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Abstract

Forecast accuracy is typically measured in terms of a given loss function. However, as a conse-

quence of the use of misspecified models in multiple model comparisons, relative forecast rankings

are loss function dependent. This paper addresses this issue by using a novel criterion for forecast

evaluation which is based on the entire distribution of forecast errors. We introduce the concepts

of general-loss (GL) forecast superiority and convex-loss (CL) forecast superiority, and we establish

a mapping between GL (CL) superiority and first (second) order stochastic dominance. This allows

us to develop a forecast evaluation procedure based on an out-of-sample generalization of the tests

introduced by Linton, Maasoumi and Whang (2005). The asymptotic null distributions of our test

statistics are nonstandard, and resampling procedures are used to obtain the critical values. Addi-

tionally, the tests are consistent and have nontrivial local power under a sequence of local alternatives.

In addition to the stationary case, we outline theory extending our tests to the case of heterogeneity

induced by distributional change over time. Monte Carlo simulations suggest that the tests perform

reasonably well in finite samples; and an application to exchange rate data indicates that our tests

can help identify superior forecasting models, regardless of loss function.
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1 Introduction

Forecast comparison has a long history in econometrics. When forecast comparison is based upon the

evaluation of forecast errors, loss functions are usually specified, and are defined in terms of (conditional)

moments of forecast errors, such as mean squared forecast error (MSFE) and mean absolute forecast error

(MAFE). Unfortunately, the forecast superiority of one model, relative to other models, is dependent

on the loss function that is specified. To circumvent this issue, Granger (1999a) proposes the use of

generalized loss functions L(·), with the following properties: (1) L(e) = 0, if the forecast error e = 0;

(2) L(e) ≥ 0 and MineL(e) = 0; and (3) L(e) is monotonically non-decreasing as e moves away from

zero, i.e. L(e1) ≥ L(e2) if e1 > e2 ≥ 0 or e1 < e2 ≤ 0. We term the class of loss functions that satisfy

the above three properties as general loss functions (GL or LG). A second class of loss functions are

defined as convex loss functions (CL or LC), if in addition to satisfying the above three properties, they
are convex. Indeed, convex functions include MSFE and MAFE, as well as several asymmetric functions,

such as lin-lin and linex functions, see Elliott and Timmermann (2004) for details.

A natural question arising from the above discussion is the following. How do we assess different

forecasts under generalized loss functions? In particular, suppose that there are l sets of forecasts, with

corresponding sequences of one-step-ahead (say) forecast errors, {e1t}, {e2t}..., {elt}, such that forecasts
are to be ranked the same way, regardless of loss function. To answer this question, we introduce

two concepts: general-loss (GL) forecast superiority and convex-loss (CL) forecast superiority. Simply

put, a forecast error sequence GL outperforms other sequences if an economic agent with a GL loss

function prefers the former to the latter. Similarly, a forecast error sequence CL outperforms other

sequences if an economic agent with a CL loss function prefers the former to the latter. In the sequel, we

establish a mapping between GL superiority and first order stochastic dominance, and a mapping between

CL superiority and second order stochastic dominance. This allows us to develop a forecast evaluation

procedure to test for GL forecast superiority and CL forecast superiority, based on an out-of-sample

generalization of the tests introduced by Linton, Maasoumi and Whang (2005, hereafter LMW).

Since the influential work of Meese and Rogoff (1983, 1988), it has become common to select models

using out-of-sample forecast comparison. For this reason, much attention in recent years has been given

in the econometrics literature to the issue of out-of-sample predictive accuracy testing. One of the most

important contributions in this area is the seminal paper of Diebold and Mariano (1995, hereafter DM), in

which a test of equal predictive accuracy between two competing models is proposed. Since then, efforts

have been made to generalize DM-type tests in order to account for parameter estimation error (West,

1996; West and McCracken, 1998), to allow for non-differential loss functions together with parameter

estimation error (McCracken, 2000), to test for conditional predictive ability (Giacomini and White,

2006), to allow for integrated and cointegrated variables (Clements and Hendry, 1999, 2001; Corradi,

Swanson and Olivetti, 2001), to address the issue of the joint comparison of more than two competing
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models (Sullivan, Timmermann and White, 1999; White 2000; Hansen, 2005; Romano and Wolf, 2005;

Corradi and Distaso, 2011), and to evaluate predictive intervals, conditional quantiles and predictive

densities (Christoffersen, 1998; Giacomini and Komunjer, 2005; Corradi and Swanson 2005; Corradi and

Swanson 2006a; Corradi and Swanson, 2006b). Other papers tackle the issue of predictive accuracy testing

via the use of encompassing and related tests (Phillips, 1996; Harvey, Leybourne and Newbold, 1997;

Chao, Corradi and Swanson, 2001; Clark and McCracken 2001; Corradi and Swanson, 2002; Giacomini

and Komunjer, 2005). See West (2006), Clark and McCracken (2013), Corradi and Swanson (2013), and

Diebold (2014) for comprehensive surveys on recent developments in forecast comparison methodology.

There are several common features of the aforementioned papers. First, most of them are based

upon moments or conditional moments of the forecast errors, and researchers must specify the objective

function (say, loss function or likelihood function) in order to carry out forecast evaluation. See Clements

and Hendry (1993) for some limitations of this approach. Second, all of them are out-of-sample based,

despite the fact that some (e.g., DM) ignore parameter estimation error. Third, most of them assume

that the underlying stochastic process is stationary, which is restrictive in many empirical applications

(e.g., in labor economics and macroeconomics). Indeed, we argue that it is fundamentally important to

consider the possibly heterogeneous nature of economic variables and develop corresponding evaluation

techniques; see Giacomini and White (2006) for details.

In this paper, our objective is to extend early work that considers moment-based tests, and to instead

consider distribution-based tests. A moment-based criterion only looks in a particular direction when

examining forecast errors. For example, MSFE is designed for squared error loss functions and MAFE for

absolute error loss functions. GL and CL forecast superiority, however, is based on evaluation of the entire

forecast error distribution, and does not require knowledge of the exact form of the loss function. When

implementing our evaluation procedure, the null hypothesis is specified in terms of inequality restrictions,

and this delivers a direct test of forecast superiority.

In a related recent survey paper, Corradi and Swanson (2013) discuss predictive evaluation based on

distributions of losses using stochastic dominance principles. They provide motivation, a basic set-up,

and test statistics, without including any formal theory or Monte Carlo results. In their paper, they

take the loss function as given, and propose an evaluation criterion based on comparing cumulative loss

functions F (L(e)), where F (L(e)) is the CDF of L(e). They consider panels or combinations of forecasts,

and ignore parameter estimation error. In contrast, we provide a forecast evaluation testing procedure

which is valid under generalized loss functions, and which is based directly on the evaluation of F (e),

the CDF of the forecast error. Moreover, our procedure takes into account parameter estimation error

and data dependence. We develop limit theory for the tests under the null and show that the tests

are consistent and have nontrivial local power under a sequence of local alternatives. Additionally, the

asymptotic null distributions of our test statistics are nonstandard, and resampling procedures are used
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to obtain the critical values.

Other deviations from traditional moment-based forecast evaluation methods are available in the

literature. For example, Granger and Pesaran (2000) argue in favor of a close link between the decision

and the forecast evaluation problems. Pesaran and Skouras (2002) discuss a decision-based approach

for evaluation and comparison of forecasts. Granger and Machina (2006) propose a class of realistic

decision-based loss functions for forecast evaluation. Diebold and Shin (2014a,b) suggest choosing the

model which has the cumulative distribution closest to a step function equal to zero over the negative

real line and equal to one over positive real line. If one forecast is superior according to their criterion,

named stochastic loss divergence, then it is also superior according to any piecewise linear loss function,

such as L1−loss or lin-lin loss. Our distribution-based forecast comparison procedure also has a link with
the decision-based approach to forecast evaluation, but careful investigation of the linkages is beyond the

scope of this paper.

A preponderance of tests based on (conditional) moments of forecast errors require an assumption that

the underlying stochastic process is stationary. One possible explanation for this assumption is the relative

ease with which asymptotic properties of corresponding test statistics can be derived. On the other hand,

one popular explanation for systematic out-of-sample forecast failure in economics is the prevalence of time

varying underlying data generating processes. In lieu of this fact, provide a generalization of our testing

procedure to a particular type of non-stationarity (i.e., heterogeneity), which is induced by distributional

change over time, see e.g. Giacomini and Rossi (2009). It should be noted that heterogeneity is plausibly

of less concern in some areas of economics (say, financial economics) than in others (say, labor economics),

and so we provide a procedure for heterogenous processes, and also one which assumes stationarity. In the

case of stationarity, the pseudo true parameters of all competing models can be estimated consistently,

and parameter estimation error is taken into account when deriving the asymptotic properties of our

tests. In the case of heterogeneity, there is no need for consistent estimation of the parameters, which

may change over time.

Finally, it is worth stressing that our testing procedure can be adapted to forecast combination. It has

become an attractive strategy to combine competing professional forecasts or survey predictions, to ag-

gregate crowd wisdom collected from different sources, and to combine forecasts generated by econometric

models, for example. The reason for this is that combined forecasts often outperform the “best" indi-

vidual forecasts, see e.g., Stock and Watson (1999), Newbold and Harvey (2002), Timmermann (2006),

Elliott, Gargano, and Timmermann (2013) for detailed discussions. In standard procedures used in the

literature, optimal forecast weights are generally loss function dependent, see e.g. Elliott and Timmer-

mann, (2004). In our context, one can evaluate different forecast combinations and select combination

weights based on GL and CL forecast superiority. This line of research, however, is left for future work.

The rest of the paper is organized as follows. Section 2 introduces the hypotheses and test statis-
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tics under the assumption that the underlying stochastic process is stationary. In Section 3 we derive

the asymptotic distribution of the test statistics, and establish the first order asymptotic validity of a

bootstrap procedure used to construct critical values. Section 4 studies the power properties of the test

statistics, and of their associated bootstrap analogs, under local and global alternatives. Section 5 ex-

tends our results to heterogeneous processes. We examine the finite sample performance of the tests in a

series of Monte Carlo simulations, and report findings from these simulations in Section 6. An empirical

illustration in which we examine exchange rate data for six industrialized countries is discussed in Section

7. Concluding remarks are gathered in Section 8. All technical details are in an appendix.

2 Hypotheses and Tests

In this section we discuss testing for GL and CL forecast superiority. The tests allow for parameter esti-

mation error, data dependence, and comparison of multiple models, but require the underlying processes

to be strictly stationary. We first make the following loss function (L) assumption.

Assumption A.0. L : R→ R+ is continuously differentiable, except for finitely many points, with

derivative L′, such that L′(z) ≤ 0, for all z ≤ 0, and L′(z) ≥ 0, for all z ≥ 0.

Definition 2.1 e1 General-Loss (GL) outperforms e2, denoted as e1 �G e2, if and only if

E(L(e1)) ≤ E(L(e2))

for all L ∈ LG. e1 Convex-Loss (CL) outperforms e2, denoted as e1 �C e2, if and only if

E(L(e1)) ≤ E(L(e2))

for all L ∈ LC .

We now establish a mapping between LG forecast superiority and first order stochastic dominance, and
between LC forecast superiority and second order stochastic dominance. This mapping is instrumental
for deriving direct tests for LG/LC forecast superiority. Define

G(x) = (F2(x)− F1(x))sgn(x), (2.1)

where sgn(x) = 1 if x ≥ 0, and = −1 if x < 0; and

C(x) =

∫ x

−∞
(F1(t)− F2(t))dt1(x < 0) +

∫ ∞
x

(F2(t)− F1(t))dt1(x ≥ 0), (2.2)

where 1(·) denotes the indicator function, which takes the value 1 if the condition is met, and 0 otherwise.

Proposition 2.2 Suppose that Assumption A.0 holds. Then E(L(e1)) ≤ E(L(e2)), for all L ∈ LG, if
and only if

G(x) ≤ 0, for all x ∈ X . (2.3)
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Proposition 2.3 Suppose that
∫ x
−∞(F1(t)− F2(t))dt1(x < 0) and

∫∞
x

(F2(t)− F1(t))dt1(x ≥ 0) are well

defined for each x ∈ X . Suppose also that Assumption A.0 holds. Then E(L(e1)) ≤ E(L(e2)), for all

L ∈ LC , if and only if
C(x) ≤ 0 for all x ∈ X . (2.4)

Remarks.

First, before implementing formal tests of GL forecast superiority, we can construct a graph that

contains a plot of G(x) against x. When e1 �G e2, we expect all points to lie below or on the zero line.

In other words, a crossing of the zero line in the graph indicates a violation of GL forecast superiority.

Similarly, we can construct a graph that contains a plot of C(x) against x.When e1 �C e2, we expect all

points to lie below or on the zero line. In other words, a crossing of the zero line in the graph indicates

a violation of CL forecast superiority.

Second, we adopt the weak concept of forecast superiority in the above propositions, in order to facil-

itate our specification of appropriate null hypotheses in the sequel. Namely, one forecast can outperform

another forecast and at the same time be outperformed, in which case the two forecasts are equivalent

in the sense that they result in the same expected loss for the loss functions in the corresponding class.

Strong GL or CL forecast superiority holds by requiring that strict inequality hold in (2.3) or (2.4), for

some x ∈ X .
Third, the above propositions only offer a partial ordering between forecast errors. One can generalize

the concepts discussed in this paper to third or higher order stochastic dominance (as used in finance,

for example). Naturally, higher order stochastic dominance relations correspond to increasingly smaller

subsets of LC , and careful interpretation is needed to justify such generalizations.
Fourth, we can equivalently define the above forecast superiority concepts in terms of quantiles. We do

not pursue this further in this paper, for the sake of brevity. Finally, it should be noted that econometric

tests for the existence of “ordered" forecast superiority involve composite hypotheses on inequality re-

strictions. These restrictions may be equivalently formulated in terms of distribution functions, quantiles,

or moments.

2.1 Basic framework and test statistics

Suppose that there are l sets of forecast errors e1, ..., el, resulting from l forecasting models. Predictions

are made for n periods, indexed from R to T, so that n = T − R + 1. The predictions are made for a

given forecast horizon, τ .

With a little abuse of notation, we denote X to be the union of the supports of all forecast errors.

Let {ek,t+τ : t = 1, ..., T} be realizations of ek, for k = 1, ..., l. Suppose further that {ek,t+τ : t = 1, ..., T}
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depends on an unknown finite dimensional parameter βk0 ∈ Θk ⊂ RLk :

ek,t+τ = Yt+τ −mk(Zk,t+τ , βk0)

= Yt+τ − m̃k(Zt+τ , β0),

where the random variables Yt ∈ R , Zk,t ∈ RPk , Zt (is a P × 1 random vector, say) is the collection of

all predictive regressors, β0 = (β′10, ..., β
′
l0)′ is the pseudo true parameter vector on the parameter space

Θ = Πl
k=1Θk, mk : RPk ×Θk → R and m̃k : RP ×Θ→ R. Note that Zk,t+τ is observed at time t. This

notation is consistent with most of the literature on forecast comparison. We allow for serial dependence

of the realizations and mutual correlation across forecast errors. Let ek,t+τ (βk) = Yt+τ −mk(Zk,t+τ , βk),

ek,t+τ = ek,t+τ (βk0), and êk,t+τ = ek,t+τ (β̂k,t), where β̂k,t is some possibly nonlinear estimator of βk0,

whose construction and properties are detailed below.

Like West and McCracken (1998) and McCracken (2000), we allow for three different forecasting

schemes which use recursive, rolling, and fixed windows of data for estimation. However, they differ

in how they obtain the sequence of parameter estimates used to construct the sequence of forecasts

and forecast errors. Under the recursive scheme, the sequence of forecasts is generated using updated

parameter estimates. At each point in time, t = R, ..., T, the parameter estimate, β̂k,t, depends on all

observables (Ys, Zk,s), s = 1,..., t. Under the rolling scheme, however, we use only a fixed window of

the most recent R observations. That is, β̂k,t is formed using observations (Ys, Zk,s) available from

s = t − R + 1 through t. The fixed scheme is distinct from the previous two in that the parameters are

not updated when new observations become available. The parameter vector is estimated only once, and

all n forecasts and forecast errors are constructed using the same parameter estimate, i.e., β̂k,t = β̂k,R.

In simple forecasting models where there is no parameter estimation error involved, results analogous

to those given below can be established using substantially simpler arguments.

