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1 Introduction

Consider the problem of a macro policy maker who often has to aggregate a number of

competing forecasts from experts for the purpose of a uniform policy making. A general

solution was provided by Bates and Granger (1969) who have inspired extensive research on

forecast combination, as evidenced by the two comprehensive surveys in Clemen (1989) and

Timmermann (2006), followed by many additional papers since 2006. The solution based on

minimizing the mean square error of the combined forecasts calls for a performance-based

weighted average of individual forecasts with precision of the combined forecast that is readily

shown to be better than any of the constituent elements under reasonable conditions. We

show that a slight reformulation of the Bates-Granger loss function justifies one to take

the average of the individual forecast variances rather than the variance of the average

as the correct measure for aggregate uncertainty. A more fundamental justification for

incorporating disagreement as part of aggregate uncertainty comes from the rich literature

on model averaging pioneered by Leamer (1978).1 With disagreement as a component of

forecast uncertainty, the presumed superiority of the consensus forecast over the typical

forecaster will be lost, and the primary advantage of averaging will be an insurance value

against idiosyncratic errors that may be generated due to heterogeneous learning in periods

of structural instability, breaks and bad judgements, cf. Hendry and Clements (2002). The

objective of the combination approach will then be less ambitious, and will be similar to

that in the machine learning literature where forecasts are combined on line to adapt to a

few superior ones, see Yang (2004) and Sancetta (2010). Our study is aimed at developing a

theoretically sound measure of uncertainty for the consensus forecast based on past forecast

errors and is closely related to Clements (2014) that analyzed the relationship between the
1Draper (1995) and Buckland, et al. (1997) present cogent explications of the result using Bayesian

and Frequentist approaches respectively, see also Sala-i-Martin, et al. (2004). Geweke and Amisano (2011)
advocate the optimal linear pool that does not condition on one of the models being fully correctly specified.
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ex ante uncertainty and the ex post measure.

One motivation to explore the importance of using a theoretically sound uncertainty

measure of the consensus forecast comes from the recent advances in the presentation and

communication strategies by a number of central banks, pioneered by Bank of England’s fan

charts to report forecast uncertainty. For the credibility of forecasts in the long run, it is

essential that the reported confidence bands for forecasts be properly calibrated. In the U.S.,

from November 2007, all Federal Open Market Committee (FOMC) members are required

to provide their judgments as to whether the uncertainty attached to their projections is

greater than, smaller than, or broadly similar to typical levels of forecast uncertainty in the

past. In order to aid each FOMC member to report their personal uncertainty estimates,

Reifschneider and Tulip (2007) have proposed a measure for gauging the average magnitude

of historical uncertainty using information on past forecast errors from a number of private

and government forecasters. These benchmark estimates for a number of target variables

are reported in the minutes of each FOMC meeting and are used by the public to interpret

the responses of the FOMC participants.

Another motivation comes from the recent studies on the impact of uncertainty on re-

al economic activities following the seminal work of Bloom (2009). So far, the empirical

literature has used various proxies for macro uncertainty, such as stock market volatility,

disagreement among forecasters, forecast surprises and newspaper coverage of economic un-

certainty. Jurado, et al. (2015) have pointed out that while all of these measures are directly

observable, none of them individually are adequate as proxies for uncertainty. Lahiri and

Sheng (2010) show that disagreement is a part of ex ante uncertainty and the difference

between them is the perceived volatility of shocks over forecast horizons. Baker, et al.

(2013) use disagreement among professional forecasters in predicting inflation and govern-

ment expenditures as one component to construct indices of uncertainty about policy-related

macroeconomic variables. Given the role of disagreement in constructing ex ante measures of
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uncertainty, a careful examination of its importance in measuring ex post uncertainty cannot

be overemphasized.

In this paper we establish the asymptotic limits for alternative measures of ex post uncer-

tainty under the joint limits with both the time series (T ) and cross section (n) dimensions

approaching infinity simultaneously, and develop two tests to check if the alternative un-

certainty measures are statistically different. A Monte Carlo study confirms that the tests

perform well in our context. We use individual inflation and output growth forecasts from

the Survey of Professional Forecasters (SPF) over 1992-2013 to show that the uncertainty

measure conventionally attached to a consensus forecast using the Bates-Granger approach

and the Reifschneider-Tulip benchmark measure underestimate the true uncertainty, often

substantially. Our tests also confirm these results at the 5% level for most of forecast hori-

zons.

The plan of the paper is as follows. Section 2 studies the relationship between disagree-

ment and overall forecast uncertainty. Section 3 examines various measures of historical

uncertainty, derives their respective asymptotic limits and proposes some simple statistical

tests for the equivalence of these measures. In Section 4, we illustrate the underestimation

of uncertainty by calculating the benchmark uncertainty using SPF data on real GDP and

inflation forecasts. Finally, Section 5 summarizes the results and presents some concluding

remarks. Technical proofs are relegated to an appendix.

A word on notation. ‖·‖ denotes the Euclidean norm. −→p denotes convergence in

probability. =⇒ denotes convergence in distribution. The limits taken under (n, T →∞)seq

refer to sequential limits where T goes to infinity first and then n goes to infinity. The limits

taken under (n, T →∞) are regarded as the joint limits with both T and n approaching

infinity at the same time.
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2 Uncertainty and Disagreement

2.1 Model and Assumptions

Let Yt be the random variable of interest, Fit be the forecast of Yt made by individual i at

time t− h. Then individual i’s forecast error, eit, can be defined as

eit = At − Fit, (1)

where At is the actual realization of Yt. Following a long tradition, e.g., Palm and Zellner

(1992) and Davies and Lahiri (1995), we write eit as the sum of an individual bias, µit, a

common component, λt and idiosyncratic errors, εit:

eit = µit + λt + εit, (2)

where µit is nonrandom and time-varying, λt(=
∑h−1
k=0 θkζtk, with θ0 = 1,∑h−1

k=0 θ
2
k < ∞)

represents the cumulative weighted effect of all independent shocks ζtk that occurred from

h-period ahead to the end of target year t. Thus even if forecasters make “perfect” forecasts,

the forecast error may still be nonzero due to shocks which are, by nature, unpredictable.

Forecasters, however, do not make “perfect” forecasts even in the absence of unanticipated

shocks. This “lack of perfection” is due to other factors (e.g., differences in information

acquisition and processing, loss functions, interpretation, judgment, and forecasting models)

specific to a given individual at a given point in time and is represented by the idiosyncratic

error, εit.

In order to establish the relationship between different measures of uncertainty and derive

their asymptotic limits, we make the following simplifying assumptions:

Assumption 1 (Bias)
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µit is nonstochastic for all i and all t with sup 1
T

i

T∑
t=1

µ4
it = O(T−1n−α) for some α > 1.

Assumption 2 (Common Shocks)

λt is a stationary ergodic moving average process of order at most h − 1 with Eλt = 0,

Eλ2
t = σ2

λ, E |λt|
4+δ <∞ for some δ > 0, and var

(
1√
T

T∑
t=1

λ2
t

)
→ Σλ > 0 as T →∞.

Assumption 3 (Idiosyncratic Shocks)

εit is independently identically distributed over t, and independently potentially non-

identically distributed across i with Eεit = 0, Eε2
it = σ2

εi with 0 < inf
i
σ2
εi ≤ sup

i
σ2
εi < ∞,

Eε3
it = 0, var(ε2

it) = ωεi, 0 < inf
i
ωεi ≤ sup

i
ωεi <∞, and Eε8

it <∞.

Assumption 4 (Relations)

λt is independent of εis for all i, t and s.

Remark 1. Assumption 1 allows for time-varying nonrandom bias, which is more general

than the time-invariant assumption made in the literature and hence potentially has a wider

range of applications. The condition sup 1
T

i

T∑
t=1

µ4
it = O(T−1n−α) for some α > 1 helps to

ensure that individual bias is negligible in the asymptotic limits involving various ex post

measures of forecast uncertainty. The eventually vanishing bias condition is in line with

the spillover effect that the bias gets smaller as more forecasters learn from each other, and

consistent with the empirical evidence that forecasters’ biases diminish over time as they gain

experience, cf. Lahiri and Sheng (2008).2 By contrast, Issler and Lima (2009), in attempt

to reduce the size of the forecast bias, assume a stochastic (across forecasters) time-invariant

bias for each forecaster. Assumption 2 is almost identical to the Assumption 3 in Issler

and Lima (2009) except for the higher moment condition, which, together with the higher

moment assumption of εit, is required to establish the limit theorems. The common shock

λt, which is the result of a cumulation of shocks to At that occurred between t− h+ 1 and t,

follows a moving average process. This expression is due in part to the wold decomposition

of the forecast series and in part to the fact that the series can be written as the sum of
2Note that the bias condition allows for heterogenous rates of individual biases approaching zero.
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conditional mean forecast and an unforecastable component as explained in Issler and Lima

(2009). Assumption 3 is standard in errors component or factor analysis. It can also be

readily extended to allow for some weak time dependence at the expense of some technical

complication. The independence of λt and εis in Assumption 4 is also common in errors

component or factor studies. It helps the identification of the variance of the aggregate shock

from that of the idiosyncratic errors.

Taken together, the assumptions 1-4 imply that the individual forecast error is not only

an asymptotic stationary and ergodic process for any given horizon, but also has a factor

structure interpretation. Given a panel of forecasts, we can decompose the average squared

individual forecast errors as

1
n

n∑
i=1

e2
it = (At − F·t)2 + 1

n

n∑
i=1

(Fit − F·t)2, (3)

where F·t = 1
n

∑n
j=1 Fjt. Now taking time average on both sides of (3) we get a measure of

historical forecast uncertainty based on past errors

1
nT

T∑
t=1

n∑
i=1

e2
it = 1

T

T∑
t=1

(At − F·t)2 + 1
nT

T∑
t=1

n∑
i=1

(Fit − F·t)2. (4)

This is our suggested measure of historical uncertainty of the average forecast, and is readily

seen to be the average of the individual variances observed over the sample period. Equation

(4) states that the measure can be decomposed into two components: uncertainty that is

common to all forecasters and uncertainty that arises from heterogeneity of individual fore-

casters. The first component is the empirical variance of the average that is conventionally

taken as the uncertainty of the consensus forecast. It is important to note that the superior

performance of the consensus forecast relative to individual forecasts follows directly from

Jensen’s inequality, which states that with convex loss functions, the loss associated with the
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mean forecast is generally less than the mean loss of individual forecasts, see McNees (1992)

and Manski (2011). Thus, the consensus forecast is not more accurate than every individual

forecast in the pool; rather it outperforms an individual forecast drawn randomly from the

available forecasts.3 The second component is the disagreement among forecasters. Geweke

and Amisano (2014) presented a parallel decomposition of predictive variance from Bayesian

model averaging in terms of intrinsic and extrinsic variances. A similar decomposition of

forecast uncertainty was also obtained by Lahiri, et al. (1988) and Wallis (2005) in cases

where probability distribution of forecasts are available. While analyzing individual density

forecasts reported in SPF, Zarnowitz and Lambros (1987) used the average of individual

variances as the uncertainty of the average forecast.

