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Abstract 

 

It is well known that new businesses are typically much smaller than their established industry 

competitors, and that this size gap closes slowly.  We show that even in commodity-like product 

markets, these patterns do not reflect productivity gaps, but rather differences in demand-side 

fundamentals.  We document and explore patterns in plants’ idiosyncratic demand levels by 

estimating a dynamic model of plant expansion in the presence of a demand accumulation 

process (e.g., building a customer base).  We find active accumulation driven by plants’ past 

production decisions quantitatively dominates passive demand accumulation, and that within-

firm spillovers affect demand levels but not growth.  This demand accumulation process has 

important implications for ongoing research in fields as diverse as industrial organization, macro, 

finance, and trade. 
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1. Introduction 

Researchers who have studied aspects of firm and industry dynamics have noted an 

empirical regularity: new businesses—and for that matter, extensions of existing businesses built 

in new markets—are smaller than established businesses in the same market, and this size gap 

closes only slowly as the producer ages.  (Dunne, Roberts, and Samuelson (1988), Caves (1998), 

and Cabral and Mata (2003) offer some of the most systematic evidence, though this pattern has 

been noted in individual markets in many studies.) 

This pervasive pattern has colored explanations for businesses’ disparate outcomes in 

fields as diverse as industrial organization, macro, finance, and trade.  Recent theoretical efforts 

in these fields have argued that demand dynamics are an explanation for this regularity.  (See, for 

example, Caminal and Vives (1999), Klepper (2002), Cabral and Mata (2003), Radner (2003), 

Fishman and Rob (2003 and 2005), Bar-Isaac and Tadelis (2008), Arkolakis (2010), Luttmer 

(2011), Dinlersoz and Yorukoglu (2012), Drozd and Nosal (2012), Perla (2013), and Gourio and 

Rudanko (2014).)  Specifically, new businesses are small because demand for their product is 

low, and demand is low because of informational, reputational, or other frictions.  Over time, 

these frictions gradually subside, and demand for the business’s product grows—if it is robust 

enough in the first place to prevent the business from exiting. 

In this paper, we empirically explore this hypothesis using a sample of U.S. 

manufacturing plants in commodity-like product industries (e.g., ready-mixed concrete, 

cardboard boxes, manufactured ice).  We first show that the size gaps between new and more 

established plants are not the result of supply-side cost differences.  New plants in our sample are 

just as technically efficient as—and often even slightly more efficient than—older plants, and 

have lower costs as a result.  That is, entrants are small in spite of their costs, not because of 

them. 

After demonstrating that entrants’ small size and slow growth are not explained by cost 

differences, we describe atheoretically how plants’ idiosyncratic demand fundamentals evolve in 

the data.  Then, to explain these patterns, we build and estimate a dynamic model of plant 

expansion in the presence of a demand accumulation process (e.g., building a customer base, 

though multiple interpretations of this process are possible).  The model allows demand to 

accumulate in two different ways.  We term one “demand accumulation by being.”  This is 

exogenous growth in demand over time that the producer passively reaps as long as it survives to 
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operate in the future.  The second is “demand accumulation by doing,” an endogenous 

accumulation mechanism where the producer can actively influence its future demand by making 

choices (namely, pricing) that build future demand stock at the expense of current profits.  The 

model, when taken to our data, allows us to qualitatively characterize these demand 

accumulation processes and to measure the size of their relative influences. 

The results indicate that our dynamic demand model can explain a considerable portion 

of the relationship between plant age and average size. This is notable given that our data spans a 

number of product markets and because those markets are for physically homogeneous, 

commodity-like products, where one might think the role of demand variations is smaller than in 

highly differentiated industries.  We also find that the endogenous “demand accumulation by 

doing” process plays a dominant role in explaining the small size and slow growth of new plants 

compared to the exogenous “demand accumulation by being” channel.  Further, we are able to 

characterize some cross-sectional differences in demand levels within similarly aged plants, 

showing for example that entering plants owned by firms that already operate other plants 

elsewhere appear to enjoy some spillover demand capital benefits from their corporate parent.  

These spillover effects are greater if the parent is in the same industry or geography. 

Besides informing the theoretical work on the role of dynamic demand discussed above, 

this paper also fits into a new line of research that is extending the large empirical literature tying 

productivity to plant and firm survival (see Bartelsman and Doms (2000) and Syverson (2011) 

for surveys of this literature) by explicitly accounting for demand-side effects on plants’ growth 

and survival.  (Das, Roberts, and Tybout (2007); Eslava et al. (2008); Foster, Haltiwanger, and 

Syverson (2008); Kee and Krishna (2008); De Loecker (2011); Roberts et al. (2011); and De 

Loecker and Goldberg (2014) are examples of this approach.)  Earlier heterogeneous-

productivity industry frameworks captured differences among industry producers in a single 

index, often explicitly or implicitly taken to be producer costs/productivity (e.g., Jovanovic 

(1982), Hopenhayn (1992), Melitz (2003), and Asplund and Nocke (2006)).  Related empirical 

work on business dynamics also did not make distinctions as to the forms of heterogeneity (e.g., 

Dunne, Roberts, and Samuelson (1989a and 1989b); Troske (1996); Pakes and Ericson (1998); 

Ábrahám and White (2006); Brown, Earle, and Telegdy (2006)).  The new research line expands 

the sources of heterogeneity to include both technological and demand-based idiosyncratic 

profitability fundamentals, each following separate (even independent) stochastic processes.  The 



4 

  

new framework therefore allows an additional and realistic richness in the market forces that 

determine producers’ fates.  Further, this approach also suggests a reinterpretation of 

productivity’s effects as inferred from standard measures.  This is because typical productivity 

measures incorporate not just technology but also demand-side effects through their (often 

unavoidable because of data limitations) inclusion of producer prices in the output measure. 

The paper proceeds as follows.  The next section describes data and measurement issues.  

Section 3 documents basic empirical facts about the evolution of producers’ idiosyncratic 

demands in our sample.  Section 4 describes the empirical model that we estimate using plants’ 

dynamic choices.  The main empirical results are presented in Section 5.  Section 6 discusses 

alternative explanations and provides robustness checks and Section 7 concludes. 

 

2. Data and Measurement Issues 

This paper starts with the same data set of homogenous goods producers we used in 

Foster, Haltiwanger, and Syverson (2008).1  Details on the selection of our sample and 

construction of the variables we use are in the Appendix, so we only highlight key points here. 

The data is an extract of the U.S. Census of Manufactures (CM).  The CM covers the 

universe of manufacturing plants and is conducted quinquenially in years ending in “2” and “7”.  

We use the 1977, 1982, 1987, 1992, and 1997 CMs in our sample based upon the availability and 

quality of physical output data.  Information on plants’ production in physical units is important 

because we must be able to observe plants’ output quantities and prices, not just total revenue 

(often the only output measure available in producer microdata).  The CM collects information 

on plants’ shipments in dollar value and physical units by seven-digit SIC product category.2 

The sample include producers of one of ten products: corrugated and solid fiber boxes 

                                                 
1 We drop producers of one product that was included in the Foster, Haltiwanger, and Syverson (2008) sample: 

gasoline.  The current study requires not only contemporaneous data but lagged data starting in 1963 to construct 

initial capital stocks and also lagged revenue measures.  We found the historical data for the gasoline refining 

industry was somewhat spotty, and this limited the number of industry plants for which we had valid data.  We also 

think that our learning about demand model is somewhat less well suited to gasoline products, especially since there 

is so little entry in gasoline to identify our learning effects. 

2 A problem with CMs prior to our sample is that it is more difficult to identify balancing product codes (these are 

used to make sure the sum of the plant’s product-specific shipment values equals the plant’s separately reported total 

value of shipments).  Having reliable product codes is necessary to obtain accurate information on plants’ separate 

quantities and prices, important inputs into our empirical work below.  A related problem is that there are erratic 

time series patterns in the number of establishments reporting physical quantities, especially in early CMs.  We thus 

choose to focus on the data in 1977 and beyond.  However, we do use revenue data from prior censuses as far back 

as 1963 when constructing plants’ ages and demand stocks. 
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(which we will refer to as “boxes” from now on), white pan bread (bread), carbon black, roasted 

coffee beans (coffee), ready-mixed concrete (concrete), oak flooring (flooring),  block ice, 

processed ice, hardwood plywood (plywood), and raw cane sugar (sugar).3  These products were 

chosen because of their physical homogeneity which allows plants’ output quantities and unit 

prices to be more meaningfully compared. 

We exclude observations with imputed physical quantity data.  For this purpose, we take 

advantage of newly recovered item impute flags developed and described in White, Reiter and 

Petrin (2014).   As discussed in greater detail in the appendix, our findings are largely robust to 

the inclusion of plants identified as having imputed physical quantity data but to be conservative 

we exclude such observations for the results reported in the main text.  We use inverse 

propensity score weights in our analysis to deal with possible non-randomness in the likelihood 

of observations being imputed.  We find that results are largely robust to not using such weights. 

Note that physical homogeneity does not necessarily imply that producers operate in an 

undifferentiated product market.  Prices vary within industries because, for instance, geographic 

demand variations or webs of history-laden relationships between particular consumers and 

producers create producer-specific demand shifts.  Further, quantities sold differ tremendously 

even holding price fixed.  Trying to explain why they differ is the very point of our analysis.  Our 

quantity data are meaningful not due to the complete absence of differentiation, but rather 

because there is no differentiation along the dimension in which we measure output—the 

physical unit.  The notion behind the selection of our sample products is that a consumer should 

be roughly indifferent between unlabeled physical units of the industry output.  But that does not 

have to imply that consumers view other products or services (real or perceived) tied to those 

units of output as equivalent.  Much of this sort of differentiation, we argue in our earlier work, 

is horizontal rather than vertical in nature. 

 

                                                 
3 Our product definitions are built up from the seven-digit SIC product classification system.  Some of our ten 

products are the only seven-digit product in their respective four-digit SIC industry, and thus the product defines the 

industry.  This is true of, for example, ready-mixed concrete.  Others are single seven-digit products that are parts of 

industries that make multiple products.  Raw cane sugar, for instance, is one seven-digit product produced by the 

four-digit sugar and confectionary products industry.  Finally, some of our ten products are combinations of seven-

digit products within the same four-digit industry.  For example, the product we call boxes is actually comprised of 

roughly ten seven-digit products.  In cases where we combine products, we base the decision on our impression of 

the available physical quantity metric’s ability to capture output variations across the seven-digit products without 

introducing serious measurement problems due to product differentiation.  The exact definition of the ten products 

can be found in the Appendix. 
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2.1. Idiosyncratic Demand: Concept and Measurement 

Our descriptive characterization of plant-level idiosyncratic demand uses measures that 

are obtained by estimating demand for each of the ten products in our sample.  We borrow our 

methodology from our earlier work in Foster, Haltiwanger, and Syverson (2008).  

We begin by estimating the following demand function separately for each of our ten 

products: 

(1) ln 𝑞𝑖𝑡 = 𝛼0 + 𝛼1 ln 𝑝𝑖𝑡 + ∑ 𝛼𝑡𝑌𝐸𝐴𝑅𝑡𝑡 + 𝛼2 ln(𝐼𝑁𝐶𝑂𝑀𝐸𝑚𝑡) + 𝜂𝑖𝑡, 

where qit is the physical output of plant i in year t, pit is the plant’s price, and ηit is a plant-year 

specific disturbance term.  We also control for a set of demand shifters, including a set of year 

dummies (YEARt), which adjust for any economy-wide variation in the demand for the product, 

as well as the average income in the plant’s local market m (INCOMEmt).  We define local 

markets using the Bureau of Economic Analysis’ Economic Areas (EAs).4 

Plant quantities are simply their reported output in physical units.  We calculate unit 

prices for each producer using the plant’s reported revenue and physical output.5  These prices 

are then adjusted to a common 1987 basis using the revenue-weighted geometric mean of the 

product price across all of the plants producing the product in our sample. 

 Of course, estimating the above equation using ordinary least squares (OLS) could lead to 

positively biased estimates of the price elasticity α1.  Producers may optimally respond to 

positive (negative) demand shifts ηit by raising (reducing) prices, creating a positive correlation 

between the error term and pit.  A solution to this is to instrument for pit using supply-side (cost) 

influences on prices.  While such instruments can sometimes be hard to come by in practice, we 

believe we have very suitable instruments at hand: namely, plants’ physical total factor 

productivity (TFP) levels.  Physical TFP is measured as the ratio of the plant’s output quantity in 

physical units to its inputs, where the inputs are the standard composite index of labor, capital, 

and intermediates weighted by their respective output elasticities.  Physical TFP (which we 

hereafter label TFPQ, where “Q” denotes quantity) embodies a producer’s technical efficiency—

its cost of producing a physical unit of output.  As such, TFPQ levels should have explanatory 

                                                 
4 EAs are collections of counties usually, but not always, centered on Metropolitan Statistical Areas.  The 172 EAs 

are mutually exclusive and exhaustive of the land area of the United States.  See U.S. Bureau of Economic Analysis 

(1995) for detailed information. 

5 The reported revenues and physical quantities are annual aggregates, so the unit price is an annual average.  This is 

equivalent to a quantity-weighted average of all transaction prices charged by the plant during the year. 
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power over prices.  They do.  The correlation between plants’ logged TFPQ levels and their 

logged prices in our sample is -0.59.  Further, it is unlikely they will be correlated with any 

short-run plant-specific demand shifts embodied in ηit.  Hence they appear quite suitable as 

instruments for plant prices.6 

We report the price and income elasticity estimates from the above demand equation in 

Appendix Table A.1.  The results are reassuring about our estimation strategy.  All estimated 

price elasticities are negative, and for all but carbon black and bread, they exceed one in absolute 

value.  This is what one should expect; price-setting producers should be operating in the elastic 

portion of their demand curves.  We cannot in fact reject that carbon black and bread producers 

face elastic demand.  Further, all products, again except for bread, have more elastic IV demand 

estimates than in the OLS estimations.  This is consistent with the theorized simultaneity bias 

present in the OLS results as well as the ability of TFPQ to instrument for endogenous prices. 

The idiosyncratic demand estimates for our sample plants are simply the residual from 

this IV demand estimation, along with the estimated contribution of local income added back in.  

Thus the measure essentially captures across-plant output variation that reflects shifts in the 

demand curve rather than movements along the demand curve. 

The dispersion of our producer-specific demand measure is huge.  Its within-product-year 

standard deviation is 1.47 (recall the measure’s units are logged output).  This implies that a 

plant sells 4.3 times as much output at a given price as another in its industry that is one standard 

deviation lower in the idiosyncratic demand distribution.  By way of comparison, the comparable 

standard deviations of logged TFPQ and logged prices are 0.28 and 0.22, respectively. 

 

3. Facts about Plants’ Idiosyncratic Demands 

In this section, we empirically characterize some basic patterns in the evolution of plants’ 

                                                 
6 There are two potential problems with using TFPQ as an instrument.  The first is that selection on profitability can 

lead to a correlation between TFPQ and demand at the plant level, even if the innovations to both series are 

orthogonal as assumed.  Producers with a higher TFPQ draws can tolerate lower demand draws (and vice versa) 

while still remaining profitable.  The second potential problem is measurement error.  We compute prices by 

dividing reported revenue by quantity and any measurement error in physical quantities will overstate the negative 

correlation between prices and TFPQ, potentially contaminating the first stage of the IV estimation.  We describe in 

Foster, Haltiwanger, and Syverson (2008) how we deal with these issues.  We found the patterns of demand 

estimates to be quite robust, reducing concerns about either measurement issue.  In Tables 1-2 in the next section, 

we use the innovation to TFPQ as the instrument since this approach is more consistent with the estimation approach 

for demand and Euler equations used later in the paper.  We also note that our focus on commodity-like products 

mitigates possible concerns about potential correlations between product quality and TFPQ. 
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idiosyncratic demand fundamentals. We undertake two related exercises. First, we compare how 

our sample plants’ demand and supply fundamentals evolve with age.  This comparison makes 

clear that the small size and slow growth of new producers are not driven by supply side (cost) 

influences. Second, we explore how the relative levels and convergence of idiosyncratic demand 

levels change with plants’ attributes—specifically, the type of firms to which plants are tied. 