For k = 1, ..., l, define

Fk (x, βk) = P (ek,t+τ (βk) ≤ x), and

F k,n

(
x, β̂

k,R:T

)
= n−1

T∑
t=R

1
(
ek,t

(
β̂k,t

)
≤ x

)
,

where β̂
k,R:T

=
(
β̂
′
k,R, ..., β̂

′
k,T

)′
. We denote Fk(x) = Fk(x, βk0). Now define the following functionals of

the joint distribution F (x1, ..., xl) of (e1, ..., el)

TG+ = max
k=2,..,l

sup
x∈X+

Gk(x), TG− = max
k=2,..,l

sup
x∈X−

Gk(x) (2.5)

TC+ = max
k=2,..,l

sup
x∈X+

Ck(x), TC− = max
k=2,..,l

sup
x∈X−

Ck(x) (2.6)

where

Gk(x) = (Fk(x)− F1(x))sgn(x), (2.7)
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and

Ck(x) =

∫ x

−∞
(F1(s)− Fk(s))ds1(x < 0) +

∫ ∞
x

(Fk(s)− F1(s))ds1(x ≥ 0). (2.8)

In the sequel, without loss of generality, we assume that the union of the supports, X , is bounded,1 as
do Klecan, McFadden, and McFadden (1991) and LMW. Notice that given the nature of our test, one

only needs to verify stochastic equicontinuity for x ∈ X+ and x ∈ X− separately, where X+ = X ∩ R+

and X− = X ∩ R− with R+ ≡ {x ∈ R, x ≥ 0} and R− = R\R+. The hypotheses of interest can now be

stated as

HTG
0 : TG+ ≤ 0 ∩ TG− ≤ 0 vs. HTG

1 : TG+ > 0 ∪ TG− > 0 (2.9)

and

HTC
0 : TC+ ≤ 0 ∩ TG− ≤ 0 vs. HTC

1 : TC+ > 0 ∪ TC− > 0. (2.10)

In formulating the null hypothesis, HTG
0 , we take e1 as the benchmark forecast error, i.e. we take the

corresponding model (model 1, say) as the benchmark model. Failure to reject the null implies that e1

GL outperforms ek for k = 2, ..., l. On the other hand, rejection means that e1 does not GL outperform

ek, for k = 2, ..., l. If we do not reject HTG
0 , we can discard all of the k = 2, ..., l competitors, as they are

all GL dominated. Likewise for the CL forecast superiority test.

The test statistics that we consider are based on scaled empirical analogues of (2.5) and (2.6). They

are defined to be

TG+
n = max

k=2,..,l
sup
x∈X+

√
nGk,n(x) and TG−n = max

k=2,..,l
sup
x∈X−

√
nGk,n(x)

and

TC+
n = max

k=2,..,l
sup
x∈X+

√
nCk,n(x) and TC−n = max

k=2,..,l
sup
x∈X−

√
nCk,n(x),

where Gk,n(x) =
(
F k,n

(
x, β̂

k,R:T

)
− F 1,n

(
x, β̂

1,R:T

))
sgn(x) and Ck,n(x) =

{∫ x
−∞

(
F 1,n

(
s, β̂

1,R:T

)
−F k,n

(
s, β̂

k,R:T

))
ds1(x < 0) +

∫∞
x

(
F k,n

(
s, β̂

k,R:T

)
− F 1,n

(
s, β̂

1,R:T

))
ds1(x ≥ 0)

}
.

We next discuss how to compute the suprema in TG+
n (TG

−
n ) and TC

+
n (TC−n ) and the integrals in

TC+
n (TC−n ). There have been a number of suggestions in the literature that exploit the step-function

nature of Fk,n
(
·, β̂

k,R:T

)
. The supremum in TG+

n (TG
−
n ) can be exactly replaced by a maximum taken

over all the distinct points in the combined sample. Different methods can be applied in simulations and

empirical applications to ensure good finite sample performance of the test. Regarding the computation

of TC+
n (TC

−
n ), using integration by parts, we can compute Ck,n(x) with

Ĉk,n(x) =
1

n

T∑
t=R

{[(
e1,t+τ

(
β̂1,t

)
− x
)
sgn(x)

]
+
−
[(
ek,t+τ

(
β̂k,t

)
− x
)
sgn(x)

]
+

}
,

1Technically speaking, this will facilitate the establishment of stochastic equicontinuity for the underlying empirical

processes our theory is based upon.
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provided that E|ek,t| <∞. Where [x]+ = max{0, x}.
To reduce computation time, it may be preferable to compute approximations to the suprema in TG+

n

(TG−n ) and TC
+
n (TC−n ) by taking maxima over some smaller grid of points XN = {x1, ..., xN}, where

N < n. Theoretically, the distribution theory is unaffected by using this approximation as the set of

evaluation points becomes dense in the joint support.

Note that in principle, one can also formulate HTG
0 as TG ≤ 0 versus TG > 0, where

TG = max
k=2,..,l

sup
x∈X

(Fk(x)− F1(x)) sgn(x), and one can proceed by constructing the following statistic:

TGn = max
k=2,..,l

sup
x∈X

√
nGk,n(x) = max

k=2,..,l
sup
x∈X

√
n
(
F k,n

(
x, β̂

k,R:T

)
− F 1,n

(
x, β̂

1,R:T

))
sgn(x). The prob-

lem here is that there is a failure of stochastic equicontinuity around x = 0.Whether we can address this

by replacing the sign function with a smooth function is left to future research. In the sequel, we rely on

the formulation in (2.9)-(2.10).

3 Asymptotic Null Distributions

The hypotheses in (2.9) and (2.10) are composite hypotheses, since HTG
0 = HTG+

0 ∩ HTG−

0 , where

HTG+
0 : TG+ ≤ 0, HTG−

0 : TG− ≤ 0, and since HTC
0 = HGTC+

0 ∩ HTC−

0 , where HTC+
0 : TC+ ≤ 0,

HTC−
0 : TC− ≤ 0. Hence, in order to test HTG

0 , we separately test HTG+
0 vs. HTG+

1 , and HTG−
0 vs.

HTG−
1 . Then, we (do not) reject the null at a level not higher than α, using Holm bounds (Holm, 1979).

Before establishing the asymptotic distributions of our test statistics, we require a few assumptions.

3.1 Assumptions and asymptotic null distributions

Let ‖·‖ denote the Euclidean norm and let ||X||q denote the Lq norm, with (E|X|q)1/q, for a random

variable X. Let supt denote supR≤t≤T and
∑
t denote

∑T
t=R . We require the following assumptions in

order to analyze the asymptotic behavior of our test statistics.

Assumption A.1. (i) {(Yt, Z ′k,t)′ : t ≥ 1} is a strictly stationary and α−mixing sequence with mixing
coeffi cients α(l) = O(l−C0), for some C0 > max{(q − 1)(q + 1), 1 + 2/δ}, with k = 1, ..., l, where q is an

even integer that satisfies q > 3(Lmax + 1)/2. Here, Lmax = max{L1, ..., Ll} and δ is a positive constant.
(ii) For k = 1, .., l, mk(Zk,t, βk) is differentiable a.s. with respect to βk, in the neighborhood Θk0 of

βk0, with Mk(Zk,t, β) ≡ (∂/∂β)mk(Zk,t, β) satisfying supβ∈Θk0
||Mk(Zk,t, β)||2 <∞.

(iii) The conditional distribution, Fk(·|Zk,t), of ek,t given Zk,t has bounded density with respect to
the Lebesgue measure a.s. and ||ek,t||2+δ <∞, for k = 1, ..., l.

Assumption A.2. For k = 1, ..., l, and t = R, ..., T, the estimate β̂k,t satisfies β̂k,t − βk0 = Bk(t)Hk(t),

where Bk(t) is a Pk × Lk matrix and Hk(t) is Lk × 1, with:

(i) Bk(t)→ Bk a.s., where Bk is a matrix of rank Pk;
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(ii) Hk(t) = t−1
∑t
s=1 hk,s, R

−1
∑t
s=t−R+1 hk,s and R

−1
∑R
s=1 hk,s for the recursive, rolling and fixed

schemes, respectively, where hk,s ≡ hk,s(βk0);

(iii) E(hk,s(βk0) ) = 0;and

(iv) ||hk,s(βk0)||2+δ <∞ for some δ > 0.

Assumption A.3. (i) The function Fk(x, βk) is differentiable with respect to βk in a neighborhood Θk0

of βk0, for k = 1, ..., l.

(ii) For k = 1, ..., l, and for all sequence of positive constants {ξn : n ≥ 1}, such that ξn → 0,

supx∈X supβ:||β−βk0||<ξn || (∂Fk(x, β)/∂β sgn (x)−∆k0(x)) || = O(ξηn), for some η > 0, where ∆k0(x) =

∂Fk(x, βk0)/∂βsgn (x) .

(iii) supx∈X ||∆k0(x)|| <∞ for k = 1, ..., l.

Assumption A.4. R,n→∞, as T →∞; and limT→∞(n/R) = π, such that π ∈ [0,∞).

For testing HTC
0 , we need the following modifications of Assumptions A.1 and A.3:.

Assumption A.1.∗ (i) {(Yt, Z ′k,t)′ : t ≥ 1} is a strictly stationary and α−mixing sequence with mixing
coeffi cients α(l) = O(l−C0), for some C0 > max{rq/(r−q), 1+2/δ}, with k = 1, ..., l and r > q > Lmax+1,

where δ is a positive constant.

(ii) For k = 1, .., l, mk(Zk,t, βk) is differentiable a.s. with respect to βk in the neighborhood Θk0 of

βk0, with Mk(Zk,t, β) ≡ (∂/∂β)mk(Zk,t, β) satisfying supβ∈Θk0
||Mk(Zk,t, β)||r <∞.

(iii) ||ekt||r <∞, for k = 1, ..., l .

Assumption A.3.∗ (i) Assumption A.3(i) holds.

(ii) For k = 1, ..., l, and for all sequence of positive constants {ξn : n ≥ 1}, such that ξn → 0,

supx∈X supβ:||β−βk0||<ξn ||(∂/∂β){
∫ x
−∞ Fk(t, β)dt 1(x < 0) +

∫∞
x

(1 − Fk(t, β))dt1(x ≥ 0)} − Λk0(x)|| =

O(ξηn), for some η > 0, where Λk0(x) = (∂/∂β){
∫ x
−∞ Fk(t, βk0)dt1(x < 0)+

∫∞
x

(1−Fk(t, βk0))dt1(x ≥ 0)}.
(iii) supx∈X ||Λk0(x)|| <∞, for k = 1, ..., l.

Remarks. The first and third assumptions parallel those imposed by LMW. The only difference is that

we strengthen the uniform continuity conditions in Assumptions A.3 and A.3∗. Alternatively, one can

assume that the marginal distributions are second order continuously differentiable. Assumption A.1 is

needed in order to verify the stochastic equicontinuity of the empirical process for a class of bounded

functions that appear in the TGn test. Assumption A.1∗ introduces a trade-off between mixing sizes and

moment conditions and is used to verify the stochastic equicontinuity result for the possibly unbounded

functions that appear in the TCn test. Assumptions A.3 and A.3∗ differ in the amount of smoothness

required. For the CL forecast superiority test, less smoothness is required.

Assumption A.2 is identical to Assumption 1 in McCracken (2000). Notice that we have suppressed

the dependence of Bk(t) and Hk(t) on the window size, R. See West (1996) and McCracken (2000) for

discussions about this assumption. Assumption A.4 is identical to Assumption 2 of McCracken (2000).
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When there is no parameter estimation error, we can dispense with the moment conditions for TGn,

and only need a first moment condition for TCn. The smoothness conditions on Fk, k = 1, ..., l, and

Assumption A.2 are also redundant in this case.

To derive the asymptotic null distributions of our test statistics, we define the empirical processes in

(x, β)

vgk,n(x, β) =
1√
n

T∑
t=R

{1(ek,t+τ (β) ≤ x)− Fk(x, β)}sgn(x) and

vck,n(x, β) =
1√
n

T∑
t=R

{∫ x

−∞
[1(ek,t+τ (β) ≤ s)− Fk(s, β)]ds1(x < 0)

−
∫ ∞
x

[1(ek,t+τ (β) ≤ s)− Fk(s, β)]ds1(x ≥ 0)

}
.

Let (g̃k(·), v′k0, v
′
10)
′ be a mean zero Gaussian process with covariance function given by

Ωgk(x1, x2) = lim
T→∞

E


vgk,n(x1, βk0)− vg1,n(x1, β10)

√
nHk,n
√
nH1,n




vgk,n(x2, βk0)− vg1,n(x2, β10)
√
nHk,n
√
nH1,n


′

, (3.1)

whereHk,n = n−1
∑T
t=RHk(t).We analogously define (c̃k(.), v′k0, v

′
10)
′ to be a mean zero Gaussian process

with covariance function given by

Ωck(x1, x2) = lim
T→∞

E


vck,n(x1, βk0)− vc1,n(x1, β10)

√
nHk,n
√
nH1,n




vck,n(x2, βk0)− vc1,n(x2, β10)
√
nHk,n
√
nH1,

n


′

. (3.2)

It is worth mentioning that the limiting distributions for
√
nHk,n, k = 1, ..., l, can be different depending

on the forecasting schemes and the parameter π. If we define Γk(j) = E
(
hk,th

′
k,t−j

)
, we can verify that

the limiting variance of
√
nHk,n is given by Ωk = γ

∑∞
j=−∞ Γk(j) where

Scheme γ

Recursive, π = 0 0

Recursive, 1 < π <∞ 2[1− π−1 ln(1 + π)]

Rolling, π ≤ 1 π − π2/3

Rolling, 1 < π <∞ 1− (3π)−1

Fixed π.

Obviously, γ = 0 when π = 0, indicating the case when parameter estimation error vanishes asymptoti-

cally.

The limiting null distributions of our test statistics are given in the following theorem.
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Theorem 3.1 (a) Suppose that Assumptions A.1-A.4 hold. Then, under HTG+

0 ,

TG+
n ⇒ max

k=2,..,l
sup
x∈Bg+k

[g̃k(x) + ∆k0(x)′Bkvk0 −∆10(x)′B1v10], if TG+ = 0 (3.3)

⇒ −∞ if TG+ < 0,

and under HTG−

0 ,

TG−n ⇒ max
k=2,..,l

sup
x∈Bg−k

[g̃k(x) + ∆k0(x)′Bkvk0 −∆10(x)′B1v10], if TG− = 0 (3.4)

⇒ −∞ if TG− < 0,

where Bg+k = {x ∈ X+ : F1(x) = Fk(x)} and Bg−k = {x ∈ X− : F1(x) = Fk(x)}.
(b) Suppose that Assumptions A.1∗, A.2, A.3∗ and A.4 hold. Then, under HTC+

0 ,

TC+
n ⇒ max

k=2,..,l
sup
x∈Bc+k

[c̃k(x) + Λk0(x)′Bkvk0 − Λ10(x)′B1v10], if TC+ = 0 (3.5)

⇒ −∞ if TC+ < 0,

and under HTC−

0 ,

TC−n ⇒ max
k=2,..,l

sup
x∈Bc−k

[c̃k(x) + Λk0(x)′Bkvk0 − Λ10(x)′B1v10], if TC− = 0 (3.6)

⇒ −∞ if TC− < 0,

where Bc+k = {x ∈ X+ :
∫∞
x

(F1(s) − Fk(s))ds1(x ≥ 0) = 0} and Bc−k = {x ∈ X− :
∫ x
−∞(Fk(s) −

F1(s))ds1(x ≤ 0) = 0}.

The asymptotic null distributions of TG+
n (TG

−
n ) and TC

+
n (TC−n ) depend on the pseudo true pa-

rameters {βk0 : k = 1, ..., l} and the distribution functions {Fk(.) : k = 1, ..., l}. This implies that the
asymptotic critical values for TG+

n (TG
−
n ) and TC

+
n (TC

−
n ) cannot be tabulated.

3.2 Critical values based on stationary bootstrap

The stationary bootstrap is used to approximate the asymptotic null distributions of our test statistics.

In our context, the null essentially consists of an infinite number of composite hypotheses involving

inequality restrictions. This negates the use of standard methods for imposing the null in bootstrapping.

In addition, the mutual dependence of the forecast errors and the time series dependence in the data also

complicates the issue considerably. However, it turns out that the stationary bootstrap can be applied to

TG+
n and TG

−
n , in the sense that first order asymptotic validity of appropriate bootstrap statistics can

be established. Arguments using the stationary bootstrap with TC+
n and TC

−
n are similar and hence are

omitted.
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More specifically, our objective is to find a bootstrap procedure that mimics the asymptotic null

distribution in the least favorable case, where F1(x) = ... = Fl(x), for all x ∈ X+.2 We use stationary

bootstrap since it ensures that the resampled series are also stationary and mixing, conditional on the

original data. See Politis and Romano (1994a, b) for complete details.

