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Abstract

We develop an equilibrium model consistent with several features of retail trade:
there is price dispersion; markups are high and variable; there is some random
and some directed search; buyers use both money and credit; sellers post prices
but may also bargain. Money and credit coexist because the former (latter) bears
the inflation tax (transaction costs). Other phenomena arise due to informational
heterogeneity and the combination of random plus directed search. Theory delivers
sharp qualitative predictions. Calibration yields quantitative results consistent with
facts. We discuss policy, and quantify the welfare effects of inflation, information
frictions and changes in credit conditions.
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[Some consumers] receive no information on the price in this market. (It
is natural to think of them as tourists, having no local information.) A sec-
ond type of consumer (resident) receives some information... It would be
interesting to develop models with both types of consumers and, I suspect,
would result in a different structure of equilibrium. Diamond (1971)
I think the bilateral monopoly problem has been solved. There are stores
that compete. I know where the drug store and the supermarket are, and
I take their posted prices as given. If some supermarket offers the same
quality of services and charges lower prices, I shop at that lower price su-
permarket. Prescott (2005)

1 Introduction

This paper develops a general equilibrium model with frictional goods markets meant

to resemble actual retail trade. While we do not claim to capture every detail of retail,

the framework is consistent with several salient features. These markets display price

dispersion. There are high and variable markups. There is some random matching of

sellers and buyers, but also some directed search by buyers that are better informed.

Retail relies heavily on currency and related instruments, like checks or debit cards,

although there is also substantial use of credit. The terms of trade are often posted by

sellers, yet there is also some bargaining. We construct a model to match these stylized

facts and use it to study several substantive issues, and in particular, to quantify the

effects of changes in inflation, information and credit conditions.

Our background environment is provided by the New Monetarist framework, as de-

scribed in the survey by Lagos et al. (2015), where commitment and information fric-

tions hinder credit and make money useful. We relax these frictions by allowing credit

to be used but only at a cost. We also amend the usual random matching specification by

incorporating a certain amount of directed search, and amend the bargaining component

by allowing sellers to post the terms of trade. Posting with directed search – called com-

petitive search equilibrium since Moen (1997) – is a natural way to think about retail, as

suggested above by Prescott. However, as suggested by Diamond, not everyone in every

market is so well informed. Hence, we use semi-directed search: as in Lester (2011),

1



some buyers know the terms offered by individual sellers when deciding where to shop;

others do not know this and therefore search randomly.1

To say more about the formal setup, let us call informed and uninformed buyers

locals and tourists (although one should not take this literally, given some people know

less than others about certain markets even in their home town, as discussed in fn. 7).

An important component of the theory is free entry of sellers, and they can post terms to

attract locals, although this does nothing to attract tourists. In equilibrium, some sellers

(local shops) cater to informed buyers by posting attractive terms; others (tourist shops)

serve only the uninformed. Locals sample exclusively from local shops – or, in the local

submarket. Tourists sample randomly, and may end up at a tourist or a local shop. It is

convenient, and realistic, to say buyers are not obliged to pay posted prices, and can opt

to bargain. In equilibrium, there is bargaining at tourist but not local shops.

Since the use of money is subject to inflation, while credit involves transaction costs,

both may be used in equilibrium. This is desirable because we see both in the data, and

important for policy analysis because it allows substitution between payment methods.

Moreover, incorporating costly credit avoids an indeterminacy of equilibria that plagues

related models (see fn. 11). And it is realistic: credit generally involves resources spent

on record keeping, screening, enforcement etc. As a narrow example, if credit makes

transactions easier to tax, and paying with cash avoids this, the choice of money versus

credit involves comparing sales and inflation taxes. More broadly, Nosal and Rocheteau

(2011) discuss a body of work modeling money and alternative payment instruments

(e.g., credit or bank liabilities) by giving the latter transaction costs, and based on this,

it is fair to say we are following a long tradition.2

1To be clear, Lagos et al. (2015) discuss models with directed search and posting, or undirected search
and bargaining, but not both. We nest these. Lester (2011) combines random and directed search, but has
no bargaining, does not consider money in the model, does not embed it in dynamic general equilibrium,
and does not attempt to calibrate it in order to match facts or measure welfare effects.

2A particular cost of credit is monitoring. As Wallace (2013) says, “If we want both monetary trade
and credit in the same model, we need something between perfect monitoring and no monitoring. As in
other areas of economics... extreme versions are both easy to describe and easy to analyze. The challenge
is to specify and analyze intermediate situations.” Here one can say that monitoring is available but not
free, which is not especially deep, but serves the purpose.
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We establish existence and provide strong predictions about the effects of parame-

ters. A few results differ from conventional wisdom – e.g., several well-known papers

say prices fall if buyers become better informed (Salop and Stiglitz, 1977; Varian, 1980;

Burdett and Judd, 1983; Stahl, 1989), but we show the opposite is also possible. A few

results are consistent with conventional wisdom but for different reasons – e.g., we can

match the finding in Benabou (1992b) of a negative relation between markups and in-

flation through a channel different from Benabou (1992a) or Head and Kumar (2005).

We can also match the positive relation between price dispersion and inflation found by

Parsley (1996), Debelle and Lamont (1997) and others.3 Importantly, even when the

inflation tax and cost of credit vanish, the first best may not obtain: the outcome is ef-

ficient in local but not tourist shops. Inflation can improve this, in principe, by taxing

more heavily the more expensive tourist shops. For some values for the fraction of in-

formed buyers λ, this outweighs the usual cost of inflation, and the Friedman rule can

be suboptimal (this is always true in an extension where λ is endogenous).

To say more about the quantitative analysis, first, on inflation, a consensus that

emerged from cash-in-advance and related models is that the cost of having 10% in-

stead of an optimal policy is around 0.5% of consumption – see Lucas (2000) for a

well-known example and Aruoba et al. (2011) for more references. In New Monetarist

models, e.g., Lagos and Wright (2005), the cost of inflation can be an order of magnitude

bigger. This is due to random search and bargaining, which some people find objection-

able, we think because they think it is unrealistic.4 Competitive search models partially

deflect that critique. They also yield welfare numbers much smaller than random search

and bargaining. Intuitively, if optimal policy gives efficiency, moderate inflation entails

a small loss, by the Envelope Theorem. With Nash bargaining, e.g., optimal policy gives

3This finding is not a universally accepted fact – e.g., Reinsdorf (1994) finds a negative and Caglayan
et al. (2008) find a U-shaped relationship.

4In addition to Prescott’s view in the epigraph, on random matching in particular, consider Hahn
(1987): “someone wishing to exchange his house goes to estate agents or advertises – he does not, like
some crazed particle, wait to bump into a buyer.” Or consider Howitt (2005): “when people wish to buy
shoes they go to a shoe store; when hungry they go to a grocer... Few people would think of planning
their economic lives on the basis of random encounters.”
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efficiency iff buyers’ bargaining power is 1, which is the Hosios (1990) condition in this

context. Competitive search delivers that condition endogenously.

This motivates asking what happens with a combination of posting and bargaining,

with a balance disciplined by data. The result is 1.39%. This is closer to models with

directed search and posting rather than random search and bargaining, even though cal-

ibration delivers plenty of tourists: only a fraction λ = 0.27 of our buyers are informed.

The difference from existing search-and-bargaining models comes from several ingre-

dients. One is that inflation here can have a desirable impact on market composition,

i.e., the mix between local and tourist shops. Other factors include our assumption of

free entry and our particular bargaining solution. To see how all this matters, we re-

produce results from previous studies by shutting down various channels, and provide

an accounting of the importance of different factors. Also, again, some inflation can be

desirable, in principle, but the benchmark calibration implies the Friedman rule is still

optimal. However, that is quite sensitive to parameters.

As for the impact of information on these results, decreasing λ worsens the cost of

inflation when inflation is above 7% and mitigates the cost otherwise. For intermediate

values of λ a small deviation from the Friedman rule can be desirable, as mentioned

above, because of composition effects. As inflation increases, however, eventually the

share of tourist shops begins to rise, which compounds the welfare impact. As for

the impact of changing information given inflation, increasing λ slightly from 0 lowers

welfare – hence, counterintuitively, having more information can backfire on consumers.

Yet moving from λ = 0 to λ = 1 is beneficial, and worth 3.1% of consumption. Indeed,

an unanticipated results is that at λ just above 1/2, the tourist submarket shuts down,

and the economy behaves as if λ = 1. Thus, a simple majority of local buyers is enough

to render this particular information friction innocuous.

Lastly, we explore the importance of credit conditions. Perhaps surprisingly, in-

creasing the use of credit by lowering its cost hurts welfare and output, although the

effects are not large – e.g., adjusting the cost to double the use of debt yields a 0.09%
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drop in output and has a cost of 0.10% in terms of consumption. This is related Gu et al.

(2016), who prove that, when credit is costless, increasing the debt limit is neutral in

monetary economies, because it only crowds out real balances to leave total liquidity

the same. With costly credit, expanding its use tends to reduce welfare, although there

are also composition effects on the mix between local and tourist shops. In general, the

net effect can go either way, but at the calibrated parameters it is negative. This stands

in stark contrast to a nonmonetary version of our model, where we find that reducing

the cost of credit always enhances output and welfare.

The rest of the paper is organized as follows. Section 2 lays out the model. Section

3 provides analytic results. Section 4 presents quantitative results. Section 5 concludes.

All proofs are contained in an Appendix.5

2 Model

Each period in discrete time has two subperiods: first there is a decentralized market,

or DM, with frictions detailed below; then there is a frictionless centralized market, or

CM. This follows Lagos and Wright (2005), and is natural for our purposes because at

its core is an asynchronization of expenditures and receipts – obviously crucial for any

analysis of money or credit. There is a measure 1 of infinite-lived agents called buyers

and a measure N of sellers. Both types can be interpreted as households, or, without

changing the equations, sellers can be reinterpreted as retail firms acting on behalf of

their owners (see Aruoba et al., 2014). In the CM agents trade goods and labor (x, `),

pay taxes, settle debts and adjust money balances. In the DM buyers cannot produce but

want to consume a different good q produced by sellers. Period utility is U (x)+u (q)−`

for buyers and U (x) − q − ` for sellers, where u and U have the usual properties. All

agents discount at β ∈ (0, 1) between the CM and DM.