By virtue of the assumptions 1-4, the population analog of equation (4) can be obtained

as
1
n

n∑
i=1

T∑
t=1

E(e2
it) = σ2

λ + 1
n

n∑
i=1

σ2
εi + 1

nT

n∑
i=1

T∑
t=1

µ2
it. (5)

It is now obvious from equation (5) that the uncertainty of the average arises from the

variance of the aggregate shock common to all forecasters and from the heterogeneity of

individual forecasters that contains both the average idiosyncratic variance and the average

of the variance of individual biases. Recognizing that each point forecast is invariably an

outcome from an underlying forecast distribution, the combined forecast should be treated

conceptually as the mean of a finite mixture distribution of unobserved densities, which

suggests that the variance of the combined forecast will be the average of the individual

variances plus an disagreement term due to systematic biases in the individual forecasts, cf.

Draper (1995) andWallis (2005). What is not readily recognized in the literature is that apart

from the disagreement coming from time-varying systematic biases (i.e., 1
nT

∑n
i=1

∑T
t=1 µ

2
it),

the average of the individual variances also contains a disagreement component coming from
3Roughly one-third of individual forecasts have been found to be more accurate than a consensus, but

the mix of the superior forecasters change depending on the occasion, see McNees (1992).
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1
n

∑n
i=1 σ

2
εi. In the context of the empirical examples on real GDP and inflation forecasts that

we report in Section 4, a model uncertainty audit reveals that the variance explained by the

systematic bias component is small compared to the other two components in equation (5).

A similar result on the insignificance of the bias term is also reported by Reifschneider and

Tulip (2007). That is why we make the diminishing bias assumption (for all i and h) in our

context.

2.2 The Policy Maker’s Loss Function

The above empirical measure of forecast uncertainty that carries the additional disagreement

term can easily be justified by examining the objective function of the policy maker. As the

former chair of Federal Reserve, Alan Greenspan pointed out that the monetary policy

should be conducted in such a way that the associated risk or uncertainty is minimized with

respect to all available forecasts.4 When squared losses are used in forming expectations, the

forecast by the ith forecaster is given by Fit = E(Yt|Ii,t−h), where Ii,t−h is the information

set containing both the information available to a particular forecaster i at time t − h,

and the characteristics of that forecaster, and its associated individual risk is defined as

E
{

[Yt − E(Yt|Ii,t−h)]2 |Ii,t−h
}
. Individual risk of similar form has recently been employed by

Jurado, et al. (2015) to construct a measure of macroeconomic uncertainty.5 Thus, given

individual risks, the problem for the policy maker can then be formulated as

min
ωi(t−h)

n∑
i=1

ωi,t−hE
{

[Yt − E(Yt|Ii,t−h)]2 |Ii,t−h
}
, (6)

4See Alan Greenspan’s original remark at a symposium sponsored by the Federal Reserve Bank of Kansas
City on August 29, 2003.

5Jurado, et al. (2015) define individual uncertainty as the squared root of E{[Xjt −E(Xjt|It−h)]2|It−h},
where Xjt is the jth variable and It−h is the common information available to all economic agents, and
construct a measure of macroeconomic uncertainty as a weighted average of individual uncertainties.
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where ωi,t−h (subject to the constraints 0 ≤ ωi,t−h ≤ 1,
n∑
i=1

ωi,t−h = 1) is the weight assigned

to the individual risk E
{

[Yt − E(Yt|Ii,t−h)]2 |Ii,t−h
}
at time t− h.

Minimizing the weighted risk is equivalent to selecting the best individual forecaster in

terms of the smallest mean squared error. However, the policy maker has neither perfect

knowledge about how much information the ith forecaster possesses nor the exact characteris-

tics of this particular forecaster inherits. The empirical risk of the ith forecaster is simply too

volatile to be the sole indicator of forecast uncertainty faced by the policy maker. Further-

more, picking a particular forecaster ignores the uncertainty in forecaster selection process,

implying that the risk computed based on one selected model or forecaster is underestimated;

see, for example, Yang (2004) and Wei and Yang (2012). Thus, from the point of view of a

policy maker, the individual risks are stochastic not only over time but also across forecast-

ers since they are conditional on Ii,t−h. To avoid these drawbacks, a natural alternative to

forecaster selection approach is the averaging method. The forecast averaging approach has

the advantages by providing the policy maker with a robust overall risk and accounting for

the uncertainty inherent in the forecaster selection process. Interestingly, using the average

of individual loss functions has also been proposed and justified by Levin, et al. (2003) in

designing a robust forecast-based monetary policy rules under model uncertainty, and by

Woodford (2005) in designing the social loss function for a policy maker on the ground that

it is consistent with both the rational and herding behavior of market participants.

A simple but popular way for the policy maker to obtain a robust overall risk function is to

apply the equal weighting scheme, that is, setting ωi,t−h = 1
n
for all i. This simple approach is

optimal in the sense that it avoids the problem of estimating the weights based on covariance

matrix, which is extremely tricky when n is relatively large due to the estimation uncertainty

and the curse of dimensionality, see, Issler and Lima (2009). So a robust overall risk function
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for the policy maker that follows Greenspan’s suggestion would be

1
n

n∑
i=1

E
{

[Yt − E(Yt|Ii,t−h)]2 |Ii,t−h
}
. (7)

But the ex ante overall risk function defined in (7) is not particularly useful for evaluation

and calibration purposes. A natural ex post analog of (7) would be the following statistic,

1
n

n∑
i=1

1
T

T∑
t=1

(At − Fit)2 = 1
nT

n∑
i=1

T∑
t=1

e2
it, (8)

which is the appropriate empirical measure of forecast uncertainty from the standpoint of a

policy maker.

3 Measures of Historical Uncertainty

Based on the argument in Section 2, the historical risk faced by a policy maker while using

a panel of forecasts from n experts is simply

RMSELPS =

√√√√ 1
nT

T∑
t=1

n∑
i=1

e2
it. (9)

On the other hand, the conventional choice as suggested by Bates and Granger (1969) is the

root mean squared error (RMSE) of the average forecast

RMSEAF =

√√√√ 1
T

T∑
t=1

(
1
n

n∑
i=1

eit

)2

. (10)

With the stated objective of using the root mean squared errors made by a panel of

forecasts to generate a benchmark estimate of historical forecast uncertainty, Reifschneider

and Tulip (2007) propose the following measure
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RMSERT = 1
n

n∑
i=1

√√√√ 1
T

T∑
t=1

e2
it. (11)

They explicitly recognized that their average RMSE is not the conventional RMSEAF as-

sociated with the average forecast as in equation (10), and noted “rather we average the

individual RMSEs of our forecasts in order to generate a benchmark for the typical amount

of uncertainty we might expect to be associated with the separate forecasts of the different

members of our sample, including the FOMC”(Reifschneider and Tulip, 2007, p.14). Inter-

estingly, under our framework of constructing an overall risk measure based on a panel of

forecasts, the RT uncertainty measure can be derived as a natural ex post empirical analog

of aggregate uncertainty measure proposed by Jurado, et al. (2015). Obviously, RMSERT is

not exactly the same as RMSELPS; but, nevertheless, it incorporates at least partially the

disagreement as a component of uncertainty as shown in the following theorem.

Theorem 1. Suppose Assumptions 1-4 hold. Then as (n, T →∞) ,

(i)
√
T
(
RMSE2

AF − σ2
λ − 1

n2

n∑
i=1

σ2
εi

)
→d N (0,Σλ).

(ii)
√
T

(
RMSE2

RT −
(

1
n

n∑
i=1

√
σ2
λ + σ2

εi

)2
)
→d N (0, φΣλ),

where φ =
(

lim
n→∞

1
n

n∑
i=1

(σ2
λ + σ2

εi)
1/2
)2 (

lim
n→∞

1
n

n∑
i=1

(σ2
λ + σ2

εi)
−1/2

)2
.

(iii)
√
T
(
RMSE2

LPS −
(
σ2
λ + 1

n

n∑
i=1

σ2
εi

))
→d N (0,Σλ).

The following Corollary follows directly from Theorem 1.

Corollary 1. Suppose Assumptions 1-4 hold. Then as (n, T →∞) ,

(i) RMSE2
AF →p σ

2
λ.

(ii) RMSE2
RT →p

(
lim
n→∞

1
n

n∑
i=1

√
σ2
λ + σ2

εi

)2
.
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(iii) RMSE2
LPS →p (σ2

λ + σ2
ε), where σ2

ε = lim 1
n

n∑
i=1

σ2
εi.

Remark 2. A direct consequence of Theorem 1(i) and Corollary 1(i) is that 1
n

n∑
i=1

εit →p 0

or 1
n

n∑
i=1

Fit →p At + λt as n → ∞, a result also obtained by Issler and Lima (2009) in

their Proposition 3 for their bias-corrected average forecast, under the assumption that the

common shock is a moving average process of order at most (h − 1). While their paper

is aimed at obtaining the bias-corrected average forecast under the sequential limit where

T → ∞ followed by n → ∞, our objective is to find an appropriate benchmark measure of

overall forecast uncertainty among several alternatives and obtain their respective asymptotic

limits under the joint limit where T and n approach infinity simultaneously. In this regard,

RMSEAF ignores the uncertainty associated with the idiosyncratic shocks, especially when

n is large since RMSE2
AF = σ2

λ + 1
n2

n∑
i=1

σ2
εi +Op(T−1/2) with 1

n2

n∑
i=1

σ2
εi = O( 1

n
). By contrast,

for RMSELPS, we have RMSE2
LPS →p σ

2
λ + σ2

ε as (n, T →∞).