For a suitably chosen random index θ(t), the resampled statistic is computed as

TG∗+n = max
k=2,..,l

sup
x∈X+

√
n
(
G∗k,n(x)−Gk,n(x)

)
where

G∗k,n(x) =
(
F k,n

(
x, β̂

k,θ(R):θ(T )

)
− F 1,n

(
x, β̂

1,θ(R):θ(T )

))
sgn(x)

and

F k,n

(
x, β̂

k,θ(R):θ(T )

)
= n−1

T∑
t=R

1
(
ek,θ(t)+τ

(
β̂k,θ(t)

)
≤ x

)
In the sequel, we require a smoothing parameter Sn, which satisfies Assumption A.5 below.

Assumption A.5. The smoothing parameter, Sn, satisfies: 0 < Sn < 1, Sn → 0, and nS2
n → ∞, as

n→∞.

To implement the stationary bootstrap, follow the algorithm proposed in Politis and Romano (1994b).

(1) Select Sn. (2) Set t = R. Draw θ (R) at random, uniformly and independently from {R, ..., T} . (3)
Increment t. If t ≤ T, draw a random variable V ∼ Uniform (0, 1), independent of all other random

variables. Stop if t > T . (a) If V < Sn, draw θ(t) at random, independently and uniformly from

{R, ..., T} ; (b) If V ≥ Sn, set θ (t) = θ (t− 1) + 1; if θ (t) > T, reset θ (t) = R. (4) Repeat (3). The

procedure delivers geometrically distributed blocks of random length, with mean block length 1/Sn, as

discussed in Politis and Romano (1994a).

When there is no parameter estimation error, so that βk0, k = 1, ..., l, is used instead of β̂
k,θ(R):θ(T )

in the definition of G∗k,n, Theorem 3.1 in Politis and Romano (1994b) applies immediately. Let Ut =

(Yt, Z
′

1,t, ..., Z
′

l,t)
′, for t = 1, ..., T+τ .Under some regularity conditions, the distribution of

√
n
(
G∗k,n(·)−Gk,n(·)

)
,

conditional on {UR+τ , ..., UT+τ} , converges to that of
√
n (Gkn −Gk) . Then by the continuous mapping

theorem, we can approximate the asymptotic distribution of
√
nGk,n, for the elements of the null least

favorable to the alternative, i.e. Gk = 0, for all k. When β̂
k,θ(R):θ(T )

appears in G∗k,n, we find that β̂k,T

obeys the law of the iterated logarithm. The following then holds (see, e.g., White (2000)).

Assumption A.6. For an arbitrary Pk × 1 vector λk with λ
′
kλk = 1, and for k = 1, ..., l, using the

notation in Assumption 2, we have

(i) P
[
lim supt≥R n

1/2
∣∣∣λ′k (β̂k,t − βk0

)∣∣∣/{λ′kΣkλk log log(λ′kΣkλk)P
}1/2

= 1
]

= 1 for the recursive

scheme, where Σk = Bk[limT→∞var(n−1/2
∑T
t=R+1Hk(t))]B′k.

2Note that in our setup, if the number of competing models, l, is small relative to the number of forecasts, n, size

distortion is not significant (Hansen, 2003).
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(ii) P
[
lim supt≥R R

1/2
∣∣∣λ′k (β̂k,t − βk0

)∣∣∣/{λ′kΣkλk log log(λ′kΣkλk)R
}1/2

= 1
]
for the rolling and fixed

schemes, where Σk = Bk[limT→∞var(R−1/2
∑T
t=R+1Hk(t))]B′k.

We can now establish the following result.

Theorem 3.2 Suppose that Assumptions A.1-A.3 and A.5-A.6 hold and that (n/R) log logR → 0, as

T →∞. Then, for x ∈ X+ or x ∈ X−,

ρ(L[
√
n
(
G∗k,n(·)−Gk,n(·)

)
|U1, ..., UT+τ ],L[

√
n (Gk,n(·)−Gk(·))]) p→ 0,

as T →∞, where k=2,..., l, ρ is any metric metrizing weak convergence, and L[·] denotes the probability
law of the corresponding Hilbert space valued random variable.

The condition (n/R) log logR → 0 appearing in the above theorem is slightly stronger than n/R →
0, which is required in West (1996). However, the stationary bootstrap procedure does not require

recomputing the estimates β̂k,t. Note that, while estimation error is allowed for, we require that it

vanishes as the sample gets large. An immediate implication of the above result is the following corollary.

Corollary 3.3 Suppose that Assumptions A.1-A.3 and A.5−A.6 hold, and that (n/R) log logR→ 0, as

T →∞. Then, as T →∞,

ρ(L[ max
k=2,..,l

sup
x∈X+

√
n(G∗k,n(x)−Gk,n(x))|U1, ..., UT+τ ],L[ max

k=2,..,l
sup
x∈X+

√
n (Gk,n(x)−Gk(x))])

p→ 0,

ρ(L[ max
k=2,..,l

sup
x∈X−

√
n(G∗k,n(x)−Gk,n(x))|U1, ..., UT+τ ],L[ max

k=2,..,l
sup
x∈X−

√
n (Gk,n(x)−Gk(x))])

p→ 0.

The asymptotic null distribution of TG+
n (TG

−
n ) can be approximated using TG

∗+
n − TG+

n (TG
∗−
n

− TG−n ), for the elements of the null least favorable to the alternative. To do so, specify the number of

bootstrap resamples, B, and the smoothing parameter, Sn. Choose B to be a moderately large number,

say 200 or 300, as B determines the accuracy of the p−values estimated. Sn is closely connected with
data dependence. The more data dependence, the smaller Sn should be. One might select Sn to be

data driven, following Hall, Horowitz, and Jing (1995), for example. In the following simulations and

applications, we choose a set of Sn that satisfies Assumption A.5.

Once B and Sn are determined, bootstrap critical values can be estimated straightforwardly. Define

qG+
n,Sn

(1− α) to be the (1− α)-th sample quantile of TG∗+n = max
k=2,..,l

sup
x∈X+

√
n(G∗k,n(x) − Gk,n(x)) and

qG−n,Sn (1− α) to be the (1− α)-th sample quantile of TG∗−n = max
k=2,..,l

sup
x∈X−

√
n(G∗k,n(x) − Gk,n(x)). Al-

ternatively, estimate bootstrap p−values, pG+
B,n,Sn

= 1
B

∑B
s=1 1 (TG∗+n ≥ TG+

n ) . Bootstrap p−values of
TG∗−n , TC∗+n , and TC∗−n can be defined analogously. Then, use the following rules (Holm, 1979):

Rule TG: Reject HTG
0 at level α, if min

{
pG+
B,n,Sn

, pG−B,n,Sn

}
≤ α/2.

Rule TC: Reject HTC
0 at level α, if min

{
pC+
B,n,Sn

, pC−B,n,Sn

}
≤ α/2.
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It is clear that Holm bounds are equivalent to Bonferroni bounds when there are only two hypotheses.

Our tests do not satisfy the requirement of asymptotic similarity and thus they are asymptotically

biased, like many other tests for multiple inequality restrictions. Hansen (2003) shows that p-values

associated with use of the stationary bootstrap test are actually upper bounds for an asymptotically

unbiased test. In our context, one can follow Hansen (2003) in order to propose an asymptotically

unbiased test, but this is beyond the scope of the current paper. Moreover, simulation results show

that use of the stationary bootstrap yields tests with good finite sample properties. This finding is

consistent with the fact that asymptotically unbiased tests do not necessarily dominate tests carried out

using the stationary bootstrap tests in finite samples.3 In a follow up to this paper, Corradi, Jin and

Swanson (2015), building on the work of Linton, Song and Whang (2010), introduce bootstrap tests for

GL and CL superiority that are uniformly asymptotically valid under the null hypothesis and have exact

asymptotic size over the boundary of the null hypotheses. These tests also allow for the specification of

semiparametric models, and allow for non vanishing recursive and/or rolling estimation error.

4 Asymptotic Power Properties

Global and local power properties of GL forecast superiority tests are investigated in this section. Analo-

gous results can be established for CL forecast superiority tests, using arguments similar to those presented

below.

We first show that the TG+
n (TG

−
n ) test is consistent against the fixed alternative hypothesis, H

TG+
1

(HTG−
1 ).

Theorem 4.1 Suppose that Assumptions A.1-A.4 hold. Then, under HTG+
1 ,

P (TG+
n > qG+

n,Sn
(1− α))→ 1 as T →∞,

and under HTG−
1 ,

P (TG−n > qG−n,Sn (1− α))→ 1 as T →∞.

Next, consider the power of the TG+
n (TG−n ) test against a sequence of contiguous local alternatives

converging to the null at rate n−1/2.Denote Fk,n(·, βk) as the distribution function of ek,t(βk) ≡ en,k,t(βk),

and let Fk,n(·) = Fk,n(·, βk0). Consider the following sequence of local alternative distribution functions:

Fk,n(x) = Fk(x) + n−1/2δk(x), for k = 1, ..., l and n = 1, 2, ..., (4.1)

3Simulations show that asymptotically unbiased tests are less conservative in experiments where there is "movement"

away from the least favorable case, although use of the stationary bootstrap delivers tests that perform better in terms of

power, in some of the cases examined. We also tried subsampling, as an alterantive approach to critical value construction;

but simulation results were less satisfactory in all experiments, and so these results are not reported.
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where δk(·) are real functions such that Fk,n(·) are distribution functions for each k and for each n; and

where the distribution functions {Fk(·) : k = 1, ..., l} satisfy HTG
0 . Let supn denote supn≥1. To analyze

the asymptotic behavior of the test under local alternatives, we need to modify Assumptions A.1-A.3 as

follows.

Assumption B.1. (i) {(Yt, Z ′k,t)′ ≡ (Yn,t, Z
′
n,k,t)

′ : t ≥ 1, n ≥ 1} is an α−mixing sequence with mixing
coeffi cients α(l) = O(l−C0), for some C0 > max{(q− 1)(q+ 1), 1 + 2/δ} and for k = 1, ..., l, where q is an

even integer that satisfies q > 3(Lmax + 1)/2, with Lmax = max{L1, ..., Ll} and δ a positive constant.
(ii) For k = 1, .., l, mk(Zk,t, βk) is differentiable, a.s., with respect to βk, in the neighborhood Θk0 of

βk0, with Mk(Zk,t, β) ≡ (∂/∂β)mk(Zk,t, β) satisfying supn supβ∈Θk0
||Mk(Zk,t, β)||2 <∞, for all t ≥ 1.

(iii) The conditional distribution, Fk,n(.|Zk,t), of ek,t given Zk,t has bounded density with respect to
the Lebesgue measure, a.s., and ||ek,t||2+δ <∞ for k = 1, ..., l, t ≥ 1 and all n ≥ 1.

Assumption B.2. For k = 1, ..., l and t = R, ..., T, β̂k,t satisfies β̂k,t − βk0 = Bk(t)Hk(t), where Bk(t)

is a Pk × Lk matrix and Hk(t) is Lk × 1, with

(i) Bk(t)→ Bk, a.s., where Bk is a matrix of rank Pk.

(ii) Hk(t) = t−1
∑t
s=1 hk,s, R

−1
∑t
s=t−R+1 hk,s and R

−1
∑R
s=1 hk,s for the recursive, rolling, and fixed

schemes respectively, where hk,s ≡ hk,s(βk0).

(iii)
√
nE(hk,s(βk0) )→ mk.

(iv) supn||hk,s(βk0)||2+δ <∞, for some δ > 0.

Assumption B.3. (i) The function Fk,n(x, β) is differentiable with respect to β in a neighborhood, Θk0,

of βk0, for k = 1, ..., l.

(ii) For k = 1, ..., l, and for all sequences of positive constants, {ξn : n ≥ 1}, such that ξn → 0,

supx∈X supβ:||β−βk0||<ξn ||∂Fk,n(x, β)/∂β−∆k0(x)|| = O(ξηn), for some η > 0, where∆k0(x) = limn→∞∆k,0,n(x),

with ∆k,0,n(x) = (∂Fk,n(x, βk0).

(iii) supnsupx∈X ||∆k,0,n(x)|| <∞ for k = 1, ..., l.

Note that Assumption B.2 implies that the asymptotic distribution of
√
n
(
β̂k,t − βk0

)
has mean mk,

which might be non-zero under the local alternatives. Nevertheless, this has no effect on the asymptotic

distribution of TGn, as can be seen from the following theorem.

Theorem 4.2 Suppose that Assumptions B.1-B.3 and A.4 hold. Then, under the local alternatives in

(4.1),

TG+
n ⇒ max

k=2,..,l
sup
x∈Bg+k

[g̃k(x) + ∆k0(x)′Bkmk −∆10(x)′B1m1 + µk(x)],

TG−n ⇒ max
k=2,..,l

sup
x∈Bg−k

[g̃k(x) + ∆k0(x)′Bkmk −∆10(x)′B1m1 + µk(x)],

where µk(x) = δk(x)− δ1(x), using the notation defined in Section 3.
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This result implies that the asymptotic local power of the TG+
n (TG

−
n ) test based on the stationary

bootstrap critical values is given by the following corollary.

Corollary 4.3 Suppose that Assumptions B.1-B.3 and A.5-A.6 hold and that (n/R) log logR → 0, as

T →∞. Then, under the local alternatives,

P (TG+
n > qG

+

n,Sn(1− α))→ P (TG+
lc > qG+(1− α)),

P (TG−n > qG
−

n,Sn(1− α))→ P (TG−lc > qG−(1− α)),

as T →∞, where qG+

n,Sn
(1−α) and qG

−

n,Sn
(1−α) are as defined in Section 3.2, TG+

lc = max
k=2,..,l

sup
x∈Bg+k

[g̃k(x)+

∆k0(x)′Bkmk − ∆10(x)′B1m1 + µk(x)}, TG−lc = max
k=2,..,l

sup
x∈Bg−k

[g̃k(x) + ∆k0(x)′Bkmk − ∆10(x)′B1m1 +

µk(x)}, and qG+(1− α) and qG−(1− α) denote the (1− α)-th quantiles of the distributions of TG+
lc and

TG−lc, respectively.

5 Extensions

Previously, it has been assumed that the underlying process is stationary. However, in some applications,

this assumption must be relaxed, due to the presence of heterogeneity. For this reason, asymptotic theory

under heterogeneity that is induced by distributional change over time is discussed in this section.

Denote Ut = (Yt, Z
′

1,t, ..., Z
′

l,t)
′, as before, and Zt = (Z

′

1,t, ..., Z
′

l,t)
′.Define It = σ(Zt+τ , ..., Zt+1, Ut, Ut−1, ...),

where τ is the forecast horizon of interest. Consider a situation where l ≥ 2 alternative models are used

to forecast the variable of interest, τ steps ahead, say Yt+τ . At time t, forecasts are based on the in-

formation set It. For t ≥ R, denote the l forecasts by Ŷk,t+τ = mk

(
Zt+τ ; β̂k,t

)
, k = 1, ..., l, where

each mk is a measurable function and β̂k,t is constructed at time t by using the most recent R obser-

vations. Let {ek,t+τ : t ≥ R} be the out-of-sample forecast errors from the k-th competing model, i.e.,

ek,t+τ = Yt+τ − Ŷk,t+τ . Further, denote Fk,t(·) and Fk,t(·|It) as the distribution of ek,t+τ and the condi-
tional distribution of ek,t+τ given It, respectively. Also assume that predictions are made for n periods,
indexed from R to T, so that n = T −R+ 1, as above.

Now, change the definition of GL and GC forecast superiority given in Section 2 as follows.

Definition 5.1 A sequence of forecasting errors {e1,t+τ , t ≥ R} General-Loss (GL) outperforms {e2,t+τ , t ≥
R}, denoted as e1 �G e2, if

lim
n→∞

n−1
T∑
t=R

E[L(e1,t+τ )− L(e2,t+τ )] ≤ 0,

for all L ∈ LG. A sequence of forecasting errors {e1,t+τ , t ≥ R} Convex-Loss (CL) outperforms
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{e2,t+τ , t ≥ R}, denoted as e1 �C e2, if

lim
n→∞

n−1
T∑
t=R

E[L(e1,t+τ )− L(e2,t+τ )] ≤ 0,

for all L ∈ LC .

Modify Propositions 2.2 and 2.3 to accommodate data heterogeneity, as follows.

Proposition 5.2 limn→∞ n−1
∑T
t=RE[L(e1,t+τ )− L(e2,t+τ )] ≤ 0, for all L ∈ LG, if and only if

lim
n→∞

n−1
T∑
t=R

[F2,t(x)− F1,t(x)]sgn(x) ≤ 0,

for all x ∈ X , where X is the union of the supports of e1 and e2.

Proposition 5.3 Suppose that
∫ x
−∞(F1t(u)− F2t(u))du 1(x < 0) and

∫∞
x

(F2t(u)− F1t(u))du 1(x ≥ 0)]

are well defined, for each x ∈ X .
Then limn→∞ n−1

∑T
t=RE[L(e1,t+τ )− L(e2,t+τ )] ≤ 0, for all L ∈ LC , if and only if

limn→∞ n−1
∑T
t=R[

∫ x
−∞(F1,t(s)− F2,t(s))ds 1(x < 0) +

∫∞
x

(F2,t(s)− F1,t(s))ds 1(x ≥ 0)] ≤ 0,

for all x ∈ X .

