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Abstract

This paper is about the empirical measurement of state dependence in dynamic
binary outcomes. Most of the literature on this topic focuses on the estimation of
parametric dynamic binary response (DBR) panel data models. Identification in these
models requires extensive assumptions about functional form, heterogeneity and the
exogeneity of covariates. In contrast, I focus on what can be learned from the data
under easily interpretable nonparametric assumptions. To do this, I propose a dynamic
potential outcomes (DPO) model and develop nonparametric counterparts of the pa-
rameters and assumptions considered in the traditional DBR literature. I show how to
construct sharp identified sets in the DPO model using a flexible linear programming
procedure that is valid for a large variety of parameters and auxiliary identifying as-
sumptions. Confidence regions for these identified sets are obtained by applying recent
results from the literature on inference in moment inequality models. The analysis is
applied to study state dependence in the labor force participation of married women.
Using conservative, nonparametric assumptions, it is possible to reject the hypothesis
that there is no state dependence in the labor force participation outcomes of married
women.
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1 Introduction

Suppose that an analyst observes a balanced panel consisting of a binary outcome Yit ∈
{0, 1} at time periods t = 0, 1, . . . , T for an i.i.d. cross-section of agents i = 1, . . . , n.

The analyst’s goal is to determine to what extent past realizations of Yit have a causal

effect on current and future realizations of Yit. For example, Heckman (1981a) studied

whether past employment has a causal effect on future employment for married women.

A negative causal effect of past non-employment on current and future employment

outcomes could be the result of search costs, human capital depreciation during non-

employment, or quality signaling in hiring processes (“stigma” or “scarring” effects),

among other explanations. Such a causal effect is commonly referred to as (true) state

dependence.

As observed by Heckman and Willis (1977), Heckman (1978, 1981a) and many

subsequent authors, positive serial correlation in the observed employment outcomes

Yi ≡ (Yi0, Yi1, . . . , YiT ) (conditional on observed covariates) is not necessarily an in-

dication of state dependence. An alternative explanation is that agents have some

persistent latent heterogeneity in their propensities for employment and, as a result,

some agents are always more likely to be employed or non-employed than other agents.

This mechanism would lead to positive serial correlation in observed employment out-

comes even if there is no state dependence in employment. The difference between

these two explanations has important implications for the long-run efficacy of active

labor market programs designed to increase employment (Heckman, 1978, 1981a). It

is therefore important to have convincing econometric methods to quantify the role

of state dependence in the observed persistence in employment. In order to be con-

vincing, these econometric methods must first address the identification problem of

distinguishing state dependence from persistent unobserved heterogeneity. This paper

proposes and analyzes a new framework for thinking about this identification problem

with observational data.1

Perhaps the most widely adopted empirical approach for measuring state depen-

dence with observational data involves the estimation of some variant of a dynamic

binary response (DBR) model. As I discuss more in Section 2, the identification of

these threshold-crossing style models depends on a large number of unpalatable as-

1For experimental evidence on state (and duration) dependence in employment outcomes see the recent
studies by Oberholzer-Gee (2008), Kroft et al. (2013), Ghayad (2013) and Eriksson and Rooth (2014).
Quasi-experimental evidence on state dependence is more rare, but see Lee (2008), who proposes a regression
discontinuity design to determine the causal effect of political incumbency on elections outcomes, and Handel
(2013), who uses the institutional structure of health insurance choice, together with employee turnover, to
identify state dependence (or “inertia”) in these choices.
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sumptions about the data generating process, including arbitrary shape restrictions

on the distribution of heterogeneity. These assumptions are motivated by analytic

convenience rather than economic theory, which makes their credibility suspect. As

a result, estimates from parametric DBR models may not be convincing measures of

state dependence.

The main contribution of this paper is the development of a new nonparametric

framework for identifying state dependence in observational data. Instead of attempt-

ing to modify a threshold-crossing model, I propose a dynamic potential outcomes

(DPO) model that describes the causal effect of previous outcomes on current out-

comes. The model is simple to state: Given a binary outcome Yit ∈ {0, 1} for agent i

at time t, it posits the existence of two latent variables Uit(0) and Uit(1) that represent

the outcome that would have been realized had the prior period outcome, Yi(t−1), coun-

terfactually been 0 or 1, respectively. The observed outcome is therefore related to the

potential outcomes as Yit = Yi(t−1)Uit(1) + (1−Yi(t−1))Uit(0). The model primitive (or

structure) is the joint distribution across all time periods of Uit(0) and Uit(1), together

with the initial period observed outcome Yi0. From knowledge of this structure, one

can construct a number of interesting measures of state dependence, including (but

not limited to) commonly used measures such as the average treatment effect.2

Static potential outcomes models have enjoyed widespread adoption by economists

for cross-sectional applications. Their attraction lies in their fundamentally nonpara-

metric description of the causal process, which promotes empirical analysis based on

transparent and easily interpretable assumptions. This benefit is shared in the dy-

namic extension proposed in this paper, which is entirely nonparametric at its core.

An additional benefit in the dynamic setting is that the potential outcomes framework

allows for general patterns of observed and unobserved heterogeneity, while also per-

mitting complex temporal dependence structures among the latent factors that affect

outcomes.

Measures of state dependence in the DPO model are in general not point identi-

fied. I derive sharp worst-case bounds that use only the empirical evidence. These

bounds are very wide and show that empirical evidence alone cannot reject the possi-

bility of no state dependence. Maintaining additional non-data (auxiliary) identifying

assumptions leads to smaller identified sets. I propose and analyze several such as-

sumptions. However, due to the dynamic nature of the model, it is typically difficult

2After reading a draft of this paper, Chuck Manski shared with me his slides for an invited talk in 2006
in which he proposed using the same DPO model to study state dependence (Manski, 2006). This paper
was developed independently and without knowledge of that talk. The analysis of the DPO model provided
in this paper is significantly different than that in Manski’s talk.
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to derive analytic expressions for identified sets under additional assumptions. Instead,

I develop a general procedure for computing sharp identified sets of scalar parameters

that incorporate the identifying content of these auxiliary identifying assumptions. In

many cases, this computational method amounts to solving two linear programming

problems and is therefore straightforward to implement. One attractive feature of this

approach is its flexibility, which allows the analyst to choose parameters and impose

assumptions based on their economic rationale, rather than their mathematical expe-

diency. I propose several types of parameters that may be of interest depending on the

empirical question and the analyst’s goals or methodological preferences.

Confidence regions that account for sampling variation are obtained by recasting

the DPO model as a moment inequality model. This allows for the application of recent

results from the literature about statistical inference in moment inequality models, see

e.g. Andrews and Soares (2010) and the references cited therein. Most of this literature

has focused on constructing confidence regions for the entire parameter vector through

test inversion. In the DPO model, only scalar or low-dimensional functions of the entire

parameter vector are of ultimate interest. In principle, confidence regions for the entire

parameter vector can be projected down to confidence regions for low-dimensional

parameters. However, doing so requires first constructing the confidence region for

the entire parameter vector. In the DPO model, the entire parameter vector typically

has dimension in the thousands or ten-thousands, so constructing its confidence region

is computationally infeasible. To address this problem, I apply the recent results of

Bugni et al. (2014) that show how one can construct uniformly valid confidence regions

for scalar or low-dimensional parameters in a computationally straightforward manner

by effectively profiling the GMS procedure. I also consider a profiled subsampling

approach proposed by Romano and Shaikh (2008) and a “minimum quantile” statistic

that combines both methods. A Monte Carlo study provides some evidence on the

finite-sample efficacy of these procedures as applied to the DPO model.

The econometric framework proposed in this paper can be applied to any of the large

variety of empirical problems in which identifying state dependence is important. These

include the dynamics of welfare recipiency (Chay et al., 2004; Card and Hyslop, 2005),

product choices among consumers (Keane, 1997; Dubé et al., 2010; Handel, 2013),

self-reported health status (Contoyannis et al., 2004), firm investment (Drakos and

Konstantinou, 2013) and exporting (Bernard and Jensen, 2004) decisions, household

investment behavior (Alessie et al., 2004), illicit drug usage (Deza, 2015), and eating

disorders (Ham et al., 2013).

To focus the analysis, I apply the methodology to the previously discussed prob-

lem of measuring state dependence in the labor force participation of married women.
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Following previous authors (Hyslop, 1999; Keane and Sauer, 2009), I use a balanced

panel drawn from the Panel Study of Income Dynamics (1986) (PSID) that consists

of 1,812 women observed yearly between 1979 and 1985. I use the application to illus-

trate the identifying content of various auxiliary identifying assumptions and discuss

their justification. I show that the hypothesis of no state dependence can be rejected

by maintaining weak, nonparametric assumptions that impose stationarity and mono-

tonicity. Under stronger (but still nonparametric) assumptions about stationarity and

the sign of dynamic selection, I estimate that 4.1–45.3% of married women are affected

by state dependence in the sense that they would be employed in a given year if and

only if they were employed in the previous year. This confidence interval is consistent

with (but wider than) that obtained from a standard parametric DBR model.

The organization of the paper is as follows. In the next section, I provide a brief

review of a type of DBR model commonly used in the literature, as well as a brief

review of the recent research on nonparametric models of dynamic discrete outcomes.

In Section 3, I develop and analyze the dynamic extension of the potential outcomes

model as an alternative approach to measuring state dependence. This section is an ab-

stract description of the methodology. In Section 4, the methodology is discussed more

concretely in the context of measuring state dependence in the labor force participation

of married women in the PSID data. I describe methods for conducting statistical in-

ference in Section 5, report the results of a Monte Carlo study, and present confidence

intervals for the PSID data. Section 6 contains some concluding remarks.

2 Dynamic Binary Response Models

A commonly used econometric tool for detecting state dependence for binary outcomes

in the presence of heterogeneity is the parametric DBR model.3 A textbook version of

the model (e.g. Wooldridge (2010)) specifies the threshold-crossing equation

Yit = 1[γYi(t−1) +X ′itβ + λYi0 +Ai + Vit ≥ 0] for t ≥ 1, (1)

3Many of the empirical papers listed in the introduction use this model or a closely related variant of it.
Linear probability models are also occasionally used to analyze state dependence in discrete outcomes (e.g.
pp. 1265–1266 of Hyslop (1999)), however they have highly undesirable properties when viewed as models of
heterogeneous treatment response, see Manski and Pepper (2009) pg. S210, so I do not consider them here.

The parametric DBR model discussed here is myopic in the sense that it is not based on the optimizing
behavior of a forward-looking agent, in contrast to the sorts of models discussed by (e.g.) Rust (1994).
Structural models of this sort tend to have difficulty accommodating persistent latent heterogeneity except
in very rudimentary ways.
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where both Ai and Vit are unobservables and Xit is a vector of observed covariates. As

in many other panel data models, the unobservables are divided into a time-invariant

component Ai and a time-varying component Vit. Including the initial period outcome

Yi0 as an explanatory variable was proposed by Wooldridge (2005) as a simple solution

to the initial conditions problem observed by Heckman (1981b). A baseline set of

assumptions placed on (1) includes the following:

A1. Vit|Xi, Yi0, Ai ∼ N(0, 1) for all t, where Xi ≡ (Xi0, Xi1, . . . , XiT ), and Cov(Vit, Vis)

= 0 for all s 6= t.

A2. Ai|Xi, Yi0 ∼ N(0, σ2A).

Assumptions A1 and A2 together with (1) enable the construction of a likelihood

function for (Yi1, . . . , YiT ), conditional on Xi, Yi0. If A1, A2 and (1) are valid, then

the corresponding maximum likelihood estimator of (γ, β, λ, σ2A) will be consistent and

asymptotically normal under reasonable regularity conditions. From consistent esti-

mators of these parameters, one can construct a consistent estimator of the average

treatment effect of Yi(t−1) on Yit, i.e.

ATE ≡ E
[
1[γ +X ′itβ + λYi0 +Ai + Vit ≥ 0]− 1[X ′itβ + λYi0 +Ai + Vit ≥ 0]

]
, (2)

see (e.g.) Wooldridge (2005) for a clear exposition. Interest in the ATE defined in (2)

implicitly presupposes that (1) is a causal model capable of describing the value that

Yit would obtain under exogenous manipulations in Yi(t−1). The ATE is a reasonable

measure of state dependence given the constraints of the DBR model. As I discuss

more in Section 4, it is not obvious that it is the parameter one would be interested in

when working with a more flexible model.

If A1, A2 or (1) are incorrect, the maximum likelihood estimator based on these

assumptions will generally be inconsistent for the estimated parameters, leading also to

inconsistency in the resulting estimator of the ATE. For analyses concerned with fit or

prediction, this may not be an important issue. However, when attempting to ascribe a

causal interpretation to a parameter like the ATE, it is of paramount importance that

the model is not badly misspecified. That a number of compelling criticisms of A1, A2

and (1) have been raised in the literature should therefore be cause for considerable

caution.

One frequently discussed criticism is the treatment of Ai as a random effect in

A2. In linear panel data models, time-invariant unobservables like Ai can be treated

as fixed effects and removed through differencing transformations. The distribution

of Ai does not need to be parametrically specified, and its dependence with the ob-
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served explanatory variables can be left unrestricted. In nonlinear specifications such

as (1), differencing does not eliminate Ai. Moreover, if T is small then treating the

Ai as parameters to be estimated through maximum likelihood creates an incidental

parameters problem that pollutes estimates of the other parameters.

Several ways of addressing this problem have been discussed in the literature.

Chamberlain (1984) proposed replacing A2 with the correlated random effects assump-

tion that Ai|Xi, Yi0 ∼ N(µ0Yi0 +
∑T

t=1X
′
itµt, σ

2
A), so that the mean of Ai can vary

with (Xi, Yi0), thereby allowing for some limited dependence between Ai and (Xi, Yi0).

Rasch (1961) and Andersen (1970) discovered that if the normal distribution for Vit in

A1 is replaced by a logistic distribution, then there exists a non-linear transformation

of the outcome probabilities that eliminates the Ai. This result was extended consid-

erably by Honoré and Kyriazidou (2000); see also Bonhomme (2012) for a unifying

analysis. Honoré and Lewbel (2002) showed that in the presence of a special regressor

Ai can be treated as a fixed effect and several other parts of Assumptions A1 and

A2 can be relaxed. However, their results only identify the parameter coefficients and

not the ATE. Fernández-Val (2009) has revisited the incidental parameters problem

created by treating each Ai as a true fixed effect to be estimated. He argues that the

bias induced on the ATE by estimating the incidental parameters may be relatively

small even for small T , and proposes a bias-corrected estimator. Carro (2007) shows

that the bias stemming from the incidental parameters problem can be mitigated by

employing a modified maximum likelihood estimator.