Remark 3. Theorem 1 and Corollary 1 also demonstrate that RMSEAF ≤ RMSERT ≤

RMSELPS in the limit, because σ2
εi ≥ 0 for all i and lim

n→∞
1
n

n∑
i=1

√
σ2
λ + σ2

εi ≤ (σ2
λ + σ2

ε)
1/2 in

view of Jensen’s inequality. Thus it is clear that when compared to RMSELPS, RMSERT ,

though allows for disagreement to some degree, underestimates the forecast uncertainty in

the presence of unequal idiosyncratic error variances, and the amount of underestimation is

given by 1
8 (σ2

λ + σ2
ε)
−3/2

var(σ2
εi), where var(σ2

εi) = lim
n→∞

1
n

n∑
i=1

(σ2
εi − σ2

ε)
2.

Remark 4. Interestingly, RMSELPS and RMSEAF have the same asymptotic limit distri-

bution, even though their means are dramatically different as explained in Remark 2. This

is because the asymptotic limit involving the common shocks dominates that associated with

the idiosyncratic shocks. In addition, RMSERT , as a measure of forecast uncertainty, is

more volatile than both RMSELPS and RMSEAF since φ ≥ 1 by virtue of Cauchy-Schwarz

inequality.
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To check whether the idiosyncratic shocks contribute to the measure of forecast uncer-

tainty for a particular data set, we first define σ̂2
λ = RMSE2

AF , σ̂2
εi = 1

T

T∑
t=1

(eit − e·t)2 and

ω̂εiT = 1
T

T∑
t=1

(
(eit − e·t)2 − 1

T

T∑
t=1

(eit − e·t)2
)2

with e·t = 1
n

n∑
i=1

eit, and then test the equality

of RMSEAF and RMSELPS using the statistic presented in the next theorem.

Theorem 2. Suppose Assumptions 1-4 hold. Then under the null hypothesis that 1
n

n∑
i=1

σ2
εi =

o
(
T−1/2n−1/2

)
,

Z =
√
nT ω̃

−1/2
εT

{
RMSE2

LPS −RMSE2
AF

}
→d N (0, 1) ,

as (n, T →∞) and n
T
→ 0, where ω̃εT = 1

n

n∑
i=1

ω̃εiT , ω̃εiT =
(

n
n−1

)4
ω̂εiT− 1

n

(
n
n−1

)2
σ̂2
εi

(
1
n

n∑
j 6=i

σ̂2
εj

)
.

Remark 5. Instead of σ2
ε = 0, the null hypothesis we test is 1

n

n∑
i=1

σ2
εi = o

(
T−1/2n−1/2

)
, which

is needed to guarantee
√
nT
n

n∑
i=1

σ2
εi → 0 as (n, T →∞) in the test statistic. The use of ω̃εiT

(and hence ω̃εi) rather than ω̂εiT in the test is to reduce the asymptotic bias of the estimator

of ωεi from order Op

(
min{T−1/2, n−1}

)
to Op

(
min{T−1/2, n−2}

)
. The restriction n

T
→ 0

is needed to ensure the the approximation errors in deriving the asymptotic distribution are

negligible.

To examine whether RMSERT and RMSELPS give statistically different measures of

uncertainty in the context of a particular data set, we note that

RMSELPS −RMSERT = 1
8 (RMSELPS)−3 1

n

n∑
i=1

(
1
T

T∑
t=1

e2
it −

1
nT

n∑
i=1

T∑
t=1

e2
it

)2

(12)

approximately for large T and n, which is the sample analog of 1
8 (σ2

λ + σ2
ε)
−3/2

var(σ2
εi)

mentioned in Remark 3. Based on equation (12) we propose a simple test for the equality

of RMSERT and RMSELPS for large T and n as in the following limit theorem.

Theorem 3. Suppose Assumptions 1-4 hold. Then under the null hypothesis that
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1
n

n∑
i=1

(
σ2
εi − 1

n

n∑
i=1

σ2
εi

)2
= o(T−1n−1),

W =
Y β̂
nT − Ŷ

β̂
nT − 1

2 β̂
(
β̂ − 1

)
Ŷ β̂−2
nT

β̂Ŷ β̂−1
nT

→d N(0, 1),

as (n, T →∞) and n
T
→ 0, where YnT = 1

snT

n∑
i=1

T ( 1
T

T∑
t=1

e2
it − 1

nT

n∑
i=1

T∑
t=1

e2
it

)2
, ŶnT =

1
snT

n∑
i=1

(
n−1
n

)2
Ω̃iT , and β̂ = 1− 2

3

(
n∑
i=1

Ω̃iT

)(
n∑
i=1

Ω̃3
iT

)
(

n∑
i=1

Ω̃2
iT

)2 with s2
nT = 2

n∑
i=1

(
n−1
n

)2
Ω̃iT , Ω̃iT = ω̃εiT +

4σ̃2
λσ̃

2
εi, σ̃2

εi =
(

n
n−1

)2
σ̂2
εi −

(
n
n−1

)2 1
n2

n∑
j 6=i

σ̂2
εj, σ̃2

λ = σ̂2
λ − 1

n2

n∑
i=1

σ̂2
εi.

Remark 6. Theorem 3 establishes the joint limit distribution of the statistic W for testing

the null hypothesis that 1
n

n∑
i=1

(
σ2
εi − 1

n

n∑
i=1

σ2
εi

)2
= o(T−1n−1) rather than var(σ2

εi) = 0. The

proof of Theorem 3 is obtained by first establishing the asymptotic distribution for the case

β̂ = 1 and then by applying Taylor’s expansion. Note that one could use the statistic for the

case β̂ = 1 to test the null hypothesis.6 Such a test statistic, however, suffers from both se-

vere size distortions because
T ( 1

T

T∑
t=1

e2
it − 1

nT

n∑
i=1

T∑
t=1

e2
it

)2
 follows an asymptotic chi-square

distribution as T → ∞ and slow convergence to standard normality due to its highly right

skewness (see, for example, Chen and Deo (2004)). Following Chen and Deo (2004)’s sug-

gestion, we apply general power transformation to address these issues and obtain the W

statistic, which encompasses the Wilson-Hilferty cube root transformation as a special case

where β̂ = 1/3 (a result implied by the equality of Ω̃iT across i). Our test for forecaster homo-

geneity differs from the Lagrange multiplier test for heteroskedasticity developed by Baltagi,

et al. (2006) in that we do not assume that the idiosyncratic variance is a function of some

known covariates.

Remark 7. The scaling factor (n−1
n

)2 and the employment of both σ̃2
εi and σ̃2

λ (when com-
6A similar approach was adopted by Pesaran and Yamagata (2008) in their test of slope homogeneity in

large random coefficient panel data models.
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pared to σ̂2
εi and σ̂2

λ) are used to reduce the asymptotic bias of their respective estimators in

panel estimation. The restriction n
T
→ 0 controls for the effect of approximation errors and

prevents the asymptotic bias from having a non-vanishing impact on the test statistic W .

Remark 8. We need to point out that Theorems 2 and 3 test two different layers of hetero-

geneity with regard to the idiosyncratic error εit. Under the null hypothesis in Theorem 2,

the idiosyncratic shocks do not contribute to the measure of forecast uncertainty - they are

insignificant compared to the variance of the common shock. In contrast, under the null hy-

pothesis in Theorem 3, the variance of the idiosyncratic error is a significant part of forecast

uncertainty. Essentially, Theorem 3 tests whether the variances of idiosyncratic errors are

identical and this second layer of heterogeneity is a necessary and sufficient condition for the

difference between RMSERT and RMSELPS.

Although in theory the appropriate power transformation helps to minimize the size dis-

tortion, our simulation study indicates that the test based on Theorem 3 is slightly oversized

(see Table 1). These results are consistent with the simulation findings in Chen and Deo

(2004) that attribute the modest oversize problem to parameter estimation uncertainty. Ta-

ble 2 shows that the transformed test W has satisfactory power provided that the average of

idiosyncratic variances is not too small relative to the variance of common shocks. The test

becomes more powerful when the proportion of idiosyncratic variances that differs from the

average of idiosyncratic variances increases. However, the power tends to fall as n rises for

given T . This result seems counterintuitive since the power generally increases with the size

of the cross section dimension in panel models. But a careful examination of the test statistic

reveals that there is a negative bias term of order Op( nT ) in the process of approximation

of the test statistic, contributing to the decreasing power for given T . The impact of this

negative bias term becomes negligible provided that T grows faster than n as confirmed in

Table 2.
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It is interesting to note that, when idiosyncratic error variances are the same across

forecasters, both RMSERT and RMSELPS can be interpreted as measuring the uncertain-

ty of a typical forecast in the panel. This interpretation is consistent with the explicitly

stated objective in Reifschneider and Tulip (2007) that the benchmark uncertainty figure

they are providing is that of a typical forecaster in the pool that will be individualized by

FOMC members based on their own special experiences. To illustrate, let us assume that in

predicting At, each forecaster possesses two types of information: (i) common information,

yt = At + λt with precision κt; and (ii) private information, zit = At + εit with precision

τt, where λt and εit are mutually independent and normally distributed with mean 0. Then

according to Bayes rule, individual i’s forecast Fit is a weighted average of the two signals

with their precision as the weights

Fit ≡ E[At | yt, zit] = κtyt + τtzit
κt + τt

, (13)

and its associated uncertainty is simply 1
κt+τt . Taking expectations on both sides conditional

on available information, the left-hand side of equation (3) becomes

1
n

n∑
i=1

E[(At − Fit)2 | yt, zit] = 1
n

n∑
i=1

E[(κtλt + τtεit
κt + τt

)2 | yth, zit] = 1
κt + τt

. (14)

Thus, we see that our uncertainty measure, RMSELPS, is the same as the variance of

an individual forecast, with both of them equal to 1
κt+τt in the population. So it can be

interpreted as the confidence an outside observer will have in a randomly drawn typical

individual forecast from the panel, as pointed out by Giordani and Söderlind (2003). Also

note that the expected value of the first term on the right hand side of equation (3) can be

expressed as

E[(At − F·t)2 | yt, zit] =
κt + τt

n

(κt + τt)2 . (15)
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For n > 1, it is easy to verify that κt+ τt
n

(κt+τt)2 in equation (15) is less than 1
κt+τt in equation

(14). This shows that the uncertainty conventionally associated with the consensus forecast,

RMSEAF , is less than RMSELPS or RMSERT . However, as we have shown before, when

idiosyncratic errors are heteroskedastic, RMSERT will be in general smaller than RMSELPS

implying that RMSERT does not fully incorporate disagreement among the forecasters.