Remarks. First, without the stationarity assumption, we compare the average risks for competing

forecasting models where the average is taken over all n predictions. If {ei,t+τ , t ≥ R}, i = 1, 2, are

strictly stationary, one can denote the common marginal distributions as Fi, i = 1, 2, yielding Propositions

2.2 and 2.3. Second, let F k(.) = limn→∞ n−1
∑T
t=R Fk,t(

.), k = 1, ..., l. Then e1 �G e2 implies that

F 1(0) = F 2(0). Third, consider defining conditional analogues of GL and CL forecast superiority by

replacing E[·] with E[·|It] and Fkt(·) with Fkt(·|It) in the above definitions. In this case, different

sequences of forecast errors are evaluated by comparing their average conditional risks.4

For k = 1, ..., l, denote Fk,t(x) = P (ek,t+τ ≤ x) and F k,n(x) = n−1
∑T
t=R 1(ek,t+τ ≤ x). Now ,define

the following functionals of the joint distribution, Ft(x1, ..., xl) of (e1,t+τ , ..., el,t+τ ) , t ≥ R,

HTG+ = max
k=2,..,l

sup
x∈X+

HGk(x), (5.1)

HTG− = max
k=2,..,l

sup
x∈X−

HGk(x), (5.2)

HTC+ = max
k=2,..,l

sup
x∈X+

HCk(x), (5.3)

HTC− = max
k=2,..,l

sup
x∈X−

HCk(x), (5.4)

4We conjecture that the asymptotic properties in this case can be derived by using the results in Harel and Puri (1999).

Conditional forecast superiority is a stronger property than its unconditional analogue. However, it is diffi cult to find

empirical support for this property, and thus the topic is left to future research.
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where HGk(x) = limn→∞ n−1
∑T
t=R[Fk,t(x)− F1,t(x)]sgn(x), and

HCk(x) = lim
n→∞

n−1
T∑
t=R

[

∫ x

−∞
(F1,t(s)− Fk,t(s))ds1(x < 0) +

∫ ∞
x

(Fk,t(s)− F1,t(s))ds1(x ≥ 0)].

Without loss of generality, also assume that the union of the supports of all forecast error sequences,

X , is bounded. The hypotheses of interest can now be stated as

HHTG
0 : HTG+ ≤ 0 ∩HTG− ≤ 0 vs. HTG

1 : HTG+ > 0 ∪HTG− > 0 (5.5)

and

HHTC
0 : HTC+ ≤ 0 ∩HTG− ≤ 0 vs. HTC

1 : HTC+ > 0 ∪HTC− > 0. (5.6)

In formulating the null hypothesis HHTG
0 , define {e1,t+τ , t ≥ R} to be the benchmark forecast error or

the corresponding model (model 1) as the benchmark model. Interest lies in determining whether there

exists some forecasting model superior to this model. Failure to reject the null implies that no competing

forecast GL/CL outperforms the benchmark forecast.

The test statistics that we consider in this context are based on the empirical analogues of (5.1) to (5.4).

They are defined as follows.

HTG+
n = max

k=2,..,l
sup
x∈X+

√
nHGk,n(x),

HTG−n = max
k=2,..,l

sup
x∈X−

√
nHGk,n(x)

HTC+
n = max

k=2,..,l
sup
x∈X+

√
nHCk,n(x),

HTC−n = max
k=2,..,l

sup
x∈X−

√
nHCk,n(x),

where HGk,n(x) = (F k,n(x) − F 1,n(x))sgn(x) and HCk,n(x) =
∫ x
−∞(F 1,n(s) − F k,n(s))ds1(x < 0) +∫∞

x
(F k,n(s)− F 1,n(s))ds1(x ≥ 0).

Theoretical analysis of these statistics requires the following modifications to the assumptions in Section

3.

Assumption HA.1. (i) {(Yt, Z ′k,t)′ : t ≥ 1} is an α−mixing sequence with mixing coeffi cients α(l) =

O(l−C0), for some C0 > (q − 1)(q + 1), for k = 1, ..., l, where q is an even integer that satisfies q ≥ 2.

(ii) For all t ≥ R, the distribution Fk,t(·) of ek,t+τ has bounded density with respect to the Lebesgue
measure, a.s., and supt≥RE|ek,t+τ | <∞, for k = 1, ..., l.

Assumption HA.4. R is fixed, so that limT→∞(n/R) =∞.

For the HTCn test we additionally require the following modification of Assumption HA.1.

Assumption HA.1.∗ (i) {(Yt, Z ′k,t)′ : t ≥ 1} is an α−mixing sequence with mixing coeffi cients α(l) =

O(l−C0), for some C0 > rq/(r − q), for k = 1, ..., l and r > q ≥ 2.
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(ii) supt≥R ||ek,t+τ ||r <∞ for k = 1, ..., l.

To derive the asymptotic null distributions of the test statistics, define the empirical processes in x

vhgk,n(x) =
1√
n

T∑
t=R

{1(ek,t+τ ≤ x)− Fk,t(x)}sgn(x) and

vhck,n(x) =
1√
n

T∑
t=R

{∫ x

−∞
[1(ek,t+τ ≤ s)− Fk,t(s)]ds1(x < 0)

−
∫ ∞
x

[1(ek,t+τ ≤ s)− Fk,t(s)]ds1(x ≥ 0)

}
.

Let h̃gk(·) be a mean zero Gaussian process with covariance function given by

Ωhgk (x1, x2) = lim
n→∞

E
(
vhgk,n(x1)− vhg1,n(x1)

)(
vhgk,n(x2)− vhg1,n(x2)

)
.

Analogously, define h̃ck(·) to be a mean zero Gaussian process with covariance function given by

Ωhck (x1, x2) = lim
n→∞

E
(
vhck,n(x1)− vhc1,n(x1)

) (
vhck,n(x2)− vhc1,n(x2)

)
.

The limiting null distributions of the test statistics are given in the following theorem.

Theorem 5.4 (a) Suppose that Assumptions HA.1 and HA.4 hold. Then, under HHTG+

0 ,

HTG+
n ⇒ max

k=2,..,l
sup

x∈Bhg+k

h̃gk(x) if HTG+ = 0 (5.7)

⇒ −∞ if HTG+ < 0,

and under HHTG−

0 ,

HTG−n ⇒ max
k=2,..,l

sup
x∈Bhc−k

h̃gk(x) if HTG− = 0 (5.8)

⇒ −∞ if HTG− < 0, (5.9)

where Bhg+k = {x ∈ X+ : F 1(x) = F k(x)} and Bhg−k = {x ∈ X− : F 1(x) = F k(x)}.
(b) Suppose that Assumptions HA.1∗ and HA.4 hold. Then, under HHTC+

0 ,

HTC+
n ⇒ max

k=2,..,l
sup
x∈Bhc+k

h̃ck(x) if HTC+ = 0 (5.10)

⇒ −∞ if HTC+ < 0,

and under HHTC−

0 ,

HTC−n ⇒ max
k=2,..,l

sup
x∈Bhc−k

h̃ck(x) if HTC− = 0 (5.11)

⇒ −∞ if HTG− < 0, (5.12)

where Bhc+k = {x ∈ X+ :
∫∞
x

(F 1(s)− F k(s))ds = 0} and Bhc−k = {x ∈ X− :
∫ x
−∞(F k(s)− F 1(s))ds = 0}.
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The asymptotic null distributions of HTG+
n (HTG

−
n ) and HTC

+
n (HTC

−
n ) depend on the distribution

functions {F k(.) : k = 1, ..., l}. This implies that the asymptotic critical values for HTG+
n (HTG

−
n ) and

HTC+
n (HTC−n ) cannot be tabulated. However, Theorem 2.2 in Goncalves and White (2004) applies in

this case, and their stochastic equicontinuity result for heterogeneous dependent variables can thus be

used to establish the validity of block bootstrap.5 . Associated global and local power properties can also

be established as in Section 4 (for brevity, we do not repeat the arguments).

6 Simulation Evidence

In this section, we first discuss results of simulations conducted in order to evaluate the finite sample

performance GL and CL forecast superiority tests when there are only two competing sequences of

forecast errors. We discuss the results of a Monte Carlo experiment designed to examine the finite

sample performance of the tests when there are more than two competing sequences of forecast errors,

under stationarity. Finally, a small Monte Carlo experiment is conducted to check the performance of

the tests in the case where the underlying process is not stationary.

When computing the suprema in TG+
n , TG

−
n , TC

+
n , and TC

−
n , we take a maximum over an equally

spaced grid of size d1.5n0.6c, over a 98% range of the pooled empirical distribution; that is, we take the 1%
and 99% percentiles of this empirical distribution and then form an equally spaced grid between these two

extremes. For each experiment we use 1000 replications. We set the number of bootstrap resamples as

B = 300. Additionally, six different values of the smoothing parameter, Sn, are examined for each sample

size n ∈ {100, 500, 1000} for the pairwise comparison case, and four different values of Sn are examined
for each sample size n ∈ {250, 500, 1000} for the multiple comparison and heterogeneity cases, where
values of Sn are equally spaced on the interval [n−0.4, n−0.1]. For each n, rejection probabilities of the

tests with nominal size 0.1 are reports. Results corresponding to different nominal sizes are qualitatively

similar and are not reported.

6.1 Pairwise comparisons: stationary case

We first study the following three data generating processes (DGPs) with independent forecast errors

and i.i.d. observations:

DGP1: e1t ˜ i.i.d. N(0, 1) and e2t ˜ i.i.d.N(0, 1).

DGP2: e1t ˜ i.i.d. Uniform (-2, 2) and e2t ˜ i.i.d.N(0, 1).

DGP3: e1t ˜ i.i.d. Beta(1,2) and e2t ˜ i.i.d. Beta(2,4); where both forecast error sequences are recentered

around their common mean of 1/3.

5We cannot use the stationary bootstrap in this case because it assumes stationarity of the underlying process. Never-

theless, subsampling procedure can alterantively be used. However, simulation results show that size and power properties

are poor when subsampling is used.
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It is easy to verify that the first design allows us to examine finite sample size properties for both

forecast superiority tests, and is a “least favorable” case. The second and third designs allow us to

examine finite sample power for both tests.

In the next three DGPs, we allow the two forecast errors to be dependent on each other with non-

independent observations. Following Klecan, McFadden, and McFadden (1991), we generate ekt according

to

ekt = (1− λ)(
√
ρẽ0t +

√
1− ρẽkt) + λek,t−1,

where (ẽ0t, ẽ1t, ẽ2t) are i.i.d. but have different marginals in different DGPs. The parameters λ = ρ =

0.1 determine the mutual dependence of e1t and e2t and their autocorrelations. This scheme produces

autocorrelated and mutually dependent forecast errors, and we consider three such DGPs.

DGP4: (ẽ0t, ẽ1t, ẽ2t) are i.i.d N(0, I3);

DGP5: ẽ1t ˜ i.i.d.N(0, 1.5) and ẽkt ˜ i.i.d.N(0, 1), for k = 0 and 2;

DGP6: ẽ0t ˜ i.i.d. Beta(1,1), ẽ1t ˜ i.i.d. Beta(1,2), and ẽ2t ˜ i.i.d. Beta(2,4); where and all are recentered

around their population means, i.e., 1/2, 1/3 and 1/3, respectively.

As above, DGP4 is our “null”model, while DGPs 5 and 6 are our “alternative”models. A comparison

of the simulation results based on DGP1 and DGP4 will yield insight into the effect of autocorrelation

and mutual dependence on the level of the tests. Similarly, a comparison of the simulation results based

on DGP3 and DGP6 will yield insight into the effect of autocorrelation and mutual dependence on the

power of the tests.

Simulation results for the above DGPs are reported in Table 1. The main entries in the table are

the rejection frequencies, as discussed above. From the left panel of the table, observe that for our small

sample size (n = 100), the test is over-sized for some values of Sn and has substantial power in detecting

deviations from the null. Given the nature of the testing problem considered in this paper, a sample size

of 100 observations is very small indeed. A comparison between the results for DGP1 (3) and DGP4

(6) indicates that the level (power) of the test is somewhat sensitive to the degree of mutual and serial

dependence in the data when the sample size is small. However, test power quickly jumps to 100% as the

sample size rises, and indeed both level and power are well behaved for large sample sizes, say n = 1000.

Similar conclusions follow for the test of CL forecast superiority, as shown in the right panel of Table 1.

6.2 Multiple comparisons: stationary case

For the sake of brevity, we consider independent forecasts and i.i.d. observations. For the following eight

data generating processes (DGPs), we fix e1t ˜ i.i.d.N(0, 1) but let the number of competing forecasting

models vary:

DGP7: ekt ˜ i.i.d.N(0, 1), k = 2, 3.

DGP8: ekt ˜ i.i.d.N(0, 1), k = 2, 3, 4, 5.
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DGP9: ekt ˜ i.i.d.N(0, 1), k = 2, 3, 4, 5 and ekt ˜ i.i.d.N(0, 1.22), k = 6, 7, 8, 9.

DGP10: ekt ˜ i.i.d.N(0, 0.82), k = 2, 3, 4, 5 and ekt ˜ i.i.d.N(0, 1.22), k = 6, 7, 8, 9.

DGP11: ekt ˜ i.i.d.N(0, 0.82), k = 2, 3.

DGP12: ekt ˜ i.i.d.N(0, 0.62), k = 2, 3.

DGP13: ekt ˜ i.i.d.N(0, 0.82), k = 2, 3, 4, 5.

DGP14: ekt ˜ i.i.d.N(0, 0.62), k = 2, 3, 4, 5.

Here, DGPs 7-9 are our “null”models, while DGPs 10-14 are our “alternative”models. DGPs 7 and

8 correspond to the least favorable elements in the null and the theory of our stationary bootstrap test

applies directly to this case. In DGP9, the benchmark model outperform all of the competing models,

while in DGP10, half of the competing models outperform the benchmark model and the other half

underperform.

Table 2 summarizes results for the null hypotheses HTG
0 : TG+ ≤ 0 ∩ TG− ≤ 0, where e1 is taken

as the benchmark forecast error. For all sample sizes in our investigation, the tests have good size

performance for DGPs 7 and 8, where the nulls are least favorable to the alternatives, while the tests are

mostly under-sized for DGP 9, where the nulls are not least favorable to the alternatives. This verifies our

theory, which predicts that the stationary bootstrap works well for least favorable nulls. Now, consider

the power performance of the test. Interestingly, for all cases (i.e. DGPs 10-14), the test has a good

power performance. Note also that an inclusion of poorer models in the test improves the power of the

test, as expected.

Table 3 summarizes results for the null hypotheses HTC
0 : TC+ ≤ 0 ∩ TC− ≤ 0, where e1 is taken

as the benchmark forecast error. The superiority test continues to perform well. A comparison of Tables

2 and 3 indicates that we have more chance to correctly reject the null HTC
0 : TC ≤ 0 than the null

HTG
0 : TG ≤ 0. This is consistent with the theory that GL forecast superiority implies CL forecast

superiority.

6.3 Pairwise comparisons: heterogeneous case

In this subsection, we explore the case where forecast comparison is carried out for two competing

sequences of heterogeneous forecast errors. For the sake of brevity, we study a small set of DGPs. In

particular, for DGPs 15 through 18, eit ˜ aitN(0, 1), for i = 1, 2 and t ≥ 1, where {a1t} is chosen to be
the infinite repetition of the sequence {1 1 1 1.25 1.25 1.25 0.75 0.75 0.75 1 1 1} and {a2t} to be the
infinite repetition of the sequence as follows:

DGP15: a2t = a1t.

DGP16: {1 1 1 1.25 1.25 1.25 1 1 1 0.75 0.75 0.75 }.
DGP17: {1 1 1 0.65 0.65 0.65 0.5 0.5 0.5 0.8 0.8 0.8}.
DGP18: a2t = 0.75a1t.

22



Clearly, the first two designs are “null”models for both GL and CL forecast superiority tests and

they are both “least favorable”to the alternatives. The last two designs are “alternative”models.

Table 4 summarizes results for the null hypothesesHHTG
0 : HTG+ ≤ 0∩HTG− andHHTC

0 : HTC+ ≤
0∩HTC−, where {e1t} is taken as the benchmark forecast error. We use the block bootstrap, where the
block size is chosen to be equally spaced on the interval [2n0.2, 2n0.4]. Overall, the sizes for the testing

procedure behave reasonably well, despite the fact that the test is a little upward biased when sample size

is small. Additionally, tests based on the use of the block bootstrap seem to have good power properties

for multiple comparison of forecasting models with heterogeneous forecast errors.