These solutions to the incidental parameters problem still maintain substantial

parametric assumptions about the distributions on Vit or Ai (or both). Arguably, the

logistic solution even amplifies the importance of correctly specifying the distribution

of Vit, since the validity of this approach relies crucially on the logistic function form

(Chamberlain, 2010). Such parameterizations are used because they enable the con-

struction of a finitely-parameterized likelihood function, which addresses the question

of identification, at least as a mathematical problem. Many researchers are skeptical of

models identified only through the force of arbitrary parameterizations, see e.g. Manski

(1975) for an early criticism.

This paper is premised on the view that this skepticism is justified. Economic

theory rarely suggests functional forms for the distributions of latent variables. In

parametric DBR models, these functional forms are chosen for analytical and compu-

tational convenience, rather than compelling economic rationale. The sensitivity of

empirical conclusions to these assumptions is difficult to characterize rigorously. For

these reasons, economists conducting empirical research increasingly favor identifica-

tion arguments based on intuitive, nonparametric assumptions about the treatment
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assignment and outcome determination processes.

Some researchers have responded to this view by investigating identification in

nonparametric dynamic models of binary outcomes. Browning and Carro (2010, 2014)

assume that Yit follows a homogenous, first-order Markov process, conditional on Ai,

i.e. that Yit|Yi(t−1) = y, . . . , Yi0, Ai is distributed like Yi1|Yi0 = y,Ai for all t.4 They

show that a nonparametric counterpart to the ATE can be point identified (sometimes

only locally) if Ai is assumed to be discretely distributed with a sufficiently small sup-

port of known dimension. Kasahara and Shimotsu (2009) derive different sufficient

conditions for point identification in closely related models, and consider the addi-

tional identifying power of excluded exogenous covariates. Their analysis also requires

Ai to be discretely distributed with support of known size. Hu and Shum (2012) and

Shiu and Hu (2013) maintain similar assumptions while allowing Ai to be continu-

ously distributed. Their conditions for identification include high-level completeness

assumptions which can be difficult to interpret and/or verify in applications. In addi-

tion, the first-order conditional Markov property assumed by all of these papers may

be unattractive for employment outcomes, see Section 6 of Browning and Carro (2014).

These papers show that for dynamic binary outcomes it is difficult to achieve non-

parametric point identification under easily interpretable conditions while still allowing

for general forms of unobserved heterogeneity. Given this difficulty, it seems sensible

to entertain a partial identification approach of the sort advocated by Manski (2003).

To the best of my knowledge, the only other authors to consider partial identification

for models of dynamic binary outcomes are Honoré and Tamer (2006), Chernozhukov

et al. (2013), Pakes and Porter (2014) and Norets and Tang (2014).

The latter paper considers partial identification of a semiparametric structural

model of dynamic binary decision making. These models have the benefit of being

directly derived from a theoretical model of rational forward-looking decision making.

However, their complexity necessarily requires some strong and undesirable assump-

tions even in the relatively agnostic framework considered by Norets and Tang (2014).5

Structural models such as these are useful tools for considering the impacts of counter-

factual policy interventions with no historical precedent. The goal of measuring causal

effects that is pursued in this paper is more modest in comparison, but the methods

employed will maintain fewer, and more easily interpretable assumptions. The analysis

4Additional covariates Xit are included in this nonparametric framework by simply conditioning, so I
suppress them in the notation when natural.

5In particular, many analyses of structural dynamic binary choice models maintain an assumption of no
persistent unobserved heterogeneity. The results of the aforementioned papers by Kasahara and Shimotsu
(2009) and Hu and Shum (2012) can be used to provide identification conditions for structural models with
some forms of persistent heterogeneity, potentially under strong additional conditions.
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in this paper should therefore be viewed as complementary to Norets and Tang (2014)

and the literature on structural models of dynamic binary outcomes.6

More related to this paper is the work of Honoré and Tamer (2006), who showed

how to construct identified sets for parametric DBR models that maintain A1 but relax

A2 to allow Ai to be a finitely-distributed fixed effect.7 Chernozhukov et al. (2013)

extended these results to allow for Ai to be continuously distributed asymptotically.

Another important contribution of Chernozhukov et al. (2013) was to derive non-sharp

bounds on the ATE for the nonparametric model

Yit = g(Yi(t−1), Ai, Vit) (3)

under the assumption that Vit|Yi(t−1), . . . , Yi0, Ai is distributed identically to Vi1|Yi0, Ai
for all t. Equation (3) can be seen as a nonparametric, nonseparable counterpart to

(1), while the assumption on Vit can be seen as a counterpart to the stationarity and

serial independence assumptions embedded in A1. Chernozhukov et al. (2013) describe

this assumption as “time is an instrument.”8

This paper presents an alternative approach to partial identification of state depen-

dence for binary outcomes. It is motivated by the observation that (3) is an unneces-

sarily rich model for measuring state dependence. Instead, one can limit attention to

the latent random variables

Uit(0) = g(0, Ai, Vit) and Uit(1) ≡ g(1, Ai, Vit). (4)

From the distribution of Ui ≡ (Y0, Ui1(0), . . . , UiT (0), Ui1(1), . . . , UiT (1)) one can con-

struct common parameters of interest, such as the ATE at time t, i.e. E[Uit(1) −
Uit(0)] = E[g(1, Ai, Vit) − g(0, Ai, Vit)]. The distribution of Ui is also sufficient to de-

termine the implied distribution of observed outcomes, since by construction Yit =

Uit(Yi(t−1)) = g(Yi(t−1), Ai, Vit) for t ≥ 1. Hence, a model of Ui is both complete—in

the sense of generating a distribution of the observed endogenous variables Yi—and

sufficiently rich to answer common causal questions about state dependence.

6See also Heckman and Navarro (2007), who consider point identification in dynamic structural models
using identification-at-infinity style arguments.

7Honoré and Tamer (2006) also did not condition on Yi0, thereby allowing for a partial identification
treatment of the initial conditions problem.

8Recently, Pakes and Porter (2014) have shown how a condition similar to the “time is an instrument”
assumption can be combined with a separable index structure for g to construct non-sharp identified sets
for parameters in this index structure. Their analysis is semiparametric in that they do not impose finite-
dimensional parameterizations for the distributions of latent variables. However, their results do not suggest
bounds on causal parameters (such as the ATE), which are the focus of this paper.
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The benefit of considering a model based on (4) instead of the more complicated

model in (3) is that it is much easier to characterize identified sets in (4). As I demon-

strate in the next section, this is a consequence of the discreteness of Ui, which enables

the construction of identified sets for a variety of parameters under a variety of assump-

tions through linear programming. Indeed, for the model of (3) with the “time is an

instrument” assumption, Chernozhukov et al. (2013) only provided indirect arguments

to suggest that their proposed bounds were sharp. Formally showing sharpness in their

model is quite difficult due to the large number of possible joint distributions of Ai and

Vit. This complication is removed by limiting attention to Ui, which is a collection of

binary random variables. A practical consequence is that an analyst working with (4)

is afforded drastically more freedom in selecting parameters of interest and auxiliary

identifying assumptions, while still having a method for computing sharp identified

sets.

The DPO model is formally defined in the next section. Instead of motivating it

as a simpler version of (3), I describe it as a dynamic extension of the static potential

outcomes models. Both descriptions are useful; the former as a comparison with the

important work of Chernozhukov et al. (2013), and the latter because it allows me to

use insights from the enormous literature on static potential outcomes models.

3 The Dynamic Potential Outcomes Model

3.1 Model and Definitions

The canonical static potential outcomes model postulates the existence of two unob-

served outcomes Ui(0) and Ui(1) that would have been obtained had a binary treat-

ment Di ∈ {0, 1} been exogenously manipulated to be 0 or 1. The observed outcome

Yi is related to the observed treatment state Di and the potential outcomes through

Yi = DiUi(1) + (1 − Di)Ui(0).9 The goal of the analysis is to recover an informative

feature (mean, quantile, etc.) of the distribution Ui(1)−Ui(0) of treatment effects from

the observable distribution of (Yi, Di).

This paper is concerned with understanding the causal effect of lagged outcomes

on current and future outcomes. At each time t = 1, . . . , T , the outcome is Yit and the

“treatment” is the immediately preceding outcome, Yi(t−1). I assume throughout the

main text that Yit ∈ {0, 1} is binary for each t, so that at time t both Yit and Yi(t−1)

are binary.10 Hence, in analogy to the static potential outcomes model, suppose that

9Standard practice is to denote Ui(0) and Ui(1) by Yi(0) and Yi(1). This turns out to be somewhat
confusing in the dynamic model, which is why I use Ui(0), Ui(1) to denote potential outcomes.

10The analysis is extended to multi-valued outcomes in Appendix A.
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for each time period t = 1, . . . , T there exist unobservable random variables Uit(0) and

Uit(1) taking values in {0, 1}. These binary unobservables represent the outcome that

would have been realized in time t had the past period outcome Yi(t−1) been exogenously

manipulated to be 0 or 1, respectively. A causal interpretation of the parametric DBR

model of the previous section implicitly defines (suppressing covariates)

Uit(y) = 1[γy + λYi0 +Ai + Vit ≥ 0]. (5)

The DPO model does not impose this type of linear index structure on Uit(0) and

Uit(1).

The observed outcomes Yi ≡ (Yi0, Yi1, . . . , YiT ) together form a random (T + 1)–

vector with values in Y ≡ {0, 1}T+1. The observed outcomes are related to the vectors

of potential outcomes Ui(0) ≡ (Ui1(0), . . . , UiT (0)) and Ui(1) ≡ (Ui1(1), . . . , UiT (1))

through the recursive relationship

Yit = Yi(t−1)Uit(1) + (1− Yi(t−1))Uit(0) = Uit(Yi(t−1)) for all t ≥ 1. (6)

In this formulation, the outcome in the initial period (Yi0) is observed but not modeled.

This avoids the initial conditions problem discussed by Heckman (1981b) by simply

reducing the number of observed variables that are explicitly modeled, similar in spirit

to the approach of Wooldridge (2005) for parametric DBR models.11

Embedded in this specification is the presumption that the analyst is only interested

in the causal effect of the outcome in period t− 1 on the outcome in period t. In some

settings, it may be interesting to analyze the causal effects of specific sequences of

previous outcomes on the current period outcome. This can be accommodated by

redefining the collection of potential outcomes to include a separate potential outcome

for every sequence up to a certain length. For clarity, I focus on the one-period causal

effect in the main text and discuss this extension to longer sequences in Appendix B.

In addition to Yi, the analyst also observes a vector Xi = (Xi0, Xi1, . . . , XiT ) of

covariates with support X . The components of Xit may be time-varying or time-

invariant, however I assume throughout the analysis that X is a finite set, i.e. X

is discretely distributed.12 Some of the components of Xit may be thought of as

11In particular, note that the DPO model does not assume that Yi0 is independent of any of the potential
outcomes. In principle, this could be added later as an auxiliary identifying assumption, but this is rarely
justifiable (Heckman, 1981b).

12The partial identification analysis discussed in the next section extends to continuously distributed X
in a straightforward way. Using the terminology introduced in that section, the easiest way to accommodate
continuous X is to define the structures as conditional-on-[X = x] probability mass functions for U . How-
ever, this conditional-on-[X = x] formulation presents additional challenges for statistical inference, so for
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conditioning variables that serve to capture observed heterogeneity, while others might

be considered as instruments that satisfy certain exclusion or monotonicity conditions

in relationship to the potential outcomes. Examples of these types of assumptions are

discussed in detail in Section 4.3.

The DPO model captures state dependence in a natural way through the possibility

that Uit(0) 6= Uit(1). That is, the outcome Yit = Uit(Yi(t−1)) for agent i that actually

occurred in period t may have been different had Yi(t−1) been different. The model

allows for observed and unobserved heterogeneity quite generally. Observed hetero-

geneity is reflected through differences in the distributions of (Ui(0), Ui(1))|Xi = x for

different values of x. These conditional–on–[Xi = x] distributions need not be degen-

erate, which allows for additional unobserved heterogeneity. For example, the model

allows for the possibility that conditional on Xi = x, Uit(1)− Uit(0) is a random vari-

able taking values in {−1, 0, 1} for agents that differ along unobservable characteristics

such as preferences or private information. The baseline model discussed in this section

does not separate this unobserved heterogeneity into permanent and transitory com-

ponents like the models in Section 2. As a consequence, no restrictions are imposed

on the dynamic correlation of the potential outcomes. While it is possible to include

a distinction between permanent and transitory components by imposing the bounds

implied by the “time is an instrument” assumption of Chernozhukov et al. (2013) (see

Section 4), this is by no means necessary or essential to the DPO model.

3.2 Partial Identification

This section describes a general procedure for constructing identified sets in the DPO

model. The analysis is presented abstractly here in the sense that it is only assumed

that there is a particular parameter of interest and that the data generating process

satisfies a certain set of auxiliary identifying assumptions. The next two sections con-

tain concrete examples of parameters of interest and auxiliary identifying assumptions

tailored to the problem of distinguishing state dependence in female labor force par-

ticipation. I assume throughout the analysis that the available panel is balanced with

periods indexed by t = 0, 1, . . . , T for T small and fixed, and that it is i.i.d. across

agents i = 1, . . . , n. For notational simplicity, I drop the i subscript until discussing

statistical inference in Section 5.

Using language similar to Hurwicz (1950), a structure for the dynamic potential

outcomes model maintaining (6) is a probability mass function P with support con-

tained in U × X , where U ≡ {0, 1}2T+1 is the collection of all possible realizations of

consistency in exposition I do not explicitly consider it here.
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U ≡ (Y0, U(0), U(1)).13 A function P with domain U×X is a probability mass function

on U × X if and only if it takes values in [0, 1] and∑
u∈U ,x∈X

P [u, x] = 1. (7)

Let P denote the set of all functions P : U × X → [0, 1] that satisfy (7).

The admissible set is the subset P† of P to which the analyst restricts attention.

In practice, P† will be composed of the structure P that satisfy auxiliary identifying

assumptions, examples of which are discussed in Section 4.3. As a formalization, it

is convenient to assume that P† = {P ∈ P : ρ(P ) ≥ 0}, where ρ : P → Rdρ is a

function representing restrictions on P , and the inequality is interpreted component-

wise. Equality restrictions can be incorporated into P† by including pairs of inequalities

in the function ρ. The restrictions may also depend on features of the observable

distribution of (Y,X), but this is suppressed in the notation until Section 5 when the

distinction becomes salient.

