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Abstract

We propose a new model that introduces peer effects into existing utility models

of perceived needs. This combination introduces obstacles to obtaining identification

that differ both from standard consumer demand and from standard models of peer

effects. These obstacles arise from required nonlinearities in utility, from features of

standard consumption survey data, and from heterogeneity that requires group level

fixed or random effects. We first provide identification and an associated estimator for

a new generic peer effects model that allows for nonlinearities, fixed effects, and the

data feature that only a small number of the members of each peer group are observed.

We then extend this model to our consumer demand application. We obtain estimates

of the dollar costs of what is spent on keeping up with others in one’s group. These

estimates have important tax policy implications, since the larger these peer effects

are, the smaller are the welfare gains associated with tax cuts. We find that, in our

data from India, peer effects are important for luxuries and not necessities, and about

15% of income growth in India is spent on keeping up with one’s peers.
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1 Introduction

We propose a new model of social interactions (peer effects) in consumption, including a

new method for identification and related estimation of a general class of social interactions

models. Novel features of our general model include the inclusion of fixed effects or random

effects, the use of nonlinearity to overcome reflection and other obstacles to identification,

and applicability to data sets where only a small number of members of each peer group is

observed, even asymptotically.

In our application, the nonlinear peer effects model we estimate is derived from utility

maximization. Consumers perceived needs for goods such as luxuries are affected by the mean

expenditures on these goods of others in one’s peer group. By identifying these perceived

needs, we provide measures of the welfare (utility) costs to society of "keeping up with the

Joneses." These costs are associated with the utility that is lost from feeling relatively poorer

when our peers get richer. As a result, I may need to spend more just to get back to the same

level of utility I had before my peers got richer. These costs have important implications for

tax policy. In particular, we find that cutting income taxes, and thereby increasing incomes,

produces fewer welfare gains than standard estimates suggest. This is because part of what

I gain from my increased income is spent on keeping up with my peers, who’s income is also

increased by the tax cut.

Our model starts with existing structural utility function theory on identifying individ-

ual’s perceived consumption needs from Samuelson (1947), Gorman (1976), Blackorby and

Donaldson (1994), and Pendakur (2005). We then incorporate into this framework peer ef-

fects as in Manski (1993, 2000) and Brock and Durlauf (2001). However, our model differs

from existing models both of consumer demand and of peer effects in a number of important

ways. In particular, unlike almost all of the empirical social interactions and peer effects lit-

erature, due to the nature of the required utility theory and the empirical evidence of Engel

curves, we require a nonlinear model of peer effects. We also require both different methods

of obtaining identification, and different asymptotics from what is usually employed in the

consumer demand or the social interactions and peer effects literatures.

For consumption of goods and services (particularly conspicuous ones like luxuries), ones

relevant peer group does not consist of just immediate friends and associates, but virtually

anybody of comparable status to oneself. Therefore, rather than relying on typical social

network data, we consider ones peers to be essentially everybody of similar geographic,

educational, and job status to oneself. However, this introduces a fundamental data problem,

since we only observe a very small number of each person’s peers. In our empirical application

we employ household survey data from India. Dividing the data into sensibly defined peer
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groups results in only a few dozen people being observed in each group, with the vast majority

of others in each group being unobserved.

Household surveys like ours are a standard source of consumer expenditure data at the

individual level, but they pose many challenges for estimating peer effects. For example,

we cannot exploit variation in group sizes to aid in identification, indeed, true group sizes

are unknown. It is also not appropriate to treat observed average expenditures in each

group as true group mean expenditures, even asymptotically (given the small number of

actual observations per group), and so both identification and estimation need to account

for the resulting mismeasurement in group means. Yet another issue is that many peer effects

models cannot allow for either group level fixed effects or group level random effects, because

such effects typically cannot be separated from the impacts of group mean variables. Note

that this is distinct from Manski’s (1993) reflection problem, which, along with the above

mentioned nonlinearities, is yet another issue our model must address.

After reviewing the relevant literatures, the steps of our analysis are as follows. We first

consider a simple, generic model containing peer effects, and show how it can be identified and

estimated with our type of data. This new methodology for identifying and estimating a peer

effects model should be of general interest, since it is potentially applicable to other contexts

where one only observes a small number of members of each peer group. A key feature of

this methodology is that it exploits both nonlinearity and structure to deal with the above

listed identification issues. To account for the small number of individuals that are observed

in each group, our asymptotic theory assumes that the number of groups goes to infinity,

but the number of observed individuals within each group does not. Correlations between

group level variables and errors, exacerbated by the same nonlinearities that otherwise help

identification, introduce diffi culties for estimation. Much of the novelty of our generic peer

effects methodology comes from overcoming these correlations to construct valid moment

conditions used for GMM type estimation.

After presenting our generic peer effect model and methodology, we then derive our

specific model of consumer behavior. This begins with the existing theory of ’needs’ in

utility and demand function specification and associated welfare calculations. We adapt this

class of utility derived demand models to our context where perceived needs can depend on

the purchases of one’s peers. We then arrive at a set of demand functions that, while more

complicated than our generic peer effects model, can be identifed and estimated using the

same techniques.

We then implement our estimator and associated welfare analyses using a few annual

cross-sections of household-level expenditure data from India. Our data offer a good lab-

oratory for this analysis because we observe relevant characteristics of each household for

3



constructing peer groups, including education level, industry of employment, and detailed

geographic area of residence, along with other household characteristics such as household

size, age, religion, and caste. We find that peer effects are large and important for luxuries

but not necessities. A one rupee increase in peer group luxury spending increases one’s own

perceived needs for luxury spending by about half a rupee. So a large fraction of luxury

purchases are perceived as necessary. The estimates imply that, in terms of utility, the costs

of keeping up with the Joneses accounted for about one seventh of Indian GDP growth from

1994 to 2010.

1.1 Relevant Literature - Peer Effects in Consumption, Income,

and Demand

Income gains, particularly in the upper parts of the income distribution, may not increase

well being much if utility depends on other people’s consumption levels. See e.g., Frank

(1999, 2012). The possible mechanisms for this are varied: Veblen (1899) effects make con-

sumers value consumption of visible status goods; reference-dependent utility functions make

consumption valuable only inasmuch as it exceeds what we see around us; “keeping up with

the Joneses" makes our effective consumption smaller the more our peers consume; the con-

sumption of our peers affects what we perceive as ‘necessary’; etc. What these stories have

in common is that they imply that each individual’s consumption may have externalities on

the utility functions of others around them.

We bring this intuition to data using a model of consumption externalities in which

the welfare cost of such externalities is easily expressed. We exploit the intuition that the

consumption of a person’s peers affects their own perception of their needs. In the context

of utility and cost functions, ‘needs’ are fixed costs, representing the minimum quantity

vector one requires to start getting any utility. The idea that preferences have fixed costs

that need to be met before expenditures start increasing utility is an old one, going back

at least to Samuelson’s (1947) note on the implications of linearity. Samuelson called the

minimum quantity vector corresponding to needs the “necessary set”of goods, and defined

“supernumerary income”as one’s remaining income, after subtracting off the ‘fixed cost’of

these needs. Utility is then obtained by spending supernumerary income. The classical Stone

(1954) and Geary (1949) Linear Expenditure System incorporates this construction. More

generally, Gorman (1976) showed that these kind of fixed costs (which he calls “overheads”)

can be introduced into any utility function and will generally vary across consumers. This

type of model has implications for the specification of demand functions that take the form

of shape invariance in quantity demands (see Pendakur 2005; Pollak and Wales 1992 refer to
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this as ‘demographic translation’). This class of specifications is analogous to the more well

known shape invariance in budget shares popularized by, e.g., Pendakur (1999) and Blundell,

Chen and Kristensen (2007). See Pendakur (1999) and Lewbel (2010) for details.

Blackorby and Donaldson (1994) show how valid social welfare functions can be con-

structed based on differences between budgets and needs, using what they call "Absolute

Equivalence Scale Exactness" or AESE. Blackorby and Donaldson (1994) also show that

needs themselves are not identified from observable consumer behaviour, but differences in

needs across consumers with different values of exogenously varying conditioning variables

are identifiable from behaviour, and that is all that we require for our welfare analyses.

Identification and welfare calculations are more complicated in our model, because in our

context needs depend on peer group expenditures which are endogenous rather than exoge-

neous. Nevertheless we find we can adapt their framework to our setting.

Our model starts with Gorman’s specification of overheads or needs as a quantity vector.

One then derives utility from the vector of differences between the vector of goods purchased

and this minimum needs quantity vector. Our innovation is that we specify this vector

of needs as a function of the consumption of one’s peers. Thus, consumption externalities

arise because one’s perceived needs depend on the consumption of one’s peers. If my peers

consume more, my perceived needs and hence my fixed costs go up. This in turn makes

my supernumerary income go down, resulting in both an observable change in expenditure

patterns and a loss in utility. The model therefore has testable implications, and it implies

welfare losses that are quantifiable in both an individual and a social sense. Specifically, we

can simply add up the estimated increases in needs across people, which then provides the

dollar social cost of keeping up with the Joneses.

Note that these costs of keeping up with peers are not necessarily all wasted resources.

For example, there may be a value to society if everyone has internet access, even if that

makes internet access become a perceived need. We do not take a stand on what fraction

of the costs of peer effects is not a waste from the standpoint of society, though the peer

effects of luxuries are unlikely to be useful for the most part. Regardless, it is clearly useful

to quantify these costs of peer effects, and separate those from the direct impacts of income

increases on consumer’s utility.

Our model fits into the large literature on income-evaluation and income reference points,

where one’s valuation of income depends on one’s reference group. Surveys of this literature

include Kahneman (1992) and Clark, Frijters, and Shields ( 2008). A smaller literature

focuses on the difference between consumption and income, allowing the valuation of one’s

consumption to depend one’s reference group. These are are mostly intertemporal models

that are intended to address macroeconomic puzzles. See, e.g., Gali (1994) or Maurer and
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Meier (2008). At the other extreme, some papers in psychology and marketing focus on

how the valuation of particular individual goods or brands depend on one’s peers. See, e.g.,

Rabin (1998) and Kalyanaram and Winer (1998). Chao and Schor (1998) find that these

effects are particularly important for goods that are visible (in their case, cosmetics), linking

their findings to Veblen effects.

Many analyses of peer effects of these types are essentially nonstructural, including the

above Chao and Schor (1998) paper. Boneva (2013) regresses household quantity demand

vectors on household budgets (total expenditures) and on the average budgets of reference

groups, using PROGRESA/Opportunidades related variables to instrument group averages.

Ravina (2008) and Clark and Senik (2010) regress self-reported utility on own budgets and

reference group average budgets. Virtually all such studies find these group average variables

to be significant, though Ravaillon and Lokshin (2010) say that it is not important for the

poor. But the magnitude or statistical significance of coeffi cients on group variables do not

measure welfare effects. This requires a model of utility with suffi cient structure to permit

social welfare analysis.

1.2 Relevant Literature - Identification

Our model where each individual’s outcome depends on the mean of the outcomes of one’s

peer group is a form of social interactions model. It can also be seen as a spatial model,

where all individuals within a group are equidistant from each other.

A well known obstacle to identification of this kind of model is the reflection problem

described by Manski (1993, 2000). See also Brock and Durlauf (2001), and Blume, Brock,

Durlauf, and Ioannides (2010). Our model will have specific behaviorally derived structure

(in particular some nonlinearity) that overcomes reflection problems. In some peer effects

model, network information is available and can help identification. For example, Bramoullé,

Djebbari, and Fortin (2009) show identification of peer effects in social networks that are

suffi ciently interconnected, and where for each member of group g, the peer effect is linear

in a mean taken over all other group members. These types of models exploit variation

in group sizes to aid identification, and requires that the number of observed members of

each group increases with sample size (See, e.g., Devezies et. al, 2006). Using a somewhat

related approach, Graham (2008) estimates peer effects in a linear model by comparing the

covariance of test scores in large versus small classrooms. In our context, variation in group

size does not provide any identifying power, both because we only see a small number of

members of each group, and because we do not know actual group sizes.

The interactions of peer group members may be modeled as a game. Suppose there
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is private information that cannot observed by econometricians. We assume that group

members have utility functions that depend on peers only through the true mean of the peer

group’s outcomes. If group members also all observe each other’s private information and

make decisions simultaneously (corresponding to a complete information game), then each

individual’s actual behavior will only depend on others through the group mean. Complete

games are generally plausible only when the size of each group is small, and are typically

estimated assuming the econometrician’s data includes all members of each observed group.

An example is Lee (2007). However, in our case the true group sizes are large, but we only

observe a small number of members of each group. An alternative model of group behaviour is

a Bayes equilibrium derived from a game of incomplete information, in which each individual

has private information and makes decisions based on rational expectations regarding others.

This type of incomplete game of group interactions can result in the reflection problem again,

where endogenous effects, exogeneous effects, and the correlated effects cannot in general

be separately identified. In either type of game there is also the potential problem of no

equilibrium or multiple equilibria existing, resulting in the problems of incompleteness or

incoherence and the associated diffi culties they introduce for identification as discussed by

Tamer (2003).

We do not take a stand on whether the true game in our case is one of complete or

incomplete information. We just assume that players are basing their behavior on the true

group means. This assumption is most easily rationalized by assuming that consumers either

have complete information, or can observe a suffi ciently large number of members in each

group that their errors in calculating group means are negligible. A more diffi cult problem

would be allowing for the possibility that each group member also only observes group means

with error. We do not attempt to tackle that issue in this paper. In that case we would need

to model how individuals estimate group means, how they incorporate uncertainty regarding

group means into their purchasing decisions, and how all of that could be identified in the

presence of all of the other obstacles to identification that we face. These obstacles include

only observing a small number of members of each group, the reflection problem, group level

fixed effects, nonlinearities resulting from utility maximization, and a multiple equation

system where each equation depends on the vector of peer means from all of the equations.

