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Abstract. We develop asymptotic theory for strategic network-formation
models under the assumption that the econometrician observes a single large
pairwise-stable network. Drawing on new techniques in the random-graphs lit-
erature, we derive sufficient conditions for an unconditional weak law of large
numbers for a useful class of network moments. Under these conditions, the
model generates realistic networks that are sparse and may contain “giant” con-
nected subnetworks, two well-known properties of real-world social networks.
The conditions also conveniently suggest a new method to simulate counter-
factual networks that avoids a well-known curse of dimensionality. Lastly, we
characterize the identified set of structural parameters based on a tractable class
of pair-level network moments and construct consistent estimators.
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1 Introduction
There has been a surge of recent interest in statistical methods for network data.
A growing econometric literature studies “strategic” models of network formation,
which are extensions of dyadic link-formation models (Bramoullé and Fortin, 2010;
Fafchamps and Gubert, 2007) that allow for network externalities, or endogenous
network-dependent regressors. Strategic models easily deliver “network-effects” pa-
rameters, for example preferential attachment, the partial-equilibrium increase in the
likelihood of link formation due to an exogenous increase in the alter’s degree.1 These
models are also useful for simulating counterfactual networks to study the effect of
policy interventions on network structure. For instance, policies that reallocate peers
across classrooms may have little effect if high-ability peers self-segregate within class-
rooms (Carrell et al., 2013). This motivates the use of structural models of peer-group
formation to simulate the effect of reallocation policies on peer diversity within groups.

It is challenging to estimate strategic models of network formation for several
reasons. First, inference requires a large sample of sufficiently uncorrelated obser-
vations, but network externalities generate statistical dependence between network
links. Moreover, in practice, the econometrician typically observes only a small num-
ber of plausibly independent networks. Second, as is well-known in the empirical
games literature, strategic models are typically incompletely specified due to the ex-
istence of multiple equilibria (pairwise-stable networks), which creates new challenges
for inference (de Paula, 2013). Third, the number of possible networks on a set of n
nodes is enormous, on the order of en2 , which often leads to a computational curse of
dimensionality when it comes simulating counterfactual networks or even estimating
models.

A fourth challenge is that little is known about the ability of strategic models
to generate networks with structural properties that match those of real-world social
networks. Two predominant features of such networks are sparsity and percolation
(Barabási, 2015, Chapter 3). Sparsity is the requirement that the expected degree is
of much smaller order than n ´ 1, the number of potential links in a network of n
nodes. For instance, the scientific collaboration network discussed in Barabási (2015)
has over 20,000 nodes, but the average degree is eight. Percolation is the existence of a
giant component, which is formally defined as a component whose size is of asymptotic
order n.2 This corresponds to the observation that social networks tend to feature
a “large” connected subnetwork. While several papers in the econometric literature
provide conditions for the emergence of sparse networks, conditions for percolation
are only known for random-graph models that lack network externalities.3

1The degree of a node is the number of links she forms.
2The components of a network are maximal subnetworks such that every pair in the subnetwork

is path-connected. Two nodes i and j are path-connected in a network if there exists a path from i
to j. A path in a network from node i to j is a distinct sequence of nodes starting with i and ending
with j such that for each k, k1 in this sequence, k and k1 are directly linked in the network.

3Note that that it is the dual requirement of sparsity and percolation that makes the problem
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At first glance, the possibility of statistical inference appears incompatible with
percolation. The challenge is that even local network externalities can generate global
dependence among network links. That is, even if link formation between i and j only
depends on their direct links, because link formation between j and k depends on the
direct links formed by k, it follows that node i’s links depends indirectly on node
k’s links, and by induction, on links farther in the network, as well. A consequence
of these indirect dependencies is that the perturbation of a single link may trigger a
global cascade of link alterations. Hence, if a network percolates, so that most nodes
lie within a single giant component, it may appear that links within this component
should be highly statistically dependent.

A key insight of this paper is that node pairs that draw large random-utility
shocks form links regardless of the state of the network and therefore act as barri-
ers to link-alteration cascades if externalities are local. We say that such links are
exogenously realized. For example, if two subnetworks can only be connected by a
single path of links, and some pair of nodes on this path forms their link exogenously,
perturbations of links in one subnetwork do not spill over into the second subnetwork.
Thus, we argue that conditional on a link forming exogenously on this path, the two
subnetworks are independent. In general, we show that if a large enough share of
links forms exogenously, a network can be partitioned into conditionally independent
subunits even if a giant component exists. This result forms the basis of our proof of
a law of large numbers for network moments.

Our specific contributions are as follows.

1. (LLN) We develop conditions under which network dependence is limited and a
weak law of large numbers holds for a useful class of network moments. This re-
sult is derived as a corollary of a general weak law for functionals of a large class
of random graphs, which may be of independent interest. We can characterize
the unconditional limit of network moments as expectations of their analogs
applied to an appropriate Poisson limit model. The derivation of explicit lim-
iting constants is new to the literature and obtained through the construction
of a partial coupling between the finite model, which generates the observed
network, and the Poisson limit. The general weak law extends a result due to
Penrose and Yukich (2003), and the coupling is based on their construction.

2. (Realistic Networks) A key idea of the paper is that strategic models can often
be viewed as link-formation processes on a random graph, models whose percola-
tive properties are well known. We can then draw on results in random-graph
theory to show that our model rationalizes sparsity and to derive conditions for
percolation.

3. (Counterfactuals) A naive method of simulating pairwise-stable networks is to

challenging, as dense graphs have expected degree of order n, which trivially leads to fully connected
networks.
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iterate through all possible networks and check stability. This method is in-
feasible even for moderately large networks since the number of networks is
exponential in the number of nodes.4 Our assumptions conveniently suggest a
feasible procedure for simulating pairwise-stable networks that avoids this curse
of dimensionality, an important open problem in the literature.

4. (Identification and Estimation) We study the empirical content of the model
by characterizing the identified set based on a tractable class of pair-level net-
work moments corresponding to the frequencies with which dyadic outcomes
occur. The dyadic outcome of a node pair pi, jq is the tuple consisting of their
observed link and network-dependent regressors that enter their joint surplus
from linking. This bears some resemblance to the notion of network type defined
by de Paula et al. (2015), except dyadic outcomes are defined at the level of the
node pair, rather than the individual node. We find that (1) unlike moments for
many-games asymptotics, computing our moments does not require the com-
putation of the set of equilibrium networks and is therefore computationally
tractable for large games, and (2) not all moments may have consistent estima-
tors, depending on the model, which illustrates the importance of developing
asymptotic theory when it comes to characterizing identified quantities in large
games.

Several papers study inference in network-formation models when the econome-
trician observes a single network. Chandrasekhar and Jackson (2015) propose a new
class of random graphs generated as the union of small subnetworks and develop
asymptotic theory. Boucher and Mourifié (2013) draw on the spatial literature and
provide conditions under which certain network statistics constitute a mixing random
field. Leung (2015) studies strategic models with incomplete information. Dzemski
(2014) and Graham (2014) consider dyadic link-formation models that allow for unre-
stricted unobserved heterogeneity. Christakis et al. (2010), Hsieh and Lee (2012), and
Mele (2015) propose Bayesian inference procedures for dynamic models of network
formation. Lastly, de Paula et al. (2015), Miyauchi (2013), and Sheng (2014) develop
moment inequalities for network-formation games based on moments distinct from
those considered in this paper.

In the next section, we state the formal assumptions of the model and then outline
the intuition behind our approach in §3. We formalize these ideas in §4 and present the
some of the main results in §5, namely the law of large numbers, asymptotic properties
of networks generated by our model, and an algorithm for simulating counterfactual
networks. In §6, we characterize the identified set and construct consistent estimators.
We conduct a Monte Carlo study in §7 to study the informativeness of the derived
bounds. Finally, §8 concludes.

4In practice, researchers generate pairwise-stable networks using myopic best-response dynamics,
repeatedly iterating through each pair of nodes. This method is known to be slow for large networks
and the computational complexity of the algorithm is unknown.
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2 Setup
The econometrician observes a set of nodes or agents, the network they form, and
node attributes. A model of network formation is defined by agents’ preferences over
networks, known up to a finite-dimensional parameter θ0.

Nodes. Let N Ď Rd be a random, locally finite set of identically distributed
and almost surely unique elements.5 it Contrary to the usual convention of labeling
nodes by natural numbers, we find it convenient to associate each node with an
element of N , which we term its position. As we discuss in §4.1, the interpretation of
positions depends on the model. In some models (see Example 1 immediately below),
positions are vectors of continuously distributed homophilous attributes, including,
for example, a node’s geographic location or income.6 However, if such attributes are
not available, then under some assumptions, positions can simply be labels with no
intrinsic significance.

Labeling nodes by positions leads to a unified model that nests both finite and limit
models, which are obtained simply by changing the stochastic process that generates
node positions. In the finite model, for n P N, we takeN “ Nn, a set of n i.i.d. random
vectors with common density f bounded above on its support. When n equals the
number of nodes observed by the econometrician, this is the data-generating process
for the observed network. We introduce the limit model in §4.3.

Attributes. For any i, j P N , i is endowed with a vector of node-level attributes
Zi, which may include characteristics such as race or gender, and pi, jq is endowed
with a vector of pair-level attributes ζij, which includes an idiosyncratic random
shock. We assume that for any B Ď Rd, tZi; i P Bu and tζij; i, j P Bu are respectively
independently distributed and independent of N . Note that ζij can depend on, for
example, the distance ||i ´ j||. When we discuss inference, we will assume that a
subvector of Wij “

`

Zi, Zj, ζij
˘

is unobserved by the econometrician. We let W “

pWij; i, j P N q.
Network. A network or graph is a (potentially random) function Γ : N ˆN Ñ

t0, 1u.7 When the output is one, we say the two nodes are linked. For any pair
i, j P N , we call Γij ” Γpi, jq a potential link. Following the usual convention, we
require that Γii “ 0 for all i P N , meaning that there are no self links.

For any i, j P N and network Γ, define S as the functional that maps pi, j,Γ,W,N q
to a real vector, which we abbreviate as SijpG,W q, or more simply Sij. An equilibrium
network G obeys the following pairwise-stability condition: for every i, j P N ,

Gij “ 1 ô V
`

Sij,Wij; θ0

˘

ą 0. (1)

The joint surplus function V is known up to a finite-dimensional parameter θ0. We
call SijpG,W q the vector of endogenous statistics that determine network formation,

5A set S Ď Rd is locally finite if |S XB| ă 8 for any bounded B Ď Rd.
6Homophily is the pervasive phenomenon in real-world social networks that similar individuals

tend to associate.
7Note that Γ is implicitly a function of N , but we will suppress this in the notation.
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due to its dependence on the endogenous state of the network G. This dependence is
often referred to as network externalities or strategic interactions.

The joint surplus function is required to satisfy the following mild condition.

Assumption 1. For any z P supppZiq, there exist z1, z2 P supppZiq and ζ1, ζ2 P

supppζijq such that

max
 

V
`

s, pz, z1, ζ1q; θ0

˘

, V
`

s, pz2, z, ζ2q; θ0

˘(

ď 0

for any s in the range of S.

This is satisfied, for example, if ζij is unidimensional and additively separable with
full support.

Remark 1. This setup accommodates both directed and undirected networks. In
the directed case, V is the marginal utility that node i enjoys from linking with node
j. When the network is undirected, we require V

`

Sij,Wij; θ0

˘

“ V
`

Sji,Wji; θ0

˘

, and
(1) corresponds to the solution concept of pairwise stability with transferable utility.
Then V can be interpreted as a marginal joint surplus function. The restriction to
transferable utility is solely for expositional convenience. The analysis readily extends,
with minor modifications,8 to the model in which Gij “ 1 ô V

`

Sij,Wij; θ0

˘

ą 0 and
V
`

Sij,Wij; θ0

˘

ą 0, which corresponds to nontransferable utility. In this case, as in
the directed-network setting, V is interpreted as a marginal payoff function.

The main restriction on endogenous statistics is that they satisfy a common lo-
cality restriction.

Assumption 2 (Local Externalities). For any i, j P N and G,G1,W,W 1 such that
Gkl “ G1kl and WklGkl “ W 1

klG
1
kl for k P ti, ju and l P N , it is the case that

SijpG,W q “ SijpG
1,W 1q.

This condition restricts the dependence of the joint surplus on the state of the network,
as externalities may only reach the level of indirect links. Most of the models studied
in the econometric literature obey this restriction. (Christakis et al., 2010; Goldsmith-
Pinkham and Imbens, 2013; Mele, 2015; Sheng, 2014). Some can allow for higher-order
externalities that reach beyond a node’s immediate network neighborhood (Boucher
and Mourifié, 2013; de Paula et al., 2015), but most examples of interest satisfy local
externalities.

8The definition of Eijprq, given below, and quantities that depend on it, only require slight
alterations.
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Example 1. Suppose G represents a friendship network and positions correspond to
geographic locations, so N Ď R2. Consider the model

V
`

Sij,Wij; θ0

˘

“ θ1 ` θ2ρpi, jq ` θ3 max
k
GikGjk

` θ4pKij `Kjiq ` αi ` αj ` ζij,

where θ2ρpi, jq penalizes large distances between node positions andKij “ min
!

ř

k‰j Gik, L̄
)

.
Let || ¨ || be a norm on R2. Two leading examples of ρ include ρpi, jq “ ||i´ j|| and

ρpi, jq “

"

0 if ||i´ j|| ď r
´8 if ||i´ j|| ą r

. (2)

In the latter example, links only form among geographic neighbors, those located less
than distance r apart from each other. In the former example, rare long-distance
links may form..9 In this model, Wij “ pαi, αj, ζijq.

The parameter θ3 captures transitivity or clustering, the tendency for individuals
with friends in common to become friends. The importance of transitivity is widely
recognized (Christakis et al., 2010; Goldsmith-Pinkham and Imbens, 2013; Jackson,
2010). The parameter θ4 represents the importance of popularity or high degree;
if θ4 ą 0, then individuals prefer to be friends with those who have many friends,
a phenomenon also known as preferential attachment (Barabási and Albert, 1999).
Note that degree is truncated after some fixed number L̄, which is computationally
convenient for the inference procedure discussed in §6. Finally, the random effects αi
and αj allow for degree heterogeneity (Graham, 2014), the unobserved tendency for
some individuals to form more links than others.

3 Main Idea
The primary goal of this paper is to derive a weak law of large numbers for network
moments. Such moments include average degree, 1

n

ř

i,j Gij, the average number of
links formed by nodes in G. We define network moments and discuss additional
examples in §5. Moments such as average degree can be informative for θ0 and can be
used to construct the identified set of parameters, as discussed in §6. In this section,
we outline the intuition behind our approach for generating conditional independence
between certain subnetworks of G, a result that forms the basis of our asymptotic
theory.