4 Illustration of Underestimation of Uncertainty

In this section, we present estimates of historical uncertainty in inflation and output growth

forecasts using RMSELPS, and compare it to RMSEAF and RMSERT . The data in our

study are taken from the Survey of Professional Forecasters and Real Time Data Set for

Macroeconomists (RTDSM), provided by the Federal Reserve Bank of Philadelphia. The

survey asks for the forecasts of inflation and output growth for both the current year and

next year, giving us information on eight quarterly forecasts. In our analysis, inflation is

measured as the annual-average over annual-average percent change of GDP deflator, and

output growth is similarly defined in terms of real GDP. The actual horizons for these

forecasts are approximately 71
2 , 61

2 , . . .,
1
2 quarters but we refer to them simply as quarterly

horizons of 8, 7, . . . , 1.

In calculating the percentage change from year t − 1 to t, we transform the quarterly

forecasts of the level of the variables into annual forecasts of the growth rate of the variables.

Specifically, we use the forecasts of the level of the variables in the current and subsequent

quarters and the actual values from the vintage of data available at that time to calculate

the forecast of annual inflation and output growth for the current year. For example, in the

second quarter of the current year, a respondent would use data on the actual values of real

GDP in the first quarter (Y1,t) and make predictions through the end of year t (F2,t, F3,t, F4,t).

Accordingly, as an example, the output growth forecast for the current year at horizon of 3
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quarters is calculated as ft = (Y1,t +F2,t +F3,t +F4,t)/(Y1,t−1 +Y2,t−1 +Y3,t−1 +Y4,t−1), where

Y1,t−1 through Y4,t−1 are the level of actual real GDP in the first through fourth quarter of

the year t−1, which are available to forecasters in the second quarter of year t. To calculate

the percentage change from year t to t+ 1, we simply divide Ft+1 by Ft, where Ft+1 and Ft

are the annual forecasts of real GDP for the next year and current year, respectively. To

calculate forecast errors, we choose the first quarterly release of annual inflation and output

growth to compute the actual values.

A practical challenge that arises in using SPF dataset is the substantial gaps in the panel

of forecasts, reflecting non-responses by existing participants, and the frequent entry and exit

of some participants. To reduce sampling distortions associated with missing values in the

raw dataset, we focus on the forecasts made from 1991:Q1 until 2013:Q4 following Engelberg,

et al. (2011) and filter the data to include only those forecasters who have responded at least

40% of time. Even after filtering out irregular respondents, the data have some missing

values. To impute these missing values, we follow Genre, et al. (2013) to run the following

panel regression:

Fit − F·t = βi(Fi,t−1 − F·t−1) + εit, (16)

where F·t = 1
n

∑n
j=1 Fit. The missing values for forecaster i in period t are replaced with

the period t average forecast plus a fraction of the previously observed deviation from the

average for βi < 1 or with the previously reported individual forecast plus the change in the

average for βi = 1.

Tables 3 and 4 report the results for inflation and output growth forecasts, respectively,

using the balanced panels. Three points are worth noting. First, the RMSEs associated with

output are uniformly higher compared to inflation due to a differential incidence of common

shocks. This phenomenon, which makes real GDP growth a difficult variable to predict,
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has been documented by Lahiri and Sheng (2008) using a heterogeneous learning model.

Second, among the three measures RMSEAF yields the smallest forecast uncertainty and

there is a sizable difference between RMSEAF and the other two. For all eight horizons, the

idiosyncratic errors are important, as shown by significant test statistics Z. Thus, pervasive

heterogeneity seems to exist amongst professional forecasters but is ignored in the traditional

measure RMSEAF . Simple calculations show that when RMSEAF is used as the measure

of historical uncertainty, the degree of underestimation is between 8% and 19% for inflation

forecasts and between 1% and 8% for output growth forecasts.

Third, for all eight horizons RMSERT is less than RMSELPS. Yet, the differences be-

tween these two measures are relatively small and often not statistically different from zero.

Note that the RMSE figures that are reported by Reifschneider and Tulip (2007) and those in

this paper are not directly comparable. We present average year-over-year forecasts whereas

RT use Q4 over Q4 percent changes. The latter target tends to be more variable. More

importantly, RT used the simple averages of the individual projections in SPF, Blue Chip

and FOMC panels, together with Greenbook, Congressional Budget Office (CBO) and the

Administration forecasts giving n = 6 in their calculations. More generally, their measure

is expressed as RMSEgroup = 1
M

∑M
m=1

√
1
T

∑T
t=1(At − Fm

·t )2, where Fm
·t is the mean forecast

for the group m, for the target year t and h-period ahead to the end of the target year. By

averaging across individual projections, most of idiosyncratic differences and disagreement

in FOMC, SPF and Blue Chip forecasts have inadvertently been washed away. They found

very little heterogeneity in these six forecasts. On the other hand, their simultaneous use of

Greenbook, CBO, Adminstration, mean FOMC, SPF, and Blue Chip forecasts meant that

RT had to meticulously sort out important differences in the comparability of these six fore-

casts due to data coverage, timing of forecasts, reporting basis for projections, and forecast

conditionality. Despite all these differences, these two sets of uncertainty estimates are very

close in the context of SPF dataset. At least a part of the explanation for this similarity is
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due to the use of dataset from professional forecasters. For non-professional forecasters, such

as surveys of households, where the idiosyncratic errors are heteroskedastic, we expect a sub-

stantial difference between RT and LPS uncertainty measures. Indeed, if the cross sectional

variance of idiosyncratic error variances, defined as 1
n

n∑
i=1

(
1
T

T∑
t=1

e2
it − 1

nT

n∑
i=1

T∑
t=1

e2
it

)2

, were to

increase from 0.0004 to 0.004 at 1-quarter ahead inflation forecast, RMSERT would decrease

from 0.209 in Table 3 to 0.163, resulting in an underestimation of the correct benchmark

uncertainty by 23%.

Despite our effort in imputing the missing values in the survey data to maintain the

underlying cross section variability, the imputed data sets will invariably reduce the hetero-

geneity of forecasts, as pointed out by Lahiri, et al. (2015). As an alternative experiment to

avoid the missing data problem, we construct a pseudo balanced panel of 21 forecasters with

each of them representing the minimum, 5th percentile, 10th percentile, ..., 95th percentile

and the maximum of individual forecasts, respectively. The results, reported in Tables 5

and 6, clearly show that, as theoretically expected, RMSEAF < RMSERT < RMSELPS

at all eight horizons in both inflation and output growth forecasts. The differences between

RMSEAF and RMSELPS for all horizons and both variables are statistically significant.

When RMSEAF is used as the measure of historical uncertainty the degree of underesti-

mation is between 4% and 23% in inflation forecasts and between 2% and 12% in output

growth forecasts. As before, the differences between RMSERT and RMSELPS are relatively

small. But some of these differences are now statistically significant, particularly at longer

horizons.

5 Concluding Remarks

A number of surveys of professional forecasters and households are regularly conducted in

many countries around the world, and a widespread interest in these surveys suggests that
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the aggregate macroeconomic forecasts reported by these organizations are considered useful

by policy makers, investors and other stakeholders. Even though it is now recognized in

the forecasting profession that an average forecast by itself is of limited use and should be

reported with an indication of the associated uncertainty, currently the consensus forecasts

from these surveys are not reported with uncertainty bands.

The dominant methodology of forecast combination in econometrics is due to Bates and

Granger (1969) whose basic criterion for optimal combination is based on minimizing the

mean square error of combined forecasts that rule out any consideration of the cross sectional

distribution of forecasts. Thus, an increase in forecaster discord, ceteris paribus, will have

no effect on the uncertainty of the combined forecast. By reformulating the loss function

as minimization of the risk averaged over all possible forecasts rather than minimizing the

risk of the average forecast, disagreement among forecasters can be made a component of

the aggregate uncertainty. Using a standard factor decomposition of forecast errors, we have

shown that the aggregate forecast uncertainty is composed of disagreement among forecasters

plus the volatility of the common shock. This result is consistent with the recent model

averaging literature that the risk associated with a combined forecast should incorporate

not only the average of the variances of individual forecasts but also the variance of the

point forecasts across different models. Even if we have highly precise individual forecasts,

we might end up with considerable uncertainty about the combined forecast if these point

forecasts are very different across forecasters. The key is to realize that individual risks

should be integrated into the combined forecast and, as a result, the risk faced by a policy

maker in using the average forecast is the risk associated with the use of the forecast of a

typical member of the panel, rather than the variance of the average forecast.

Using two new statistics to test the homogeneity of idiosyncratic errors at two layers,

we find significant heterogeneity in professional forecasters, even though the variances of the

idiosyncratic errors are not significantly different. The first layer of heterogeneity suggests
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that the uncertainty measure implied by the Bates-Granger approach substantially underes-

timates the true forecast uncertainty of the average forecast. However, due to the observed

lack of heterogeneity in the individual error variances, the benchmark uncertainty formula

suggested by Reifschneider and Tulip (2007) does not seem to induce significant underesti-

mation of uncertainty. In retrospect, lack of the second layer of heterogeneity is not entirely

unexpected given that the SPF members are all experienced experts who are forecasting two

closely monitored macro variables using widely available public information.

Citing frequent entry and exit of survey forecasters who tend to be highly heterogeneous,

Engelberg, et al. (2011) have advised against the use of consensus forecasts altogether, even

though they indicated that this practice will possibly not be discontinued in the near future.

Consistent with this sentiment, our suggested measure of uncertainty of the consensus fore-

cast recognizes this well-established heterogeneity among forecasters of the panel together

with its changing composition, and will help interpreting movements in the consensus fore-

casts with appropriate confidence bands. Often the consensus forecasts in surveys like the

Blue Chip are reported together with maximum, minimum and interquartile range of the

point forecasts, presumably to suggest the underlying uncertainty. However, as we have ex-

plained, these features of the cross sectional distribution indicate only a part of the aggregate

forecast uncertainty.