7 Empirical Illustration

In this section forecast superiority tests are used to evaluate forecast errors resulting from two sets of

forecast models for spot exchange rates among 6 industrialized countries. This study is for illustrative

purpose only, and all forecast models are stylized, involving no estimation. Due to this simplistic approach,

we do not need to distinguish between in-sample and out-of sample forecasts.

7.1 Data and models

The data consist of six 3-month-ahead forward rates and spot rates for the Canadian Dollar (CAD),

French Franc (FRF), German Mark (GEM), Japanese Yen (JPY), Swiss Franc (CHF) and British Pound

(GBP), relative to the US dollar. The data were obtained from Datastream for daily sample period from

Jan. 1, 1992 through Feb. 28, 2002, at which point the euro became the sole legal tender in all euro area

countries.6 This group of countries is the same as that studied in Hunter and Timme (1992). In summary,

the dataset that we analyze is comprised of 2652 observations. However, due to national holidays and a

variety of other reasons, some observations are missing. If the observations for a country is missing, we

simply deleted it. This results in varying numbers of observations for each country, as follows: 2556 for

CAD, 2620 for FRF, 2560 for GEM, 2617 for JPY, 2579 for CHF, and 2541 for GBP.

Our forecast comparison is based upon forecast errors resulting from two sets of forecasting models.

We refer to the first set of forecasting models as “Forward”models. In these models, forward rates are

used to predict the future spot rates. Namely, Et(Xt+τ ) = Ft,τ , where Xt+τ is the spot exchange rate

at time t + τ , Ft,τ is the τ -period ahead forward exchange rate observed at time t and Et(Xt+τ ) is the

expectation of the spot rate at time period t + τ , conditional on information available at time t. If the

“unbiasedness hypothesis”is true, given conditions of rational expectations and risk neutrality, then we

should expect that the τ -period ahead forward exchange rate is the best predictor of the future spot rate

6We considered various different sample periods, with little change in our empirical findings.
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at time t + τ .7 The second set of forecast models are termed “Spot”models. It is assumed that the

current spot rate is the best forecast of the future spot rate. Namely, Et(Xt+τ ) = St. There is a large

amount of empirical support for this model. See, e.g., Chiang (1986) and Meese and Rogoff (1988), who

show that the current rate is a better predictor of the future spot rate than either the forward rate or

forecasts from structural and other time series models. In a study closely related to that carried out

here, Hunter and Timme (1992) base their analysis on revenues resulting from the adoption of different

forecasting models in a hedging framework, and conduct the first and second order stochastic dominance

tests on these revenues. Here, we take the alternative approach of carrying out forecast comparison based

upon the evaluation of forecast errors. In particular, we implement, tests for GL forecast superiority and

CL forecast superiority.

7.2 Preliminary analysis

Before conducting forecast superiority tests, we report two traditional measures (mean square forecast

error - MSFE and mean absolute forecast error - MAFE) of forecast performance for all models under

our investigation (refer to Table 5). Note that both MSFE and MAFE belong to the CL and thus also

GL class of loss functions. If the forecast error from one forecasting model has both lower MSFE and

MAFE than the other model, one might wonder whether it GL or CL outperforms the other. On the

other hand, if one model has lower MSFE while the other model has lower MAFE, and the differences

are statistically significant,8 we would expect there to be no CL and thus no GL forecast superiority.

Inspection of the results in Table 5 indicates that the spot model has lower MSFE and MAFE than the

forward model for all countries, with the exception of the UK. The difference is not big though.

Now consider examining the empirical distribution functions (EDFs) for the forecast errors from the

two models. For all six countries, the EDFs for the forward forecast error almost coincide with those for

the spot forecast error, with some slight differences. To save space, we do not report the results here. To

look at the differences between the forward and spot EDFs more clearly, for each country we plot Gn(x)

and Cn(x) against x, where for x, we take 200 equally spaced values between the 1% and 99% percentiles

of the pooled empirical distribution for the forward and spot forecast errors, and where Gn(x) and Cn(x)

are empirical analogs of G(x) and C(x) defined in (2.1) and (2.2). These plots are given in Figures 1

and 2, for Gn(x) and Cn(x), respectively. Note that both the probability difference in Gn(x) and the

integrated probability difference in Cn(x) have been scaled up by
√
n, where n is the sample size. Three

cases may result in the examination of these plots.

Case 1: If Gn(x) (Cn(x)) is significantly larger than 0 for all x, we conclude that the forward model

7Here we follow Hunter and Timme (1992) and use the levels of the exchange rates in all of our calculations. We also

tried to use logarithms of exchange rates, with similar empirical findings.
8This frequently occurs in practice. For example, the in-sample forecast errors from a least squares regression will have

a lower MSFE and higher MAFE than those from a conditional median regression model with the same structure.
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is superior to the spot model in the sense that it GL (CL) outperforms the latter model.

Case 2: If Gn(x) (Cn(x)) is significantly smaller than 0 for all x, we conclude that the spot model is

superior to the forward model.

Case 3: if Gn(x) (Cn(x)) is positive for some values of x and negative for other values of x, GL (CL)

forecast superiority may or may not exist, depending on whether the sign changes are significant.

All of the plots in Figure 1 are consistent with Case 3. Thus, it is of interest to ascertain whether

the sign changes are significant or not. Turing to Figure 2, Case 2 pertains to CAD, FRF, and GEM,

while Case 3 pertains to the JPY, CHF, and GBP. Note that the magnitude of the integrated probability

difference varies substantially from one country to the other. For example, the maximum of the absolute

value of Cn(x) for CAD is roughly Op (1/
√
n) while that for GEM is roughly Op(1). We expect that

such differences will play a role in our analysis, since the tests have nontrivial power against O(1/
√
n)

alternatives.

7.3 Tests for forecast superiority

GL and CL test statistics and critical values are constructed following Sections 3 and 6. To be specific,

in computing the suprema in Gn(x) and Cn(x), we take the maximum over an equally spaced grid of

size d1.5n0.6c, on the 98% range of the pooled empirical distribution. Additionally, we choose a total of

twelve different values for Sn, which are equally spaced on the interval [n−0.4, n−0.1].

Figure 3 reports the p-values associated with testing the null hypotheses HG
0,S : Spot GL outperforms

Forward and HG
0,F : Forward GL outperforms Spot. Small p-values, say, smaller than 0.1, suggest that

the corresponding null hypothesis is false. A small p-value for one test coupled with a large p-value for

the other test indicate that one model is superior to the other. Turning to our findings, first consider the

Canadian Dollar. The p-values for the null HG
0,F range from 0.11 to 0.33, and the p-values for the null

HG
0,S are larger than 0.5 for all values of Sn used, suggesting a failure to reject either null. Statistically

speaking, the forward model and the spot model perform equally well in forecasting the future spot rates,

in this case. Nevertheless, if one takes into account the magnitude of the p-values, one might argue that

Spot is “better”than Forward. Second, despite the sign changes in Gn(x) for FRF, GEM, JPY, and CHF,

our tests suggest that the Spot GL outperforms Forward for all these countries. This finding is interesting,

as it supports earlier findings due to Hunter and Timme (1992) that Spot outperforms Forward when one

directly tests for first order stochastic dominance using returns resulting from a hedging based trading

strategy applied to these two models. Third, as expected from our preliminary analysis, there is no GL

forecast superiority in either direction in the case of GBP.

In Figure 4, we plot the p-values associated with implementation of our CL forecast superiority tests,

i.e. we test HC
0,S and H

C
0,F . Examination of this figure indicates that Spot CL outperforms Forward for

CAD, FRF, GEM, JPY and CHF. The tests for CL forecast superiority in the case of GBP are similar
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to results arising when testing GL forecast superiority.

In summary, the key finding of this empirical illustration is that our forecast superiority test results

are consistent with the conventional point MSFE and MAFE criteria reported in Table 5. However,

while the differences between MSFEs and MAFEs when comparing our two models are quite small and

likely statistically insignificant, our forecast superiority tests indicate that Spot is superior to Forward

for all loss functions in the GL class, for CAD, FRF, GEM, JPY and CHF. This is important since

moment-based criteria only look in a particular direction when evaluating forecast errors, while GL or

CL forecast superiority tests are based on the entire distribution of forecast errors and do not require

knowledge of the exact form of the loss function. One drawback of our GL and CL forecast superiority

tests is that they only offer a partial ranking when the number of models is greater than 2.

8 Concluding Remarks

This paper outlines a novel approach to forecast comparison that yields a forecast ranking that is robust

to the choice of loss function. In particular, we introduce the concepts of general-loss (GL) forecast

superiority and convex-loss (CL) forecast superiority, and we establish a mapping between GL (CL)

superiority and first (second) order stochastic dominance. This allows us to develop a testing procedure

based on an out-of-sample generalization of the tests introduced by Linton, Maasoumi and Whang (2005).

The asymptotic properties under the null and under sequences of local alternatives are derived, and it is

noted that critical values for the limiting distribution cannot be tabulated. In light of this finding, we

show first order validity of critical values based on the stationary bootstrap. Furthermore, we have study

the extension of our tests to the case of heterogeneous observations. Findings from a small Monte Carlo

study show that the suggested tests have good properties, even for moderate sample sizes. Finally, an

empirical illustration in which exchange rate models are used to predict future spot rates is presented.

While, no clear cut conclusions can be drawn based on the inspection of mean square and mean absolute

error forecast accuracy criteria, our tests indicate that a simple spot rate model is GL-superior to an

alternative forward rate type model. A limitation of our testing procedure is that our statistics have non-

degenerate limiting distributions only over the least favorable case, under the null. Thus, convergence is

not uniform within the probability measures in the null hypotheses. As a consequence, the tests are not

asymptotically similar, in the sense of not having exact asymptotic size. In a follow up of this paper,

Corradi, Jin and Swanson (2015) use recent developments in testing sequences of inequality restrictions

(e.g., Andrews and Barwick (2012), Andrews and Shi (2009,2014), Andrews and Soares (2010), and

Linton, Song and Whang (2010)) in order to obtain tests for GL/CL superiority which are similar on

the boundary of the null hypothesis. Furthermore, they analyze the trade off between similarity on the

boundary and power, see e.g. Lee, Andrews (2012) and Lee, Song and Whang (2013, 2014).
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Appendix

Proof of Proposition 2.2: Let f1 and f2 be the densities associated with F1 and F2. We begin with

the IF part. ∫ ∞
−∞

L(z) (f1(z)− f2(z)) dz

=

∫ 0

−∞
L(z) (f1(z)− f2(z)) dz +

∫ ∞
0

L(z) (f1(z)− f2(z)) dz

= L(z) (F1(z)− F2(z))
∣∣0
−∞ + L(z) (F1(z)− F2(z)) |∞0

−
∫ 0

−∞
L′(z) (F1(z)− F2(z)) dz −

∫ ∞
0

L′(z) (F1(z)− F2(z)) dz

= −
∫ 0

−∞
L′(z) (F1(z)− F2(z)) dz −

∫ ∞
0

L′(z) (F1(z)− F2(z)) dz

≤ 0

if (F2(z)− F1(z)) sgn(z) ≤ 0.

We now move to the ONLY IF part. We need to show that whenever, G(x) > 0 for all x ∈ ∆, with

G(x) = (F2(x)− F1(x)) sgn(x), and ∆ a set of strictly positive Lebesgue measure, there exists function(s)

L ∈ LG such that
∫
X L(z) (f1(z)− f2(z)) dz > 0. In fact,

∫
∆
L′(z) (F1(z)− F2(z)) dz > 0 and we need a

function L whose derivative L′ puts enough mass on the set ∆, so that∫
∆

L′(z) (F1(z)− F2(z)) dz︸ ︷︷ ︸
>0

+

∫
∆c

L′(z) (F1(z)− F2(z)) dz︸ ︷︷ ︸
≤0

> 0,

with ∆c being the complement of ∆.

Proof of Proposition 2.3: We begin with the IF part. From the proof of Proposition 2.2, and by a

further integration by parts,∫ ∞
−∞

L(z) (f1(z)− f2(z)) dz

= −
∫ 0

−∞
L′(z) (F1(z)− F2(z)) dz −

∫ ∞
0

L′(z) (F1(z)− F2(z)) dz

= −L′(z)
∫ z

−∞
(F1(t)− F2(t)) dt

∣∣∣∣0
−∞

+

∫ 0

−∞
L′′(z)

(∫ z

−∞
(F1(t)− F2(t)) dt

)
dz

+ L′(z)

∫ ∞
z

(F1(t)− F2(t)) dt

∣∣∣∣∞
0

−
∫ ∞

0

L′′(z)

(∫ ∞
z

(F1(t)− F2(t)) dt

)
dz

=

∫ 0

−∞
L′′(z)

(∫ z

−∞
(F1(t)− F2(t)) dt

)
dz −

∫ ∞
0

L′′(z)

(∫ ∞
z

(F1(t)− F2(t)) dt

)
dz

≤ 0,

since
∫ 0

−∞ (F1(t)− F2(t)) dt =
∫∞

0
(F1(t)− F2(t)) dt = 0,

∫ z
−∞ (F1(t)− F2(t)) dt ≤ 0 for all z ≤ 0, and∫∞

z
(F1(t)− F2(t)) dt ≥ 0 for all z ≥ 0.
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As for the ONLY IF part, we need to show that whenever, C(x) > 0 for all x ∈ ∆, with C(x) defined in

(2.2) and ∆ being a set of strictly positive Lebesgue measure, there exists function(s) L ∈ LC such that∫
X L(z) (f1(z)− f2(z)) dz > 0. Without loss of generality, suppose ∆ ⊂ X+, then∫
∆
L′′(z)

(∫∞
z

(F1(t)− F2(t)) dt
)

dz < 0, and we need to find a function L ∈ LC having a second derivative
L′′ putting enough weight on ∆ such that

−
∫

∆

L′′(z)

(∫ ∞
z

(F1(t)− F2(t)) dt

)
dz +

∫
∆c

L′′(z)

(∫ z

−∞
(F1(t)− F2(t)) dt

)
dz > 0.

Hereafter, we let P denote the probability measure governing the behavior of the time series {Ut}.
C or C̃ is a generic constant which may vary from case to case. ||.| | denotes the Euclidean norm and

||X||q denotes the norm (E|X|q)1/q for a random variable X. supt denotes supR≤t≤T and the summation∑
t denotes

∑T
t=R . “var ”and “cov”denote variance and covariance. All limits are taken as T goes to

infinity.

To help present the proofs of our theorems in Sections 3 and 4, we first fix some additional notation.

Denote β = (β′1, β
′
k)′, β0 = (β′10, β

′
k0)′, β̂t =

(
β̂
′
1t, β̂

′
kt

)′
, N(ε) = {β : ‖β − β0‖ ≤ ε} and Nk(ε) =

{βk : ‖βk − βk0‖ ≤ ε} . Further, we define

fgk,t+τ (x, β̂t) =
(

1
(
ek,t+τ

(
β̂kt

)
≤ x

)
− 1

(
e1,t+τ

(
β̂1t

)
≤ x

))
sgn(x), and

f ck,t+τ (x, β̂t) =

∫ x

−∞

(
1
(
e1,t+τ

(
β̂1t

)
≤ s
)
− 1

(
ek,t+τ

(
β̂kt

)
≤ s
))

ds1(x < 0)

+

∫ ∞
x

(
1
(
ek,t+τ

(
β̂kt

)
≤ s
)
− 1

(
e1,t+τ

(
β̂1t

)
≤ s
))

ds1(x ≥ 0).

Then we can write

TG+
n = max

k=2,..,l
sup
x∈X+

√
nDg

kn(x), TG−n = max
k=2,..,l

sup
x∈X−

√
nDg

kn(x),

TC+
n = max

k=2,..,l
sup
x∈X+

Dc
kn(x), TC−n = max

k=2,..,l
sup
x∈X−

Dc
kn(x)

where Dg
kn(x) = n−1

∑
t f

g
k,t+τ

(
x, β̂t

)
, Dc

kn(x) = n−1
∑
t f

c
k,t+τ

(
x, β̂t

)
. Further, we decompose

√
nDi

kn(x) = n−1/2
∑
t

{
f ik,t+τ

(
x, β̂t

)
− Ef ik,t+τ (x, β)|β=β̂t

}
+n−1/2

∑
t

{
Ef ik,t+τ (x, β)|β=β̂t

− Ef ik,t+τ (x, β0)
}

+n1/2Ef ik,t+τ (x, β0)

≡ ξik1(x) + ξik2(x) + ξik3(x) for i = g, c, (A.1)

where we suppress the dependence of ξikj(
.) on n for j = 1, 2, 3. It is clear that under the nulls ξik3(x)→

−∞ as T →∞ for x /∈ Bik, i = g, c.
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For the TG+
n test, our objective is to show that under the null H

TG+

0 , for k = 2, ..., l,

ξgk1(.)⇒ g̃k(.), and (A.2)

ξgk2(x) = ∆k0(x)′Bkvk0 −∆10(x)′B1v10 + op(1) uniformly in x+, (A.3)

Likewise for the TG−n , TC
+
n and TC

−
n tests.