The identified set, denoted by P?, is defined as the subset of the admissible set P†

that could have generated the observed data through relationship (6). Let P[Y =

·, X = ·] denote the observable probability mass function of (Y,X), where Y ≡
(Y0, Y1, . . . , YT ). Then P ∈ P? requires that for every y ≡ (y0, y1, . . . , yT ) ∈ Y and

x ∈ X ,

P[Y = y,X = x] = PP [Y = y,X = x] = PP [Y0 = y0, Ut(yt−1) = yt all t ≥ 1, X = x],

where PP [·] denotes the probability of an event when (U,X) is distributed according

to P . This expression can be rewritten as a linear function of {P [u, x] : u ∈ U , x ∈ X}:

P[Y = y,X = x] =
∑

u∈Uoeq(y)

P [u, x], (8)

where Uoeq(y) is the set of all u ≡ (u0, u1(0), . . . , uT (0), u1(1), . . . , uT (1)) ∈ U for which

u0 = y0 and ut(yt−1) = yt for all t ≥ 1. Figure 1 illustrates (8) for T = 2.

Observe that (8) places linear restrictions on P = {P [u, x] : u ∈ U , x ∈ X}.
The requirement that P ∈ P also places linear restrictions on P , namely (7) and

1 ≥ P [u, x] ≥ 0 for all u ∈ U , x ∈ X . Hence, if ρ is also a linear function of P , then

determining whether a given P is in the identified set is equivalent to determining the

existence of a solution to a system of linear equations. This is a well-studied problem

13Throughout the paper, the notation {0, 1}s refers to the s–fold Cartesian product of the set {0, 1}.
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Figure 1: Observational Equivalence, T = 2

Observed

Potential Outcomes Outcomes

Y0 U1(0) U1(1) U2(0) U2(1) Y0 Y1 Y2

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 1 0 0 0
...

...
...

1 0 0 1 0 1 0 1

1 0 0 1 1 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1
...

...
...

The full diagram would have 22T+1 ≡ 25 = 32 rows corresponding to all possible realizations
of potential outcomes. Here, the rows shown are those corresponding to those potential
outcomes that could generate Y = (0, 0, 0) or Y = (1, 0, 1) through the recursive relationship
(6), i.e. the elements of Uoeq(0, 0, 0) and Uoeq(1, 0, 1) in (8). The observed realization of Y
provides knowledge of the potential outcomes that are boxed, but not those that are not
boxed.

for which fast and reliable computational solutions exist. In Section 4.3, I provide

several examples of identifying assumptions that can be represented as functions ρ

that are linear in P .

A probability mass function P is typically too complex of an object to be of ultimate

interest. Instead, an analyst is usually interested in the identified set Θ? ≡ {θ(P ) : P ∈
P?} for a lower-dimensional feature (parameter) θ : P → Rdθ of P . A standard example

of a parameter θ is the average treatment effect at time t, ATEt(P ) ≡ EP [Ut(1)−Ut(0)],

where EP denotes expectation taken with respect to P . Although it is suppressed in

the notation, θ can depend on features of the distribution of observables (Y,X).

In general, Θ? can be traced out by determining for any candidate t in the range of

θ whether there exists a function P ∈ P? such that Θ(P ) = t. If θ is scalar-valued, then

the identified set can, in many situations, be determined by solving two optimization

problems.

Theorem 1. Suppose that P† is closed and convex, and that θ is a continuous, scalar-
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valued function of P . Then, as long as P? is nonempty, Θ? = [θ?l , θ
?
u], where

θ?l ≡ min
P∈P?

θ(P ) = min
{P [u,x]∈[0,1]:u∈U ,x∈X}

θ(P ) s.t. ρ(P ) ≥ 0, (7), and (8) ∀y, x

and θ?u ≡ max
P∈P?

θ(P ) = max
{P [u,x]∈[0,1]:u∈U ,x∈X}

θ(P ) s.t. ρ(P ) ≥ 0, (7), and (8) ∀y, x.

Proof of Theorem 1. If P† is closed and convex then P? is also closed and convex,

since P? is the set of P ∈ P† that satisfy the linear equalities (8) for all y and x.

The image of the continuous, real-valued function θ over this closed, convex (and non-

empty) set is a closed non-empty interval (e.g. Theorem 4.22 of Rudin (1976)) with

smallest value θ?l and largest value θ?u, i.e. Θ? = [θ?l , θ
?
u]. Q.E.D.

If ρ and θ are linear, then determining whether a given t is in Θ? is equivalent to

determining the existence of a solution to a system of linear equations. If θ is also

scalar, then the two optimization problems in Theorem 1 are linear programs. In

Section 4.2, I discuss several examples of interesting choices of θ that are both scalar

and linear in P .

The traditional approach to building identified sets is to propose bounds for a given

parameter and then construct an admissible structure under which the extreme points

of these bounds are obtained. This strategy was employed in the pioneering work of

Manski (1989) as well as more recent work by Chesher (2010), Shaikh and Vytlacil

(2011) and Khan et al. (2011), among many others. It has the benefit of providing

analytic expressions for the bounds, which can often yield useful intuition as to the

source and strength of identification. Analytic expressions can also aid the construction

of valid confidence regions.

However, in more complicated models, it quickly becomes difficult or impossible to

explicitly construct sharp identified sets, especially when the admissible set is defined

by many restrictions. In this case, the broad applicability of results like Theorem 1 are

attractive. In particular, Theorem 1 easily allows one to change parameters and iden-

tifying assumptions without requiring a lengthy and potentially difficult re-derivation

of the analytical formulas that characterize the identified set. This general point about

partial identification analysis has been appreciated (sometimes implicitly) by many

other authors, including Honoré and Tamer (2006), Manski (2007), Molinari (2008),

Chiburis (2010), Kitamura and Stoye (2013), Freyberger and Horowitz (2013), Manski

(2014) and Lafférs (2015). The latter work uses a similar computational strategy as in

this paper for a static potential outcomes model. However, the benefits in that setting

are smaller than in the dynamic case considered here, since a large number of analytic

partial identification results already exist for static potential outcomes models.
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3.3 Computation and Dimension Reduction

The optimization problem in Theorem 1 can be quite large. For example, the applica-

tion to female labor force participation in Section 4 has T = 6 so that even without

covariates the dimension of P = {P [u, x] : u ∈ U , x ∈ X} is 22T+1 = 8,192. A non-

parametric specification employed in Section 4 takes X to be a set with 20 support

points, increasing the overall number of variables in the problem to 20 × 8,192 =

163,840. The number of constraints in the problem—even without any auxiliary iden-

tifying assumptions—is at least 2T+1×|X | = 128×20 = 2,560 for (8), plus 2 × 163,840

constraints to ensure that P is contained in the unit interval.

These dimensions are large for a general optimization problem. However, if both ρ

and θ are linear so that the optimization problem is a linear program, then these di-

mensions are actually quite modest. A standard desktop computer with sophisticated

linear programming algorithms can finish the above problem with a few hundred thou-

sand variables and constraints in well under a minute.14 Since many of the constraints

can be expected to be redundant, it is important to use software with algebraic capabil-

ities such as AMPL (Fourer et al., 2002) to achieve this type of speed. Programming

languages like AMPL also make it straightforward to change parameters (objective

functions) and add or remove auxiliary identifying assumptions (constraints), which

allows an analyst to easily exploit the flexibility of Theorem 1.

Still, in situations when T is large or X assumes many values, the dimensions of the

linear programs in Theorem 1 may be prohibitive. A semiparametric specification can

be used to address the dimensionality problems caused by X assuming many values—

this is currently under development. For situations where T and hence U are large,

one solution is to limit the analysis to agents that had less than a certain number

of transitions in the time horizon under consideration, where a transition is defined

as occurring when Yt 6= Yt−1. In many data sets, such as the female labor force

participation data analyzed in the following section, the overwhelming majority of the

observed units have less than 2 or 3 transitions over the time horizon in the data—see

Table 1. By removing the small subset of the population that has more than (say)

3 transitions, one effectively restricts any observationally equivalent P = {P [u, x] :

u ∈ U , x ∈ X} to be 0 for any u that generates an observed sequence with 4 or more

transitions. This can characterize a large proportion of potential outcomes u ∈ U ,

even though only a small proportion of the population has more than 4 transitions.15

14All optimization problems in this paper were solved using KNITRO 9 (Byrd et al., 2006).
15Strictly speaking, this affects the interpretation of the parameter of interest in the same way that

selecting a sample affects the interpretation of the parameter of interest. One can either be content with
the new interpretation or formally characterize the effect of out-of-sample extrapolation using the worst-case
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By requiring these P [u, x] to be 0, they are essentially removed from the optimization

problem, thereby reducing the number of remaining variables.

Note that the computational concerns with large T are not unique to the DPO

model. Rather, it seems to be a characteristic of models that do not impose a con-

ditional Markov restriction on the observed outcomes. For example, Hyslop (1999)

considers a parametric DBR model in which the assumption that Vt is serially un-

correlated in A1 is replaced by the assumption that Vt follows an AR(1) process. As

observed by Heckman (1981a) and Chamberlain (1984), this implies that Yt|A is not

Markov of any order. The resulting likelihood function for the parametric DBR in-

volves a T–dimensional integral, which becomes increasingly difficult to evaluate (or

simulate) as T grows.

4 State Dependence in Female Labor Force Participation

4.1 Background and Data

Economists have long been interested in explaining the determinants and dynamics of

female labor force participation. Early work by Gronau (1974) and Heckman (1974)

emphasized the selection problem inherent in analyzing a static cross-section of wages

for working women. Heckman and Willis (1977) considered a dynamic model of female

labor force participation that allowed for unobserved heterogeneity but not state depen-

dence. Heckman (1978, 1981a,b) extended these analyses to allow for both unobserved

heterogeneity and state dependence, and emphasized the identification difficulties in-

herent in such models. Structural approaches have been employed by Heckman and

MaCurdy (1980), Eckstein and Wolpin (1989) and Eckstein and Lifshitz (2011), among

others. The aim of the current section is to complement these works by providing esti-

mates of state dependence under easily interpretable nonparametric assumptions, while

also illustrating the DPO model discussed in the previous section.

I revisit the topic of female labor force participation using a dataset originally

constructed by Hyslop (1999) and re-analyzed subsequently by Keane and Sauer (2009).

Briefly, the sample is taken from the 1986 Panel Study of Income Dynamics (PSID) and

consists of n = 1,812 women who were aged 18 – 60 in 1980 and continuously married

to an employed husband between 1979 and 1985. Data is observed yearly between 1979

and 1985, so the initial period (t = 0) corresponds to 1979 and the terminal period

(t = T = 6) corresponds to 1985. Following Hyslop (1999), the outcome variable Yt

is specified as 1 if a woman reports both positive hours worked and positive earnings

in year t. Hence, women with Yt = 0 are either not participating in the labor force,

bounds approach of Manski (1996, Section IV).
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or are unemployed participants. I refer to Yt = 0 as non-employment. The analysis is

concerned with state dependence in employment relative to non-employment, but does

not distinguish between non-participation and unemployment.16

The available observed covariates (X) are the same as in Hyslop (1999): permanent

nonlabor income, transitory nonlabor income in each period, number of children aged

0-2, 3-5 and 6-17 in each period, age, highest reported level of education over the

sample period, and race (black/non-black). Permanent nonlabor income is defined as

the average of the husband’s log earnings over the sample period. Transitory nonlabor

income in each period is defined as the deviation of the husband’s log earnings in that

period from permanent nonlabor income. The time-varying covariates are transitory

nonlabor income and number of children. See Hyslop (1999) and Keane and Sauer

(2009) for a complete discussion of the covariates. Table 1 provides some descriptive

statistics concerning the outcome process Yt.

As a baseline point of comparison for the discussion ahead, column (P) of Table 2S

reports the point estimate of the ATE from a parametric DBR model. In particular,

.24 in column (P) is the point estimate of the ATE as constructed from the maximum

likelihood estimator for model (1) under A1 and A2. Following the specification in

Hyslop (1999), the components of Xt contain age, age squared, race, highest reported

level of education over the sample period, permanent income (as defined above), tran-

sitory income in each time period and number of children of ages 0-2, 3-5 and 6-17 in

each period. In addition, the same correlated random effects specification as in Hyslop

(1999) is used to allow for some limited dependence between X and A—see that paper

for details. A 95% bootstrapped confidence interval for the ATE is [.144, .337].

4.2 Parameters of Interest

A natural measure of state dependence is the proportion of women that would have

experienced a different employment outcome in period t had their employment outcome

at t − 1 been different, i.e. the proportion of women with the event [Ut(0) 6= Ut(1)].

In the binary outcome cases considered here, such affected agents are characterized for

any given period t by [Ut(0) = 0, Ut(1) = 1] or [Ut(0) = 1, Ut(1) = 0]. The proportion

of the first group under structure P is denoted by

SD+
t (P ) ≡ PP [Ut(0) = 0, Ut(1) = 1].

16To stay consistent with the literature I will still refer to this problem as one of female labor force
participation despite the misnomer.
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Agents in this first group can be said to experience positive state dependence, since

an exogenous manipulation of their period t− 1 outcome from 0 to 1 would result in a

strictly positive increase in their period t outcome from 0 to 1. These are the women

who would have been employed in period t had they (exogenously) been employed in

period t − 1, but would be non-employed in period t had they been non-employed in

period t− 1. The measure of the second group under structure P is denoted by

SD−t (P ) ≡ PP [Ut(0) = 1, Ut(1) = 0].

This is the proportion of women who would have experienced negative state dependence

in employment at time t in the sense that they would be non-employed in period t if

and only if they had been employed in period t − 1. The total proportion of women

experiencing state dependence under structure P is SD+
t (P ) + SD−t (P ).

The observed data do not directly point identify SD+
t or SD−t for the same usual

reasons as in the static potential outcomes models. First, an analyst never observes

both Ut(0) and Ut(1), since only Yt = Ut(Yt−1) is observed. Hence, quantities like SD+
t

that concern the joint distribution of (Ut(0), Ut(1)) are inherently not point identified.

Second, even the marginal distributions of Ut(0) and Ut(1) will generally not be point

identified due to the endogeneity of prior outcomes. That is, in general we expect that

for observationally equivalent P ,

P[Yt = 1|Yt−1 = 1, X] = PP [Ut(1) = 1|Yt−1 = 1, X] 6= PP [Ut(1) = 1|X], (9)

since Yt−1 = 1 depends on (Ut−1(0), Ut−1(1)), and Ut−1(1) is likely correlated with

Ut(1), even conditional on X, due to permanent unobserved heterogeneity.