The difficulty of proving a weak law for moments of equilibrium networks is that
network externalities generate statistical dependence between links. Indeed, despite
the fact that externalities are local in the sense of Assumption 2, the perturbation

9The parameter r is discussed further in §4.1. It can be point estimated, as we discuss in Remark
5.
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of a single link can still “propagate” and radically change the structure of the entire
network. In other words, links can be globally dependent despite the local nature
of strategic interactions. This is easily understood in the context of an example.
Interpret positions as geographic locations, so N Ď R2. Let Πij “ 1t||i ´ j|| ď ru.
Viewing links as friendships between individuals, consider the following model of the
joint surplus:

V
`

Sij,Wij; θ0

˘

“ θ11 tGab “ Πij @a “ i, j, b ‰ i, ju ` θ2ρpi, jq ` ζij, (3)

where θ1, θ2 ą 0 and ρpi, jq is given by (2), meaning that i and j form a friendship
only if Πij “ 1, i.e. i and j are geographic neighbors. In this model, Sij is the indicator
multiplying θ1, which incentivizes friendships to form between those who are friends
with their geographic neighbors. Let us first consider an extreme case, where ζ is
realized such that ´θ1 ă ζij ă 0 for all i, j P N .

Notice that in model (3), Gij “ 1 only if Πij “ 1. Hence, G is a subnetwork of
the random geometric graph (RGG) that links i and j if and only if ||i ´ j|| ď r.
Suppose that the RGG is realized as in Figure 1, where a dotted line between two
nodes represents a link.

1 2 3 4 5 6

Figure 1: Random geometric graph.

First consider myopic best-response dynamics starting from the “complete” net-
work in whichG equals the RGG. Since θ1`ζij ą 0, no pair will sever their friendships,
so the network is pairwise-stable. Next, consider the same dynamics but under the
assumption that ζ12 ď ´θ1, which means the pair p1, 2q does not form a friendship.
This instigates p2, 3q to sever their friendship, since their joint surplus is only ζ23 ă 0,
and so on, until the network is empty (Figure 2). Hence, the realization of ζ12 in part
determines the existence of links in the entire network, which is the sense in which a
single link perturbation can “propagate” throughout a network.

1 2 3 4 5 6
I II III IV

Figure 2: Roman numerals denote the order of myopic link deletions triggered by the
deletion of G12.

The key insight of this paper is that there often exist links that form irrespective
of the state of the network, which we term exogenously realized links, that generate
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conditional independence between sets of links. Suppose that ζ34 ą 0. Then regardless
of G, and hence the realization of their endogenous statistics S34, the pair p3, 4q will
always form a friendship. Further, notice that if ζ12 ď ´θ1 in this case, G34 acts as
a barrier that stops the propagation of externalities, so that the end result of the
myopic link deletions triggered by the removal of G12 is Figure 3.

1 2 3 4 5 6

Figure 3: The black link is exogenously formed.

Because G34 forms exogenously, the subnetwork on p4, 5, 6q does not depend on the
realization of ζ12, or for that matter, the subnetwork on p1, 2, 3q. In this sense,
subnetworks on p1, 2, 3q and p4, 5, 6q are independent conditional on any path in the
RGG connecting them having an exogenously realized link.

To formalize this idea, define the event that Gij is exogenously realized as

Eijprq “

"

inf
s
V ps,Wij; θ0q ą 0Y sup

s
V ps,Wij; θ0q ď 0

*

. (4)

Note that if the infimum of V above is positive, then Gij “ 1 regardless of the state
of the network, and we say that the link exogenously forms. If the supremum of V
is negative, then Gij “ 0 regardless of the network, and we say the link exogenously
fails to form. In either case, the link Gij functions as a barrier that limits cascades
of link alterations.

Define Dprq as the artificial network of links that are not exogenously realized,
where Dijprq “ Πij1tE

c
ijprqu for any i, j P N . In the previous example, Dprq is gener-

ated by taking the RGG and deleting links between pairs for which the complement
of Eijprq occurs. (In the next section, we will discuss a more general model of Πij

that includes RGGs.) For instance, in Figure 3, D has two components: t1, 2, 3u and
t4, 5, 6u. We will impose conditions under which

(A) Dprq is subcritical, or sufficiently “fragmented” in the sense that each of its com-
ponents is vanishingly small relative to n, and

(B) components of Dprq independently form equilibrium subnetworks, conditional
on attributes.

Then G is composed of a large number of conditionally independent subnetworks
“stitched together” by exogenously realized links. Crucially note that this is fully
compatible with the existence of a giant component in G, which will result if enough
of the components of D form sufficiently connected equilibrium subnetworks, and
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exogenous links form across nodes in distinct components. Idea (A) formally cor-
responds to requiring that Dprq fails to percolate, formalized in §4.4. Idea (B) is
formalized in §4.2, which allows for a general class of selection mechanisms that in-
cludes the myopic best-response dynamics we used in the example.

4 Conditional Independence
We next outline conditions that formalize the intuition for conditional independence
between subnetworks, detailed in §3.

4.1 Opportunity Graph

We assume the joint surplus encodes an exogenous opportunity graph Π that describes
the pairs of nodes that have opportunities to form links. A special case of Π is the
random geometric graph discussed in §3. We will first formally define such graphs
and then give additional examples below.

Assumption 3 (Opportunity Graph). There exists a network Π, which we call an
opportunity graph such that (a) for any i, j P N ,

Πij “ 1 tµ p||i´ j||,Wij; rq ě 0u

for some function µ, norm || ¨ || on Rd, and r ” rpN q P R`, and (b)

P
`

V pSij,Wij; θ0q ą 0 |Πij “ 0
˘

“ 0. (5)

Equation (5) states that a pair of nodes may only link if they have the opportunity
to do so, as dictated by Π. Hence, under this assumption, the equilibrium network G
implicitly depends on r. The choice of the parameter r will depend on the stochastic
process generating N , as we discuss in §4.3. Opportunity graphs play an important
role in our analysis because the asymptotic properties of G are in part determined
by Π. In particular, G is sparse if Π is sparse, and sparsity of Π will be needed to
establish a law of large numbers. §4.3 and §4.4 will impose additional restrictions on
Π, including sparsity.

Example 2 (Random Geometric Graph). The random geometric graph (RGG) model
is obtained by setting µ p||i´ j||,Wij; rq “ 1´r´1||i´j||, so Πij “ 1t||i´j|| ď ru. See
Penrose (2003) for a comprehensive survey of the RGG literature. The RGG is the
opportunity graph in model (3) and Example 1 when ρ is given by (2). In the context
of social networks, node positions in this model represent continuous homophilous
attributes. For instance, if position corresponds to geographic location, then ||i´ j||
is geographic distance, and the model states that nodes only link with those in a
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fixed geographic radius, which captures geographic homophily. Position may include
other continuous attributes, such as income, but the leading case of interest is when
position corresponds to geographic location, since geographic homophily is widespread
in social networks. In development contexts or student friendship networks, agents are
strongly constrained in terms of geographic mobility. Physician referral networks are
another example, since doctors are unlikely to refer patients to specialists a substantial
distance away. Venture capital coinvestment networks are also geographically local
in nature (Sorenson and Stuart, 2001; Uetake, 2012).

Another case of interest is when node positions are latent. A well-known literature
in statistics studies such “latent-space” models (Hoff et al., 2002), interpreting N as
positions in “social space,” so that only socially close nodes form links. These models
have been applied in political science and sociology (Hoff and Ward, 2004; Treier and
Jackman, 2008).

Below we will require r Ñ 0 at a particular rate as n Ñ 8 to ensure sparsity;
this is a typical asymptotic regime of interest when studying RGGs. This can be
interpreted as nodes become increasingly selective about their partners the larger
the pool of available partners. The selectivity story is our rationalization of network
sparsity, the fact that the typical node does not link with the vast majority of other
nodes in the network. An alternative interpretation is attained by rescaling positions
and r by r´1, so that Πij “ 1t||r´1i ´ r´1j|| ď 1u. This is a version of “increasing
domain” asymptotics in the spatial literature, where homophilic preferences are now
fixed in n, but the set of node positions is r´1N , so nodes become increasingly diverse,
or spread out, as n grows. In contrast, under the selectivity story, the space of node
positions is fixed, as under “infill” asymptotics, but preferences change with n. Both
interpretations achieve the same effect of ensuring network sparsity.

Example 3 (Random Connection Model). The random connection model (RCM)
generalizes the RGG model to allow for rare “long-distance” links. The main reference
for this model is Meester and Roy (1996), who discuss the percolative properties of
RCMs. Let µ p||i´ j||,Wij; rq “ µ˚pr´1||i ´ j||,Wijq. In Example 1, when ρpi, jq “
||i´ j||, we can define

µ˚pr´1
||i´ j||, ηijq “ sup

s
V
`

s,Wij; θ0

˘

“ θ1 ` θ2ρpi, jq ` θ3 ` θ4L̄` αi ` αj ` ζij,

where θ2 “ ´r
´1. In this simple linear model, if ζij has full support, then links may

occur even if ||i ´ j|| is large. Thus, while RGGs assume a “hard threshold,” where
links never occur if ||i´ j|| exceeds a certain threshold, the random connection model
allows for “soft” thresholds, where the linking probability tends to zero as distance
||i´j|| tends to infinity. As with RGGs, r will tend to zero at a certain rate to ensure
sparsity.

Example 4 (Erdos-Renyi Graph). A general way of imposing Assumption 3 is to
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assume that
Gij “ 1 ô Ṽ

`

Sij,Wij; θ0

˘

Πij ą 0, (6)

where Ṽ is the joint surplus, and Π might be interpreted as an exogenous “meeting
process.” While the general model of Π allows for node-level heterogeneity, a simple
example of a meeting process is independent random meetings, an assumption often
made in the theoretical literature (Jackson and Watts, 2002). Then Π is generated
by a classical Erdős-Rényi random graph, which we refer to as the ER model.

In this model, µ p||i´ j||,Wij; rq “ pprq1ti, j P r0, 1su ´ ηij, where ηij
iid
„ U r0, 1s is

a subvector of Wij. Then pairs of nodes meet independently with probability pprq.
Sparsity of Π is achieved when pprq is of order n´1, so the expected number of meetings
for any given node is a constant. Unlike the previous examples, this model of Π does
not require any form of homophily, and node positions are merely labels rather than
homophilous attributes.

Example 5 (Stochastic Block Model). The stochastic block model (SBM) generalizes
ER models by assuming the existence of K ă 8 “groups,” where the probability of
a link opportunity depends only on the groups of the ego and alter. In contrast to
RGGs, this model allows for homophily in discrete attributes. Inference for SBMs is
a rapidly growing area of research in the statistics literature (e.g. Bickel and Chen,
2009; Bickel et al., 2011). See Bollobás et al. (2007) for a comprehensive study of
their percolative properties.

Suppose αi, a scalar subvector of Zi, represents the group membership of node i,
with memberships distributed i.i.d., as are the disturbances ηij, with ηij KK pαi, αjq. As
in ER models, node positions are merely labels and do not represent characteristics.
The stochastic block model is

µ p||i´ j||,Wij; rnq “ ρpαi, αj, rq1ti, j P r0, 1su ´ ηij,

where the codomain of ρ is r0, 1s. Then conditional on αi and αj, Πpi, jq is indepen-
dently distributed with link formation probability ρpαi, αj, rq. As with ER models,
sparsity of Π will require ρpαi, αjq to be of order n´1 with probability one.

4.2 Equilibrium Selection

Model (1) does not fully define a likelihood for G because conditional onW , there may
be multiple equilibrium networks that satisfy (1) (see e.g. Sheng, 2014, for examples).
In order to complete the model, we introduce a selection mechanism, which maps
the set of possible equilibria to a single network. In addition, we will impose a key
restriction on the selection mechanism that generates conditional independence across
certain subnetworks; see idea (B).

Define Gθ,rpW,N q to be the correspondence that maps pW,N , θ, rq to the set of
equilibrium networks on N . We introduce a random vector ν, which we interpret

12
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as a public signal that, along with W and N , nodes utilize to “coordinate” on the
formation of an equilibrium network. As a simple example, suppose for some given
W , N , and θ there are two possible equilibrium networks, and nodes coordinate on
a particular network by flipping a coin. The outcome of the flip is represented by ν.
Thus, unlikeW and N , ν is a signal that does not directly enter V but still affects link
formation through equilibrium selection. With this notation, we can define a selection
mechanism as a function λ : pW,N , ν; θ, rq ÞÑ G P Gθ,rpW,N q. Our first assumption
just defines the basic requirement that some selection mechanism rationalizes the
data.

Assumption 4 (Selection Mechanism). For any N and W , the following hold with
probability one.

(a) (Coherence) |Gθ0,rpW,N q| ě 1.

(b) (Rationalizability) There exists a random vector ν KK pW,N q and selection mech-
anism λ such that for any equilibrium network G,

G “ λθ0,rpW,N , νq.

Part (a) states that an equilibrium network exists. Without this assumption, the
econometrician must take a stance on the realization of G when there are no equi-
librium networks. When N is finite, there are sufficient conditions in the literature
that guarantee equilibrium existence (Sheng, 2014). In the limit model, N is infinite,
but we show that under certain conditions, the global network consists of “stitched
together” equilibrium subnetworks that are almost surely finite. Hence, the same
existence results for finite N may be employed. This is discussed further below.

Remark 2. Selection mechanisms are more commonly represented as conditional
distributions σ on Gθ,rpW,N q. Our definition is equivalent. To see this, fix W and
N , and for simplicity suppose that Gθ,rpW,N q “ tG1, G2u. Let σθ,rpG |W,N q place
probability p ” pθpW,N q on G1. Now let ν „ U r0, 1s, independent of W and N and
define λθ,rpW,N , νq to equal G1 if ν P r0, ps and G2 otherwise. Then clearly σθ,r is
the distribution of λθ,r.

We next impose a restriction on the selection mechanism that formalizes idea (B).
In example (3), the endogenous statistics do not depend on attributesW . Assumption
2 allows for such dependence, which leads to an additional source of correlation. In
Figure 3, for example, the surpluses enjoyed by nodes p1, 2, 3q may depend on Z4,
as may the surpluses enjoyed by nodes p4, 5, 6q. This motivates the following notion
of “augmented” components of Dprq, which we will assume form subnetworks in G
independently.

13
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Recall thatDprq is defined such thatDijprq “ Πij1tE
c
ijprqu, where Eijprq is defined

in (4). For each i P N , let Ciprq ” Cpi,N , D, rq be the set of nodes in i’s component
under Dprq and

C`i prq ” C`pi,N , D, rq “ Ciprq Y tj P N : Dk P Ciprq such thatΠij “ 1u.

We refer to C`i prq as i’s augmented component. Define C`pD,N , rq “ tC`i prq :
i P N u, the set of augmented components. To understand augmented components,
consider again the random geometric graph in Figure 1 and model (3). Suppose
that ζ23, ζ34, ζ45 ą 0, so that the associated node pairs exogenously form links, while
ζij P p´θ, 0q for all other pairs. Figure 4 depicts the resulting equilibrium network.
The components of D in the model are t1, 2u, t3u, t4u, t5, 6u, and there are four aug-
mented components: t1, 2, 3u, t2, 3, 4u, t3, 4, 5u, t4, 5, 6u. Notice that while the set of
components tCipD, rq : i P N u constitutes a partition of N , the set of augmented
components C`pD,N , rq may not.

1 2 3 4 5 6

Figure 4: Black links represent exogenously formed links.