Identification depends on what we assume is observable from data. Standard models of

within group interactions with large groups assume that there are no interactions between

groups, and that both the number of groups G and the number of observed members ng
within each group goes to infinity. However, for reasonable definitions of peer groups, stan-

dard consumer expenditure surveys only sample a relatively small number of individuals

within each group (even in our relatively large Indian data set, ng is less than one or two
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dozen for many groups). So while it is reasonable to assume that G goes to infinity, we take

a completely new approach to identifying and estimating peer effects, by assuming that ng
is small and fixed. This means that observed within group sample averages are mismeasured

estimates of true within group means, and that these measurement errors do not disappear

asymptotically as the sample size grows with G. Moreover, these measurement errors are by

construction correlated with individual specific covariates, further exacerbating the diffi cul-

ties listed earlier in obtaining identification and constructing consistent estimators of model

parameters.

Measurement error more broadly has long been recognized as potentially important in

social interactions models (e.g., Moffi tt 2001 and Angrist, 2014), though this work focuses

on standard issues of mismeasurement in regressors, recognizing that, unlike in ordinary

models, outcomes are also regressors and hence measurement error in outcomes matters.

This is quite different from our situation, which recognizes that only observing a limited

number of individuals in each group results in measurement errors in group means. This

can also be interpreted as a missing data problem where what is missing is the outcomes

of most group members. Others have looked at different missing data problems in peer

models. For example Sojourner (2009) considers peer effects in Project STAR classrooms,

where the missing data consists of pre-intervention information on student achievement. In

his model, the diffi culties of missing data are addressed in part by assuming a linear model

where student are randomly assigned to their peer groups, defined as classrooms.

As is standard in models with measurement errors, we will assume we have valid in-

struments that are correlated with true group means. However, even with instruments, the

obvious two stage least squares or GMM estimator that assumes model errors are uncorre-

lated with instruments (after replacing true group means with their sample analogs) will not

be consistent in our context. This is because: a) in a linear model such instruments will not

overcome the reflection problem; and b) in a nonlinear model we will have interaction terms

between the measurement errors and the true regressors. An analogous problem arises in the

polynomial model with measurement errors considered by Hausman, Newey, Ichimura, and

Powell (1991). We show that overcoming these issues requires some novel transformations

that ultimately lead to a valid GMM estimator.

Finally, even given complete identification of model parameters, the Blackorby and Don-

aldson (1994) result discussed earlier still applies, namely, that only relative needs across

consumers are identified, not the absolute level of needs. However, this will suffi ce for all of

our welfare analyses.
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2 Generic Model Identification

Before introducing our general model of peer effects in consumer demand, in this section we

consider a simple generic model where individual outcomes depend on group means. We use

this model to illustrate the diffi culties associated with identification in our general context,

and to show how we overcome these diffi culties, and how we construct a corresponding

estimator. This generic model should be useful in other applications where peer effects are

nonlinear, and the models require fixed effects or random effects.

Here we summarize the main structure of our generic social interactions model, and the

associated logic of its identification and estimation. In the Appendix we provide detailed

assumptions regarding the model and a formal proof of its identification. Let i index in-

dividuals. Each individual i is in a peer group g ∈ {1, ...G}. The number of peer groups
G is large, so we assume G → ∞. In our data we will only observe a small number ng of
the individuals in each peer group g. So asymptotics assuming ng → ∞ would be a poor

approximation for our data. We therefore assume ng is fixed and so does not grow with the

sample size.

Let yi be an outcome which is affected by an observed scalar regressor xi (We later

generalize the model to allow y and x to be vectors of outcomes and of regressors). Denote

the group mean outcome yg = E (yi | i ∈ g), and similarly define xg. The general form of

our model is

yi = h
(
θ | yg, xi

)
+ vg + ui (1)

where vg for g ∈ {1, ...G} are group level random or fixed effects, ui are mean zero errors,

independent of xi′ for all individuals i′, and θ is a vector of parameters to be identified and

estimated. The dependence of h on yg are peer effects we want to identify. Note that xg does

not appear explicitly in this model, however, we have allowed for a fixed effect vg, which

could be an unknown function of both xg and of any other group level covariates. Although

excluding xg would solve the reflection problem in a model without vg, the problem is not

avoided by excluding xg in our model.

Suppose h were linear, i.e., suppose h
(
θ | yg, xi

)
equalled yga + xib. A constant term is

omitted here because it would trivially be included in vg. Then the peer effect, given by the

parameter a, could not be identified because we could not separate yg from vg. To overcome

this linear model nonidentification (and because there is substantial empirical evidence of
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nonlinearity in our empirical application), we propose the nonlinear model1

h (θ | ŷg, xi) =
(
yga+ xib

)2
d+

(
yga+ xib

)
(2)

where θ = (a, b, d).

Now yg cannot actually be observed (even asymptotically, because we have assumed ng
is fixed), so we will need to replace it with some estimator. Let ŷg be an estimator of yg.

This introduces an additional error term εgi defined by εgi = h
(
θ | yg, xi

)
−h (θ | ŷg, xi), and

the model becomes

yi = (ŷga+ xib)
2 d+ (ŷga+ xib) + vg + ui + εgi

where

εgi =
(
yg − ŷg

)
a+

(
y2
g − ŷ2

g

)
a2d+ 2

(
yg − ŷg

)
xibad

Inspection of this equation shows a number of obstacles to identifying and estimating

θ. First, vg will in general be correlated with yg and hence with ŷg (this was the main

cause of nonidentification in the linear model). Second, since ng does not go to infinity, if

ŷg contains yi, then ŷg will correlate with ui. Third, again because ng is fixed, εgi doesn’t

vanish asymptotically, and is by construction correlated with some functions of ŷg and xi.

Equivalently, we should think of
(
yg − ŷg

)
and

(
y2
g − ŷ2

g

)
as measurement errors in yg and

y2
g, leading to the standard measurement error problem that mismeasured regressors are

correlated with errors in the model.

So, while nonlinearity overcomes the fundamental nonidentification of the linear model,

it introduces a host of other obstacles to identification that we need to overcome. We emply

two somewhat different methods for identifying the model, depending on whether each vg is

assumed to be a fixed effect or a random effect. For each case, we construct a set of moment

conditions that suffi ce to identify θ, and can be used for estimated via GMM (Generalized

Method of Moments, see Hansen 1982).

2.1 Generic Model Identification - Fixed Effects

We begin by looking at the difference between the outcomes of two people i and i′ in group

g.

yi − yi′ = h
(
θ | yg, xi

)
− h

(
θ | yg, xi′

)
+ ui − ui′

1We show in the appendix that the seemingly more general model yi =
(
yga+ xib+ c

)2
d +(

yga+ xib+ c
)
+ vg + ui is observationally equivalent to the simpler form given above.
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This differencing removes the fixed effects vg. This also differences out the quadratic term

y2
ga

2 inside h. Define the leave-two-out group mean estimator

ŷg,−ii′ =
1

ng − 2

∑
l∈g,l 6=i,i′

yl

This is just the sample average of y for everyone who is observed in group g except for the

individuals i and i′. Let ŷg from before be the estimator ŷg,−ii′ . Then

yi − yi′ = h (θ | ŷg,−ii′ , xi)− h (θ | ŷg,−ii′ , xi′) + ui − ui′ + εgi − εgi′ . (3)

We can then show (see Theorem 1 in the Appendix) that, with these definitions,

E (ui − ui′ + εgi − εgi′ | xi, xi′) = 0 (4)

which we can then use to construct moments for estimation of equation (3).

The intuition for this result can be seen by reexamining the obstacles to identification

listed earlier. The correlation of vg with yg and hence with ŷg,−ii′ doesn’t matter because vg
has been differenced out. ŷg,−ii′ does not correlate with ui or ui′ because individuals i and i′

are omitted from the construction of ŷg,−ii′ . Finally, we can verify that εgi − εgi′ is linear in
xi − xi′ , with a conditionally mean zero coeffi cient.
Equation (3) contains functions of ŷg,−ii′ , xi, and xi′ as regressors, and equation (4) shows

that we can use functions of xi and xi′ as instruments (equivalently, xi and xi′ are exoge-

nous regressors). But what can we use as an instrument for ŷg,−ii′? An obvious candidate

instrument would be some estimate x̂g of xg, the reason being that yi depends on xi and

therefore the average within group value of y should be correlated with the average within

group value of x. The problem is that, although E (εgi − εgi′ | xi, xi′) = 0, the error εgi− εgi′
will in general be correlated with xl for all observed individuals l in the group other than

the individuals i and i′. Note that this problem is due to the assumption that ng is fixed. If

it were the case that ng →∞, then εgi − εgi′ → 0, and this problem would disappear.

To overcome this final obstacle to identification in the fixed effects model (finding an

instrument for ŷg,−ii′), we require some source of group level data. For example, in our

application xi is total consumption expenditures. A valid instrument for ŷg,−ii′ would then

be something that correlates with xg e.g., some measure of the average level of income,

wealth or socioeconomic status of the group, perhaps obtained from census data.

An alternative source of group level instruments is what we actually use in our empirical

application. Our data set, which is typical of consumption surveys, is repeated cross section
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data, where different consumers are sampled in each time period. Now εgi− εgi′ is correlated
with xl for individuals l in group g that we observed and used in constructing ŷg,−ii′ . But

εgi−εgi′ will not in general be correlated with other individuals, and in particular will not be
correlated with individuals that are observed in group g in other time periods (again, see the

appendix for details). We can therefore construct an instrument that correlates with xg by

taking the sample average of xl for individuals l who are observed in group g in other time

periods. These will be useful and valid instruments as long as group level total expenditures

xg are autocorrelated over time.

Let rg denote a vector of valid group level instruments, constructed as above either from

other datasets or from other time periods. Combining these with equations (3) and (4) then

gives conditional moments

E [yi − yi′ − h (θ | ŷg,−ii′ , xi) + h (θ | ŷg,−ii′ , xi′) | xi, xi′ , rg] = 0

Since it is easier to estimate models using unconditional moments, let rgii′ denote a vector

of functions of xi, xi′ , rg. Since h is quadratic, a natural choice of elements comprising rgii′

would be xi, xi′ , rg, and squares and cross products of these variables. We then have the

unconditional moments

E [(yi − yi′ − h (θ | ŷg,−ii′ , xi) + h (θ | ŷg,−ii′ , xi′)) rgii′ ] = 0. (5)

Theorem 1 in the Appendix extends this model to a vector xi, and proves that the parameters

θ are identified from these unconditional moments.

After plugging equation (2) for the function h into equation (5), we obtain an expression

that can immediately be used for estimation by GMM. For estimation, observations are

defined as every pair of individuals i and i′ in each group. By construction, the errors in

this model are correlated across observations within each group. It is therefore necessary

to estimate the model using clustered standard errors, where each group is a cluster (again,

details are provided in the Appendix).

2.2 Generic Model - Random Effects

A drawback of the fixed effects model is that differencing across individuals, which was

needed to remove the fixed effects, results in a substantial loss of information. So in this

section we instead assume that vg is independent of xi (a random effects assumption) and

provide addtional moments that do not entail differencing. The moments obtained under

fixed effects remain valid under the additional random effects asumptions. So the proof of

12



identification under fixed effects (Theorem 1) also shows identification of the random effects

model. The goal here is to show how additional moments (that do not require differencing)

can be obtained exploiting the random effects independence of vg from xi. We may then do

GMM using both the fixed effects moments from before with the additional random effects

moments obtained here.

For random effects it will be convenient to rewrite the quadratic model, equations (1)

and (2), as

yi = y2
ga

2d+ (a+ 2xiabd) yg +
(
xib+ x2

i b
2d
)

+ vg + ui (6)

As before, we will need to replace the unobserved yg with some estimate, and this replacement

will add an additional epsilon term to the errors. However, in the fixed effects case, when we

pairwise differenced this model, the quadratic term y2
g also dropped out. Now, since we will

not be differencing, we will need to cope not just with estimation error in yg, but also in y
2
g

(recall also that since ng is fixed, this estimation error is equivalent to measurement error,

which does not disappear asymptotically). To obtain valid moment conditions, we employ a

variant of the trick we used before. Again let i′ denote an individual other than i in group

g, and ŷg,−ii′ . Suppose we replaced yg with ŷg,−ii′ as before. The problem now is that the

error ŷ2
g,−ii′ − y2

g would in general be correlated with xl for every individual l in the group,

including i and i′.

To circumvent this problem, we replace the linear term yg with the estimate ŷg,−ii′ as

before, but we replace the squared term ŷ2
g,−ii′ with ŷg,−ii′yi′ . This latter replacement might

seem problematic, since a single individual’s yi′ provides a very crude estimate of yg. How-

ever, we repeat this construction for every individual i′ (other than i) in the group, and

essentially average the resulting moments over all individuals i′ in g. With this replacement,

equation (6) becomes

yi = ŷg,−ii′yi′a
2d+ (a+ 2xiabd) ŷg,−ii′ +

(
xib+ x2

i b
2d
)

+ vg + ui + ε̃gii′

where

ε̃gii′ =
(
y2
g − ŷg,−ii′yi′

)
a2d+ (a+ 2xiabd)

(
yg − ŷg,−ii′

)
We can then show (see the Appendix for details), that E(ε̃gii′|xi, rg) = −da2V ar (vg) and

hence,

E
[
yi − ŷg,−ii′yi′a2d− (a+ 2xiabd) ŷg,−ii′ −

(
xib+ x2

i b
2d
)
− v0 | xi, rg

]
= 0 (7)

where v0 = E (vg)− da2V ar (vg) is a constant to be estimated along with the other parame-

ters, and rg are the same group level instruments we defined earlier. Letting rgi be functions
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of xi and rg (such as xi, rg, x2
i , and xirg), we immediately obtain unconditional moments

E
[(
yi − ŷg,−ii′yi′a2d− (a+ 2xiabd) ŷg,−ii′ −

(
xib+ x2

i b
2d
)
− v0

)
rgi
]

= 0 (8)

which we can estimate using GMM exactly as before. The moments from the fixed effects

model, equation (5), remain valid under random effects, so both equations (5) and (8) could

be combined in a single GMM estimator to increase asymptotic effi ciency.

3 Utility, Welfare, and Demands With Needs Contain-

ing Peer Effects

Here we first summarize some existing demand theory regarding utility and welfare calcula-

tions in the presence of perceived needs. These needs take the form of fixed costs or overheads

in the utility function. We then introduce peer effects into these perceived needs, and obtain

an associated demand system that we later identify and estimate.