5We mention that this project abstracts from long-term relationships between consumers and retailers,
what Gourio and Rudanko (2014) call customer capital. This is not because we think customer capital is
unimportant; we just want to focus on other issues for now. We also mention related work by Liu et al.
(2015), which also has money and credit, but is technically different (mostly because it uses Burdett–Judd
search and price posting) and pursues distinct applications (mainly sticky prices).
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Buyers and sellers meet bilaterally in the DM where they trade (p, q). Here p denotes

a payment by the buyer measured in units of numeraire x in the next CM. If q represents

quantity, P = p/q is the unit price. If q represents quality that we do not observe,

although the agents do, one can say p is the price.6 In any case, we call P = p/q

the markup. The DM partitions sellers into submarkets with the same (p, q). In each

submarket, agents match randomly, with arrival rates depending on market tightness, or

the buyer-seller ratio, n. A submarket is thus identified by Γ = (p, q, n). This much

is standard. Less standard is that a buyer with probability λ is informed (a local) and

sees Γ in every submarket, but with probability 1− λ is uninformed (a tourist) and only

knows the distribution across submarkets.7

As a benchmark, assume buyers in the CM do not know if they will be informed in

the next DM (the other case is available on request). Also, assume that a buyer can either

agree to the posted terms (p, q) or can opt to bargain. Anticipating some results, equi-

librium involves two submarkets, one with local shops catering to the informed and one

with tourist shops serving only the uninformed. Local shops offer favorable terms, in-

formed customers visit them, and accept the posted (p, q). Uniformed customers search

randomly, and may find a local shop where they accept (p, q), or a tourist shop where

they bargain. See Fig. 1, where NL and NT are the measures of local and tourist shops.

If ωj denotes the ex ante probability a buyer goes to submarket j, before knowing if

he will be informed, then

ωT =
(1− λ)NT

NL +NT

and ωL =
NL + λNT

NL +NT

. (1)

Thus, ωT is the probability of being uninformed times the probability of finding a tourist

shop. As there is a measure 1 of buyers, ωj is also the measure of buyers in submarket

6Consider two wines costing $10 and $100 a bottle. If we do not know the latter is higher quality we
would say it has a higher price, but it might actually be a better deal. Of course empirical price measures
try to control for quality, but may not get it exactly right.

7One does not have to take the local and tourist labels literally. Suppose Mr. A knows all the shops
with cheap apples but not those with good deals on bananas, and vice versa for Ms. B. On days when
Mr. A and Ms. B both need apples, he acts like a local and she acts like a tourist, while the opposite is
true when they both need bananas. This is formally equivalent to having a generic good and different
locations, with individuals randomly transiting between them, and knowing more about some than others.
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Figure 1: Decentralized market structure

j. Market tightness in each submarket is given by

nT =
1− λ

NT +NL

and nL = nT +
λ

NL

. (2)

Within a submarket, buyers and sellers meet according to a CRS matching technology:

for a seller, the probability of meeting a buyer is α (nj); for a buyer the probability of

meeting a seller is α (nj) /nj . Assume α (n) is strictly increasing if α (n) < 1 and

α (n) /n is strictly decreasing if α (n) < n. Also, α (0) = 0 and α (n̂) = 1 for some

n̂ ∈ (0,∞]. Notice from (2) that nL ≥ nT , with nL > nT if λ > 0. This says local

submarkets are necessarily tighter.

An agent’s state in the CM is net worthA. For a buyer, A = φm−d−γ
(
d− d̄

)
+τ ,

where m is money brought from the previous DM, φ is the price of m in terms of CM

numeraire x, d is debt from the previous DM, γ
(
d− d̄

)
is a transaction cost incurred by

using debt above some exogenous level d̄, and τ is a lump sum transfer that can be used

to inject currency.8 For a seller, A is similar. For either, the CM problem is

W (A) = max
x,`,m̂

{
U(x)− `+ βV (φ+m̂)

}
st x = w`− φm̂+ A,

where w is the wage, m̂ is money taken out of the CM, and V is the DM value function,

depending on real balances at next period’s prices, z ≡ φ+m̂. We focus on stationary

equilibrium, where W and V are independent of time.
8While γ

(
d− d̄

)
is borne by buyers, the results are the same if it is borne by sellers, as in standard

tax-incidence theory. Indeed, one interpretation of γ
(
d− d̄

)
is a sales tax on paying more that d̄, which

can be avoided by using cash, as in Gomis-Porqueras et al. (2014).
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To ease notation, assume a CM technology x = `, so that w = 1. Then, eliminating

`, we get

W (A) = A+ max
x
{U(x)− x}+ max

z
{− (1 + π) z + βV (z)} ,

where 1+π = φ/φ+1 is inflation, the same as the growth of the money supply stationary

equilibrium. For buyers, the FOC for z > 0 is 1 + π = βV ′(z). For sellers, z = 0

since they have no need for liquidity in the DM. For both, z is independent of A, and

W ′(A) = 1, due to quasi-linear utility. A seller’s DM trade surplus is W (A + p) −

W (A) − q. Using W ′(A) = 1, this is net revenue, R = p − q. A buyer’s DM surplus

is S = u (q) − p − γ
(
d− d̄

)
, with d = p − z. Below we consider two cases: a pure

credit (nonmonetary) equilibrium with z = 0; and a monetary equilibrium with z > 0.

In monetary applications we often set d̄ = 0 to reduce notation. Also, let the costly part

of debt be D = p− d̄− z ≥ 0, and assume γ (0) = γ′ (0) = 0 and γ′ (D) , γ′′ (D) > 0

∀D > 0. Given γ′ (0) = 0, even in monetary equilibrium buyers use some credit.

Sellers choose whether to participate in the DM at cost k, and if they participate, the

submarket to enter, j ∈ {L, T}. For the market to open, impose

k < (1− η)[u(q∗)− q∗], (3)

where u′ (q∗) = 1, and η is the min of η ≡ nα′(n)/α(n), the elasticity of matching.

As in Lester (2011), a seller either posts terms to attract locals, or gets only tourists.

By constant returns, for generic parameters we can say there is at most 1 submarket of

each type. We let tourist shops post terms to extract the entire surplus, but this does not

actually matter because, in equilibrium, buyers bargain in these shops.

Sellers’ expected surplus in submarket j is Πj = α (nj)Rj − k, where Rj = pj − qj
for j ∈ {L, T}. In the local submarket, as is standard with free entry, the terms posted

are determined by maximizing buyers’ surplus subject to Πj = 0:

max
p,q,n

{
α(n)

n

[
u(q)− p− γ

(
p− d̄− z

)]}
st α (n) (p− q) = k. (4)
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Then ΓL = (pL, qL, nL) solves the constraint and the FOC’s wrt q and n,

u′(qL) = 1 + γ′
(
pL − d̄− z

)
(5)

pL − qL =
(1− ηL) [u(qL)− qL − γ(pL − d̄− z)]

ηLu
′(qL) + 1− ηL

. (6)

By (6), the seller gets a fraction (1− ηL)/[ηLu
′(q) + 1− ηL] of the total trade surplus.9

Now consider tourist shops. Here we adopt the Kalai bargaining solution, which, as

Aruoba et al. (2007) argue, has several advantages over Nash in models with liquidity

considerations. Kalai’s solution in this context can be found by maximizing the surplus

subject to the seller getting a share 1− θ, where θ is the buyer’s bargaining power:

max
p,q
{u(q)− q − γ(p− d̄− z)} st p− q = (1− θ)[u(q)− q − γ(p− d̄− z)]. (7)

This leads to

u′ (qT ) = 1 + γ′
(
pT − d̄− z

)
(8)

pT − qT = (1− θ)[u(qT )− qT − γ(pT − d̄− z)]. (9)

Then ΓT = (pT , qT , nT ) solves (8), (9) and ΠT = α (nT )RT − k = 0. Note ΓT solves

the same conditions as ΓL, except (1 − ηL)/[ηLu
′(q) + 1 − ηL] is replaced by 1 − θ.

Hence, if θ is not too big, buyers prefer to not bargain at local shops.10

Buyers’ DM payoff is their value in the next CM plus the expected DM surplus,

V (z) = W (z + τ) + ωL
α(nL)

nL

[
u(qL)− pL − γ

(
pL − d̄− z

)]
+ωT

α(nT )

nT

[
u(qT )− pT − γ(pT − d̄− z)

]
.

Notice trade does (does not) depend on z at tourist (local) shops, where customers bar-

gain (accept the posted terms). From this it is easy to derive

V ′ (z) = 1 + ωL
α(nL)

nL
γ′ (DL) + ωT

α(nT )

nT
[u′(qT )q′T − p′T − γ′(DT )(p′T − 1)] , (10)

9This formulation differs slightly from Rocheteau and Wright (2005), where sellers do not take z as
given but post terms to induce buyers to bring a particular z to the DM. With buyers’ information realized
after leaving the CM, it is more natural to have them take (ΓL,ΓT ) as given when choosing z.

10To be clear, they do not bargain at local shops on or off the equilibrium path – i.e., it is not a profitable
deviation to bring z′ 6= z and bargain (as long as i is not too big, as we assume below).
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where q′T and p′T are derivatives wrt to z, andDj = pj− d̄−z is the part of credit subject

to the transaction cost.