A few last pieces of notation are required. For any A Ď N , let WA “ tWij :
i, j P Au. For C P C`pD,N , rq, let λθ,rpW,N , νq

ˇ

ˇ

C
be the restriction of the range of

λθ,r to equilibrium subnetworks on C, i.e. Gθ,rpWC , Cq. This is well defined, since by
Assumption 2, the joint surplus of a pair of nodes in the same augmented component
does not depend on attributes or links formed by nodes outside of this augmented
component. For instance, in Figure 4, we can consider the set of equilibrum subnet-
works formed on t4, 5, 6u in isolation because attributes and links in the rest of the
network do not affect this set.

Assumption 5 (No Coordination). Let C`pD,N , rq “ tC1, C2, . . . u.10 With proba-
bility one, there exist ν1, ν2, . . . independently distributed and independent of W and
N such that for any k P N,

λθ0,rpW,N , νq
ˇ

ˇ

Ck
“ λθ0,rpWCk , Ck, νkq.

Assumption 5 is satisfied when λ is degenerate, meaning it does not depend on ν. It
is also satisfied if the network is formed via myopic best-response dynamics, which in
finite models have been shown to converge to a pairwise-stable equilibrium in finite
time (Jackson and Watts, 2002).

10The set of components is countable because N is countable.
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This assumption states that augmented components independently “coordinate”
on their respective equilibrium subnetworks. Again, the idea is that best-response
dynamics do not percolate beyond a node’s augmented component due to the existence
of exogenously realized links. To see what this assumption rules out, consider Figure
3, and suppose that for some given W and θ, there exist two equilibrium subnetworks
on p1, 2, 3q and p4, 5, 6q, respectively. An example of coordination is if the two triplets
flip a coin, and both collectively decide to play a particular equilibrium if the coin flip
is heads and to play the other equilibrium if the flip is tails. Assumption 5 requires
instead that the two triplets independently flip coins. This is sensible because the
joint surplus (3) enjoyed by nodes p1, 2, 3q, for any equilibrium subnetwork, does
not depend on the network played by nodes p4, 5, 6q by Assumption 2. Hence, the
triplets have no incentive to coordinate. Notice that a similar assumption is required
even in the case when the econometrician observes a large cross section of networks; in
order for two network observations to be independent, there must not be coordination
between the two sets of nodes in question.

4.3 Sparsity

We next impose a rate restriction on rpNnq that ensures asymptotic sparsity of the
opportunity graph. By Assumption 3, this implies sparsity of G. As we will see, a
sparse opportunity graph is important for ensuring “weak” conditionally dependence
between node-level functions of links that define network moments (e.g. node degrees).

Assumption 6 (Sparsity).

(a) rpNnq ” rn satisfies nrdn Ñ κ ă 8 as nÑ 8.

(b) For pijprq “ ErΠijprq | i, js,

n

ż ż

pijprnqfpiqfpjqdi dj Ñ κ

ż ż

pijp1qfpiq
2di dj ă 8. (7)

The left-hand side of (7) is the expected degree of the opportunity graph in the finite
model. To interpret the right-hand side, for each i in the support of f , we define the
following limit model:

• The set of nodes is generated by a Poisson process on Rd with intensity κfpiq,
i.e. N “ Pκfpiq.

• The associated opportunity graph parameter rpPκfpiqq equals unity.

Then for any fixed i,
ş

κpijp1qfpiqdj is evidently the expected degree of Π when
N “ Pκfpiq. The right-hand side of (7) takes the expectation of this quantity with
respect to i.
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In general, we can establish (7) using Lemma 3 in the appendix, provided µ and
W satisfy certain stationarity conditions detailed in §A.1. We next verify Assumption
6 for several examples of opportunity graphs, each of which satisfies these invariance
conditions.

Example 6 (Erdos-Renyi Graph). In this model, we let f be the uniform density on
r0, 1s, and, following the setup in Example 4, assume that i and j meet independently
with probability pijprq “ rdn1ti, j P r0, 1su, where nrdn “ κ for all n. Then the expected
degree of a node is κ. To check that (7) holds, simply note that the left-hand side is
the expected degree of a network with n nodes, which is κ, and the right-hand side is
κ
ş ş

1ti, j P r0, 1sufpiq2di dj, which also equals κ, since f is the uniform density. Note
that the limit model here accords with the usual limit model for Erdős-Rényi graphs
in which the number of connections formed by a given node follows a Poisson(κ)
distribution.

Example 7 (Stochastic Block Model). For ρ defined in Example 5, we take

ρpαi, αj, rnq “ ρ̃pαi, αjq1ti, j P r0, 1sur
d
n

for a function ρ̃ with codomain R`. We set rn “ n´d and assume positions are drawn
uniformly from r0, 1s and αi is distributed i.i.d. with K ă 8 support points. Since
Πij „ Ber

`

ρpαi, αjqn
´1
˘

, the left-hand side of (7) is Erρ̃pαi, αjqs, which is equivalent
to the right-hand side since f is the uniform density.

Example 8 (Random Geometric Graph). The requirement nrdn Ñ κ implies rn Ñ 0.
We claim that nrdn Ñ κ suffices for (7). To see this, define Bpi, rq “ tj P N : ||i´j|| ď
ru, and Vol

`

Bp0, 1q
˘

as the volume of the unit ball in Rd centered at zero with respect
to || ¨ ||. Then the left-hand side of (7) is equal to the expected degree of Π under Nn,
namely

E

«

1

n

ÿ

i,j

1 t||i´ j|| ď rnu

ff

“ nE
“

Pp||i´ j|| ď rn | iq
‰

“

ż

n

ż

jPBpi,rnq

fpjq djfpiq di

“

ż

nrdn r
´d
n

ż

jPBpi,rnq

rfpjq ´ fpiqsdj
loooooooooooooooomoooooooooooooooon

op1q

fpiq di`

ż

n

ż

Bpi,rnq

fpiq djfpiqdi

“

ż

nrdnVolpBp0, 1qqfpiq
2 di` op1q, (8)

where op1q term appears due to the Lebesgue density theorem. Now, the right-hand
side of (7) is simply

κ

ż ż

1t||i´ j|| ď 1ufpiq2di dj “ κ

ż

Vol
`

Bp0, 1q
˘

fpiq2di,
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which is the limit of (8) when nrdn Ñ κ, as desired.

Example 9 (Random Connection Model). In this model, node positions are dis-
tributed according to any arbitrary density bounded above. Here

pijprnq “ P
`

µ˚pr´1
n ||i´ j||,Wijq ě 0 | r´1

n ||i´ j||
˘

” F pr´1
n ||i´ j||q.

Proving (7) is more technical for a model as general as this, but convergence will
follow from Lemma 3 in the appendix under the asymptotic sparsity condition

κ

ż ż

F
`

||i´ j||
˘

fpiq2 di dj ă 8. (9)

If fp¨q is uniform, then provided κ is finite, this is equivalent to
ş

xě0
F pxqdx ă 8. If

µ˚ is linear in its arguments, it is clearly necessary for the tails ofWij to be sufficiently
thin. For instance, if Wij is standard normal, then this integral is in fact finite (see
Example 11 below for further discussion).

4.4 Subcriticality

Our last assumption formalizes idea (A). It implies that the expected degree of D
under the limit models must be less than one, which is sufficient for subcriticality of
D.

Define f “ ess supx fpxq and

γrpi, Ziq “ κfpiq

ż

P
`

Ec
ijprq X tΠijprq “ 1u | i, j, Zi

˘

dj.

Assumption 7. κf ||γ1pi, Ziq||2 ă 1, where || ¨ ||2 is the L2 norm, taken with respect
to the random vector pi, Ziq for i „ fp¨q.

Proposition 1 (Subcriticality). Under Assumptions 6 and 7, for any fixed i, j in the
support of fp¨q, with probability one, |Cpj,Pκfpiq, D, 1q| ă 8.

The result states that the largest component of D in any limit model is finite with
probability one. This formalizes idea (A) that the artificial network D should be
composed of many components, vanishingly small relative to the network size, for
enough links in G to be conditionally independent.

Assumption 7 implies that the expected degree ofD averaged over the limit models
is less than one. For this to hold, either the expected degree of Π must be sufficiently
small, or Eijp1q has to hold with high enough probability, meaning that enough links
must be exogenously realized. This is illustrated in the next example.
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Example 10 (Random Geometric Graph). Suppose d“ 2, Πijp1q “ 1t||i ´ j|| ď 1u
(random geometric graph), and f is the uniform density on r0, 1s2. For simplicity,
assume that tζij; i, j P Bu is identically distributed for any B Ď Rd. Consider the
model in Example 1 with ρ defined in (2) and θ3, θ4 ě 0. Define

γ “ ||P
`

´θ3 ´ θ4L̄ ă θ1 ` αi ` αj ` ζij ď 0
ˇ

ˇαi
˘

||2,

Then
||γ1pi, Ziq||2 ď γ ess sup

i
κfpiq

ż

1t||i´ j|| ď 1u dj “ γκπ.

Hence, Assumption 7 is satisfied if γ ă pκπq´1. There are two ways this condition
can be satisfied:

• Case κπ ă 1: The condition is satisfied for any γ, which means no further
restrictions on the model are required. However, κπ is the limiting expected
degree of Πp1q, and if this falls below one, then it is well known that Πp1q does
not percolate (see §5.2), and therefore G does not percolate.

• Case κπ ě 1: The condition is satisfied if γ is sufficiently small. This occurs
if θ1 ` αi ` αj ` ζij is sufficiently large with high probability in the sense of
either exceeding zero or falling below ´θ3 ´ θ4L̄. In other words, Wij must
be sufficiently positive or negative frequently enough to ensure that enough
links are realized exogenously. As we discuss later, this can be compatible with
percolation of G.

Example 11 (Random Connections Model). Consider Example 1 with θ3, θ4 ě 0,
ρpi, jq “ ||i´ j||, and positions drawn uniformly from some bounded region. Suppose
for any i, j P Rd, ζij „ Np0, 1q and αi „ Np0, σ2q with pαi, αjq KK ζij. Following
Example 3, let

Πijprq “ 1
 

θ1 ` θ2||i´ j|| ` θ3 ` θ4L̄` αi ` αj ` ζij ą 0
(

,

Dijprq “ 1 tθ1 ` θ2||i´ j|| ` αi ` αj ` ζij ď 0uΠijprq.

(Recall θ2 “ ´r
´1 in this model.)

Sparsity. We first check (9). Let θ̃ “ θp1` 2σ2q´1{2. In this model,

F
`

||i´ j||
˘

“ Φ
´

θ̃1 ` θ̃2||i´ j|| ` θ̃3 ` θ̃4L̄
¯

,

where θ2 “ ´1 and Φp¨q is the CDF of the standard normal distribution. As noted in
Example 9, since fp¨q is the uniform density, (9) is equivalent to κ

ş

xě0
F pxq dx ă 8.

Some calculus shows that
ż 8

0

Φpa` bxq dx “ lim
xÑ8

1

b
ppa` bxqΦpa` bxq ` φpa` bxqq ´

1

b
paΦpaq ` φpaqq ,
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where φp¨q is the density of the standard normal distribution. If b ă 0, then the limit
on the right-hand side equals zero. Therefore, setting a “ θ̃1 ` θ̃3 ` θ̃4L̄, and b “ θ̃2,
ż

xě0

F pxq dx “

ż 8

0

Φ
´

θ̃1 ` θ̃2x` θ̃3 ` θ̃4L̄
¯

dx

“ ´
1

θ̃2

´´

θ̃1 ` θ̃3 ` θ̃4L̄
¯

Φ
´

θ̃1 ` θ̃3 ` θ̃4L̄
¯

` φ
´

θ̃1 ` θ̃3 ` θ̃4L̄
¯¯

,

which is finite as desired.
Subcriticality. In this model, Zi “ αi and

γ1pi, Ziq “ κfpiq

ż

P
`

θ1 ` ||i´ j|| ` αi ` αj ` ζij ď 0X Πijp1q “ 1
ˇ

ˇ i, j, αi
˘

dx

“κ

ż

xě0

P
`

θ1 ` x` αi ă αj ` ζij ď θ1 ` x` θ3 ` θ4L̄` αi
ˇ

ˇx, αi
˘

dx

“κ

„
ż

xě0

Φ
´

θ̃1 ` θ̃2x` θ̃3 ` θ̃4L̄` αi

¯

dx´

ż

xě0

Φ
´

θ̃1 ` θ̃2x` αi

¯

dx



“
κ

θ̃2

”´

θ̃1 ` αi

¯

Φ
´

θ̃1 ` αi

¯

` φ
´

θ̃1 ` αi

¯

´

´

θ̃1 ` θ̃3 ` θ̃4L̄` αi

¯

Φ
´

θ̃1 ` θ̃3 ` θ̃4L̄` αi

¯

´ φ
´

θ̃1 ` θ̃3 ` θ̃4L̄` αi

¯ı

,

where θ̃ “ θp1 ` σ2q´1{2 and θ2 “ ´1. Clearly, the last line would be zero, and
therefore Assumption 7 would be satisfied, if θ3 “ θ4 “ 0. Hence, for ||γ1pi, Ziq|| ă 1
to hold, the externality parameters must not be too large relative to 1 ` σ2. If κ is
small, then clearly these parameters may be larger. On the other hand, if κ is too
small, then Π will not percolate.

In §5.2, we derive necessary and sufficient conditions for G to percolate for the
models of Π presented in §4.1. We relate these conditions to Assumption 7.

Remark 3 (Equilibrium Existence). Consider the limit model in which N “ Pτ
for some τ P p0,8q. Under Assumption 5, the limit model generates networks by
independently selecting equilibrium subnetworks on augmented components of D,
which by Proposition 1 are almost-surely finite. These components are then connected
by exogenously realized links. It therefore follows that conditions for equilibrium
existence in the finite model guarantee existence in the limit model. Finiteness of
equilibrium subnetworks on augmented components on D in the limit model plays an
important role in the proof of the main theorem.

We sketch a proof of Proposition 7 for the simple case in which Wij “ ζij and
tζij; i, j P Bu is identically distributed for any B Ď N . Under these conditions, for
any k in the support of f , the events tEc

ijp1q; i, j P Pκfpkqu are independent, and
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the result can be obtained using a simple branching process argument. Begin at an
arbitrary node, and branch out to its network neighbors in D (“offspring”), recording
the number of such offspring O1. Then branch out to all of their neighbors (potentially
including the initial node of the process), recording the number of such neighbors O2.
The key observation is that if

ř8

m“1Om is finite, then the branching process dies out,
and the initial node’s component is therefore finite, proving part (a) of the theorem.
Now, notice that by construction of Om, ErOms “ ErO1s

m. Further, Assumption
7 implies that the expected number of offspring ErOm

1 s is less than one. Therefore,
E
“
ř8

m“1Om

‰

“ 1
1´ErO1s

ă 8. It follows that the branching process dies out with
probability one.

5 Main Results
Our main result is a weak law for network moments that explicitly characterizes their
limits. We first define these moments.

Definition 1. Let ψ be a functional that maps pi,N , G,W, rq to a real number.11

If i R N , we abbreviate ψpi,N , G,W, rq ” ψpi,N Y tiu, G,W, rq. We require ψ to
satisfy the following locality restriction:

For any i P N and G,G1,W,W 1,Π,Π1 such that Πij “ Π1ij for all j P N and
Gjk “ G1jk and WjkGjk “ W 1

jkG
1
jk for all j, k P N such that Πij “ 1, it is the case

that ψpi,N , G,W, rq “ ψpi,N , G1,W 1, rq.