 

3.1. Average Size Trajectories Reflect Demand Differences, Not Supply Differences 

The evolution in our sample of (logged) TFPQ and idiosyncratic demand across plants of 

various ages is shown in Table 1.  Plant-level demand can be thought of as the logged output a 

plant would sell relative to the average plant in the industry, if all plants charged a common, 

fixed price.  We use four age categories.  An “entrant” is a plant appearing for the first time in 

the Census of Manufactures (CM).7  “Young” establishments are those that first appeared in the 

census prior to the current time period; that is, they were entrants in the previous census.  

Establishments first appearing two censuses back are “medium” aged, and establishments that 

first appeared three or more censuses prior are classified as “old.”  Thus, an entrant is less than 5 

years old, a young plant is 5-9 years old, a medium plant is 10-14 years old, and an old plant is 

15 years old or older. Plants that will exit (die) by the next CM are placed in their own category 

(“exiter”).  We separately regress plants’ TFPQ and demand levels on dummies for each age 

category, with old plants as the excluded category.  The specification also includes a full set of 

industry-year fixed effects, so all comparisons are among plants in the same industry in a given 

year. 

The results in the table’s top row indicate that new plants have slightly (around 2 percent) 

higher TFPQ levels than established (“old”) incumbents.  By the time plants are over five years 

old, however, this TFPQ advantage is indistinct from zero.  Incidentally, we also find that exiters 

of any age are less efficient than incumbents, consistent with the large literature on the subject. 

The patterns are very different, however, for plants’ idiosyncratic demands (shown in the 

table’s bottom row).  The coefficient on the entrant dummy implies that, at the same price, a new 

plant will sell only 41 percent of the output of a plant in the same industry that is more than 15 

years old (the demand measure’s units are logged output, so e-0.892 = 0.409).  This gap is also 

                                                 
7 Because the CM includes all manufacturing plants in the U.S., we observe all entry and exit, though only at five-

year intervals. 
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slow to close.  Young plants would sell 62 percent of the output of an old plant, and even 

medium plants years old would only sell 68 percent as much. 

Thus there is a clear dichotomy between the age profiles of plants’ physical productivity 

and demand-side fundamentals.  Plants’ average technical efficiency levels are basically 

invariant to age.  What little difference that does exist—new entrants are slightly more efficient 

and thus have slightly lower costs—would tend to make new plants larger than incumbents, the 

opposite of the patterns seen in the data.  On the other hand, there are clear age-related patterns 

in plants’ average idiosyncratic demands.  New plants have much lower demand than incumbents 

in their industries.  Moreover, these demand gaps close very slowly over time.  Such patterns are 

consistent with the growth trajectories observed in the data. 

 

3.2. Cross-Sectional Differences in Demand Levels and Trajectories 

Now consider the following example designed to illustrate how idiosyncratic demand 

may change with plants’ characteristics.  Two new plants are built in an industry: one plant is a 

de novo entry by a firm with no prior experience; the other plant is opened by a large firm that 

operates other plants as well, perhaps but not necessarily in the same industry and geographic 

area.  We might expect that the latter will enter with a higher level of demand.  Customers may 

already be familiar with the plant’s product, or at least its firm.  This familiarity might also 

impact the speed at which demand convergence occurs. 

To explore these possibilities, we again project plants’ idiosyncratic demand measures on 

plant age indicators but this time interact those indicators with a dummy for plants that are part 

of a multi-plant firm.  The firm’s other plants need not make the same product, or even be 

manufacturers for that matter.  This is essentially a crude proxy for firm size.  Such multi-plant 

firms account for 59 percent of the observations in our sample. 

The results looking at the impact of multi-plant firm status are shown in Table 2.  The 

upper row shows the coefficients on the age categories, the lower those for the age categories 

interacted with the multi-plant firm indicator.  Hence the upper row shows the evolution of 

idiosyncratic demand for single-unit plant/firms, while the column-wise sum of the two rows’ 

values reflects the same evolution for plants in multi-plant firms. Note that the excluded group is 

different here from that in Table 1.  The excluded group in Table 1 is all old plants; here, it is 

only old plants in single-unit firms.  Hence the age coefficients in the table show average 
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idiosyncratic demands relative to this group rather than all old plants.  Since, as we will see, old 

plants in multi-plant firms are the largest plants in our sample, their separation from the excluded 

group is noticeable. 

Single-unit plants exhibit qualitatively similar patterns to those seen before for the whole 

sample.  Entrants have considerably smaller idiosyncratic demand levels than do established 

incumbents; they sell 41 percent less output at a given price than do old single-unit plants, and 

they undersell old multi-unit plants by 51 percent.  There is some convergence between entry and 

being young, where young single-unit plants have demand levels 7 percent below old single-unit 

plants.  Part of this is driven by the high exit rate of young single-unit plants that have very low 

demand, as the exit rate for young single-unit plants is about 33 percent.  Convergence then 

largely stalls; medium-aged single-unit plants still have 13 percent demand deficits compared to 

old single-unit plants. 

For plants in multi-plant firms, the patterns even more closely mimic the overall patterns 

of Table 1.  Entrants sell 36 percent less output at a given price than do old multi-unit plants.  

Young multi-unit plants sell 42 percent less and medium-aged plants sell 28 percent less than old 

multi-unit plants.  Convergence is slow among multi-unit plants—in some respects even slower 

than at single unit plants.  Partly this reflects the lower exit rate for multi-unit young plants 

(about 25 percent) compared to single-unit plants. 

Overall, then, both single and multi-unit plants see the inertial convergence patterns 

observed in the broader sample, suggesting demand dynamics are at work in both cases.8  We 

develop a model of dynamic, endogenous demand accumulation in the next section that we will 

take to our sample to further investigate the nature of the accumulation process. 

 

4. Model 

The previous section’s analyses show that demand-side dynamics drive the relationship 

between average plant size and age, and that plants’ idiosyncratic demands are related to the 

attributes of the plants and the firms that own them.  The patterns suggest dynamic demand 

factors are at play.  Our proposed explanation involves dynamic demand side forces, growth of a 

                                                 
8 Of course, single-unit plants are not restricted to remaining in single-unit firms their entire life, nor for that matter 

are multi-unit plants restricted to that type of firm.  The more common transformation between these is for a plant in 

a single-unit firm to become part of a multi-unit firm, either through acquisition by another firm or through its own 

firm acquiring additional plants. In the appendix we also show that the patterns in Tables 1 and 2 are robust to 

controlling for firm age (see Table A.2).  That is, there is slow growth of new plants even in large, mature firms. 
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customer base or building a reputation (for example), that take considerable time to play out.  

These forces lead to gradual growth of an entrant’s “demand stock,” at least among entrants good 

enough to survive.  The uncertainties tied to such processes may also create for the business an 

option value of waiting to expand until further information about demand is revealed (e.g., Dixit 

and Pindyck (1994)).  It is also likely that the rate of demand stock growth and the level of 

uncertainty are related to the characteristics of a plant or the firm that owns it. 

We purposefully only loosely microfound the processes behind demand stock growth in 

our model, as demand growth likely has multiple sources among the industries in our sample and 

across producers more broadly.  These could include customer learning through “word of 

mouth,” the firm’s own advertising efforts, the blossoming of producer-customer relationships 

through repeated interactions, or several other possibilities.  It can involve expansion of 

downstream buyers on either the extensive or intensive margin.  We refer to the process 

generically as “learning,” but the building of any sort of relationship capital along buyer-supplier 

links fits our conceptual framework.9  What we seek to do here is characterize the basic 

mechanics of that generic process and investigate how it interacts with producer behavior. 

We assume the plant faces an isoelastic contemporaneous demand curve: 

(2) 𝑞𝑡 = 𝜃𝑡𝐴𝑔𝑒𝑡
𝜙

𝑍𝑡
𝛾

𝑝𝑡
−𝜂

, 

where pt is the current price charged by the plant.  Several factors shift the demand curve.  t is 

an exogenous demand shock that we assume follows an AR(1) process.  Aget is the plant’s age.  

Along with parameter , this accounts for deterministic changes in plants’ demand as they age.  

Finally, Zt is a demand shifter that with parameter  links a plant’s current activity to its future 

expected demand level.  Specifically, we assume Zt evolves according to the following process: 

(3) 𝑍𝑡 = (1 − 𝛿)𝑍𝑡−1 + (1 − 𝛿)𝑅𝑡−1. 

Thus, Zt is a sort of operating history of the plant.  It grows with past plant sales Rt-1 

subject to depreciation at a rate δ. Sales are measured as pt-1qt-1  (where qt is the plant’s current 

output; we use lagged rather than current sales only for analytical convenience).  This process 

                                                 
9 Our read of the evidence is that the customer “learning” that drives demand stock growth is much broader than the 

simple process of buyers finding out about the existence of a producer.  While spotty information about mere 

existence might be consistent with the large gaps in idiosyncratic demand present at plants’ births, it seems unlikely 

to explain why convergence takes upwards of 15 years.  We posit that learning involves much deeper components, 

like details of producers’ product attributes, the quality and quantity of their bundled services, the consistency of 

their operations, their expected longevity, and so on.  Having to learn about these features can impart considerable 

inertia into producers’ demand stocks. 
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captures dynamic demand processes where a plant’s potential customer base is related to its past 

sales activity.  For instance, the process embodies many types of “word of mouth” effects 

consumers are more likely to have heard about a producer or its product if it has operated more 

in the past.  This nests the demand-side analog to the specification common in the supply-side 

learning-by-doing literature, where learning depends only on cumulative output; i.e., δ = 0.  We 

consider both this and the more general specification in our estimation. 

On the supply side, the plant’s production function is given by 

(4) 𝑞𝑡 = 𝐴𝑡𝑥𝑡, 

where At is its TFPQ level, and xt is its input choice.  This input can be thought of as a composite 

of labor, capital, energy, and materials inputs, weighted appropriately.  (For example, if the 

technology is Cobb-Douglas and there are constant returns to scale, the composite would be the 

plant’s inputs raised to their respective input elasticities.)  The plant faces two costs: a factor cost 

of wt per unit of xt and a fixed operating cost of f per period.  The factor cost, given the form of 

the production function and the role of TFPQ in it, implies the plant’s (constant) marginal cost is 

ct = wt/At. 

Using (2) to write a plant’s revenues in terms of its quantity gives an expression for the 

plant’s periodic profit function: 

(5) 𝜋𝑡 = 𝜃𝑡

1

𝜂𝐴𝑔𝑒𝑡

𝜙

𝜂 𝑍𝑡

𝛾

𝜂𝑞𝑡

1−
1

𝜂 − 𝑐𝑡𝑞𝑡 − 𝑓 = 𝑅𝑡(𝑍𝑡, 𝑞𝑡) − 𝑐𝑡𝑞𝑡 − 𝑓. 

 The plant manager maximizes the present value of the plant’s operating profits.10  This 

problem can be expressed recursively as follows: 

(6) 𝑉(𝑍𝑡, 𝐴𝑡, 𝐴𝑔𝑒𝑡 , 𝜃𝑡) = max
𝜒𝑡

{0(1 − 𝜒𝑡), 𝜒𝑡 supqt
𝑅𝑡(𝑍𝑡, 𝑞𝑡) − 𝑐𝑡𝑞𝑡 − 𝑓 +

𝛽𝐸𝑉(𝑍𝑡+1, 𝐴𝑡+1, 𝐴𝑔𝑒𝑡+1, 𝜃𝑡+1)}, 

where V() is the plant’s value given state variables, and χt is the plant’s continuation decision (χt 

= 1 if the plant continues to operate, while χt = 0 if the plant shuts down).  Zt is endogenously 

affected by the plant’s input choices; the plant’s age, TFPQ At, and demand shock t evolve 

exogenously.  The plant discounts the future by a factor of  < 1. 

The plant’s continuation decision is made explicit in (6).  It can operate (χt = 1) and earn 

the profits this entails, or it can exit (χt = 0) and earn the outside option, normalized to zero here.  

                                                 
10 We abstract from any agency issues that may arise between plants’ managers and the owners of these 

establishments (if they are different people). 



13 

  

If it chooses to operate, it takes as given its past operating history as summarized in Zt and 

chooses current production qt to maximize its present value.  This choice of qt simultaneously 

pins down the plant’s price and revenues through the demand curve. 

The dynamics inherent in the plant’s choice problem are apparent: by producing more 

(equivalently: pricing lower) today, the plant can shift out its demand curve tomorrow.  The 

optimal production level (price) in this case will be higher (lower) than that implied by a purely 

static problem where current price is not tied to future demand.  This is consistent with what we 

found in Foster, Haltiwanger, and Syverson (2008): young plants in our sample had lower 

average prices than older plants in the same industry. 

It is important to note that the only source of dynamics in this model comes through the 

demand process.  If other dynamic forces affect plant behavior, they will be interpreted through 

the lens of our model as demand.  It is therefore important that we consider any other such forces 

and how they might impact the interpretation of our results.  We do this in detail in Section 6. 

Optimal dynamic behavior (the plant’s qt trajectory) is given by the Euler equation 

(derivation in the appendix): 

(7) 
𝑐𝑡

𝑝𝑡
− (1 −

1

𝜂
) = 𝛽(1 − 𝛿)𝐸 {𝜒𝑡+1 [

𝑐𝑡+1

𝑝𝑡+1
− (1 −

1

𝜂
) +

𝛾

𝜂

𝑐𝑡+1

𝑝𝑡+1

𝑅𝑡+1

𝑍𝑡+1
]}, 

where again 𝜒𝑡+1 = 1 if the plant survives.11  Note that in deriving this expression, we have used 

the demand curve to substitute out for the unobservable state variable 𝜃𝑡, which makes 

estimation of the Euler equation much simpler. 

The intuition behind the plant’s optimal dynamic behavior can be seen in this Euler 

equation.  The first term on the left hand side is the inverse of the plant’s price-to-marginal-cost 

ratio.  The second term is a function of the elasticity of demand familiar as the inverse of the 

optimal markup for a firm facing a residual demand elasticity of –.  Thus in a completely static 

production/pricing optimization problem, the left hand side of the equation would be zero.  It is 

not generally so here because of the dynamics discussed above.  Because the plant shifts out its 

demand curve tomorrow by selling more today, it will markup price less over marginal cost than 

in a static world to induce extra sales.  Another way to think about this is that now its marginal 

revenue is not just what is implied by the contemporaneous demand function.  It also includes 

                                                 
11 This representation of the Euler equation with the possibility of exit is consistent with Pakes (1994) and 

Aguirregabiria (1997).  In the estimation process we discuss below, we build on the approaches of Aguirregabiria 

(1997) and Alonso-Borrego (1998) for addressing this selection issue. 
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the effect on the discounted expected increase in future demand via growth of “demand stock” Z.  

With a lower markup than implied by the static rule, the cost-price ratio in the first term will be 

larger than the second term, and the left hand side will therefore generally be positive. 

The first two terms in the square brackets on the right hand side are the same markup 

function as that on the left hand side of the Euler equation, except for the next period.  Of course, 

being in the future, this is affected by discounting and the depreciation of Zt, and it holds in 

expectation rather than ex-post.  Again, this term would be zero in a static setting but is generally 

positive here due to demand dynamics. 

The third right-hand-side term in the square brackets depends on the ratio of the plant’s 

expected next-period revenue to its operating history as captured in Zt+1.  (Note that Zt+1 is known 

at the end of period t, as it is solely a function of period-t values; see (3).)  This term is positive 

as long as the endogenous impact of past sales on demand is positive (i.e., as long as  is 

positive). 