Inserting (10) into buyers’ FOC from the CM, (1 + π) = βV ′ (z), we arrive at

i = ωL
α(nL)

nL
γ′(DL) + ωT

α(nT )

nT
[u′(qT )q′T − p′T − γ′(DT )(p′T − 1)] , (11)

where the Fisher equation is used to define a nominal interest rate by 1+i = (1 + π) /β.

As usual, i is the return agents require in the next CM to give up a dollar in the current

CM, and we can price this trade whether or not it occurs in equilibrium. Based on this,

the LHS of (11) can be understood as the cost of carrying an extra dollar, while the RHS

is the expected marginal benefit.

We now show V (z) is concave and buyers cash out in at least some trades. Proofs

of these and other nonobvious results are in the Appendix.

Lemma 1 In monetary equilibrium V ′′ (z) < 0 ∀z < p̂ = max {pL, pT}.

Lemma 2 In monetary equilibrium 0 < z < p̂.

We show below that p̂ = pT > pL. Thus, Lemma 2 implies buyers cash out at tourist

shops for sure, while they may or may not cash out at local shops. Lemma 1 implies the

solution to (11) is unique and generates a well-behaved demand for money.11

Definition 1 A pure credit equilibrium is a nonnegative list 〈ΓL,ΓT 〉 such that Γj solves

the relevant conditions in each submarket with z = 0.

Definition 2 A monetary equilibrium is a nonnegative list 〈ΓL,ΓT , z〉 such that Γj

solves the relevant conditions in each submarket given z > 0, and z solves the money

demand problem given (ΓL,ΓT ).

11Notice V ′′ exists due to a smooth cost of credit γ (D). This avoids an indeterminacy of monetary
steady states in a series of papers following Green and Zhou (1998). See Jean et al. (2010) for more
discussion, but consider the case of indivisible goods. If sellers think all buyers bring m = X to market,
they all post p = X as long X is not too small; and if they all post p = X buyers bring m = X as long
as X is not too big. So p = m = X is an equilibrium for any X in some range. Without credit, a similar
indeterminacy arises here, because V (z) is discontinuous, but adding γ (D) resolves the problem.
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3 Analytic Results

We now establish existence and uniqueness of equilibrium where at least submarket

L is open, and compare submarkets when both are open. Pure credit and money are

considered in turn.

3.1 Pure Credit

Proposition 1 Pure credit equilibrium exists uniquely if d̄ is not too small.

Proposition 2 In pure credit equilibrium with NL, NT > 0, the local submarket has

greater tightness nL > nT , a lower payment pL < pT , a lower markup PL < PT , lower

net revenue per trade RL < RT , and higher output qL ≥ qT , with qL > qT as long as

qT < q∗, where u′ (q∗) = 1.

In Proposition 1, the requirement that d̄ is not too small can bind, as otherwise the

gains from trade would not justify sellers’ fixed cost k. In Proposition 2, submarket L is

tighter because locals only go there and tourists search randomly. Since ΠL = ΠT and

submarket L is tighter, RT > RL. Indeed, pT > pL, and qL > qT as long as qT < q∗.

Now NL > 0 if d̄ is not too small, k is not too big and λ > 0, since sellers are always

willing to cater to informed buyers. Stronger assumptions are necessary for NT > 0,

but it is always true when λ is small.

The next result establishes ΓL and ΓT are each unique and continuous in d̄.12 In

terms of substance, as credit gets easier, sellers produce more, charge more, earn more

per trade, and enter more.

Proposition 3 In pure credit equilibrium, as d̄ increases, pj and qj increase while nj

andDj decrease continuously in both submarkets. The effect on Pj is ambiguous. More-

over, ΓT is differentiable in d̄, and if nL < n̂ then ΓL is differentiable in d̄.

12In directed search it is usually difficult to say much on parameter changes, as ΓL may not be unique
or continuous, as even if u (q) and α (n) are concave the product α (n)u (q) in the objective function
may not be. In the spirit of Choi (2015), we make progress using methods of monotone comparative
statics. Although the argument in the Appendix is lengthy, it delivers clean results that may be considered
a contribution to the pure theory of directed search.

11



Figure 2: Equilibrium at different d̄ and λ.

There are different types of equilibria. First, pT > pL means buyers are more likely

to be constrained by d̄ in submarket T . Let p∗j be the payment required to get q∗ in

submarket j. If p∗j ≤ d̄, buyers get q∗ in submarket j; if p∗j > d̄, although they could get

q∗ using costly credit, they choose qj < q∗ (by the Envelope Theorem). In Fig. 2, in area

A1 both submarkets are active, NL, NT > 0, and buyers use costly credit in tourist but

not local shops, p∗L < d̄ < p∗T . In A2, again, NL, NT > 0, but now buyers use credit in

both submarkets, pT > pL > d̄. In A3, submarket T shuts down, and buyers use credit

in local shops iff d̄ < p∗L.

3.2 Money and Credit

We now set d̄ = 0 and look for monetary equilibrium. This can be reduced to a solution

T (z) = i, where T (z) is given by the RHS of (11), taking into account that (ΓL,ΓT )

depend on z. Write this as

T (z) =
ωLα(nL)

nL
γ′(pL − z) +

ωTα(nT )

nT
[u′(qT )q′T − p′T − γ′(pT − z)(p′T − 1)] (12)

for NT (z) > 0, and

T (z) =
α(nL)

nL
γ′(pL − z) (13)
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Figure 3: Equilibrium at different i and λ.

for NT (z) = 0. If i is not too high, as is true in the calibration, then T ′(z) < 0, and

there is a unique solution to T (z) = i. Moreover, if NT > 0 then qT < q∗, while

qL < q∗ or qL = q∗ are both possible, and if NT = 0 then qL < q∗, since buyers must be

constrained in some trades. Here are analogs to the results with pure credit:

Proposition 4 Monetary equilibrium exists uniquely if i is not too big.

Proposition 5 In monetary equilibrium the results in Proposition 2 all hold.

Proposition 6 In monetary equilibrium, as i increases, z, pj and qj decrease, while nj

and Dj increase, continuously. The effect on Pj is ambiguous.

There are again different types of equilibria, as shown in Fig. 3, this time in (λ, i)

space. In area A1, we have NL, NT > 0, and buyers use credit in tourist but not local

shops. In A2, we have NL, NT > 0 and buyers use credit in both. In A3, NT = 0 and

buyers use credit in local shops. When i is too high there is no monetary equilibrium,

and agents trade using only credit in A4 and A5. Again, submarket T shuts down for

big λ. By way of preview, the calibration below puts us in A2, where buyers use money

and credit in both submarkets, but if i were to fall sufficiently, we would move into A1,

with no credit used in local shops.
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Although this is discussed more in the context of the quantitative work, recall that

some research finds a negative relation between markups and inflation. By Proposition

6, the impact of i on Pj is ambiguous, but even if ∂PT/∂i > 0 and PL/∂i > 0, the

average DM markup can fall with i because ∂NT/∂i < 0, ∂NL/∂i > 0 and PT > PL.

Moreover, the aggregate markup averages this with the CM markup, which is 1 because

the CM is competitive. Since the DM shrinks as i rises, the aggregate markup can easily

fall. So at least in theory we can match the evidence on inflation and markups.

3.3 Welfare and Policy

Having discussed some technical results and observable implications, let us turn to wel-

fare, measured by the sum of buyers’ and sellers’ DM payoffs (CM payoffs are constant

for the interventions considered). Net of entry costs, this is given by

Ω = ωL

{
α(nL)

nL
[u(qL)− qL − γ (pL − z)]− k

nL

}
+ (14)

(1− ωL)

{
α(nT )

nT
[u(qT )− qT − γ(pT − z)]− k

nT

}
.

With pure credit, tourist shops are bad for two reasons. First, the buyer-seller ratios are

different across submarkets, nL > nT . With α (n) concave, this does not maximize the

number of trades. Second, as usual with competitive search, ΓL is efficient; in general,

however, ΓT is not. So if feasible a regulator should eliminate tourist shops, but not

intervene in the local submarket, where entry and the terms of trade are efficient.

Things are less obvious in monetary equilibrium.13 It can be checked that qj → q∗ as

i→ 0 by (15), (5) and (8), but this does not necessarily mean equilibrium is efficient, due

to entry. For i close to 0 it would be desirable to regulate tourist shops out of existence.

13To summarize known results, with random search and Nash bargaining, Lagos and Wright (2005)
show i = 0 is optimal and achieves q∗ iff θ = 1. For random search and Kalai bargaining, Aruoba et al.
(2007) show i = 0 is optimal and implies q∗ ∀θ. For directed search and posting, Rocheteau and Wright
(2005, 2009) show i = 0 is optimal and achieves q∗. With random search and mechanism design, Hu
et al. (2009) and Gu et al. (2016) can sometimes support q∗ even at i > 0. Those models are without
entry. With entry, for random search and bargaining, i = 0 is optimal but does not generally deliver the
first best, as discussed in Berentsen et al. (2007). For posting and directed search with entry, Rocheteau
and Wright (2005, 2009) show i = 0 may or may not deliver the first best, depending on details.
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For i > 0, however, this need not be the case, because real balances are inefficiently

low. Since pT > pL, the presence of tourist shops actually encourages money demand,

and it is possible that NT > 0 can partially offset the tendency for z to be too low, by

the usual theory of the second best.

In practice, it may be hard for regulators to identify tourist shops or dictate their

terms of trade. Suppose we focus on controlling i, and let equilibrium determine the

market’s composition and terms. When λ = 1 or λ = 0, inflation is always bad, but we

claim that for intermediate λ it can be good. For (λ, i) ∈ A1, an increase in i has two

opposing effects: (i) z and the surplus in submarket T fall; and (ii) NT falls, so buyers

are less likely to end up at tourist shops. There is an non-empty area A∗1 in the lower

right part ofA1 such that the net effect is positive. To see why, notice NT is small in this

area, so the total impact of reducing the surplus in submarket T is small and dominated

by the gain from reducing NT :

Proposition 7 In monetary equilibrium (λ, i) ∈ A∗1 ⇒ ∂Ω/∂i > 0, where A∗1 6= ∅.