One potential concern in incorporating disagreement as part of aggregate uncertainty is

that the prediction intervals will get wider, making intertemporal movements in consensus

forecasts less meaningful. Why would practitioners opt for enlarged confidence bands when

they are less likely to obtain news-worthy results? The simple answer is that in the long run

the reported forecasts will be more credible and the uncertainty measures better calibrated.

As aptly put by Draper (1995) in his concluding remark, “which is worse - widening the

bands now or missing the truth later?”
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6 Appendix

We start with some useful lemmas.

Lemma 1. Suppose Assumptions 1-4 hold, then as (n, T →∞)

(a) 1√
T

T∑
t=1

(λ2
t − σ2

λ)→d N (0,Σλ).

(b) 1
T 1/2

T∑
t=1

µitλt = Op

(
T−1/4n−α/4

)
; 1
T 1/2

T∑
t=1

µitεjt = Op

(
T−1/4n−α/4

)
.

(c) 1√
T

T∑
t=1

λtεit →d N(0, σ2
λσ

2
εi); 1√

nT

n∑
i=1

T∑
t=1

λtεit →d N(0, σ2
λσ

2
ε) with σ2

ε = lim
n→∞

1
n

n∑
i=1

σ2
εi.

(d) 1√
T

T∑
t=1

(ε2
it − σ2

εi)→d N (0, ωεi); 1√
nT

T∑
t=1

n∑
i=1

(ε2
it − σ2

εi)→d N(0, ωε) with ωε = lim
n→∞

1
n

n∑
i=1

ωεi.

(e) 1√
T

T∑
t=1

( 1√
n

n∑
j 6=i

εjt

)2

− 1
n

n∑
j 6=i

σ2
εj

 →d N(0, 2σ4
ε), 1√

nT

T∑
t=1

εit
n∑
j 6=i

εjt →d N(0,Σε) where

Σε = σ2
εiσ

2
ε .

(f) 1√
T

T∑
t=1

[(ε2
it − σ2

εi) + 2λtεit] →d N(0, ωεi + 4σ2
λσ

2
εi); 1√

nT

n∑
i=1

T∑
t=1

[(ε2
it − σ2

εi) + 2λtεit] →d

N(0, ωε + 4σ2
λσ

2
ε).

Proof. (a) By Assumption 2 and the independence of white noise shocks ζtk of λt, λ2
t−σ2

λ is

a stationary ergodic (centered) process with E
{

(λ2
t − σ2

λ)
(
λ2
t−k − σ2

λ

)}
= 0 for all k > h−1.

Also by Loeve’s cr inequality, we have E |λ2
t − σ2

λ|
2+ δ

2 ≤ 21+ δ
2
(
E |λt|4+δ + σ4+δ

λ

)
< ∞ for

some δ > 0.Therefore 1√
T

T∑
t=1

(λ2
t − σ2

λ) →d N (0,Σλ) by virtue of Theorem 5.6 in Hall and

Heyde (1980) since var
(

1√
T

T∑
t=1

λ2
t

)
→ Σλ > 0 as T →∞.

(b) Let ρk = corr(λt, λt+k). Then by Assumptions 1 and 2, we have

E

(
1

T 1/2

T∑
t=1

µitλt

)
= 1
T 1/2

T∑
t=1

µitE(λt) = 0,
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and

E

(
1

T 1/2

T∑
t=1

µitλt

)2

= σ2
λ

1
T

T∑
t=1

µ2
it + σ2

λ

1
T

T−k∑
t=1

h−1∑
k=1

ρkµitµi(t+k)

≤ σ2
λ

1
T

T∑
t=1

µ2
it + σ2

λ

h−1∑
k=1

(
1
T

T∑
t=1

µ2
it

)1/2 ( 1
T

T−k∑
t=1

µ2
i(t+k)

)1/2

≤ hσ2
λ

(
1
T

T∑
t=1

µ4
it

)1/2

= O(T−1/2n−α/2)

where the first inequality is obtained by virtue of Cauchy Schwarz inequality and the fac-

t that ρk ≤ 1 for all k while the second inequality follows from Jensen inequality. It

follows immediately that 1
T 1/2

T∑
t=1

µitλt = Op

(
T−1/4n−α/4

)
. Similarly, we can show that

1
T 1/2

T∑
t=1

µitεjt = Op

(
T−1/4n−α/4

)
.

(c) By Assumptions 2, 3 and 4, λtεit is stationary and ergodic for each i with E (λtεit) = 0,

E (λ2
t ε

2
it) = σ2

λσ
2
εi and E

(
λtεitλt−kεi(t−k)

)
= 0 for all k ≥ 1. In addition, E |λtεit|2+δ <∞ by

Liapunov’s inequality and the independence of λt and εit. Hence it follows from Theorem

5.6 in Hall and Heyde (1980) that for each i

1√
T

T∑
t=1

λtεit →d N
(
0, σ2

λσ
2
εi

)
,

as T →∞. It remains to show

1√
nT

n∑
i=1

T∑
t=1

λtεit →d N(0, σ2
λσ

2
ε),
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as (n, T →∞). Let ξinT = 1
√
Tσλ

(
n∑
i=1

σ2
εi

)1/2

T∑
t=1

λtεit. Then

n∑
i=1

E
[
ξ2
inT1 {|ξinT | > ε}

]

≤ σ−2
λ

(
inf
i
σ2
εi

)−1
sup
i,T

E


(

1√
T

T∑
t=1

λtεit

)2

1



∣∣∣∣∣ 1√
T

T∑
t=1

λtεit

∣∣∣∣∣
σλ

(
inf
i
σ2
εi

)1/2 > n1/2ε




→ 0

as n→∞ because
(

1√
T

T∑
t=1

λtεit

)2

is uniformly integrable in T , as implied by Assumptions

2 and 3. So
n∑
i=1

ξinT →d N (0, 1) as (n, T →∞) in view of Theorem 2 in Phillips and Moon

(1999), from which we can conclude that 1√
nT

n∑
i=1

T∑
t=1

λtεit →d N(0, σ2
λσ

2
ε) as (n, T →∞).

(d) and (e). The proofs of (d) and (e) are similar to that of (c) and thus omitted here.

(f). The proof of (f) follows directly from (c), (d) and the independence of λtεit and

(ε2
it − σ2

εi) over t and across i.

Lemma 2. Suppose Assumptions 1-4 hold, then as (n, T →∞)

(a) 1√
T

T∑
t=1

(
µit − 1

n

n∑
i=1

µit

)2
= O(n−α/2); 1√

T

T∑
t=1

(
µit − 1

n

n∑
i=1

µit

)4
= O(T−1/2n−α).

(b) 1√
T

T∑
t=1

(
µit − 1

n

n∑
i=1

µit

)2 (
εit − 1

n

n∑
i=1

εit

)2
= Op(n−α/2).

(c) 1√
T

T∑
t=1

(
µit − 1

n

n∑
i=1

µit

)3 (
εit − 1

n

n∑
i=1

εit

)
= Op(T−1/4n−3α/4).

(d) 1√
T

T∑
t=1

(
µit − 1

n

n∑
i=1

µit

)(
εit − 1

n

n∑
i=1

εit

)
= Op

(
T−1/4n−α/4

)
.

(e) 1√
T

T∑
t=1

(
µit − 1

n

n∑
i=1

µit

)(
εit − 1

n

n∑
i=1

εit

)3
= O(T−1/4n−α/4).

(f) 1√
T

T∑
t=1

(ε2
it − σ2

εi)
2

( 1√
n

n∑
j 6=i

εjt

)2

− 1
n

n∑
j 6=i

σ2
εi

 = Op(1).
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(g) 1√
T

T∑
t=1

{
(ε2
it − σ2

εi)
2
εit

(
1√
n

n∑
j 6=i

εjt

)}
= Op(1).

(h) 1√
T

T∑
t=1

( 1√
n

n∑
j 6=i

εjt

)2

− 1
n

n∑
j 6=i

σ2
εi

( 1√
n

n∑
j 6=i

εjt

)
εit = Op(1).

(i) 1√
T

T∑
t=1


( 1√

n

n∑
j 6=i

εjt

)2

− 1
n

n∑
j 6=i

σ2
εi

2

− ξn

 = Op(1) with ξn = E

( 1√
n

n∑
j 6=i

εjt

)2

− 1
n

n∑
j 6=i

σ2
εi

2

.

(j) 1√
T

T∑
t=1

ε2
it

(
1√
n

n∑
j 6=i

εjt

)2

− σ2
εi

(
1
n

n∑
j 6=i

σ2
εi

) = Op(1).

Proof. (a) Using 2ab ≤ a2 + b2 and Jensen inequality, we have

1√
T

T∑
t=1

(
µit −

1
n

n∑
i=1

µit

)2

≤ 2
(

T∑
t=1

µ4
it

)1/2

+ 2 1
n

n∑
i=1

(
T∑
t=1

µ4
it

)1/2

= O(n−α/2).

Next, by Loeve’s cr inequality and Jensen inequality,

1√
T

T∑
t=1

(
µit −

1
n

n∑
i=1

µit

)4

≤ 8
√
T

(
1
T

T∑
t=1

µ4
it + 1

nT

n∑
i=1

T∑
t=1

µ4
it

)
= O(T−1/2n−α).

(b) By Cauchy Schwarz inequality, we have

1√
T

T∑
t=1

(
µit −

1
n

n∑
i=1

µit

)2 (
εit −

1
n

n∑
i=1

εit

)2

≤
√
T

 1
T

T∑
t=1

(
µit −

1
n

n∑
i=1

µit

)4
1/2  1

T

T∑
t=1

(
εit −

1
n

n∑
i=1

εit

)4
1/2

= Op(n−α/2),

in view of Lemma 2(a) and the result that 1
T

T∑
t=1

(
εit − 1

n

n∑
i=1

εit

)4
= Op(1) as implied by

Assumption 3.
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(c) The result follows directly from Cauchy Schwarz inequality and Lemma 2(a) and 2(b).