Instead, there are a range of values of SD+
t and SD−t that are compatible with the

data, i.e. these parameters are partially identified. To determine the identified sets for

these parameters, first note that they are linear functions of P = {P [u, x] : u ∈ U , x ∈
X} since

SD+
t (P ) =

∑
u∈U+

t

(∑
x∈X

P [u, x]

)
, (10)

where U+
t is the set of u = (u0, u(0), u(1)) ∈ U such that ut(0) = 0 and ut(1) = 1. A

similar linear expression can be derived for SD−t . This linearity means that Theorem 1

can be applied to quickly and reliably compute the identified sets for these parameters
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through linear programming if ρ is also linear.17 These computed identified sets (for

t = 3, i.e. 1982) are given in column (1) of Table 2S. Lengths of all identified sets are

shown in Table 2L. Since no additional assumptions are being placed on the potential

outcomes (i.e. P† = P), these bounds can be described as using only the empirical

evidence.

The empirical-evidence-only bounds are large. The width of the identified set for

SD+
t is .87—not much smaller than the a priori largest width of 1. In Appendix C, it

is shown that the sharp empirical-evidence-only identified set for SD+
t is given by

[0, P[Yt−1 = 0, Yt = 0] + P[Yt−1 = 1, Yt = 1]] . (11)

The intuition behind these bounds is that agents with [Yt−1 = 0, Yt = 1] or [Yt−1 =

1, Yt = 0] cannot be those with potential outcomes [Ut(0) = 0, Ut(1) = 1], since in the

first case Ut(0) = 1, while in the second Ut(1) = 0. On the other hand, agents with

[Yt−1 = 0, Yt = 0] could have potential outcomes given by either [Ut(0) = 0, Ut(1) = 0]

or [Ut(0) = 0, Ut(1) = 1]. It is the second of these groups that experiences positive

state dependence, and their proportion of the overall population could be 0, but can

be no greater than P[Yt = 0, Yt−1 = 0]. Similarly, the observable group characterized

by [Yt−1 = 1, Yt = 1] is comprised of agents with [Ut(0) = 0, Ut(1) = 1] or [Ut(0) =

1, Ut(1) = 1]. The first of these groups experiences positive state dependence and

their proportion of the overall population could be 0, but it can be no greater than

P[Yt−1 = 1, Yt = 1]. Combined, the proportion of the population with positive state

dependence at time t can be no greater than the upper bound in (11). This bound is

large when observed outcomes have strong positive serial correlation, which is the case

for the data studied here—see Table 1.

Using analogous reasoning, it can be shown (Appendix C) that sharp bounds on

SD−t are given by

[0, P[Yt−1 = 0, Yt = 1] + P[Yt−1 = 1, Yt = 0]] . (12)

The empirical-evidence-only upper bounds on negative state dependence are large when

the observed outcomes have strong negative serial correlation. Intuitively, more than

a small amount of negative state dependence would imply frequent transitions in labor

force participation, while the actual PSID data contains relatively few such transitions.

Hence, using only the empirical evidence, it is possible to rule out the hypothesis that

more than a small number of women (13%) experience a negative causal effect of past

17Here ρ is currently null since no additional assumptions have been imposed, i.e. P† = P.
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employment on future employment.

Since the lower bounds in (11) and (12) are sharp and always 0 regardless of the

distribution of the data, the empirical evidence alone never enables a rejection of no

state dependence. The non-existence of state dependence can only be established

by incorporating auxiliary identifying assumptions, such as those discussed ahead in

Section 4.3.

In the parametric DBR model of Section 2, state dependence is governed by the

scalar parameter γ. It is often argued (e.g. Wooldridge (2010)) that analysts interested

in state dependence should focus on the average treatment effect given in (2) that

results from changing Yt−1 from 0 to 1 and viewing (1) as a causal model. Recent

nonparametric studies such as Kasahara and Shimotsu (2009), Chernozhukov et al.

(2013) and Browning and Carro (2014) have followed this lead of considering the ATE

as the parameter of primary interest.

In the DPO framework it is still possible to consider the average treatment effect

ATEt(P ) ≡ EP [Ut(1)] − EP [Ut(0)] as a measure of state dependence. However, it is

also possible to consider SD+
t and SD−t , which may be more interesting to an ana-

lyst, depending on their goals. Unlike ATEt, SD+
t depends on the joint distribution

of (Ut(0), Ut(1)) and not just the marginals. It therefore captures the treatment effect

within the population, rather than the difference in treatment distributions between

two subpopulations. This constitutes an example of the distinction between the dif-

ference of potential outcome distributions and the distribution of potential outcome

differences; see e.g. Manski (1996, 1997b) and Heckman et al. (1997) for a discussion

in a traditional static framework.

To see this point more clearly, observe that the relationship between SD+
t and ATEt

is given by

ATEt(P ) = (PP [Ut(1) = 1, Ut(0) = 0] + PP [Ut(1) = 1, Ut(0) = 1])

− (PP [Ut(1) = 0, Ut(0) = 1] + PP [Ut(1) = 1, Ut(0) = 1])

= SD+
t (P )− SD−t (P ).

Hence, ATEt is the proportion of the population that experiences positive state de-

pendence, less the proportion that experiences negative state dependence. As a result,

ATEt = SD+
t if and only if SD−t = 0. In general, it is possible for ATEt to be small or

zero even if there is both positive and negative state dependence.

Depending on the application, an analyst may be interested in both SD+
t and SD−t .

For example, suppose that Yt denotes welfare status as in Chay et al. (2004) or Card

and Hyslop (2005). Then SD−t represents the proportion of the population that would
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receive welfare on period t as a direct result of having not received it in the previous

period, while SD+
t represents the proportion of the population that are in the “welfare

trap.” On the other hand, for female labor force participation it may be reasonable

to assume that SD−t (P ) = 0 for all P ∈ P†, in which case ATEt = SD+
t by force of

the assumption. In the next section I refer to this condition as monotone treatment

response (following the terminology of Manski (1997a)), and I consider its effect on

the identified set for SD+
t both alone and when combined with other assumptions.

However, for different outcome variables, such as welfare recipiency, a monotonicity

assumption like this may be unpalatable.

The distinction between SD+
t , SD−t and ATEt as parameters describing state depen-

dence highlights one of the chief benefits of the empirical framework proposed in this

paper. The discreteness of the DPO model enables the identified set to be computed

easily for a variety of different parameters. This computational ease, combined with

an acknowledgment that point identification can only be obtained under unpalatably

strong assumptions, provides the freedom to choose parameters based on their rele-

vance to the application, rather than their analytic tractability. This type of approach

to empirical research is in harmony with what Heckman and Urzua (2010) have called

“Marchak’s Maxim.”

The identified sets for parameters analogous to SD+
t , SD−t and ATEt can be com-

puted for subgroups defined by realizations of X and/or Y . For example, one might

be interested in comparing the identified regions of

SD+
t (P |x) ≡ PP [Ut(0) = 0, Ut(1) = 1|X = x] =

∑
u∈U+

t
P [u, x]

P[X = x]

for different values of x ∈ X . This can provide a description of how state dependence

varies across subgroups defined by different combinations of observables. These types of

parameters are also easily studied using parametric or nonparametric binary response

models, so the DPO model possess no additional advantage in this regard.

However, parameters that condition on components of Y cannot be easily analyzed

using other types of binary response models. For example, in studying female labor

force participation, an analyst may be interested in identifying positive state depen-

dence among just women who are currently non-employed. This parameter is given

by

SD+
t (P |0) ≡ PP [Ut(0) = 0, Ut(1) = 1|Yt = 0].

It is straightforward to show (Appendix D) that SD+
t (·|0) is still a linear function of P .
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Hence, Theorem 1 can be applied to quickly and reliably compute the sharp identified

set for this parameter.

The empirical-evidence-only identified set for SD+
t (·|0) for t = 3 (1982) is given in

the second row of column (1) in Table 2S. It turns out to be slightly narrower than the

identified set for the unconditional positive state dependence parameter SD+
t . Deriving

an analytical expression for the identified set of SD+
t (·|0) seems difficult. Essentially,

one needs to find bounds on PP [Ut(0) = 0, Ut(1) = 1, Yt = 0], but this is complicated

by the fact that Yt depends on the entire history of counterfactual outcomes through

(6). This emphasizes the utility of the DPO framework and Theorem 1 in freeing the

analyst to identify parameters that are relevant for their analysis, regardless of whether

they are analytically convenient.

Conditioning on past outcomes can be extended to analyze the subgroup of women

who have been non-employed for the previous m periods. Column (1) of Table 2S

reports the empirical-evidence-only bounds for

SD+
t (P |00) ≡ PP [Ut(0) = 0, Ut(1) = 1|Yt = 0, Yt−1 = 0]

and SD+
t (P |000) ≡ PP [Ut(0) = 0, Ut(1) = 1|Yt = 0, Yt−1 = 0, Yt−2 = 0]

with t = 3. These parameters are also linear functions of P (Appendix D). The

empirical-evidence-only identified sets for these parameters are as wide as is logically

possible. The auxiliary identifying assumptions described in the next section will make

these identified sets much smaller.

It is of course possible to replace the event Yt = 0 with Yt = 1, if the ana-

lyst is interested in the “treated” group. Conditioning on mixed sequences, such as

[Yt = 1, Yt−1 = 0] is also straightforward, although of less obvious interest. Again,

this flexibility is a great advantage of the DPO framework over the parametric and

nonparametric binary response models in Section 2, in which attention is invariably

restricted to the unconditional average treatment effect, regardless of whether this is

the most relevant parameter for the application at hand.

4.3 Auxiliary Identifying Assumptions

The empirical-evidence-only identified sets for parameters measuring positive state

dependence are very large. In this section I propose additional (auxiliary) identifying

assumptions that can be placed on the potential outcomes in order to narrow these

bounds. These assumptions are implemented by including restrictions in the ρ function

of Section 3.2 and then applying Theorem 1. Maintaining more assumptions leads to

smaller identified sets, but less convincing inference, a trade-off described by Manski
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(2003) as “The Law of Diminishing Credibility.” In keeping with the spirit of Manski’s

law, I will present results using assumptions that become gradually stronger.

4.3.1 Monotone Treatment Response

In the previous section, it was observed that ATEt(P ) 6= SD+
t (P ) unless SD−t (P ) = 0.

In some applications, it may make sense to assume that SD−t (P ) = 0 for all P ∈ P†.
This seems reasonable with regards to female labor force participation, in which it

specifies that no woman would be employed in period t as a direct result of being non-

employed in period t− 1. Another way of stating the assumption is that Ut(1) ≥ Ut(0)

with probability one under any admissible structure P . Hence, the condition can be

viewed as the monotone treatment response (MTR) assumption of Manski (1997a)

applied to the dynamic model.

Assumption MTR: Every P ∈ P† satisfies PP [Ut(1) ≥ Ut(0)] = 1 for all t.

Assumption MTR, along with the other assumptions discussed ahead, is shown in

Appendix D to place a linear restriction on P = {P [u, x] : u ∈ U , x ∈ X}. As a result,

the identified set for any of the parameters discussed in the previous section can be

computed using Theorem 1 under any combination of the assumptions discussed in

this section. Column (2) of Table 2S reports identified sets when MTR is imposed.

As expected, SD−t is point identified by force of the assumption. The identified set

for SD+
t is unchanged relative to the empirical–evidence–only bounds. As it turns

out, MTR has substantial identifying content for positive state dependence parameters

when combined with some of the other assumptions discussed ahead, but has no content

by itself, at least for the PSID data.

The parametric DBR model imposes either MTR or its opposite, depending on

the sign of γ. This is because that model treats γ as a fixed (deterministic) quantity,

implying that with probability 1 either

Ut(1) = 1[γ +X ′tβ + λY0 +A+ Vt ≥ 0] ≥ 1[X ′tβ + λY0 +A+ Vt ≥ 0] = Ut(0) (13)

or the opposite. Hence, MTR does not represent a substantial assumption when com-

pared to the parametric DBR model. This should not be viewed as a justification of

the assumption. While MTR seems reasonable for labor force participation, it should

not necessarily be taken for granted in other applications.

24



4.3.2 Stationarity

Some degree of time-invariance (stationarity) is a natural assumption in panel data

settings. Assuming that the past is like the future allows the empirical evidence from

different time periods to be combined. In the parametric DBR model of Section 2,

all of the parameters are time-constant and all of the unobservables are stationary. In

the DPO model, stationarity assumptions can be introduced by restricting the joint

distribution of (Ut(0), Ut(1)) to be invariant across t ≥ 1. A stronger version of this

restriction could maintain the same condition on multiple time periods, e.g. that

the distribution of (Ut−1(0), Ut(0), Ut−1(1), Ut(1)) does not vary across t ≥ 2. More

generally, consider the following assumption.

Assumption ST: Let m ≥ 0 be a non-negative integer chosen by the analyst and

define Umt (0) ≡ (Ut−m(0), . . . , Ut(0)) and Umt (1) ≡ (Ut−m(1), . . . , Ut(1)) for t ≥
m+ 1. Then for any P ∈ P†, every um(0), um(1), and every s, t ≥ m+ 1,

PP [Ums (0) = um(0), Ums (1) = um(1)] = PP [Umt (0) = um(0), Umt (1) = um(1)].

As stated, ST is a restriction on the marginal distribution of U (vs. (U,X)) for

admissible structures P . It is possible to modify the condition so that it is conditional

on [X = x] for some or all x ∈ X . Imposing the assumption conditional on all x ∈ X
is stronger than the stated version of ST but may in many cases be just as reasonable.

To avoid redundancy, I will state all future assumptions in terms of the unconditional

distribution of potential outcomes whenever appropriate. However, it should be under-

stood that this is simply to avoid tedium, and not necessarily because the conditions

are more or less desirable in that form.

Identified sets maintaining only ST with m = 0, 1, 2 are shown in columns (3)–(5) of

Table 2S.18 While still quite wide, the identified sets with m = 1, 2 for the positive state

dependence parameters are interesting, because the lower bound becomes larger than 0.

This provides simple, nonparametric evidence against the hypothesis that correlation

in outcomes is caused solely by persistent unobserved heterogeneity. Setting m = 3

makes the linear program infeasible, implying that the restriction constrained {P [u, x] :

u ∈ U , x ∈ X} so much that it was not able to satisfy the observational equivalence

condition (8). Whether this infeasibility is due to sampling variation requires statistical

considerations that will be addressed in Section 5.

Column (6) of Table 2S reports identified sets when MTR is added to ST. While

MTR had no identifying power on its own (column (2)), it can be seen in columns

18Note that ST (with any m ≥ 0) implies that ATEt, SD+
t and SD−t do not vary across t.
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(5)–(6) to have substantial content when combined with ST. This finding again serves

to underscore the importance of a general computational approach like Theorem 1. It

shows that the identified sets for the DPO model are determined by the complicated

interactions of many different equalities and inequalities, suggesting that an analytic

approach would be highly infeasible.