3.1 Utility and Welfare With Needs

Let i index consumers and let qi = (q1i, .., qJi) be a J—vector of commodity quantities

chosen by consumer or household i. Let p be the corresponding J-vector of prices of each

commodity, and let xi be the total budget for commodities of consumer i. Commodities

here are aggregates of goods or services that are assumed to be purchased and consumed

in continuous quantities. Each consumer i is assumed to choose qi to maximize a direct

utility function, subject to the budget constraint that p′qi ≤ xi. Preferences and the utility

function of a consumer i can be represented by an indirect utility function Vi(p, xi) which

gives the utility level attained by consumer i when facing the budget constraint defined

by (p, xi). The purchase choice qi of consumer i in all different price and budget regimes

describes their demand functions qi = gi(p, xi). The demand functions gi are related to Vi
by Roy’s identity. If consumer’s preferences are stable, then demand functions qi = gi(p, xi)

may be observed from demand data, that is, by seeing what the consumer chooses to buy in

every possible price and budget regime.

For welfare comparisons, we need to be able to compare well being across consumers.

Define the equivalent-income function Xi(p, x) as the income (budget) needed by consumer

i to get the same level of utility as that of some reference consumer i = 0 having a budget x.

Blackorby and Donaldson (1994) define Absolute Equivalence Scale Exactness (AESE) as a

property of utility functions that holds if and only if, for all consumers i, Xi(p, x) = x−F̃i(p)
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for some function F̃i(p). They show that AESE holds if and only if F̃i(p) = Fi(p) − F0(p)

where

Vi(p, xi) = V (p, xi − Fi(p))

Here V is some indirect utility function (not the utility function V0 of the reference household)

and the function Fi(p) for each consumer i can be interpreted as the cost of satisfying

the perceived needs of consumer i. This model implies that each consumer derives utility

(through a common utility function V 0) from the extent to which their available budget xi
exceeds their perceived cost of needs Fi(p).

One property of AESE is that it involves both testable and untestable restrictions on

utility. If follows from Roy’s identity that quantity demand functions are given by:

gi(p, xi) = g0(p, xi − F̃i(p)) +
∂F̃i(p)

∂p
.

This is shape-invariance in quantity demands as in Pendakur (2005). Here, demand functions

are identical across any two consumers i and j, except that they are translated in x by

F̃i(p) − F̃j(p) and translated in quantities by the vector ∂F̃i(p)
∂p
− ∂F̃j(p)

∂p
. Figure 1 shows a

quantity demand equation for 2 consumers where this shape-invariance property is satisfied.

Here, the quantity demand equations over expenditure of both (all) consumers have the same

shape, but may be shifted vertically (in the quantity demand) or horizontally (in the budget

x). This restriction must hold for all quantity demand equations.

Identification of the differences in needs is easy to see. Given exogenous variation in a

variable that shifts F̃i, we can recover the response of F̃i to that variation by estimating the

horizontal shift in quantity demand curves for consumer i. The heavy lifting is in finding

moment conditions that give us that exogenous variation.

Shape invariance in quantity demands is testable. Testing involves comparing the demand

functions gi(p, x) of each consumer i with the demand functions g0(p, x) of a reference

consumer, and seeing if a function F̃i(p) exists for each consumer i that makes the above

equation hold.

However, AESE is not fully testable. In particular, since quantity demands depend

only on the ordinal properties of utility functions, we cannot test the cardinal restrictions

imposed by AESE. That is, the exact same observable restrictions on demand (that is,

shape-invariance) will hold if, for each consumer i, Vi(p, xi) = Hi [V
0 (p, xi − Fi(p))] for

some strictly monotonically increasing function Hi. The untestable restriction of AESE is

that Hi equals the identity function.

Another property of AESE documented by Blackorby and Donaldson (1994) is that the

15



cost of needs functions Fi(p) cannot themselves be identified from demand data (except

possibly by arbitrary functional form restrictions). All that can be identified is the differences

in needs functions across consumers, that is, F̃i(p) = Fi(p)−F0(p) is identified but not Fi(p)

itself. Consequenty, we normalize F0(p) = 0.

Identification of F̃i(p) is in the following sense. Suppose utility functions satisfy AESE.

Then, preferences satisfy shape-invariance, and we can recover F̃i(p) from demand behaviour.

However, by applications of monotonic transformations Hi, we could generate an infinite

number of other equivalent-income functions Xi, and all of these would be consistent with

observed behaviour. Blackorby and Donaldson show that only one of these satisfies the

additive property of the AESE equivalent-income function.

The usefulness of AESE for our purpose is that, since Xi(p, x) = x− F̃i(p), we can use

AESE to directly measure, in dollar terms, the welfare impacts of changes in costs, which in

our application will come from peer effects. It follows from the equivalent income function

that, under AESE, we can define anonymous social welfare functions over Xi(p, x) instead

over over utilities Vi. One such valid social welfare function is the simple sum
∑

i xi− F̃i(p)

(it is not inequality-averse). Notice that this welfare function is easy to understand, and can

be evaluated just from identification of the relative costs of needs functions F̃i(p). If needs

change, social welfare changes by the sum of those needs changes.

In our work we will assume that Fi(p) = p′fi. This is the most natural form of AESE

model, where fi is a quantity vector. Each element fji of fi equals the quantity of commodity

j that consumer i perceives as needs, that is, fji is the minimum amount household i feels

must be consumed, before they can start to generate any utility. This implies the model

Vi(p, xi) = V (p, xi − p′fi)

which by Roys identity has associated demand functions

gi(p, xi) = g(p, xi − p′fi) + fi (9)

where g is the vector of demand functions that correspond to the utility function V . For

linear g, Samuelson (1947) calls the vector of needs fi the necessary set, and calls xi − p′fi

supernumerary income. The Stone (1954) and Geary (1949) linear expenditure system is

a special case of this model. Gorman (1976) and Pollak and Wales (1981) assume that fi

is a function of observable household characteristics (preference shifters) and call fi over-

heads, interpreting V (p, xi − p′fi) as a consumer’s production function where the ultimate

product being produced is utility. They consider linear and quadratic specifications for g.

Pendakur (2005) showed the semiparametric characterisation of this model, and showed how
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identification works with unspecified form for g.

3.2 Needs With Peer Effects

We modify the existing literature on needs, as summarized in the previous subsection, by

specifying utility functions in which the needs vector fi of a consumer i depends on quantities

purchased by that consumer’s peers.

Let i ∈ g denote that consumer i belongs to group g. Let qg = E (qi | i ∈ g), so qg is the

mean level of quantities consumed by consumers in group g. We specify fi as a function of

peer demands, specifically, we let

fi = Aqg + Czi

for some J by J matrixA and some J by K matrix C, where g is the peer group of consumer

i and zi is a K vector of observed characteristics of consumer i. The larger the elements of

A are, the greater are the peer effects. If A is a diagonal matrix, then the perceived needs

for any commodity depend only on the group mean purchases of that commodity. We more

generally allow for nonzero off diagonal elements as well. So, e.g., my peer’s expenditures

on luxuries could affect not only my perceived needs for luxuries, but also my perceived

needs for necessities. In general, we elements of A, particularly diagonal elements, to be

nonnegative. However, they cannot be too large (and in particular diagonal elements cannot

exceed one), since otherwise stable equilibria may not exist (analogous to the Assumption

A2 inequality being violated in the generic model). See the Appendix for details.

Having specified fi and hence the functions defining needs, now consider the indirect

utility function V . A long empirical literature on commodity demands finds that observed

demand functions are close to polynomial, and have a property known as rank equal to three.

See, e.g. Lewbel (1991) and Banks, Blundell, and Lewbel (1997), and references therein.

Gorman (1981) showed that any polynomial demand system will have a maximum rank of

three, and Lewbel (1989) shows that the simplest tractible class of indirect utility functions

that yields rank three polynomials in x is V (p, x) = (x− F (p))1−λB (p) / (1− λ)−D (p)

for some constant λ and some differentiable functions F , B and D. Combining the shape

invariant AESE model of the previous section with this specification of utility gives the model

Vi (p, x) =
(
xi − p′Aqg − p′Czi

)1−λ
B (p) / (1− λ)−D (p)

Preserving homogeneity (i.e., the absence of money illusion, which is a necessary condition

for rationality of preferences), requires B (p)1/(λ−1) to be homogeneous of degree one in p

and D (p) to be homogeneous of degree zero in p.
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Applying Roys identity to this indirect utility function then yields the demand functions

qi =
(
xi − p′(Aqg + Czi)

)λ ∇D (p)

B (p)
+
(
xi − p′(Aqg + Czi)

) ∇B (p)

(λ− 1)B (p)
+ Aqg + Czi.

The most commonly assumed rank three models are quadratic (see the above references, and

Pollak and Wales 1980), which corresponds to λ = 2. Convenient specifications of the price

functions are lnB (p) = b′ ln p with b′1 = λ − 1 and D (p) = d′ ln p with d′1 = 0, which

yields the model

qi =
(
xi − p′(Aqg + Czi)

)2
(
e−b

′ lnp
)

d/p +
(
xi − p′(Aqg + Czi)

)
b/p + Aqg + Czi, (10)

where d/p and b/p are vectors with entries dj/pj and bj/pj for j = 1, ..., J . The goal will

be estimation of the parameters A, C, d, and b, and our welfare analyses will be based on

estimates of the system of equations (10).

To allow for unobserved heterogeneity in behavior, we append the error term vg + ui

to the above set of demand functions, where vg is a J−vector of group level fixed effects
and ui is a J−vector of individual specific error terms that are assumed to have zero means
conditional on all xl, zl, and p with l ∈ g. The group level fixed effect vg is not assumed

to be independent of peer effects qg. These error terms and fixed effects can be interpreted

either as departures from utility maximization by individuals, or as unobserved preference

heterogeneity. Assuming that the price weighted sum p′ (vg + ui) is zero suffi ces to keep each

individual on their budget constraint. Under this restriction, if desired one could replace

Czi with (Czi + vg + ui) in the indirect utility function above, and treat error terms as

unobserved preference heterogeneity. With this substitution into equation (10), the system

of demand functions we have to identify and estimate are

qi =
(
xi − p′(Aqg + Czi)

)2
(e−b

′ lnp)d/p+
(
xi − p′(Aqg + Czi)

)
b/p+Aqg+Czi+vg+ui.

(11)

Proof that the parameters A, C, d, and b are identified from the system of equations

(11), analogous to the generic model, is shown as Theorem 2 in the Appendix. For ease of

exposition, the specific assumptions needed to prove identification, analogous to Assumptions

A1 to A5 in the generic model, are also deferred to the Appendix.
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4 Implementing the Demand System

Here we first outline how the parameters in the system of demand equations (11) can be

identified and estimated. As in the generic model, we show identification with fixed effects

that uses pairwise differencing, we construct a corresponding GMM estimator, and we then

show how additional moments to increase effi ciency can be constructed by making additional

random effects assumptions regarding vg.

4.1 Demand System Identification With Fixed Effects

As with the generic model, there are two main obstacles to identifying equation (11). First

is that the fixed effects vg correlate with all the regressors. Second is that qg is not observed.

Let ng denote the number of consumers we observe in group g. Assume ng ≥ 3. The actual

number of consumers in each group may be large, but we assume only a small, fixed number

of them are observed. Our asymptotics assume that the number of observed groups goes to

infinity as the sample size grows, but for each group g, the number of observed consumers ng
is fixed. We may estimate qg by a sample average of qi across observed consumers in group

i, but the error in any such average is like measurement error, that does not shrink as our

sample size grows.

Here we summarize how the parameters of the demand system (11) are identified. Formal

assumptions and the proof of identification are provided in the Appendix. Identification of

our demand model is proven in two steps. First, just consider data from a single time period,

so there is no price variation and p can be treated as a vector of constants. Let α = A′p,

γ = C′p, δ = b/p, and m =
(
e−b

′ lnp
)

d/p with constraints of b′1 = 1 and d′1 = 0. Then

equation (11) reduces to the system of Engel curves

qi =
(
xi −α′qg − γ ′zi

)2
m +

(
xi −α′qg − γ ′zi

)
δ + Aqg + Czi + vg + ui, (12)

This has a very similar structure to the generic multiple equation system of equations (28),

and by a similar derivation we first show that α, C, δ, and m are identified, as follows.

Define ṽg =
(
α′qg

)2
m−α′qgδ + Aqg + v

g
. Then equation (12) can be rewritten more

simply as

qi = (xi − γ ′zi)2
m− 2 (xi − γ ′zi)

(
α′qg

)
m + (xi − γ ′zi) δ + Czi + ṽg + ui, (13)

Here the fixed effect vg has been replaced by a new fixed effect ṽg. As in the generic fixed

effects model, we begin by taking the difference qji − qji′ for each good j ∈ {1, ..., J} and
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each pair of individuals i and i′ in group g. This pairwise differencing of equation (13) gives,

for each good j,

qji − qji′ =
(

(xi − γ ′zi)2 − (xi′ − γ ′zi′)2
)
mj +

(
δj − 2mjα

′qg
)

((xi − γ ′zi)− (xi′ − γ ′zi′))
+c′j(zi − zi′) + (uji − uji′)

where c′j equals the j’th row of C. Then, again as in the generic model, we replace the

unobservable true group mean qg with the leave-two-out estimate q̂g,−ii′ = 1
ng−2

∑
l∈g,l 6=i,i′

ql,

which then introduces an additional error term into the above equation.

Define group level instruments rg as in the generic model. In particular, rg can include

group averages of xi and of zi, using data from individuals i that are sampled in other time

periods than the one currently being used for Engel curve identification. Define a vector of

instruments rgii′ that contains the elements rg, xi, zi, xi′ , zi′ , and squares and cross products

of these elements. We then, analogous to the generic model, obtain unconditional moments

0 = E{[(qji − qji′)−
(

(xi − γ ′zi)2 − (xi′ − γ ′zi′)2
)
mj

− (δj − 2mjα
′q̂g,−ii′) ((xi − γ ′zi)− (xi′ − γ ′zi′))− c′j(zi − zi′)]rgii′} (14)

for j = 1, ..., J . Identification of the parameters α, γ, δ, m, and C from these moments

then directly follows, given suffi cient variation in the covariates and instruments. See the

Appendix for details.