The calibration below puts us inA2, but reducing imoves us intoA1. Whether or not

we move into A∗1 is sensitve – this does not happen at the point values for parameters,

so i = 0 is optimal, but fairly minor variations can make it suboptimal. This highlights

the importance of partially directed search: the optimality of i = 0 is guaranteed for

λ ∈ {0, 1}, but not for λ ∈ (0, 1). And this is less trite than some results – e.g., if people

smoke too much and cigarettes tend to be purchased with cash, high i is desirable for

health reasons. That is trite unless one explains why cigarettes cannot be taxed directly

or why they are purchased with cash in the first place. Here it may not be easy to identify

and tax tourist shops directly, and it is an endogenous outcome that they use more cash.

To be clear, we are not saying tourist shops are more cash intensive, but since their prices

are higher, buyers in submarket T tend to use more cash and more credit.

Now consider the interaction between money and credit. One might expect a higher

cost of credit reduces welfare, but that need not be true. From an individual’s point of

view, both money and credit are costly, but from the social perspective only the latter is
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costly (given seigniorage revenue is rebated via transfers). Hence, agents use too much

credit, and raising its cost might increase Ω. To make this precise, define a ranking of

cost functions as follows: γ2 (D) is more costly than γ1 (D) if γ−1
2 (x) is weakly flatter

than γ−1
1 (x) ∀x > 0. Thus, if γ2 (D) is more costly than γ1 (D) then γ2(D) > γ1(D)

∀D ≥ 0. The next result allows us to make the discussion rigorous:

Lemma 3 For any cost functions γ2 and γ1, γ2(γ′−1
2 (a)) < γ1(γ′−1

1 (a)) ∀a ≥ 0 if γ2 is

more costly than γ1.

Consider first pure random or pure directed search, so only one submarket is open,

with Γ = (p, q, n) and D = p− z. Then making credit more costly is good.

Proposition 8 Assume λ ∈ {0, 1}. As γ becomes more costly in the sense defined above,

n and D fall while p, q, z and Ω rise.

Intuitively, when γ (D) is more costly, z increases, and so does the surplus per trans-

action. Hence, given either λ ∈ {0, 1}, welfare is maximized at D = 0 when credit is

prohibitively expensive. This is related to Gu et al. (2016), where the cost of credit is 0

for D ≤ d̄, and∞ otherwise. There an increase in d̄ has no impact – it simply crowds

out z, leaving total liquidity the same. Here, since it is costly, increasing the use of credit

lowers welfare because it uses up resources without increasing liquidity.

Now consider λ ∈ (0, 1), where the results depend on parameters. If (λ, i) ∈ A1

then, as γ (D) becomes more costly, the surplus in submarket L is unchanged while the

surplus in submarket T rises. Hence more sellers enter submarket T and buyers trade at

tourist shops with higher probability. Also recall that for λ ∈ {0, 1} the optimal policy is

i = 0, but for other values of λwelfare is higher with i > 0 because it shrinks submarket

T . Similarly, when λ ∈ {0, 1} a lower cost of credit hurts, but for some λ it can raise

Ω by discouraging tourist shops:

Proposition 9 For (λ, i) ∈ A1, as γ becomes more costly, ΓL stays the same, pT , qT

and ωT rise, and nT falls. For (λ, i) ∈ A∗1, Ω falls as γ becomes more costly.
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3.4 The Impact of Information

Here we consider exogenous changes in λ, as well as the implications of making λ

endogenous. For the first, recall that standard nonmonetary models predict that prices

fall when there are more informed buyers. This is also true in our model with pure credit:

an increase in λ does not affect ΓT or ΓL, but increases NL/NT , and hence average p

and P = p/q fall. However, in a monetary economy, a change in λ affects not only

information, it endogenously affects z and hence sellers’ strategies.

To pursue this, recall that Γj does not depend on λ directly, but only through z, and

p moves in the same direction as z. Then the next result is useful:

Proposition 10 In monetary equilibrium, z is monotone in λ. For some ı̃ > 0, ∂z/∂λ ≤

0 ∀i < ı̃; for i > ı̃, ∂z/∂λ > 0 is possible.

This is illustrated by example in the right panel of Fig. 4, where ∂z/∂λ > 0 for some i.

The left panel is a different example, using parameters calibrated below, where ∂z/∂λ <

0 ∀i; but one does not have to stray far from the calibration to get ∂z/∂λ > 0. Again,

when z rises, so does p. If q represents unobserved quality, we can call p the price and

say it rises with λ, counter to conventional wisdom. We are less sure about P = p/q,

since q goes up along with p, but in examples P can go up with λ. The bottom line is

that prices need not fall when information improves in monetary economies.14

Now suppose buyers can acquire information if they pay a fixed cost s > 0, and are

uninformed with probability 1 otherwise. We claim that as long as s is not too big, so

that some buyers become informed, and increases in i around 0 improves welfare. To

verify this, first, note the informed and uninformed now choose different real balances,

zI and zU . Given this, the expected payoff for an uninformed buyer in submarket j is

14Here is the intuition: As λ increases, buyers more often buy at local shops. Then z rises iff the
marginal value of money is higher in submarket L than T . If i is small, z is almost enough to get q∗ at
local shops, so an extra dollar is marginally more valuable in submarket T . As λ increases agents reduce
z and in response pL and pT fall. If i is large, however, an extra dollar can be more valuable in submarket
L. In this case z, pL and pT can increase with λ. Of course, for very big λ submarket T shuts down and
further increases have no impact, as shown by the flat segments in Fig. 4.
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Figure 4: Effect of λ on z for different i in examples.

Bj(zU), where

BT (zU) ≡ α(nT )

nT
{u [qT (zU)]− pT (zU)− γ [pT (zU)− zU ]}

BL(zU) ≡ α(nL)

nL
[u(qL)− pL − γ(pL − zU)].

Then the expected DM payoffs for uninformed and informed buyers are

VU = max
zU
{W (0)− izU +

NL

NT +NL

BL(zU) +
NT

NT +NL

BT (zU)}

VI = max
zI
{W (0)− izI +BL(zI)}.

A buyer is willing to pay for information iff s ≤ VI − VU .

Consider equilibrium where λ ∈ (0, 1) and s = VI − VU . For small s and i, such an

equilibrium exists uniquely.15 The Appendix shows this:

Proposition 11 With endogenous information, λ ∈ (0, 1)⇒ i > 0 is optimal.

In terms of economics, when i increases from near 0, buyers want to carry less cash, and

hence are more willing to pay s to avoid tourist shops. Lower money balances entail a

second-order welfare loss, by the Envelope Theorem, but since there are more informed

buyers we get fewer tourist shops, and that is a first-order gain. This reminiscent of
15We only prove uniqueness for small i, but there should be no obvious presumption of multiplicity,

because when more buyers are informed there are fewer tourist shops and that makes information less
valuable. This is different from Lester et al. (2012), e.g., where sellers pay for information, while buyers
choose asset positions, and that makes multiplicity natural.
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Benabou (1992a) and Head and Kumar (2005), although the economics is different.

They say that inflation increases price dispersion, which increases the return to search,

which increases competition across sellers and hence buyers’ surplus. Here inflation

directly discourages tourist shops, which is beneficial whether or not it increases price

dispersion. To say more about these kinds of issues, the next step is to calibrate the

model.

4 Quantitative Analysis

Here we discuss the quantitative impact of changing inflation, information and credit

conditions, and show the model can match certain facts. For this exercise, a period is

a year, with 1 + r = 1/β = 1.03. However, in this type of model period length is not

critical, and can change with minimal effect, if we scale variables like r and the trading

probabilities (see, e.g., Aruoba et al. (2011)).

4.1 Calibration

The CM and DM utility functions are U(x) = log(x) and u(q) = Bq1−b/ (1− b), with

(b, B) set to match the aggregate money demand curve, i.e. the empirical relationship

between nominal interest rates and some measure of money scaled by output, M/PY .

With U(x) = log(x), real CM output is x∗ = 1 (a normalization), while DM output in

the same units from submarket j is α(nj)Nj[pj − γ(pj − z)]−Njk. Aggregate Y sums

these, while M/P is given by z, and hence M/PY is determined in equilibrium as a

function of i. As usual, for our measure of M we want some notion of M1.16

16Some economists, e.g. Lucas (2000), express a tension between what in theory looks like currency
but in practice, in their empirical work, includes demand deposits. We do not consider this a problem.
In many recent papers in the area, various assets can be more or less available for use in the DM (see
Venkateswaran and Wright (2013) for an extended discussion). As rationale for M1, consider these
points: (i) Checks and debit cards are heavily used in retail, where they are almost as liquid as currency,
and backed by demand deposits paying about the same interest. (ii) It is not really relevant for our theory
whether one’s money is in one’s pocket or checking account. (iii) A key feature of credit is that it allows
buyers to pay for DM goods by working in the next CM, while cash, check and debit purchases all require
working in the previous CM, which matters especially when DM trade is random. (iv) Using M1 in the
macro data is consistent with measuring money and credit usage in the micro data discussed below.

19



The best available information on money demand comes from Lucas and Nicolini

(2012), a sample of annual observations between 1919 and 2008 on M1J and the nom-

inal interest rate on 3 month T-bills. Their M1J series augments the usual M1 series

by including money market accounts after regulatory amendments in 1980 made these

about as liquid as checking accounts, and Lucas and Nicolini (2012) argue that with this

correction the empirical money demand relationship is stable over the sample. To fit the

data with u(q) = Bq1−b/ (1− b), intuitively, changing B shifts the curve up and down

and is set to match a mean M/PY of 0.27, while b captures the elasticity and is set to

minimize the sum of squared residuals between the model and data. A version of this

procedure is used in most quantitative monetary economics.