The Euler equation governs the rate at which the plant’s cost-price ratio falls, or 

equivalently, how quickly it raises its price-cost markup. If  = 0, future demand does not depend 

on current production, and the solution to the Euler equation is for the plant to charge the optimal 

static markup.  If on the other hand  > 0, the plant will charge a markup below the static 

monopoly level.  Notice that for plants that have been operating a long time, the ratio of (flow) 

revenues to demand stock Rt+1/Zt+1 will tend to be small.  Thus for these plants, the third term on 

the right hand side will be small and the solution to the Euler equation will imply a price-cost 

markup close to the static optimum.  Therefore in general the demand dynamics imply that a new 

plant starts out with a markup that may be considerably lower than the static optimum given the 

price sensitivity it faces, and it then gradually raises its markup toward the static solution as its 

demand stock grows large relative to its current revenues. 

The Euler equation (7) can be further simplified by noting that Rt = ptqt, defining total 

variable costs as Ct = ctqt (recall that the production function has constant returns), and 

multiplying both the numerator and the denominator of the cost-price ratio by the plant’s 

quantity as needed.  This yields 

(7a) 
𝐶𝑡

𝑅𝑡
− (1 −

1

𝜂
) = 𝛽(1 − 𝛿)𝐸 {𝜒𝑡+1 [

𝐶𝑡+1

𝑅𝑡+1
− (1 −

1

𝜂
) +

𝛾

𝜂

𝐶𝑡+1

𝑍𝑡+1
]}. 
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Both plants’ variable costs and revenues are readily observable in our data, and Zt is constructed 

from past revenues.  Thus we can observe all of the components of the Euler equation up to 

parameters. 

 

4.1. Estimation 

 To estimate the Euler equation, we must address the issue of selection.   We provide 

details in the appendix, but note we can specify the ex post error for our Euler equation 

conditional on survival (𝜒𝑡+1 = 1) as  

(8) 𝑒𝑡+1 =
𝐶𝑡

𝑅𝑡
− (1 −

1

𝜂
) − 𝛽(1 − 𝛿) [

𝐶𝑡+1

𝑅𝑡+1
− (1 −

1

𝜂
) +

𝛾

𝜂

𝐶𝑡+1

𝑅𝑡+1

𝑅𝑡+1

𝑍𝑡+1
] + 𝜓1𝑀𝑡+1, 

where Mt+1 is the selection correction term.   As we show in the appendix, the conditional 

expectation of this error term et+1 conditional on the information set available at time t is equal to 

zero.  To implement this approach, we need to construct the selection correction term Mt+1.  As 

Vella (1998) notes, it is possible to construct the correction term under alternative distributional 

assumptions about the error term in the auxiliary selection estimation.12 The results reported in 

the paper are based on the selection correction term that arises when assuming the error term in 

the survival equation has a normal distribution, making the selection correction term the inverse 

Mills ratio.  In unreported results, we find that the results are robust to using a logistic 

distribution. 

Our approach in including a selection correction term in the Euler equation builds on 

Aguirregabiria (1997) and Alonso-Borrego (1998).  They include such selection terms in Euler 

equations and implement estimation via a two-step procedure.  We instead estimate the selection 

correction jointly with the Euler equation (and, as we discuss below, the demand equation as 

well) via system generalized method of moments (GMM).  This joint estimation has, as noted by 

Semykina and Wooldridge (2013), advantages of both efficiency and in directly generating the 

correct standard errors (unlike 2-step procedures where the standard errors must be adjusted for 

the first step).  We identify the auxiliary selection equation by using the variables that emerge 

from the selection model and analysis in Foster, Haltiwanger and Syverson (2008).  Specifically, 

plant-level physical productivity, prices, and capital stock are used in the selection equation.  

                                                 
12 See in particular discussion following Assumption 2 on page 138 of Vella (1998).  Assumption 2 replaces the 

joint normality assumption for the standard Heckman correction with the assumption that the error term from the 

primary equation is a linear function of the error term from the selection equation and that the latter is from a known 

distribution.  We make Assumption 2 from Vella (1998) in our analysis. 
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Capital stock is not used as an instrument in the Euler or demand equations, so the selection 

correction is identified in part on this basis. 

In estimating the Euler equation by using GMM we take advantage of the property that 

the ex post error is orthogonal to variables dated t and earlier.  These include lagged cost-revenue 

ratios, lagged revenues, and age dummies. 

We include the demand equation (2) as part of our system GMM estimation for two 

reasons. First, estimating the demand equation along with the Euler equation lets us recover the 

impact of age.  Notice that the effect of age on plant demand () is missing from the Euler 

equation (7a) because substituting out for the unobservable θt using the demand curve causes the 

Aget terms to cancel.  Second, joint estimation also imposes additional structure that lets us 

harness additional data variation to identify the model’s parameters. 

In estimating demand, we must address the issue of endogeneity. The right-hand-side 

variables of (2) include endogenous plant level prices as well as state variables Zt and Aget, that 

in the presence of serially correlated demand shocks, are correlated with the unobserved demand 

level.  To deal with these issues, we first take logs of (2), which yields 

(2a) ln 𝑞𝑡+1 = 𝜃̃𝑡+1 + 𝜙 ln 𝐴𝑔𝑒𝑡+1 + 𝛾 ln 𝑍𝑡+1 − 𝜂 ln 𝑝𝑡+1 

where without loss of generality we have dated the demand equation in t+1 to keep the estimated 

demand equation’s timing consistent with the Euler equation, and 𝜃̃𝑡+1 ≡ ln 𝜃𝑡+1.  We assume 

that the unobserved demand shock 𝜃̃ follows an AR(1) process: 

(9) 𝜃̃𝑡+1 = 𝜌𝜃̃𝑡 + 𝜐𝑡+1 

where 1t is iid.  We then quasi-difference the demand equation (2a) so that we have: 

(2b) ln 𝑞𝑡+1 = 𝜌 ln 𝑞𝑡 + 𝜙 ln 𝐴𝑔𝑒𝑡+1 − 𝜌𝜙 ln 𝐴𝑔𝑒𝑡 + 𝛾 ln 𝑍𝑡+1 − 𝜌𝛾 ln 𝑍𝑡 − 𝜂 ln 𝑝𝑡+1 +

𝜌𝜂 ln 𝑝𝑡 + 𝜓2𝑀𝑡+1 + 𝜐𝑡+1 

 The residual from the quasi-differenced demand equation (2b), 𝜐𝑡+1, is the unobserved 

demand innovation for plants that survived from t to t+1.  As with the Euler equation, we include 

a selection correction Mt+1 in the estimated quasi-differenced demand equation to address any 

selection bias.  The unobserved demand innovation 𝜐𝑡+1 should be uncorrelated with variables 

dated t and earlier and with instruments dated in t+1 that are correlated with the RHS variables of 

(2b) but uncorrelated with the innovation to demand shocks.  As discussed (and implemented) in 

section 2.1, TFPQ is a valid instrument for plant-level prices in the demand equation.  We use 

this instrument here as well. 
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 Estimation of this demand equation relies on variation (both across plants and within 

plants over time) in age, past revenues, and cost-driven price shifts for identification.  A 

challenge in the estimation of (2b) is to obtain sufficient variation in the data to identify 

separately the dynamics of the unobserved demand shock, the role of plant age and the role of 

learning about demand through experience.  It is partly due to these identification challenges that 

we also exploit the variation important for identification of the Euler equation, (7a). 

A basic measurement and estimation issue for both the demand and Euler equations is to 

construct measures of the demand stock, Z.  We observe plant revenues in every Census of 

Manufactures back to 1963, so Rt is directly observable.  Past revenues can be used to construct 

the plant’s demand stock Zt as a function of past sales and the depreciation rate: 

(3a) 𝑍𝑡 = (1 − 𝛿)𝜏𝑍𝑡−𝜏 + ∑ (1 − 𝛿)𝑖𝑍𝑡−𝑖
𝜏
𝑖=1 , 

where  is the number of periods the plant has operated. 

 The remaining issue for measuring demand stocks is how to initialize Z for entrants, Z0.  

Here, we draw insights from the descriptive empirical results in Section 3.  We allow a plant’s 

initial demand stock to be a function of the structure of the firm that owns it.  Specifically, we 

specify the initial demand stock of plant e as 

(10) 𝑍0𝑒 = (𝐾0𝑒)𝜆1 (
𝐾0𝑠(𝑒)+𝐾0𝑒

𝐾0𝑒
)

𝜆2

,

 

where K0e is the initial physical capital stock of e, K0s(e) is the sum of the physical capital stocks 

of plant e’s siblings (i.e., the total capital stock that year of the other plants owned by the same 

firm within manufacturing), and 1 and 2 are parameters.  The logic behind (10) is that a plant’s 

initial demand stock can be related to its own physical size (K0e) as well as the size of its owning 

firm.  This specification therefore incorporates the possibility, seen in the previous section’s 

results, that entrants of larger firms start with larger idiosyncratic demand levels than do those of 

smaller firms.  Note that (10) mechanically allows for single-plant firm entrants, where the 

entrant is the firm, because in that case K0s(e) = 0 and the ratio in the parentheses is unity.  

Additionally, (10) nests the possibility that multi-plant firm entrants do not have initial demand 

advantages, which would be the case if 2 = 0.  This specification lets the data tell us how 
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important the owning firm’s characteristics are in determining the initial demand stock of a new 

plant.13 

  

4.2. Discussion 

The comparison between the estimates of  and , which respectively parameterize the 

influence on demand of plant age and past sales, is informative about the sources of the 

dynamics of the demand process discussed above.  Age captures deterministic demand shifts that 

would happen regardless of the level of a plant’s past activity.  We think of this process as 

“demand accumulation by being.”  Zt, on the other hand, captures the influence of past sales 

activity, or “demand accumulation by doing.”  Models that posit dynamic demand growth 

through passive consumer learning imply that the influence of plant age—the simple existence of 

the plant for a period of time—will be greater.  This shows up in the demand accumulation by 

being channel.  Those emphasizing endogenous demand-stock building—resulting from the 

active efforts of the plant—will show a large influence of Zt, demand accumulation by doing.  

We can measure the relative importance of each in the data. 

 

5. Estimation Results 

We jointly estimate via GMM the demand (2b), Euler (7a) and selection equations.14  We 

estimate the model for the entire sample, for the subsample containing only local product 

producers, and for concrete producers only.  We define local products as those for which the 

majority of output is shipped less than 100 miles according to the Commodity Flow Survey.  In 

our sample, these are boxes, bread, concrete, and ice.  We highlight the local products subsample 

since it is possible that our model is better suited to such products, or it could be that the 

                                                 
13 We face two other practical constraints in the construction of Zt.  First, our measures of Z are left-censored for 

about a third of our sample.  While we are able to trace back plant revenues almost 20 years before our sample 

begins, some plants had been in existence before then.  Since we cannot see these plants’ past sales, we cannot fully 

construct an initial Z for these firms.  Instead, we extend the logic of our modeling of new plants’ Z0 by letting the 

1963 cohort’s Z1963 be given by the same form as (10).  Second, we do not observe plant sales in the four years 

between censuses and can only build Z stocks using observed revenues.  Essentially, we are assuming that sales are 

constant between censuses and ignoring the impact of depreciation in the intervening years.  We expect the fact that 

the cross-sectional variation in sales swamps intertemporal variation within plants to mitigate this measurement 

problem. 

14 We do not estimate β in the Euler equation but rather set it to be consistent with annual discount factor of 0.98.  

We check the robustness of our results to alternative values.  Results for the selection equation are available on 

request and are consistent with those in Foster, Haltiwanger and Syverson (2008).  High TFPQ, high real capital and 

high price plants are less likely to exit. 
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parameters of demand accumulation dynamics might easily be different for these products.  The 

concrete-only subsample enables us to focus on a specific product where we have many 

observations, permitting estimation of industry-specific parameters.  We would prefer to let all 

parameters vary across all products in our estimation, but some of our 10 sample industries 

simply do not have enough plant-year observations to separately identify their industry’s 

parameters with any useful precision.  These subsamples serve as an alternative means of 

exploring the robustness of our findings across products.  However, we do also report some 

results below where we permit key parameters to vary as a function of the industry’s attributes. 

The variables included in our estimated model are defined as above; however, we make 

one change in the demand specification from (2b).  Rather than imposing the constant-elasticity 

form shown in the equation, we allow the influence of plant age to vary non-parametrically.  We 

include a set of plant age dummies in the estimated version of (2b): a young dummy equal to one 

if the plant in period t is one census period (i.e., 5-9 years) old, and a medium age dummy equal 

to one if the plant is two census periods (10-14 years) old.  The omitted group consists of mature 

plants at least three census periods (15+ years) old in period t.  (We have no entrants in the 

estimation sample because we need to use lagged variables to identify the dynamic parameters.) 

We also include controls in the demand equation not explicitly referenced in the above 

discussion of the model.  Because we are pooling data across products and years, we include a 

set of fully interacted product and year effects.  We also include measures of the local market for 

those products that are deemed local products.  We include a measure of local income in the 

market (see Foster, Haltiwanger and Syverson (2008) for details) as well as a measure of the 

average price of local competitors in the same industry.  These variables are potentially 

important in accounting for shifts in demand that would otherwise be subsumed into the 

unobservable demand component θ.  There is no reason to believe that they should be directly 

relevant for the Euler equation, however. 

 

5.1. Estimates of the Model on the Full Sample 

We estimate two versions of the model.  One imposes a zero depreciation rate of the 

demand stock ().  The other version allows  to be estimated with the other parameters.  In the  

= 0 case, the demand stock simply reflects cumulative real revenue.  This case is the demand-

side analog to standard learning-by-doing models that do not allow for “forgetting” in the style 



20 

  

of Benkard (2000).  The results of the estimation are reported in Table 3.  Column 1 reports the 

results of the cumulative learning model with no depreciation, and column 2 reports the results of 

the model when  is estimated. 

We find qualitatively similar results in the two alternative models.  For example, we find 

roughly similar demand elasticities, positive and significant estimates of  consistent with 

“demand accumulation by doing” and little evidence of “demand accumulation by being.”  In 

what follows, though, we focus our attention on the model with estimated depreciation because 

the evidence clearly rejects the hypothesis that the depreciation rate of the demand stock is zero.  

The estimate in the full sample for  is 0.646 which implies an annual depreciation rate of about 

19 percent (recall the time horizon is five years, so (1 – 0.188)5 = 0.354).  As will become clear, 

finding an economically and statistically significant depreciation rate is a common finding in the 

specifications we consider. 

We now turn to a more detailed discussion of the estimates of this model.  First, consider 

the estimates of the price elasticity of demand, -η.  The estimate for the full sample is -1.6.  This 

value is in a similar range as those in Foster, Haltiwanger and Syverson (2008) with a 

significantly richer specification of the demand structure and its determinants.  Also, note that we 

include as a control a measure of competitors’ price in the local market for those products that 

are shipped locally (for national products this effect is not separately identified, as we are already 

including product-by-year effects).  We find that the elasticity of a plant’s demand with respect 

to a price increase by its local competitors is 0.30.  This is consistent with the hypothesis that 

higher prices of competitors, other things equal, increase demand for the plant in question.15 

In terms of the main parameters of interest, the results are consistent with the basic notion 

of a dynamic demand accumulation process.  We find positive and significant effects of “demand 

accumulation by doing” in the elasticity of future demand to the demand stock, .  The estimated 

value of  is around 0.92.  Producing more today will significantly shift the plant’s demand curve 

out tomorrow; a 10 percent increase in a plant’s demand stock corresponds to a 9 percent 

increase in the number of units the plant sells at any given price.  As reflected in the Euler 

equation, a producer’s output (or price) choice in the current period affects its marginal revenue 

not just in the present period but in the future as well. 