The above analysis identifies Engel curves (i.e., demands holding prices fixed) so here

p = (p1, ...pJ) is just a vector of constants. Before proceeding to the full demand system,

it is worth noting that most of the parameters of interest can be identified just from Engel

curves without price variation. In particular, given α, γ, δ, m, and C, we can identify

bj = pjδj for each element bj of b and dj = pjmje
b′ lnp for each element dj of d. Also, recall

F̃i(p) = α′qg + γ ′zi, so we can also identify and estimate the value of the relative cost of

needs F̃i(p) for any individual i in the given price regime p. However, without price variation

we cannot fully identify the matrix A of own and cross peer effects A. An exception would

be ifA were diagonal, which would mean, e.g., that a consumer’s perceived needs for luxuries

could depend on the mean levels of luxuries consumed by his peers, but not on the mean

levels of other goods consumed by his peers. If A were diagonal, then it could be identified

from the Engel curve by ajj = αj/pj for each element ajj on the diagonal of A and each

element of αj of α.

To identifyA without restricting it to be diagonal, we need data on multiple price regimes.

Let t denote the time period that the above analysis applies to, and let pt be the vector of
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prices in that time period. So we have identified is αt = A′pt. Assume we identify the above

Engel curve model in J different time periods. Let P be the matrix consisting of columns

pt for t = 1, ..., J . Assuming suffi cient price variation so that P is nonsingular, we can then

identify A by A′=(α1, ...,αJ)P−1.

4.2 Estimating Engel Curves

Having shown that the Engel curves are identified from the moments of equation (14), we can

directly can construct GMM estimators corresponding to these moments for j = 1, ..., J − 1.

As is standard in the estimation of continuous demand systems, we only need to estimate

the model for goods j = 1, ..., J − 1. The parameters for the last good J are then obtained

from the adding up identity that qJi =
(
xi −

∑J−1
j=1 pjqji

)
/pJ .

As discussed for the generic model, GMM could either be done directly using the mo-

ments of equation (14), treating each (i, i′) pair within each group as the unit of observation

(and constructing clustered standard errors to account for the correlations among these ob-

servations within each group), or by aggregating the moments up to the group level as in

equation (22).

The vector of instruments rgii′ can include arbitrary functions of rg, xi, zi, xi′ , and zi′,

where as before rg could include group level averages of functions of x and z, constructed

using data from some other time period, or some other data source (e.g., census data), than

the one that the data used for Engel curve estimation come from. Also as in the generic

case, outside instruments rg may not be necessary for identification, but we include them here

because they may help effi ciency, and because they are available in our empirical analysis

data set.

Again mimicking the generic case, based on the above equations a sensible set of in-

struments rgii′ might be (xi − xi′), (zki − zki′), (xi − xi′) rg, (zki − zki′) rg, (x2
i − x2

i′), and

(z2
ki − z2

ki′) for k = 1, 2, ..., K, where rg equals the sample means of x and z constructed

using data from other time periods. This constitutes a suffi cient number of instruments, but

if desired additional valid instruments would include more cross terms such as (zkixi−zki′xi′)
and (z1iz2i − z1i′z2i′).

4.3 Estimating the Full Demand Model

Based on our identification results, we can estimate all of the parameters of our full demand

system, assuming we have data from at least J − 1 time periods. The moments we have

for estimation are given by equation (14). Substituting α = A′p, γ = C′p, δj = bj/pj, and
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mj = e−b
′ lnpdj/pj into this equation, and adding a t subscript to denote time, we have

0 = E{rgtii′ [(qji − qji′)−
(

(xi − p′tCzi)
2 − (xi′ − p′tCzi′)

2
) dj
pjteb

′ lnpt
(15)

−
(
bj
pjt
− 2dj
pjteb

′ lnpt
p′tAq̂tg,−ii′

)
((xi − p′tCzi)− (xi′ − p′tCzi′))− c′j(zi − zi′)]}(16)

where the vector of instruments rgtii′ is defined below. Equation (15) holds for goods j =

1, ..., J and for all observed pairs of consumers i and i′ in each group g in each period t.

Let x̂(t)g denote the sample mean of xi over individuals i in group g in all time periods

except time period t. So, e.g., if we have data from three time periods then x̂(2)g would be the

average of xi for all individuals in group g in time periods 1 and 3. Define ẑ(t)g analogously.

Let rgt be the vector of elements x̂(t)g, ẑ(t)g, and pt. The instrument vector rgtii′ then consists

of the elements (xi − xi′), (zki − zki′), (xi − xi′) rgt, (zki − zki′) rgt, (x2
i − x2

i′), and (z2
ki − z2

ki′)

for k = 1, 2, ..., K.

For estimation of these moments by GMM, let the unit of observation be each observed

pair of consumers i and i′ in each group g, in each period t. The total number of moments

is the number of elements of rgtii′ times J − 1, because equation (15) applies to each good

and each instrument. As discussed in the previous subsection, we only need to estimate the

model for goods j = 1, ..., J − 1, because the parameters of the Jth equation are determined

by the adding up constraint that expenditures on all goods sum to total expenditures x.

As before, for inference we need to apply clustered standard errors, where each cluster

is defined as all of the pairs of observations in all time periods for each group g. We cluster

over time as well as across individuals to allow for possible serial correlation in the errors.

4.4 Estimating the Demand Model With Random Effects

The identification and associated estimation discussed so far is based on fixed effects. How-

ever, as with the generic model, a great deal of information is lost by differencing out the

fixed effects. We now consider adding additional random effects assumptions to the de-

mand model, to thereby provide additional moments for GMM estimation that do not entail

differencing.

For the demand system with random effects, as in the generic model we need to separate

the quadratic from the linear terms in qg, so rewrite the Engel curve model of equation (12)

as

qi = mα′qgq
′
gα+(2 (γ ′zi − xi) mα′ − δα′ + A) qg+(xi − γ ′zi)2

m+(xi − γ ′zi) δ+Czi+vg+ui.
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Equivalently, for each good j ∈ {1, ..., J}, this equation is

qji = α′qgq
′
gαmj+

(
2(γ ′zi − xi)mjα

′ − δjα′ + A′j
)

qg+(xi − γ ′zi)2
mj+(xi − γ ′zi) δj+c′jzi+vgj+uji

where A′j is the jth row of A. Unlike in the fixed effects demand model, we cannot simplify

by replacing vg with ṽg, because with random effects we assume that vg is independent of

(x, z,u), and this independence would not hold for ṽg.

Next, exactly analogous to the generic random effects model, replace the quadratic term

qgq
′
g with q̂g,−ii′q

′
i′ and replace the linear term qg with q̂g,−ii′ . Let rg be defined as in the

fixed effects Engel curve model, and let the vector of instruments rgi contain the elements

rg, xi, zi, and squares and cross products of these elements (note that unlike the fixed effects

case, rgi here does not contain functions of xi′ and zi′). We show in the Appendix that the

following unconditional moment holds:

E
[
rgi
(
qji −mjα

′q̂g,−ii′α
′qi′ + (2mj (xi − γ ′zi)α′ + δjα

′ −A′j)q̂g,−ii′

−mj(xi − z′iγ)2 − δj (xi − γ ′zi)− c′jzi − vj0
)]

= 0 ,

where vj0 is a constant term for each j. As discussed in the Appendix, if we plug in α = A′p,

γ = C′p, δj = bj/pj, and mj = e−b
′ lnpdj/pj, all of the structural parameters A, C, b, and d

can be identified and estimated from these Engel curve moments, given suffi cient variation in

the covariates and the instruments. This is different from the fixed effects model. There, the

matrix A was not identified without price variation, because the term Aqg got differenced

out.

Given these instruments and moments, estimation proceeds by GMM just as in the fixed

effects case. Also as in that case, if we have multiple time periods, we can add t subscripts

and again do GMM as in the fixed effects case, and we could combine the fixed effects and

random effects moments into a single large GMM.

5 Empirical sections

To be written

6 Are peer effects wasted?

Our model assumes that there are no compensating benefits associated with the losses from

(i.e., costs associated with satisfying) increased needs due to peer effects. However, costs of
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keeping up with peers are not necessarily all wasted resources. Some fraction of these peer

effects could be construed as benefits to society stemming from higher average standards of

living. For example, there is a value to society when most people have internet access, even

if that makes internet access become a perceived need. Formally, we could include separable

component to utility where one benefits from the average standard of living in one’s society,

which could in turn be related to country or region level fixed costs. As long as one’s own

behavior makes a negligibly small contribution to this separable component of utility, our

numerical analyses are unaffected, though the interpretation of our results changes. We do

not take a stand on what fraction of the costs of peer effects are not a wasted from the

standpoint of society, though the peer effects of luxuries are unlikely to be useful for the

most part.

7 Conclusions

To be written
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Appendix: Derivations

8.1 Generic Model Identification and Estimation

Let yi denote an outcome and xi denote a K vector of regressors xki for an individual i. Let

i ∈ g denote that the individual i belongs to group g. For each group g, assume we observe
ng =

∑
i∈g 1 individuals, where ng is a small fixed number which does not go to infinity. Let

yg = E (yi | i ∈ g), ŷg,−ii′ =
∑

l∈g,l 6=i,i′ yl/(ng − 2), and εyg,−ii′ = ŷg,−ii′ − yg, so yg is the true
group mean outcome and ŷg,−ii′ is the observed leave-two-out group average outcome in our

data, and εyg,−ii′ is the estimation error in the leave-two-out sample group average. Define

xg = E (xi | i ∈ g), xx′g = E (xix
′
i | i ∈ g), and similarly define x̂g,−ii′ , x̂x′g,−ii′ , εxg,−ii′ and

εxxg,−ii′ analogously to ŷg,−ii′ , and εyg,−ii′ .

Consider the following single equation model (the multiple equation analog is discussed

later). For each individual i in group g, let

yi =
(
yga+ x′ib

)2
d+

(
yga+ x′ib

)
+ vg + ui (17)

where vg is a group level fixed effect and ui is an idiosyncratic error. The goal here is
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identification and estimation of the effects of yg and xi on yi, which means identifying the

coeffi cients a, b, and d.

We could have written the seemingly more general model

yi =
(
yga+ x′ib + c

)2
d+

(
yga+ x′ib + c

)
k + vg + ui

where c and k are additional constants to be estimated. However, it can be shown (see the

appendix for details), that by suitably redefining the fixed effect vg and the constants a, b,

and d, that this equation is equivalent either to equation (17) or to yi =
(
yga+ x′ib

)2
+vg+ui.

Since this latter equation is strictly easier to identify and estimate, and is irrelevant for our

empirical application, we will rule it out and therefore without loss of generality replace the

more general model with equation (17).

Next observe that, regardless of what we assume about within group or between group

sample sizes, if this model were linear (i.e., d = 0), then we would not be able to identify the

effect of yg on yi, i.e., we would not be able to identify the peer effect. This is because, if

d = 0, then there is no way to separate yg from the group level fixed effect vg. All values of a

would be observationally equivalent, by suitable redefinitions of vg. This is a manifestation

of the reflection problem, which we overcome by a combination of nonlinearity and functional

form restrictions.

We assume that the number of groups G goes to infinity, but we do NOT assume that

ng goes to infinity, so ŷg,−ii′ is not a consistent estimator of yg. We instead treat εyg,−ii′ =

ŷg,−ii′−yg as measurement error in ŷg,−ii′ , which is not asymptotically negligible. This makes
sense for data like ours where only a small number of individuals are observed within each

peer group. This may also be a sensible assumption in many standard applications where

true peer groups are small. For example, in a model where peer groups are classrooms,

failure to observe a few children in a class of one or two dozen students may mean that the

observed class average significantly mismeasures the true class average.

Formally, our first identification theorem makes assumptions A1 to A3 below.

Assumption A1: Each individual i in group g satisfies equation (17). xi is a K-

dimensional vector of covariates. For each k ∈ {1, ..., K}, for each group g with i ∈ g and
i′ ∈ g, Pr (xik = xi′k) > 0. Unobserved vg are group level fixed effects. Unobserved errors

ui are independent across groups g and have E(ui |all xi′ having i′ ∈ g where i ∈ g) = 0.

The number of observed groups G → ∞. For each observed group g, we observe a sample
of ng ≥ 3 observations of yi,xi.

Assumption A1 essentially defines the model. Note that Assumption A1 does not require
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that ng → ∞. We can allow the observed sample size ng in each group g to be fixed, or to
change with the number of groups G. The true number of individuals comprising each group

is unknown and could be finite.

Assumption A2: The coeffi cients a, b, d are unknown constants satisfying d 6= 0, b 6= 0,

and [1− a(2b′xgd+ 1)]2 − 4a2d[db′xx′gb + b′xg + vg] ≥ 0.

In Assumption A2, as discussed above d 6= 0 is needed to avoid the reflection problem.

Having b 6= 0 is necessary since otherwise we would have nothing exogenous in the model.

Finally, note that the inequality in Assumption A2 takes the form of a simple lower or upper

bound (depending on the sign of d) on each fixed effect vg. This inequality must hold to

ensure that an equilibrium exists for each group, thereby avoiding Tamer’s (2003) potential

incoherence problem. To see this, plug equation (17) for yi into yg = E (yi | i ∈ g). This

yields a quadratic in yg, which, if a 6= 0, has the solution

yg =
1− a(2b′xgd+ 1)±

√
[1− a(2b′xgd+ 1)]2 − 4a2d[db′xx′gb + b′xg + vg]

2a2d
(18)

if the inequality in Assumption A2 is satisfied (while if a does equal zero, then the model

will be trivially identified because in that case there aren’t any peer effects). We do not take

a stand on which root of equation (18) is chosen by consumers, we just make the following

assumption.

Assumption A3: Individuals within each group agree on an equilibrium selection rule.