Let the use of credit in the aggregate, as opposed to in a given buyer-seller meet-

ing, be ∆. The cost of credit function is γ(D) = CDc, where D is total credit in

a meeting because here we set d̄ = 0. Consumers’ willingness to substitute between

money and credit as i changes is captured by c, and the share of purchases made with

credit by C. Mimicking the procedure for money demand, we set (c, C) to match the

empirical relationship between ∆/Y and i or, equivalently, given we match z/Y , the

empirical relationship between z/∆ and i. We use Federal Reserve Board data on credit

for household, family and other personal expenditure, exclusive of loans secured by real

estate (see FRB’s G.19 consumer credit release, FRED Series: TOTALSL). This is ap-

propriate since such credit largely supports retail trade. In annual observations between

1943 and 2008, on average z/∆ = 2.3, which implies about 30% of DM transactions

by value are made with credit, not far from the micro data.17

Estimated credit and money demand curves are shown in Fig. 5. The fit for the

latter (top left) is good, even at low interest rates, which is a challenge for some models

17Note that 30% is not targeted, but can be considered a consistency check. Liu et al. (2015) discuss the
micro data and primary sources in more detail, but as a quick summary, in both Boston Fed and Bank of
Canada studies, credit is used in 20% of transactions by volume. By value rather than volume, American
data say it is still around 20% while Canadian data say it is closer to 40%. It is a puzzle why they agree
by volume but not value, but those who collect the data stand by their numbers. One can say the Canadian
findings are more in line with the conventional view that cash is used for smaller purchases. In any event,
our 30% by value falls precisely midway between the American and Canadian numbers.
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Figure 5: Estimated money and credit demand curves.

(see Lucas, 2000). The fit for credit in levels (bottom left) or logs (bottom right) is

reasonable, although apparently there is a structural break in the 1990s. However, the

relationship between z/∆ and i (top right) seems stable and the fit is remarkably good,

displaying clear substitution from money to credit when i rises. Understanding the break

in the credit series is beyond the scope of this paper, but perhaps future work can try to

capture this by changes in, e.g., lending practices. While similar issues are relevant for

monetary data, Lucas and Nicolini (2012) try to control for this, which is not the case for

the credit data. Still, the key factor for us is substitutability between money and credit,

and this we evidently capture quite well.18

18If an upward-sloping credit demand curve seems puzzling, note that standard theory concerns bor-
rowing and real interest rates, while i is the nominal rate. Credit usage increases with i since it is the
relative cost of money and credit in their roles as alternative payment instruments.
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The DM matching technology is α(n) = n/(1 + n), following search models of

money going back to Kiyotaki and Wright (1993). Buyers’ bargaining power is θ, and

with this matching technology, their effective bargaining power in local shops is en-

dogenously given by η = n/ [u′(q) + n]. The degree of price dispersion depends on

θ− η, which depends on the measure of informed buyers λ. We calibrate θ to match the

relative standard deviation of retail store prices in the Kaplan and Menzio (2014) data.

However, using their standard deviation of 19% would attribute all price dispersion to

informational heterogeneity, which seems extreme. Hence, our benchmark is the dis-

persion they report due to differences across stores for a given good at a given time, and

differences within a store for a given good over time, which accounts for 55% of their

total variability. This gives a relative standard deviation of 14%, and implies θ = 0.73.

Then λ is set so the DM markup matches the average in retail trade survey data (see

https://www.census.gov/retail). The average ratio of gross margins to sales in retail be-

tween 1992-2008 is 0.28, implying an average markup of 1 + 0.28/(1 − 0.28) = 1.39.

Our markups are 1.55 and 1.27 in submarkets T and L, given the latter contributes about

53% of DM output. This is quite close to differences in markups in the data where the

low end includes, e.g., Warehouse Clubs, Superstores, Automotive Dealers and Gas Sta-

tions, while the high end has Specialty Foods, Clothing, Footwear and Furniture. We

do not push this too hard, as our variability is not due to heterogeneous goods but in-

formation (although Warehouse Clubs and Superstores are arguably excellent examples

of local shops). Finally, entry cost k is set to get an aggregate (across the CM and DM)

markup of 1.1 based on Basu and Fernald (1997). The size of the DM depends on k.

Since our DM markup is 1.39 while the CM markup is 1.0, k pins down the average

trade-weighted markup, and makes the DM share of total output 25%.19

Table 1 summarizes the discussion. As one can see there are not too many param-

eters, considering the specification has money and credit, heterogeneous information,

19We do not calibrate the CM and DM output shares – like the shares of local and tourist shops in the
DM, these emerge from targeting observables. Conveniently, at least for remembering the numbers, the
DM contributes 1/4 of total output, with 1/2 of that coming from tourist shops and 1/2 from local shops.
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bargaining plus posting, etc. Moreover, they are all naturally tied to simple and eco-

nomically reasonable targets.

Description Value Source/Target
DM utility curvature, b 0.65 relationship between z/Y and i
DM utility level, B 0.55 average z/Y
Credit cost curvature, c 4.01 relationship between z/∆ and i
Credit cost level, C 2.06 average z/∆
Informed buyers, λ 0.27 average retail markup
Sellers’ DM entry cost, k 0.015 average aggregate markup
Buyer’s bargaining power, θ 0.73 average price dispersion

Table 1: Calibrated parameter values

4.2 Inflation

We use a standard measure of welfare: first, compute the equilibrium payoff at a given

π; then compute the percentage reduction in total (CM plus DM) consumption that

agents would accept to reduce inflation to a new level, like π = 0, or the Friedman rule

i = 0. Fig. 6 reports results using i = 0, chosen because that is optimal at the caIibrated

parameters. In the benchmark specification, the cost of having 10% inflation, e.g., is

1.39% of consumption. Compared to models with pure random search and bargaining

1.39% is low. One might guess this is due to a large fraction of informed buyers, but

since calibration yields only λ = 0.27, there is more involved.

Figure 6 also gives results for λ = 0 and 1, i.e., pure random and pure directed

search.20 Even at λ = 0 our results are significantly lower than existing search-and-

bargaining models, due various factors, including the bargaining solution, costly credit

and free entry. Suppose we try to replicate the results in Lagos and Wright (2005), e.g.,

at λ = 0 by picking similar values of θ and shutting down entry. With Nash bargaining

and θ = 0.315, their cost of 10% inflation is 6.9% while we get 6.0%; and at θ = 0.5 they

get 3.6% while we get 3.3%. These numbers are close but not exactly the same because

20The models are re-calibrated using a similar procedure, except when λ ∈ {0, 1} we drop the target
for DM price dispersion, since there isn’t any, and when λ = 1 we drop the retail markup, since we lose
the parameter θ.
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Figure 7: Effects of inflation on markups and price dispersion.

our calibration procedure and data are slightly different, we use Kalai bargaining, and

we have credit. Still, starting from this approximation, one can measure the contribution

of each factor. Our calibration yields θ = 0.73, higher than what they had because the

way we use markup data is different and arguably better. Using this instead of θ = 0.5

lowers the welfare cost from 3.3% to 1.6%. Allowing entry brings it down further to

1.5%. And finally, using λ = 0.27 instead of 0 delivers 1.39%, our baseline result.

Inflation affects not only welfare, but observables like markups and price dispersion,

as discussed above. The left panel of Fig. 7 shows DM markups are increasing in π,

counter to some empirical findings. But because the DM shrinks with π, the aggregate

markup averaged over the CM and DM is falling in π. This makes it clear how the choice
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of sample is important in empirical work – both positive and negative relationships are

consistent with theory, in general, and consistent with the calibration, depending on

what we measure. A similar issue applies to price dispersion, shown in the right panel

of Fig. 7: dispersion in aggregate prices increases while dispersion in DM (retail) prices

decreases with π.

4.3 Information

Consider now the consequences of information frictions. In Fig. 8, the top-left panel

shows the cost (benefit if negative) of moving away from the calibrated λ = 0.27.

There are two forces. As λ increases the ex ante probability of trading at a tourist

shop falls, as shown in the bottom left. Then, since local shops are less expensive,

buyers carry less cash. As Proposition 6 says, lower z implies lower surplus in both

submarkets, suggesting Ω may fall as λ increases; but the gain from having more local

shops dominates, and on net Ω goes up. Precisely, increasing λ from 0 to 1 is worth

a sizable 3.32% of consumption. Indeed, Ω peaks around λ = 0.53, where submarket

T shuts down. The good news is that having just over half of the buyers informed

renders this friction innocuous. The bad news is that calibration only delivers λ = 0.27.

We can also ask how information affects markups and price dispersion. In Fig. 9,

as λ increases the markup in each submarket rises, but the average DM markup falls as

a result of changing composition. Also, the aggregate markup across the CM and DM

falls since the latter shrinks. Again, the effect on markups depends on which market we

consider. In terms of price dispersion, for low (high) values of λ it increases (decreases)

with information. So both positive and negative effects of information on dispersion can

be consistent with the theory. Further, for low values of λ, aggregate price dispersion

falls while retail dispersion rises with information.

We can also ask how the cost of inflation changes with λ. As λ falls from 1 to 0,

submarket T increases, and since inflation discourages tourist shops this can be good

for welfare. Inflation also hurts consumer surplus in both local and tourist shops, but as
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Figure 8: Effects of changing λ.

discussed above, for intermediate values of λ the first effect dominates. This is shown

in Fig. 10 for λ ∈ {0.01, 0.27, 0.50, 0.99}. In the left panel, with π > 7%, the cost of

inflation increases as λ falls, in line with work showing inflation is more costly with

random search and bargaining. However, for π < 7%, the cost decreases as λ falls due

to composition effects. For different λ, inflation can hurt more than with either λ = 0

or λ = 1, or can be welfare improving. The right panel of Fig. 10 shows that at the

calibrated λ = 0.27, moderate inflation hurts welfare more than when λ ∈ {0, 1}.
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Figure 9: Effects of λ on markups and dispersion.
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Figure 10: Cost of high (left) and low inflation (right) for alternative λ.
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Figure 11: Cost of inflation from surplus (left) and composition (right).