This parameter estimate can also help us get a feel for the potential return to a business 

                                                 
15 We also find that local income increases demand. 
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“investing” in its demand stock by lowering prices today in hopes of shifting out its demand 

tomorrow.  Based on the estimated price elasticity in the model with depreciation, a ten percent 

price cut will increase current quantity sold by about 16 percent and current revenues by 6 

percent.  (This is a sizeable price deviation from one’s competitors, but not unusual.  The 

average within-market standard deviation of plants’ logged prices is 0.21.)  The effect of this 

increase in revenues on the plant’s demand in the following year diminishes with the plant’s 

existing demand stock Z because a given revenue increment will have a smaller effect on larger 

existing stocks.  If we consider a plant whose pre-existing demand stock is of roughly equal size 

to its expected revenue—that is, a young plant that would have a relatively high return to 

investing in future demand—raising revenues by cutting prices ten percent would shift out next 

year’s demand by about 3 percent, taking into account both depreciation and .  This means the 

plant will be able to sell 3 percent more units at a given price than it would otherwise. 

We find that, having controlled for a plant’s demand stock, “demand accumulation by 

being” contributes little to the demand gaps across businesses of different ages.  The coefficients 

on the young and medium dummies are positive, small in magnitude and not significant.  These 

estimated age effects here are of the opposite sign and much smaller than their analogs in Table 

1.  This indicates that once we have accounted for endogenous demand accumulation (and other 

factors), the remaining “exogenous” age gap has been essentially eliminated.  We conduct 

further exercises below to gauge the quantitative implications of the estimated demand 

accumulation parameters. 

Remember that both of these “demand accumulation by doing” and “demand 

accumulation by being” effects are estimated while controlling for the potential presence of 

serially correlated unobserved demand shocks.  We parameterize the persistence of these demand 

shocks with the five-year AR(1) coefficient ρ, which we estimate to be about 0.06 (although not 

statistically significant).  This five-year persistence rate corresponds to an annual rate of 0.57. 

The impact of the characteristics of the owning firm on an entering plant’s initial demand 

stock is seen in the comparison of the estimates of λ1 and λ2.  The value of λ1, which 

parameterizes how a plant’s initial demand stock Z is related to its physical capital stock, is 0.94, 

indicating that, not surprisingly, plants with larger initial physical capital tend to have larger 

starting demand stocks.  The parameter also indicates that the ratio between the two types of 

capital falls slightly in the plant’s size.  The estimated value of λ2, which is the elasticity of a 
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plant’s initial demand stock to the size of the firm (in physical capital terms) relative to the 

entering plant, is 0.32.  This indicates that, consistent with the descriptive results seen in Table 2, 

new plants of larger firms do in fact have higher initial demand stocks.  A plant started by a firm 

that is twice as large as another entering plant’s firm will start with about a 22 log point 

(0.317*ln2 = 0.22) higher demand stock. 

The table also reports the coefficient estimates for two selection controls.  The coefficient 

estimates on the selection controls suggest that it is important to take into account the likelihood 

of surviving especially for the demand equation.  But we also note that the values of the other 

parameter estimates are roughly similar in specifications that exclude the selection controls. See 

Table A.3 for estimated results without selection controls.  Observe, for example, the estimate of  

 without selection controls is 0.78 (s.e. = 0.01) compared to 0.91 with selection controls (Table 

3). 

 

5.2. Estimates Using Local Products and Concrete Plants  

To explore the consistency of our parameter estimates across the industries in our sample, 

we estimate the model on two successively smaller subsamples.  One uses only those plants in 

local products industries (boxes, bread, concrete, and ice), and the other uses concrete plants 

alone.  (We choose concrete for the single-industry subsample because it has the largest number 

of plants in our sample of any industry.)  The results are in Table 4; column 1 reports the 

estimates for the local products subsample, and column 2 reports the concrete results.  We again 

focus on the specification with depreciation because in both of these subsamples the estimated 

rate of depreciation is far from zero. 

Overall, the results for the two subsamples are qualitatively similar to the results for the 

full sample, suggesting it is not overly restrictive to constrain the parameters to be the same 

across all product industries.  There are some quantitative differences, however, that we discuss 

briefly.  Demand is more own-price elastic for concrete than for the entire sample.  Concrete 

demand is also considerably more responsive to local competitors’ prices.16  The all-local-

products subsample has elasticities that are close in magnitude to those from the entire sample. 

The main parameter of interest, the elasticity of demand to the plant’s endogenously 

                                                 
16 The estimated price elasticity of demand for concrete is somewhat lower than that reported in Foster, Haltiwanger 

and Syverson (2008). 
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acquired demand capital, is roughly the same in these subsamples as for the whole sample, with  

estimated around 0.90.  The depreciation rate of demand capital is also similar in these sub-

samples with concrete estimated to have lower depreciation rate of 12 percent per year compared 

to 21 percent per year for all local products.  Combining these depreciation and price elasticity 

estimates suggests that a plant that cuts prices by ten percent to invest in future demand will raise 

current revenues by about 7 percent for local products and 13 percent in the concrete subsample.  

This increase in sales will in turn increase the producer’s quantity demanded next year by about 

3 percent for local products and 6 percent for concrete. 

We also find that the exogenous (age-related) demand accumulation process has similar 

qualitative patterns as for the entire sample.  For local products, the estimated effects are very 

small and statistically insignificant.  For concrete, there is a slightly larger positive estimated 

demand-accumulation- by-being effect that is mostly observed in the producer’s transition from 

young to medium age but even this is statistically insignificant.  Again, exogenous demand 

accumulation looks to play little role in accounting for the slow growth of demand.  . 

The estimated value of λ1 is 0.92 for local products and 0.97 for concrete, which again 

indicates larger plants tend to have larger starting demand stocks.  For these products, the ratio 

between initial demand and physical capital also declines slightly with plant size.  The influence 

of firm size on a plant’s initial demand stock, which is embodied in λ2, is 0.34 for local products 

and 0.33 for concrete.  A plant started by a firm that is twice as large as another entering plant’s 

firm will start with about a 24 percent higher demand stock if the plant is in the local products 

industries and a 23 percent higher demand stock if the plant is in the concrete industry. 

Again, controlling for survival is important in the demand equation.  However, once 

again we find that estimating the model without including any selection correction terms (not 

shown) yields similar estimates of the other parameters. 

 

5.3. Interactions with Multi-Plant Firm Status 

A striking result from the descriptive exercises in Section 3 is that entrants that are part of 

larger, multi-plant firms enter with a higher demand stock than those in smaller or single-plant 

firms.  This was confirmed in the estimated model above as well, as the elasticity of initial 

demand stock to the ratio of the firm’s size to the entering plant’s size, λ2, was positive.  

However, it was less clear in the descriptive results whether the rate of convergence of 
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idiosyncratic demand levels was faster for young plants in multi-plant firms than those in small 

firms.  To examine this issue through the lens of our model, we also estimate a specification that 

interacts an indicator for plants that are owned by a multi-plant firm with the model’s parameters 

(except for λ1 and λ2, which already incorporate such multi-unit firm effects).   

The results for both the entire sample (column 1) and the local-products-only sample 

(column 2) are shown in Table 5 (for the sake of brevity, we do not report results for ready mix 

concrete separately – they are similar to those for the local products sample).  To interpret the 

results in this table, the “main effects” provide estimates for single-unit plants, and the 

interactions with the MU dummy show whether MU plants have a significant differential from 

the single-unit plants (thus the total MU coefficient is the sum of the main and interaction 

effects). 

The interactions between the multi-unit indicator and   and 𝜂 for both samples are 

statistically insignificant (although some are non-trivial in magnitude), so we cannot reject the 

hypothesis that both single-unit and multi-unit producers see similar responses of demand to 

their accumulated demand stock and have similar demand elasticities.  On the other hand, 

estimated depreciation is lower for multi-unit plants of local product plants so a given sized price 

cut could yield a slightly greater and longer lasting bump in accumulated demand. 

The “demand accumulation by being” effect is positive but statistically insignificant for 

single unit plants.  For multi-unit plants, the point estimates imply negative but small overall 

estimated effects.  For both single unit and multi-unit plants there is little evidence that overall 

demand accumulation is driven by passive exogenous demand accumulation 

One of the largest differences between single- and multi-unit producers in Table 2 is the 

difference at the time of entry.  This is captured here by permitting the presence and size of the 

parent firm at the time of entry of the plant to contribute to the demand stock.  Given the large 

estimated coefficients for λ2 (about 0.3 for both samples), there is a substantial level shift in the 

demand curve for establishments that are part of multi-unit firms.  Multi-unit plants have initial 

firm-level capital stocks that are on average about 1.9 times that of the median entering 

establishment.  Using the full-sample estimates, this implies such establishments start with 

demand stocks that are 19 log points (0.294*ln1.9 = 0.19) higher. 

 

5.4. Evolution of Demand by Age: Exogenous versus Endogenous Demand Accumulation 
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 To further quantify the contribution of exogenous versus endogenous demand 

accumulation to the observed evolution of demand across plant ages, we return to the metric used 

in Table 1.  In particular, we use the estimated coefficients from our model along with the actual 

data to compute the implied levels of both demand components for every plant-year observation 

in our sample.  We then derive the type of statistics reported in Table 1 for each of these 

computed components. 

  We compute the component of demand from the exogenous demand accumulation 

(“demand accumulation by being”) using the estimates of age dummy variables in Tables 3 and 

4.  For the endogenous demand component (“demand accumulation by doing”), we first compute 

Zt  for every plant in the sample using our data on plants’ revenues and capital stocks along with 

the estimates of  λ1,  λ2  and .  We then combine the estimated Zt with our estimate of  to 

compute the endogenous demand accumulation component for every plant-year observation. 

 Table 6 reports the results of these exercises.  The top panel shows the results for the full 

sample, the middle panel for local products plants, and the bottom panel for concrete plants.  The 

age categories that we use in this exercise are similar to those used earlier, but now we have 

subsumed “Entrants” into the “Young” category for two reasons.  First, the model only yields 

estimates of the exogenous demand accumulation component for these same young and medium 

categories relative to older plants.17  Second, this grouping of ages implies that all counterfactual 

estimates of endogenous demand accumulation component reflect actual past sales rather than 

just our estimated demand stock initialization. 

 Because we use somewhat collapsed age categories and capital stock data are not 

available for all plants used in Table 1, the first row in each of the panels of Table 6 repeats 

exactly the type of analysis done in Table 1 for this restricted sample.  As in Table 1, these 

estimated coefficients are from a regression of plant-level idiosyncratic demand on age dummies 

and industry-year fixed effects.  The demand patterns for each panel in Table 6 are similar 

qualitatively and quantitatively to those in Table 1.  Young and medium aged plants have much 

lower demand than old plants, and convergence is slow. 

                                                 
17 While the “demand accumulation by being” component for the young reflects plants between 5-9 years old, one 

can obtain for a plant of any age an estimate of the contribution of all components of demand other than the 

endogenous demand accumulation by taking the difference between the overall producer-level demand observed in 

the data and the endogenous demand accumulation component.  This difference includes the accumulation by being 

component but also other components like the unobserved persistent demand component θ. 
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 Our model lets us decompose this overall demand residual into multiple components.18  

The age patterns for the endogenous accumulation component are reported in the second row of 

each panel.  For the full sample, the endogenous accumulation component explains the entire 56 

log point gap between young and old plants and the entire 28 log point demand gap between 

medium and old plants.  These results imply that the overall demand shock patterns for our 

sample plants are accounted for by endogenous accumulation of demand rather than exogenous 

components. 

 Results for local and concrete plants are similar.  The endogenous accumulation 

component in all cases accounts for virtually all (for concrete, substantially more than all) of the 

demand gap between young and old and medium and old plants.  “Demand accumulation by 

being” accounts for virtually none of the overall demand accumulation.    

  

6. Alternative Explanations and Robustness Checks 

In this section, we address two basic concerns that we anticipate readers might have and 

provide some additional robustness checks.  The first basic concern is relatively minor and is 

addressed in the first subsection. It regards whether our idiosyncratic demand measures—the 

ones used in Sections 1 and 2 to motivate our model—do actually reflect a plant’s demand state 

in a given period.  In the second subsection we address the more serious concern that we have 

allowed only one channel for dynamics in our model, demand accumulation.  If a plant’s 

management takes into account other dynamic factors when making decisions, we would 

mistakenly measure these other factors’ influence as a response to our specified demand 

dynamics. We agree that both of these concerns are theoretically valid and that they almost 

surely have some empirical relevance.  However, we believe that the setting of the problem and 

the way we estimate the model substantially mitigates such concerns. 

 

6.1. What Do Our Idiosyncratic Demand Stock Measures Reflect? 

Our idiosyncratic demand stock measures reflect the cross-plant variation in units of 

output sold that is, by construction, purged of the effects of plants’ physical production costs.  If 

plant A both sells more output and has a higher idiosyncratic demand measure than plant B, plant 

                                                 
18 The two components we report do not add up to the total because there are other factors—in particular, the serially 

correlated demand component θ — that enter into the demand equation. 
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A’s high sales are not simply the result of plant A having lower prices because it has low costs.  

Plant A would sell more than plant B even if it were charging the same price.  Regardless of any 

other measurement issues with these idiosyncratic demand measures, by construction they reflect 

quantities sold that are orthogonal to plants’ physical production costs as captured in our TFPQ 

measures. 

That said, there are other measurement issues that might lead these demand measures to 

capture other factors.  Primary among these is the issue of capacity utilization.  The demand 

measure is based on the quantity (i.e., the number of units) the plant sells.  Our descriptive 

results could be explained by an alternative story where new plants are built to be the same size 

(at least in terms of capital) as older plants in their industry, but they look like they have low 

demand because they are slow to be fully utilized.  In this case, firms design plants to be “grown 

into”; they have the physical infrastructure to handle output levels typical of older incumbents, 

but are only lightly utilized at first. 

We have two responses to this possibility.  First, this story is not inconsistent with our 

theorized demand-accumulation process.  New plants may operate at low utilization levels 

precisely because their demand stock is low.  As they accumulate a customer base or build 

supplier-consumer relationship capital in one form or another, their output slowly grows to fit the 

capacity of the plant.  Why a firm might find it optimal to build an initially oversized plant will 

depend on the size of capital adjustment costs (more on this below), but our idiosyncratic 

demand measures could still reflect the demand accumulation process in this case. 

Second, the data do not support this sort of capacity utilization pattern.  We cannot 

measure capacity utilization directly, but we can construct two good utilization proxies for each 

plant: the capital-stock-to-output ratio, and the energy-use-to-capital-stock ratio.  The former 

measures whether plants’ production quantities are proportional to their reported capital stocks.  

The latter relates a common proxy in the literature for the flow of capital services, energy use, to 

reported capital stock measures.  For capacity utilization to explain the demand patterns 

discussed above, younger plants would have to have systematically higher capital-to-output 

levels and lower energy-to-capital ratios than older plants. 

Table 7 presents the utilization patterns for our sample.  The table replicates the 

specification of Table 2, except using the capacity utilization proxies as the dependent variables 

(each is used in a separate regression).  The results indicate mixed patterns of utilization across 
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plant ages, but even in those cases where utilization moves in the right direction, there is not 

nearly enough quantitative movement to explain our patterns above.  When measured by capital-

to-output ratios, as in the top half of the table, utilization is actually higher (capital-output ratio is 

lower) for single-unit entrants compared to older single-unit plants.  This pattern is reversed 

among plants in multi-unit firms, but there the total utilization difference between new and old 

plants is about 5 percent.  Thus it can explain only about 10 percent of the measured demand 

gap.  Similar patterns hold, though with less monotonicity over age groups, for the results using 

energy-capital ratios to measure utilization.  Utilization is actually slightly higher at new vs. old 

single-unit plants and new vs. old multi-unit plants.  

 

6.2. Other Dynamic Forces 

A more serious concern is that the demand accumulation process is the only source of 

dynamics in our model.  If plant decisions are made in response to additional dynamic forces, our 

estimation will interpret such actions through a demand accumulation lens, not the true economic 

process driving the decisions. We envision three broadly-defined alternative dynamic factors that 

our plants might face:  a dynamic process in physical productivity (i.e., shifts in At over time), 

financing constraints, and capital adjustment costs.  We address each of these possibilities in 

turn. 