We call any such ψ a node statistic. A network moment is an average of node statistics
1
|N |

ř

iPN ψpi,N , G,W, rq on finite subsets N of Rd.

The locality restriction simply states that node i’s node statistic only depends on the
network, attributes, and opportunity graph through the direct links in G of nodes j
who are linked with i in the opportunity graph. A special case of this is if ψipN , rq
only depends on i’s direct network neighbors in G and the neighbors of her neighbors.
This is similar to the local externalities restriction on Sij.

Example 12. The degree of node i with respect to G is
ř

j Gij, whereas its degree
with respect to Π is

ř

j Πij. The latter is clearly a node statistic. By assumption,
Gij “ 1 only if Πij “ 1, so

ř

j Gij is therefore also a node statistic. Average degree
1
n

ř

i‰j Gij is equivalent to link frequency scaled up by n. This scaling is necessary to
obtain a non-degenerate limit, since link frequency tends to zero as nÑ 8 by sparsity.
By analogy to standard discrete-choice models, it is intuitive that its expectation, the
probability of link formation, should be informative for θ0.

11Note that G (and possibly W ) depends on r. The last argument of ψ supplies the value of r.
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Example 13. The individual clustering for a node i is

ClipGq “

ř

j‰i;k‰j;k‰iGijGikGjk
ř

j‰i;k‰j;k‰iGijGik

.

This is the proportion of three-node subnetworks in which i is linked to two nodes j
and k that are transitive, meaning that j and k are also linked. We define ClipGq ” 0
if i has at most one link. By the same reasoning for average degree, ClipGq is a
valid node statistic. The average clustering coefficient of G is 1

n

řn
i“1ClipGq, a well-

known measure of transitivity in network science. Thus, its population analog is likely
informative for θ3 in Example 1.

Example 14. de Paula et al. (2015) define a node i’s network type as the local subnet-
work on i (including both links and attributes) up to path distance D away.12 In order
for a network type to be a valid node statistic, the locality restriction on ψ requires
D “ 2. de Paula et al. show that an identified set for a class of network-formation
games can be constructed using network type shares, defined as the proportion of
nodes of a given network type.13

Further examples of network moments will be given in §6 when we define our construc-
tion of the identified set. In particular, we will consider moments that correspond
to the frequencies with which the “dyadic outcome” pGij, Sijq takes on a particular
realization.

5.1 Weak Law

For a P R and b P Rd, let a pN ´ bq “ ta pi´ bq : i P N u. We can now state the main
theorem.

Theorem 1 (Weak Law). Suppose that ψ is uniformly square-integrable: for some
ε ą 0,

sup
nPN

E
“

||ψpi,Nn, G,W, rnq||2`ε
‰

ă 8. (10)

Further, assume that for any a P R`, b P Rd, with probability one

ψpi,N , G,W, rq “ ψpai` b, aN ` b,G,W, arq. (11)

Then under Assumptions 1-7, 1
n

ř

iPNn ψ
`

i, i` r´1
n pNn ´ i

˘

, G,W, 1q
L2
ÝÑ µ, where

µ “

ż

E
“

ψ
`

i,Pκfpiq, G,W, 1
˘
ˇ

ˇ i
‰

fpiq di.

12The path distance between nodes i and j is the number of links in the shortest path connecting
them.

13Note that the type shares of their continuum model are different than the limits derived under
our theory, since in our limit model, the set of nodes is countable.
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The theorem states that, after rescaling the set of node positions relative to i (the
first input of each node statistic) by a dilation factor of r´1

n , network moments on
Nn converge to their analogs applied to a Poisson process. The relative dilation has
the effect of reducing the density of points in any neighborhood of i by a factor of
approximately n

κ
, so that the distribution of points is asymptotically Pκfpiq. This is

useful because Poisson processes possess a well-known spatial independence property,
as we discuss in the sketch of the proof below.

Condition (10) is a regularity condition obviously satisfied by bounded node statis-
tics. The moments discussed in §6 obey this assumption. Condition (11) states that
node statistics are stationary in the sense of being invariant to dilation and transla-
tion of node positions. In the appendix §A.1, we show that it is essentially sufficient
to assume that the primitives S and λ depend on node positions N only through
effective dissimilarities tr´1||i ´ j||; i, j P N u. This condition is entirely innocuous
when positions are merely labels, as with Erdős-Rényi opportunity graphs. If posi-
tions correspond to homophilous attributes, as with random geometric graphs or the
random connections model, the condition states that the model primitives do not de-
pend on the absolute values of node positions but rather on their relative values. This
is natural when position corresponds to geographic location, but if position includes
characteristics such as income, this condition is clearly stronger.

Example 15. To understand µ, consider the simple example in which the opportunity
graph is an RGG, and ψipNn, rnq “

ř

j 1 t||i´ j|| ď rnu, which is node i’s degree with
respect to the opportunity graph. As shown in Example 8, 1

n

ř

iPNn ψiprnq converges
to the expected degree, which equals

E

«

1

n

ÿ

i,j

1 t||i´ j|| ď rnu

ff

“

ż

nrdnVolpBp0, 1qqfpiq
2 di` op1q. (12)

We can check that the right-hand side equals µ. Notice

ψpi,Nn, G,W, rnq “ |tj P Pκfpiq : ||i´ j|| ď 1u|.

Therefore,

µ “

ż

E
“

|tj P Pκfpiq : ||i´ j|| ď 1u| | i
‰

fpiq di

“

ż ż

j:||i´j||ď1

κfpiq djfpiq di

“ κVol
`

Bp0, 1q
˘

ż

fpiq2 di,

where the second line follows from a basic property of Poisson processes (Kingman,
1992, Campbell’s theorem). The last line is precisely (12) up to an op1q term if
nrdn Ñ κ, as required by Assumption 6.
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Proof Sketch. Let ψipN , rq ” ψpi,N , G,W, rq. Then

1

n

ÿ

iPNn

`

ψipNn, rnq ´ µ
˘

“
1

n

ÿ

iPNn

`

ψipNn, rnq ´ ErψipNn, rnq |W,Nns
˘

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

rIs

`
1

n

ÿ

iPNn

`

ErψipNn, rnq |W,Nns ´ µ
˘

looooooooooooooooooooomooooooooooooooooooooon

rIIs

. (13)

Convergence of rIs follows from ideas (A) and (B). Specifically, Assumptions 2 and
5 imply that for any C,C 1 P C`pD,Nn, rnq, C ‰ C 1, it is the case that

tGij : i, j P Cu KK tGij : i, j P C 1u |W,Πprnq,Nn (14)

For instance, for i, j P C, Gij only depends on the attributes and positions of nodes
in C by Assumption 2, and nodes in C,C 1 independently coordinate on equilibrium
subnetworks by Assumption 5.

While links are conditionally independent, the object is to prove a weak law for
averages of node statistics, which aggregate across links. In general, node statistics
may still be conditionally dependent because the locality restriction allows for de-
pendence on indirect links. For example, in Figure 3, node 4’s node statistic may
depend on node 1’s equilibrium subnetwork through G23. Sparsity of the opportunity
graph will be crucial for limiting this form of dependence, since a node’s degree in the
opportunity graph is almost-surely finite in the limit under sparsity. Together with
subcriticality of D, it will follow that, conditional on D and Nn, node statistics are
dependent with at most a finite number of other node statistics in the limit. Hence,
node statistics are only weakly conditionally dependent.

Formally, to prove convergence of rIs, it suffices to show concentration of the
conditional variance of rIs at zero. Define

Ji “ C`i pDqY
 

j P N : Πklprnq “ 1 for some k P C`i pDq, l P C
`
j pDq

(

.

This is the set of nodes whose node statistics are potentially conditionally depen-
dent with i’s node statistic. For instance, in Figure 5, C`1 “ t1, 2, 3, 4u, C`9 “

t6, 7, 8, 9, 10u, and Π46prnq “ 1, so 9 P J1. Notice that 1 and 9’s node statistics are
conditionally dependent because they both may depend on Z6, for instance. On the
other hand, C`10 “ t9, 10u, so 10 R J1, and the model assumptions imply that the
node statistics of 1 and 10 are conditionally independent.

In general, if j R Ji, then (14) implies that

ψipNn, rnq KK ψjpNn, rnq |W,Nn.
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10976431

2 5 8

Figure 5: The black links are exogenously formed, C`1 “ C`2 “ C`3 “ t1, 2, 3, 4u, C
`
4 “

t3, 4, 5, 6, 7u, C`7 “ t6, 7, 8, 9, 10u, C`10 “ t9, 10u.

We can then bound the conditional variance of rIs as follows using (10):

Var
`

rIs |Dprnq,Nn
˘

“
1

n2

ÿ

iPNn

ÿ

jPJi

Cov
`

ψipNn, rnq, ψjpNn, rnq |W,Nn
˘

ď
c

n

1

n

n
ÿ

i“1

|Ji|

looomooon

rIIIs

.

It now remains to show that (A) rIIs and rIIIs converge to their expectations, and
(B) the limit of rIIIs is finite. Part (B) follows because components in the limit
model are almost surely finite by Proposition 1, and each node has an opportunity
link with an almost surely finite number of other nodes by sparsity (Assumption 6).

For part (A), notice that both of these quantities can be written as averages of
functionals of W,Nn. Convergence of these functionals will follow from Theorem 3
in §A.2, which extends Theorem 2.1 of Penrose and Yukich (2003) (PY). PY’s result
yields a weak law for functionals of class of geometric graphs. The intuition behind
their result is that the binomial point process i ` r´1

n pNn ´ iq is locally Poisson in
a neighborhood of i. This is useful because unlike binomial point processes, Poisson
processes possess a spatial independence property. Notice that the definition of the
binomial point process requires translating and dilating node positions, which is why
(11) is needed.

To be more specific, a coupling argument shows that the rescaled expectation
E
“

ψi
`

i` r´1
n pNn ´ iq, 1

˘

|W, i` r´1
n pNn ´ iq

‰

can be locally approximated by its ana-
log applied to a Poisson point process. If the resulting functionals satisfy a stability
property, this yields distributional convergence, and a weak law then follows from
uniform integrability. The idea behind the stability property is that for the local
approximation to work, there must exist a finite radius R such that changes to the
network beyond the ball of radius R centered at i do not alter this conditional ex-
pectation. Because |Ji| is finite by Proposition 1 and Assumption 6, we can simply
choose R large enough to contain |Ji|, and stability follows.

Remark 4. Theorem 3 establishes a weak law for functionals of a large class of
random graph models, which may be of independent interest. The theorem in PY does
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not cover the RCM. Note that the RCM encompasses RGGs, Erdős-Rényi graphs,
and SBMs.

5.2 Network Properties

Under Assumptions 3 and 6, the network G is sparse. We next show that networks
generated by the model may percolate, or contain a giant component (Barabási, 2015;
Jackson, 2010). Formally, G percolates if the size of its largest component is of
asymptotic order n with probability approaching one. The results in this section are
informed by the following observations.

(A) For G to percolate it is necessary that Π percolates, since G is a subgraph of Π
under Assumption 3.

(B) Heuristically, if enough pairwise-stable subnetworks formed on each component
of D are sufficiently connected, and enough of these subnetworks are linked
together by exogenously formed links, then G has a giant component.

(C) Let Π´ be the subnetwork of Π consisting of solely of exogenously formed links.
That is, link i and j if and only if infs V ps,Wij; θ0q ą 0. If Π´ percolates, then
it is a subgraph of G, G must also percolate.

In what follows, we will establish conditions for Πprnq and Π´prnq to percolate for each
of the four examples of opportunity graphs discussed in §4.1. In light of (A) and (C),
these are, respectively, necessary and sufficient conditions for G to percolate. These
sufficient conditions are likely stronger than conditions that establish (B). However,
it is difficult to derive general primitive restrictions on V that ensure connectivity of
equilibrium subnetworks. In contrast, approach (C) is mathematically feasible due to
the availability of relevant results in random-graph theory.

In what follows, it will be useful to define

γ “ ess sup
i,Zi

κfpiq

ż

P
`

Ec
ijp1q | i, Zi, j,Πijp1q “ 1

˘

dj.

Note that γ is an upper bound on the probability that a link is not exogenously
realized, given that they have an opportunity to link. We will see that percolation
typically requires κ to lie in a bounded interval and γ ă 1, meaning that a nontrivial
share of links must be exogenously realized.

Example 16 (Random Geometric Graph). Let Πprnq be the random geometric graph
that links i, j P Nn if and only if ||i´ j|| ď rn. Suppose that f is bounded away from
zero on its support, f “ ess infx fpxq, and

κf ą T, (15)
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where T is the “continuum percolation threshold” (Penrose, 2003). This is the thresh-
old above which RGGs defined on a Poisson point process with constant intensity
percolate and below which they do not.14 Under this condition, Πprnq has a giant
component.

Πprnq percolation. Let ϑpfq “ f Vol
`

Bp0, 1q
˘

. A sufficient condition for Assump-
tion 7 is15

κγϑpfq ă 1. (16)

Equations (15) and (16) imply that

T {f ă κ ă pϑpfqγq´1,

which is satisfied if γ ă fpTϑpfqq´1. The right-hand side is less than f{f pT ϑ̄q´1,
where ϑ̄ is the volume of the unit ball. Since T ě 1 for percolation, and ϑ̄ ě 1, it
follows that γ ă 1 is necessary.

Π´prnq percolation. We claim that Π´prnq percolates if

ess inf
i,z

γ˚pi, zqκf ą T, (17)

where

γ˚pi, zq “ inf
n

ess inf
j,z1

P
´

inf
s
V ps,Wij; θ0q ą 0

ˇ

ˇ i, j, Zi “ z, Zj “ z1,Πijprnq “ 1
¯

,

supppfq meaning the support of fp¨q. To see this, define the RGG Rprnq, where node
positions are drawn from the density γ˚pi, zqfpiqdµpi, zq with µ the distribution of
pi, Ziq. This is a subgraph of the network formed by deleting nodes (and their links)
from Πprnq with probability 1´ γ˚pi, Ziq for each i. Hence, Π´prnq can be coupled to
Rprnq such that the former is a subgraph of the latter. Since the expected degree of
Π´prnq is γ˚κf , the graph percolates by Penrose (2003) Theorem 10.9.

To understand the usefulness of (17), consider the following specification for the
joint surplus:

θ1ρpi, jq ` S
1
ijθ2 ` ζij, (18)

where ρ is defined in (2) and ζij is standard normal for any i, j P Rd. If S 1ijθ ě 0, which
is the case when externalities are positive, then γ˚ “ 0.5, and γ “ Pp´S̄ 1θ ď ζij ď 0q,
where S̄ is the largest value of Sij on its support. If d “ 2 and positions are uniformly
distributed on r0, 1s2, then (16) and (17) imply

2T ă κ ă pγπq´1,

14A fundamental result in continuum percolation states that T P p0,8q if d ě 2. There is no
analytical expression for T ; for d “ 2 and f uniform, simulations indicate that this threshold is
approximately 1.44 (Penrose, 2003, p. 189).

15We conjecture that (16) can be relaxed to κγϑpfq ă T . Simulation results appear to confirm
this conjecture for the case d “ 2. Formally establishing this tight upper bound on κγϑpfq requires
new results on the percolation threshold for edge percolation on random geometric graphs, which is
beyond the scope of this paper.
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which requires γ ď p2Tπq´1, or more simply γ ď p2πq´1 under the conjecture of
footnote 15. Hence, γ ă 1 is necessary.