For identification, we need to remove the fixed effect from equation (17), which we do by

subtracting off another individual in the same group. For each (i, i′) ∈ g, consider pairwise
difference

yi − yi′ = 2adygb
′(xi − xi′) + db′(xix

′
i − xi′x

′
i′)b + b′(xi − xi′) + ui − ui′

= 2adŷg,−ii′b
′(xi − xi′) + db′(xix

′
i − xi′x

′
i′)b + b′(xi − xi′)

+ui − ui′ − 2adεyg,−ii′b
′(xi − xi′), (19)

where the second equality is obtained by replacing yg on the right hand side with ŷg,−ii′ −
εyg,−ii′ . In addition to removing the fixed effects vg, the pairwise difference also removed

the linear term ayg, and the squared term da2y2
g. The second equality in equation (19)

shows that yi − yi′ is linear in observable functions of data, plus a composite error term

ui − ui′ − 2adεyg,−ii′b
′(xi − xi′) that contains both εyg,−ii′ and ui − ui′ . By Assumption
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A1, ui − ui′ is conditionally mean independent of xi and xi′ . It can also be shown (see the

Appendix) that

εyg,−ii′ = 2adygb
′εxg,−ii′ + b′εxxg,−ii′bd+ b′εxg,−ii′ + ûg,−ii′ .

where

εxg,−ii′ =
1

ng − 2

∑
l∈g,l 6=i,i′

(xl − xg) ; εxxg,−ii′ =
1

ng − 2

∑
l∈g,l 6=i,i′

(
xlx

′
l − xx′g

)
.

Substituting this expression into equation (19) gives an expression for yi − yi′ that is linear
in ŷg,−ii′(xi − xi′), (xix

′
i − xi′x

′
i′), (xi − xi′), and a composite error term.

In addition to the conditionally mean independent errors ui − ui′ and ûg,−ii′ , the com-
ponents of this composite error term include εxg,−ii′ and εxxg,−ii′ , which are measurement

errors in group level mean regressors. If we assumed that the number of individuals in each

group went to infinity, then these epsilon errors would asymptotically shrink to zero, and

the the resulting identification and estimation would be simple. In our case, these errors do

not go to zero, but one might still consider estimation based on instrumental variables. This

will be possible with further assumptions on the data.

In the next assumption we allow for the possibility of observing group level variables rg

that may serve as instruments for ŷg,−ii′ . Such instruments may not be necessary, but if such

instruments are available (as they will be in our later empirical application), they can help

both in weakening suffi cient conditions for identification and for later improving estimation

effi ciency.

Assumption A4: Let rg be a vector (possibly empty) of observed group level instru-

ments that are independent of each ui. Assume E
(
(xi − xg) | i ∈ g,xg,xx′g, vg, rg

)
= 0,

E
((

xix
′
i − xx′g

)
| i ∈ g, rg

)
= 0, and that xi − xg and xix

′
i − xx′g are independent across

individuals i.

Assumption A4 corresponds to (but is a little stronger than) standard instrument validity

assumptions. A suffi cient condition for the equalities in Assumption A4 to hold is let εix =

xi − xg be independent across individuals, and assume that E(εix | xg,xx′g, vg, rg for i ∈
g) = 0 and E (εixε

′
ix | xg, rg for i ∈ g) = E (εixε

′
ix | i ∈ g). To see this, we have

E(xix
′
i − xx′g | i ∈ g,xg, rg) = E[(εix + xg)(εix + xg)

′ | i ∈ g,xg, rg]− xx′g

= E(εixε
′
ix | i ∈ g,xg, rg) + E(xi|i ∈ g)E(x′i|i ∈ g)− E(xix

′
i|i ∈ g)

= E(εixε
′
ix | i ∈ g,xg, rg)− E(εixε

′
ix|i ∈ g)
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A simpler but stronger suffi cient condition would just be that εix are independent across

individuals i and independent of group level variables xg,xx′g, vg, rg. Essentially, this corre-

sponds to saying that any individual i in group g has a value of xi that is a randomly drawn

deviation around their group mean level xg. The first two equalities in A4 are used to show

that E (εyg,−ii′ | rg) = 0, and the independence of measurement errors across individuals is

used to show E (εyg,−ii′(xi − xi′) | rg,xi,xi′) = (xi − xi′)E (εyg,−ii′ | rg) = 0, so that xi and

xi′ are valid instruments. Given Assumptions A1 and A4, one can directly verify that

E [yi − yi′ − (2adŷg,−ii′b
′(xi − xi′) + db′(xix

′
i − xi′x

′
i′)b + b′(xi − xi′)) | rg,xi,xi′ ] = 0.

(20)

Under Assumptions A1 to A4, (xi − xi′)E(ŷg,−ii′ |rg,xi,xi′) is linearly independent of
(xi − xi′) and (xix

′
i − xi′x

′
i′) with a positive probability. These conditional moments could

therefore be used to identify the coeffi cients 2adb, b1db,...bKdb, and b, which we could then

immediately solve for the three unknowns a, b, d. Note that we have K + 2 parameters

which need to be estimated, and even if no rg are available, we have 2K instruments xi

and xi′ . The level of xi as well as the difference xi − xi′ may be useful as an instrument

(and nonlinear functions of xi can be useful), because (18) shows that yg and hence ŷg,−ii′ is

nonlinear in xg, and xi is correlated with xg by xi = εix + xg.

The above derivations outline how we obtain identification, while the formal proof is

given in Theorem 1 below (details are provided in the Appendix). To simplify estimation,

we construct unconditional rather than conditional moments for identification and later

estimation. Let rgii′ denote a vector of any chosen functions of rg, xi, and xi′ , which we will

take as an instrument vector. It then follows immediately from equation (20) that

E

[(
yi − yi′ − (1 + 2adŷg,−ii′)

K∑
k=1

bk(xki − xki′)− d
K∑
k=1

K∑
k′=1

bkbk′(xkixk′i − xki′xk′i′)
)

rgii′

]
= 0.

(21)

Let

L1gii′ = (yi − yi′), L2kgii′ = (xki − xki′),
L3kgii′ = ŷg,−ii′(xki − xki′), L4kk′gii′ = xkixk′i − xki′xk′i′

Equation (21) is linear in these L variables and so could be estimated by GMM. This linearity

also means they can be aggregated up to the group level as follows. Define

Γg = {(i, i′) | i and i′ are observed, i ∈ g, i′ ∈ g, i 6= i′}
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So Γg is the set of all observed pairs of individuals i and i′ in the group g. For ` ∈
{1, 2k, 3k, 4kk′ | k, k′ = 1, ..., K}, define vectors

Y`g =

∑
(i,i′)∈Γg

L`gii′rgii′∑
(i,i′)∈Γg

1

Then averaging equation (21) over all (i, i′) ∈ Γg gives the unconditional group level moment

vector

E

(
Y1g −

K∑
k=1

bkY2kg − 2ad
K∑
k=1

bkY3kg − d
K∑
k=1

K∑
k′=1

bkbk′Y4kk′g

)
= 0. (22)

Suppose the instrumental vector rgii′ is q dimensional. Denote the q× (K2 + 2K) matrix

Yg = (Y21g, ...Y2Kg,Y31g, ...Y3Kg,Y411g, · · · ,Y4KKg). The following assumption ensures

that we can identify the coeffi cients in this equation.

Assumption A5: E(Y′g)E(Yg) is nonsingular.

Theorem 1. Given Assumptions A1, A2, A3, A4, and A5, the coeffi cients a, b, d are

identified.

As noted earlier, Assumptions A1 to A4 should generally suffi ce for identification. As-

sumption A5 is used to obtain more convenient identification based on unconditional mo-

ments. Assumption A5 is itself stronger than necessary, since it would suffi ce to identify

arbitrary coeffi cients of the Y variables, ignoring all of the restrictions among them that are

given by equation (22).

Given the identification in Theorem 1, based on equation (22) we can immediately con-

struct a corresponding group level GMM estimator

(
â, b̂1, ...̂bK , d̂

)
= arg min

[
1

G

G∑
g=1

(
Y1g −

K∑
k=1

bkY2kg − 2ad
K∑
k=1

bkY3kg − d
K∑
k=1

K∑
k′=1

bkbk′Y4kk′g

)]′

·Ω̂
[

1

G

G∑
g=1

(
Y1g −

K∑
k=1

bkY2kg − 2ad
K∑
k=1

bkY3kg − d
K∑
k=1

K∑
k′=1

bkbk′Y4kk′g

)]
(23)

for some positive definite moment weighting matrix Ω̂. In equation (23), each group g

corresponds to a single observation, the number of observations within each group is assumed

to be fixed, and recall we have assumed the number of groups G goes to infinity. Since this

equation has removed the vg terms, there is no remaining correlation across the group level

errors, and therefore standard cross section GMM inference will apply. Also, with the number

of observed individuals within each group held fixed, there is no loss in rates of convergence

by aggregating up to the group level in this way.
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One could alternatively apply GMM to equation (21), where the unit of observation

would then be each pair (i, i′) in each group. However, when doing inference one would then

need to use clustered standard errors, treating each group g as a cluster, to account for the

correlation that would, by construction, exist among the observations within each group. In

this case,

(
â, b̂1, ...̂bK , d̂

)
= arg min

(∑G
g=1

∑
(i,i′)∈Γg

mgii′∑G
g=1

∑
(i,i′)∈Γg

1

)′
Ω̂

(∑G
g=1

∑
(i,i′)∈Γg

mgii′∑G
g=1

∑
(i,i′)∈Γg

1

)
, (24)

where

mgii′ = L1gii′rgii′ −
K∑
k=1

bkL2kgii′rgii′ − 2ad
K∑
k=1

bkL3kgii′rgii′ − d
K∑
k=1

K∑
k′=1

bkbk′L4kk′gii′rgii′ .

The remaining issue is how to select the vector of instruments rgii′ , the elements of which

are functions of rg,xi,xi′ chosen by the econometrician. Based on equation (21), rgii′ should

include the differences xki − xki′ and xkixk′i − xki′xk′i′ for all k, k′ from 1 to K, and should

include terms that will correlate with ŷg,−ii′(xki − xki′). Using equation (18) as a guide for
what determines yg and hence what should correlate with ŷg,−ii′ , suggests that rgii′ could

include, e.g., xki(xki − xki′) or x1/2
ki (xki − xki′).

We might also have available additional instruments rg that come from other data sets.

A strong set of instruments for ŷg,−ii′(xki−xki′) could be (xki−xki′)rg, where rg is a vector of

one or more group level variables that are correlated with yg, but still satisfy Assumption A4.

One such possible rg is a vector of group means of functions of x that are constructed using

individuals that are observed in the same group as individual i, but in a different time period

of our survey. For example, we might let rg include x̂gt· =
∑

s 6=t
∑

i∈gs xi/
∑

s 6=t
∑

i∈gs 1 where

s indicates the period and t is the current period. In our empirical application, since the

data take the form of repeated cross sections rather than panels, different individuals are

observed in each time period. So x̂gt· is just an estimate of the group mean of xg, but based

on data from time periods other than one used for estimation. This produces the necessary

uncorrelatedness (instrument validity) conditions in Assumption A4. The relevance of these

instruments (the nonsingularity condition in Assumption A5) will hold as long as group

level moments of functions of x in one time period are correlated with the same group level

moments in other periods.

In our later empirical application, what corresponds to the vector xi here includes the

total expenditures, age, and other charecteristics of a consumer i, so Assumptions A4 and A5

will hold if the distribution of income and other characteristics within groups are suffi ciently

similar across time periods, while the specific individuals within each group who are sampled
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change over time. The nonlinearity of yg in equation (18) shows that additional nonlinear

functions of x̂gt·, could also be valid and potentially useful additional instruments.

8.2 Proof of Theorem 1

We first show that we may without loss of generality assume c = 0 and k = 1 the single

equation generic model. Suppose that

yi =
(
yga+ x′ib + c

)2
d+

(
yga+ x′ib + c

)
k + vg + ui

One can readily check that this model can be rewritten as

yi =
(
yga+ x′ib

)2
d+ (2cd+ k)

(
yga+ x′ib

)
+ c2d+ ck + vg + ui.

If 2cd + k 6= 0 then this equation is identical to equation (17), replacing the fixed effect vg
with the fixed effect ṽg = c2d+ ck + vg, and replacing the constants a, b, d, with constants

ã, b̃, d̃ defined by ã = (2cd+ k) a, b̃ = (2cd+ k) b, and d̃ = d/ (2cd+ k)2. If 2cd + k = 0,

then by letting ṽg = c2d+ ck+ vg this equation becomes yi =
(
yga+ x′ib

)2
d+ ṽg +ui, which

is the case we have already ruled out.

We next derive the equilibrium of yg. Expanding equation (17), we have

yi = y2
gda

2 + a(2dx′ib + 1)yg + b′xix
′
ibd+ x′ib + vg + ui (25)

Taking the within group expected value of this expression gives

yg = y2
gda

2 + a(2db′xg + 1)yg + db′xx′gb + b′xg + vg. (26)

so the equilibrium value of yg must satisfy this equation for the model to be coherent. If

a = 0, then we get yg = db′xx′gb + b′xg + vg which exists and is unique. If a 6= 0, meaning

that peer effects are present, then equation (26) is a quadratic with roots

yg =
1− a(2b′xgd+ 1)±

√
[1− a(2b′xgd+ 1)]2 − 4a2d[db′xx′gb + b′xg + vg]

2a2d
.

The equilibrium of yg therefore exists under Assumption A2 and is unique under Assumption

A3. Note that regardless of whether a = 0 or not, yg is always a function of xg, xx′g, and vg.

We now derive an expression for the measurement error εyg,−ii′ . From equation (25), we
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have the group average

ŷg,−ii′ = y2
gda

2 + a(2db′x̂g,−ii′ + 1)yg + b′x̂x′g,−ii′bd+ b′x̂g,−ii′ + vg + ûg,−ii′ .

Subtracting equation (26) then gives the measurement error

εyg,−ii′ = ŷg,−ii′ − yg =
1

ng − 2

∑
l 6=i,i′,l∈g

[2adygb
′(xl − xg) + b′(xlx

′
l − xx′g)bd+ b′(xl − xg) + ul]

= 2adygb
′εxg,−ii′ + b′εxxg,−ii′bd+ b′εxg,−ii′ + ûg,−ii′ .

Given the above results, we can now proceed with identification of the parameters. Sub-

stituting the above into the yi − yi′ gives

yi − yi′ = 2adŷg,−ii′b
′(xi − xi′) + db′(xix

′
i − xi′x

′
i′)b + b′(xi − xi′) + Uii′ ,

where

Uii′ = ui − ui′ − 2ad(2adygb
′εxg,−ii′ + b′εxxg,−ii′bd+ b′εxg,−ii′ + ûg,−ii′)b

′(xi − xi′).

