a harmonic series, convergent if 2− λ

λ−1 <

−1, i.e. if λ < 3/2. Thus, our Assumption 1(i) satisfies Inoue’s Assumption A. Assumption

1(ii, iii) satisfy Inoue’s Assumption B under the null. Consequently, Theorem 4 follows from

Inoue (2001) by letting (in Inoue’s notation) r = 1.
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Appendix B. Tables and Figures

Table 1. Critical Values

κα;P Cα;P

α : 0.01 0.05 0.10 0.01 0.05 0.10

Panel A. Tests on the Whole Distribution

Correct Specification Test 2.50 1.72 1.39 0.77 0.47 0.35

Panel B. Tests on Specific Parts of the Distribution

Right Tail r ∈ [0, 0.25] 1.54 0.95 0.72 0.60 0.35 0.25

Right Half r ∈ [0, 0.50] 2.42 1.54 1.21 0.90 0.53 0.39

Left Half r ∈ [0.50, 1] 2.28 1.53 1.20 0.85 0.53 0.39

Left Tail r ∈ [0.75, 1] 1.52 0.97 0.74 0.58 0.35 0.26

Center r ∈ [0.25, 0.75] 2.52 1.73 1.36 1.21 0.72 0.52

Tails r ∈ {[0, 0.25] ∪ [0.75, 1]} 1.65 1.19 0.93 0.42 0.28 0.22

Note: Panel A rep orts critica l values for the test statistics κP and CP at the 1% ,5% and 10% nom inal sizes (α = 0.01, 0.05 and 0.10). Panel

B rep orts critica l values for the sam e statistics for sp ecific parts of the d istributions, ind icated in the second column. The number of M onte Carlo

rep lications is 5 ,000. The domain for r is d iscretized w ith a lower b ound of 0 .01, upp er b ound of 0 .99 and a step size of 0 .005.
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Table 2: Size Properties

DGP S1 (IID Case)

κP CP

P R : 25 50 100 200 25 50 100 200

25 0.047 0.045 0.048 0.045 0.046 0.047 0.049 0.046

50 0.053 0.052 0.052 0.053 0.053 0.050 0.054 0.052

100 0.045 0.044 0.049 0.049 0.048 0.046 0.045 0.052

200 0.053 0.050 0.052 0.054 0.049 0.051 0.052 0.049

500 0.049 0.053 0.059 0.052 0.048 0.052 0.050 0.050

1000 0.053 0.048 0.046 0.056 0.051 0.048 0.048 0.055

DGP S2 (IID Case)

κP CP

P R : 25 50 100 200 25 50 100 200

25 0.066 0.049 0.048 0.046 0.067 0.052 0.049 0.046

50 0.062 0.049 0.042 0.047 0.062 0.047 0.047 0.053

100 0.059 0.033 0.036 0.044 0.058 0.031 0.039 0.043

200 0.055 0.036 0.033 0.043 0.055 0.030 0.026 0.039

500 0.061 0.030 0.032 0.030 0.054 0.026 0.025 0.023

1000 0.053 0.033 0.024 0.024 0.050 0.025 0.020 0.022

DGP S3 (Serially Correlated Case)

κP CP

P R : 25 50 100 200 25 50 100 200

25 0.126 0.127 0.121 0.125 0.149 0.142 0.123 0.129

50 0.110 0.118 0.101 0.088 0.088 0.126 0.081 0.083

100 0.087 0.090 0.101 0.089 0.104 0.092 0.095 0.104

200 0.087 0.074 0.098 0.083 0.085 0.086 0.099 0.092

500 0.085 0.085 0.075 0.082 0.090 0.101 0.079 0.091

1000 0.088 0.096 0.101 0.084 0.101 0.101 0.101 0.088

Note: The tab le rep orts empirica l rejection frequencies for the test statistics κP and CP in eqs. (4) and (5) at the 5% nom inal size for

various values of P and R . The number of M onte Carlo rep lications is 5 ,000. The domain for r is d iscretized w ith a lower b ound of 0 .01, upp er

b ound of 0 .99 and a step size of 0 .005. C ritica l values for DGP S1 and DGP S2 are those rep orted in Table 1, Panel A . For DGP S3, the critica l

values are simulated w ith a HAC estim ate of a covariance matrix of the PITs.
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Table 3. Power Properties

DGP P

c κP CP

0 0.059 0.060

0.15 0.064 0.062

0.30 0.076 0.075

0.35 0.135 0.136

0.40 0.260 0.253

0.45 0.526 0.511

0.50 0.855 0.861

0.60 1.000 1.000

Note: The tab le rep orts empirica l rejection frequencies for the test statistics κP and CP in eqs. (4) and (5) for P=960 and R=40; the

nom inal size is 5% . The number of M onte Carlo rep lications is 5 ,000. The domain for r is d iscretized w ith a lower b ound of 0 .01, upp er b ound of

0 .99 and a step size of 0.005. C ritica l values are those rep orted in Table 1, Panel A .