(d) Using the similar argument as in Lemma 1(b), we have 1√
T

T∑
t=1

µitεjt = Op

(
T−1/4n−α/4

)
,

which, together with Lemma 1(b), yields the desired result.

(e) Again, following a similar argument as in Lemma 1(b) we can obtain that 1√
T

T∑
t=1

µitε
3
it =

Op(T−1/4n−α/4). Then it follows that 1√
T

T∑
t=1

µit

(
εit − 1

n

n∑
i=1

εit

)3
= Op(T−1/4n−α/4) because

1
n

n∑
i=1

εit = Op

(
n−1/2

)
(implied by central limit theorem for iid random variable) is of smaller

stochastic order than εit. Therefore

1√
T

T∑
t=1

(
εit −

1
n

n∑
i=1

εit

)3 (
µit −

1
n

n∑
i=1

µit

)

= 1√
T

T∑
t=1

µit

(
εit −

1
n

n∑
i=1

εit

)3

− 1
n
√
T

n∑
j=1

T∑
t=1

µjt

(
εit −

1
n

n∑
i=1

εit

)3

= O(T−1/4n−α/4).

(f)-(j): The results in (f)-(j) can be established by proving their asymptotic normality

respectively and such proofs are similar to that of Lemma 1(c) and thus omitted here.

Lemma 3. Suppose 1√
n

n∑
i=1

(σ2
εi − σ2

ε)
2 = o(1), then 1√

n

n∑
i=1

(
σ2
εi − 1

n

n∑
i=1

σ2
εi

)2
= o(1).

Proof. Observe that

1√
n

n∑
i=1

(
σ2
εi −

1
n

n∑
i=1

σ2
εi

)2

= 1√
n

n∑
i=1

((
σ2
εi − σ2

ε

)
− 1
n

n∑
i=1

(
σ2
εi − σ2

ε

))2

= 1√
n

n∑
i=1

(
σ2
εi − σ2

ε

)2
−
√
n

(
1
n

n∑
i=1

(
σ2
εi − σ2

ε

))2

.

Then by triangle inequality and Jensen inequality, we have

∣∣∣∣∣∣ 1√
n

n∑
i=1

(
σ2
εi −

1
n

n∑
i=1

σ2
εi

)2
∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣ 1√
n

n∑
i=1

(
σ2
εi − σ2

ε

)2
∣∣∣∣∣ = o(1).

as n→∞.
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Lemma 4. Suppose Assumptions 1-4 hold with σ̂2
λ = 1

T

T∑
t=1

e2
·t, σ̂2

εi = 1
T

T∑
t=1

(eit − e·t)2 and

ω̂εiT = 1
T

T∑
t=1

(
(eit − e·t)2 − 1

T

T∑
t=1

(eit − e·t)2
)2

, where e·t = 1
n

n∑
i=1

eit. Then as (n, T →∞)

(a)
√
T
(
σ̂2
λ − σ2

λ − 1
n2

n∑
i=1

σ2
εi

)
→d N (0,Σλ).

(b)
√
T

(
σ̂2
εi −

(
n−1
n

)2
σ2
εi − 1

n2

n∑
j 6=i

σ2
εj

)
→d N (0, ωεi).

(c)
√
T

(
ω̂εiT −

(
n−1
n

)4
ωεi − 1

n

(
n−1
n

)2
σ2
εi

(
1
n

n∑
j 6=i

σ2
εj

)
− 1

n2 ξn

)
→d N(0, var((ε2

it − σ2
εi)

2).

Proof. (a) Since σ̂2
λ = 1

T

T∑
t=1

e2
·t, we have

√
T

(
σ̂2
λ − σ2

λ −
1
n2

n∑
i=1

σ2
εi

)
= 1√

T

T∑
t=1

( 1
n

n∑
i=1

eit

)2

− σ2
λ −

1
n2

n∑
i=1

σ2
εi


= 1√

T

T∑
t=1

(
1
n

n∑
i=1

µit

)2

+ 1√
T

T∑
t=1

(λ2
t − σ2

λ)

+ 1
n
√
T

T∑
t=1

( 1√
n

n∑
i=1

εit

)2

− 1
n

n∑
i=1

σ2
εi


+ 2
n
√
T

n∑
i=1

T∑
t=1

λtµit + 2
n
√
T

n∑
i=1

T∑
t=1

λtεit

+ 2
n2
√
T

n∑
i=1

n∑
j=1

T∑
t=1

µitεjt

= 1√
T

T∑
t=1

(λ2
t − σ2

λ) +Op(T−1/4n−α/4) +Op(n−1/2) +Op(n−α/2),

where the last equality follows from Lmma 1(b), 1(c) and 1(e) and the fact that 1√
T

T∑
t=1

(
1
n

n∑
i=1

µit

)2
≤

1
n

n∑
i=1

(
T∑
t=1

µ4
it

)1/2

= O(n−α/2). Then

√
T

(
σ̂2
λ − σ2

λ −
1
n2

n∑
i=1

σ2
εi

)
→d N (0,Σλ)

as (n, T →∞) by virtue of Lemma 1(a).
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(b) Proof. Note that

√
T

σ̂2
εi −

(
n− 1
n

)2
σ2
εi −

1
n2

n∑
j 6=i

σ2
εj


= 1√

T

T∑
t=1

(
µit −

1
n

n∑
i=1

µit

)2

+ 2√
T

T∑
t=1

(
µit −

1
n

n∑
i=1

µit

)(
εit −

1
n

n∑
i=1

εit

)

+ 1√
T

T∑
t=1

(εit − 1
n

n∑
i=1

εit

)2

−
(
n− 1
n

)2
σ2
εi −

1
n2

n∑
j 6=i

σ2
εj


= 1√

T

T∑
t=1

(εit − 1
n

n∑
i=1

εit

)2

−
(
n− 1
n

)2
σ2
εi −

1
n2

n∑
j 6=i

σ2
εj


+O(n−α/2) +Op

(
T−1/4n−α/4

)

by virtue of Lemma 2(a) and 2(d). For each i,

1√
T

T∑
t=1

(εit − 1
n

n∑
i=1

εit

)2

−
(
n− 1
n

)2
σ2
εi −

1
n2

n∑
j 6=i

σ2
εj


=

(
n− 1
n

)2 1√
T

T∑
t=1

(ε2
it − σ2

εi)−
2(n− 1)
n2
√
T

T∑
t=1

εit
n∑
j 6=i

εjt

+ 1
n
√
T

T∑
t=1


 1√

n

n∑
j 6=i

εjt

2

− 1
n

n∑
j 6=i

σ2
εj


=

(
n− 1
n

)2 1√
T

T∑
t=1

(ε2
it − σ2

εi) +Op(
1√
n

)

→d N (0, ωεi)

in view of Lemma 1(d) and1(e) because lim
n→∞

(
n−1
n

)2
= 1. So the desired result follows

immediately.
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(c) Using Lemma 4(b), we have

1√
T

T∑
t=1

(
(eit − e·t)2 − σ̂2

εi

)2

= 1√
T

T∑
t=1

(eit − e·t)2 −

(n− 1
n

)2
σ2
εi + 1

n2

n∑
j 6=i

σ2
εj


2

+Op

(
T−1/2

)
.

But by Lemma 2(a)-2(e),

1√
T

T∑
t=1

(eit − e·t)2 −

(n− 1
n

)2
σ2
εi + 1

n2

n∑
j 6=i

σ2
εj


2

= 1√
T

T∑
t=1


(
εit −

1
n

n∑
i=1

εit

)2

−

(n− 1
n

)2
σ2
εi + 1

n2

n∑
j 6=i

σ2
εj


2

+O(T−1/2n−α) +Op(n−α/2) +Op(T−1/4n−3α/4) +Op(T−1/4n−α/4).

In addition, using Lemma 2(f)-2(h), we can readily show that

1√
T

T∑
t=1


(
εit −

1
n

n∑
i=1

εit

)2

−

(n− 1
n

)2
σ2
εi + 1

n2

n∑
j 6=i

σ2
εj


2

= 1√
T

T∑
t=1

(
n− 1
n

)4 (
ε2
it − σ2

εi

)4
+ 1
n2
√
T

T∑
t=1


 1√

n

n∑
j 6=i

εjt

2

− 1
n

n∑
j 6=i

σ2
εj


2

+
(
n− 1
n

)2 4
n
√
T

T∑
t=1

ε2
it

 1√
n

n∑
j 6=i

εjt

2

+Op

(
n−1/2

)

Therefore, we have
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1√
T

T∑
t=1

((eit − e·t)2 − σ̂2
εi

)2
−
(
n− 1
n

)4
ωεi −

1
n2 ξn −

1
n

(
n− 1
n

)2
σ2
εi

 1
n

n∑
j 6=i

σ2
εj


=

(
n− 1
n

)4 1√
T

T∑
t=1

{(
ε2
it − σ2

εi

)2
− ωεi

}

+ 1
n2

1√
T

T∑
t=1



 1√

n

n∑
j 6=i

εjt

2

− 1
n

n∑
j 6=i

σ2
εj


2

− ξn


+ 1
n

(
n− 1
n

)2 1√
T

T∑
t=1

ε2
it

 1√
n

n∑
j 6=i

εjt

2

− σ2
εi

 1
n

n∑
j 6=i

σ2
εj




+Op(n−1/2)

=
(
n− 1
n

)4 1√
T

T∑
t=1

{(
ε2
it − σ2

εi

)2
− ωεi

}
+Op(n−1/2)

by virtue of Lemma 2(i) and 2(j). Since

1√
T

T∑
t=1

{(
ε2
it − σ2

εi

)2
− ωεi

}
→d N

(
0, var

((
ε2
it − σ2

εi

)2
))

as (n, T →∞) by classical central limit theorem for iid random variables {(ε2
it − σ2

εi)
2−ωεi},

the desired result immediately follows.

Lemma 5. Suppose Assumptions 1-4 hold with σ̃2
εi =

(
n
n−1

)2
σ̂2
εi −

(
n
n−1

)2 1
n2

n∑
j 6=i

σ̂2
εj, σ̃2

λ =

σ̂2
λ − 1

n2

n∑
i=1

σ̂2
εi, and ω̃εiT =

(
n
n−1

)4
ω̂εiT − 1

n

(
n
n−1

)2
σ̂2
εi

(
1
n

n∑
j 6=i

σ̂2
εj

)
. Then as (n, T →∞),

(a) σ̃2
εi − σ2

εi = Op (n−2) +Op

(
T−1/2

)
,

(b) σ̃2
λ − σ2

λ = Op (n−2) +Op

(
T−1/2

)
,

(c) ω̃εiT − ωεi = Op (n−2) +Op

(
T−1/2

)
.