Under Assumption A4, for each i ∈ g, E
(
(xi − xg) | xg,xx′g, vg, rg

)
= 0, and with its

independence across individuals, we have

E
(
ygεxg,−ii′(xi − xi′)

′ | rg,xi,xi′
)

= E
(
ygE(εxg,−ii′ | xg,xx′g, vg, rg,xi,xi′)(xi − xi′)

′)
= E

(
ygE

(
εxg,−ii′ | xg,xx′g, vg, rg, εixg, εi′xg

)
(xi − xi′)

′) = 0.

Together with E (εxxg,−ii′(xi − xi′) | rg,xi,xi′) = 0, E (εxg,−ii′(xi − xi′) | rg,xi,xi′) = 0, and

E(ûg,−ii′(xi − xi′)) = 0, we have E(Uii′ |rg,xi,xi′) = 0 and hence,

E [yi − yi′ − (2adŷg,−ii′b
′(xi − xi′) + db′(xix

′
i − xi′x

′
i′)b + b′(xi − xi′)) |rg,xi,xi′ ] = 0

For ` ∈ {1, 2k, 3k, 4kk′ | k, k′ = 1, ..., K}, define vectors Y`g as Section 4 and we have the

group level moment condition

E

(
Y1g −

K∑
k=1

bkY2kg − 2ad
K∑
k=1

bkY3kg − d
K∑
k=1

K∑
k′=1

bkbk′Y4kk′g

)
= 0. (27)
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Then, using the nonsingularity in Assumption A5, we have a, b, d identified from

(b′, 2adb′, db1b
′, · · · , dbKb′)

′
=
[
E(Y′g)E(Yg)

]−1 · E(Y′g)E (Y1g) ,

where Yg = (Y21g, ...Y2Kg,Y31g, ...Y3Kg,Y411g, · · · ,Y4KKg) .

8.3 Multiple Equation Generic Model With Fixed Effects

Our actual demand application has a vector of J outcomes and a corresponding system of J

equations. Extending the generic model to a multiple equation system introduces potential

cross equation peer effects, resulting in more parameters to identify and estimate. Let

yi = (y1i, ..., yJi) be a J-dimensional outcome vector, where yji denotes the j’th outcome for

individual i. Then we extend the single equation generic model to the multi equation that

for each good j,

yji = (y′gaj + x′ibj)
2dj +

(
y′gaj + x′ibj

)
+ vjg + uji, (28)

where yg = E(yi|i ∈ g) and aj = (a1j, ..., aJj)
′ is the associated J-dimensional vector of

peer effects for jth outcome (which in our application is the jth good). We now show that

analogous derivations to the single equation model gives conditional moments

E
(
(yji − yji′ − 2djŷ

′
g,−ii′aj(xi − xi′)

′bj − djb′j(xix′i − xi′x
′
i′)bj − (xi − xi′)

′bj) | rg,xi,x′i
)

= 0.

Construction of unconditional moments for GMM estimation then follows exactly as before.

The only difference is that now each outcome equation contains a vector of coeffi cients aj

instead of a single a. To maximize effi ciency, the moments used for estimating each outcome

equation can be combined into a single large GMM that estimates all of the parameters for

all of the outcomes at the same time.

From

yji = dj(y
′
gaj)

2 + 2y′gajdjx
′
ibj + b′jxix

′
ibjdj + y′gaj + x′ibj + vjg + uji,

we have the equilibrium

yjg = dj(y
′
gaj)

2 + 2djy
′
gajx

′
gbj + b′jxx′gbjdj + y′gaj + x′gbj + vjg

and the leave-two-out group average

ŷjg,−ii′ = dj(y
′
gaj)

2 + 2djy
′
gajx̂

′
g,−ii′bj + b′jx̂x′g,−ibjdj + y′gaj + x̂′g,−ii′bj + vjg + ûjg,−ii′ .
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Therefore, the measurement error is

εyjg,−ii′ = ŷjg,−ii′ − yjg = 2djy
′
gajε

′
xg,−ii′bj + b′jεxxg,−ii′bjdj + ε′xg,−ii′bj + ûjg,−ii′ .

Using the same analysis as before,

yji − yji′ = 2djy
′
gaj(xi − xi′)

′bj + djb
′
j(xix

′
i − xi′x

′
i′)bj + (xi − xi′)

′bj + uji − uji′

= 2djŷ
′
g,−ii′aj(xi − xi′)

′bj + djb
′
j(xix

′
i − xi′x

′
i′)bj + (xi − xi′)

′bj + uji − uji′

−2djε
′
yg,−ii′aj(xi − xi′)

′bj.

Therefore, for j = 1, ..., J , we have the moment condition

E
(
(yji − yji′ − (xi − xi′)

′bj − 2djŷ
′
g,−ii′aj(xi − xi′)

′bj − djb′j(xix′i − xi′x
′
i′)bj)|rgii′

)
= 0.

Denote

L1jgii′ = (yji − yji′), L2kgii′ = (xki − xki′),
L3jkgii′ = ŷjg,−ii′(xki − xki′), L4kk′gii′ = xkixk′i − xki′xk′i′ .

For ` ∈ {1j, 2k, 3jk, 4kk′ | j = 1, ..., J ; k, k′ = 1, ..., K}, define vectors

Y`g =

∑
(i,i′)∈Γg

L`gii′rgii′∑
(i,i′)∈Γg

1

and the identification comes from the group level unconditional moment equation

E

(
Y1jg −

K∑
k=1

bjkY2kg − 2dj
J∑

j′=1

K∑
k=1

ajj′bjkY3j′kg − dj
K∑
k=1

K∑
k′=1

bjkbjk′Y4kk′g

)
= 0,

where bjk is the kth element of bj and ajj′ is the j′th element of aj.

Let Yg = (Y21g, ...Y2Kg,Y311g,Y312g, ...Y3JKg,Y411g, · · · ,Y4KKg) . If E (Yg)
′E (Yg) is

nonsingular, for each j = 1, ..., J , we can identify

(b′j, 2aj1djb
′
j, ..., 2ajJdjb

′
j, djbj1b

′
j, ..., djbjKb′j)

′ =
[
E (Yg)

′E (Yg)
]−1 · E (Yg)

′E (Y1jg) .

From this, bj, dj, and aj can be identified for each j = 1, ..., J .

For a single large GMM that estimates all of the parameters for all of the outcomes at
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the same time, we construct the group level GMM estimation based on

(
â′1, ..., â

′
J , b̂

′
1, ...b̂

′
J , d̂1, ..., d̂J

)′
= arg min

(
1

G

G∑
g=1

mg

)′
Ω̂

(
1

G

G∑
g=1

mg

)
,

where Ω̂ is some positive definite moment weighting matrix and

mg =


Y11g

...

Y1Jg

−


K∑
k=1

b1kY2kg

...
K∑
k=1

bJkY2kg

−2


d1

J∑
j′=1

K∑
k=1

a1j′b1kY3j′kg

...

dJ
J∑

j′=1

K∑
k=1

aJj′bJkY3j′kg

−


d1

K∑
k=1

K∑
k′=1

b1kb1k′Y4kk′g

...

dJ
K∑
k=1

K∑
k′=1

bJkbJk′Y4kk′g


is a qJ−dimensional vector.
Alternatively, we can construct the individual level GMM estimation using the group

clustered standard errors

(
â′1, ..., â

′
J , b̂

′
1, ...b̂

′
J , d̂1, ..., d̂J

)′
= arg min

(∑G
g=1

∑
(i,i′)∈Γg

mgii′∑G
g=1

∑
(i,i′)∈Γg

1

)′
Ω̂

(∑G
g=1

∑
(i,i′)∈Γg

mgii′∑G
g=1

∑
(i,i′)∈Γg

1

)
,

where

mgii′ =


L11gii′rgii′

...

L1Jgii′rgii′

−


K∑
k=1

b1kL2kgii′rgii′

...
K∑
k=1

bJkL2kgii′rgii′

− 2


d1

J∑
j′=1

K∑
k=1

a1j′b1kL3j′gii′rgii′

...

dJ
J∑

j′=1

K∑
k=1

aJj′bJkL3j′gii′rgii′



−


d1

K∑
k=1

K∑
k′=1

b1kb1k′L4kk′gii′rgii′

...

dJ
K∑
k=1

K∑
k′=1

bJkbJk′L4kk′gii′rgii′

 .

8.4 Multiple Equation Generic Model With Random Effects

Here we provide the derivation of equation (7), thereby showing validity of the moments

used for random effects estimation. As with fixed effects, we here extend the model to allow

a vector of covariates xi. We begin by rewriting the generic model with vector xi, equation

(17).

yi = y2
ga

2d+ a (1 + 2b′xid) yg + b′xi + b′xix
′
ibd+ vg + ui, (29)
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We now add the assumption that vg is independent of x and u, making it a random effect.

Taking the expectation of this expression given being in group g gives

yg = y2
gda

2 + a(2db′xg + 1)yg + db′xx′gb + b′xg + µ, (30)

where µ = E(vg). Hence, the group mean yg is an implicit function of xg and xx′g.

Define measurement errors εxl = xl − xg, εxxl = xlx
′
l − xx′g, and εyg,−ii′ = ŷg,−ii′ − yg.

For any i′ ∈ g, the measurement error εyi′ = yi′ − yg is

εyi′ = 2adygb
′(xi′ − xg) + db′(xi′x

′
i′ − xx′g)b + b′(xi′ − xg) + ui′ + vg

= 2adygb
′εxi′ + db′εxxi′b + b′εxi′ + ui′ + vg − µ.

and so the measurement error εyg,−ii′ = ŷg,−ii′ − yg is

εyg,−ii′ = ŷg,−ii′ − yg = 2adygb
′εxg,−ii′ + b′εxxg,−ii′bd+ b′εxg,−ii′ + ûg,−ii′ + vg − µ.

Next define ε̃gii′ by

ε̃gii′ =
(
y2
g − ŷg,−ii′yi′

)
a2d+ a (1 + 2b′xid)

(
yg − ŷg,−ii′

)
,

so

yi = ŷg,−ii′yi′a
2d+ a (1 + 2b′xid) ŷg,−ii′ + b′xi + b′xix

′
ibd+ vg + ui + ε̃gii′ . (31)

Then

ε̃gii′ =
(
y2
g − (yg + εyg,−ii′)(yg + εyi′)

)
a2d− a (1 + 2b′xid) εyg,−ii′

= −(εyg,−ii′ + εy,i′)yga
2d− εyg,−ii′εy,i′a2d− a (1 + 2b′xid) εyg,−ii′ .

Make the following assumptions.

Assumption C1: For any individual l, vg is independent of (xl,xg,xx′g), the error term

ul, and measurement errors εxl and εxxl.

Assumption C2: For each individual l in group g, conditional on (xg,xx′g) the mea-

surement errors εxl and εxxl are independent across individuals and have zero means.

Assumption C3: For each group g, vg is independent across groups withE(vg|x,xg,xx′g) =

µ and we have the conditional homoskedasticity that V ar(vg|x,xg,xx′g) = σ2.

Let v0 = µ−da2σ2. It follows from these assumptions that, for any l 6= i, E(ygεyl|xi,xg,xx′g) =
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0 and E(εylxi|xi,xg,xx′g) = 0. Hence, E(ε̃gii′|xi,xg,xx′g) = −da2E(εyg,−ii′εy,i′|xi,xg,xx′g) =

−da2V ar (vg) and

E(vg + ui + ε̃gii′ | xg,xx′g,xi) = µ− da2σ2 = v0. (32)

By construction vg +ui+ ε̃gii′ is also independent of rg. Given this, equation (7) then follows

from equations (31) (32).

8.5 Identification of the Demand System With Fixed Effects

We begin by considering the Engel curve model, without price variation. As

qi = x2
im + m

(
α′qg

)2
+ (γ ′ziz

′
iγ) m− 2mα′qgxi − 2mγ ′zixi + 2mα′qgγ

′zi

+
(
xi −α′qg − γ ′zi

)
δ + Aqg + Czi + vg + ui,

we have

qg = x2
gm + m

(
α′qg

)2
+
(
γ ′zz′gγ

)
m− 2mα′qgxg − 2mγ ′xzg + 2mα′qgγ

′zg

+
(
xg −α′qg − γ ′zg

)
δ + Aqg + Czg + vg;

q̂g,−ii′ = x̂2
g,−ii′m + m

(
α′qg

)2
+
(
γ ′ẑz′g,−ii′γ

)
m− 2mα′qgx̂g,−ii′ − 2mγ ′ẑxg,−ii′

+2mα′qgγ
′ẑg,−ii′ +

(
x̂g,−ii′ −α′qg − γ ′ẑg,−ii′

)
δ + Aqg + Cẑg,−ii′ + vg + ûg,−ii′ .

Hence,

εqg,−ii′ = q̂g,−ii′ − qg = −2mα′qg(εxg,−ii′ − γ ′εzg,−ii′) + εx2g,−ii′m + γ ′εzzg,−ii′γm

−2mγ ′εzxg,−ii′ + δεxg,−ii′+(C− δγ ′)εzg,−ii′ + ûg,−ii′ .

The pairwise difference gives

qi − qi′ = −2mα′qg[(xi − xi′)− γ ′(zi − zi′)] + (x2
i − x2

i′)m+[γ ′ (ziz
′
i − zi′z

′
i′)γ]m

−2mγ ′(zixi − zi′xi′) + δ(xi − xi′) + (C− δγ ′)(zi − zi′) + ui − ui′

= −2mα′q̂g,−ii′ [(xi − xi′)− γ ′(zi − zi′)] + (x2
i − x2

i′)m+[γ ′ (ziz
′
i − zi′z

′
i′)γ]m

−2mγ ′(zixi − zi′xi′) + δ(xi − xi′) + (C− δγ ′)(zi − zi′) + Uii′ ,

where the composite error is

Uii′ = ui − ui′ + 2mα′εqg,−ii′ [(xi − xi′)− γ ′(zi − zi′)].
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For identification and estimation, we need following assumptions.