Table 4: Correct Specification Tests for SPF’s Probability Forecasts

Series Name: GDP Growth GDP Deflator Growth

Forecast Horizon (in rows): κP CP κP CP

0 2.31* 0.79*† 15.83*† 5.15*†
1 0.65 0.11 24.90*† 10.44*†

Note: A sterisks ‘*’ ind icate rejection at 5% sign ificance level based on the critica l values in Theorem 2 (rep orted in Table 1, Panel A ), while

‘†′ ind icates rejection at 5% sign ificance level based on the critica l values in Theorem 4. The latter are simulated conditional on the data (i.e .

cond itional on the variance-covariance matrix of the PIT ). The domain for r is d iscretized w ith a lower b ound of 0 .01, upp er b ound of 0 .99 and a

step size of 0.005.
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Table 5: Correct Specification Tests for Model Forecast Distribution

Variable LB: (zt − z̄) LB: (zt − z̄)2 κP CP

Consumption (real) 0.09 0.61 4.80 *† 1.94 *†
Investment (real) 0.00 * 0.52 0.48 0.15

Output Growth (real) 0.00 * 0.28 2.05 * † 0.67 *†
Inflation 0.07 0.83 1.51 0.46 †
Hours 0.00 * 0.53 0.88 0.31

Wages (real) 0.82 0.04 * 1.25 0.26

Federal Funds Rate 0.00 * 0.00 * 3.44 *† 1.41 *†

Note: The column lab eled “LB” indicates p-values of the L jung-Box test statistic for absence of seria l correlation ; values marked by ‘*’

ind icate rejections at 5% sign ificance level. For the κP and CP tests, ‘*’ ind icates rejection at the 5% sign ificance level based on the critica l

values in Theorem 2 (rep orted in Table 1, Panel A ), while ‘†′ ind icates rejection at 5% sign ificance level based on the critica l values in Theorem

4. The domain for r is d iscretized w ith a lower b ound of 0 .01, upp er b ound of 0 .99 and a step size of 0.005. The evaluation sample is from 1985:I

- 2004:IV.

Figure 1. Representative Fan Charts from the Macroeconomic Model in 2000:IV
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Note: The figure shows fan charts obtained by estim ating the baseline model w ith data up to 2000:IV , prior to 2001:I-2001:IV recession .

Depicted are the 10th , 20th , 30th , 40th , 50th , 60th , 70th , 80th , 90th deciles of the pred ictive d istribution for one to four-quarter-ahead out-of-sample

forecasts. The solid lines represent the actual rea lizations of the data, while the dotted lines represent the m edian forecast.
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Figure 2. CDF of the PITs —SPF Probability Forecast

Panel A: GDP Growth (1981:III-2011:IV)
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Panel B: GDP Deflator Growth (1981:III-2009:IV)
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Note: The figure shows the empirica l CDF of the PITs (so lid line), the CDF of the PITs under the null hypothesis (the 45 degree line) and

the 95% critica l values based on the κP test rep orted in Table 1 , Panel A .
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Figure 3. PDF of the PITs —SPF Probability Forecast

Panel A: GDP Growth (1981:III-2011:IV)
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Panel B: GDP Deflator Growth (1981:III-2009:IV)
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Note: The figures show the PDF of the PITs (normalized) and the 95% critica l values approximated under D ieb old et a l.’s (1998) b inom ial

d istribution (dashed lines), constructed using a normal approxim ation .
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Figure 4. CDF of the PITs —Model Forecast Distribution (1985:I-2004:IV)
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Note: The figures show the empirica l CDF of the PITs (so lid line), the CDF of the PITs under the null hypothesis (the 45 degree line) and

the 95% confidence bands based on critica l values of κP test rep orted in Table 1, Panel A . Resu lts are based on a rolling w indow of size R = 80.
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Figure 5. PDF of the PITs —Model Forecast Distribution (1985:I-2004:IV)
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Note: The figures show the PDF of the PIT s (normalized) and the 95% critica l values approximated under D ieb old et a l.’s (1998) b inom ial

d istribution (dashed lines), constructed using a normal approxim ation . The resu lts are based on a rolling w indow of size R = 80.
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