It is important to notice that ST generally does not imply any stationarity in the

distribution of observed outcomes Yt. To see this, consider what would be required for

stationarity of the observed outcomes in a simple stylized case in which P[Yt = 0] =

P[Yt = 1] = 1/2 and (Ut+1(0), Ut+1(1)) is independent of Yt. For any observationally

equivalent P satisfying these restrictions one has

P[Yt+1 = 1] = P[Yt+1 = 1, Yt = 0] + P[Yt+1 = 1, Yt = 1]

= P[Yt = 1] + P[Yt+1 = 1, Yt = 0]−P[Yt+1 = 0, Yt = 1]

= P[Yt = 1] + PP [Ut+1(0) = 1, Yt = 0]−PP [Ut+1(1) = 0, Yt = 1]

= P[Yt = 1] +
1

2

(
PP [Ut+1(0) = 1]−PP [Ut+1(1) = 0]

)
.

Hence, P[Yt+1 = 1] = P[Yt = 1] if and only if PP [Ut+1(0) = 1] = PP [Ut+1(1) = 0]. The

latter condition does not restrict the distribution of potential outcomes across time.

Rather, it is a statement about the joint distribution of potential outcomes at time

t + 1. Even in its strongest forms, ST does not in any way impose such a restriction

on the admissible P . Structures satisfying ST can therefore still generate observable

distributions of Y that are non-stationary.

4.3.3 Diminishing Serial Correlation

Persistent heterogeneity in the propensity to be employed is likely to cause the potential

outcomes to be positively serially correlated. However, it is reasonable to assume that

this serial correlation is strongest between potential outcomes in adjacent periods and

diminishes (or does not increase) as the distance between any two periods increases.

This is the content of the following assumption.

Assumption DSC: Every P ∈ P† is such that for y ∈ {0, 1}, CorrP (Ut(y), Ut+s(y))

is decreasing in |s| for s ∈ 1− t, . . . , T − t.

In general, DSC places a nonlinear restriction on P and is therefore difficult to

implement using Theorem 1. However, if ST holds (with any m ≥ 0) then DSC becomes

a linear restriction, equivalent to the statement that PP [Ut(y) = 1, Ut+s(y) = 1] is
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decreasing in |s| for s ∈ {1− t, . . . , T − t} (see Appendix D for justification).19 In light

of this computational consideration, I will only consider the identifying content of DSC

when it is combined with ST.

If Ut(y) is determined through the threshold-crossing relationship (5), as in the

parametric DBR model, and if ST holds, then a sufficient condition for DSC is that

Vt is a first-order Markov chain with a stochastically increasing transition distribution.

This is shown in the following proposition, which uses a result from the literature on

stochastic orders (see Appendix E for a proof).

Proposition 1. Suppose that Ut(y) is determined by (5). If Vt is a first-order Markov

chain (conditional on A, Y0) and P[Vt+1 ≤ vt+1|Vt = vt, A, Y0] is decreasing in vt for

all vt+1, then DSC is satisfied.

If (Vt, Vt+1) is jointly normally distributed conditional on A and Y0, then the posi-

tive stochastic monotonicity condition of Proposition 1 is equivalent to the correlation

coefficient between Vt and Vt+1 (given A, Y0) being non-negative. However, Proposition

1 is sensitive to the inclusion of covariates in (5). If X is time-invariant, then all of the

conditions can be modified to be conditional on X. On the other hand, if X is time-

varying then changes in the index X ′tβ would need to be accounted for to determine

whether DSC can be justified. In particular, if X is strictly exogenous in the sense of

A1, and if the index X ′tβ also satisfies a stochastic monotonicity condition like that

on Vt, then a modification of Proposition 1 can still be shown to hold.20 Lower-level

conditions for the index X ′tβ (vs. any given component of Xt) to satisfy this property

are more difficult to motivate.

Column (7) of Table 2S reports identified sets when DSC is added to MTR and ST

(with m = 2). The only parameter that is substantially affected is SD+
t (·|000), which

has a slightly larger lower bound under DSC. In other applications, DSC might have

more content.

4.3.4 Monotone Instrumental Variables

The role of covariates in a partial identification analysis is often markedly different

than in analyses premised on point identification. In the DBR model of Section 2,

conditioning on a richer set of covariates is often viewed as a way to make A1 and

19If ST does not hold, then the statement that PP [Ut(y) = 1, Ut+s(y) = 1] is decreasing in |s| is equivalent
to the statement that (Ut(y), Ut+s(y)) is decreasing in the upper orthant order with respect to |s|, see e.g.
Shaked and Shanthikumar (2007, Section 6.G). However, the upper orthant order does not necessarily have
a clear interpretation as a positive dependence concept.

20This statement can be justified by applying Theorem 9.A.1. of Shaked and Shanthikumar (2007), which
shows that the concordance ordering is closed under convolution.
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A2 more likely to hold, both because adding covariates “removes” them from the

latent variables A and Vt, and because conditioning on more covariates may make it

more likely that Vt and A are conditionally independent in A1. In contrast, in the

DPO model, there is no parametric index structure through which the roles of the

latent variables Ut(y) and X are made comparable. Moreover, additional maintained

assumptions such as ST are made stronger by conditioning on covariates, not weaker.

If an analyst believes that a particular covariate is statistically independent of the

potential outcomes, then this can be added as an exclusion (instrumental variable)

restriction. Such a restriction can be either conditional on other covariates, or un-

conditional. A weaker form of an instrumental variable condition only assumes the

direction of the dependence between the latent variables and the proposed instrument.

This is the monotone instrumental variable (MIV) assumption introduced by Manski

and Pepper (2000, 2009). In the context of the dynamic potential outcomes model, an

MIV-type assumption is as follows.

Assumption MIV: Every P ∈ P† is such that PP [Ut(y) = 1|X = x] is weakly

increasing in one or more component of x for y = 0, 1 and every t ≥ 1.

Of course, one can strengthen MIV to be a full exclusion restriction by imposing both

directions of weak monotonicity with respect to the same covariate component.

For the current application, I consider the following MIV assumption:

PP [Ut(y) = 1|education = e,husband’s income = h] (14)

is increasing in e and decreasing in h for y = 0, 1 and all supported (e, h),

where education is the woman’s maximum attained education level (less than 12 years,

12 years, 12–16 years, or more than 16 years) and husband’s income is the quintile

of the measure of permanent income defined previously. The MIV condition in (14)

assumes that education has a positive effect on labor force participation, conditional on

husband’s income. This seems reasonable if higher education increases the opportunity

cost of non-participation. Second, the condition assumes that permanent income has

a negative effect on labor force participation, conditional on education. This seems

reasonable if marginal utility is decreasing in overall household income.

Observe that in the parametric DBR model,

P[Ut(y) = 1|X = x] = E
[
Φ(γy + x′tβ +A)

]
, (15)

where xt is the subcomponent of x that is included in the conditioning set at time

t and Φ is the standard normal distribution function. Hence, the parametric DBR
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model implies that P[Ut(y) = 1|X = x] is monotone increasing in a component of

x if the sign of the corresponding β component is positive. In such a model, MIV

amounts to placing a priori sign restrictions on components of covariate coefficients β.

Imposing MIV in both directions—i.e. assuming that a particular component of β is

0—corresponds to an exclusion restriction. Exclusion restrictions like these are often

imposed in applications of the parametric DBR by not including various leads and lags

of the time-varying components of X.

Column (8) of Table 2S reports identified sets for specifications that maintain the

above MIV assumption along with MTR and ST withm = 2. For most parameters MIV

causes a modest decrease in the upper bound. However, under the MTS assumption

discussed ahead, MIV is shown to have no additional identifying content. The final

nonparametric specification will therefore not impose the MIV condition, since doing

so has no practical benefit in the current application. Additional MIV assumptions

will be considered in a semiparametric framework that is currently under development.

4.3.5 Monotone Treatment Selection

For the static potential outcomes model, Manski and Pepper (2000) considered the

identifying content of assuming that potential outcomes are larger for agents who select

into treatment than for those who do not. This monotone treatment selection (MTS)

condition captures the idea that an analyst may be willing to make a priori assumptions

on the direction of bias that would arise from a simple treatment–control contrast of

an endogenously assigned treatment. For the DPO model, the distinction between

treatment and control is less stark than in the static case, since each of an agent’s

past outcomes could be viewed as a “treatment.” Hence, there appear to be a number

of different MTS-like conditions one could reasonably consider. I will focus on the

following variant.

Assumption MTS. Every P ∈ P† satisfies

PP [Ut(y) = 1|Yt−1 = 1, Yt−2 = yt−2] ≥ PP [Ut(y) = 1|Yt−1 = 0, Yt−2 = yt−2] (16)

for y = 0, 1, yt−2 = 0, 1 and all t ≥ 2.

The y = 0 part of MTS says that women who were employed in year t − 1 are

more likely to be employed in year t, even in the counterfactual state that they were

actually non-employed in year t − 1. Similarly, the condition with y = 1 says that

women who were non-employed in year t − 1 are less likely to be employed in year t,

even if they had (counterfactually) been employed in period t − 1. Hence, MTS can
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be interpreted as saying that women who were employed in period t− 1 have a higher

latent propensity to be employed in period t than women who were non-employed in

period t− 1, conditional on having the same employment status in period t− 2.

The additional conditioning on Yt−2 = yt−2 in these statements ensures that the

participation decision in year t − 1 is comparable. That is, since the event [Yt−1 =

yt−1, Yt−2 = yt−2] is equivalent to the event [Ut−1(yt−2) = yt−1, Yt−2 = yt−2], condi-

tioning on Yt−2 = yt−2 ensures that the conditioning events on the left and right sides

of (16) are expressed in terms of the same potential outcome Ut−1(yt−2). A stronger

form of MTS would extend this conditioning all the way back to t = 0. I found that this

contributed no additional identifying content while imposing additional computational

burden, due to the large number of additional restrictions.

To evaluate the credibility of MTS, consider when (16) would be satisfied in the

parametric DBR model. There, (16) becomes (suppressing covariates)

P [A+ Vt ≥ −γy|A+ Vt−1 ≥ −γyt−2, Yt−2 = yt−2]

≥ P [A+ Vt ≥ −γy|A+ Vt−1 < −γyt−2, Yt−2 = yt−2] . (17)

A sufficient condition for (17) is that A + Vt is positive quadrant dependent with

A+Vt−1, conditional on Yt−2.
21 If Vt and A are independent and normally distributed,

as they are under A1 and A2, then this is satisfied if and only if the correlation between

A + Vt and A + Vt−1 is positive, i.e. V(A) ≥ −Cov(Vt, Vt−1). If the index in the

parametric DBR is meant to represent a reduced form for the net utility (broadly

defined) of employment, then one would typically expect transitory shocks Vt to wages

or private information to not be strongly negatively correlated, in which case (16)

would be satisfied. Viewed through the context of a parametric DBR, MTS therefore

appears to be quite reasonable.

Column (9) of Table 2S reports identified sets when MTS is added to MTR, ST

(with m = 1), DSC and the MIV condition given in the previous section. Comparing

columns (8) and (9), it is clear that MTS has a dramatic effect on the upper bounds

of positive state dependence parameters.

4.3.6 Fixed Effects or “Time is an Instrument”

The parametric DBR model maintains a distinction between time-invariant latent fac-

tors A and time-varying latent factors Vt. Distinctions like this are also imposed in the

21Two random variables A and B are positive quadrant dependent if P[A > a,B > b] ≥ P[A > a] P[B > b]
for every a and b, see e.g. Nelsen (2006). It is straightforward to show that if A and B are continuously
distributed then this implies that P[A ≥ a|B ≥ b] ≥ P[A ≥ a|B < b].
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nonparametric literature surveyed in Section 2. In that literature, researchers have used

the difference between A and Vt to assume that Yt follows a homogenous, first-order

Markov process, conditional on A and the initial period Y0. This essentially treats A

as a time-invariant fixed effect, in the manner often desired for the parametric DBR

model. In particular, Chernozhukov et al. (2013) derived non-sharp analytic bounds on

the ATE for the nonparametric model (3) under the assumption that Vt|Yt−1, . . . , Y0, A
is distributed like V1|Y0, A for every t ≥ 1. They described this condition as assuming

that “time is randomly assigned” or “time in an instrument” (TIV).

Assumption TIV. For every P ∈ P†, there exists a random variable A such that

the distribution of Ut(y)|Yt−1, . . . , Y0, A under P is the same as the distribution of

U1(y)|Y0, A under P for y = 0, 1 and all t.

Point estimates of the Chernozhukov et al. (2013) bounds are given in column (C1)

of Table 2S. Compared to the identified set in column (9), the bounds in column (C1)

are quite wide and relatively uninformative. Column (C2) shows the slightly improved

non-sharp lower bound that can be obtained from the results of Chernozhukov et al.

(2013) by imposing MTR, in which case ATEt = SD+
t . As the next proposition shows,

it is also possible to impose the TIV assumption in the DPO model. Moreover, unlike

for the nonparametric model of (3), Theorem 1 allows one to combine this assumption

with the other assumptions already discussed.

Proposition 2. If TIV holds then for every P ∈ P?, y = 0, 1, and all t ≥ 1,

PP [Ut(y) = 1] ≥
T−1∑
t=0

P[Yt = 1, Yt−1 = y, Ys 6= y ∀s < t− 1] and

PP [Ut(y) = 1] ≤
T−1∑
t=0

P[Yt = 1, Yt−1 = y, Ys 6= y ∀s < t− 1] + P[Ys 6= y ∀s ≤ T − 1].

Proposition 2 is simply a restatement of a result of Chernozhukov et al. (2013) put in

terms of the dynamic potential outcomes model.22 The implied bounds in Proposition

2 are linear in P = {P [u, x] : u ∈ U , x ∈ X}, and so can be imposed with Theorem 1

together with any of the other assumptions an analyst wishes to maintain. However,

since Proposition 2 only establishes an implication of TIV, and not an equivalence, the

resulting identified set may also include structures that do not satisfy TIV. Hence, as

in Chernozhukov et al. (2013), an identified set constructed by imposing the bounds

in Proposition 2 may be non-sharp.

22For completeness, a proof of Proposition 2 is provided in Appendix F.
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Column (10) of Table 2S reports non-sharp identified sets that add the restrictions

in Proposition 2 to MTR, ST (with m = 2), DSC, MIV, and MTS. Evidently, there is

no additional identifying content contained in TIV. It is unclear whether this is due to

the non-sharpness of the identified set, or because TIV actually contains no identifying

content beyond the other maintained assumptions in the current application.