Physical productivity dynamics would involve predictable moves in a plant’s At.  Many 

have documented that plants experience persistent productivity shocks (see the papers in 

Bartelsman and Doms (2000), for example).  Indeed, a possible source of such movements, 

though certainly not the only one, would be a traditional learning by doing mechanism. 

However, Table 1 makes clear that the patterns in the data are not consistent with supply-

side learning by doing—this is, after all, a basic motivation of our investigation.  This suggests 

that physical productivity dynamics are less of a concern in our context.  While individual plants 

in our sample no doubt experience some persistent, predictable At shocks, the results in Table 1 

indicate these do not have much of a systematic correlation with plant age.  Certainly they do not 

hold clear patterns over the 15+ year growth horizons we are attributing to demand movements.  

The quantitative movements in TFPQ that do exist across ages are very small relative to the 

demand variation that is our focus.  So while we agree that physical productivity dynamics exist 

and can play important roles in explaining certain plant-level behaviors, we see no evidence that 
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they are playing a major role in explaining plant-level choices of the type and horizon that we are 

using to identify the demand accumulation process parameters. 

Capital constraints can create dynamics because constrained businesses may accumulate 

financial capital in one period in order to loosen a constraint on expansion in the future.  They 

would also be a reason for new businesses starting small, because if barriers to obtaining credit 

exist, it is plausible that new producers would be more likely to face them than would more 

established businesses. 

We do not have plant-specific information on credit access or costs of capital, so we 

cannot directly test for the presence of credit constraints.  However, we can look at measured 

demand levels and growth for different types of firms that might be expected to systematically 

vary in the extent to which they are credit constrained.  The breakout of demand patterns for 

plants of multi-unit firms in Table 2 speaks to this issue.  Plants in these larger firms expectedly 

face lower credit constraints than do single-unit plant/firms either through easier access to 

external funding or more ability to tap into internal capital.  And while these multi-unit plants 

tend to be larger, they still exhibit the very slow convergence in measured demand levels seen 

among plants of smaller firms.  This seems inconsistent with a world where the measured 

patterns primarily embody financing constraints instead of long-horizon demand accumulation. 

Capital adjustment costs, even in the absence of any credit constraints, could produce 

qualitative patterns similar to those we see in the data.  Plants may respond slowly to even long-

run demand shifts if it is costly for them to change the size of their business.  In such a case, the 

slow output growth we observe may not reflect gradual demand accumulation, but rather a 

gradual expansion in the face of persistently high demand. 

We do in fact expect that capital adjustment costs play a role in plants’ decisions; after 

all, most capital is not rented via short-term agreements, and there are several potential frictions 

in capital sales markets.  However, the estimates from the literature on the size of capital 

adjustment costs suggest that they cannot quantitatively explain the patterns we document.  Even 

assuming adjustment costs at the high range of estimates, the time it would take for a plant to 

close the output gap (assuming capital utilization rates are constant over time) observed in Table 

1 is relatively short.  For example, the capital adjustment costs estimates in Cooper and 

Haltiwanger (2006), which were estimated using similar plant-level data to our own sample 

(except on an annual frequency and spanning the entire manufacturing sector) suggest plant size 
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could fully adjust to the observed output gap in less than one year.  Even some of the larger 

estimates of capital adjustment costs, like those in Gilchrist and Himmelberg (1995), imply the 

capacity adjustment will fully occur in only three years. We also know from the results in Table 

7 that capital adjustment costs are not so large as to necessitate systematic oversizing of newly 

built plants. 

Hence it seems unlikely that capital adjustment costs could explain all, or even most, of 

the 15+ years it takes for plants in our sample to close their measured idiosyncratic demand gap.  

Much as with physical productivity dynamics discussed above, therefore, we expect that while 

capital adjustment costs are important in some contexts, they do not have the quantitative impact 

necessary to explain the long-horizon demand-growth patterns we observe in the data. 

 

6.3. Robustness Checks 

 We discuss briefly a number of robustness checks that we conducted on our analysis in 

this subsection.  Relevant estimates for these robustness checks are reported in the appendix. 

 First, we investigated the sensitivity of our results to permitting a different discount factor 

.  The results reported in Tables 3-6 reflect an assumed annual discount factor of 0.98.  Figure 

A.1 shows how the key parameters of  and  vary for discount factors ranging between 0.96 and 

0.98.  The estimates are quite robust across this range.  We focus on these two parameters 

because they are the critical estimates for the endogenous demand accumulation, but we also 

found (results available upon request) that other estimated parameters are also robust over this 

range of . 

 Second, we explored refinements of the role of being part of a multi-unit firm upon entry.  

The main results imply that plants entering as part of a multi-unit firm have significantly higher 

initial demand stocks.  To explore this mechanism further, we considered whether this is tied to 

the nature of the overlap of a new plant’s activity with its parent firm.  Specifically, we tested 

whether the entering plant’s initial demand was higher if its owning firm had experience 

operating other plants in the same geographic area (BEA Economic Area) and industry (4-digit 

SIC).  We found evidence in favor of this conjecture especially for industry effects as reported in 

Table A.3.  For the sake of brevity, we focus on the local plants sample where these effects are 

most likely to be relevant.  As shown in Table A.3, a plant started by a firm with activity in the 

same industry has statistically significant higher initial demand.  We find that once we isolate the 
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within industry effect the cross industry effect is essentially zero.  In contrast, for geography we 

find that the positive influence of parents size is not tied to the parent being in the same 

geographic area. 

 A third set of refinements we conducted was to allow some systematic across-industry 

variation in the model’s parameters by permitting the estimated parameters to vary with observed 

characteristics of our sample products.  We already saw in Tables 3 and 4 that while the results 

are qualitatively similar across our sample products, there is some quantitative variation in the 

parameter estimates across the full sample, the subsample of local product producers, and 

concrete plants.  We considered allowing the parameters to vary with several alternative product 

characteristics, and in particular the nature of the downstream industries that purchase our 

sample products (identified using the input-output matrix).  We conjectured, for example, that 

producers who sell to downstream industries with more turnover of producers would face weaker 

incentives for demand stock accumulation, while those selling to more concentrated downstream 

industries would face stronger incentives.  In unreported results, we find little evidence in 

support of these hypotheses. 

  

7. Conclusion 

New businesses (and extensions of existing businesses built in new markets) are almost 

invariably smaller than established businesses in the same market, and this size gap closes slowly 

with time.  An active literature spanning several fields has hypothesized that these patterns 

reflect demand dynamics.  We have used a unique dataset of U.S. manufacturing plants to 

empirically explore this hypothesis.  We first demonstrate that these average size gaps across 

plants of different ages are in fact the result of demand rather than supply-side cost 

fundamentals.  Next, after descriptively characterizing patterns of idiosyncratic demand across 

plants, we build and estimate a dynamic model of plant expansion in the presence of a demand 

stock that can grow both exogenously over time and endogenously in the response to the plant’s 

investments.  We find that the model can explain a considerable portion of the relationship 

between plant age and size, even in our sample of physically homogeneous, commodity-like 

products.  The data also indicate that the active (endogenous) “demand accumulation by doing” 

mechanism plays a dominant role in explaining the small size and slow growth of new plants 

compared to the passive (exogenous) “demand accumulation by being” channel.  We also 
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characterize cross-sectional differences in demand levels within similarly aged plants, showing 

for example that entering plants owned by firms that already operate other plants elsewhere 

appear to enjoy some spillover demand capital benefits from their corporate parent. 

Our results imply that, even in commodity-like product industries, entry is difficult.  It 

takes a long time for new businesses, even those owned by large firms, to reach a point where 

they have built enough relationship-specific capital with their potential customers to expect (at 

the same price) to sell the same amount of output as do their more established competitors.  This 

buttresses the recent literature pointing towards the importance of idiosyncratic demand factors 

in explaining the fortunes of businesses, and it has implications for the nature of competition in 

markets, firm valuations, the evolution of industries, and the prospects for exporting in new 

markets. 

A clear next step that researchers can take based on these results is to explore the 

particular mechanisms that underlie the endogenous and exogenous demand accumulation 

processes in our model.  Several questions present themselves: How much of this reflects brand 

effects, or reputation, or other aspects of buyer-supplier relationships?  Does the specific 

mechanism at work differ across markets, and how if so?  Given this, is it natural that active 

accumulation processes quantitatively dominate passive processes?  What affects the extent to 

which a firm’s demand capital spills over to its newly built or newly acquired plants?  These 

questions and others strike us as being important for gaining a deeper understanding of the 

processes at work in our empirical results. 

 

References 
 

Ábrahám, Árpád and T. Kirk White. “The Dynamics of Plant-Level Productivity in U.S. 

Manufacturing.” Center for Economic Studies Working Paper 06-20, 2006. 

 

Aguirregabiria, Victor. “Estimation of Dynamic Programming Models with Censored Dependent 

Variables.” Investigaciones Economicas, 21(2), 1997, 167-208. 

 

Arkolakis, Costas. “Market Penetration Costs and the New Consumers Margin in International 

Trade.” Journal of Political Economy, 2010, 118(6), 1151-1199. 

 

Alonso-Borrego,  César.  “Demand for Labour Inputs and Adjustment costs: Evidence from 

Spanish Manufacturing Firms, Labour Economics, 1998, 475–497. 

 

Asplund, Marcus and Volker Nocke. “Firm Turnover in Imperfectly Competitive Markets.” 



33 

  

Review of Economic Studies, 73(2), 2006, 295-327. 

 

Bar-Isaac, Heski and Steven Tadelis. “Seller Reputation.” Foundations and Trends in 

Microeconomics, 4(4), 2008, 273-351. 

 

Bartelsman, Eric J. and Mark Doms. “Understanding Productivity: Lessons from Longitudinal 

Microdata.” Journal of Economic Literature, 38(3), 2000, 569-95. 

 

Benkard, C. Lanier. “Learning and Forgetting: The Dynamics of Aircraft Production.” American 

Economic Review, 90(4), 2000, 1034-54. 

 

Brown, J. David, John S. Earle, and Almos Telegdy. “The Productivity Effects of Privatization: 

Longitudinal Estimates from Hungary, Romania, Russia, and Ukraine.” Journal of 

Political Economy, 114(1), 2006, 61-99. 

 

Cabral, Luís M B, and José Mata. “On the Evolution of the Firm Size Distribution: Facts and 

Theory." American Economic Review, 93(4), 2003, 1075–1090. 

 

Caminal, Ramon and Xavier Vives. “Price Dynamics and Consumer Learning.” Journal of 

Economics and Management Strategy, 8(1), 1999, 95-131. 

 

Caves, Richard E. “Industrial Organization and New Findings on the Turnover and Mobility of 

Firms.” Journal of Economic Literature, 36(4), 1998, 1947-82. 

 

Cooper, Russell W. and John C. Haltiwanger. “On the Nature of Capital Adjustment Costs.” 

Review of Economic Studies, 73(3), 2006, 611-33. 

 

Das, Sanghamitra, Mark J. Roberts, and James R. Tybout. “Market Entry Costs, Producer 

Heterogeneity, and Export Dynamics.” Econometrica, 75(3), 2007, 837-73. 

 

De Loecker, Jan. “Product Differentiation, Multiproduct Firms, and Estimating the Impact of 

Trade Liberalization on Productivity.” Econometrica, 79(5), 2011, 1407-51. 

 

De Loecker, Jan and Pinelopi Koujianou Goldberg. “Firm Performance in a Global Market.” 

Annual Review of Economics, 6, 2014, 201-227. 

 

Dinlersoz, Emin and Mehmet Yorukoglu. “Information and Industry Dynamics.” American 

Economic Review, 102(2), 2012, 884-913. 

 

Dixit, Avinash K. and Robert S. Pindyck. Investment under Uncertainty. Princeton, NJ: 

Princeton University Press, 1994. 

 

Drozd, Lukasz A. and Jaromir B. Nosal. “Understanding International Prices: Customers as 

Capital.” American Economic Review, 102(1), 2012, 364-95. 

 

Dunne, Timothy, Mark J. Roberts, and Larry Samuelson. “Patterns of Firm Entry and Exit in 



34 

  

U.S. Manufacturing Industries.”  RAND Journal of Economics, 19(4), 1988, 495-515. 

 

Dunne, Timothy, Mark J. Roberts, and Larry Samuelson. “Firm Entry and Postentry 

Performance in the U.S. Chemical Industries.” Journal of Law and Economics, 32(2) Part 

2, 1989a, S233-71. 

 

Dunne, Timothy, Mark J. Roberts, and Larry Samuelson. “The Growth and Failure of U.S. 

Manufacturing Plants.” Quarterly Journal of Economics, 104(4), 1989b, 671-98. 

 

Eslava, Marcela, John Haltiwanger, Adriana Kugler and Maurice Kugler. “Plant Survival, 

Market Fundamentals and Trade Liberalization.” Mimeo, 2008.   

 

Fishman, Arthur and Rafael Rob. “Consumer Inertia, Firm Growth and Industry Dynamics.” 

Journal of Economic Theory, 109(1), 2003, 24-38. 

 

Fishman, Arthur and Rafael Rob. “Is Bigger Better? Customer Base Expansion through 

Word‐of‐Mouth Reputation.” Journal of Political Economy, 113(5), 2005, 1146-1162. 

 

Foster, Lucia, John Haltiwanger, and Chad Syverson. “Reallocation, Firm Turnover, and 

Efficiency: Selection on Productivity or Profitability?” American Economic Review, 

98(1), 2008, 394-425. 

 

Gilchrist, Simon and Charles P. Himmelberg. “Evidence on the Role of Cash Flow for 

Investment.” Journal of Monetary Economics, 36(3), 1995, 541-72. 

 

Gourio, Francois and Leena Rudanko. “Customer Capital.” Review of Economic Studies, 

81(3),2014, 1102-1136. 

 

Hopenhayn, Hugo. “Entry, Exit, and Firm Dynamics in Long Run Equilibrium.” Econometrica, 

60(5), 1992, 1127-1150. 

 

Jovanovic, Boyan. “Selection and Evolution of Industry.” Econometrica, 50(3), 1982, 25-43.  

 

Kee, Hiau Looi and Kala Krishna. “Firm-Level Heterogeneous Productivity and Demand 

Shocks: Evidence from Bangladesh.” American Economic Review Papers and 

Proceedings, 98(2), 2008, 457-62. 

 

Klepper, Steven. “Firm Survival and the Evolution of Oligopoly.” The RAND Journal of 

Economics, 33(1), 2002, 37-61.  

 

Luttmer, Erzo G. J. “On the Mechanics of Firm Growth.” Review of Economic Studies, 78(3), 

2011, 1042-1068. 

 

Melitz, Marc J. “The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry 

Productivity.” Econometrica, 71(6), 2003, 1695-1725. 

 



35 

  

Pakes, Ariel. “Dynamic Structural Models:  Problems and Prospects.  Mixed Continuous 

Discrete Controls and Market Interactions” in C. Sims (ed.) Advances in Econometrics. 

Sixth World Congress. Vol 2. 1994, Cambridge University Press. 

 

Pakes, Ariel and Richard Ericson. “Empirical Implications of Alternative Models of Firm 

Dynamics.” Journal of Economic Theory, 79(1), 1998, 1-45. 

 

Perla, Jesse. “Product Awareness and the Industry Life Cycle.” Working Paper, 2013. 

 

Radner, Roy. “Viscous Demand.” Journal of Economic Theory, 112(2), 2003, 189–231. 

 

Roberts Mark J., Daniel Yi Xu, Xiaoyan Fan, and Shengxing Zhang. “A Structural Model of 

Demand, Cost, and Export Market Selection for Chinese Footwear Producers.” Working 

paper, 2011. 

 

Semykina, A. and Wooldridge, J. M. “Estimation of Dynamic Panel Data Models with Sample 

Selection.” Journal of Applied Econometrics, 28(1), 2013, 47–61.  

 

Syverson, Chad. “What Determines Productivity?” Journal of Economic Literature, 49(2), 2011, 

326-65. 