Lemma A.1 Suppose Assumptions A.2 and A.4 hold and let α ∈ [0, 0.5). Then, for k = 1, ..., l,

(a) supt ‖nαHk(t)‖ p→ 0;

(b) supt
∥∥∥nα(β̂k,t − βk,0)

∥∥∥ p→ 0;

(c) supt
∥∥n1/2Hk(t)

∥∥ = Op(1).

Proof of Lemma A.1.

The results follow from Lemma A.1 and the proof of Lemma 2.3.2 of McCracken (2000).

The following lemma holds for all k = 1, ..., l.

Lemma A.2. (a) Suppose Assumption A.1 holds. Then, for each ε > 0, there exists δ > 0 such that

for all x,
.
x ∈ X− or x, .x ∈ X+,

lim
T→∞

∥∥∥∥∥∥ sup
ρ∗g((x,βk),(

.
x,

.

βk))<δ

∣∣∣νgk,n (x, βk)− νgk,n
(
.
x,

.

βk

)∣∣∣
∥∥∥∥∥∥
q

< ε, (A.4)

where

ρ∗g

(
(x, βk),

(
.
x,

.

βk

))
=

{
E
[(

1(ekt(βk) ≤ x)− 1
(
ekt

( .

βk

)
≤ .
x
))]2}1/2

. (A.5)

(b) Suppose Assumption A.1 ∗ holds. Then, for each ε > 0, there exists δ > 0 such that for all x,
.
x ∈ X− or x, .x ∈ X+,

lim
T→∞

∥∥∥∥∥∥ sup
ρ∗c((x,βk),(

.
x,

.

βk))<δ

∣∣∣νck,n (x, βk)− νck,n
(
.
x,

.

βk

)∣∣∣
∥∥∥∥∥∥
q

< ε, (A.6)

where

ρ∗c((x, βk), (
.
x,

.

βk)) =

{
E

∣∣∣∣∣
∫ x

−∞
1(ek,t(βk) ≤ s)ds−

∫ .
x

−∞
1(ek,t(

.

(βk) ≤ s)ds
∣∣∣∣∣
r}1/r

1(x < 0,
.
x < 0)

+

{
E

∣∣∣∣∫ ∞
x

1(ek,t(βk) > s)ds−
∫ ∞
.
x

1(ek,t(
.

βk) > s)ds

∣∣∣∣r}1/r

1(x ≥ 0,
.
x ≥ 0). (A.7)

Proof of Lemma A.2. We first prove part (a). Without loss of generality (WLOG), we verify the

conditions of Theorem 2.2 in Andrews and Pollard (1994) hold with Q = q and γ = 1 for the case when

x,
.
x ∈ X+, which is bounded on the real line. The mixing condition is implied by Assumption A.1(i).

The bracketing condition also holds by the following argument. Let

Fg+k = {1(ek,t(βk) ≤ x) : (x, βk) ∈ X+ ×Θk0}.
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We now show Fg+k is a class of uniformly bounded functions satisfying the L2−continuity conditions. Let
sup

(
.
x,

.

βk)
denote sup{( .x,

.

βk)∈X+×Θk0, |
.
x−x|≤r1,||

.

βk−βk||≤r2,
√
r21+r22≤r̃}

, we have

sup
t
E sup

(
.
x,

.

βk)

∣∣∣1(ek,t+τ (
.

βk) ≤ .
x)− 1(ek,t+τ (βk) ≤ x)

∣∣∣2
= E sup

(
.
x,
.

βk)

∣∣∣1(ek,t+τ ≤ mk

(
Zk,t+τ ,

.

βk

)
−mk (Zk,t+τ , βk0) +

.
x)

−1(ek,t+τ ≤ mk(Zk,t+τ , βk)−mk(Zk,t+τ , βk0) + x)|

≤ E sup
(
.
x,

.

βk)

1 {|ek,t+τ −mk(Zk,t+τ , βk) +mk(Zk,t+τ , βk0)− x| ≤

|mk(Zk,t+τ ,
.

βk)−mk(Zk,t+τ , βk) +
.
x− x|

}
≤ E sup

(
.
x,

.

βk)

1 {|ek,t+τ −mk(Zk,t+τ , βk) +mk(Zk,t+τ , βk0)− x| ≤ ||Mk(Zk,t+τ , β
∗
k)||r2 + r1}

≤ C sup
βk∈Θk,

E||Mk(Zk,t, βk)||r2 + r1

≤ C̃r̃. (A.8)

where β∗k lies between
.

βk and βk. The first inequality is due to the fact |1(z ≤ t)−1(z ≤ 0)| ≤ 1(|z| ≤ |t|)
for any scalars z and t. The second inequality follows from Assumption A.1(ii), the triangle inequality

and the Cauchy-Schwartz inequality. The third inequality holds by Assumptions A.1(ii) and (iii), and

C̃ =
√

2C( sup
βk∈Θk0

E||Mk(Zk,t, βk)|| ∨ 1) is finite by Assumption A.1(ii). The desired bracketing condition

holds because the L2−continuity condition implies the bracketing number satisfies

N(ε,Fg+k ) ≤ C(1/ε)Lk+1.

The other cases can be done in the same fashion.

To prove part (b), WLOG, we only verify the case for x1 ≥ 0 and x2 ≥ 0. We show that the result

follows from Theorem 3 of Hansen (1996) with a = Lmax + 1, λ = 1. Let

Fc+k = {
∫ ∞
x

1(ek,t(βk) > s)ds : (x, βk) ∈ X+ ×Θk0}.

Then the functions in Fc+k satisfy the Lipschitz condition:∣∣∣∣∫ ∞.
x

1(ek,t+τ (
.

βk) > s)ds−
∫ ∞
x

1(ek,t+τ (βk) > s)ds

∣∣∣∣
=

∣∣∣max
{
ek,t+τ +mk (Zk,t+τ , βk0)−mk

(
Zk,t+τ ,

.

βk

)
− .
x, 0
}

−max {ek,t+τ +mk(Zk,t+τ , βk0)−mk(Zk,t+τ , βk)− x, 0}|

≤
∣∣∣mk(Zk,t+τ ,

.

βk)−mk(Zk,t+τ , βk)
∣∣∣+
∣∣ .x− x∣∣

≤
√

2( sup
βk∈Θk0

||Mk(Zk,t+τ , βk)|| ∨ 1)(||
.

βk − βk||2 + (
.
x− x)2)1/2
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where the first inequality follows from the fact that |max{z1, 0}−max{z2, 0}| ≤ |z1− z2| and the triangle
inequality, and the second inequality holds by Assumption A.1∗(ii) and the Cauchy-Schwartz inequality.

We have maxk supβk∈Θk0
||Mk(Zk,t+τ , βk)||r <∞ by Assumption A.1∗(ii) which yields the conditions (12)

and (13) of Hansen (1996). Finally, the mixing condition (11) in Hansen (1996) holds by Assumption

A.1∗(i).

Lemma A.3 Suppose Assumptions A.1, A.1 ∗, and A.4 holds. Denote ζik,t+τ (x, β) = f ik,t+τ (x, β) −
Ef ik,t+τ (x, β)− f ik,t+τ (x, β0) + Ef ik,t+τ (x, β0), i = g, c. Then, for k = 2, ..., l,

(a)

sup
t
E sup
{β}∈N(n−αε)

sup
x∈X+

[ζik,t+τ (x, β)]2 ≤ Cn−αε,

sup
t
E sup
{β}∈N(n−αε)

sup
x∈X−

[ζik,t+τ (x, β)]2 ≤ Cn−αε, i = g, c

(b)

sup
t
|E sup
{β,

.

β}∈N(n−αε)

sup
x∈X+

ζik,t+τ (x, β)ζik,t+τ+j(x,
.

β)| ≤ C̃α(j)d(n−αε)2,

sup
t
|E sup
{β,

.

β}∈N(n−αε)

sup
x∈X−

ζik,t+τ (x, β)ζik,t+τ+j(x,
.

β)| ≤ C̃α(j)d(n−αε)2,

where d = 1 and δ/(2 + δ) for i = g and c, respectively.

Proof of Lemma A.3.

Part (a) holds directly from the proof of Lemma A.2 by taking
.
x = x and q = 2 and applying the

Cauchy-Schwartz inequality.

For part (b), WLOG, we consider the case x ≥ 0.

Define {x∗, γ∗1, γ
∗
2}= argsup{x∈X+, {γ1, γ2}∈N(n−αε)}ζ

i
k,t+τ (x, γ1)ζik,t+τ+j(x, γ2), where we suppress the

dependence of (x∗, γ∗1, γ
∗
2) on i = g or c. By the proof of Lemma A.2, it is easy to verify

∥∥ζik,t+τ (x∗, γ∗1)
∥∥

2+δ
≤∥∥∥supβ∈N(n−αε) supx∈X+ ζik,t+τ (x, β)

∥∥∥
2+δ

= Cn−αε. By Assumptions A.1, A.1∗ and Corollary 1.1 of Bosq

(1996),

|cov(ζgk,t+τ (x∗, γ∗1), ζgk,t+τ+j(x
∗, γ∗2))|

≤ 4α(j)

∥∥∥∥∥ sup
β∈N(n−αε)

sup
x∈X+

ζgk,t+τ (x, β)

∥∥∥∥∥
∞

∥∥∥∥∥ sup
β∈N(n−αε)

sup
x∈X+

ζgk,t+τ+j(x, β)

∥∥∥∥∥
∞

≤ Cα(j)(n−αε)2,

and

|cov(ζck,t+τ (x∗, γ∗1), ζck,t+τ+j(x
∗, γ∗2))|

≤ 2(1 + 2/δ)(2α(j))δ/(2+δ)

∥∥∥∥∥ sup
β∈N(n−αε)

sup
x∈X+

ζck,t+τ (x, β)

∥∥∥∥∥
2+δ

∥∥∥∥∥ sup
β∈N(n−αε)

sup
x∈X+

ζck,t+τ+j(x, β)

∥∥∥∥∥
2+δ

≤ Cα(j)δ/(2+δ)(n−αε)2.
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This completes the proof.

Lemma A.4. (a) Suppose Assumptions A.1-A.4 hold. Then, we have for k = 1, ..., l,

sup
x∈X+

|ξgk1(x)− νgk,n(x, βk0) + νg1,n(x, β1,0)| p→ 0, (A.9)

sup
x∈X−

|ξgk1(x)− νgk,n(x, βk0) + νg1,n(x, β1,0)| p→ 0

(b)Suppose Assumptions A.1 ∗, A.2, A.3 ∗ and A.4 hold. Then, we have for k = 1, ..., l,

sup
x∈X+

|ξck1(x)− νck,n(x, βk0) + νc1,n(x, β10)| p→ 0, (A.10)

sup
x∈X−

|ξck1(x)− νck,n(x, βk0) + νc1,n(x, β10)| p→ 0.

Proof of Lemma A.4. WLOG, we consider the case x ≥ 0. Denote ζik,t+τ
(
x, β̂t

)
= f ik,t+τ

(
x, β̂t

)
−

Ef ik,t+τ (x, β)|β=β̂t
− f ik,t+τ (x, β0) + Ef ik,t+τ (x, β0), i = g, c, then

ξik1(x)− νi1,n(x, β10) + νik,n(x, βk0) = n−1/2
∑
t

ζik,t+τ

(
x, β̂t

)
.

Fix ε0, δ > 0. By Lemma A.1 (b), for all ε > 0, there exists T0 such that for all T > T0,

P
(

supk supt n
α
∥∥∥β̂k,t − βk0

∥∥∥ > ε
)
< δ/2. It is useful then to note that for all T > T0 and ε0 > 0,

P

(
sup
x∈X+

n−1/2

∣∣∣∣∣∑
t

ζik,t+τ

(
x, β̂t

)∣∣∣∣∣ > ε0

)

≤ P

(
sup

{βt}∈N(n−αε)

sup
x∈X+

n−1/2

∣∣∣∣∣∑
t

ζik,t+τ (x, βt)

∣∣∣∣∣ > ε0

)
+ P

(
sup
k

sup
t
nα
∥∥∥β̂k,t − βk0

∥∥∥ > ε

)

≤ P

(
sup

{βt}∈N(n−αε)

sup
x∈X+

n−1/2

∣∣∣∣∣∑
t

ζik,t+τ (x, βt)

∣∣∣∣∣ > ε0

)
+ δ/2 (A.11)

where {βt} ≡ {βt}Tt=R is a nonrandom sequence. Now we show that there exists T1 > T0 such that for

all T > T1, the first term on the right hand side (r.h.s.) of (A.11) is less than δ/2. For the remainder

of this proof only, let
∑
j denote the summation

∑
−n+1≤j 6=0≤n−1 . Applying the Chebyshev’s inequality,
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we have

ε2
0P

(
sup

{βt}∈N(n−αε)

sup
x∈X+

n−1/2

∣∣∣∣∣∑
t

ζik,t+τ (x, βt)

∣∣∣∣∣ > ε0

)

≤ E

(
sup

{βt}∈N(n−αε)

sup
x∈X+

n−1/2

∣∣∣∣∣∑
t

ζik,t+τ (x, βt)

∣∣∣∣∣
)2

= E

(
sup

{βt}∈N(n−αε)

sup
x∈X+

n−1
∑
t

[
ζik,t+τ (x, βt)

]2)

+E

 sup
{βt,βt+j}∈N(n−αε)

sup
x∈X+

∑
j

n−1

T−|j|∑
t=R

ζik,t+τ (x, βt)ζ
i
k,t+τ+j

(
x, βt+j

)
≤ E

(
sup

{βt}∈N(n−αε)

sup
x∈X+

n−1
∑
t

[
ζik,t+τ (x, βt)

]2)

+
∑
j

n−1

T−|j|∑
t=R

∣∣∣∣∣E
[

sup
{βt,βt+j}∈N(n−αε)

sup
x∈X+

ζik,t+τ (x, βt)ζ
i
k,t+τ+j(x, βt+j)

]∣∣∣∣∣
 . (A.12)

For part (a), substituting the results of Lemma A.3 into (A.12), the r.h.s. of (A.12) is less than or

equal to

C̃(n−αε) +
∑
j

(1− |j|/n)C̃α(j)(n−αε)2

≤ C̃n−αε

1 + 2

n−1∑
j=1

α(j)


≤ Cn−αε, say, (A.13)

provided 0 < n−αε < 1. Where 0 < C ≡
{

1 + 2
∑∞
j=1 α(j)

}
C̃ < ∞. Thus we can choose T1 and ε such

that for all T > T1 > T0, ε < (δε2
0n
α/2C) and 0 < n−αε < 1, the result follows.

Similarly, for part (b), (A.13) holds by Lemma A.3 if we replace α(j) by α(j)δ/(2+δ). In this case,

0 < C ≡
{

1 + 2
∑∞
j=0 α(j)δ/(2+δ)

}
C̃ < ∞ by Assumption A.1∗ (see Eq. (14.6) in Davidson, 1994).

Then the result follows analogously.

Lemma A.5. (a) Suppose Assumptions A.1-A.4 hold. Then, we have for k = 1, ..., l,

sup
x∈X+

∣∣ξgk2(x)−
√
n∆′k0(x)BkHk,n +

√
n∆′10(x)B1H1,n

∣∣ = op(1), (A.14)

sup
x∈X−

∣∣ξgk2(x)−
√
n∆′k0(x)BkHk,n +

√
n∆′10(x)B1H1,n

∣∣ = op(1). (A.15)

(b)Suppose Assumptions A.1 ∗, A.2, A.3 ∗ and A.4 hold. Then, we have for k = 1, ..., l,

sup
x∈X+

∣∣ξck2(x)−
√
nΛ′k0(x)BkHk,n +

√
nΛ′10(x)B1H1,n

∣∣ = op(1), (A.16)

sup
x∈X−

∣∣ξck2(x)−
√
nΛ′k0(x)BkHk,n +

√
nΛ′10(x)B1H1,n

∣∣ = op(1). (A.17)
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Proof of Lemma A. 5. We first prove part (a). Recall that ∆k0(x) = (∂Fk(x, βk0)/∂β)sgn(x) and

ξgk2(x) = n−1/2
∑T
t=R

[
Fk

(
x, β̂k,t

)
− Fk(x, βk0)− F1

(
x, β̂1,t

)
+ F1(x, β10)

]
sgn(x),WLOG, we consider

the case x ≥ 0 and prove

sup
x∈X+

∣∣∣∣∣n−1/2
∑
t

(
Fk

(
x, β̂k,t

)
− Fk(x, βk0)

)
−
√
n

(
∂Fk(x, βk0)

∂β′k

)
BkHk,n

∣∣∣∣∣ = op(1). (A.18)

By Assumption A.3 (i) and the mean value theorem,

n−1/2
∑
t

{
Fk

(
x, β̂k,t

)
− Fk(x, βk0)

}
= n−1/2

∑
t

(
∂Fk(x, β∗k,t(x))

∂β′k

)(
β̂k,t − βk0

)
,

where β∗k,t(x) lies between β̂k,t and βk0. By Lemma A.1 (b), for all α ∈ [0, 1/2) and all ε > 0, there exists

δ, such that P (sup
t

sup
x∈X+

nα||β∗k,t(x)− βk0|| ≤ ε) < δ/2 for suffi ciently large n. Let

A1n = sup
x∈X+

sup
{βk}∈Nk(n−αε)

∥∥∥∥∂Fk(x, βk)

∂βk
− ∂Fk(x, βk0)

∂βk

∥∥∥∥ .
Then A1n = O(n−ηα) by Assumption A.3(ii).