Regardless of its identifying content, TIV has some strong and undesirable impli-

cations in the context of female labor force participation. Foremost among these is

its implication that the fixed effect A is the only source of serial correlation in latent

variables. Hyslop (1999) found strong evidence against this assumption in a paramet-

ric DBR model, instead concluding that the Vt terms in (1) were more appropriately

modeled as an AR(1) process. If Vt follows an AR(1) process, then Ut(y) (as implied

by that model, i.e. (5)) will be dependent with all past lags of Yt, even conditional

on A and hence TIV will not be satisfied.23 Serial correlation in the time-varying

unobservables seems likely, since they will represent temporal changes in productivity,

human capital and private information. This problem is compounded in a nonpara-

metric setting, since any serially correlated observed time-varying covariates that are

omitted will end up being reflected in the time-varying latent term.

Given these objections and the lack of identifying content contributed by TIV, it

seems just as well to remove the assumption. Similarly, after some experimentation,

I found that MIV also did not add any additional identifying content once MTS was

added, so it is removed as well. Column (11) of Table 2S confirms that the resulting

identified sets (maintaining only MTR, ST with m = 2, DSC and MTS) are unchanged.

5 Statistical Inference

The identified sets Θ? constructed in the previous section treat the empirical distribu-

tion of the observed data as if it were the population distribution. In this section, I

discuss the construction of confidence sets for Θ? that account for the sampling vari-

ation that arises when viewing the empirical distribution as resulting from an i.i.d.

sample from some underlying population distribution. These confidence sets contain

(with probability at least 1− α) the parameter θ0 = θ(P0) ∈ Θ? corresponding to the

“true” structure P0 ∈ P? that generated the data.

23This point was raised early in the literature by Heckman (1981a) and Chamberlain (1984).
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5.1 Construction of Confidence Intervals

Some additional notation is required. Let W ≡ supp(Y,X) denote the joint support of

the observable data W ≡ (Y,X). For each w ≡ (wy, wx) ∈ W define

moeq,w(W,P ) ≡ 1[Y = wy, X = wx]−
∑

u∈Uoeq(wy)

P [u,wx], (18)

Next, partition the restriction function ρ into a deterministic component ρd, and a

stochastic component ρs with dimension ds. The deterministic component, ρd : P →
Rdρ−ds , is a function defined on P alone that does not depend on the distribution of

W . The stochastic component, ρs : P × FW → Rds , is a function defined on P and

the collection FW of possible distributions for W . Furthermore, assume that ρs can be

represented as a moment condition, i.e. that there exists a function mρ :W×P → Rds

that is linear in P for fixed F , and for which ρs(P, F ) = EF [mρ(W,P )], where F ∈ FW
and EF is the expectation computed when W is distributed as F . This condition is

satisfied by all of the auxiliary identifying assumptions utilized in Section 4.

For example, suppose that there are no covariates so that X can be taken as a

singleton and W = Y . Then MTR would be represented through ρd, since it is not

a restriction that depends on the distribution of observables W . On the other hand,

MTS would be part of ρs, since it depends on the distribution of (Yt−1, Yt−2). With

covariates, MIV would be part of ρs, since it depends on the marginal distribution of

X. Note that the current notation is not flexible enough to account for components

of ρs that correspond to equality (vs. inequality) constraints. This is simply because

none of the proposed identifying assumptions in Section 4.3 can be classified as such.

Accommodating such restrictions is immediate, but requires some additional notation.

Next, define P†d ≡ {P ∈ P : ρd(P ) ≥ 0} as the set of constraints on P that do not

depend on the distribution of W . These include not only ρd, but also the requirement

that P ∈ P, i.e. that P is a probability mass function on U × X . Then

P? = {P ∈ P†d : E[moeq,w(W,P )] = 0 ∀w ∈ W

and E[mρ,s(W,P )] ≥ 0 ∀s = 1, . . . , ds}, (19)

where mρ,s(W,P ) denotes the sth component of mρ(W,P ). Equation (19) shows

that the DPO model can be viewed as a moment inequality model with parameter

space P†d, moment equalities {E[moeq,w(W,P )] = 0}w∈W , and moment inequalities

{E[mρ,s(W,P )] ≥ 0}dss=1. This observation was not helpful for computing identified

sets, and in fact would have obscured the ease with which P? can be computed given
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knowledge of the distribution of W . On the other hand, the moment inequality frame-

work is quite useful for inference, since several recent papers have carefully considered

the delicate theoretical issues involved in moment inequality models.24

In particular, I will construct confidence regions using the approach of Bugni et al.

(2014) (BCS). The BCS approach adapts the generalized moment selection (GMS)

approach of Andrews and Soares (2010) (AS) to a form that is more amenable to

conducting inference on low-dimensional parameters.25 The immediate way to use

GMS to construct a confidence region for a low-dimensional parameter of interest

θ0 ≡ θ(P0) is to first construct a confidence region for P0 through test-inversion, and

then form the image of this confidence region under θ. BCS argue that this can be quite

conservative. But more importantly, the first step of this procedure is computationally

infeasible in the DPO model, since it requires performing a grid-search on a space

of dimension |U| × |X | = 22T+1 × |X |. The BCS approach effectively replaces this

high-dimensional grid search with a series of optimization problems.

One implementation of the BCS procedure is as follows. For notational convenience,

write the moment functions {mρ,s}dss=1 and {moeq,w}w∈W together as {mj}dmj=1 where

dm = ds + dW and the first ds components of mj correspond to {mρ,s}dss=1. Quantify

the moment inequalities and equalities with the criterion function

Q(P ) ≡
ds∑
j=1

[
E[mj(W,P )]

V[mj(W,P )]1/2

]2
−

+

dm∑
j=ds+1

[
E[mj(W,P )]

V[mj(W,P )]1/2

]2
,

where [x]− ≡ min{0, x} and V denotes the variance operator under the population

distribution of W . Notice that for P ∈ P†d, Q(P ) = 0 if and only if P ∈ P?. This

criterion is referred to in the literature as the modified method of moments. It is

attractive for its computational ease, but other criterion functions are possible.26 Given

24It is not clear how one could construct valid confidence regions by using empirical analogs of the programs
in Theorem 1. Andrews and Han (2009) show that naively bootstrapping (or subsampling) empirical analogs
of θ?l and θ?u will not lead to consistent confidence regions. Freyberger and Horowitz (2013) analyze an
instrumental variables model for which the identified set can also be represented through the solution to
two linear programming problems, although their programs have more structure than those considered here.
They propose a modified bootstrap procedure based on the sample analogs of the solutions to the linear
programs. Importantly, their procedure accounts for the discontinuity in the asymptotic distribution of
these solutions by restricting attention to the set of nearly–optimal basic solutions. In the DPO model, the
set of basic solutions is extremely large, so a similar procedure would be computationally difficult and might
have poor finite sample properties. Their procedure is also premised on the assumption that the identified
set computed with the empirical distribution is non-empty, which is not necessarily desirable for analyzing
the DPO model.

25See also Gandhi et al. (2013) (Section 5) who consider an inferential approach that is effectively sub-
sumed by the procedure later proposed by Bugni et al. (2014).

26In particular, criterion functions that incorporate information on cross-moment correlations may be
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an i.i.d. sample {Wi}ni=1 of size n, a sample analog of Q is constructed by replacing E

and V with their empirical counterparts:

Qn(P ) ≡
ds∑
j=1

[√
nmn,j(P )

σn,j(P )

]2
−

+

dm∑
j=ds+1

[√
nmn,j(P )

σn,j(P )

]2
,

where mn,j(P ) ≡ 1

n

n∑
i=1

mj(Wi, P ), σ2n,j(P ) ≡ 1

n

n∑
i=1

(mj(Wi, P )−mn,j(P ))2,

and scaling by the rate of convergence has already been applied.

Given a parameter θ, a profiled version of Qn can be defined as

Qn(t) ≡ inf
P∈P†

d(t)
Qn(P )− inf

P∈P†
d

Qn(P ),

where P†d(t) ≡ {P ∈ P
†
d : θ(P ) = t} and the objective function has been re-centered

around inf
P∈P†

d
Qn(P ) to improve power (Chernozhukov et al., 2007).27 The profiled

criterion Qn(t) will serve as a test statistic for a test of the null hypothesis H0 : t ∈ Θ?.

Confidence regions for Θ? can be constructed through test inversion, i.e. by collecting

all t ∈ Θ for which this null hypothesis is not rejected.

To operationalize these tests, one needs a way to approximate the distribution of

Qn(t) so as to construct an appropriate critical value. This is difficult because the

asymptotic distribution of Qn(P ) is discontinuous in the number and identity of the

inequality moments that bind, i.e. those j ∈ {1, . . . , ds} for which E[mj(W,P )] = 0.

Inequality moments that do not bind do not affect the asymptotic distribution of Qn(P )

for a fixed F ∈ FW , so removing these moments from (or limiting their effect on) a

proposed approximation is important for achieving inference that is not excessively

conservative. The GMS procedure introduced by AS solves this problem by effectively

smoothing out the discontinuity in the asymptotic distribution of Qn(P ). This is

accomplished by approximating the limiting distribution of Qn(P ) under a drifting

sequence of F ∈ FW in such a way that the limit accounts for the distance of the

inequality moments from 0 in the population.28

In particular, one implementation of the GMS procedure considers the asymptotic

preferable (see AS and Andrews and Barwick (2012)) but are more difficult to compute.
27Note that here I am assuming that θ does not depend on FW . This rules out parameters that condition

on past outcomes such as SD+
t (·|0).

28My understanding is that similar ideas were independently and contemporaneously derived by several
other authors including Bugni (2010) and Canay (2010)—see AS for details on the related literature.
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distribution of

QGMS
n (P ) ≡

ds∑
j=1

[
ν∗n,j(P ) + ξn,j(P )

]2
− +

dm∑
j=ds+1

[
ν∗n,j(P )

]2
, (20)

where ν∗n,j(P ) ≡ 1√
n

n∑
i=1

mj(W
∗
i , P )−mn,j(P )

σn,j(P )
, ξn,j(P ) ≡ κ−1n

√
nmn,j(P )

σn,j(P )
,

{W ∗i }ni=1 is a bootstrap sample drawn i.i.d. with replacement from {Wi}ni=1, and κn

is a tuning parameter that I will always set to log(n)1/2 as recommended by AS.

Under this specification the contribution of the jth moment inequality to QGMS
n (P )

increases smoothly as the jth moment inequality becomes more strongly violated and

mn,j(P ) becomes more negative.29 The asymptotic distribution of QGMS
n (P ) can be

approximated through simulation by redrawing {W ∗i }ni=1 a large number (say, B) of

times. AS show that a test that rejects H0 : P ∈ P? whenever Qn(P ) is larger than

the simulated 1−α quantile of QGMS
n (P ) will have asymptotic size α, while also having

good power and uniformity properties.

The GMS procedure is designed for constructing confidence regions for P?. Project-

ing these confidence regions for P? to obtain confidence regions for Θ? is computation-

ally infeasible if P is high-dimensional. Moreover, BCS show that directly simulating

the profiled GMS criterion function inf
P∈P†

d(t)
QGMS
n (P ) does not produce a test that

controls size asymptotically. Instead, BCS propose two GMS–like procedures for ap-

proximating the asymptotic distribution of Qn(t). The first procedure simulates the

distribution of

Q
R1
n (t) ≡ QGMS

n (P̂n(t))

where P̂n(t) ∈ arg inf
P∈P†

d(t)
Qn(P ) is a minimizer of Qn(P ) over P†d(t).

30,31 The second

29AS discuss several possible ways to account for ξn,r(P ) inQGMS
n (P ). The form chosen in (20) corresponds

to their “ϕ(4)” GMS function. This choice is convenient computationally, since it preserves smoothness and
convexity of Qn, as discussed ahead. However, Andrews and Barwick (2012) present simulation evidence
that suggests non-smooth choices may perform better in finite samples.

30Note that Qn(P ) is convex but not necessarily strictly convex. Therefore, its minimizer over a convex

set may not be unique. BCS specify Q
R1

n (t) ≡ infP∈P̂?
n(t)

QGMS
n (P )−Qrc

n where P̂?
n(t) = arg infP∈P†

d(t)
Qn(P )

is the collection of all minimizers of Qn(P ). For computational considerations, I replace this infimum by a
single point. This still yields a test that controls size, although it will be more conservative.

31Recentering R1 does not seem to be appropriate. For example, if v∗n,j(P ) does not depend on P (which

often happens, see below) and there are no moment inequalities, then QGMS
n (P ) does not depend on P and

so a recentered version of Q
R1

n (t) would be deterministically 0.
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procedure simulates the distribution of

Q
R2
n (t) ≡ inf

P∈P†
d(t)

QR2
n (P )− inf

P∈P†
d

QR2
n (P ),

where QR2
n (P ) ≡

ds∑
j=1

[
ν∗n,j(P ) + ξn,j(P )

]2
− +

dw∑
j=ds+1

[
ν∗n,j(P ) + ξn,j(P )

]2
, (21)

and inf
P∈P†

d
QR2
n (P ) accounts for re-centering. BCS show that a test that rejects H0 :

t ∈ Θ? when Qn(t) is larger than the simulated 1−α quantile of either Q
R1
n (t) or Q

R2
n (t)

will control size asymptotically and have good uniformity properties. They also propose

a third test called the “minimum resampling” (MR) test that rejects H0 : t ∈ Θ? when

Qn(t) is larger than the simulated 1− α quantile of

Q
MR
n (t) ≡ min{QR1

n (t), Q
R2
n (t)}.

BCS establish that the MR test also controls size asymptotically. In addition, since its

critical value is by construction smaller than those for tests based on R1 or R2 alone,

the MR test has at least weakly better power than tests based on either R1 or R2. In

the following, I refer to the test that rejects H0 : t ∈ Θ? when Qn(t) is larger than the

simulated 1−α quantile of Q
MR
n (t) as the MR test. A 1−α MR confidence region for

Θ? is the set of all t for which the MR test does not reject.

As an alternative to the MR test, I also consider confidence regions constructed

through subsampling (Chernozhukov et al., 2007; Romano and Shaikh, 2008, 2010).