How exactly does information affect the cost of inflation? To investigate this, con-

sider decomposing welfare into two components:

Ω =
∑
j=L,T

ωj︸︷︷︸
composition

α(nj)

nj
[u(qj)− pj − γ (pj − z)]︸ ︷︷ ︸

expected surplus

.

Fig. 11 recalculates the cost of 10% inflation instead of the Friedman rule holding the

expected surplus (right) and composition (left) constant. In the left panel, inflation low-

ers the surpluses, and the impact is larger at λ = 0.27 than λ = 0. Hence, reducing

information can help welfare on this dimension at low inflation rates. In the right panel,

only composition changes. When λ ∈ {0, 1}, composition is fixed, but when λ ∈ (0, 1)

small deviations from i = 0 discourage tourist shops and improve welfare. As i con-

tinues to rise, it discourages both local and tourist shops, but the former at a faster rate.

From this effect better information can compound the cost of inflation.

27



50 0 50
% Change in debt

100

50

0

50

100

%
 C

ha
ng

e i
n 

m
on

ey
 h

ol
di

ng
s, 

 z
100 50 0 50 100

% Change in debt

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

%
 C

ha
ng

e i
n 

DM
 su

pr
lu

s Tourist submarket
Local submarket

100 50 0 50 100
% Change in debt

0.638

0.640

0.642

0.644

0.646

0.648

0.650

To
ur

ist
 sh

ar
e

NT /(NT +NL )

100 50 0 50 100
% Change in debt

0.15

0.10

0.05

0.00

0.05

0.10

0.15

W
elf

ar
e c

os
t (

%
)

100 50 0 50 100
% Change in debt

0.10

0.05

0.00

0.05

0.10

%
 C

ha
ng

e i
n 

ou
tp

ut

Figure 12: Effects of changes in debt induced by changes in the cost of credit.

4.4 Credit

One reason to introduce credit is to give agents an alternative to money that allows them

to partially avoid the inflation tax. However, credit is not costless and, as has become

apparent over the last decade, credit conditions fluctuate. We now use the model to

examine the implications of changes in debt resulting from changes in the cost of credit.

As in Section 3.3, we vary the cost of credit γ(D) = CDc by changing C, and compute

the impact on endogenous variables, as summarized in Fig. 12.

In the spirit of Proposition 8, lower C raises debt in a submarket whenever it is used,

and this crowds out z, but less than one for one (top-right). The effect on the surplus
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Figure 13: Effects of credit in monetary and nonmonetary models.

differs in submarkets L and T . For high C, debt is not used in submarket L (top-left).

In this case, as C falls, qT increases and pT decreases, with the net effect on the surplus

negative. As a result, tourist shops exit, so total output and welfare fall. As C falls

further, credit gets used in both submarkets. In this range a decrease in C benefits the

more expensive tourist shops, so that pT and qT rise while pL and qL fall. However,

the net effect on each submarket, including the cost of credit, is negative. There is then

a shift in composition towards tourist shops, and Ω falls. Indeed, Ω is monotonically

decreasing with the use of debt.

Many recent studies of credit are void of cash. To see how this matters, consider

changing credit conditions in the nonmonetary equilibrium of our model. For this ex-

periment we keep the parameters in Table 1 unchanged, but add a costless credit limit

d̄, set to z from monetary equilibrium (this means we do not have to recalibrate and en-

sures differences in results are not due to differences in parameters). As Fig.13 shows, in

nonmonetary equilibrium, tighter credit is quite bad: changing C to get a 20% reduction

in debt has a welfare cost of 0.3% and reduces output by 2.0%. In monetary equilibrium

the effects are reversed. Now, real-world credit markets are complicated and varied, and

we do not claim, e.g., ours is a good model of mortgages, student loans or other forms

of borrowing over the life cycle. Still, the results provide a word of caution to those try-

ing to measure the importance of credit conditions in environments where agents have

nothing in the way of alternatives like money.
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5 Conclusion

This paper has reported results from our study of frictional goods markets. The theory

was shown to display the following features: there is price dispersion; markups are

high and variable; there is some random and some directed search; buyers use both

money and credit; and while sellers typically post the terms of trade, there is also some

bargaining. This resembles actual retail trade (abstracting from other features, e.g., long-

term relationships). We derived sharp analytic results on the existence of equilibria with

various properties and on the effects of parameter changes. The model can capture the

behavior of observables like price dispersion and markups. Some novel results emerged,

such as the possibility of higher prices when consumers are better informed in monetary

equilibrium. In terms of policy, deviations from the Friedman rule can be optimal, and

although that is not true at the calibration, it is for small changes in parameters. The

economic channel involves composition effects, given that inflation is a tax, and that it

hits expensive, inefficient, tourist shops harder.

Calibration involved information on retail and aggregate markups, price dispersion,

and the empirical credit and money demand relations. This was used to quantify sev-

eral effects. The implied cost of 10% inflation is 1.39% of consumption, which can be

decomposed into components related to bargaining, entry and information. Our stylized

decentralized market accounted for 1/4 of output, with about equal shares coming from

local and tourist shops, and the fraction of informed consumers was λ = 0.27. Com-

pared to an economy where buyers are all uninformed – i.e., pure random search – this

is half way to the λ required to put tourist shops out of business. We also analyzed the

quantitative impact of information frictions and credit conditions. Reducing the cost,

and hence increasing the use, of credit was shown to be bad. Although this effect was

not large, it is certainly different than one would estimate if one ignored money broadly

defined. We think we learned a lot from these exercises, and that much more can be

done in terms of theory, measurement and policy analysis; that is left for future work.
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Appendix: Proofs
Lemma 1: In monetary equilibrium, we can rewrite (10) using u (qT )− pT − γ (DT ) =

θ [u (qT )− qT − γ (DT )] (from Kalai bargaining) as

V ′ (z) = 1 + ωL
α(nL)

nL
γ′ (DL) + ωT

α(nT )

nT
θ [u′(qT )q′T − q′T − γ′(DT ) (p′T − 1)]

= 1 + ωL
α(nL)

nL
γ′ (DL) + ωT

α(nT )

nT
θγ′ (DT ) (q′T − p′T + 1)

= 1 + ωL
α(nL)

nL
γ′ (DL) + ωT

α(nT )

nT

θγ′(DT )

1 + θγ′(DT )
. (15)

The second line uses u′ (qT ) = 1 + γ′ (DT ) by (8). The third line uses q′T − p′T + 1 =

1/[1 + θγ′(Dt)] by differentiating (9) wrt z. Since ωj and nj are independent of z and

γ is convex, V ′′ (z) ≤ 0 as long as Dj = pj − z decreases in z for j = L, T , and DL

falls in z, because pL is not a function of z. Next, DT falls in z by (8) and (9). Finally,

V ′′ (z) < 0 if either DL or DT falls strictly in z, and Dj falls strictly in z as long as it is

strictly positive. We know either DL > 0 or DT > 0 because z < max{pL, pT}. �

Lemma 2: In monetary equilibrium, the FOC holds at equality, namely 1 + i = V ′ (z).

Hence, i > 0 implies either γ′(DL) > 0 or γ′(DT ) > 0 by (15). This implies either

DL > 0 or DT > 0 as γ′(D) > 0 iff D > 0, and thus z < max {pL, pT}. �

Proposition 1: Given d̄, from (8)-(9), the solution for qT (d̄) and pT (d̄) are unique and

p′T (d̄) − q′T (d̄) ≥ 0 (see the proof of Proposition 3). Given (3) and θ < η, if d̄ is

big enough then pT (d̄) − qT (d̄) > k. In this case there is a unique nT (d̄) > 0 solving

α(nT (d̄))(pT (d̄)−qT (d̄)) = k, and submarket T is active at ΓT =
(
pT (d̄), qT (d̄), nT (d̄)

)
.

One can also show nL(d̄) and qL(d̄) are unique (see the proof of Proposition 3). By free

entry pL(d̄) is also unique, and submarket L is active at ΓL if the surplus for consumers

is nonnegative. Since the terms of trade in submarket L are better than submarket T , if

the latter is active so is the former. Hence, a unique pure credit equilibrium exists when

d̄ is not too small. �

Proposition 2: From NL > 0, λ > 0 (there cannot be local shops if everyone is unin-

formed). Immediately (2) and λ,NL > 0 imply nL > nT . Since nL solves (4), nL ≤ n̂

where α (n̂) = 1. For nL > n̂ the objective function in (4) can be increased by low-

ering nL. Hence, α(nL) > α(nT ), and ΠL = ΠT implies pL − qL < pT − qT . The
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results for P and R are obvious once we check q and p, so it remains to show qL ≥ qT

and pL < pT . There are different cases. First suppose pL, pT ≥ d̄. By (5)-(8), if qj is

big then pj is small, so pL − qL < pT − qT implies pL < pT and qL > qT . Second

suppose pL < d̄ ≤ pT . By (5)-(8), qL = q∗ ≥ qT . Third suppose pL ≥ d̄ > pT . By

(5)-(8), qT = q∗ ≥ qL, but then ΠL = ΠT implies pT ≥ pL, contradicting the sup-

position pL ≥ d̄ > pT ; so this case cannot occur. Finally suppose pL, pT < d̄. Then

qL = qT = q∗, so ΠL = ΠT implies pL < pT . If qT < q∗, then either the first or the

second case holds, and qL > qT . �

Proposition 3: Consider first tourist shops, with bargaining, which is easy compared

to directed search with posting. If p∗T ≤ d̄, then no costly credited is needed and thus

all derivatives wrt d̄ are 0. If p∗T > d̄, we can apply the Implicit Function Theorem to

(8)-(9) to define the bargaining solution pT (d̄) and qT (d̄). Then differentiate them wrt d̄

to get

p′T (d̄) = 1−
{

1− γ′′(DT )

u′′(qT )

[
1 + (1− θ)γ′(DT )

γ′′(DT )− u′′(qT )

γ′′(DT )

]}−1

∈ [0, 1)

q′T (d̄) =
[
p′T (d̄)− 1

] γ′′(DT )

u′′(qT )
> 0.