Assumption B1: Each individual i in group g satisfies equation (12). Unobserved errors
ui’s are independent across groups and have zero mean conditional on all (xl, zl) for l ∈ g,
and vg are unobserved group level fixed effects. The number of observed groups G → ∞.
For each observed group g, a sample of ng observations of qi, xi, zi is observed. Each sample

size ng is fixed and does not go to infinity. The true number of individuals comprising each

group is unknown and could be finite.

Assumption B2: The coeffi cients A,C,b,d are unknown constants satisfying b′1 = 1,

d′1 = 0, d 6= 0, and there exist solutions of qg such that

qg = x2
gm + m

(
α′qg

)2
+
(
γ ′zz′gγ

)
m− 2mα′qgxg − 2mγ ′xzg + 2mα′qgγ

′zg

+
(
xg −α′qg − γ ′zg

)
δ + Aqg + Czg + vg. (33)

Assumption B1 just defines the model. In Assumption B2, if q is a scalar, then the

solution exists when

(1 + 2mApxg − 2mApγ ′zg − A+ pAδ)
2

−4m (Ap)2
(
mx2

g +mγ ′zz′gγ − 2mγ ′xzg + xgδ − δγ ′zg + Czg + vg

)
≥ 0

as m 6= 0(d 6= 0) is needed to avoid the reflection problem. Assumption B2 ensures that

an equilibrium exists for each group, thereby avoiding Tamer’s (2003) potential incoherence

problem. To see this, if A 6= 0, qg has the solution

qg =
1

2m (Ap)2 (1 + 2mApxg − 2mApγ ′zg − A+ pAδ)± [(1 + 2mApxg − 2mApγ ′zg − A+ pAδ)2

−4m (Ap)2 (mx2
g +mγ ′zz′gγ − 2mγ ′xzg + xgδ − δγ ′zg + Czg + vg)]

1/2, (34)

while if A does equal zero, then the model will be trivially identified because in that case

there aren’t any peer effects. From equation (34), we can see qg is an implicit function of

x2
g, xg, zg, zz′g, xzg, and vg. In the case of multiple equilibria, we do not take a stand on

which root of equation (33) is chosen by consumers, we just make the following assumption.

Assumption B3: Individuals within each group agree on an equilibrium selection rule.

Assumption B4: Within each group g, the vector (xi, zi) is a random sample drawn from

a distribution that has mean (xg, zg) = E ((xi, zi) | i ∈ g) and varianceΣxzg =

(
σ2
xg σxzg

σ′xzg Σzg

)
where σ2

xg = V ar(xi | i ∈ g), σxzg = Cov(xi, zi | i ∈ g) and Σzg = V ar(zi | i ∈ g). Denote
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εix = xi − xg and εiz = zi − zg. Assume E
(

(εix, εiz)|zg, xzg, zz′g, xg, x2
g,vg, rg

)
= 0 and is

independent across individual i’s.

To satisfy Assumption B4, we can think of group level variables like xg, zg and vg as

first being drawn from some distribution, and then separately drawing the individual level

variables (εix, εiz) from some distribution that is unrelated from the group level distribution,

to then determine the individual level observables xi = xg + εix and zi = zg + εiz. It

then follows from Assumption B4 that E(εxg,−ii′ | xi, zi, xi′ , zi′ , rg) = 0 and E(εzg,−ii′ |
xi, zi, xi′ , zi′ , rg) = 0. With similar arguments in the generic model, Assumption B4 suffi ces

to ensure that

E(εqg,−ii′ [(xi − xi′), (zi − zi′)
′]|xi, xi′ , zi, zi′ , rg) = E(εqg,−ii′|rg) · [(xi − xi′), (zi − zi′)

′] = 0.

Then we have the moment condition

E{[qi − qi′ + 2mα′q̂g,−ii′(xi − xi′)− 2mα′q̂g,−ii′γ
′(zi − zi′)− (x2

i − x2
i′)m− γ ′ (ziz′i − zi′z

′
i′)γm

(35)

+2mγ ′(zixi − zi′xi′)− δ(xi − xi′) + (δγ ′ −C)(zi − zi′)]|xi, xi′ , zi, zi′ , rg} = 0

for the Engel curve and

E

[(
qi − qi′ −

b

pt
(xi − xi′) + (

b

pt
C′pt −Cj)(zi − zi′)

+e−b
′ lnpt d

pt
[2p′tAq̂gt,−ii′(xi − xi′)− 2p′tAq̂gt,−ii′p

′
tC(zi − zi′)− (x2

i − x2
i′)]

+e−b
′ lnpt d

pt
[2p′tC(zixi − zi′xi′)−p′tC (ziz

′
i − zi′z

′
i′) C′pt]

)
|xi, xi′ , zi, zi′ , rg

]
= 0.(36)

for the full demand curve.

Let the instrument vector rgii′ be any functional form of rg, (xi, z
′
i)
′, and (xi′ , z

′
i′)
′. Denote

L1jgii′ = (qji − qji′), L2jgii′ = q̂jg,−ii′(xi − xi′), L3jkgii′ = q̂jg,−ii′(zki − zki′), L4gii′ = x2
i − x2

i′ ,

L5kk′gii′ = zkizk′i − zki′zk′i′ , L6kgii′ = zkixi − zki′xi′ , L7gii′ = xi − xi′ , L8kgii′ = zki − zki′ .

For ` ∈ {1j, 2j, 3jk, 4, 5kk′, 6k, 7, 8k | j = 1, ..., J ; k, k′ = 1, ..., K}, define vectors

Q`g =

∑
(i,i′)∈Γg

L`gii′rgii′∑
(i,i′)∈Γg

1
.
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Then for each good j, the identification is based on

0 = E

(
Q1jg + 2mj

J∑
j′=1

αj′Q2j′g − 2mj

J∑
j′=1

K∑
k=1

αj′γkQ3j′kg −mjQ4g −mj

K∑
k=1

K∑
k′=1

γkγk′Q5gkk′

+2mj

K∑
k=1

γkQ6kg−δjQ7g +
K∑
k=1

(δjγk − cjk)Q8kg

)
.

where γk is the kth element of γ = C′p and cjk is the jth element of cj.

Assumption B5: E
(
Q′g
)
E (Qg) is nonsingular, where

Qg = (Q21g, ...,Q2Jg,Q311g, ...,Q3JKg,Q4g,Q511g, ...,Q5KKg,Q61g, ...,Q6Kg,Q7g,Q81g, ...,Q8Kg) .

Under Assumption B5, we can identify

(−2mjα
′
, 2mjα1γ

′, ..., 2mjαJγ
′,mj,mjγ1γ

′,mjγKγ
′,−2mjγ

′, δj, c
′
j − δjγ ′)′

=
[
E
(
Q′g
)
E (Qg)

]−1
E
(
Q′g
)
E (Q1jg)

for each j = 1, ..., J . From this, γ, m, α, δ, andC are identified. Furthermore, the structural

parameters b and d are also identified from bj = δjpj and dj = eb
′ lnpmjpj.

We have now shown identification of the Engel curve system. To identify the full demand

system, let pt denote the vector of prices in a single price regime t. Using the groups that

are observed facing this set of prices, from above we can identity αt, C, b, and d, where

αt = A′pt.

Assumption B6: Data are observed in at least J price regimes p1, ..., pJ such that the

J × J matrix P consisting of rows p′1, ..., p′J is nonsingular.

Given Assumption B6, A is identified by A′=(α1, ...,αJ)P−1. The above proves the

following theorem:

Theorem 2. Given Assumptions B1-B5, the parameters γ, m, α, δ and C in the Engel

curve system (12) are identified. If Assumption B6 also holds, the parameters A, C, b, and

d in the full demand system (11) are identified.

8.6 Fixed Effects Estimation of the Demand System

As is standard in the estimation of continuous demand systems, we only need to estimate

the model for goods j = 1, ..., J − 1. The parameters for the last good J are then obtained

from the adding up identity that qJi =
(
xi −

∑J−1
j=1 pjqji

)
/pJ .
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For the Engel curve system, we construct the group level GMM estimation based on

(
α̂
′
, m̂1, ..., m̂J−1, δ̂1, ..., δ̂J−1, ĉ

′
1, ...ĉ

′
J−1

)′
= arg min

(
1

G

G∑
g=1

mg

)′
Ω̂

(
1

G

G∑
g=1

mg

)
,

where Ω̂ is some positive definite moment weighting matrix and

mg =


Q11g

...

Q1(J−1)g

+ 2


m1

J∑
j′=1

αj′Q2j′g

...

mJ−1

J∑
j′=1

αj′Q2j′g

−


m1Q4g

...

mJ−1Q4g



−2


m1

J∑
j′=1

K∑
k=1

αj′γkQ3j′kg

...

mJ−1

J∑
j′=1

K∑
k=1

αj′γkQ3j′kg

−


m1

K∑
k=1

K∑
k′=1

γkγk′Q5kk′g

...

mJ−1

K∑
k=1

K∑
k′=1

γkγk′Q5kk′g



+2


m1

K∑
k=1

γkQ6kg

...

mJ−1

K∑
k=1

γkQ6kg

−


δ1Q7g

...

δJ−1Q7g

+


K∑
k=1

(δ1γk − c1k)Q8kg

...
K∑
k=1

(δJ−1γk − c(J−1)k)Q8kg


is a q(J − 1)−dimensional vector.
Or the individual level GMM estimation with group clustered standard error

(
α̂
′
, m̂1, ..., m̂J−1, δ̂1, ..., δ̂J−1, ĉ

′
1, ...ĉ

′
J−1

)′
= arg min

(∑G
g=1

∑
(i,i′)∈Γg

mgii′∑G
g=1

∑
(i,i′)∈Γg

1

)′
Ω̂

(∑G
g=1

∑
(i,i′)∈Γg

mgii′∑G
g=1

∑
(i,i′)∈Γg

1

)
,
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where Ω̂ is some positive definite moment weighting matrix and

mgii′ =


L11gii′rgii′

...

L1(J−1)gii′rgii′

+ 2


m1

J∑
j′=1

αj′L2j′gii′rgii′

...

mJ−1

J∑
j′=1

αj′L2j′gii′rgii′

−


m1L4gii′rgii′
...

mJ−1L4gii′rgii′



−2


m1

J∑
j′=1

K∑
k=1

αj′γkL3j′kgii′rgii′

...

mJ−1

J∑
j′=1

K∑
k=1

αj′γkL3j′kgii′rgii′

−


m1

K∑
k=1

K∑
k′=1

γkγk′L5kk′gii′rgii′

...

mJ−1

K∑
k=1

K∑
k′=1

γkγk′L5kk′gii′rgii′



+2


m1

K∑
k=1

γkL6kgii′rgii′

...

mJ−1

K∑
k=1

γkL6kgii′rgii′

−


δ1L7gii′rgii′
...

δJ−1L7gii′rgii′

+


K∑
k=1

(δ1γk − c1k)L8kgii′rgii′

...
K∑
k=1

(δJ−1γk − c(J−1)k)L8kgii′rgii′

 .

For the full demand system, the GMM estimation uses each different value of gt as a

different group, so the total number of groups is N =
∑G

g=1

∑T
t=1 1 where the sum is over all

values gt can take on. Define

Γgt = {(i, i′) | i and i′ are observed, i ∈ gt, i′ ∈ gt, i 6= i′}

So Γngt is the set of all observed pairs of individuals i and i′ in the group g at period t.Let

the instrument vector rgtii′ be any functional form of rgt, (xi, z
′
i)
′, and (xi′ , z

′
i′)
′. Denote

L1jgtii′ = (qji − qji′), L2jgtii′ = q̂jgt,−ii′(xi − xi′), L3jkgtii′ = q̂jgt,−ii′(zki − zki′), L4gii′ = x2
i − x2

i′ ,

L5kk′gtii′ = zkizk′i − zki′zk′i′ , L6kgtii′ = zkixi − zki′xi′ , L7gtii′ = xi − xi′ , L8kgtii′ = zki − zki′ .

For ` ∈ {1j, 2j, 3jk, 4, 5kk′, 6k, 7, 8k | j = 1, ..., J ; k, k′ = 1, ..., K}, define vectors

Q`gt =

∑
(i,i′)∈Γgt

L`gtii′rgtii′∑
(i,i′)∈Γgt

1
.

We construct the group level GMM estimation

(
Â′1, ..., Â

′
J−1, b̂1, ...,̂bJ−1, d̂1, ...,d̂J−1,ĉ

′
1, ...ĉ

′
J−1

)′
= arg min

(
1

N

G∑
g=1

T∑
t=1

mgt

)′
Ω̂

(
1

N

G∑
g=1

T∑
t=1

mgt

)
,

44



where Ω̂ is some positive definite moment weighting matrix and

mgt =


Q11gt

...

Q1(J−1)gt

+ 2e−b
′ lnpt


d1
p1t

J∑
j1=1

J∑
j2=1

Aj1j2pj1tQ2j2gt

...

dJ−1
p(J−1)t

J∑
j1=1

J∑
j2=1

Aj1j2pj1tQ2j2gt

− e−b
′ lnpt


d1
p1t

Q4gt

...
dJ−1
p(J−1)t

Q4gt



−2e−b
′ lnpt


d1
p1t

J∑
j1=1

J∑
j2=1

J∑
j3=1

K∑
k=1

Aj1j2pj1tcj3kpj3tQ3j2kgt

...

dJ−1
p(J−1)t

J∑
j1=1

J∑
j2=1

J∑
j3=1

K∑
k=1

Aj1j2pj1tcj3kpj3tQ3j2kgt

−


b1
p1t

Q7gt

...
bJ−1
p(J−1)t

Q7gt



−e−b′ lnpt


d1
p1t

J∑
j1=1

J∑
j2=1

K∑
k=1

K∑
k′=1

pj1tpj2tcj1kcj2k′Q5kk′gt

...

dJ−1
p(J−1)t

J∑
j1=1

J∑
j2=1

K∑
k=1

K∑
k′=1

pj1tpj2tcj1kcj2k′Q5kk′gt



+2e−b
′ lnpt


d1
p1t

J∑
j=1

K∑
k=1

cjkpjtQ6kgt

...

dJ−1
p(J−1)t

J∑
j=1

K∑
k=1

cjkpjtQ6kgt

+


J∑
j=1

K∑
k=1

( b1
p1t
cjkpjt − c1k)Q8kgt

...
J∑
j=1

K∑
k=1

( bJ−1
p(J−1)t

cjkpjt − c(J−1)k)Q8kgt

 .