A2n ≡ sup
x∈X+

∥∥∥∥∥n−1
∑
t

∂Fk(x, β∗k,t(x))

∂βk
− ∂Fk(x, βk0)

∂βk

∥∥∥∥∥
≤ sup

x∈X+

sup
t

∥∥∥∥∂Fk(x, β∗k,t(x))

∂βk
− ∂Fk(x, βk0)

∂βk

∥∥∥∥ = Op(n
−ηα).

where the last equality holds because P (A2n ≤ A1n) → 1 as n → ∞ by construction. Now we have the

desired result

sup
x∈X+

∣∣∣∣∣n−1/2
∑
t

(
Fk(x, β̂k,t)− Fk(x, βk0)

)
− n1/2

(
∂Fk(x, βk0)

∂β′

)
BkHk,n

∣∣∣∣∣
= sup

x∈X+

∣∣∣∣∣n−1/2
∑
t

(
∂Fk(x, β∗k,t(x))

∂β′k

)(
β̂k,t − βk0

)
− n1/2

(
∂Fk(x, βk0)

∂β′

)
BkHk,n

∣∣∣∣∣
≤ sup

x∈X+

∣∣∣∣∣n−1/2
∑
t

(
∂Fk(x, β∗k,t(x))

∂β′k
− ∂Fk(x, βk0)

∂β′

)(
β̂k,t − βk0

)∣∣∣∣∣
+
√
n sup
x∈X+

∣∣∣∣∣
(
∂Fk(x, βk0)

∂β′

)
n−1

∑
t

(
β̂k,t − βk0

)
−
(
∂Fk(x, βk0)

∂β′

)
BkHk,n

∣∣∣∣∣
≤ A2nsup

t

∥∥∥√n(β̂k,t − βk0

)∥∥∥+ sup
x∈X+

∥∥∥∥∂Fk(x, βk0)

∂β′

∥∥∥∥
∥∥∥∥∥n−1/2

∑
t

(
β̂k,t − βk0

)
−Bk

√
nHk,n

∥∥∥∥∥
= op(1) + op(1) = op(1)

where the first op(1) follows from the fact that A2n sup
t=R,...,T

∥∥∥√n(β̂k,t − βk0

)∥∥∥ = Op(n
−α(1+η)+1/2) =

op(1) for all α ∈ (1/2(1 + η), 1/2) by Lemma A.1(b), and the second op(1) holds by Assumption A.3(iii),
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Lemma A.1(c) and the following argument∥∥∥∥∥n−1/2
T∑
t=R

(
β̂k,t − βk0

)
−Bk

√
nHk,n

∥∥∥∥∥ =

∥∥∥∥∥n−1/2
T∑
t=R

Bk(t)Hk(t)−Bkn−1/2
T∑
t=R

Hk(t)

∥∥∥∥∥
=

∥∥∥∥∥n−1/2
T∑
t=R

(Bk(t)−Bk)Hk(t)

∥∥∥∥∥
≤ sup

t
‖Bk(t)−Bk‖ sup

t
n1/2 ‖Hk(t)‖

= op(1)Op(1) = op(1).

The proof of part (b) is similar and thus omitted.

Lemma A.6. (a) Suppose Assumptions A.1-A.4 hold. Then, we have for k = 2, ..., l,


vgk,n(., βk,0)− vg1,n(., β1,0)

√
nHk,n
√
nH1,n

 ⇒


g̃k(.)

vk0

v10


and except at zero, the sample paths of g̃k(.) are uniformly continuous with respect to a pseudometric

ρg on X with probability one, where for x1, x2 ∈ X+ or x1, x2 ∈ X−,

ρg(x1, x2) =
{
E[(1(e1,t ≤ x1)− 1(ek,t ≤ x1))− (1(e1,t ≤ x2)− 1(ek,t ≤ x2))]2

}1/2
.

(b)Suppose Assumptions A.1 ∗, A.2, A.3 ∗ and A.4 hold. Then, we have for k = 2, ..., l,
vck,n(., βk0)− vc1,n(., β10)

√
nHk,n
√
nH1,n

 ⇒


c̃k(.)

vk0

v10


and except at zero, the sample paths of c̃k(.) are uniformly continuous with respect to a pseudometric ρc

on X with probability one, where for x1, x2 ∈ X+ or x1, x2 ∈ X−,

ρc(x1, x2) =

{
E

∣∣∣∣∫ x1

−∞
(1(e1,t ≤ s)− 1(ek,t ≤ s))ds−

∫ x2

−∞
(1(e1,t ≤ s)− 1(ek,t ≤ s))ds

∣∣∣∣r}1/r

1(x1 < 0, x2 < 0)

+

{
E

∣∣∣∣∫ ∞
x1

(1(e1,t > s)−−1(ek,t > s)))ds−
∫ ∞
x2

(1(e1,t > s)− 1(ek,t > s)))ds

∣∣∣∣r}1/r

1(x1 ≥ 0, x2 ≥ 0).

Proof of Lemma A.6. We first prove (a). By Theorem 10.2 of Pollard (1990), the results hold

if we have (i) total boundedness of the pseudometric space
(
X , ρg

)
, (ii) stochastic equicontinuity of{

vgk,n(·, βk0)− vg1,n(·, β10) : n ≥ 1
}
and (iii) finite dimensional (fidi) convergence. The first two conditions

follow from Lemma A.2. We now verify condition (iii), i.e., we need to show that (vgk,n(x1, βk0)

−vg1,n(x1, β10), ..., vgk,n(xJ , β10)− vg1,n(xJ , βk0),
√
nH
′
k,n,
√
nH
′
1,n)′ converges in distribution to (g̃k(x1),

..., g̃k(xJ), v′k0, v
′
10)′ ∀x1, ..., xJ ∈ X+ or x1, ..., xJ ∈ X−, and ∀J ≥ 1. The central limit theorem (CLT)

holds for
√
nHk,n by Lemma 4.1 in West (1996). A CLT for bounded random variables under α−mixing
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conditions (see Hall and Heyde, 1980) hold for vgk,n(xj , βk0)− vg1,n(xj , β10), j = 1, ..., J. Then one obtains

the above weak convergence result by the Cramer-Wold device. This establishes part (a).

For part (b), we need to verify the fidi convergence again. Note that the moment condition of Hall

and Heyde (1980, Corollary 5.1) holds since (WLOG), for x > 0,

E

∣∣∣∣∫ ∞
x

(1(e1,t > s)ds− 1(ek,t > s))ds

∣∣∣∣2+δ

≤ E |e1,t − ek,t|2+δ
<∞.

The mixing condition also holds since we have
∑
α(j)δ/(2+δ) ≤ C

∑
j−Mδ/(2+δ) < ∞ by Assumption

A.1∗.

Proof of Theorem 3.1

WLOG, we consider the case x ≥ 0. To prove part (a), note that

TGn = max
k=2,..,l

sup
x∈X+

√
nDg

k,n(x) = max
k=2,..,l

sup
x∈X+

{ξgk1(x) + ξgk2(x) + ξgk3(x)} .

Recall that TG+ = 0 implies that the set Bg+k is not empty and under the null, ξgk3(x) = n1/2 (Fk(x)−
F1(x))sgn(x)→ −∞ for all x /∈ Bg+k . Consequently,

TG+
k,n ≡ sup

x∈X+

√
nDg

k,n(x)

⇒ sup
x∈Bg+k

[g̃k(x) + ∆k0(x)′Bkvk0 −∆10(x)′B1v10]

by Lemmas A.4(a) through A.6(a). The result follows from the Continuous Mapping Theorem (CMT).

Suppose TG+ < 0. In this case, the set Bg+k is empty and hence n−1/2ξgk3(x) < 0 ∀x ∈ X+, for some

k ∈ {2, ..., l}. Then for such k, Dg
k,n(x) will be dominated by the term ξgk3(x) which diverges to minus

infinity for any x ∈ X+ as required.

To prove part (b), note that

TC+
n = max

k=2,..,l
sup
x∈X+

Dc
k,n(x) = min

k=2,..,l
sup
x∈X+

{ξck1(x) + ξck2(x) + ξck3(x)} .

If TC+ = 0, the set Bc+k is not empty and under the null, ξck3(x)→ −∞ for all x /∈ Bc+k . Consequently,

TC+
k,n ≡ sup

x∈X+

Dc
k,n(x)

⇒ sup
x∈Bc+k

[g̃k(x) + Λk0(x)′Bkvk0 − Λ10(x)′B1v10]

by Lemmas A.4(b) through A.6(b). Then the result follows from the CMT.

Next suppose TC+ < 0. In this case, the set Bc+k is empty and hence n−1/2ξck3(x) < 0 ∀x ∈ X+, for

some k ∈ {2, ..., l}. Then for such k, Dc
k,n(x) will be dominated by the term ξck3(x) which diverges to

minus infinity for any x ∈ X+ as required. The conclusion thus follows.
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Proof of Theorem 3.2

Adding and subtracting appropriately gives

√
n(G∗k,n(x)−Gk,n(x)) = n−1/2

∑
t

[
fgk,θ(t)+τ (x, β̂k,θ(t))− f

g
k,t+τ (x, β̂kt)

]
= n−1/2

∑
t

[
fgk,θ(t)+τ (x, βk0)− fgk,t+τ (x, βk0)

]
−n−1/2

∑
t

[
fgk,t+τ (x, β̂kt)− f

g
k,t+τ (x, βk0)

]
+n−1/2

∑
t

[
fgk,θ(t)+τ (x, β̂k,θ(t))− f

g
k,θ(t)+τ (x, βk0)

]
≡ ς1,n(x)− ς2,n(x) + ς3,n(x)

Under Assumptions A.1-A.4 and A.6, Theorem 3.1 of Politis and Romano (1994b) applies to get

ρ(L[ς1n(.)|U1, ..., UT+τ ],L[Gkn(.)−Gk(.)])
p→ 0. And

ς2,n(x) = n−1/2
∑
t

[
Efgk,t+τ (x, βk)|βk=β̂kt

− Efgk,t+τ (x, βk0)
]

+n−1/2
∑
t

[
fgk,t+τ (x, β̂kt)− Ef

g
k,t+τ (x, βk)|βk=β̂kt

− fgk,t+τ (x, βk0) + Efgk,t+τ (x, βk0)
]

= op(1) + op(1) = op(1) uniformly in x ∈ X+ or x ∈ X−,

where the second equality follows from Lemmas A.4(a) and A.5(a). The result follows if P [supx∈X+ ς3,n(x) =

oQ(1)] → 1 as n increases, where Q is the probability distribution induced by the stationary boot-

strap conditional on the data (U1, ..., UT+τ ) . Note that ς3,n(x) = ςk3,n(x) − ς13,n(x), where ςk3,n(x) =

n−1/2
∑
t

[
1
(
ek,θ(t)+τ

(
β̂k,θ(t)

)
≤ x

)
− 1(ek,t+τ ≤ x)

]
, and supx∈X+ |ς3,n(x)| ≤ supx

∣∣ςk3,n(x)
∣∣+supx

∣∣ς13,n(x)
∣∣ .

By the Markov inequality it suffi ces to show EQ| supx ς
k
3n(x)| = op(1), where EQ is the expectation in-

duced by the probability measure Q. Note that

EQ

∣∣∣∣ sup
x∈X+

ςk3,n(x)

∣∣∣∣
=

∣∣∣∣∣ sup
x∈X+

n−1/2
∑
t

{
1
(
ek,t+τ

(
β̂k,t

)
≤ x

)
− 1(ek,t+τ ≤ x)

}∣∣∣∣∣
≤ n−1/2

∑
t

∣∣∣∣ sup
x∈X+

{
1
(
ek,t+τ

(
β̂k,t

)
≤ x

)
− 1(ek,t+τ ≤ x)

}∣∣∣∣
≤ n−1/2

∑
t

sup
x∈X+

1
(
|ek,t+τ − x| ≤

∣∣∣mk

(
Zk,t+τ , β̂kt

)
−mk(Zk,t+τ , βk0)

∣∣∣)
≡ ςn

It suffi ces to show E [ςn ] = o(1) by the Markov inequality and the nonnegativity of ςn. De-

note the jth elements of β̂k,t and βk0 as β̂
(j)

k,t and β
(j)
k0 respectively. By Assumption A.6, for all j,
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supt

∣∣∣∣β̂(j)

k,t − β
(j)
k0 )

∣∣∣∣ ≤ R−1/2σj(log logRσj)
1/2 a.s., where σj is the jth diagonal element of Σk. The as-

sumption (n/R)(log logR) = o(1) trivially ensures maxjsupt

∣∣∣∣n1/2

(
β̂

(j)

k,t − β
(j)
k0

)∣∣∣∣ = oa.s.(1). Fix ε0, δ > 0.

Then for all ε > 0, there exists T0 such that for all T > T0, P

[
maxjsupt

∣∣∣∣n1/2

(
β̂

(j)

k,t − β
(j)
k0

)∣∣∣∣ > ε

]
< δ/2.

It is useful to note that for all T > T0 and all ε0 > 0,

P [ςn ≥ ε0]

≤ P

[
sup

{βk,t}∈Nk(n−1/2ε)

n−1/2
∑
t

sup
x∈X+

1
(
|ek,t+τ − x| ≤ |mk(Zk,t+τ , βk,t)−mk(Zk,t+τ , βk0)|

)
≥ ε0

]

+P

[
maxjsupt

∣∣∣∣n1/2

(
β̂

(j)

k,t − β
(j)
k0

)∣∣∣∣ > ε

]
≤ ψn +

δ

2
.

where {βk,t} ≡ {βk,t}Tt=R is a nonrandom sequence and

ψn = P

[
sup

{βk,t}∈Nk(n−1/2ε)

n−1/2
∑
t

sup
x∈X+

1
(
|ek,t+τ − x| ≤ |mk(Zk,t+τ , βk,t)−mk(Zk,t+τ , βk0)|

)
≥ ε0

]
.

The remainder of this proof is to show that there exists T1 > T0 such that for all T > T1, ψn < δ/2.

Applying the Markov inequality, we have

ε0ψn

≤ E

[
sup

{βk,t}∈Nk(n−1/2ε)

n−1/2
∑
t

sup
x∈X+

1
(
|ek,t+τ − x| ≤ |mk(Zk,t+τ , βk,t)−mk(Zk,t+τ , βk0)|

)]

≤ E

[
n−1/2

∑
t

sup
{βkt}∈Nk(n−1/2ε)

sup
x∈X+

1
(
|ek,t+τ − x| ≤ |mk(Zk,t+τ , βk,t)−mk(Zk,t+τ , βk0)|

)]
≤ C̃ sup

{βkt}∈Nk(n−1/2ε)

sup
x∈X+

E
∣∣∣n1/2

(
mk(Zk,t+τ , βk,t)−mk(Zk,t+τ , βk0)

)∣∣∣
≤ C̃ sup

βk∈Θk0

||Mk(Zk,t, βk)||2ε

= Cε, say.

where the last inequality holds by Assumption A.1 (ii). Thus we can choose T1 and ε such that for all

T > T1, ε < (δε0/2C), the result follows.

Proof of Corollary 3.3

This follows immediately from Theorem 3.2 and the CMT.

Proof of Theorem 4.1

WLOG, we consider the case x ≥ 0. Recall that

TG+
n = max

k=2,..,l
sup
x∈X+

√
nDg

k,n(x) = max
k=2,..,l

sup
x∈X+

{ξgk1(x) + ξgk2(x) + ξgk3(x)} .

38



If TG+ > 0, Lemmas A.4(a)-A.6(a) continue to hold so that ξgk1(x) = Op(1) uniformly in x ∈ X+, and

ξgk2(x) = op(1) uniformly in x ∈ X+. For each k ∈ {2, ..., l}, ξgk3(x) = n1/2 (Fk(x) − F1(x))sgn(x) → ∞
for some x ∈ X+. Consequently, TG+

n
p→∞ as T →∞ and n−1/2TG+

n
p→ TG+ > 0.