Example 17 (Stochastic Block Model). Note that the ER model is special case of
the SBM with a single group. For simplicity, suppose the model is given by (6) and
Πij KK Ṽ ps,Wij; θ0q.

Πprnq percolation. By Theorem 3.1 of Bollobás et al. (2007), for the model in
Example 7, Πprnq percolates if

ρ˚ ” E
“

ρpαi, αjq
‰

ą 1, (19)

i.e. the expected degree exceeds one. A sufficient condition for Assumption 7 is

γρ˚f ă 1 (20)

(recall κ “ 1 in this model). Then (19) and (20) are consistent if

1 ă ρ˚ ă
`

γf
˘´1

,

so a necessary condition is γ ď f
´1.

Π´prnq percolation. By Theorem 3.1 of Bollobás et al. (2007) the graph Π´prnq
percolates if

P
´

inf
s
V ps,Wij; θ0q ą 0

¯

ρ˚ ą 1, (21)

meaning that the expected degree of Π´prnq exceeds one.
Clearly (21) and (20) are consistent if

1 ă ρ˚ ă

ˆ

P
´

inf
s
V ps,Wij; θ0q ą 0

¯´1

γf

˙´1

.

Then a necessary condition is γ ď P pinfs V ps,Wij; θ0q ą 0q f
´1.

Example 18 (Random Connection Model). For Πprnq given by the model in Example
9, to the best of our knowledge, sufficient conditions for percolation do not yet exist.
However, graphs generated by the finite model are typically shown to percolate by
first showing that outputs of the limit model in which N “ Pκfpiq percolate and then
deriving a suitable coupling to the finite model.16 Results do exist for percolation for
the limit model where N “ PτYt0u, τ P p0,8q. We will restrict attention to showing
that the graphs Πp1q and Π´p1q percolate under the limit model under Example 1
for ρpi, jq “ ||i´ j|| and αi “ 0 for all i.

Πp1q percolation. In the general random connection model of Example 3, we have
θ2 “ ´r

´1, and r “ 1 in the limit model. Hence, we have

Πij “ 1
 

θ1 ` θ2||i´ j|| ` θ3 ` θ4L̄` ζij ą 0
(

.

16This is the strategy used by Penrose (2003) to prove that (15) is sufficient for RGGs to percolate.
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Let F p||i ´ j||q “ P
`

θ1 ` ||i´ j|| ` θ3 ` θ4L̄` ζij ě 0
ˇ

ˇ ||i´ j||
˘

. Similar to (9), we
require sparsity: 0 ă τ

ş

xě0
F pxq dx ă 8, meaning that the expected number of

connections to the origin is finite (also see Example 11). Then Theorem 6.1 of Meester
and Roy (1996) establishes the existence of a threshold τ˚pF q ą 0 such that Πp1q
percolates17 if

τ ą τ˚pF q. (22)

An analogous sufficient condition for Πprnq would be κfpiq ą τ˚pF q for all i, although
this is only a conjecture. Next, define

γpxq “ P
`

θ1 ` θ2x` ζij ď 0 | θ1 ` θ2x` θ3 ` θ4L̄` ζij ą 0
˘

.

Then Assumption 7 states that τ ||
ş

γp||i´j||qF p||i´j||q dj||2 ă 1 (see Example 11 for
further discussion). The left-hand side equals

ş

xě0
γpxqF pxq dx, since j ranges over

Rd, so this is compatible with (22) if

τ˚pF q ă τ ă

ˆ
ż

xě0

γpxqF pxq dx

˙´1

.

The analogous condition for Πprnq would be that κfpiq stays within those bounds for
all i.

Π´p1q percolation. Define

Π´p1q “ 1 tθ1 ` θ2||i´ j|| ` ζij ą 0u ,

F̃ pxq “ 1´P p´θ1 ´ θ2xq .

Then there exists τ˚
`

F̃
˘

ą 0 such that Π´p1q percolates if τ ą τ˚
`

F̃
˘

. The analogous
condition for Πprnq would be κfpiq ą τ˚

`

F̃
˘

for all i. This former condition is
compatible with Assumption 7 if

max
!

τ˚pF q, τ˚
`

F̃
˘

)

ă τ ă

ˆ
ż

xě0

γpxqF pxq dx

˙´1

.

5.3 Simulating Counterfactuals

Under the model assumptions, pairwise-stable networks can be simulated quickly. To
the best of our knowledge, this is the first model of network formation for which it is
computationally feasible to generate counterfactual networks. Given λ, N , W , and
θ0 we propose the following algorithm:

1. Generate Πprnq.

2. Construct D by removing exogenously realized links from Πprnq.
17The definition of percolation in continuum models is that the component of Πp1q containing the

origin has a strictly positive chance of containing infinitely many nodes.
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3. For each component of D, generate a pairwise-stable subnetwork, taking as
given the exogenously realized links of G.

In our Monte Carlo, we find that for a network of 1000 nodes, it takes seconds to
find a pairwise-stable subnetwork using myopic best-response dynamics in step 3. We
next show that the algorithm has complexity Oppn

2q, primarily due to the fact that,
under certain conditions, component sizes of D are only order log n. However, even
without these conditions, this algorithm is faster than the usual method of running
myopic best-response dynamics on the entirety of Nn.

For a given set of node positions, the first step has complexity Opn2q in general.18

The second step has complexity Oppnq, since it requires iterating through every link
in Πprnq, and the expected number of links is finite by Assumption 6. We next show
that the third step has complexity Oppn

2q. The following result is key.

Proposition 2. Suppose that

lim sup
nÑ8

κp˚n ă 1, where (23)

p˚n “ ess sup
i,j,Zi,Zj

P
`

Ec
ijprnq X Πijprnq “ 1

ˇ

ˇ i, j, Zi, Zj
˘

.

Then for any i P Nn, it is the case that |Cpi,Nn, D, rnq| “ Oplog nq with probability
tending to one.

This is the analog of Proposition 1 for the finite model. Equation (23) strengthens
Assumption 7 by taking supremums over the conditional probability. It may be
possible to relax this condition with a more sophisticated argument.

The third step of the algorithm can be broken down into three parts. (A) It iterates
through each component of D, say, C1, . . . , Cm. (B) For a given such component Ck,
the algorithm extracts the subnetwork of Π on Ck, denoted DpCkq. (C) Since links
form only between nodes who are linked in Π, and exogenously realized links are
always stable, the algorithm need only iterate through every possible subnetwork of
ΠpCkq and check its pairwise stability given the exogenously realized links of G.

Proposition 2 states that any component of D has size Oplog nq with high prob-
ability. We then claim that there are Oppnq possible subnetworks in step (C) when
|Ck| “ Oplog nq. To see this, note that by (C), the number of possible stable networks

18Random geometric graphs can be generated in Opn log nq time using k-d trees.
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on a set of nodes C is at most exp
!

ř

i,jPC Πijprnq
)

. Further,

P

˜

exp

#

ÿ

i,jPC

Πprnqpi, jq

+

ą nε

¸

“ P

˜

ÿ

i,jPC

Πprnqpi, jq ą log n` log ε

¸

ď
nErΠprnqpi, jqs|C|

2{n

log n` log ε
.

By Assumption 6, nErΠprnqpi, jqs “ Op1q. Thus, if |C| “ Oplog nq, the right-hand
side tends to zero, so the computational complexity of finding a pairwise-stable sub-
network is at most of order n. Since this search need only be repeated at most n times
in step (A) (in the worst case, there is one component for each node), the complexity
of the algorithm’s third step is order n2 on average.

6 Identification and Estimation

6.1 Moment Inequalities

In this section, we study the identification of θ0 by constructing a set of moment
inequalities that hold if and only if the data is rationalized by a pairwise-stable
equilibrium (i.e. Assumption 4(b) holds). We will impose the following assumptions.

Assumption 8. The range of S, denoted by Ψ, is finite.

This assumption is convenient to impose for computational reasons, and analogous
assumptions are used in de Paula et al. (2015) and Sheng (2014). Example 1 satisfies
this condition, and it is often simple to modify a surplus function to ensure finiteness.
We emphasize that this assumption is not necessary for deriving a useful character-
ization of the identified set in general. We employ it here to make direct use of a
theorem due to Beresteanu et al. (2011) to characterize the empirical content of the
model in terms of a finite set of conditional moment inequalities. However, continu-
ously distributed endogenous statistics can easily be accommodated by following our
approach below but applying Theorem 1 of Galichon and Henry (2011) to derive a
characterization in terms of an infinite set of conditional moment inequalities.

Assumption 9 (Analyst’s Information).

(a) The public signal ν and selection mechanism λ defined in Assumption 4 and a
subvector of Wij are unobserved. We denote the unobserved subvector by εij and
Xij “ pWijzεijq.
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(b) The distribution of εij |Xij is known up to a finite-dimensional parameter. With-
out loss of generality, this parameter is a subvector of θ0.

Part (b) is standard. The requirement that ν and λ are unobserved in part (a)
implies that the equilibrium selection mechanism is unknown, which is the usual case
of interest.

Before presenting the theorem, we need several definitions. Define the dyadic
outcome Yij “ pGij, Sijq, where S satisfies Assumption 2. Notice that Assumption 8
ensures that Y “ t0, 1u ˆ Ψ, the range of Yij, is finite. We say Yij “ p`, sq is stable
with respect to Wij, θ, and r if

V ps,Wij; θq ą 0 if ` “ 1,

V ps,Wij; θq ď 0 if ` “ 0.

(Recall that V depends on r under Assumption 3.) The stable set SθpWij, rq is the
set of dyadic outcomes that are stable under Wij, θ, and r. We can then define the
random set

QθpWij, rq “
 

p1tY “ yuΠijprq, y P Yq;Y P SθpWij, rq
(

.

Note that we multiply by Πijprq because pairs of nodes that are unlinked in Π provide
no information on θ0, since their equilibrium links never form by Assumption 3.
Lastly, define the vector Yijprq “ p1tYij “ yuΠijprq, y P Yq.

Theorem 2. Let U “ t0, 1u|Y|. Under Assumptions 2, 3, 4(a), 8, and 9, for any fixed
n, the observed network is rationalized by a pairwise-stable equilibrium in the sense
of Assumption 4(b) if and only if with probability one,

u1ErYijprnq |Xijs ď E

«

sup
qPQθ0 pWij ,rnq

u1q

ˇ

ˇ

ˇ

ˇ

Xij

ff

@u P U . (24)

The theorem can be easily generalized to models that do not require opportunity
graphs by dropping all appearances of Π in the definitions of the objects above. The
principles behind the theorem also readily extend to other large games.

Theorem 2 demonstrates that to characterize the empirical content of the model
under unrestricted selection, it is sufficient to consider statistics that take the form
of dyadic-outcome moments. The idea is as follows. In the traditional cross-sectional
setting in which the econometrician observes a large number of independent networks,
we typically conceptualize the model as a mapping from the primitives pX, εq to the
set of networks G that are pairwise stable. This is sensible because cross-sectional
data reveals the joint distribution of links. However, this distribution is not revealed
if only a single network is observed. Our insight is that in a single-network setting,
the econometrician instead observes a large number of dependent dyadic outcomes.
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We therefore conceptualize the model as a mapping from the attributes of a dyad
pXij, εijq to the set of possible dyadic outcomes Yij that are stable.19 Theorem 2
establishes that these two characterizations of the model are equivalent and then
derives moment inequalities under the second model characterization using Theorem
1 of Beresteanu et al. (2011).

Example 19. Consider the specification in Example 1 with θ4 “ 0, ρ defined in (2),
and αi “ 0 for all i. In this specification, Y “ t0, 1u2. Notice that for any s P t0, 1u,
exactly one of p1, sq or p0, sq is in SθpWij, rq; we refer to this as observation (‹).
Consequently the latter set has cardinality two. Let u “ pu1, u2, u3, u4q P U , where
we associate u1 with Yij “ p1, 1q, u2 with p0, 1q, u3 with p1, 0q, and u4 with p0, 0q.

Abusing notation, for s, t P Y , let ty, zu be the event that y and z are stable
with respect to Wij, θ, and r and that the nodes are linked in Π. For example,
tp1, 1q, p0, 0qu equals

 

θ1 ` θ3 ` ζij ě 0
(

X
 

θ1 ` ζij ă 0
(

X
 

Πijprq “ 1
(

.

From observation (‹), it is then easy to see that

E

«

sup
qPQθpWij ,rq

u1q

ˇ

ˇ

ˇ

ˇ

Xij

ff

“ maxtu1, u3uP
`

p1, 1q, p1, 0q
ˇ

ˇXij

˘

`maxtu1, u4uP
`

p1, 1q, p0, 0q
ˇ

ˇXij

˘

`maxtu2, u3uP
`

p0, 1q, p1, 0q
ˇ

ˇXij

˘

`maxtu2, u4uP
`

p0, 1q, p0, 0q
ˇ

ˇXij

˘

.

Note that the conditional probabilities can be easily simulated as the events ty, zu
simply define a partition of ζ-space, which is one-dimensional. Moreover, if ζij is
independent of observables and, say, normally distributed, then the conditional prob-
abilities can be computed in closed form.

In the next two subsections, we consider different assumptions for the analyst’s
information set and construct consistent estimators for some of the moments in (24).
The availability of consistent estimators then enables us to define the identified set
of parameters.

6.2 Estimation: Observed Opportunities

We first consider estimation under the following assumption.
19The focus on the dyad as the unit of observation follows because under (1), we can conceptualize

the network-formation process as a game between pairs of nodes taking binary actions. Note that
the results in this section can also be easily extended to the case of nontransferrable utility.
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Assumption 10. Π is known up to θ0.

This is satisfied by random geometric graphs when node positions are observed, since
links are then known up to r. It is also satisifed by some cases of random connection
models.

First consider estimation of limnÑ8 nEru
1YijprnqhpXijqs in (28). The empirical

analog is written

1

n2

ÿ

i,jPNn

u1nYijprnqhpXijq “
1

n

ÿ

iPNn

ÿ

jPi`r´1
n pNn´iq,

Πijp1q“1

u1Yijp1qhpXijq, (25)

where the equality follows from (11).20 We next apply Theorem 1. Define

ψ˚pi,Nn, G,W, rnq “
ÿ

jPNn

u1YijprnqhpXijq.

It is straightforward to see that ψ˚ satisfies locality. Using (11), we can write (25) “
1
n

řn
i“1 ψ

˚pi, i ` r´1
n pNn ´ iq, G,W, 1q. Uniform integrability of ψ˚ follows because

u1YijprnqhpXijq is uniformly bounded, and by Assumption 6, the expected degree of
Πij is almost surely finite. We can therefore state the following proposition.

Proposition 3. Under the conditions of Theorem 1, for u P U ,

(25) p
ÝÑ κ

ż ż

u1E
“

Yijp1qhpXijq | i, j
‰

fpiq2 di dj. (26)

The limit expression follows from a basic property of Poisson point processes (King-
man, 1992, Campbell’s theorem).