 

Troske, Kenneth R. “The Dynamic Adjustment Process of Firm Entry and Exit in Manufacturing 

and Finance, Insurance, and Real Estate.” Journal of Law and Economics, 39(2), 1996, 

705-35. 

 

U.S. Bureau of Economic Analysis. “Redefinition of the BEA Economic Areas.” Survey of 

Current Business, February 1995, 75-81. 

 

Vella, Francis.  “Estimating Models with Sample Selection Bias:  A Survey.” Journal of Human 

Resources, 33(1), 1998, 127-169. 

 

White, T. Kirk, Jerome P. Reiter, and Amil Petrin. “Plant-level Productivity and Imputation of 

Missing Data in U.S. Census Manufacturing Data,” 2014, mimeo, Center for Economic 

Studies. 
 

Woolridge, Jeffrey M. Inverse Probability Weighted M-Estimators for Sample Selection, 

Attrition, and Stratification. Portuguese Economic Journal 1, 2002. 

 

Woolridge, Jeffrey M. Inverse Probability Weighted Estimation for General Missing data 

Problems. CEMMAP Working Paper CWP05/04. Centre for Microdata Methods and 

Practice, 2004. 

 

  



36 

  

Table 1. Evolution of Productivity and Demand across Plant Ages 

 

 
Plant Age Dummies 

Variable Entrant Young Medium Exiter 

Productivity 

(TFPQ) 

0.021 

(0.008) 

0.010 

(0.009) 

-0.002 

(0.009) 

-0.020 

(0.008) 

Demand 

 

-0.892 

(0.040) 

-0.481 

(0.043) 

-0.381 

(0.046) 

-0.590 

(0.038) 

 
Note: Table shows the coefficients on indicator variables for exiting, entering, and continuing plants of two age 

cohorts (“young” and “medium” establishments) when we regress plant-level productivity and demand levels on 

these indicators and a full set of product-year fixed effects.  The excluded category is “old” plants.  The sample 

includes roughly 9,000  plant-year observations from the 1977, 82, 87, and 92 Census of Manufactures.  Standard 

errors, clustered by plant, are in parentheses. This table is similar to Table 5 in Foster, Haltiwanger, and Syverson 

(2008) but uses a measure of demand shock that is more consistent with that used in subsequent exercises and a 

smaller sample (excludes plants manufacturing gasoline from the analysis).  This table and all of the analysis in the 

paper also excludes observations identified as having imputed physical quantity data from the item impute flags.  In 

addition,  inverse propensity score weights are used to address selection issues from such exclusion. 

 

 

Table 2. Evolution of Demand across Plant Ages—Interactions with Firm’s Multi-Unit Status 

 

 
Plant Age Dummies 

Variable Entrant Young Medium Old Exiter 

Demand 

 

-0.530 

(0.090) 

-0.063 

(0.089) 

-0.137 

(0.091) 
Excl. 

-0.3 

(0.080) 

Demand x MU firm 
-0.266 

(0.090) 

-0.361 

(0.090) 

-0.146 

(0.094) 

0.189 

(0.052) 

-0.377 

(0.091) 

 

Note: Table expands the analysis of Table 1 by allowing plant age effects to vary with the multi-unit (MU) status of 

the plant’s owning firm.  The excluded category is “old” plants  that are part of a single-unit firm.  N  is roughly 

9,000 plant-year observations.  Standard errors, clustered by plant, are in parentheses. 
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Table 3. Estimated Coefficients for Cumulative Learning and Depreciation Models   

Parameter 
Cumulative 

Learning  

Learning 

with 

Depreciation 

 
(elasticity of future demand to the demand stock) 

0.603 

(0.048) 

0.919 

(0.025) 

- 

(price elasticity of demand) 

-1.501 

(0.141) 

-1.622 

(0.074) 

Young dummy 

(demand shift for entering and young plants) 

0.168 

(0.103) 

0.012 

(0.050) 

Medium age dummy 

(demand shift for medium-aged plants) 

0.090 

(0.056) 

0.013 

(0.032) 

 

(persistence of exogenous demand shocks ) 

0.640 

(0.040) 

0.062 

(0.058) 

 
(demand depreciation rate) 

 0.646 

(0.043) 

1 

(elasticity of initial demand to plant’s own K) 
1.350  

(0.042) 

0.940  

(0.044) 

2 

(elasticity of initial demand to ratio of firm’s K to plant’s K) 
0.109 

(0.066) 

0.317 

(0.071) 

Competitor’s Price (local products only) 

 

0.397 

(0.134) 

0.301 

(0.094) 

Selection Correction, Demand Equation 

 

-0.583 

(0.211) 

-0.864 

(0.228) 

Selection Correction, Euler Equation 

 

0.011 

(0.007) 

-0.019 

(0.022) 

 

Notes:   Joint Demand and Euler estimation is based on joint estimation of equations (2b) and (7c) for the entire 

sample.  Demand equation also includes year dummies (not reported) and control for local demand (local BEA 

economic area income).  “Young” is the definition that subsumes entrants.  The omitted age group is mature plants.  

The instruments for demand equation include log(TFPQ), lagged revenues (up to six lags), lagged price, lagged 

output, local income, age and year dummies.  Instruments for Euler equation include lagged revenue (up to six lags), 

lagged cost/revenue ratios (up to two lags), lagged price (up to two lags), lagged output and age dummies.  Standard 

errors are in parentheses.  The estimation targets the decision making of plants in t looking forward to t+1.  The 

plants in period t we consider for this purpose are restricted to those that also existed in t-1 given the need for lagged 

instruments.  For this at risk group, the estimation sample is the subset of those plants that survive to t+1 with a 

selection correction as discussed in the text.  The estimation sample is approximately 3500 plants.  
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Table 4. Estimated Coefficients for Local Industry and Ready Mix Concrete Sample, 

Depreciation Model 

 

Parameter 
Local 

Products 
Concrete 

 
 

0.900 

(0.017) 

0.886 

(0.030) 

- 

 

-1.667 

(0.081) 

-2.155 

(0.215) 

Young dummy 

 

0.003 

(0.053) 

0.097 

(0.070) 

Medium age dummy 

 

0.022 

(0.036) 

0.051 

(0.045) 

 
 

-0.039 

(0.039) 

0.041 

(0.052) 

 
 

0.687 

(0.033) 

0.471 

(0.060) 

Competitor’s Price 0.327 

(0.092) 

1.251 

(0.321) 

1 

 

0.918  

(0.050) 

0.973  

(0.053) 

2 

 

0.339 

(0.080) 

0.335 

(0.068) 

Selection Correction, Demand Equation 

 

-0.432 

(0.216) 

-1.206 

(0.266) 

Selection Correction, Euler Equation 

 

-0.009 

(0.006) 

0.082 

(0.033) 

 
Notes:  See notes for Table 3.  The local plants estimation sample is approximately 3000 plants.  The ready mix 

concrete sample is approximately 2000 plants. 
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Table 5. Estimated Coefficients for Learning with Depreciation Model, Interactions with Multi-

Plant Firm Status 

 

Parameter Entire Sample Local Products 

 0.872 

(0.027) 

0.827 

(0.053) 

- -1.935 

(0.110) 

-2.505 

(0.243) 

Young dummy 0.064 

(0.112) 

0.220 

(0.139) 

Medium age dummy 0.044 

(0.079) 

0.096 

(0.096) 

 0.183 

(0.058) 

0.213 

(0.062) 

1  
1.041  

(0.034) 

1.031  

(0.044) 

2  
0.294 

(0.047) 

0.260 

(0.068) 

 0.624 

(0.057) 

0.600 

(0.076) 

Competitor’s Price 0.546 

(0.125) 

0.647 

(0.247) 

*MU -0.015 

(0.031) 

0.047 

(0.042) 

*MU -0.133 

(0.087) 

-0.307 

(0.251) 

Young dummy*MU -0.078 

(0.122) 

-0.271 

(0.147) 

Medium age dummy*MU -0.031 

(0.088) 

-0.074 

(0.103) 

*MU 0.054 

(0.054) 

-0.094 

(0.061) 

*MU -0.183 

(0.058) 

-0.083 

(0.078) 

Competitor’s Price*MU -0.194 

(0.084) 

-0.265 

(0.240) 

Selection Correction, Demand 

 

-0.988 

(0.208) 

-1.429 

(0.212) 

Selection Correction, Euler Equation 

 

-0.018 

(0.016) 

0.077 

(0.032) 

Notes: See notes for Tables 3 and 4.  “MU” is an indicator variable equal to one if the plant is owned by a multi-unit 

(multi-plant) firm.  
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Table 6. Evolution of Demand across Plant Ages— Endogenous Learning vs. Learning By Being 

Effects  

Variable Young Medium Old 

  All Plants  

Demand 

 

-0.563 

(0.025) 

-0.284 

(0.036) 

Excl. 

Endogenous Accumulation 

(Accumulation by Doing) 

-0.585 

(0.024) 

-0.340 

(0.034) 

 

Exogenous Accumulation 

(Accumulation by Being) 

0.012 

(0.050) 

0.013 

(0.032) 

 

    

 Local Product Plants 

Demand 

 

-0.556 

(0.026) 

-0.282 

(0.037) 

Excl. 

Endogenous Accumulation 

(Accumulation by Doing) 

-0.485 

(0.024) 

-0.310 

(0.034) 

 

Exogenous Accumulation 

(Accumulation by Being) 

0.003 

(0.053) 

0.022 

(0.036) 

 

    

 Concrete  Plants 

Demand 

 

-0.487 

(0.032) 

-0.244 

(0.045) 

Excl. 

Endogenous Accumulation 

(Accumulation by Doing) 

-0.720 

(0.028) 

-0.298 

(0.039) 

 

Exogenous Accumulation 

(Accumulation by Being) 

0.097 

(0.070) 

0.051 

(0.045) 

 

 
Notes:  Results are based on the estimates from Tables 3 and 4, respectively.  Demand is computed as the difference 

between (log) output and the price determinants of demand.  The endogenous learning effect is computed from the 

evolution of the demand capital for each plant using the estimated parameters for γ and δ.  The learning by being 

effects are repeated from Tables 3 and 4 from the estimated Young and Medium age dummies.  The omitted group is  

“old” establishments.  
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Table 7. Capacity Utilization Patterns Across Plant Ages and Multi-Unit Status 

 

Capacity 

Utilization 

Measure 

  Plant Age Dummies 

Variable Entrant Young Medium Old Exiter 

Capital 

Utilization 

 

-0.092 

(0.045) 

-0.104 

(0.044) 

0.037 

(0.045) 
Excl. 

-0.043 

(0.040) 

Utilization X 

MU firm 

-0.120 

(0.044) 

-0.147 

(0.044) 

-0.271 

(0.047) 

-0.169 

(0.026) 

0.083 

(0.045) 

 

Energy 

Utilization 

 

0.018 

(0.069) 

-0.096 

(0.068) 

-0.113 

(0.070) 
Excl. 

0.101 

(0.062) 

Utilization X 

MU firm 

-0.034 

(0.069) 

0.131 

(0.069) 

0.077 

(0.072) 

-0.045 

(0.040) 

-0.041 

(0.069) 

 
Note: Table estimates the same specification as Table 2, except now uses as the dependent variable two different 

plant-level proxies for capacity utilization, hence showing patterns of plant utilization over age and plant multi-unit 

status.  The two proxies are the log of the capital stock to output ratio (“Capital”) and the log of energy use to 

equipment capital ratio (“Energy’).  N = roughly 9,000 plant-year observations.  Standard errors are in parentheses. 
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Appendix 
 
A.1. Defining Our Products 

 

The precise definitions of our ten products are listed below (with 7-digit product codes in parentheses).  

 

Boxes is defined as the sum of boxes classified by their end use and boxes classified by their materials. Boxes 

classified by end use are: food and beverages (2653012), paper and allied products (2653013), carryout boxes for 

retail food (2653014 category starts in 1987) glass, clay, and stone products (2653015), metal products, machinery, 

equipment, and supplies except electrical (2653016), electrical machinery, equipment, supplies, and appliances 

(2653018), chemicals and drugs, including paints, varnishes, cosmetics, and soap (2653021), lumber and wood 

products, including furniture (2653029), and all other ends uses not specified above (2653029 in 1977 and 1982, 

2653030 in 1987).  Boxes classified by their materials are: solid fiber (2653051), corrugated paperboard in sheets 

and rolls, lined and unlined (2653067), and corrugated and solid fiber pallets, pads and partitions (2653068). The 

physical data for boxes is measured in short tons. 

 

Bread is defined as one 7-digit product, white pan bread (2051111), until 1992 when it was split into two products 

white pan bread, except frozen (2051121) and frozen white pan bread (2051122). The physical data for bread is 

measured in thousands of pounds. 

 

Carbon Black is defined as one 7-digit product, carbon black (2895011 in 1977, 2895000 thereafter). The physical 

data for carbon black is measured in thousands of pounds. 

 

Coffee is the sum of whole bean (2095111), ground and extended yield (2095117 and 2095118 in 1982 and 2095115 

thereafter), and ground coffee mixtures (2095121). The physical data for coffee is measured in thousands of pounds. 

 

Concrete is defined as one 7-digit product, ready-mix concrete (3273000), over our entire sample. Some of the 

products coded as 3237300 in 1987 were in fact census balancing codes and thus were deleted from our sample. The 

physical data for concrete is measured in thousands of cubic yards. 

 

Flooring is defined as one 7-digit product, hardwood oak flooring (2426111), over our entire sample.  The physical 

data for flooring is measured in thousands of board feet. 

 

Block Ice is defined as one 7-digit product, can or block ice (2097011), over our entire sample.  The physical data 

for block ice is measured in short tons. 

 

Processed Ice is defined as one 7-digit product, cubed, crushed, or other processed ice (2097051), over our entire 

sample. The physical data for processed ice is measured in short tons.  

 

Plywood is defined as one 7-digit product, hardwood plywood (2435100), over 1977-1987. Starting in 1992, 

plywood is the sum of veneer core (2435101), particleboard core (2435105), medium density fiberboard core 

(2435107), and other core (2435147).  The physical data for plywood is measured in thousands of square feet 

surface measure. 

  

Sugar is defined as one 7-digit product, raw cane sugar (2061011), over our entire sample.  The physical data for 

sugar is measured in short tons. 

 

 

A.2. Measurement of input levels and input elasticities in the TFP indexes. 

 

Labor inputs are measured as plants’ reported production-worker hours adjusted using the method of Baily, 

Hulten and Campbell (1992).  This involves multiplying the production-worker hours by the ratio of total payroll to 

payroll for production workers.  Prior work has shown this measure to be highly correlated with Davis and 

Haltiwanger’s (1991) more direct imputation of nonproduction workers, which multiplies a plant’s number of 

nonproduction workers by the average annual hours for nonproduction workers in the corresponding two-digit 
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industry calculated from the CPS.  Capital inputs are plants’ reported book values for their structure and equipment 

capital stocks deflated to 1987 levels using sector-specific deflators from the Bureau of Economic Analysis.  The 

method is detailed in Foster, Haltiwanger and Krizan (2001).  Materials and energy inputs are simply plants’ 

reported expenditures on each deflated using the corresponding input price indices from the NBER Productivity 

Database. 

 To compute the industry-level cost shares that we use to measure the input elasticities j, we use the 

materials and energy expenditures along with payments to labor to measure the costs of these three inputs.  We 

construct the cost of capital by multiplying real capital stock value by the capital rental rates for the plant’s 

respective two-digit industry.   These rental rates are from unpublished data constructed and used by the Bureau of 

Labor Statistics in computing their Multifactor Productivity series.  Formulas, related methodology, and data sources 

are described in U.S. Bureau of Labor Statistics (1983) and Harper, Berndt, and Wood (1989). 