Then D′T
(
d̄
)

= p′T (d̄) − 1 < 0 when DT > 0 because p′T (d̄) ∈ [0, 1). Next, the RHS

of (9) rises in d̄ because q′T (d̄) > 0 and D′T
(
d̄
)
< 0, and thus R′T

(
d̄
)
> 0. This implies

n′T
(
d̄
)
< 0 by free entry.

Now consider local shops’ problem (4). Making a change of variables by defining

y = p− d̄− q and using the constraint to eliminate p and d̄, (4) becomes

max
n,q,y

{
α(n)

n
[u(q)− q − γ(y + q)]− k

n

}
st α(n)(y + d̄) ≥ k. (16)

We can first choose q independent of n. Define G(y) ≡ maxq{u(q) − q − γ(y + q)}.

The solution for q satisfies u′(q)− 1 = γ′(y + q) because u is concave and γ is convex.

Thus, q decreases continuously and is differentiable in y. By the Envelope Theorem,

G′(y) = −γ′(y + q) < 0 and G′′(y) = γ′′(y + q)u′′(q)/[γ′′(y + q) − u′′(q)] < 0.

Eliminating y using the constraint from (16), we get

max
n

F (n, d̄) ≡ max
n

{
α(n)

n
G

[
k

α(n)
− d̄
]
− k

n

}
.
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Since F (0, d̄) = −∞, n = 0 is not a solution. Since α(n) = 1 and α′(n) = 0 ∀n > n̂,

the solution is n(d̄) ≤ n̂, as otherwise we can lower n to increase the objective function.

Thus n(d̄) ∈ (0, n̂]. If n(d̄) is interior then ∂F (n, d̄)/∂n|n=n(d̄) = 0; otherwise n(d̄) =

n̂.

Next we verify the SOC and show the solution for n is unique. Consider

∂F (n, d̄)

∂n
=

[
α′(n)

n
− α(n)

n2

]
G

[
k

α(n)
− d̄
]
− kα′(n)

α(n)n
G′
[

k

α(n)
− d̄
]

+
k

n2

=
1

n2

{
[nα′(n)− α(n)]G

[
k

α(n)
− d̄
]
− kα′(n)n

α(n)
G′
[

k

α(n)
− d̄
]

+ k

}
.

This derivative vanishes at an interior solution. To verify the SOC, differentiate the

expression in the braces wrt n to derive

α′′(n)nG

[
k

α(n)
− d̄
]
− kα′′(n)n

α(n)
G′
[

k

α(n)
− d̄
]

+
α′(n)2nk2

α(n)3
G′′
[

k

α(n)
− d̄
]
.

Since G[k/α(n) − d̄] > 0 at n = n(d̄), this is strictly negative at n = n(d̄) because

α′′, G′, G′′ < 0, so the SOC is satisfied.

Next we argue the solution is unique. SinceG′(y) < 0 and α′ ≥ 0, G[k/α(n)− d̄] >

0 ∀n ≥ n(d̄). This implies the expression is strictly negative ∀n ≥ n(d̄) and thus the

solution to ∂F (n, d̄)/∂n = 0 is unique whenever it exists. Moreover, n = n̂ cannot be

optimal when an interior solution exists because ∂F (n, d̄)/∂n < 0 ∀n that exceeds the

interior solution. This proves the solution is in general is unique. Now we show n(d̄)

falls in d̄. Since

∂2F (n, d̄)

∂d̄∂n
=
α′(n)k

α(n)n
G′′
[

k

α(n)
− d̄
]

+
α(n)

n2

[
1− α′(n)n

α(n)

]
G′
[

k

α(n)
− d̄
]
≤ 0,

any interior n(d̄) is differentiable with n′(d̄) ≤ 0. In any equilibrium with qL < q∗, we

have G′[k/α(n)− d̄] < 0 and hence ∂2F (n, d̄)/∂d̄∂n < 0 and n′(d̄) < 0.

Finally, we show q rises in d̄. If n(d̄) = n̂, it is easy to see the solution for y in (16)

decreases in d̄ and hence q(d̄) increases in d̄ continuously. For interior n(d̄), write (16)

as a Lagrangian

max
n,y

{
α(n)

n
G(y)− k

n
+ ζ[α(n)(y + d̄)− k]

}
,
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with ζ the multiplier for the free entry condition. The FOC’s wrt n and y are

0 =

[
α′(n)

n
− α(n)

n2

]
G(y) +

k

n2
+ ζα′(n)(y + d̄) (17)

0 = G′(y) + ζn. (18)

Now eliminate ζ from (17) using (18) to get a differentiable equation linking y, n and d̄.

Since n′(d̄) exists, y′(d̄) exists. Hence q′(d̄) exists.

To show q′(d̄) > 0, it is sufficient to show y′(d̄) < 0 because we already argue the

solution for q falls and is differentiable in y. Consider (17). The RHS rises in d̄ or y. At

the solution, y + d̄ = p − q > 0 because sellers must get a positive surplus, and so the

RHS increases in ζ . Also, the SOC holds at the solution and hence the RHS falls with

n. Imagine a small increase in d̄ such that the RHS increases. Since n′(d̄) < 0, either y

falls or ζ falls with d̄ so that the RHS stays 0. If y′(d̄) < 0 we are done. Suppose ζ falls.

Then ζn falls with d̄, by (18) and G′′ < 0, y′(d̄) < 0. �

Proposition 4: We first show T (z) is continuous. By Proposition 2, qj(z), nj(z), Nj(z)

and pj(z) are continuous, and thus (12) and (20) are continuous in z. When λ = 1 −

nT (z)/nL(z), (12) and (20) are identical, therefore T (z) is continuous. At i = 0, by (3),

the solution for z is big enough to sustain an equilibrium with positive number of sellers,

namely NT +NL > 0. Since T (z) decreases in z, a unique monetary equilibrium exists,

when i is small, by continuity. �

Proposition 5: By Lemma 2 and Proposition 2, buyers always cash out in submarket T .

Therefore, by (8), qT < q∗. By Proposition 2, nT > nL, qT < qL, pT > pL, PL < PT

and RL < RT . �

Proposition 6: By Proposition 3, pj(z) and qj(z) rise in z and nj(z) and Dj(z) fall in

z. Since T (z) is continuous and T (z) decreases in z given the maintained assumptions,

we know the solution for T (z) = i decreases continuously in i and the results follow. �

Proposition 7: An alternative way to write (14) is

Ω =
ωLα(nL)

nL
[u(qL)− pL − γ (pL − z)] +

ωTα(nT )

nT
[u(qT )− pT − γ(pT − z)] ,

where the entry costs do not show up because the terms in brackets are the buyer’s (not

total) surplus, and entry costs cancel with the seller’s surplus. Using (6), (9) and free
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entry, then using (1) and (2), we simplify this to

Ω =
ωL
nL

(
ηLk

1− ηL

)
+
ωT
nT

(
θk

1− θ

)
=

λ

nL − nT

(
ηLk

1− ηL

)
+

(1− λ)nL − nT
nT (nL − nT )

(
θk

1− θ

)
.

The RHS depends on i only through nT and nL. Since ∂nT/∂i > ∂nL/∂i = 0 in

A1, ∂Ω/∂i has the same sign as ∂Ω/∂nT . Differentiating the RHS wrt nT yields

∂Ω

∂nT
=

k

(nL − nT )2

{
ληL

1− ηL
+

θ

1− θ

[
(1− λ)

nL
nT

(
2− nL

nT

)
− 1

]}
. (19)

The sign of the RHS depends on the term in braces, call it Φ. An equilibrium in A1 is

in A∗1 iff Φ ≥ 0. At the intersection point of A1 and A3, NT = 0 ⇔ (1 − λ)nL = nT .

In this situation, inflation enhances welfare:

Φ ≡ ληL
1− ηL

+
θ

1− θ

[
(1− λ)

nL
nT

(
2− nL

nT

)
− 1

]
=

ληL
1− ηL

− θλ

1− θ
nL
nT

=
λnL
k

{
α(nL)

nL
[u(qL)− pL − γ (DL)]− α(nT )

nT
[u(qT )− pT − γ(DT )]

}
> 0.

The second equation uses (1 − λ)nL = nT . The third equation uses (6), (9) and free

entry. The last inequality is true because a buyer receives a higher expected payoff in

submarket L than in submarket T . By continuity, there is an interval for λ where Φ > 0

at i = 0. �

Lemma 3: Since γ−1
2 (b) is flatter than γ−1

1 (b) and γ′1(b), γ′2(b) > 0 ∀b > 0,

∂γ−1
2 (b)

∂b
<
∂γ−1

1 (b)

∂b
⇔ 1

γ′2(γ−1
2 (b))

<
1

γ′1(γ−1
1 (b))

⇔ γ′1(γ−1
1 (b)) < γ′2(γ−1

2 (b)).