The subsampling procedure is more straightforward than a GMS–based approach, but

BCS argue that it can have worse asymptotic power than the MR test.32 The Monte

Carlo simulation in the next section suggests that, at least for the DPO model and

with finite samples, the relative power ranking of the SS and MR tests depends on the

null hypothesis, i.e. on t. The subsampling approach approximates the asymptotic

distribution of Qn(t) by the distribution of

Q
SS
bn (t) ≡ inf

P∈P†
d(t)

QSS
bn (P )− inf

P∈P†
d

QSS
bn (P ),

where QSS
bn

(P ) is analogous to Qn(P ), but constructed instead using a randomly drawn

subsample (without replacement) {W ∗i }
bn
i=1 of size bn from {Wi}ni=1. This profiled

subsampling procedure was first suggested in Romano and Shaikh (2008). In the

following, I refer to the test that rejects H0 : t ∈ Θ? when Qn(t) is larger than the

32Similar results are established by AS for non-profiled GMS-based tests.
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1 − α quantile of Q
SS
bn (t) based on B random subsamples as the SS test. A 1 − α SS

confidence region for Θ? is the set of all t for which the SS test does not reject.

The Monte Carlo simulations reported ahead in Section 5.3 suggest that both the

MR and SS tests have poor finite-sample power in the DPO model. As a result,

confidence regions constructed by inverting these tests tend to be excessively wide.

As a simple way to ameliorate this problem, I consider a third test, referred to as the

“minimum quantile” (MQ) test, with critical value taken as the minimum of the critical

values for the MR and SS tests. The MQ test will be asymptotically the same as either

the MR or SS test for a given null hypothesis H0 : t ∈ Θ?. For constructing confidence

regions, however, the MQ test will differ from the MR and SS tests to the extent that

the power rankings of the MR and SS tests vary with t and with the sample.

A fourth test I consider is the “quantile of the minimum” (QM) test, which re-

jects H0 : t ∈ Θ? if Qn(t) is larger than the 1 − α simulated/subsampled quantile

of min{QMR
n (t), Q

SS
bn (t)}. However, it is not clear that this test controls size. It may

be possible to adapt the results on size control for the MR test given in Bugni et al.

(2014) to the QM test, since the resampling statistics (R1 and R2) and the subsampling

statistic have asymptotic distributions that have a common structure, however this has

not been shown. The Monte Carlo results in Section 5.3 suggest that the QM test is

considerably more powerful than the other three tests considered. However, since it is

not clear that it controls size, I do not use the QM test when constructing confidence

intervals for the PSID data.

5.2 Computational Considerations

In order to implement the tests in the previous section, it is important to be able

to reliably solve the optimization problems that define Qn(t), Q
R1
n (t), Q

R2
n (t), and

Q
SS
n (t). Reliability—specifically, ensuring that local optima are in fact global optima—

is especially important here because each problem needs to be solved a large number

of times in the process of bootstrapping/subsampling and inverting hypothesis tests

into confidence intervals. All of these problems are convex programs if (i) P†d(t) is

determined by the intersection of linear equalities and inequalities; (ii) mn,j(P ) is linear

in P for all j; (iii) σn,j(P ) does not depend on P ; and (iv) ξn,j(P ) enters the GMS

objective function linearly, as in (20). Convex programs of this sort are relatively easy

to solve quickly and reliably.33 Conditions (i) and (ii) are satisfied for all combinations

of the parameters and auxiliary identifying assumptions that were discussed in Section

33Note that even under conditions (i)–(iv), finding Qn(t) is not necessarily a quadratic program, because
of the [·]− function for the moment inequalities. In situations where there are no moment inequalities, the
extra quadratic structure can be exploited.
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4. Condition (iv) corresponds to a particular choice of the GMS function (“ϕ” equal

to ϕ(4)) in AS.

However, condition (iii) effectively requires mj(W,P ) to be additively separable

in P . Separability holds for the observational equivalence moments (18), but not for

some stochastic constraints, such as MTS. Including such nonseparable moments would

generally make mn,j(P )/σn,j(P ) a nonlinear function of P . As a result, determining

Qn(t) would require solving a high-dimensional optimization problem with a convex

constraint set but a potentially non-convex objective function. This can be quite

difficult. To avoid this problem, but still include nonseparable constraints like MTS,

I modify the definition of Q (and Qn) so that these nonseparable moments are not

scaled by their standard deviations (or sample standard deviations). This restores

convexity in the objective function at the cost of losing the scale invariance property

of the criterion function.34

5.3 Monte Carlo Simulation

This section discusses the results of a small Monte Carlo study aimed at gauging

the finite sample performance of the previously discussed tests when applied to the

DPO model. The data generating process is taken to be the empirical distribution

observed in the PSID data. In order to moderate the computational requirements, I

use only the first five periods of data (T = 4) and keep only the subset of observations

that experience two or fewer transitions (i.e. instances in which Yt 6= Yt−1) over this

period. This leaves n = 1,735 out of the 1,812 original cross-sectional observations.

The empirical distribution of Y for this subpopulation is reported in Table 3. The data

generating process in the Monte Carlo simulation draws Y according to this empirical

distribution.

Tables 4 and 5 report features of the distribution of estimated upper and lower

bounds, as well as the rejection rates of the MR, SS, MQ and QM tests of H0 : t ∈ Θ? at

nominal level α = .05 for several values of t.35 The first specification, reported in Table

4, imposes MTR and ST with m = 2, while the second specification, reported in Table

5, imposes MTR, ST with m = 2, and MTS. In both cases the parameter is SD+
t .36 The

first specification represents a case in which there are no moment inequalities and the

criterion function is scale-invariant, while in the second specification, the addition of

34Some of the earlier papers on moment inequalities, such as Chernozhukov et al. (2007), Romano and
Shaikh (2008) and Ciliberto and Tamer (2009) considered modified methods of moments estimators that are
not scale invariant. AS argue that this may lead to poor power.

35The simulations were conducted with 500 replications, B = 500, κn =
√

log(n), and bn = n2/3. These
choices of κn and bn were recommended by AS and Bugni (2010), respectively.

36Note that the true values listed in Table 4 differ from those in Table 2S because here T = 4.
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MTS requires moment inequalities that are not scale-invariant due to the computational

considerations discussed in the previous section.

The results suggest that the MR, SS and MQ tests are highly conservative, as all

three tests only seldom reject the null hypothesis for values of t (indicated in the table

by boxes) at which it is true. All three tests have low power and hence will lead to

wide confidence intervals. For the smaller sample size (n = 1,735), the MR test has

relatively higher power for values of t on the left side of the identified set, while the

SS test has higher power for values of t on the right side of the identified set, but

only in the first specification. The MQ test captures both of these areas of relatively

good power, producing an overall more powerful test. However, the MQ test is still

quite conservative and not very powerful. When n is doubled, the power differences

between the tests appear to diminish, although the MR test is still not very powerful

to the right of the identified set in the first specification, while the SS test is still not

very powerful to the right of the identified set in the second specification. Each of

the MR, SS and MQ tests remain highly conservative even with n = 3,470. The QM

test is also conservative, but much less so, and has substantially higher power across

all hypotheses, both specifications and both sample sizes. However, since it is not

known whether the QM test controls size, this could just be an artifact of the specific

simulation.

The low power of the MR, SS and MQ tests does not appear to be due to sampling

noise in the identified set. If this were the case, one would expect to see substantial

sampling variation in the directly computed lower and upper bounds. The simulations

provide strong evidence against this explanation. For example, in the first specification

(Table 4) with n = 1,735, the MQ test of H0 : .04 ∈ Θ? only rejects about 4% of the

time, even though .04 is roughly the .01 quantile of the simulated empirical distribution

of θ̂?l . The MQ tests of H0 : .02 ∈ Θ? and H0 : 0 ∈ Θ? are only rejected 14% and

52% of the time, even though the smallest realization of θ̂?l in the simulation was .021.

When constructing confidence regions through test inversion, this conservativeness will

translate into confidence regions that are excessively wide.

5.4 Confidence Intervals for Female Labor Force Participation

In this section I report and discuss 95% confidence intervals for SD+
t for three specifi-

cations of the DPO model using the full sample of the PSID data.37 For comparison,

recall that the 95% bootstrapped confidence interval of the ATE for the parametric

DBR specification discussed at the beginning of Section 4 is [.144, .337]. Here, I con-

37The results and discussion in this section are preliminary.
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sider three specifications of the DPO model.

The first specification maintains only MTR and ST with m = 0. The 95% MQ confi-

dence interval for the ATE (which is equal to SD+
t ) in this specification is [.022, .863].38

While quite wide, this confidence interval is interesting, because it shows that using

only a monotonicity and weak stationarity condition, one can reject the hypothesis

that there is no state dependence in female labor force participation in a completely

nonparametric model. The second specification uses MTR, ST with m = 2 and MTS.

The 95% MQ confidence interval for the ATE (again equal to SD+
t ) in this specification

is [.014, .654].

The third specification is like the second specification but increases m from 2 to 4.

The identified set for this specification is empty in the sample, but it is still possible to

construct a confidence interval by assuming that the model is correctly specified and

imposing the various recentering terms discussed in Section 5. The resulting 95% MQ

confidence interval for the ATE (SD+
t ) is [.041, .453]. This is closer to the confidence

interval for the parametric DBR model, but obtained under transparent, nonparametric

assumptions.

Given the low power of the MQ test exhibited in the simulation studies in the previ-

ous section, it is likely that these 95% MQ confidence intervals are highly conservative.

Hopefully, future work on inference in partially identified models such as these will

provide methods that are less conservative.

6 Conclusion

This paper has discussed the use of a dynamic potential outcomes (DPO) model for

empirically separating state dependence from unobserved heterogeneity in dynamic

binary outcomes. Compared to traditional parametric dynamic binary response (DBR)

models, the DPO model has the advantage of being nonparametric, transparent and

flexible with regards to its treatment of persistent unobserved heterogeneity. Compared

to more recent work on nonparametric DBR models, the DPO model has the advantage

of being transparent and amenable to the measurement of many types of parameters

under many types and combinations of auxiliary identifying assumptions. It also does

not require an analyst to assume that the observed outcomes are conditionally first-

order Markov, which may be undesirable for many economic outcomes.

The central challenges of the DPO model are the difficulties with statistical inference

raised by the fact the that parameters measuring state dependence are in general

38All confidence intervals for the DPO model were constructed using B = 500, κn =
√

log(n), and
bn = n2/3.
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partially, not point, identified. Recent work on inference in moment inequality models

has provided a useful starting point for inference in the DPO model. However Monte

Carlo simulations suggest that, at least for the DPO model, these methods are highly

conservative with low power. It would be helpful to have an inferential method that

more directly exploits the linear programming structure of the DPO model. Such a

development would have applications beyond the DPO model, but is beyond the scope

of the current paper.

Even using tests with poor power, it is possible to use the DPO model to reject at

conventional levels the hypothesis of no state dependence in female labor force partici-

pation using only weak nonparametric assumptions about stationarity and monotonic-

ity. Under stronger stationarity conditions and an additional assumption of positive

dynamic selection into employment (i.e. MTS), I estimate that 4.1–45.3% of married

women in the early 1980s were directly affected by state dependence. This confidence

interval is consistent with (but substantially wider than) that implied by a standard

parametric DBR model.
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Table 1: Descriptive Statistics on Labor Force Participation Dynamics

time period t

0 1 2 3 4 5 6

P[Yt = 1] .710 .694 .687 .682 .700 .733 .727

(.011) (.011) (.011) (.011) (.011) (.010) (.010)

P[Yt 6= Yt−1] — .147 .143 .125 .133 .124 .099

(.008) (.008) (.008) (.008) (.008) (.007)

P[Yt = 1|Yt−1 = 0] — .227 .222 .194 .238 .263 .174

(.015) (.015) (.014) (.014) (.014) (.013)

P[Yt = 1|Yt−1 = 1] — .885 .891 .905 .916 .935 .929

(.010) (.010) (.009) (.009) (.009) (.008)

total # of transitions

0 1 2 3 4 5 6

Proportion .588 .178 .146 .058 .023 .007 .001

of women (.012) (.009) (.008) (.005) (.004) (.002) —

Notes: (i) Standard errors in parentheses; (ii) A transition is defined as the event [Yt 6= Yt−1];
(iii) Only one woman experienced 6 transitions so no standard error is provided.
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Table 2S: Identified Sets

PDBR CFHN DPO

(P) (C1) (C2) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

MTR n/a X X X X X X X X

ST m = 0 n/a n/a n/a X X X X X X X X X

ST m = 1 n/a n/a n/a X X X X X X X X

ST m = 2 n/a n/a n/a X X X X X X X

DSC n/a n/a n/a X X X X X

MIV n/a n/a n/a X X X

MTS n/a n/a n/a X X X

TIV n/a X X X

ATEt
θ?l .240

.098 .129 -.126 .000 -.066 -.062 -.039 .171 .171 .171 .171 .171 .171

θ?u .716 .716 .874 .874 .839 .838 .824 .824 .819 .717 .439 .439 .439

SD+
t

θ?l n/a n/a
.129 .000 .000 .000 .032 .058 .171 .171 .171 .171 .171 .171

θ?u .716 .874 .874 .853 .853 .853 .824 .819 .717 .439 .439 .439

SD+
t (·|0)

θ?l n/a n/a n/a
.000 .000 .000 .088 .107 .326 .326 .326 .326 .326 .326

θ?u .795 .795 .795 .795 .795 .720 .717 .634 .515 .515 .515

SD+
t (·|00)

θ?l n/a n/a n/a
.000 .000 .000 .111 .135 .410 .410 .410 .410 .410 .410

θ?u 1.00 1.00 1.00 1.00 1.00 .906 .902 .797 .647 .647 .647

SD+
t (·|000)

θ?l n/a n/a n/a
.000 .000 .000 .000 .046 .347 .393 .393 .393 .393 .393

θ?u 1.00 1.00 1.00 1.00 1.00 .926 .926 .926 .684 .684 .684

SD−t
θ?l n/a n/a n/a

.000
.000

.000 .000 .000
.000 .000 .000 .000 .000 .000

θ?u .126 .099 .099 .099

Notes: (i) All identified sets are known to be sharp except for those constructed under TIV, i.e. C1, C2 and (10); (ii)
Single numbers indicate point identified parameters; (iii) MIV refers to (14); (iv) All parameters are reported for t = 3.
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Table 2L: Lengths of Identified Sets

PDBR CFHN DPO

(P) (C1) (C2) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

MTR n/a X X X X X X X X

ST m = 0 n/a n/a n/a X X X X X X X X X

ST m = 1 n/a n/a n/a X X X X X X X X

ST m = 2 n/a n/a n/a X X X X X X X

DSC n/a n/a n/a X X X X X

MIV n/a n/a n/a X X X

MTS n/a n/a n/a X X X

TIV n/a X X X

ATEt .000 .618 .587 1.00 .874 .906 .900 .862 .653 .648 .546 .268 .268 .268

SD+
t n/a n/a .587 .874 .874 .853 .821 .795 .653 .648 .546 .268 .268 .268

SD+
t (·|0) n/a n/a n/a .795 .795 .795 .707 .688 .394 .391 .308 .188 .188 .188

SD+
t (·|00) n/a n/a n/a 1.00 1.00 1.00 .889 .865 .496 .491 .387 .237 .237 .237

SD+
t (·|000) n/a n/a n/a 1.00 1.00 1.00 1.00 .954 .579 .533 .533 .291 .291 .291

SD−t n/a n/a n/a .126 .000 .099 .099 .099 .000 .000 .000 .000 .000 .000

This table provides a quick comparison of the lengths of the identified sets in Table 2S. (It contains strictly less information
than that table.) The same notes for Table 2S apply here.
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Table 3: Data Generating Process for the Monte Carlo Study