 

 

A.3. Rules for Inclusion in the Sample 

 

While the Economic Census data we use is very rich, it still has limitations that make necessary three 

restrictions on the set of producers included in our sample.  First, we exclude plants in a small number of product-

years for which physical output data are not available due to Census decisions to not collect it or obvious recording 

problems.  Second, we exclude establishments whose production information appears to be imputed (imputes are not 

always identifiable in the CM) or suffering from gross reporting errors. Third, we impose a product specialization 

criterion: a plant must obtain at least 50% of its revenue from sales of our product of interest.  This restriction 

reduces measurement problems in computing TFPQ.  Because plants’ factor inputs are not reported separately by 

product but rather at the plant level, we must for multi-product plants apportion the share of inputs used to make our 

product of interest.  Operationally, we make this adjustment by dividing the plant’s reported output of the product of 

interest by that product’s share of plant sales.  This restriction is not very binding in seven of our products whose 

establishments are on average quite specialized.  Bread, flooring, and block ice producers are less specialized, 

however, so care must be taken in interpreting our sample as being representative of all producers of those products.   

Census reports physical product data for only a subset of the 11,000 products reported in the Census of 

Manufactures.  While we use only products for which physical output is reported, the collection of this data has 

changed over time for two of our products .  Census did not collect physical output for ready-mix concrete in 1997 

and the unit of measurement for boxes changed over our sample period in a way that makes the 1992 and 1997 data 

incomparable to the earlier periods.  Additionally, there are recording flaws in the 1992 quantity data for processed 

ice that make using it unfeasible. 

 The Census Bureau relies on administrative record data for very small establishments (typically with less 

than five employees).  In these cases all production data except total revenues and the number of employees are 

imputed, and production operations are classified only up to the four-digit industry level.  Since our unit of analysis 

is more detailed than the four-digit industry, we cannot determine whether a particular administrative record 

establishment actually produces the product of interest.  For these reasons, we exclude administrative records cases 

from our sample.  While about one-third of CM establishments are administrative records, their output and 

employment shares are much less because they are such small plants. 

 We also exclude establishments whose data appear to be imputed or suffer from reporting or recording 

errors.  The Census Bureau imputes physical quantities when product-level data are not fully reported.  

Unfortunately, imputed data are not explicitly identified.  In Foster, Haltiwanger and Syverson (2008), we used 

methods similar to those employed by Roberts and Supina (1996, 2000)  to identify and exclude imputed cases.19  In 

                                                 
19 In the earlier work, we considered a number of alternative approaches.  In the main results reported in Foster, 

Haltiwanger and Syverson (2008), we excluded observations based upon plants having values of TVS/SW 

(shipments/payroll), CP/SW (materials expenditures/payroll) and PHYQ/SW (physical output/payroll) equal to the 

modal value in a product by year cell.  Having values at the modal value is suggestive that the numerator of the ratio 

was imputed to match the industry ratio.  In addition, we had also conducted robustness analysis to alternative 

exclusion restrictions.  For example, we considered excluding observations for plants that had the modal price 

(PV/PQS which is value of products shipped divided by physical quantity) in product by year cells.  As shown on 

results that can be found at http://home.uchicago.edu/syverson/modalpricerobust.pdf, we found results in our earlier 

work were robust to the latter exclusion.  We also note that in applying these exclusions based upon modal values of 

ratios there is an issue of rounding since imputed values may have been rounded to the nearest integer.  We explored 

the sensitivity to alternative rounding values and found results in our earlier work are robust to these issues.  But we 
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the current paper, we build on that approach and use the item impute flags for physical quantity from White, Reiter 

and Petrin (2014) to exclude imputed cases.  We find that using the item impute flags yields considerably more 

exclusions compared to the indirect methods we used in our prior analysis.  But in spite of this, we find our results 

are largely robust to the exclusion of these additional identified imputed cases.  We provide analysis showing such 

robustness below in section A.8. 

 To minimize the influence of reporting and recording errors, we also remove a small number of plants 

reporting physical quantities that imply prices greater than ten times or less than one-tenth the median price in a 

given year.  In order to maintain the same sample over all exercises, we delete observations that are missing any one 

of the main regression variables.  We also delete observations when the plant’s labor or materials cost share is less 

than one-tenth of the corresponding industry’s average cost share for that year, or when the cost share is more than 

one.  Finally, we still find a relatively small number of obvious outliers in physical quantity measures, so we trim the 

one-percent tails of the physical productivity (TFPQ) distribution. 

 Our product specialization criterion requires that plants obtain at least 50% of their revenue from our 

product of interest.  The text discusses the measurement reasons for imposing this restriction as well as describing a 

robustness check with respect to this product specialization cutoff. 

 Further discussion of the characteristics of sample by product can be found in Foster, Haltiwanger and 

Syverson (2008). 

 

 

A.4 Demand Patterns by Firm and Establishment Age 

 

Estimating the interactions between firm and plant age yields the results in Table A.2.  A fully interacted 

model with four plant and firm age categories each, for both single- and multi-unit firms, would unfortunately create 

some subsample cells that are too small to be useful for identification and would possibly violate data confidentiality 

standards.  So we pool some categories together.  First, we only break out firm age effects for plants in multi-unit 

firms.  Further, we pool young- or medium-aged firms (i.e., whose first plant was observed either one or two CMs 

prior).  Note also that some plant-firm-age categories cannot exist by definition, and as such are missing from the 

estimation (e.g., there cannot be a medium-aged plant in an entering or young firm).  Old plants in single-unit firms 

are again the excluded group. 

We focus on the multi-unit plant results in the bottom three rows of Table A.2. Starting with the bottom 

row, we see that among old firms (those that are at least 15 years old), the basic convergence patterns seen before 

hold here.  Entering plants of old firms have demand levels that are 61 percent of old plants in this type of firm.  

Growth is slow for the first five years: old firms’ young plants have 57 percent of the demand level.  Demand 

growth accelerates after this somewhat, but medium-aged plants still have notably (20 percent) lower demand levels. 

For young- and medium-aged firms, we also observe that entrants are smaller than longer-lived plants in 

such firms (though there can be no old plants in these firms).  Notice, too, that plants in young- and medium-aged 

firms have lower demands than plants of the same age in older firms.  The only result that is not in accordance with 

these general patterns across firm and plant ages involves new plants in new multi-unit firms.  While as might be 

expected their demand levels are smaller than that of old plants in old firms (on average 78 percent of the level), 

their idiosyncratic demands are higher than new plants in older firms.  Another interesting result is that exiting 

plants in old firms tend to have exceptionally low demand levels—lower, in fact, than new single-unit plants. 

The results in Table A.2 show there are nontrivial distinctions in the levels and growth of plant demand in 

firms of different ages.  The broadest pattern is one of older firms being tied to higher demand levels at any plant 

age, just as with firm size again.  But also as with the firm-size results above, the demand gaps are still large within 

any firm type, and these diffuse demands close only slowly over time. 

 

 

A.5 Derivation of Euler Equation 
 

                                                                                                                                                             
also note that these methods are obviously an imperfect form of reverse engineering.  In the current paper, we now 

use the item impute flags for physical quantity that have become available.  Such flags dominate the indirect method 

of using the modal price ratio.   In the current paper, we also use the ratio methods TVS/SW (shipments/payroll), 

CP/SW (materials expenditures/payroll) and PHYQ/SW (physical output/payroll) equal to the modal value in a 

product by year cell to exclude observations that may be imputed on other key variables. 
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The plant’s maximization problem is a mixed continuous-discrete choice problem of the type discussed in 

Pakes (1994).  There, he proves (see Lemma 1 therein) that a dynamic control problem of the form of our equation 

(6) has the following Euler equation: 

 

 
𝜕𝑉(𝑍𝑡)

𝜕𝑞𝑡
=

𝜕𝑅𝑡(𝑍𝑡,𝑞𝑡)

𝜕𝑞𝑡
− 𝑐𝑡 + 𝛽𝐸𝜒𝑡+1

𝜕𝑉(𝑍𝑡+1)

𝜕𝑍𝑡+1
[(1 − 𝛿)

𝜕𝑅𝑡(𝑍𝑡,𝑞𝑡)

𝜕𝑞𝑡
] = 0, 

 

where we write abbreviate V(Zt, At, Aget, θt) as V(Zt) because the plant’s choice of control qt does not influence the 

evolution of the other state variables. 

Simplifying gives: 

 

 𝛽(1 − 𝛿)𝐸𝜒𝑡+1
𝜕𝑉(𝑍𝑡+1)

𝜕𝑍𝑡+1
=

𝑐𝑡
𝜕𝑅𝑡(𝑍𝑡,𝑞𝑡)

𝜕𝑞𝑡

− 1. 

 

The value function varies with Zt as follows: 

 

 
𝜕𝑉(𝑍𝑡)

𝜕𝑍𝑡
=

𝜕𝑅𝑡(𝑍𝑡,𝑞𝑡)

𝜕𝑍𝑡
+ 𝛽(1 − 𝛿)𝐸𝜒𝑡+1

𝜕𝑉(𝑍𝑡+1)

𝜕𝑍𝑡+1
[1 +

𝜕𝑅𝑡(𝑍𝑡,𝑞𝑡)

𝜕𝑍𝑡
]. 

 

We can substitute in the simplified Euler equation from above to obtain 

 

 
𝜕𝑉(𝑍𝑡)

𝜕𝑍𝑡
=

𝜕𝑅𝑡(𝑍𝑡,𝑞𝑡)

𝜕𝑍𝑡
+ (

𝑐𝑡
𝜕𝑅𝑡(𝑍𝑡,𝑞𝑡)

𝜕𝑞𝑡

− 1) [1 +
𝜕𝑅𝑡(𝑍𝑡,𝑞𝑡)

𝜕𝑍𝑡
]. 

 

Simplifying and writing the result for period t+1 gives 

 

 
𝜕𝑉(𝑍𝑡+1)

𝜕𝑍𝑡+1
=

𝑐𝑡+1
𝜕𝑅𝑡+1(𝑍𝑡+1,𝑞𝑡+1)

𝜕𝑞𝑡+1

− 1 +
𝑐𝑡+1

𝜕𝑅𝑡+1(𝑍𝑡+1,𝑞𝑡+1)

𝜕𝑞𝑡+1

𝜕𝑅𝑡+1(𝑍𝑡+1,𝑞𝑡+1)

𝜕𝑍𝑡+1
. 

 

Substituting this back into the Euler equation gives us 

  

 
𝑐𝑡

𝜕𝑅𝑡(𝑍𝑡,𝑞𝑡)

𝜕𝑞𝑡

− 1 = 𝛽(1 − 𝛿)𝐸𝜒𝑡+1 [
𝑐𝑡+1

𝜕𝑅𝑡+1(𝑍𝑡+1,𝑞𝑡+1)

𝜕𝑞𝑡+1

− 1 +
𝑐𝑡+1

𝜕𝑅𝑡+1(𝑍𝑡+1,𝑞𝑡+1)

𝜕𝑞𝑡+1

𝜕𝑅𝑡+1(𝑍𝑡+1,𝑞𝑡+1)

𝜕𝑍𝑡+1
]. 

 

The revenue function is 

 

 𝑅𝑡(𝑍𝑡 , 𝑞𝑡) = 𝜃𝑡

1

𝜂𝐴𝑔𝑒𝑡

𝜙

𝜂 𝑍𝑡

𝛾

𝜂𝑞𝑡

1−
1

𝜂
, 

 

so the relevant derivatives are 

 

 
𝜕𝑅𝑡(𝑍𝑡,𝑞𝑡)

𝜕𝑞𝑡
= (1 −

1

𝜂
) 𝜃𝑡

1

𝜂𝐴𝑔𝑒𝑡

𝜙

𝜂 𝑍𝑡

𝛾

𝜂𝑞𝑡

−
1

𝜂
, 

and 

 
𝜕𝑅𝑡(𝑍𝑡,𝑞𝑡)

𝜕𝑍𝑡
=

𝛾

𝜂
𝜃𝑡

1

𝜂𝐴𝑔𝑒𝑡

𝜙

𝜂 𝑍𝑡

𝛾

𝜂
−1

𝑞𝑡

1−
1

𝜂
. 

 

We can use the demand function to substitute out for θ: 

 

 𝜃𝑡 =
𝑞𝑡𝑝𝑡

𝜂

𝐴𝑔𝑒𝑡
𝜙

𝑍𝑡
𝛾. 

 

Thus the revenue derivatives simplify to 
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𝜕𝑅𝑡(𝑍𝑡,𝑞𝑡)

𝜕𝑞𝑡
= (1 −

1

𝜂
)

𝑞𝑡

1
𝜂

𝑝𝑡

𝐴𝑔𝑒𝑡

𝜙
𝜂

𝑍𝑡

𝛾
𝜂

𝐴𝑔𝑒𝑡

𝜙

𝜂𝑍𝑡

𝛾

𝜂𝑞𝑡

−
1

𝜂 = (1 −
1

𝜂
) 𝑝𝑡, 

and 

 
𝜕𝑅𝑡(𝑍𝑡,𝑞𝑡)

𝜕𝑍𝑡
=

𝛾

𝜂

𝑞𝑡

1
𝜂

𝑝𝑡

𝐴𝑔𝑒𝑡

𝜙
𝜂

𝑍𝑡

𝛾
𝜂

𝐴𝑔𝑒𝑡

𝜙

𝜂𝑍𝑡

𝛾

𝜂
−1

𝑞𝑡

1−
1

𝜂 =
𝛾

𝜂

𝑞𝑡𝑝𝑡

𝑍𝑡
=

𝛾

𝜂

𝑅𝑡

𝑍𝑡
. 

 

Substituting these expressions into the Euler equation gives 

 

 
𝑐𝑡

(1−
1

𝜂
)𝑝𝑡

− 1 = 𝛽(1 − 𝛿)𝐸𝜒𝑡+1 [
𝑐𝑡+1

(1−
1

𝜂
)𝑝𝑡+1

− 1 +
𝑐𝑡+1

(1−
1

𝜂
)𝑝𝑡+1

𝛾

𝜂

𝑅𝑡+1

𝑍𝑡+1
]. 

 

Multiplying through by (1 −
1

𝜂
) yields equation (7). 

 

 

A.6 Correcting for Sample Selection 

 

The estimated Euler equation (7a) is 

 

 
𝐶𝑡

𝑅𝑡
− (1 −

1

𝜂
) = 𝛽(1 − 𝛿)𝐸 {𝜒𝑡+1 [

𝐶𝑡+1

𝑅𝑡+1
− (1 −

1

𝜂
) +

𝛾

𝜂

𝐶𝑡+1

𝑍𝑡+1
]}, 

 

Where 𝜒𝑡+1 = 1 if the plant survives and equal to zero otherwise. The ex post optimization error is therefore 

 

 𝜀𝑡+1 =
𝐶𝑡

𝑅𝑡
− (1 −

1

𝜂
) − 𝛽(1 − 𝛿)𝜒𝑡+1 [

𝐶𝑡+1

𝑅𝑡+1
− (1 −

1

𝜂
) +

𝛾

𝜂

𝐶𝑡+1

𝑍𝑡+1
]. 

 

While the mean of the ex post error conditional on variables known at date t and earlier will be zero, this will in 

general not be true by selecting only those observations where 𝜒𝑡+1 = 1.  To treat this selection problem, consider 

the ex post errors conditional on 𝜒𝑡+1 = 1:  

 

 𝜀𝑡̃+1 =
𝐶𝑡

𝑅𝑡
− (1 −

1

𝜂
) − 𝛽(1 − 𝛿) [

𝐶𝑡+1

𝑅𝑡+1
− (1 −

1

𝜂
) +

𝛾

𝜂

𝐶𝑡+1

𝑍𝑡+1
], 

 

where the tilde indicates that it is the ex post error defined only for survivors.  In general, 

 

 𝐸(𝜀𝑡̃+1|Ωt, 𝜒𝑡+1 = 1) ≠ 0, 

 

where Ω𝑡 is the information set at time t.  To help us address the problems of selection, it is necessary to specify an 

auxiliary selection equation given by 

 

 𝜒𝑡+1 = 1[𝑍1
′ 𝐵 + 𝜔𝑡+1 > 0]. 