Next we turn to estimation of limnÑ8 nErsupqPQθpWij ,rnq
u1q hpXijqs. The empirical

analog is

1

n2

ÿ

i,jPNn

nE

«

sup
qPQθpWij ,rnq

u1q

ˇ

ˇ

ˇ

ˇ

Xij

ff

hpXijq

“
1

n

ÿ

iPNn

ÿ

jPi`r´1
n pNn´iq

Πijp1q“1

E

«

sup
qPQθpWij ,1q

u1q

ˇ

ˇ

ˇ

ˇ

Xij

ff

hpXijq, (27)

where the equality follows under conditions discussed in §A.1. The right-hand side is
a feasible estimator because the summands can always be computed via simulation.
In some cases a closed form exists, as in Example 19 when ζij is independent of
observables. By the same reasoning for (25), Theorem 1 characterizes the probability
limit of this estimator.

20Sufficient conditions for (11) are given in §A.1.
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Proposition 4. Under the conditions of Theorem 1, for u P U ,

(27) p
ÝÑ κ

ż ż

E

«

sup
qPQθpWij ,1q

u1q hpXijq

ˇ

ˇ

ˇ

ˇ

i, j

ff

fpiq2 di dj.

Identified Set. In light of Propositions 3 and 4, we can therefore write the identified
set defined in (28) explicitly in terms of the limit objects. Let Λ be a distribution
over bounded instrument functions h defined in §3 of Andrews and Shi (2013). Then
(24) holds if and only if for any i, j P Nn,

ż

max
uPU

E

«˜

u1Yijprnq ´ E

«

sup
qPQθpWij ,rnq

u1q

ˇ

ˇ

ˇ

ˇ

Xij

ff¸

hpXijq

ff

dΛ “ 0.

(cf. Beresteanu et al., 2011). We can initially define the identified set as the set of θ
and rn satisfying

ż

max
uPU

lim
nÑ8

E

«˜

u1nYijprnq ´ nE

«

sup
qPQθpWij ,rnq

u1q

ˇ

ˇ

ˇ

ˇ

Xij

ff¸

hpXijq

ff

dΛ “ 0. (28)

Note that we scale up the expectations by n, since u1Yijprnq “ u1YijprnqΠijprnq, and
by Assumption 6, the indicator is Oppn

´1q (also see Example 15 and the discussion
of network sparsity in §5.2).

Existence of the limits in (28) follow from the propositions above, which yield the
following explicit characterization of the identified set:

ΘI “

"

θ P Θ :

ż

h

max
uPU

κ

ż

i

ż

j

E

„ˆ

u1Yijp1q

´E

«

sup
qPQθpWij ,1q

u1q

ˇ

ˇ

ˇ

ˇ

Xij

ff¸

hpXijq

ˇ

ˇ

ˇ

ˇ

i, j



fpiq2 di dj dΛ “ 0

+

.

If X has finite support, then the set of instrument functions is finite, and we obtain
a reduction to a finite set of unconditional moments. Then a consistent estimator for
ΘI can be obtained using Chernozhukov et al. (2007).21

Remark 5 (Estimating rn for RGGs). We argue that r̂ “ maxt||i´ j|| : Gij “ 1u is
a consistent estimate of rn when Πprq is an RGG. To see this, notice for ε ą 0

Pp|r̂n ´ rn| ą εrnq “ P
`

r̂n ă p1´ εqrn
˘

21Also see Wan (2013) and Yildiz (2012). Theory for the continuous support case does not exist,
to my knowledge. While one could replace the moments in ΘI with sample analogs and perform a
grid search, sampling variation could lead to empty sets, even with probability one. A conjecture
is that a consistent estimator can be obtained by including parameter values in the set estimator if
the empirical analog of the moment in ΘI is less than or equal to c logn

n for any c ą 0, the threshold
used in Chernozhukov et al. (2007).
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because r̂n ď rn w.p. 1. For ε ą 1, the limit supremum of the RHS is zero. Thus,

lim
εÑ8

lim sup
nÑ8

P
`

|r̂n ´ rn| ą εrn
˘

“ 0.

If Nn is not observed, then an identification at infinity argument can be used to
identify 1

n

ř

i,jPNn Pp||i´ j|| ď rnq, which can be then used to back out rn using (8),
provided f is known. Suppose there exists some observed scalar attributeXi such that
the joint surplus tends to infinity as Xi Ñ 8. Then limXiÑ8E

”

1
n

ř

i,jPNn Gij

ˇ

ˇXi

ı

«

1
n

ř

i,jPNn Pp||i´ j|| ď rnq. This is because in the limit, node i is willing to link with
any j such that ||i´ j|| ď rn.

6.3 Estimation: Unobserved Opportunities

Now we assume that Π, and possibly Nn, is unobserved.

Assumption 11. Either Πij or pΠij, i, jq is a subvector of εij, and µ is known up to
θ0.

Because Πij is latent, not all moments characterizing ΘI can be estimated. Clearly
(25) and (27) are not observed quantities, since they contain an inner sum that
depends on Π. However, (27) is equivalent to

1

n

ÿ

i,jPNn

E

«

sup
qPQθpWij ,1q

u1q

ˇ

ˇ

ˇ

ˇ

Xi,j

ff

hpXijq, (29)

which is observed. Its expectation can easily be shown to converge to the limit
in Proposition 4 using Lemma 3. To establish convergence, it then remains to
show that the variance tends to zero. To see this, first notice that the summands
equal knpXijq ” Ersupu1q hpXijqΠijΠijprnq |Xijs, which is uniformly bounded by
PpΠijprnq |Xijq times a constant. The latter expression is uniformly Oppn

´1q by
Assumption 6. Second, the variance equals

1

n2

ÿ

i,jPNn

E
“

knpXijq
2
‰

`
2

n2

ÿ

i,jPNn

ÿ

k‰i

E rknpXijqknpXkjqs .

Since each kn is uniformly Oppn
´1q, this is easily seen to be Oppn

´1q.
While (27) can be salvaged, (25) cannot. To see this, order the elements of the

vector Y such that the first |Ψ| (recall Ψ from Assumption 8) elements are associated
with Gij “ 1 and the last |Ψ| with Gij “ 0. Let Ũ be the set of u P U such that their
last |Ψ| components are equal to zero. Then

1

n2

ÿ

i,jPNn

u1nYijprnqhpXijq,
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is only an observed quantity when u P Ũ . This is because by Assumption 3, Gij “ 1
only if Πij “ 1, so the presence of Πij in the definition of Yij is redundant for dyadic
outcomes p1, sq. In other words, only moments of the form

1

n

ÿ

i,jPNn

1tYij “ p`, squΠijprnq (30)

for ` “ 1 can be estimated, as far as the asymptotic theory in this paper is concerned.
However, even though a weak law generally does not apply for ` “ 0, notice that
(30) is bounded above by the empirical average degree of Πprnq. By Assumption 6,
the limit of its expectation is nrdn

ş ş

pijp1qfpiq
2 di dj, which is known up to θ0 under

Assumption 11. We can therefore replace (30) when ` “ 0 with this upper bound
when defining the identified set.

Define

Mijpu, rq “

"

u1Yijprq if u P Ũ
pijp1q||u||1 if u P UzŨ

where || ¨ ||1 is the l1 norm. The identified set is then

ΘI “

"

θ P Θ :

ż

h

max
uPU

κ

ż

i

ż

j

E

„ˆ

Mijpu, 1q

´E

«

sup
qPQθpWij ,1q

u1q

ˇ

ˇ

ˇ

ˇ

Xij

ff¸

hpXijq

ˇ

ˇ

ˇ

ˇ

i, j



fpiq2 di dj dΛ “ 0

+

.

7 Monte Carlo
DGP.We conduct a simulation study to illustrate the informativeness of the identified
set. We consider the specification

θ1 ` θ21tZi ‰ Zju ` θ31tD k : Gik“Gjk“ 1u ` ρpi, jq ` ζij,

where ρ is given by (2), positions are uniformly distributed on r0, 1s2, Zi
iid
„ Berp0.35q,

ζij
iid
„ Np0, θ4q, and Z KK ζ. We normalize Θ to be the unit ball centered at the

origin (with θ4 strictly positive) and set θ0 “ p0.2,´0.2, 0.2, 0.8q. Then θ2 captures
homophily in Zi and θ3 transitivity. The econometrician does not observe ζ but
observes all other variables.

Due to our choice of ρ, Π is a random geometric graph (Example 8). We choose
κ to satisfy Assumption 7:

κ “
`

f ||γ1pi, Ziq||2
˘´1

´ 0.0001. (31)

We then set r “ pκn´1q1{2 in accordance with Assumption 6.

36



A Weak Law for Network Moments

We simulate22 and estimate the model for the cases in which r is known and r is
estimated according to Remark 5. The results are virtually identical, since r̂ tends to
be extremely close to r. Below we present results only for the r̂ case, which, as noted
in Remark 5, can lead to wider estimated bounds relative to the r-known case.

Computation. Since Xij “ pZi, Zjq, we define the set of instrument functions as
H “

 

1t¨ ‰ ¨u,1t¨ “ ¨u
(

. Since there are a finite number of instruments, we have a
finite number of unconditional moment inequalities, and we can write the identified
set as

tθ P Θ : mpθ, u, hq ď 0 @u P U , h P Hu , where

mpθ, u, hq “ κ

ż

i

ż

j

E

«

ˆ

u1Yijp1q ´ E

«

sup
qPQθpWij ,rnq

u1q

ˇ

ˇ

ˇ

ˇ

Xij

ff¸

hpXijq

ˇ

ˇ

ˇ

ˇ

i, j



fpiq2 di dj.

We estimate the moments, denoted by mpθ, u, hq, using the estimators proposed in
§6.2 to obtain m̂npθ, u, hq. The estimated identified set Θ̂I is computed by performing
a grid search on Θ and including all parameters θ that satisfy

ÿ

uPU

ÿ

hPH
max

 

m̂npθ, u, hq, 0
(2
ď 0.0001

log n

n
,

which follows Chernozhukov et al. (2007). The step size for the grid is 0.2.
Network Statistics. Tables 1-3 display summary statistics aggregated over fifty

simulated networks with n “ 5000. The average degree is obtained by dividing the
number of links by n. From this quantity, it is clear that the networks are sparse.
“Frac. Giant” is the fraction of nodes lying in the giant component. We can see that
the networks G and Π percolate, as conjectured, and virtually all nodes lie within the
giant component. As Proposition 7 predicts, D does not percolate and contains 400
components on average. “Clustering” is the clustering coefficient (Example 13), and
we see that G has a nontrivial amount of clustering.23

Results. We simulate the model and compute the identified set thirty times. In
all but one simulation, the true parameter is in the estimated identified set. Moreover,
projections of the estimated set onto individual coordinates of θ always contain the
corresponding projection of θ0. Table 4 summaries of these projections aggregated
across the simulations. The “Mean Endpoints” column displays a set rL,U s where
L is the smallest value of the parameter in the given dimension, averaged across the
ten simulations, and U is the largest value. The third and fourth columns display,
respectively, the narrowest and widest projections across simulations. From the table,
we can see that the homophily and variance parameters are tightly estimated. On

22The network is simulated using the algorithm detailed in §5.3. We compute a pairwise-stable
equilibrium subnetwork on each augmented component of D using myopic best-response dynamics,
starting at the subnetwork of Π on that component.

23By comparison, a network generated by an Erdős-Rényi null model has clustering coefficient
equal to the fraction of linked pairs, which is essentially zero due to sparsity.
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Table 1: Summary statistics for G.

Mean SD Min Max

# Links 17717.40 142.72 17386.00 17972.00
Clustering 0.17 0.00 0.17 0.17
Frac. Giant 1.00 0.00 0.99 1.00
# Components 14.62 3.26 7.00 22.00
# Het. Links 7475.12 108.27 7252.00 7657.00

n “ 5000, 50 simulations.

Table 2: Summary statistics for D.

Mean SD Min Max

# Links 2429.52 42.68 2333.00 2501.00
Clustering 0.02 0.00 0.01 0.03
Frac. Giant 0.01 0.00 0.01 0.01
# Components 2647.44 36.81 2571.00 2728.00

n “ 5000, 50 simulations.

the other hand, the set for θ1 typically spans a wide range. Since the estimates of
the transitivity parameter θ3 are always equal to 0.4´ θ1, the sign of this parameter
is unidentified for most of the simulations, although in some simulations, the largest
value of θ1 is 0.2, in which case the sign of θ3 is correctly estimated.

We obtain similar results across thirty simulations when n “ 1000 (for both r es-
timated and known). The only substantive difference is that the narrowest set for the
variance is r0.60, 0.60s because in twelve simulations, the estimated identified set does
not contain the true parameter. However, these sets do contain p0.2,´0.2, 0.2, 0.6q,
so only the estimate of θ4 is off by 0.2. This is likely due to sampling variation, as
this phenomenon seems to disappear when n “ 5000.
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Table 3: Summary statistics for Π.

Mean SD Min Max

# Links 28230.80 164.55 27920.00 28561.00
Clustering 0.32 0.00 0.32 0.33
Frac. Giant 1.00 0.00 1.00 1.00
# Components 1.54 0.64 1.00 4.00

n “ 5000, 50 simulations.

Table 4: Estimate of identified set.

Mean Endpoints Narrowest Widest

Intercept [-0.60, 0.72] [-0.60, 0.20] [-0.60, 1.00]
Homophily [-0.2] [-0.2] [-0.2]
Transitivity [0.4 - θ1] [0.4 - θ1] [0.4 - θ1]
Variance [0.62, 0.93] [0.80, 0.80] [0.60, 1.00]

Grid step size “ 0.2, n “ 5000, 30 simulations.

8 Conclusion
This paper develops asymptotic theory for network-formation models when the econo-
metrician observes a single network. We derive conditions under which a weak law
holds for a class of network moments, which we apply to construct consistent esti-
mators of the identified set characterized by a new set of computationally tractable
moment inequalities. We also study the asymptotic properties of networks generated
by our model, establishing conditions for sparsity and percolation. Lastly, we propose
a fast algorithm for simulating counterfactual networks.

The theory developed in this paper can be easily applied to games on large net-
works. Similar to the intuition discussed in §3, in this setting, conditional indepen-
dence between two agents’ actions holds if some agent on any path connecting them
is hit with a sufficiently large random utility shock. Our arguments for deriving the
identified set are also easily applied to other large games.

The asymptotic theory in this paper focuses on establishing a weak law. A central
limit theorem may be attainable using results in geometric probability that build
on the ideas of Penrose and Yukich (2003) utilized in this paper. We are currently
studying this issue in a separate project.
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A Appendix

A.1 Stationarity Conditions
We provide primitive conditions under which (11) holds. The primary issue is that if ψ
depends nontrivially on G, equation (11) implies a similar invariance property must be
satisfied by the network.

Definition 2. Define H to be the set of random, vector-valued functions Hpi, j,S, rq defined
for all S Ď Rd, i, j P S, and r P R`. We say that H P H is stationary if Hpi, j,S, rq “
Hpai` b, aj ` b, aS ` b, arq for any a P R`, b P Rd.

We can view Wij as a mapping from i, j P N to a random vector. In follows, we let W be
an element of H such that W pi, j,N , rq “ pZi, Zjζijq for all i, j P N , with Zi and ζij allowed
to be r-dependent.

Note that any network Γ depends implicitly on N by definition and on r by Assumption
3. Hence, networks are elements of H. We next provide primitive restrictions under which
G is stationary.

Assumption 12 (Invariance of S, µ). The following conditions hold for any N Ď Rd,
i, j P N , a, r P R`, and b P Rd.