Proof. The results follow immediately from Lemma 4.
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Lemma 6. Suppose Assumptions 1-4 hold with Ω̃iT = ω̃εiT + 4σ̃2
λσ̃

2
εi and Ωi = ωεi + 4σ2

λσ
2
εi

Then Ω̃iT − Ωi = Op

(
T−1/2

)
+Op (n−2).

Proof. The result follows readily from Lemma 5.

Theorem 1. Suppose Assumptions 1-4 hold. Then as (n, T →∞) ,

(i)
√
T
(
RMSE2

AF − σ2
λ − 1

n2

n∑
i=1

σ2
εi

)
→d N (0,Σλ).

(ii)
√
T

(
RMSE2

RT −
(

1
n

n∑
i=1

√
σ2
λ + σ2

εi

)2
)
→d N (0, φΣλ),

where φ =
(

lim
n→∞

1
n

n∑
i=1

(σ2
λ + σ2

εi)
1/2
)2 (

lim
n→∞

1
n

n∑
i=1

(σ2
λ + σ2

εi)
−1/2

)2
.

(iii)
√
T
(
RMSE2

LPS −
(
σ2
λ + 1

n

n∑
i=1

σ2
εi

))
→d N (0,Σλ).

Proof.

(i) See the proof of Lemma 4(a).

(ii) Using Taylor’s expansion and Lemma 1(b), we have

T 1/2
(
RMSERT −

1
n

n∑
i=1

√
σ2
λ + σ2

εi

)

= T 1/2

 1
n

n∑
i=1


√√√√ 1
T

T∑
t=1

e2
it −

√
σ2
λ + σ2

εi


= 1

n

n∑
i=1

1
2
(
σ2
λ + σ2

εi

)−1/2
{

1
T 1/2

T∑
t=1

[
(λt + εit)2 −

(
σ2
λ + σ2

εi

)]}
+Op

(
n−α/2

)
+Op

(
T−1/4n−α/4

)
.

33



for large n and large T .

1
n

n∑
i=1

1
2
(
σ2
λ + σ2

εi

)−1/2
{

1
T 1/2

T∑
t=1

[
(λt + εit)2 −

(
σ2
λ + σ2

εi

)]}

=
(

1
2n

n∑
i=1

(
σ2
λ + σ2

εi

)−1/2
)

1
T 1/2

T∑
t=1

(
λ2
t − σ2

λ

)

+ 1
2n

n∑
i=1

(
σ2
λ + σ2

εi

)−1/2 1
T 1/2

T∑
t=1

(
ε2
it − σ2

εi

)

+ 1
n

n∑
i=1

(
σ2
λ + σ2

εi

)−1/2 1
T 1/2

T∑
t=1

λtεit

=
(

1
2n

n∑
i=1

(
σ2
λ + σ2

εi

)−1/2
)

1
T 1/2

T∑
t=1

(
λ2
t − σ2

λ

)
+Op

(
n−1/2

)

because it can be easily shown that 1
n1/2

n∑
i=1

(σ2
λ + σ2

εi)
−1/2 1

T 1/2

T∑
t=1

(ε2
it − σ2

εi) = Op (1) and

1
n1/2

n∑
i=1

(σ2
λ + σ2

εi)
−1/2 1

T 1/2

T∑
t=1

λtεit = Op (1) by using similar arguments as in the second part

of Lemma 1(c). Then it follows that

T 1/2
(
RMSERT −

1
n

n∑
i=1

√
σ2
λ + σ2

εi

)
=

(
1

2n

n∑
i=1

(
σ2
λ + σ2

εi

)−1/2
)

1
T 1/2

T∑
t=1

(
λ2
t − σ2

λ

)
+Op

(
n−1/2

)
+Op

(
n−α/2

)
+Op

(
T−1/4n−α/4

)
→ dN

0, 1
4

(
lim
n→∞

1
n

n∑
i=1

(
σ2
λ + σ2

εi

)−1/2
)2

Σλ



as (n, T →∞). Consequently,

T 1/2

RMSE2
RT −

(
1
n

n∑
i=1

√
σ2
λ + σ2

εi

)2


=
(
RMSERT + 1

n

n∑
i=1

√
σ2
λ + σ2

εi

)
T 1/2

(
RMSERT −

1
n

n∑
i=1

√
σ2
λ + σ2

εi

)

→ dN

0,
(

lim
n→∞

1
n

n∑
i=1

(
σ2
λ + σ2

εi

)1/2
)2 (

lim
n→∞

1
n

n∑
i=1

(
σ2
λ + σ2

εi

)−1/2
)2

Σλ

 ,
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as (n, T →∞) since RMSERT + 1
n

n∑
i=1

√
σ2
λ + σ2

εi = 2
n

n∑
i=1

√
σ2
λ + σ2

εi +Op

(
T−1/2

)
.

(iii) Write

T 1/2
(
RMSE2

LPS −
(
σ2
λ + 1

n

n∑
i=1

σ2
εi

))

= 1
T 1/2

T∑
t=1

(
λ2
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λ

)
+ 1
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(
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)
,

by virtue of Lemma 1(b)-1(d) and the fact that 1
nT 1/2

n∑
i=1

T∑
t=1

µ2
it = Op

(
n−α/2

)
. Hence

T 1/2
(
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(
σ2
λ + 1

n

n∑
i=1

σ2
εi

))
→d N (0,Σλ)

holds as (n, T →∞) in view of Lemma 1(a).

Corollary 1. Suppose Assumptions 1-4 hold. Then as (n, T →∞) ,

(i) RMSE2
AF →p σ

2
λ.

(ii) RMSE2
RT →p

(
lim
n→∞

1
n

n∑
i=1

√
σ2
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εi

)2
.

(iii) RMSE2
LPS →p

(
σ2
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n→∞
1
n

n∑
i=1

σ2
εi

)
.

Proof. The results follow immediately from Theorem 1.

Theorem 2. Suppose Assumptions 1-4 hold and ω̃ε = 1
n

n∑
i=1

ω̃εiT . Then under the null

hypothesis that 1
n

n∑
i=1

σ2
εi = o
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)
,

Z =
√
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ε

{
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}
→d N (0, 1) ,
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as (n, T →∞) and n
T
→ 0.

Proof. Note that

√
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)
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1
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+Op

(
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)
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(
T−1/4n(2−α)/4

)

by virtue of Lemma 1(b) and the following results

1
T
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(
1
n
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µit
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≤ 1
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T∑
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n∑
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it ≤

1
n
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(
1
T
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it
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= Op

(
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)
,

and
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T
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(
1
n
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)(
1
n
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)
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(
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.
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Therefore,

√
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(
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)
= 1√
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n∑
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T∑
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(ε2
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1
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√
T
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n
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n
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
+
(
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) √
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n
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(
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(
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)
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(
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) √
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n
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(
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(
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(
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.

Under the null hypothesis,
(
1− 1

n2

) √
nT
n

n∑
i=1

σ2
εi = o(1) as (n, T →∞). Hence

√
nT

(
RMSE2

LPS −RMSE2
AF

)
→d N(0, ωε)

by Lemma 1(d) provided (n, T →∞) and n2−α

T
→ 0, where the latter holds because n2−α

T
< n

T

for α > 1 and n
T
→ 0 by assumption. Next, since ω̃ε = 1

n

n∑
i=1

ω̃εiT and ω̃εiT−ωεi = Op

(
T−1/2

)
+

Op (n−2) in view of Lemma 5(c), we see that

ω̃ε = 1
n

n∑
i=1

ω̃εiT →p ωε

as (n, T →∞). Consequently, under the null hypothesis,

Z =
√
nT ω̃−1/2

ε

{
RMSE2

LPS −RMSE2
AF

}
→d N (0, 1) ,

provided (n, T →∞) and n
T
→ 0.

Theorem 3. Suppose Assumptions 1-4 hold. Then under the null hypothesis that
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1
n

n∑
i=1

(
σ2
εi − 1

n

n∑
i=1

σ2
εi

)2
= o(T−1n−1),

W =
Y β̂
nT − Ŷ

β̂
nT − 1

2 β̂
(
β̂ − 1

)
Ŷ β̂−2
nT

β̂Ŷ β̂−1
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→d N(0, 1),

as (n, T →∞) and n
T
→ 0, where YnT = 1
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(
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n

)2
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Proof. Observe that if YnT − ŶnT →d N(0, 1) as (n, T →∞) and n
T
→ 0, then it follows

by Taylor’s expansion that

W =
Y β̂
nT − Ŷ

β̂
nT − 1

2 β̂
(
β̂ − 1

)
Ŷ β̂−2
nT

β̂Ŷ β̂−1
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as (n, T →∞) and n
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→ 0 since Ŷ −1
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n
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2
3

(
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1
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1
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)
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1
n
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i

)2 by virtue of Lemma 6. Thus it suffices to establish

YnT − ŶnT →d N(0, 1),

or,
1
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i=1
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as (n, T →∞) and n
T
→ 0. Now write
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Expanding the first term on the right hand side of (17) yields
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by virtue of Assumption 1, Lemma 1(b), 1(e), 1(f) and 1(g). Thus
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holds as (n, T →∞) by Theorem 2 of Phillips and Moon (1999). It follows immediately that
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Using Jensen inequality (repeatedly) and the inequality 2ab ≤ a2 + b2, we see that
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Also, under the null hypothesis, we have
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Combining (18), (19) and (20) then yields
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Thus, we conclude that
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as (n, T →∞) and n
T
→ 0 by Theorem 2 of Phillips and Moon (1999).
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Table 1: Size of W test

σ2
λ = 0.25 σ2

λ = 0.5 σ2
λ = 1

n=20 n=40 n=80 n=20 n=40 n=80 n=20 n=40 n=80
T=30 0.081 0.071 0.053 0.084 0.060 0.054 0.095 0.061 0.079