Now, from Corollary 3.3,

ρ(L[ max
k=2,..,l

sup
x∈X+

√
n(G∗k,n(x)−Gk,n(x))|U1, ..., UT+τ ],L[ max

k=2,..,l
sup
x∈X+

√
n (Gk,n(x)−Gk(x))])

p→ 0,

which implies qG+
n,Sn

(1− α) = q̃G+
n,Sn

(1− α) + op(1), where q̃G+
n,Sn

(1− α) is the (1− α) -th sample quantile

of T̃G
+
≡ max

k=2,..,l
sup
x∈X+

√
n (Gk,n(x)−Gk(x)) .

T̃G
+

= max
k=2,..,l

max{ sup
x∈Bqk+

√
nGk,n(x), sup

x∈X+\Bq+k

√
n(Gk,n(x)−Gk(x))}

≤ max
k=2,..,l

sup
x∈Bq+k

√
nGk,n(x) + max

k=2,..,l
sup

x∈X+\Bg+k

√
n(Gk,n(x)−Gk(x))}

≡ T̃G
+

1,n + T̃G
+

2,n

T̃G
+

1,n = Op(1) and it has the limiting distribution (3.3) by the proof of Theorem 3.1 (a) and T̃G
+

2,n =

op(1) by the proof of Theorem 3.2. Consequently, q̃G+
n,Sn

(1− α)
p→ qG+(1− α) and

P
(
TG+

n > qG+
n,Sn

(1− α)
)

= P
(
TG+

n > qG+(1− α) + op(1)
)

= P
(
n−1/2TG+

n > n−1/2qG+(1− α)
)

+ op(1)

= P
(
TG+ > n−1/2qG+(1− α)

)
+ op(1)

→ 1.

Proof of Theorem 4.2.

The proof is similar to that of Theorem 3.1. Consider Lemmas A.1-A.6 with vgk,n(x, βk) now defined

by

vgk,n(x, βk) = n−1/2
∑
t

[1 (ek,t+τ (βk) ≤ x)− Fk,n(x, βk)] sgn(x) for k = 1, ..., l.

Then by contiguity, the result of Lemmas A.4(a) holds under the local alternatives. Lemma A.5(a) now
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changes to supx∈X+ |ξgk2(x)−
√
n∆′k0(x)BkHk,n +

√
n∆′10(x)B1H1,n| = op(1), because WLOG

sup
x∈X+

∣∣∣∣∣n−1/2
∑
t

[
Fk,n(x, β̂kt)− Fk(x, βk0)−

√
n∆′k0(x)BkHk,n

]∣∣∣∣∣
= sup

x∈X+

∣∣∣∣∣n−1/2
∑
t

(
∂Fk,n(x, β∗k,t(x))

∂β′k

)(
β̂k,t − βk0

)
− n1/2∆k0(x)′BkHk,n

∣∣∣∣∣
≤ sup

x∈X+

∣∣∣∣∣n−1/2
∑
t

(
∂Fk,n(x, β∗k,t(x))

∂β′k
− ∂Fk(x, βk0)

∂β′

)(
β̂k,t − βk0

)∣∣∣∣∣
+ sup
x∈X+

∣∣∣∣∣∆k0(x)′

(
n−1/2

∑
t

(
β̂k,t − βk0

)
−Bk

√
nHk,n

)∣∣∣∣∣
= op(1) + op(1) = op(1).

Therefore, it suffi ces to show that Lemma A.6 (a) holds under the local alternatives. This follows by a

modification of the proof of Lemma A.6(a) and using the CLT of Herrndorf (1984) for α−mixing arrays
to verify the fidi convergence condition of Theorem 10.2 of Pollard (1990).

Proof of Corollary 4.3

By contiguity, qG+
n,Sn

(1 − α)
p→ qG+(1 − α) under the local alternatives. The result now follows

immediately from Theorem 4.2.

Proof of Theorem 5.4

To prove Theorem 5.4, we need the following two lemmas.

Lemma HA.1 (a) Suppose Assumption HA.1 holds. Then, for each ε > 0, there exists δ > 0 such

that for all x,
.
x ∈ X+ or x,

.
x ∈ X−,

lim
T→∞

∥∥∥∥∥ sup
ρ∗hg(x,

.
x))<δ

|νhgk,n(x)− νhgk,n(
.
x)|
∥∥∥∥∥
q

< ε, (A.19)

where

ρ∗hg(x,
.
x) = {E[1(ek,t+τ ≤ x)− 1(ek,t+τ ≤

.
x)]2}1/2. (A.20)

(b) Suppose Assumption HA.1 ∗ holds. Then, for each ε > 0, there exists δ > 0 such that for all x,
.
x ∈ X+ or x,

.
x ∈ X−,

lim
T→∞

∥∥∥∥∥ sup
ρ∗hc(x,

.
x)<δ

|νhck,n(x)− νhck,n(
.
x)|
∥∥∥∥∥
q

< ε, (A.21)

where

ρ∗hc(x,
.
x) =

{
E

∣∣∣∣∣
∫ x

−∞
1(ek,t+τ ≤ s)ds−

∫ .
x

−∞
1(ek,t+τ ≤ s)ds

∣∣∣∣∣
r}1/r

1(x < 0,
.
x < 0)

+

{
E

∣∣∣∣∫ ∞
x

1(ek,t+τ > s)ds−
∫ ∞
.
x

1(ek,t+τ > s)ds

∣∣∣∣r}1/r

1(x ≥ 0,
.
x ≥ 0). (A.22)
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Proof of Lemma HA.1 Assumptions HA.4 and HA.1 (i) (resp. HA.1*(i)) imply that {ek,t+τ :

t ≥ R} is an α−mixing sequence with mixing coeffi cients α(l) = O(l−C0), where C0 is as defined in HA.1

(resp. HA.1*). Note that Theorem 2.2 in Andrews and Pollard (1994) and Theorem 3 in Hansen (1996)

do not require any stationarity assumption, the proof is analogous to that of Lemma A.2. For example,

for part (b), Eq. (12) of Hansen (1996) is satisfied with our mixing coeffi cient C0 = 1/q − 1/r, Eq. (12)

is true by Assumption HA.1 (ii) and Equation (13) is satisfied with the dominating function b =1. Then

theorem 3 in Hansen (1996) follows by taking a = 1 and λ = 1.

Lemma HA.2. (a) Suppose Assumptions HA.1* and HA.4 hold. Then, we have for k = 2, ..., l,

vhgk,n(.)− vhg1,n(.)⇒ h̃gk(.)

and except at zero, the sample paths of h̃gk(.) are uniformly continuous with respect to a pseudometric

ρhg on X with probability one, where for x1, x2 ∈ X+ or x1, x2 ∈ X−,

ρhg(x1, x2) =
{
E[(1(e1,t+τ ≤ x1)− 1(ek,t+τ ≤ x1))− (1(e1,t+τ ≤ x2)− 1(ek,t+τ ≤ x2))]2

}1/2
.

(b)Suppose Assumptions A.1 ∗, A.2, A.3 ∗ and A.4 hold. Then, we have for k = 2, ..., l,

vhck,n(.)− vhc1,n(.) ⇒ h̃ck(.)

and except at zero, the sample paths of h̃ck(.) are uniformly continuous with respect to a pseudometric

ρhc on X with probability one, where for x1, x2 ∈ X+ or x1, x2 ∈ X−,

ρhc(x1, x2)

=

{
E

∣∣∣∣∫ x1

−∞
(1(e1,t+τ ≤ s)− 1(ek,t+τ ≤ s))ds−

∫ x2

−∞
(1(e1,t+τ ≤ s)− 1(ek,t+τ ≤ s))ds

∣∣∣∣r}1/r

1(x1 < 0, x2 < 0)

+

{
E

∣∣∣∣∫ ∞
x1

(1(e1,t+τ > s)− 1(ek,t+τ > s)))ds−
∫ ∞
x2

(1(e1,t+τ > s)− 1(ek,t+τ > s)))ds

∣∣∣∣r}1/r

1(x1 ≥ 0, x2 ≥ 0).

Proof of Lemma HA.2. The proof is analogous to that of Lemma A.6. The total boundedness of the

pseudometric space (X , ρi) , i = hg and hc, and the stochastic equicontinuity of
{
vik,n(·)− vi1,n(·) : n ≥ 1

}
, i =

hg and hc follow from Lemma HA.1. The finite dimensional convergence follows from Hall and Heyde

(1980). Then the result follows from Theorem 10.2 of Pollard (1990).

Proof of Theorem 5.4

The theorem follows from Lemmas HA.1 and HA.2 and the CMT.
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Table 1: Monte Carlo Results: GL and CL Forecast Superiority (DGP1 - DGP6)*

Sn DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP1 DGP2 DGP3 DGP4 DGP5 DGP6
GL forecast superiority CL forecast superiority

n=100 n=100
0.63 0.105 0.836 0.862 0.092 0.855 0.670 0.089 0.761 0.908 0.109 0.956 0.785
0.54 0.097 0.830 0.856 0.101 0.854 0.645 0.111 0.777 0.926 0.096 0.960 0.805
0.44 0.112 0.850 0.871 0.091 0.860 0.642 0.103 0.770 0.938 0.109 0.957 0.817
0.35 0.099 0.824 0.874 0.116 0.855 0.680 0.106 0.780 0.932 0.117 0.945 0.818
0.25 0.113 0.841 0.882 0.128 0.839 0.691 0.103 0.796 0.940 0.107 0.959 0.813
0.16 0.121 0.859 0.887 0.130 0.886 0.703 0.120 0.809 0.936 0.114 0.970 0.819

n=500 n=500
0.537 0.114 1.000 1.000 0.093 1.000 0.996 0.101 1.000 1.000 0.113 1.000 1.000
0.446 0.097 1.000 1.000 0.090 1.000 0.998 0.105 1.000 1.000 0.092 1.000 1.000
0.356 0.093 1.000 1.000 0.108 1.000 1.000 0.104 1.000 1.000 0.108 1.000 1.000
0.265 0.092 1.000 1.000 0.101 1.000 1.000 0.089 1.000 1.000 0.097 1.000 1.000
0.174 0.106 1.000 1.000 0.094 1.000 0.997 0.097 1.000 1.000 0.095 1.000 1.000
0.083 0.096 1.000 1.000 0.106 1.000 0.996 0.101 1.000 1.000 0.114 1.000 1.000

n=1000 n=1000
0.50 0.097 1.000 1.000 0.097 1.000 1.000 0.109 1.000 1.000 0.101 1.000 1.000
0.41 0.106 1.000 1.000 0.103 1.000 1.000 0.104 1.000 1.000 0.092 1.000 1.000
0.33 0.077 1.000 1.000 0.097 1.000 1.000 0.104 1.000 1.000 0.114 1.000 1.000
0.24 0.094 1.000 1.000 0.089 1.000 1.000 0.112 1.000 1.000 0.107 1.000 1.000
0.15 0.107 1.000 1.000 0.086 1.000 1.000 0.093 1.000 1.000 0.085 1.000 1.000
0.06 0.108 1.000 1.000 0.110 1.000 1.000 0.108 1.000 1.000 0.091 1.000 1.000

*Notes: See Sections 3 and 6 for complete details. Size Experiments: DGP1 and DGP4. Power Experiments:
DGP2, DGP3, DGP5, DGP6. Entries are rejection frequencies based on 1000 Monte Carlo replications. The
number of bootstrap resamples is 300 and Sn is the bootstrap smoothing parameter. Nominal test size is 10%.
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Table 2: Monte Carlo Results: GL Forecast Superiority (DGP7 - DGP14)

Sn DGP7 DGP8 DGP9 DGP10 DGP11 DGP12 DGP13 DGP14
n=250

0.58 0.099 0.085 0.041 0.734 0.851 1.000 0.852 1.000
0.42 0.088 0.086 0.045 0.778 0.835 1.000 0.864 1.000
0.27 0.102 0.089 0.054 0.764 0.837 1.000 0.841 1.000
0.11 0.102 0.088 0.053 0.768 0.855 1.000 0.882 1.000

n=500
0.54 0.102 0.101 0.057 0.971 0.988 1.000 0.993 1.000
0.39 0.113 0.081 0.033 0.971 0.988 1.000 0.991 1.000
0.23 0.111 0.091 0.050 0.975 0.980 1.000 0.989 1.000
0.08 0.102 0.106 0.059 0.973 0.978 1.000 0.993 1.000

n=1000
0.50 0.091 0.095 0.052 1.000 1.000 1.000 1.000 1.000
0.36 0.090 0.091 0.060 1.000 1.000 1.000 1.000 1.000
0.21 0.106 0.091 0.064 1.000 1.000 1.000 1.000 1.000
0.06 0.107 0.084 0.049 1.000 1.000 1.000 1.000 1.000

*Notes: See notes to Table 1. Size Experiments: DGP7 - DGP10. Power
Experiments: DGP11 - DGP14.

Table 3: Monte Carlo Results: CL Forecast Superiority (DGP7 - DGP14)

Sn DGP7 DGP8 DGP9 DGP10 DGP11 DGP12 DGP13 DGP14
n=250

0.58 0.090 0.085 0.031 0.818 0.950 1.000 0.969 1.000
0.42 0.094 0.086 0.035 0.857 0.952 1.000 0.971 1.000
0.27 0.100 0.089 0.027 0.841 0.957 1.000 0.973 1.000
0.11 0.105 0.088 0.039 0.836 0.964 1.000 0.970 1.000

n=500
0.54 0.083 0.087 0.041 0.993 1.000 1.000 1.000 1.000
0.39 0.101 0.093 0.034 0.996 0.998 1.000 1.000 1.000
0.23 0.089 0.079 0.027 0.990 0.999 1.000 1.000 1.000
0.08 0.097 0.105 0.044 0.996 0.998 1.000 0.998 1.000

n=1000
0.50 0.099 0.105 0.025 1.000 1.000 1.000 1.000 1.000
0.36 0.097 0.110 0.034 1.000 1.000 1.000 1.000 1.000
0.21 0.096 0.091 0.030 1.000 1.000 1.000 1.000 1.000
0.06 0.088 0.097 0.041 1.000 1.000 1.000 1.000 1.000

*Notes: See notes to Table 2.
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Table 4: Monte Carlo Results: GL and CL Forecast Superiority (DGP15 - DGP18)

Sn DGP15 DGP16 DGP17 DGP18 DGP15 DGP16 DGP17 DGP18
GL forecast superiority CL forecast superiority

n=250 n=250
7 0.099 0.081 0.928 0.964 0.105 0.099 0.988 0.990
9 0.112 0.102 0.922 0.978 0.095 0.108 0.988 0.993
11 0.110 0.091 0.939 0.969 0.112 0.094 0.987 0.993
14 0.101 0.117 0.944 0.957 0.109 0.112 0.989 0.993
16 0.111 0.106 0.946 0.957 0.098 0.095 0.989 0.994
19 0.122 0.108 0.936 0.966 0.126 0.125 0.994 0.995

n=500 n=500
7 0.123 0.088 0.998 1.000 0.109 0.097 1.000 1.000
11 0.112 0.102 0.998 1.000 0.109 0.101 1.000 1.000
14 0.099 0.096 0.998 1.000 0.090 0.099 1.000 1.000
18 0.110 0.108 0.998 1.000 0.118 0.111 1.000 1.000
21 0.101 0.109 0.997 0.999 0.101 0.121 0.999 1.000
25 0.109 0.100 0.997 0.999 0.117 0.119 0.999 1.000

n=1000 n=1000
8 0.097 0.093 1.000 1.000 0.109 0.092 1.000 1.000
13 0.092 0.109 1.000 1.000 0.095 0.089 1.000 1.000
18 0.096 0.096 1.000 1.000 0.095 0.107 1.000 1.000
23 0.109 0.103 1.000 1.000 0.095 0.094 1.000 1.000
27 0.102 0.090 1.000 1.000 0.105 0.088 1.000 1.000
32 0.094 0.102 1.000 1.000 0.108 0.107 1.000 1.000

*Notes: See notes to Table 1. Size Experiments: DGP15, DGP16. Power Experiments:
DGP17, DGP18.
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Table 5: MSFE and MAFE of Spot and Forward Exchange Rate Forecasting Models*

CAD FRF GEM JPY CHF GBP
MSFE

Forward Model 0.001 0.099 0.009 59.526 0.008 0.001
Spot Model 0.001 0.093 0.009 57.610 0.007 0.001
Ratio 1.054 1.059 1.051 1.033 1.054 0.974
MAFE

Forward Model 0.026 0.249 0.077 6.079 0.070 0.019
Spot Model 0.026 0.241 0.075 5.877 0.068 0.019
Ratio∗ 1.022 1.033 1.024 1.034 1.031 1.005

*Notes: Ratio is the ratio of forward and spot model MSFE (MAFE).
See Section 7 for complete details.
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