 

That is, survival depends on some variables Z1 observable at the time of the survival choice by the plant and a 

random variable. Let Z2 be a subset of Ω𝑡, where there may be overlap between Z1 and Z2.  Define the following 

terms: 

 

 𝐸(𝜀𝑡̃+1|Z1, Z2, 𝜒𝑡+1 = 1) ≡ 𝑔(Z1, Z2, 𝜒𝑡+1 = 1), 

and 

 𝑒𝑡+1 ≡ 𝜀𝑡̃+1 − 𝑔(Z1, Z2, 𝜒𝑡+1 = 1). 

 

Then, by construction 

 

 𝐸(𝑒𝑡+1|Z1, Z2, 𝜒𝑡+1 = 1) = 0. 
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This implies: 

 

𝐸(𝑒𝑡+1|Z1, Z2, 𝜒𝑡+1 = 1) = 𝐸 {
𝐶𝑡

𝑅𝑡
− (1 −

1

𝜂
) − 𝛽(1 − 𝛿) [

𝐶𝑡+1

𝑅𝑡+1
− (1 −

1

𝜂
) +

𝛾

𝜂

𝐶𝑡+1

𝑍𝑡+1
] |Z1, Z2, 𝜒𝑡+1 = 1} −

𝑔(Z1, Z2, 𝜒𝑡+1 = 1) = 0. 

 
We can use this ex post error term that in expectations is equal to mean zero conditional on survival and appropriate 

instruments.  To use this specification, we need to include this extra term.  We proceed by making Assumption 2 of 

Vella (1998): namely, that 𝜀𝑡̃+1 is a linear function of 𝜔𝑡+1 and the latter is from a known distribution.  This implies 

we can write the ex post error term as:    

 

 𝑒𝑡+1 =
𝐶𝑡

𝑅𝑡
− (1 −

1

𝜂
) − 𝛽(1 − 𝛿) [

𝐶𝑡+1

𝑅𝑡+1
− (1 −

1

𝜂
) +

𝛾

𝜂

𝐶𝑡+1

𝑍𝑡+1
] + 𝜓1𝑀𝑡+1, 

 

where 𝑀𝑡+1 is the selection correction term.  If we assume that 𝜔𝑡+1 is normally distributed, then 𝑀𝑡+1 is the inverse 

Mills ratio.  This is the main case considered in the text.  But as discussed in Vella (1998), other known distributions 

can be used.  In the paper’s main results we constructed 𝑀𝑡+1assuming 𝜔𝑡+1is from a logistic distribution (which is 

one of the cases considered by Vella (1998)).  Another option discussed in Vella (1998) follows the insights of 

Olsen (1993) in assuming 𝜔𝑡+1 is from a uniform distribution so an estimate of 𝑀𝑡+1  from a linear probability 

model is appropriate.  We have considered all three distributions and find that the alternative selection correction 

terms are very highly correlated in our application (above 0.99) when we consider two step procedures.  Not 

surprisingly, the results for the estimation of the main equations of interest are robust to these alternatives.  We also 

find that the results from the two step procedure are very similar to those from the one step procedure that we use in 

the main text.  Finally, we note that the derivation of the selection correction for the quasi-differenced demand 

equation follows similar logic to that above. 

 

 

A.7 Robustness Checks 
 

 Figure A.1 reports the estimates of the two key parameters for endogenous demand accumulation as the 

discount factor varies.  The results reported are for the full sample but similar patterns hold for local plants and for 

concrete plants only (i.e., the parameter estimates are not very sensitive to the discount factor over this range). 

Table A.3 reports the estimates when the impact of being part of a multi-unit firm upon entry is allowed to 

vary depending on whether the multi-unit firm has activity in the same industry or same geography.  The results 

presented are for local product plants.  The specification of (10) is modified as follows for this estimation: 

 

𝑍0𝑒 = (𝐾0𝑒)𝜆1(
𝐾0𝑠(𝑒) + 𝐾0𝑒

𝐾0𝑒

)𝜆2(
𝐾0𝑠(𝑒) +𝐾0𝑒

𝑆𝑎𝑚𝑒

𝐾0𝑒

)𝜆3  

 

where the “same” refers to same industry in the first column and same geographic area (BEA Economic Area) of 

Table A.3. 

  

 

A.8  Sensitivity to Imputed Plant-Level Data 

 

We conducted several robustness checks on the sensitivity of the results to the use of imputed data.  We start with 

Table 1.  In Table A.5a we show the analogous results on the evolution of productivity and demand from Table 1 

using the reverse engineering approach to identifying imputed data as in Foster, Haltiwanger and Syverson (2008).  

In Table A.5b, we show the same exercise using only the non-imputed observations used in Table 1 but in this case 

not using propensity score weights.  Comparing Table 1 to these two tables shows that there are some quantitative 

differences but the qualitative patterns remain the same.  Notably all alternatives show that entering plants have 

slightly higher TFPQ than incumbents and exiting plants have lower TFPQ than incumbents.  For demand, all results 

show that entrants have much lower demand than old incumbents and there is slow growth of this residual demand 

measure.   
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We also estimated our main results using these alternative samples.  Table A.6 shows the analogous results to Table 

3 for these two samples using the depreciation model.  The first column shows the results using the Foster, 

Haltiwanger and Syverson (2008) sample and the second sample the results using the same sample as in Table 3 but 

without propensity score weights.  The results are quite similar across all three samples.      
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Table A.1. Estimating Price Elasticities by Product (Using innovations to TFPQ as instrument) 

 

 IV OLS 

 
Price 

Coefficient 

Income 

Coefficient 

Price 

Coefficient 

Income 

Coefficient Product 

 
(α1) (α2) (α1) (α2) 

Boxes 

 

-3.01 

(0.16) 

0.05 

(0.02) 

-2.40 

(0.18) 

-0.03 

(0.03) 

Bread 

 

-0.93 

(0.46) 

0.12 

(0.05) 

-1.14 

(0.25) 

0.12 

(0.05) 

Carbon Black 

 

-0.68 

(0.27) 

-0.14 

(0.07) 

-0.10 

(0.30) 

-0.05 

(0.09) 

Coffee 

 

-2.85 

(0.63) 

0.04 

(0.12) 

-1.46 

(0.47) 

0.21 

(0.12) 

Concrete 

 

-3.29 

(0.26) 

0.18 

(0.01) 

-0.93 

(0.11) 

0.16 

(0.01) 

Hardwood 

Flooring 

-2.01 

(0.72) 

0.02 

(0.19) 

-0.27 

(0.82) 

-0.24 

(0.20) 

Block Ice 

 

-1.46 

(0.53) 

-0.10 

(0.11) 

-0.87 

(0.23) 

0.09 

(0.09) 

Processed Ice 

 

-1.33 

(0.28) 

0.13 

(0.06) 

-0.77 

(0.22) 

0.23 

(0.05) 

Plywood 

 

-1.28 

(0.15) 

-0.30 

(0.09) 

-1.07 

(0.15) 

-0.18 

(0.10) 

Sugar 

 

-1.84 

(0.63) 

0.73 

(0.08) 

-1.36 

(0.42) 

0.75 

(0.10) 

 
Note: Table shows the results of estimating demand isoelastic curves separately for each product (shown by row).  

Two specifications are estimated for each product, one using IV methods and one using OLS for comparison.  All 

regressions also include year fixed effects.   Standard errors, clustered by plant, are in italics.  Sample is 

approximately 9000 plant-year observations. 
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Table A.2. Evolution of Demand across Plant Ages—Interactions with Firm’s Age 

 

  Plant Age Dummies 

Variable Entrant Young Medium Old Exiter 

Demand Shock 
-0.529 

(0.090) 

-0.053 

(0.080) 

-0.145 

(0.081) 
Excl. 

-0.301 

(0.080) 

Demand Shock X                     

MU firm and entrant 

-0.045 

(0.127) 
N/A N/A N/A 

-0.385 

(0.205) 

Demand Shock X                     

MU firm and young or medium 

-0.456 

(0.136) 

-0.434 

(0.082) 
N/A 

-0.047 

(0.136) 

Demand Shock X                     

MU firm and old 

-0.292 

(0.092) 

-0.371 

(0.085) 

-0.012 

(0.090) 

0.199 

(0.052) 

-0.434 

(0.093) 

 

Note: Table expands the analysis of Table 2 by allowing plant age effects to vary with the multi-unit (MU) status 

and age of the plant’s owning firm. The excluded category is “old” plants  that are part of a single-unit firm.  N = 

roughly 9,000 plant-year observations.  Standard errors, clustered by plant, are in parentheses. 
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Table A.3. Estimated Coefficients for Learning by Depreciation Model Without Selection 

Controls 

 

Parameter Full Sample 

 
(elasticity of future demand to the demand stock) 

0.772 

(0.024) 

- 

(price elasticity of demand) 

-1.764 

(0.091) 

Young dummy 

(demand shift for entering and young plants) 

0.071 

(0.054) 

Medium age dummy 

(demand shift for medium-aged plants) 

0.054 

(0.035) 

 

(persistence of exogenous demand shocks ) 

0.293 

(0.045) 

 
(demand depreciation rate) 

0.335 

(0.045) 

1 

(elasticity of initial demand to plant’s own K) 
0.357 

(0.107) 

2 

(elasticity of initial demand to ratio of firm’s K to plant’s K) 
1.097  

(0.037) 

Competitor’s Price (local products only) 

 

0.211 

(0.051) 

 

Notes:   Joint Demand and Euler estimation is based on joint estimation of equations (2b) and (7c) for the entire 

sample.  Demand equation also includes year dummies (not reported) and control for local demand (local BEA 

economic area income).  “Young” is the definition that subsumes entrants.  The omitted age group is mature plants.  

The instruments for demand equation include log(TFPQ), lagged revenues (up to six lags), lagged price, lagged 

output, local income, age and year dummies.  Instruments for Euler equation include lagged revenue (up to six lags), 

lagged cost/revenue ratios (up to two lags), lagged price (up to two lags), lagged output and age dummies.  Standard 

errors are in parentheses.  The estimation sample is approximately 3500 plants.  
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Table A.4. Contribution of Owning Firm in Same Industry or Geography: Local Product Plants 

 

Parameter 
Same 

Industry 

Same 

Geography 

 
 

0.911 

(0.018) 

0.928 

(0.023) 

- 

 

-1.663 

(0.080) 

-2.024 

(0.104) 

Young dummy 

 

-0.029 

(0.048) 

-0.045 

(0.049) 

Medium age dummy 

 

0.026 

(0.033) 

0.043 

(0.033) 

 
 

-0.003 

(0.037) 

0.006 

(0.034) 

 
 

0.664 

(0.034) 

0.665 

(0.035) 

Competitor’s Price 0.343 

(0.094) 

0.397 

(0.099) 

1 

 

0.908  

(0.034) 

0.934  

(0.036) 

2 

 

0.027 

(0.091) 

0.267 

(0.063) 

3 

 

0.492 

(0.108) 

0.099 

(0.130) 

Selection Correction, Demand Equation 

 

-0.582 

(0.241) 

-1.298 

(0.187) 

Selection Correction, Euler Equation 

 

-0.012 

(0.011) 

0.096 

(0.034) 

 

Note:  See notes from Tables 3 and 4. Both columns report results for the joint estimation of demand and Euler 

equations using plant-year observations for local products.  The only difference in specifications is the inclusion of a 

term in initializing Z0 reflecting the ratio of firm’s parent/sibling capital in the year of entry in the same industry 

(column 1) or same geography (column 2) to the overall firm’s parent/sibling capital.  3 refers to the elasticity of 

initial demand to ratio of firm’s K in same industry or geography to plant’s K. See text of the appendix for details. 
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Table A.5a. Evolution of Productivity and Demand across Plant Ages (All Observations) 

  

Variable 

Plant Age Dummies 

Entrant Young Medium Exiter 

Productivity 

(TFPQ) 

0.013 

(0.005) 

0.004 

(0.006) 

-0.004 

(0.006) 

-0.018 

(0.005) 

Demand 

 

-0.550 

(0.022) 

-0.397 

(0.024) 

-0.316 

(0.026) 

-0.339 

(0.021) 

  
Note: Table shows the coefficients on indicator variables for exiting, entering, and continuing plants of two age 

cohorts (“young” and “medium” establishments) when we regress plant-level productivity and demand levels on 

these indicators and a full set of product-year fixed effects.  The excluded category is “old” plants.  The sample 

includes roughly 17,000  plant-year observations from the 1977, 82, 87, and 92 Census of Manufactures.  Standard 

errors, clustered by plant, are in parentheses. This table is similar to Table 5 in Foster, Haltiwanger, and Syverson 

(2008) but uses a measure of demand shock that is more consistent with that used in subsequent exercises and a 

smaller sample (excludes plants manufacturing gasoline from the analysis). 

 

 

Table A.5b. Evolution of Productivity and Demand across Plant Ages, Non-Imputed 

Observations (Unweighted). 

 

 
Plant Age Dummies 

Variable Entrant Young Medium Exiter 

Productivity 

(TFPQ) 

0.021 

(0.008) 

0.009 

(0.009) 

-0.005 

(0.009) 

-0.018 

(0.009) 

Demand 

 

-0.566 

(0.035) 

-0.383 

(0.034) 

-0.316 

(0.036) 

-0.337 

(0.033) 

 
Note: Table shows the coefficients on indicator variables for exiting, entering, and continuing plants of two age 

cohorts (“young” and “medium” establishments) when we regress plant-level productivity and demand levels on 

these indicators and a full set of product-year fixed effects.  The excluded category is “old” plants.  The sample 

includes roughly 9000  plant-year observations from the 1977, 82, 87, and 92 Census of Manufactures.  

Observations with plant-level imputed physical quantities as identified from the item impute flags are excluded.  

Standard errors, clustered by plant, are in parentheses.  
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Table A.6. Estimated Coefficients for Depreciation Model:  All Observations and Non-Imputed 

Observations (unweighted) 

 

Parameter All  
Non-

Imputed 

 
(elasticity of future demand to the demand stock) 

0.896 

(0.026) 

0.929 

(0.021) 

- 

(price elasticity of demand) 

-2.036 

(0.076) 

-1.478 

(0.059) 

Young dummy 

(demand shift for entering and young plants) 

-0.140 

(0.030) 

0.012 

(0.047) 

Medium age dummy 

(demand shift for medium-aged plants) 

-0.059 

(0.025) 

0.002 

(0.030) 

 

(persistence of exogenous demand shocks ) 

0.118 

(0.037) 

0.065 

(0.060) 

 
(demand depreciation rate) 

0.666 

(0.035) 

0.684 

(0.042) 

1 

(elasticity of initial demand to plant’s own K) 
1.033  

(0.030) 

0.925  

(0.044) 

2 

(elasticity of initial demand to ratio of firm’s K to plant’s K) 
0.237 

(0.047) 

0.340 

(0.065) 

Competitor’s Price (local products only) 

 

0.456 

(0.075) 

0.247 

(0.076) 

Selection Correction, Demand Equation 

 

-1.486 

(0.203) 

-0.824 

(0.213) 

Selection Correction, Euler Equation 

 

0.059 

(0.032) 

0.167 

(0.041) 

 

Notes:   Joint Demand and Euler Estimation is based on joint estimation of equations (2b) and (7c) for the entire 

sample.  Demand equation also includes year dummies (not reported) and control for local demand (local BEA 

economic area income).  “Young” is the definition that subsumes entrants.  The omitted age group is mature plants.  

The instruments for demand equation include log(TFPQ), lagged revenues (up to six lags), lagged price, local 

income, age and year dummies.  Instruments for Euler equation include lagged revenue (up to six lags), lagged 

cost/revenue ratios (up to two lags), lagged price (up to two lags), and age dummies.  Standard errors are in 

parentheses.  The all sample has approximately 6000 plant-year observations.  The non-imputed has approximately 

4000 plant-year observations. 
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Figure A.1 

 
 

 