Since γ′(D) and γ−1(b) are increasing, γ′(γ−1(b)) rises with b. Thus, the last in-

equality implies ∀b1, b2, γ′2(γ−1
2 (b2)) = γ′1(γ−1

1 (b1)) ⇒ b1 > b2. In other words,

a = γ′2(γ−1
2 (b2)) = γ′1(γ−1

1 (b1)) ⇒ γ2(γ′−1
2 (a)) = b2 < b1 = γ1(γ′−1

1 (a)). There-

fore, γ(γ′−1(a)) falls strictly as γ−1 grows flatter. �

Proposition 8. Part (a): λ = 0. Since γ(D) is strictly increasing, strictly convex and

differentiable ∀D ≥ 0, γ′(D) exists and rises in D. For any given a = γ′(D), one can

write γ(D) as an implicit function γ(γ′−1(a)). When λ = 0, only submarket T exists
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and by (12) and (15) money demand is

i =
α(nT )

nT

θγ′(D)

1 + θγ′(D)
=
α(nT )

nT

θa

1 + θa
. (20)

By (8), qT falls continuously in γ′(D). Thus, one can also write qT as an implicit

function q(a) ≡ u′−1(1 + a) where a = γ′(D). The inverse function exists since we

assume u′′(q) < 0 for q < q∗. It is easy to verify q(0) = q∗. By (9) and free entry,

k

(1− θ)α(nT )
= u(q(a))− q(a)− γ(γ′−1(a)). (21)

Using (20) one can define an implicit function nT = n1(a) for any a because

α(nT )/nT falls in nT . Similarly, one can define nT = n2(a) by (21). Any a solv-

ing n1(a) = n2(a) pins down the terms of trade in equilibrium. Since the equilibrium

is unique by Proposition 4, the solution for n1(a) = n2(a) is unique. To characterize

it, note that (20) and (21) imply n1(a) and n2(a) rise with a. At a = 0, n1(0) = 0 by

(20) and n2(0) = α−1(k/(1− θ)[u(q∗)− q∗]) > 0 by (21). Thus n2(a) cuts n1(a) from

above once as a rises.

As the cost of credit increases, the implicit function γ(γ′−1(a)) falls ∀a by Lemma

3. In this case, n2(a) falls ∀a by (21). This implies a and n fall, so there are more sellers

and α(nT )/nT rises. Also, qT (a) rises as a falls because u′(qT (a)) = 1 + a and u is

concave. Moreover, the surplus for sellers pT − qT rises by free entry, and thus pT rises.

The surplus for buyers u(qT )−qT−γ(DT ) rises in pT−qT , by the bargaining solution. So

buyers get a larger surplus per transaction and a higher matching probability, therefore

welfare Ω rises. Finally, as the cost of using credit rises, the total expenditure on credit

γ(DT ) = γ(γ
′−1(a)) falls because a falls and γ(γ′−1(a)) falls ∀a. Then debt DT falls

because γ(d) rises ∀d > 0 and γ(DT ) falls in equilibrium. Since pT rises and DT falls,

z = pT −DT rises.

Part (b): λ = 1. With pure directed search trade (n, q, p) solves

max
n,q,p,z

{
α(n)

n
[u(q)− q − γ(p− z)]− k

n
− iz

}
st k = α(n)(p− q).

Now we make several changes of variables. First, let a = γ′(p− z) so p = γ′−1(a) + z.

Second, since the solution satisfies (5), q solves q(a) ≡ u′−1(1 + a). Third, by free
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entry k = α(n)(p − q), z = p − γ′−1(a) = q(a) − γ′−1(a) + k/α(n). Fourth, from

the FOC i = γ′(pL − z)α(n)/n, one can express n as an implicit function n(a) where

i = aα(n(a))/n(a). Substitute a, q(a), n(a) and z = q(a)− γ′−1(a) + k/α(n) into the

problem to get

max
a

{
i

a

[
u(q(a))− q(a)− γ(γ′−1(a))

]
− k

n(a)
− i
[
q(a)− γ′−1(a) +

k

α(n(a))

]}
.

Now we argue the solution for a falls strictly as γ becomes more costly. Let γ2 be

more costly than γ1, so that γ−1
2 is weakly flatter than γ−1

1 . Let Fj(a) be the function in

braces when the cost function is γj for j = 1, 2. Differentiate Fj to get

∂F2(a)

∂a
− ∂F1(a)

∂a
=

i

a2

[
γ2(γ′−1

2 (a))− γ1(γ′−1
1 (a))

]
< 0.

The last inequality uses Lemma 3. Consequently, a falls strictly in j by standard mono-

tone comparative statics. It follows that n falls as γ becomes more costly by (20). The

rest of the proof is identical to the last part of (a).

Finally, we verify Ω is maximized when credit is not used if λ ∈ {0, 1}. Define

γ̄(D) ≡ γ(bD) for b > 1, so γ̄−1 is flatter than γ−1. As b rises, γ̄ grows more costly

and Ω rises by parts (a) and (b). As b → ∞, γ̄(D) → ∞ ∀D > 0 and the equilibrium

converges to one without costly credit. �

Proposition 9. For the first claim, by (1) and (2), ωT = 1− λnL/(nL − nT ). Substitute

this into (15) and let a = γ(DT ) to get

i =

(
1− λnL

nL − nT

)
α(nT )

nT

θa

1 + θa
. (22)

Any (nT , a) solving (21) and (22) characterizes ΓT . Now we argue that if (λ, i) ∈ A1

we stay inA1 as γ grows more costly. To show this, we assume we stay inA1 as γ grows

more costly, and then verify it. If we stay inA1, buyers have enough money to purchase

q∗ in submarket L, and ΓL is constant. Using the logic in part (a) of Proposition 8, define

n1(a) and n2(a) by (22) and (21), so ΓT is characterized by the solution n1(a) = n2(a).

One can use part (a) of the proof of Proposition 8 to show that nT falls and pT , qT and z

rise as γ grows more costly. Since z rises, buyers have enough z to get q∗ in submarket
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L, and the equilibrium stays in A1. Then ωT = 1− λnL/(nL − nT ) rises since nT falls

and nL is constant.

For the second claim, if the equilibrium is inA∗1 ⊂ A1, then nT rises as γ grows less

costly as in the first claim. Moreover, Ω rises in nT when equilibrium is in A∗1 by (19).

Therefore Ω rises as γ grows less costly in A∗1. �

Proposition 10. If NT = 0 then T (z) is given by (20) and λ has no effect on z, so

∂z/∂λ = 0. If NT > 0 then T (z) is given by (12). Eliminating Nj using (2) and

differentiating, we get

∂T (z)

∂λ
∝ α(nL)

nL
γ′ (pL − z)− α(nT )

nT
[u′(qT )q′T − p′T − γ′(pT − z)(p′T − 1)] .

The RHS is continuous in z and independent of λ. By the Implicit Function Theorem,

∂z/∂λ and ∂T (z)/∂λ have the same sign because T ′(z)∂z/∂λ + ∂T (z)/∂λ = 0 and

T ′(z) < 0. When the RHS is 0, ∂T (z)/∂λ = 0⇒ ∂z/∂λ = 0, so the RHS stays 0 as λ

increases further. Hence, ∂z/∂λ never changes sign as λ increases. When λ = 0 there is

ı̃ > 0 such that ∀i ≤ ı̃ an extra dollar is redundant in local shops, z > p∗L. Thus, ∀i < ı̃,

∂T (z)/∂λ|λ=0 < 0⇒ ∂z/∂λ|λ=0 < 0. By earlier analysis, ∂z/∂λ ≤ 0 ∀λ and i ≤ ı̃. �

Proposition 11. We have Ω = −λs+λVI +(1−λ)VU +τi, where τ = λzI +(1−λ)zU .

Substitute τ and s = VI − VU to get Ω = VI − s+ i[λzI + (1− λ)zU ], and derive

∂Ω

∂i
= (1− λ)(zU − zI) + i

∂[λzI + (1− λ)zU ]

∂i
.

This uses ∂VI/∂i = −zI by the Envelope Theorem. This expression is strictly positive

at i = 0 because zU = p∗T > p∗L = zI at i = 0. �
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Supplemental Appendix (Not for Publication)
We sketch a version where buyers choose their money holding after learning their

information status, and hence informed and uninformed buyers choose different z. For
an informed buyer zI solves i = [α(nL)/nL] γ′(pL − zI); for an uninformed buyer zU
solves

i =
NL

NL +NT

α(nL)

nL
γ′(pL − zU)

+
NT

NL +NT

α(nT )

nT
[u′(qT )q′T − p′T − γ′(pT − zU)(p′T − 1)] .

The equilibrium structure is recursive. We first solve for the terms of trade at local
shops. Define

TI(zI) ≡
α(nL)

nL
γ′(pL − zI)

where nL and pL are functions of zI . As in the baseline model, there exists zI that solves
i = TI(zI) if i is not too big. Then ΓL = (nL, pL, qL) solves (4), and zU solves

TU(zU) ≡ NL

NL +NT

α(nL)

nL
γ′(pL − zU)

+
NT

NL +NT

α(nT )

nT
[u′(qT )q′T − p′T − γ′(pT − zU)(p′T − 1)]

where (nT , pT , qT ) is a function of zU . Moreover, NL and NT are functions of nL and
nT (zU).

As in the version with information acquisition, uninformed buyers do not bargain in
submarket L when i is not too big. There exists a solution for zU to i = TU(zU) when i
and k are not too big. In equilibrium, φM = λzI + (1 − λ)zU . In general, one cannot
say how nL/nT changes with i, but suppose i is small and the elasticity η is constant.
Let g(q) = γ ◦ γ′−1 [u′(q)− 1], and consider

pL − qL
pT − qT

=
1

1− θ
1− ηL

ηLu
′(qL) + 1− ηL

u(qL)− qL − g(qL)

u(qT )− qT − g(qT )
.

At i = 0, this ratio is (1 − ηL)/(1 − θ). As i increases, surpluses in both submarkets
remain unchanged but u′(qL) increases. Thus (pL− qL)/(pT − qT ) falls. By α(nj)(pj −
qj) = k, we know α(nL)/α(nT ) increases in i. Since η is constant, nL/nT increases and
NL/NT decreases with i. Since the surpluses remain constant but uninformed buyers
have a lower probability of contacting a local shop, welfare falls in i. Hence, near i = 0,
with η constant, as i increases the measure of local shops falls and welfare of informed
buyers remains constant while that of uninformed buyers falls.
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