Y = y P[Y = y] Y = y P[Y = y]

11111 .5354 00000 .1481

01111 .0329 10000 .0300

11000 .0277 11110 .0259

00111 .0236 11100 .0207

00001 .0207 10111 .0190

11101 .0173 00011 .0173

10001 .0121 11011 .0110

11001 .0104 00010 .0098

01000 .0098 10011 .0086

00100 .0086 01100 .0046

00110 .0035 01110 .0029

The probabilities are determined from the empirical distribution of the PSID data (with
T = 4) after removing all women with more than 2 transitions. This leaves n = 1,735
cross-sectional observations.
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Table 4: Monte Carlo Simulation Results for Specification 1

θl θu rejection probability of H0 : t ∈ Θ? for t = . . .

true .080 .868 .000 .020 .040 .060 .080 .868 .875 .880 .890 .900

n = 1735

mean .086 .863 MR: .510 .140 .036 0 0 0 0 0 .092 .614

std .025 .008 SS: .226 .082 .024 0 0 0 .016 .082 .572 .960

1%/99% .038 .882 MQ: .510 .140 .040 0 0 0 .016 .082 .572 .960

min/max .021 .884 QM: .826 .504 .252 .096 .030 .014 .082 .278 .790 .990

n = 3470

mean .082 .866 MR: .932 .506 .130 .008 0 0 .006 .022 .512 .984

std .019 .006 SS: .900 .478 .132 .028 0 .004 .042 .196 .882 1

1%/99% .039 .880 MQ: .934 .526 .140 .028 0 .004 .042 .196 .882 1

min/max .025 .883 QM: .996 .862 .542 .194 .036 .020 .156 .482 .960 1

Specification 1 imposes MTR and ST with m = 2. The parameter of interest is SD+
t . The time horizon is T = 4 and

observations with more than 2 transitions are discarded.
Other notes: (i) All tests have nominal level α = .05; (ii) The rows %1/99% and min/max give the .01 quantile (and
min) across simulations of the direct estimates of θ?l and the .99 quantile (and max) of the direct estimates of θ?u; (iii)

The boxed values of θ are elements of the identified set; (iv) Tuning parameters are set at B = 500, κn =
√

log(n) and
bn = n2/3.
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Table 5: Monte Carlo Simulation Results for Specification 2

θl θu rejection probability of H0 : t ∈ Θ? for t = . . .

true .080 .606 .000 .020 .040 .060 .080 .606 .630 .650 .670 .690

n = 1735

mean .086 .596 MR: .516 .144 .038 0 0 0 .004 .015 .088 .269

std .025 .034 SS: .209 .088 .019 .002 0 0 0 .004 .017 .058

1%/99% .038 .673 MQ: .516 .144 .040 .002 0 0 .004 .015 .088 .269

min/max .021 .687 QM: .833 .514 .253 .092 .029 .008 .035 .121 .296 .597

n = 3470

mean .082 .604 MR: .932 .506 .130 .008 0 .002 .030 .166 .430 .826

std .019 .024 SS: .888 .478 .136 .022 0 0 .002 .014 .102 .332

1%/99% .039 .654 MQ: .932 .520 .150 .022 0 .002 .030 .166 .430 .826

min/max .025 .668 QM: .996 .858 .532 .200 .036 .028 .192 .454 .788 .964

Specification 2 imposes MTR, ST with m = 2 and MTS. The parameter of interest is SD+
t . The time horizon is T = 4

and observations with more than 2 transitions are discarded.
Other notes: (i) All tests have nominal level α = .05; (ii) The rows %1/99% and min/max give the .01 quantile (and
min) across simulations of the direct estimates of θ?l and the .99 quantile (and max) of the direct estimates of θ?u; (iii)

The boxed values of θ are elements of the identified set; (iv) Tuning parameters are set at B = 500, κn =
√

log(n) and
bn = n2/3.
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A Extension to Discrete Outcomes

The DPO model extends readily to the case where Yt assumes values in {0, 1, . . . , J}
with J > 1 and hence Y assumes values in Y ≡ {0, 1, . . . , J}T+1. Applications of

such an extension to the dynamics of employment include Magnac (2000) and Prowse

(2012), who examine state dependence under finer categorizations (part-time, full-time,

etc.) of employment status. In this more general case, there are J + 1 counterfactual

outcomes {Ut(y)}Jy=0 for each t ≥ 1. The observed outcome in period t is determined

as

Yt =
J∑
y=0

1[Yt−1 = y]Ut(y).

The structure P is a probability mass function for (Y0, {Ut(0), . . . , Ut(J)}Tt=1}) and the

characterization of the identified set remains unchanged. Parameters and auxiliary

identifying assumptions that are appropriate for the J = 1 case may or may not be

appropriate for the J > 1 case and vice-versa, but a separate analysis is beyond the

scope of this paper.

B Extension to Higher Order State Dependence

The discussion in the main text is premised on the assumption that the analyst is

interested in first order state dependence, i.e. the causal effect of the immediately

preceding period on the current period. This setting is consistent with much of the

empirical and theoretical literature on state (vs. duration) dependence. In this section

I outline how one would extend the model to allow for state dependence of higher

orders.

When Yt is binary, this generalization to state dependence of length K ≥ 1 is ac-

complished by introducing 2K counterfactual outcomes {Ut(y)}y∈{0,1}K for each period

t ≥ K. The recursive relationship (6) is replaced by

Yt =
∑

y∈{0,1}K
Ut(y)1[(Yt, Yt−1, . . . , Yt−K+1) = y] for t ≥ K, (22)

with the joint determination of periods t = 0 up to t = K − 1 not being modeled

explicitly. For example, with K = 2, (22) would become

Yt = 1[Yt−1 = 0, Yt−2 = 0]Ut(0, 0) + 1[Yt−1 = 0, Yt−2 = 1]Ut(0, 1)

+ 1[Yt−1 = 1, Yt−2 = 0]Ut(1, 0) + 1[Yt−1 = 1, Yt−2 = 1]Ut(1, 1),
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so that for each t there are four potential outcomes corresponding to the four potential

two-period histories immediately prior to period t.

The structure P is a probability mass function for the random vector(
Y0, Y1, . . . , YK−1,

{
Ut(y) : y ∈ {0, 1}K

}T
t=K

)
.

The identified set P? can be characterized through essentially the same argument as

for the first order case. Parameters and auxiliary identifying assumptions would need

to be reconsidered for the higher order case.

C Derivation of Bounds Using Only The Empirical Evidence

Here I justify the claim that (11) and (12) are sharp bounds for SD+
t and SD−t . Observe

that if P ∈ P? then

SD+
t (P ) = PP [Yt−1 = 0, Ut(0) = 0, Ut(1) = 1] + PP [Yt−1 = 1, Ut(0) = 0, Ut(1) = 1]

= PP [Yt−1 = 0, Yt = 0, Ut(1) = 1] + PP [Yt−1 = 1, Ut(0) = 0, Yt = 1]

= P[Yt−1 = 0, Yt = 0] + P[Yt−1 = 1, Yt = 1]

−PP [Yt−1 = 0, Yt = 0, Ut(1) = 0]−PP [Yt−1 = 1, Ut(0) = 1, Yt = 1],

where the second equality follows because under (6), [Yt−1 = 0, Ut(0) = 0] if and only

if [Yt−1 = 0, Yt = 0] and [Yt−1 = 1, Ut(1) = 1] if and only if [Yt−1 = 1, Yt = 1]. The

only restrictions implied on the second two terms are

0 ≥ −PP [Yt−1 = 0, Yt = 0, Ut(1) = 0] ≥ −PP [Yt−1 = 0, Yt = 0]

0 ≥ −PP [Yt−1 = 1, Ut(0) = 1, Yt = 1] ≥ −PP [Yt−1 = 1, Yt = 1], (23)

and there are no cross-equation restrictions between these terms. Hence there exists

a P ∈ P? obtaining both of the upper bounds in (23), and one obtaining both of the

lower bounds. The upper and lower bounds in (11) now follow from those in (23). The

bounds in (12) follow from an analogous argument using the decomposition

SD−t (P ) = P[Yt−1 = 0, Yt = 1] + P[Yt−1 = 1, Yt = 0]

−PP [Yt−1 = 0, Yt = 1, Ut(1) = 1]−PP [Yt−1 = 1, Ut(0) = 0, Yt = 0].
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D Linearity of Parameters and Assumptions

The parameters and assumptions discussed in the main text can be represented as

linear functions of P = {P [u|x] : u ∈ U , x ∈ X}. This was shown for SD+
t in (10),

but not for any subsequent parameters or assumptions. This section contains some

additional discussion. For simplicity, I assume throughout that X is degenerate, but

it is straightforward to adjust the conditions to allow for X to be random by simply

conditioning and then averaging over all realizations of X.

To see that SD+
t (P |0) is linear, write it as

SD+
t (P |0) =

PP [Ut(0) = 0, Ut(1) = 1, Yt = 0]

P[Yt = 0]
=

∑
u∈U+

t (0) P [u]

P[Yt = 0]
,

where U+
t (0) is the set of u ∈ U such that ut(0) = 0, ut(1) = 1, and Yt = 0 when

computed through the recursive relationship (6) with Y0 = u0, Ut(0) = ut(0) and

Ut(1) = ut(1). Similar equations follow for SD+
t (P |00),SD+

t (P |000) and any other

outcome-conditioned parameter. The division by an observed probability in these

expressions does not introduce a nonlinearity, because any P ∈ P? must satisfy PP [Yt =

0] = P[Yt = 0] in order to be observationally equivalent.

Assumption MTR is linear because it can be written as PP [Ut(0) = 1, Ut(1) = 0] = 0

for all t ≥ 1. Hence, let UMTR
t denote the set of all u ∈ U such that ut(1) = 0 and

ut(0) = 1, and then write MTR as ∑
u∈UMTR

t

P [u] = 0, (24)

for all t ≥ 1. In terms of the ρ function, this equality constraint can be imposed with

two inequalities. Assumptions ST, MIV and TIV can be imposed similarly by summing

over the appropriate sub-collections of U . Assumption MTS can be imposed using a

construction similar to that for SD+
t (P |00).

Now, consider Assumption DSC. In general, this is a nonlinear restriction, but if ST

holds so that the distribution of Ut(d) does not depend on t, then Corr(Ut(d), Ut+s(d))

is decreasing in |s| if and only if Cov(Ut(d), Ut+s(d)) is decreasing in |s|. Furthermore,

under ST, the latter is true if and only if E[Ut(d)Ut+s(d)], i.e. P[Ut(d) = 1, Ut+s(d) = 1],

is decreasing in |s|. It is straightforward to show that P[Ut(d) = 1, Ut+s(d) = 1] is a

linear function of P using arguments like in (24).
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E Proof of Proposition 1

Suppose that Vt|A, Y0 forms a first-order Markov chain and that P[Vt+1 ≤ vt+1|Vt =

vt, A, Y0] is decreasing in vt for all vt+1. By Theorem 3.1 of Fang et al. (1994), (Vt, Vt+s)

is decreasing in the concordance ordering as a function of |s|, conditional on A, Y0. That

is, P[Vt ≥ v1, Vt+s ≥ v2|A, Y0] is decreasing in |s| for any v1, v2. Hence, for any integers

s, s′ with |s| < |s′|

P[Ut(y) = 1, Ut+s(y) = 1]

= E [P[Ut(y) = 1, Ut+s(y) = 1|A, Y0]]

= E [P[γy + λY0 +A+ Vt ≥ 0, γy + λY0 +A+ Vt+s ≥ 0|A, Y0]]

≥ E [P[γy + λY0 +A+ Vt ≥ 0, γy + λY0 +A+ Vt+s′ ≥ 0|A, Y0]]

= E [P[Ut(y) = 1, Ut+s′(y) = 1|A, Y0]] = P[Ut(y) = 1, Ut+s′(y) = 1],

which implies DSC, given ST.

F Proof of Proposition 2

For y ∈ {0, 1} and t = 0, . . . , T − 1 let ξyt denote an indicator variable for the event

that Yt = y but Ys 6= y for all 0 ≤ s ≤ t− 1. Also, let ξ̄y denote an indicator variable

for the event that Yt 6= y for all t ≤ T − 1. Then
∑T−1

t=0 ξ
y
t + ξ̄y = 1, since the events

these indicators indicate for are disjoint and exhaustive. Hence

EP [U1(y)] = EP [EP [U1(y)|Y0, A]]

=
T−1∑
t=0

EP [ξyt EP [U1(y)|Y0, A]] + EP

[
ξ̄y EP [U1(y)|Y0, A]

]
.

For each t = 0, . . . , T − 1, TIV implies that

EP [ξyt EP [U1(y)|Y0, A]] = EP [ξyt EP [Ut+1(y)|Yt, . . . , Y0, A]]

= EP [EP [ξyt Ut+1(y)|Yt, . . . , Y0, A]] = EP [ξyt Ut+1(y)] ,

where the second equality follows because ξyt is a function of Yt, . . . , Y0. A similar

argument shows that

EP

[
ξ̄y EP [U1(y)|Y0, A]

]
= EP

[
ξ̄yUT (y)

]
.
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Since ξyt = 1 implies Yt+1 = Ut+1(Yt) = Ut+1(y), one has for any P ∈ P?,

EP [U1(y)] =
T−1∑
t=0

EP [ξyt Yt+1] + EP

[
ξ̄yUT (y)

]
=

T−1∑
t=0

P[Yt+1 = 1, Yt = y, Ys 6= y ∀s ≤ t− 1]

+ EP [UT (y)|Ys 6= y ∀s ≤ T − 1] P[Ys 6= y ∀s ≤ T − 1].

Setting EP [UT (y)|Ys 6= y ∀s ≤ T − 1] to 0 or 1 delivers the asserted bounds for t = 1.

Observing that TIV implies

EP [Ut(y)] = EP [EP [Ut(y)|Yt−1, . . . , Y0, A]] = EP [EP [U1(y)|Y0, A]] = EP [U1(y)],

shows that the bounds hold for all t.
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