(a) W is stationary.

(b) µ satisfies µ pa||i´ j||,Wij ; arq “ µ p||i´ j||,Wij ; rq.

(c) For any network Γ on N and stationary W ,

S
`

i, j,Γp¨, ¨, ¨, rq,W p¨, ¨, ¨, rq,N
˘

“ S

ˆ

ai` b, aj ` b,Γ

ˆ

¨ ´ b

a
,
¨ ´ b

a
,N , r

a

˙

,W p¨, ¨, ¨, arq , aN ` b
˙

.

Part (a) and (b) impose stationarity on µ and W , respectively. Invariance of µ clearly holds
for the examples in §4.1. Part (c) is simply an anonymity restriction on S. We show that
this invariance assumption implies a similar invariance condition holds for any equilibrium
network.

Lemma 1. Fix any N Ď Rd, i, j P N , a, r P R`, and b P Rd. Under Assumption 12, for
any Γp¨, ¨,N , rq P Gθ,rpW,N q, there exists Γ1p¨, ¨, aN ` b, arq P Gθ,arpW,aN ` bq such that

Γp¨, ¨,N , rq “ Γ1p¨, ¨, aN ` b, arq. (32)

Likewise, for any Γ1p¨, ¨, aN `b, arq P Gθ,arpW,aN `bq, there exists Γp¨, ¨,N , rq P Gθ,rpW,N q
such that (32) holds.
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Proof. We prove the first part of the lemma. Let Γp¨, ¨,N , rq P Gθ,rpW,N q. For any
ĩ, j̃ P aN ` b, construct

Γ1p̃i, j̃, aN ` b, arq “ Γ

ˆ

ĩ´ b

a
,
j̃ ´ b

a
,N , r

˙

for any a P R`, b P R. The right-hand side is well defined by construction of ĩ, j̃. Then by
definition, Γ1p¨, ¨, aN ` b, arq P Gθ,arpW,aN ` bq if for every ĩ, j̃ P aN ` b,

Γ1p̃i, j̃q “ 1 ô

V
`

S
`

ĩ, j̃,Γ1p¨, ¨, ¨, arq,W p¨, ¨, ¨, arq, aN ` b
˘

,W p̃i, j̃, aN ` b, arq; θ0

˘

ą 0. (33)

By construction of Γ1, the joint surplus in the previous display equals

V

ˆ

S

ˆ

ĩ, j̃,Γ

ˆ

¨ ´ b

a
,
¨ ´ b

a
,N , r

˙

,W p¨, ¨, ¨, arq, aN ` b
˙

,W p̃i, j̃, aN ` b, arq; θ0

˙

.

Let i, j P N such that ai` b “ ĩ and aj` b “ j̃. By Assumption 12, the previous expression
is equivalent to

V
`

S
`

i, j,Γ p¨, ¨,N , rq ,W p¨, ¨, ¨, rq,N
˘

,W pi, j,N , rq; θ0

˘

,

But by (1), the Γpi, jq “ 1 if and only if the previous equation exceeds zero. This establishes
(33). A similar argument proves the second statement of the lemma.

As a consequence of this lemma, there exists a bijection φp¨, a, bq : Gθ,rpW,N q Ñ
Gθ,arpW,aN ` bq such that Γp¨, ¨,N , rq “ φpΓp¨, ¨,N , rq, a, bq.

Assumption 13 (Invariance of λ). For any N Ď Rd, i, j P N , a, r P R`, and b P Rd, if the
conclusion of Lemma 1 holds, then the selection mechanism λ satisfies

λθ0,arpW,aN ` b, νq “ φpλθ0,rpW,N , νq, a, bq

for any ν.

The following proposition is immediate from Lemma 1, Assumption 13, and Assumption
4(b).

Proposition 5. For any N Ď Rd, suppose the network Gp¨, ¨,N , rq is an equilibrium network
for some r. Then under Assumptions 12 and 13, G is stationary.

A sufficient condition for Assumption 12 is the stationarity condition that S and W
depend on N only through

 

r´1||i ´ j||; i, j P N
(

. The latter holds if Wij “ pr´1||i ´
j||, Zi, Zj , ζijq, and ζij depends on N only through r´1||i´ j||. While it is enough to assume
that S does not depend directly on N to Assumption 12(b) to hold, the same condition for
λ is not quite sufficient for Assumption 13. An additional restriction is still needed to ensure
that λθ0,arpW,aN`b, νq is mapping to the analogous isomorphic equilibrium in Gθ0,rpW,N q,
hence Assumption 13.
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A.2 A General Weak Law
Let ξpi,S, hq be an R-valued function defined for all locally finite S Ď Rd, i P S, and functions
hp¨, ¨,Sq : S ˆ S Ñ Rdw . For ease of notation, if i R N , we let ξpi,N , hq ” ξpi,N Y tiu, hq.

For any S Ď Rd, define the random function φpSq ” φp¨, ¨,Sq : S ˆ S Ñ Rdw such
that there exist independently distributed dz-dimensional random vectors tZi; i P Su and
independently distributed dζ-dimensional random vectors tζij ; i, j P Su, both independent
of N , for which φpi, jq “ pZi, Zj , ζijq. The

We next adapt the notion of strongly stabilizing functionals in Penrose and Yukich (2001)
to our context.24

Definition 3. The functional ξ is strongly stabilizing on a locally finite set B Ď Rd if for
any i P Rd, there exists a radius R ă 8 such that for all locally finite A Ď RdzBpi, Rq,

ξ
`

i,B Y tiu, φ
˘

“ ξ
`

i, pB Y tiuq XBpi, Rq YA, ω
˘

with probability one, for some φ-dependent function ω :
`

pB Y tiuq XBpi, Rq YA
˘2
Ñ Rdw

satisfying ωpj, kq “ φ pj, k,B Y tiuq whenever j, k P B Y tiu.

The following theorem adapts Theorem 2.1 of Penrose and Yukich (2003) (PY) to
strongly stabilizing functionals ξ that depend on φ.

Theorem 3. Suppose ξ is strongly stabilizing on Pτ for any τ in the range of κfp¨q. If

sup
nPN

E
“

ξpi, i` r´1
n pN ´ iq, φqp

‰

ă 8

for some p ą 2 and nrdn Ñ κ, then

1

n

ÿ

iPNn

ξpi, i` r´1
n pNn ´ iq, φq

L2
ÝÑ

ż

Erξ
`

i,Pκfpiq, φ
˘

| is fpiq di.

Coupling N . To prove the theorem, we couple the processes i` r´1
n pNn´ iq and Pκfpiq

using a construction due to PY. Let i be a random variable distributed with density f
and P1 be a Poisson process of rate one on Rd ˆ r0,8q independent of i. Let P˚nf be the
restriction of P1 to

 

pk, tq P Rd ˆ r0,8q : t ď nfpkq
(

and Pnf the image of P˚nf under the
projection pk, tq ÞÑ k.25 Let NpPnf q be the number of points in Pnf . Construct N 1n´1 from
NpPnf q by dropping pNpPnf q´pn´1qq` points randomly and including pn´1´NpPnf qq`
independent points drawn from f .26 Let P˚nfpiq be the restriction of P1 to tpk, tq : t ď nfpiqu

and Pκfpiq the image of P˚nfpiq under pk, tq ÞÑ
`

n
κ

˘d
pk ´ iq. Then conditional on i, Pκfpiq

is a homogeneous Poisson process on Rd of intensity κfpiq by the “mapping theorem” for
Poisson processes (e.g. Kingman, 1992).

24An analogous extension of the weaker notion of stabilization in Penrose and Yukich (2003) can
also be defined. Strong stabilization suffices for our purposes.

25Then Pnf is an inhomogeneous Poisson point process with intensity nfp¨q.
26Then N 1n´1 and Nn´1 are identically distributed.
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Coupling φpN q. For any i P Rd, we couple φ
`

i`r´1
n pN 1n´1´ iqYtiu

˘

to φ
`

PκfpiqYtiu
˘

as follows. For k P Rd, t P R, define % : pk, tq ÞÑ k. Let tZj ; j P Rdu and tζjk; j, k P Rdu
be independently distributed random vectors of dimension dz and dζ , respectively. In what
follows, let i1 “ pi, 0q.

• For k P Rd, t P R, define %i : pk, tq ÞÑ
`

n
κ

˘d
pk ´ iq. For each j, k P P˚nfpiq Y ti

1u, let

φ
`

%ipjq, %ipkq,Pκfpiq Y tiu
˘

“
`

Z%pjq, Z%pkq, ζ%pjq%pkq.
˘

.

• For each j, k P P˚nf Y ti1u, define

φ p%pjq, %pkq,Pnf Y tiuq “
`

Z%pjq, Z%pkq, ζ%pjq%pkq.
˘

.

For k P Rd, t P R, define %1i : pk, tq ÞÑ i ` r´1
n pk ´ iq. For each j, k P P˚nf Y ti1u for

which there exist j1, k1 P N 1n´1 Y tiu such that j1 “ %pjq, k1 “ %pkq, define

φ
`

%1ipjq, %
1
ipkq, i` r

´1
n pN 1n´1 ´ iq Y tiu

˘

“
`

Z%pjq, Z%pkq, ζ%pjq%pkq.
˘

.

Lemma 2 (Coupling). For any M ą 0,

lim
nÑ8

P
`

r´1
n pN 1n´1 ´ iq XBpi,Mq “ Pκfpiq XBpi,Mq

˘

“ 1.

Proof. This follows from the proof of Lemma 3.1 of PY. We give a fully-detailed argument
here for completeness.

By the Lebesgue density theorem, with probability one, i is realized at a Lebesgue point
f . Conditional on i, the expected number of points pj, tq of P1 in Bpi, rnMq ˆ r0,8q that
satisfy t ď r´dn κfpiq (and hence contribute to Pκfpiq) but also satisfy t ą nfpjq (and hence
do not contribute to P˚nf ) is

ż

Bpi,rnMq

ż nfpiq

r´dn κfpjq
1tnfpiq ą nfpjqu dt dj “

ż

Bpi,rnMq

`

r´dn κfpiq ´ nfpjq
˘`
dj

ď r´dn

ż

Bpi,rnMq
κ|fpiq ´ fpjq| dj ` r´dn

ż

Bpi,rnMq
|κ´ nrdn|fpjq dj,

where the left-hand side of the first line is due to the “mapping theorem” for Poisson processes
(e.g. Kingman, 1992). The last line converges to zero since i is a Lebesgue point of f
and nrdn Ñ κ. Similarly, the expected number of points of P1 in Bpi, rnMq ˆ r0,8q that
contribute to P˚nf but not to Pκfpiq also tends to zero. Therefore, the probability that
r´1
n P˚nf XBpi,Mq and Pκfpiq XBpi,Mq are equivalent tends to one.

Let E “ tP˚nf XBpi, rnMq ‰ N 1n´1XBpi, rnMqu. We next show that PpEq Ñ 0. Notice
that E occurs either if any of the pNpPn1 q´n´1q` discarded points or the pn´1´NpPn1 qq

`

added points in the construction of N 1n´1 lies in Bpi, rnMq. Denote this event by E1. For
any ε ą 0, choose ñ large enough such that (a) for some fixed κ̄, ñrdñ ď κ̄ for all n ą ñ, and
(b),

P
´

|NpP˚nf q ´ n´ 1| ą
nε

2cκ̄

¯

ă

´

1´
κ

κ̄

¯

ε, (34)
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where c satisfies Pp||i´ j|| ď rnM | iq ď crdn for j „ fp¨q. Such a c exists by Assumption 6.
Such a ñ exists because

Pp|NpP˚nf q ´ n´ 1| ą c1nq ď P
`

pNpP˚nf q ´ nq2 ą pc1n´ 1q2
˘

ď
VarpNpP˚nf qq
pc1n´ 1q2

“
n

pc1n´ 1q2
,

so |NpP˚nf q ´ n´ 1| “ oppnq. Therefore,

PpEq ď P

ˆ

E1
ˇ

ˇ

ˇ

ˇ

|NpP˚nf q ´ n´ 1| ď
nε

cκ̄

˙

`P
´

|NpP˚nf q ´ n´ 1| ą
nε

cκ̄

¯

ď
nε

cκ̄
crdn `

´

1´
κ

κ̄

¯

ε ď ε,

which proves the claim that PpEq Ñ 0.
The above arguments establish that

lim
nÑ8

P
`

r´1
n pN 1n´1 ´ iq XBpi,Mq “ Pκfpiq XBpi,Mq | i

˘

“ 1

almost surely. The result follows by dominated convergence.

For i P Rd, define ςpiq “ ξ
`

i,Pκfpiq, φ
˘

, and let Bpi,mq be the ball of radius m centered
at i. For B Ď Rd locally finite and m P R`, define

ξpi,B, φ,mq “ sup
`PN

ess sup
|A|“`

ξ
`

i, pB Y tiuq XBpi,mq YA, ω
˘

,

ξpi,B, φ,mq “ inf
`PN

ess inf
|A|“`

ξ
`

i, pB Y tiuq XBpi,mq YA, ω
˘

.

where the essential supremum and infimum are taken with respect to the Lebesgue measure
over the set of A Ď RdzBpi,mq with cardinality `.

Lemma 3 (Convergence of Means). Under the assumptions of Theorem 3,

lim
nÑ8

E

«

1

n

ÿ

iPNn

ξpi, i` r´1
n pNn ´ iq, φq

ff

“

ż

E
“

ξ
`

i,Pκfpiq, φ
˘‰

fpiq di. (35)

Proof. We follow the proof of Lemma 3.2 of PY. For any ε,M ą 0,

P
`

|ξ
`

i, i` r´1
n pN 1n´1 ´ iq, φ

˘

´ ςpiq| ą ε
˘

ď P
`

i` r´1
n pN 1n´1 ´ iq XBpi,Mq ‰ Pκfpiq XBpi,Mq

˘

`P
`

ξ
`

i,Pκfpiq, φ,M
˘

´ ξ
`

i,Pκfpiq, φ,M
˘

ą ε
˘

.

The first part of the right-hand side converges to zero by Lemma 2. The second part is zero
for M sufficiently large, since ξ is strongly stabilizing. Therefore,

ξ
`

i, i` r´1
n pN 1n´1 ´ iq, φ

˘ d
ÝÑ ςpiq. (36)
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By the almost-sure representation theorem and uniform integrability (10),

E
“

ξ
`

i, i` r´1
n pN 1n´1 ´ iq, φ

˘‰

Ñ Erςpiqs.

Now, by the law of iterated expectations, conditioning on i, the right-hand side equals the
right-hand side of (35). Notice that the left-hand side equals

E

«

1

n

ÿ

iPNn

ξ
`

i, i` r´1
n pNn ´ iq, φ

˘

ff

by identical distribution. This completes the proof.

To prove Theorem 3, we need to extend the previous coupling construction to establish
concentration of the variance.

Coupling N . Let i and j be independently drawn from f , and let P1,Q1 be independent
Poisson processes on Rd ˆ r0,8q. Derive Pnf from P1 as before and similarly derive Qnf
from Q1. Construct N 1n´2 from NpPnf q by dropping pNpPnf q ´ pn´ 2qq` points randomly
and including pn´2´NpPnf qq` independent points drawn from f . Let Fi be the half-space
of points in Rd closer to i than to j and Fj the points closer to j. Let P infpiq be the restriction
of P1 to Fi ˆ r0, nfpiqs and Qjnfpiq the restriction of Q1 to Fj ˆ r0, nfpiqs. Let P`κfpiq be the

image of P infpiq YQ
j
nfpiq under pk, tq ÞÑ

`

n
κ

˘d
pk ´ iq.