Or the individual level GMM estimation with group clustered standard error(
Â′1, ..., Â

′
J−1, b̂1, ...,̂bJ−1, d̂1, ...,d̂J−1,ĉ

′
1, ...ĉ

′
J−1

)′
= arg min

(∑T
t=1

∑G
g=1

∑
(i,i′)∈Γgt

mgtii′∑T
t=1

∑G
g=1

∑
(i,i′)∈Γgt

1

)′
Ω̂

(∑T
t=1

∑G
g=1

∑
(i,i′)∈Γgt

mgtii′∑T
t=1

∑G
g=1

∑
(i,i′)∈Γgt

1

)
,
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where

mgtii′ =


L11gtii′rgtii′

...

L1(J−1)gtii′rgtii′

+ 2e−b
′ lnpt


d1
p1t

J∑
j1=1

J∑
j2=1

Aj1j2pj1tL2j2gtii′rgtii′

...

dJ−1
p(J−1)t

J∑
j1=1

J∑
j2=1

Aj1j2pj1tL2j2gtii′rgtii′



−2e−b
′ lnpt


d1
p1t

J∑
j1=1

J∑
j2=1

J∑
j3=1

K∑
k=1

Aj1j2pj1tcj3kpj3tL3j2kgtii′rgtii′

...

dJ−1
p(J−1)t

J∑
j1=1

J∑
j2=1

J∑
j3=1

K∑
k=1

Aj1j2pj1tcj3kpj3tL3j2kgtii′rgtii′

−


b1
p1t
L7gtii′rgtii′
...

bJ−1
p(J−1)t

L7gtii′rgtii′



−e−b′ lnpt


d1
p1t

J∑
j1=1

J∑
j2=1

K∑
k=1

K∑
k′=1

pj1tpj2tcj1kcj2k′L5kk′gtii′rgtii′

...

dJ−1
p(J−1)t

J∑
j1=1

J∑
j2=1

K∑
k=1

K∑
k′=1

pj1tpj2tcj1kcj2k′L5kk′gtii′rgtii′

− e−b
′ lnpt


d1
p1t
L4gtii′rgtii′
...

dJ−1
p(J−1)t

L4gtii′rgtii′



+2e−b
′ lnpt


d1
p1t

J∑
j=1

K∑
k=1

cjkpjtL6kgtii′rgtii′

...

dJ−1
p(J−1)t

J∑
j=1

K∑
k=1

cjkpjtL6kgtii′rgtii′

+


J∑
j=1

K∑
k=1

( b1
p1t
cjkpjt − c1k)L8kgtii′rgtii′

...
J∑
j=1

K∑
k=1

( bJ−1
p(J−1)t

cjkpjt − c(J−1)k)L8kgtii′rgtii′

 .

8.7 Construction of Instruments For Fixed Effects Demand Sys-

tem Estimation

For estimation, we need to establish that the set of instruments rgt provided in the text are

valid. For any matrix of random variables w, we have ŵgt· defined by

ŵgt· =

∑
s 6=t
∑

i∈gs wi∑
s6=t
∑

i∈gs 1

From Assumption B4, we can write ŵgt· = wgt· + εwgt·, where εwgt· is a summation of

measurement errors from other periods. Assume now that εwgt ⊥ (εwgt·,wgt·).

As discussed after assumption B4, we can think of (xi, zi) as being determined by having

(εix, εiz) drawn independently from group level variables. As long as these draws are inde-

pendent across individuals, and different individuals are observed in each time period, then

we will have εwgt ⊥ (εwgt·,wgt·) for w being suitable functions of (xi, zi). Alternatively, if we

interpret the ε’s as being measurement errors in group level variables, then the assumption is
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that these measurement errors are independent over time. In contrast to the ε’s, we assume

that true group level variables like xgt and zgt are correlated over time, e.g., the true mean

group income in one time period is not independent of the true mean group income in other

time periods.

Given εwgt ⊥ (εwgt·,wgt·), we have

0 = E(εqgt,−ii′ [(xi − xi′)− γ ′gt(zi − zi′)] | ŵgt·, xit, xi′t, zit, zi′t),

because

E
(
qgt[(xi − xi′)− γ ′gt(zi − zi′)](x̂∗gt,−ii′ − x∗gt) | x∗gt,x∗x∗′gt,vgt,wgt·, εwgt·,x

∗
it,x

∗
i′t

)
= 0,

and

E
(
[(x∗i − x∗i′)](x̂

∗
gT,−ii′ − x∗gt)

′ | wgt·, εwgt·,x
∗
it,x

∗
i′t

)
= 0;

E
(

[(x∗i − x∗i′)](x̂
∗x∗′gt,−ii′ − x∗x∗′gt)

′ | wgt·, εwgt·,x
∗
it,x

∗
i′t

)
= 0,

where x∗ = (x, z′)′. It follows that
(
x̂∗x∗′gt·, x̂∗gt·x̂∗

′
gt·, x̂

∗
gt·

)
is a valid instrument for q̂gt,−ii′ .

The full set of proposed instruments is therefore rgii′ = rg ⊗ (x∗i − x∗i′ ,x
∗
ix
∗′
i − x∗i′x

∗′
i′ ),

where

rg =
(
x̂∗x∗′gt·, x̂∗gt·x̂∗

′
gt·, x̂

∗
gt·,x

∗
i + x∗i′ , x

2
i + x2

i′ , x
1/2
i + x

1/2
i′

)
,

for the Engel curve system, and rgtii′ = rgt ⊗ (x∗i − x∗i′ ,x
∗
ix
∗′
i − x∗i′x

∗′
i′ ), where

rgt = p′t ⊗
(
x̂∗x∗′gt·, x̂∗gt·x̂∗

′
gt·, x̂

∗
gt·,x

∗
i + x∗i′ , x

2
i + x2

i′ , x
1/2
i + x

1/2
i′

)
.

for the full demand system.

8.8 Derivation of Random Effects Demand System Moments

For the random effects model, the Engel curve system is suffi cient to identify all the structure

parameters, including the peer effects matrix A. The Engel curve model with random effects

is

qi = x2
im + m

(
α′qg

)2
+ (γ ′ziz

′
iγ) m− 2mα′qgxi − 2mγ ′zixi + 2mα′qgγ

′zi

+
(
xi −α′qg − γ ′zi

)
δ + Aqg + Czi + vg + ui,
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Therefore,

εqi′ = qi′ − qg = −2mα′qg(εxi′ − γ ′εzi′) + εx2i′m + γ ′εzzi′γm− 2mγ ′εzxi′

+δεxi′+(C− δγ ′)εzi′ + vg − E(vg) + ûi′ ;

εqg,−ii′ = q̂g,−ii′ − qg = −2mα′qg(εxg,−ii′ − γ ′εzg,−ii′) + εx2g,−ii′m + γ ′εzzg,−ii′γm

−2mγ ′εzxg,−ii′ + δεxg,−ii′+(C− δγ ′)εzg,−ii′ + vg − E(vg) + ûg,−ii′ .

By rewriting qji as

qji = mj

(
α′qg

)2
+mj(xi − z′iγ)2 − [2mj (xi − γ ′zi) + δj]α

′qg + δj(xi − γ ′zi)
+c′jzi + A′jqg + vjg + uji

= mjα
′q̂g,−ii′α

′qi′ +mj(xi − z′iγ)2 − [2mj (xi − γ ′zi) + δj]α
′q̂g,−ii′ + δj (xi − γ ′zi)

+c′jzi + A′jq̂g,−ii′ + vjg + uji + ε̃jgii′ ,

where

ε̃jgii′ = mjα
′(qgq

′
g − q̂g,−ii′q

′
i′)α− [2mj (xi − γ ′zi) + δj]α

′(qg − q̂g,−ii′) + A′j(qg − q̂g,−ii′)

= −mjα
′[(εqg,−ii′ + εqi′)q

′
g + εqg,−ii′ε

′
qi′ ]α+ [2mj (xi − γ ′zi) + δj]α

′εqg,−ii′ −A′jεqg,−ii′ .

and letting Ujii′ = vjg + uji + ε̃jgii′ , we have the conditional expectation

E(Ujii′ |zi, xi, rg) = E(vjg|zi, xi, rg)−mjα
′E(εqg,−ii′ε

′
qi′|zi, xi, rg)α = µj −mjα

′Σvα,

where µj = E(vjg|zi, xi, rg) and Σv = V ar(vg|zi, xi, rg). From this, we can construct the

conditional moment condition

E
[
qji −mjα

′q̂g,−ii′α
′qi′ −mj(xi − z′iγ)2 + [2mj (xi − γ ′zi) + δj]α

′q̂g,−ii′

−δj (xi − γ ′zi)− c′jzi −A′jq̂g,−ii′|xi, zi, rg
]
− vj0 = 0 ,

where vj0 = µj −mjα
′Σvα is a constant.

Let the instrument vector rgi be any functional form of rg and (xi, z
′
i)
′. Then for any

i, i′ ∈ g with i 6= i′, the following unconditional moment condition holds

E
[(
qji −mjα

′q̂g,−ii′α
′qi′ −mj(xi − z′iγ)2 + [2mj (xi − γ ′zi) + δj]α

′q̂g,−ii′

−δj (xi − γ ′zi)− c′jzi −A′jq̂g,−ii′ − vj0
)
rgi
]

= 0 .

We can sum over all i′ 6= i in the group g. Using the property of 1
ng−1

∑
i′∈g,i′ 6=i q̂jg,−ii′ = q̂jg,−i,
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then for any i ∈ g,

E{rgi[qji−mjα
′ 1

ng − 1

∑
i′∈g,i′ 6=i

q̂g,−ii′q
′
i′α−mjx

2
i −mjγ

′ziz
′
iγ + 2mjγ

′zixi + 2mjα
′q̂g,−ixi

−2mjα
′q̂g,−iz

′
iγ − δjxi + q̂g,−i(δjα−Aj) + zi(δjγ − cj)− vj0]} = 0

Denote

L1jgi = qji, L2jj′g =
1

ng − 1

∑
i′∈g,i′ 6=i

q̂jg,−ii′qj′i′ , L3gi = x2
i ,

L4kk′gi = zkizk′i, L5kgi = zkixi, L6jgi = q̂jg,−ixi, L7jkgi = q̂jg,−izki, ,

L8gi = xi, L9jgi = q̂jg,−i, L10kgi = zki, L11gi = 1.

For ` ∈ {1j, 2jj′, 3, 4kk′, 5k, 6j, 7jk, 8, 9j, 10k, 11 | j, j′ = 1, ..., J ; k, k′ = 1, ..., K}, define
group level vectors

H`g =
1

ng − 1

∑
i∈g

L`girgi.

Then for each good j, the identification is based on

E

(
H1jg −mj

J∑
j=1

J∑
j′=1

αj′αjH2jj′g −mjH3g −mj

K∑
k=1

K∑
k′=1

γkγk′H4kk′g + 2mj

K∑
k=1

γkH5kg

+2mj

J∑
j′=1

αj′H6j′g − 2mj

J∑
j′=1

K∑
k=1

aj′γkH7j′kg − δjH8g +
J∑

j′=1

(δjαj′ − Ajj′)H9j′g

+
K∑
k=1

(δjγk − cjk)H10kg − vj0H11g

)
= 0.

Assumption C4: E
(
H′g
)
E (Hg) is nonsingular, where

Hg = (H211g, ...,H2JJg,H3g,H411g, ...,H4KKg,H51g, ...,H5Kg,H61g, ...,

H6Jg,H711g, ...,H7JKg,H8g,H91g, ...,H9Jg,H101g, ...,H10Kg,H11g).

Under Assumptions C1-C4, we can identify

(mjα1α
′, ...,mjαJα

′,mj,mjγ1γ
′, ...,mjγKγ

′,−2mjγ
′,−2mjα

′, 2mjγ1α
′, ..., 2mjγKα

′,

δj,−δjα′ + A′j, c
′
j − δjγ ′, vj0)′ =

[
E
(
H′g
)
E (Hg)

]−1
E
(
H′g
)
E (H1jg) .

for each j = 1, ..., J . From this, γ, m, α, δ, A, C and v0 are all identified. Furthermore,

the structural parameters b and d are also identified from bj = δjpj and dj = eb
′ lnpmjpj.
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Hence, all the structure parameters are identified in the Engel curve system with random

effects. This is different from the fixed effects model because the key term for identifying

A is Aqg, which is differenced out in fixed effects model. For estimation, we construct the

group level GMM estimation based on

(
Â′1, ..., Â

′
J−1, b̂1, ...,̂bJ−1, d̂1, ...,d̂J−1,ĉ

′
1, ...ĉ

′
J−1, v̂1,0, ...v̂J−1,0

)′
= arg min

(
1

G

G∑
g=1

mg

)′
Ω̂

(
1

G

G∑
g=1

mg

)
,

where Ω̂ is some positive definite moment weighting matrix and

mg =


H1,1g

...

H1(J−1)g

−


m1

J∑
j=1

J∑
j′=1

αj′αjH2jj′g

...

mJ−1

J∑
j=1

J∑
j′=1

αj′αjH2jj′g

−


m1H3g

...

mJ−1H3g



−


m1

K∑
k=1

K∑
k′=1

γkγk′H4kk′g

...

mJ−1

K∑
k=1

K∑
k′=1

γkγk′H4kk′g

+ 2


m1

K∑
k=1

γkH5kg

...

mJ−1

K∑
k=1

γkH5kg

+ 2


m1

J∑
j′=1

αj′H6j′g

...

mJ−1

J∑
j′=1

αj′H6j′g



−2


m1

J∑
j′=1

K∑
k=1

αj′γkH7j′kg

...

mJ−1

J∑
j′=1

K∑
k=1

αj′γkH7j′kg

−


δ1H8g

...

δJ−1H8g

+


J∑

j′=1

(δ1αj′ − A1j′)H9j′g

...
J∑

j′=1

(δJ−1αj′ − A(J−1)j′)H9j′g



+


K∑
k=1

(δ1γk − c1k)H10kg

...
K∑
k=1

(δ(J−1)γk − c(J−1)k)H10kg

−


v1,0H11g

...

v(J−1),0H11g



is a q(J − 1)−dimensional vector.
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