σ2
ε = 0.05 T=60 0.076 0.077 0.063 0.075 0.069 0.056 0.103 0.094 0.055

T=120 0.087 0.077 0.061 0.078 0.085 0.072 0.089 0.063 0.051
T=30 0.092 0.060 0.082 0.099 0.064 0.062 0.089 0.076 0.074

σ2
ε = 0.5 T=60 0.100 0.081 0.069 0.102 0.066 0.057 0.082 0.060 0.058

T=120 0.085 0.101 0.063 0.084 0.089 0.067 0.089 0.075 0.066
T=30 0.090 0.075 0.068 0.091 0.071 0.075 0.097 0.090 0.050

σ2
ε = 1 T=60 0.091 0.074 0.048 0.092 0.073 0.058 0.106 0.062 0.070

T=120 0.087 0.078 0.087 0.097 0.073 0.058 0.109 0.071 0.062
Note: Rejection rates of W test under H0 : σ2

εi = σ2
ε for all i at the 5% nominal level based on two-

sided N(0, 1) test and 2000 replications. The forecast errors are generated as eit = µit + λt + εit, where
µit = cin

−1/2t−1/2, ci ∼ i.i.d.U(−
√

3,
√

3), λt = ut + θut−1 with θ = 0.5, ut ∼ i.i.d.σuU(−
√

3,
√

3), and
εit ∼ i.i.d.σεiU(−

√
3,
√

3) for i = 1, . . . , n and t = 1, . . . , T .
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Table 2: Power of W test

σ2
λ = 0.25 σ2

λ = 0.5 σ2
λ = 0.1

n=20 n=40 n=80 n=20 n=40 n=80 n=20 n=40 n=80
T=30 0.624 0.363 0.066 0.329 0.126 0.018 0.154 0.066 0.016

σ2
ε = 0.05 T=60 0.956 0.844 0.163 0.706 0.365 0.076 0.395 0.132 0.004

T=120 1.000 1.000 0.416 0.963 0.832 0.122 0.723 0.392 0.054
T=30 0.996 1.000 0.829 1.000 0.977 0.594 0.952 0.847 0.255

r=0.3 σ2
ε = 0.5 T=60 1.000 1.000 1.000 1.000 1.000 0.952 1.000 0.996 0.610

T=120 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.982
T=30 1.000 1.000 0.980 1.000 1.000 0.807 1.000 0.970 0.543

σ2
ε = 1 T=60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.953

T=120 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=30 0.685 0.381 0.239 0.331 0.108 0.065 0.120 0.060 0.009

σ2
ε = 0.05 T=60 0.996 0.806 0.693 0.834 0.428 0.264 0.357 0.159 0.056

T=120 1.000 0.996 0.992 1.000 0.867 0.712 0.901 0.420 0.175
T=30 1.000 1.000 0.996 1.000 0.973 0.983 0.999 0.827 0.712

r=0.5 σ2
ε = 0.5 T=60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996

T=120 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.982 0.976

σ2
ε = 1 T=60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T=120 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Note: The forecast errors are generated as eit = µit + λt + εit, where µit = cin

−1/2t−1/2, ci ∼
i.i.d.U(−

√
3,
√

3), λt = ut +θut−1 with θ = 0.5, ut ∼ i.i.d.σuU(−
√

3,
√

3), and εit ∼ i.i.d.σεiU(−
√

3,
√

3)
for i = 1, . . . , n and t = 1, . . . , T . Let R = r × n. Under the alternative hypothesis σ2

εi = σ2
ε for

i = 1, . . . , [R/2] and σ2
εi ∼ σ2

εχ
2(1) for i = [R/2] + 1, . . . , n with [R/2] being the nearest integer value of

R/2. The test is based on a two-sided N(0, 1) test and conducted at the 5% nominal level. The results
are obtained based on 2000 replications.
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Table 3: Measures of historical uncertainty in inflation forecasts

Horizon RMSEAF RMSERT RMSELPS Z test W test
1 0.196 0.209 0.213 2.673*** 0.365
2 0.194 0.218 0.219 4.081*** 0.060
3 0.242 0.295 0.299 5.374*** 0.127
4 0.400 0.494 0.496 4.346*** -0.314
5 0.526 0.620 0.627 9.545*** 0.790
6 0.689 0.763 0.778 4.979*** 1.671*
7 0.732 0.882 0.894 5.636*** 1.412
8 0.779 0.889 0.897 6.551*** 0.858

Note: RMSEAF is the conventional uncertainty measure in equation (10), RMSERT is the Reifschneider
and Tulip (2007)’s uncertainty measure in equation (11) and RMSELP S is our suggested uncertainty
measure in equation (9). Test statistic Z is defined in Theorem 2 in testing the null hypothesis that
RMSEAF is the same as RMSELP S . Test statistic W is defined in Theorem 3 in testing the null
hypothesis that RMSERT is the same as RMSELP S . The inflation rate is measured as the annual-
average over annual-average percent change of GDP deflator. The actual inflation rate for 1992-2013 is
taken from the first quarterly release of Federal Reserve Bank of Philadelphia “real-time” data set. The
inflation forecasts used in this study are taken from the Survey of Professional Forecasters from 1991:Q1
until 2013:Q4. We construct the balanced panel by first filtering out those irregular forecasters who have
responded less than 40% of time and then imputing the missing values for the regular forecasters using a
simple panel regression as in Genre, et al. (2013). ***, ** and * indicate significance at the 1%, 5% and
10% level, respectively.
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Table 4: Measures of historical uncertainty in output growth forecasts

Horizon RMSEAF RMSERT RMSELPS Z test W test
1 0.294 0.297 0.297 4.966*** 0.055
2 0.374 0.385 0.385 5.207*** 0.005
3 0.482 0.523 0.525 2.854*** -0.070
4 0.788 0.835 0.839 4.968*** 0.425
5 1.192 1.246 1.249 2.612*** -1.102
6 1.448 1.486 1.490 4.708*** 1.809*
7 1.603 1.648 1.650 7.604*** -0.298
8 1.687 1.736 1.738 4.935*** 0.210

Note: RMSEAF is the conventional uncertainty measure in equation (10), RMSERT is the Reifschneider
and Tulip (2007)’s uncertainty measure in equation (11) and RMSELP S is our suggested uncertainty
measure in equation (9). Test statistic Z is defined in Theorem 2 in testing the null hypothesis that
RMSEAF is the same as RMSELP S . Test statistic W is defined in Theorem 3 in testing the null
hypothesis that RMSERT is the same as RMSELP S . The output growth is measured as the annual-
average over annual-average percent change of real GDP. The actual output growth rate for 1992-2013 is
taken from the first quarterly release of Federal Reserve Bank of Philadelphia “real-time” data set. The
output growth forecasts used in this study are taken from the Survey of Professional Forecasters from
1991:Q1 until 2013:Q4. We construct the balanced panel by first filtering out those irregular forecasters
who have responded less than 40% of time and then imputing the missing values for the regular forecasters
using a simple panel regression as in Genre, et al. (2013). ***, ** and * indicate significance at the 1%,
5% and 10% level, respectively.
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Table 5: Measures of historical uncertainty from a pseudo panel of inflation forecasts

Horizon RMSEAF RMSERT RMSELPS Z test W test
1 0.186 0.194 0.195 10.576*** 0.121
2 0.218 0.240 0.244 17.605*** 0.468
3 0.245 0.312 0.317 14.644*** 0.377
4 0.428 0.522 0.529 20.267*** 0.798
5 0.639 0.722 0.740 20.122*** 3.579***
6 0.751 0.823 0.847 18.548*** 5.003***
7 0.763 0.854 0.863 15.166*** 2.337**
8 0.762 0.841 0.851 16.513*** 2.630***

Note: RMSEAF is the conventional uncertainty measure in equation (10), RMSERT is the Reifschneider
and Tulip (2007)’s uncertainty measure in equation (11) and RMSELP S is our suggested uncertainty
measure in equation (9). Test statistic Z is defined in Theorem 2 in testing the null hypothesis that
RMSEAF is the same as RMSELP S . Test statistic W is defined in Theorem 3 in testing the null
hypothesis that RMSERT is the same as RMSELP S . The inflation rate is measured as the annual-
average over annual-average percent change of GDP deflator. The actual inflation rate for 1992-2013 is
taken from the first quarterly release of Federal Reserve Bank of Philadelphia “real-time” data set. The
inflation forecasts used in this study are taken from the Survey of Professional Forecasters from 1991:Q1
until 2013:Q4. The pseudo-balanced panel includes 21 forecasters, with each of them representing the
minimum, 5th percentile, 10th percentile, ..., 95th percentile and the maximum of individual forecasts,
respectively. ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively.
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Table 6: Measures of historical uncertainty from a pseudo panel of output growth forecasts

Horizon RMSEAF RMSERT RMSELPS Z test W test
1 0.308 0.315 0.316 10.557*** 0.246
2 0.413 0.428 0.428 21.252*** -0.103
3 0.575 0.640 0.651 8.953*** 2.049**
4 0.927 1.030 1.038 12.658*** 2.698***
5 1.288 1.402 1.409 12.128*** 2.411**
6 1.414 1.482 1.483 15.987*** -2.856***
7 1.539 1.632 1.639 13.666*** 3.181***
8 1.683 1.714 1.715 15.877*** -1.876*

Note: RMSEAF is the conventional uncertainty measure in equation (10), RMSERT is the Reifschneider
and Tulip (2007)’s uncertainty measure in equation (11) and RMSELP S is our suggested uncertainty
measure in equation (9). Test statistic Z is defined in Theorem 2 in testing the null hypothesis that
RMSEAF is the same as RMSELP S . Test statistic W is defined in Theorem 3 in testing the null
hypothesis that RMSERT is the same as RMSELP S . The output growth is measured as the annual-
average over annual-average percent change of real GDP. The actual output growth rate for 1992-2013 is
taken from the first quarterly release of Federal Reserve Bank of Philadelphia “real-time” data set. The
output growth forecasts used in this study are taken from the Survey of Professional Forecasters from
1991:Q1 until 2013:Q4. The pseudo-balanced panel includes 21 forecasters, with each of them representing
the minimum, 5th percentile, 10th percentile, ..., 95th percentile and the maximum of individual forecasts,
respectively. ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively.
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