Analogously, let P jnfpjq be the restriction of P1 to Fjˆr0, nfpjqs andQinfpjq the restriction

ofQ1 to Fiˆr0, nfpjqs. Let P`κfpjq be the image of PjnfpjqYQ
i
nfpjq under pk, tq ÞÑ

`

n
κ

˘d
pk´jq.

Then
P`κfpiq KK P

`

κfpjq (37)

by the spatial independence property of Poisson processes.
Coupling φpN q. Let φ1, φ2, φ3 be independent copies of φ, where φ is defined sim-

ilarly to the previous coupling construction.27 For ease of notation, define N pi, jq “
`

i` r´1
n

`

N 1n´2 Y tju ´ i
˘˘

Y tiu. Let φ`i : R2d Ñ t0, 1u satisfy

φ`i pk, l,N pi, jqq “

$

&

%

φ pk, l,N pi, jqq if k, l P Fi
φ1 pk, l,N pi, jqq if k, l P Fj
φ2 pk, l,N pi, jqq otherwise,

φ`i
`

k, l,Pκfpiq Y tiu
˘

“

$

&

%

φ
`

k, l,Pκfpiq Y tiu
˘

if k, l P Fi
φ1
`

k, l,Pκfpiq Y tiu
˘

if k, l P Fj
φ2

`

k, l,Pκfpiq Y tiu
˘

otherwise,

27In the definition, replace N 1n´1 with N 1n´2, and replace tiu with ti, ju.
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Similarly let φ`j : R2d Ñ t0, 1u satisfy

φ`j pk, l,N pj, iqq “

$

&

%

φ1 pk, l,N pj, iqq if k, l P Fi
φ pk, l,N pj, iqq if k, l P Fj
φ3 pk, l,N pj, iqq otherwise,

φ`j
`

k, l,Pκfpjq Y tju
˘

“

$

&

%

φ1
`

k, l,Pκfpjq Y tju
˘

if k, l P Fi
φ
`

k, l,Pκfpjq Y tju
˘

if k, l P Fj
φ3

`

k, l,Pκfpjq Y tju
˘

otherwise,

Note that φ does not have the same distribution as φ`i or φ`j . Lastly, for x P ti, ju define
ς`pxq “ ξpx,P`κfpxq, φ

`
x q. Then by (37) and construction of φ, φ1, φ2, φ3,

ς`piq KK ς`pjq. (38)

Proof of Theorem 3. Given Lemma 3, it remains to show concentration, that the
variance converges to zero. Notice that for any M ą 0,

lim
nÑ8

P pBpi,Mrnq Ď Fiq “ lim
nÑ8

P pBpj,Mrnq Ď Fjq “ 1.

This and an argument similar to the proof of Lemma 2 imply that for any M ą 0,

lim
nÑ8

P
´

i` r´1
n

``

N 1n´2 Y j
˘

´ i
˘

XBpi,Mq “ P`κfpiq XBpi,Mq
¯

“ 1,

lim
nÑ8

P
´

j ` r´1
n

``

N 1n´2 Y i
˘

´ j
˘

XBpj,Mq “ P`κfpjq XBpj,Mq
¯

“ 1.

Using these equations and equality of φ and φ`i on Fi, we have for any ε,M ą 0,

P
`

|ξ
`

i, i` r´1
n ppN 1n´2 Y tjuq ´ iq, φ

˘

´ ς`piq| ą ε
˘

ď P
´

i` r´1
n

``

N 1n´2 Y tju
˘

´ i
˘

XBpi,Mq ‰ P`κfpiq XBpi,Mq
¯

`P
´

φ
``

i` r´1
n

`

N 1n´2 Y tju ´ i
˘˘

Y tiu
˘
ˇ

ˇ

Bpi,Mq
‰ φ`i

´

P`κfpiq Y tiu
¯

ˇ

ˇ

Bpi,Mq

¯

`P
´

ξ
´

i,P`κfpiq, φ
`
i ,M

¯

´ ξ
´

i,P`κfpiq, φ
`
i ,M

¯

ą ε
¯

,

where for any B Ď Rd, φ|B is the restriction of φ to the set B ˆ B. The right-hand side
tends to zero as n Ñ 8 for M sufficiently large, using Lemma 2 and strong stability of ξ.
Thus, as in (36),

ξ
`

i, i` r´1
n

`

pN 1n´2 Y tjuq ´ i
˘

, φ
˘

ˆ ξ
`

j, j ` r´1
n

`

pN 1n´2 Y tiuq ´ j
˘

, φ
˘ d
ÝÑ ς`piqς`pjq.

By the almost-sure representation theorem, uniform square-integrability (10), identical dis-
tribution of N 1n´2 Y ti, ju and Nn, identical distribution of φ, φ`i , φ

`
j , and (38),

lim
nÑ8

E
“

ξpi, i` r´1
n pNn ´ iq, φq ξpj, j ` r´1

n pNn ´ jq, φq
‰

“ µ2. (39)
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Finally, notice that

E

»

–

˜

1

n

ÿ

iPNn

ξpi, i` r´1
n pNn ´ iq, φq

¸2
fi

fl “
1

n
E
“

ξpi, i` r´1
n pNn ´ iq, φq2

‰

`

ˆ

1´
1

n

˙

E
“

ξpi, i` r´1
n pNn ´ iq, φq ξpj, j ` r´1

n pNn ´ jq, φq
‰

.

This tends to µ2 by uniform integrability of ξ and (39), and thus the variance tends to zero.

A.3 Proofs of Main Results
Proof of Proposition 1. Fix α in the support of κfp¨q, and set N “ Pα.

Consider a breadth-first search (BFS) of Dp1q starting at an arbitrary node i. Initialize
a queue (ordered set) of “saturated” nodes S0 “ tiu and a set of “explored” nodes E0 “ ∅.
At step m, if Sm´1 ‰ ∅, pop (remove) a node j from the top of the queue Sm´1, and
define Sm “ Sm´1ztju and Em “ Em´1 Y tju. Then push (add to the end) each node in
tk : Djkp1q “ 1, k R Sm´1u, the set of neighbors of j not already queued, into the end of the
queue Sm in some arbitrary order. Let O˚m denote the number of neighbors pushed in the
mth step.

We next construct a process tOmu using a backtracking breadth-first search (BBFS).
Again, let S0 “ tiu and E0 “ ∅. At step m, if Sm´1 ‰ ∅, pop a node j from Sm´1, and
define Sm “ Sm´1ztju and Em “ Em´1 Y tju. Then push each node in tk : Djkprnq “ 1u,
the set of all neighbors of j, into the end of the queue Sm in some arbitrary order. Let O˚m
denote the number of neighbors pushed at the mth step.

The difference between the two searches is that the BBFS backtracks to previously
searched nodes, while the BFS does not, so

ř8
m“1Om ě

ř8
m“1O

˚
m. It therefore suffices to

show that the process tOmu dies in finite time (limmÑ8PpOm “ 0q “ 1).
Note that tOmu is a multi-type Galton-Walton branching process in which the offspring

distribution of a type pi, Zi “ zq individual is the inhomogeneous Poisson point process on
Rd with intensity function

τi,zpj, z
1q “ αP

`

Ecijp1q X tΠijp1q “ 1u | i, j, Zi “ z, Zj “ z1
˘

fzpz
1q,

where fzp¨q is the density of Zj for any fixed j. The expected number of offspring is
ş ş

τi,zpj, z
1qdz1dj, which is the conditional expected degree of a node of type i with Zi “ z

for the graph Dp1q when N “ Pα, as expected.
Let ρpi, zq be the probability that the process tOmu survives indefinitely (limmÑ8PpOm “

0q “ 0) when the type of the starting individual is pi, zq. Let H be the class of functions
h : pi, zq ÞÑ r0, 1s,

k : pi, j, Zi, Zjq ÞÑ αP
`

Ecijp1q X tΠijp1q “ 1u | i, j, Zi “ z, Zj “ z1
˘

fpjq´1, and

T : h ÞÑ Erkpi, j, Zi, Zjqhpj, Zjqs.

47



Michael P. Leung

By Lemma 5.11 of Bollobás et al. (2007), since suphPH ||Th||2 ď 1 (Assumption 7),28 then
ρpi, Ziq “ 0 almost surely (|| ¨ ||q denotes the Lq norm), so the branching process tOmu dies
out in finite time, and the proof is complete.

Proof of Proposition 2. Consider the BFS detailed in Proposition 1 but applied
to Dprnq rather than Dp1q and the induced branching process tO˚mu. Let tO1mu be i.i.d.
Bin(n, cn) random variables, where cn “ mintrdnγ

˚
n

ş

ess supi pijprnqdj, 1u. Then tO1mu stochas-
tically dominates tO˚mu.

An arbitrary node i lies in a component of Dprnq containing at leastM nodes only if the
BFS starting at i finds at least M ´ 1 explored nodes after M ´ 1 BFS steps. By stochastic
dominance, then, the probability of the latter event is

P

˜

M´1
ÿ

m“1

O˚m ěM ´ 1

¸

ď P

˜

M´1
ÿ

m“1

O1m ěM ´ 1

¸

“ P

˜

M´1
ÿ

m“1

O1m ě ncn pM ´ 1q

ˆ

1`
p1´ ncnqpM ´ 1q ´ 2

ncn pM ´ 1q

˙

¸

ď exp
"

´
pM ´ ncn pM ´ 1q ´ 1q2

M ` ncn pM ´ 1q ´ 1

*

,

where the last line uses the Chernoff bound. Since ncn tends to a constant that is strictly
less than one by Assumptions 6 and 7, if we set M “ b

p1´ncnq2
log n for b ą 0, then for n

sufficiently large, the last line is bounded by

exp
"

´
M2p1´ ncnq

2

2M
` p1´ ncnq

2

*

,

which is Opn´b{2q. Finally, by the union bound, the probability that there exists a node i
for which P

`

|CipDq| ěM
˘

is Opn1´b{2q Ñ 0 for b large.

The following lemma is used in the proof of Theorem 1.

Lemma 4. For any τ in the support of κfp¨q, ξpi,Pτ ,W q ” ErψipPτ , 1q |W,Pτ Y tius is
strongly stabilizing on Pτ under Assumptions 6 and 7.

Proof. By Proposition 1 and Assumption 6, |Ji| is almost surely finite. Thus with prob-
ability one, there exists a radius R ă 8 such that Bpi, Rq encompasses all nodes in Ji. By
locality of ψ (Definition 1) and Assumptions 2 and 5, ErψipPτ , 1q |W,Pτ Y tius is invariant
to changes in N and W so long as Ji and tWjk; j, k P Jiu remain the same. This motivates
next our construction of r to satisfy Definition 3. Using Assumption 1, for any j, k P Pτ , let
zepZjq, ζepZjq, zapZjq, ζapZjq satisfy

max
 

V
`

s, pZj , zepZjq, ζepZjqq; θ0

˘

, V
`

s, pzapZkq, Zk, ζapZkqq; θ0

˘(

ď 0.

28They take H to be the class of functions h : pi, zq ÞÑ R` with ||h||2 ď 1, but it is sufficient to
consider h such that 0 ď h ď 1, since solutions of their equation (5.3) necessarily obey this condition
by their Lemma 5.8(i).
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Then define

ωpj, kq “

$

’

’

&

’

’

%

pZi, Zj , ζijq if j, k P Pτ
pZi, Zj , ζijq if j, k P A
pZi, zepZiq, ζepZiqq if j P Pτ , k P A
pzapZkq, Zk, ζapZkqq if j P A, k P Pτ

It follows that

E
“

ψipPτ , 1q |ω,
`

Pτ Y tiu
˘

XBpi, Rq YAY
‰

“ ErψipPτ , 1q |W,Pτ Y tius

for any A Ď RdzBpi, Rq, with probability one. This is because, by construction of r, no node
pair j P Pτ X Bpi, Rq, k P A enjoys positive surplus from forming a link, so Ji is preserved.
This completes the proof.

Proof of Theorem 1. Recall the definitions of rIIs and rIIIs from (13). L2 convergence
of rIIs follows from condition (11), Lemma 4, and Theorem 3. Turning to rIIIs, by an
argument similar to Lemma 4, |Ji| can be written as a stabilizing functional ξ

`

i,Pτ ,W
˘

and
therefore converges to a limit. As argued in the proof sketch of this theorem in §5.1, this
limit is finite. Convergence of rIs then follows by dominated convergence.

Proof of Theorem 2. We first prove the theorem holds if we replace U with Ũ “ tu P
R|Y| : ||u|| ď 1u by verifying the conditions of Theorem 2.1 in Beresteanu et al. (2011). Then
the result follows from Theorem D.1 of Beresteanu et al. (2011).

Assumption 9 implies BMM’s Assumption 2.1, and their Assumptions 2.2-2.3 hold by
construction of Qθ. Turning to their Assumption 2.4, for y P Y, define selection mecha-
nisms for stable dyadic outcomes (henceforth dyadic SMs), σθ0,rnpy |Wijq, to be conditional
distributions with support Sθ0pWij , rnq. Define one such dyadic SM induced by a selection
mechanism for stable networks λ:

σ˚θ0,rnpy |wq “ E

»

–

ÿ

gPGijpy;W q

Ppλθ0,rn
`

W,Nn, ν
˘

“ g |W,Nnq
ˇ

ˇ

ˇ

ˇ

Wij “ w

fi

fl , (40)

where Gijpy;W q Ď Gn is the set of networks g such that
`

gij , Sijpg,W q
˘

“ y underW . The
support of this distribution is Sθ0pWij , rnq, as claimed, by Assumption 4(b). This establishes
their Assumption 2.4.

We lastly verify their Assumption 2.5, that our Assumption 4(b) holds if and only if
there exists a dyadic SM σθ0,r rationalizing the distribution of dyadic outcomes in the sense
that for any y P Y,

PpYij “ y |Xijq “ E
“

σθ0,rnpy |Wijq
ˇ

ˇXij

‰

.

The “only if” direction holds by construction (40). To see the “if” direction, suppose that
Assumption 4(b) fails to hold. Then there exists a set of pW,Nnq with positive measure such
that the true conditional outcome distribution PpG “ g |W,Nnq puts positive probability
on a set of ĝ R Gθ0,rnpW,Nnq such that for some i, j P Nn, it is the case that Πijprnq “ 1
and either

1. Sijpĝ,W q is not stable with respect to Wij and θ0, but ĝij “ 1, or
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2. Sijpĝ,W q is stable with respect to Wij and θ0, but ĝij “ 0.

Hence, the dyadic SM induced by the true conditional outcome distribution,

E

»

–

ÿ

gPGijpy;W q

PpG “ g |W,Nnq
ˇ

ˇ

ˇ

ˇ

Wij

fi

fl , (41)

must put positive probability on some y R Sθ0pWij , rnq. Since PpYij “ y |Wijq “ (41), this
contradicts the requirement that any dyadic SM rationalizing PpYij “ y |Xijq has support
Sθ0pWij , rnq.
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