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Abstract

A cross validation method for selection of statistics for Approximate Bayesian Computing, and for

related estimation methods such as the Method of Simulated Moments, is presented. The method

uses simulated annealing to minimize the cross validation criterion over a combinatorial search

space that may contain an extremely large number of elements. A first simple example, for which

optimal statistics are known from theory, shows that the method is able to select these optimal

statistics out of a large set of candidate statistics. A second example of selection of statistics for

a stochastic volatility model illustrates the method in a more complex case. Code to replicate the

results, or to use the method for other applications, is provided at http://www.runmycode.org/

companion/view/1116.

Keywords: Approximate Bayesian Computation; likelihood-free methods; selection of statistics;

method of simulated moments

1 Introduction

Bayesian analysis centers attention on the posterior density, f (θ|y), where y is the sample,

that is, a realization of a random vector Y, and θ is the parameter vector. As is well known,

the posterior is proportional to the product of the likelihood of the sample, f (y|θ), and

the prior, π(θ), so a Bayesian analysis requires the likelihood function. Classical statisti-

cians often use the maximum likelihood (ML) estimator, because of its desirable property
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of asymptotic efficiency. For both approaches, the likelihood function is needed. How-

ever, there are many areas of research involving complex models where computation of

the likelihood function is not possible, or is extremely expensive, effectively ruling out

ordinary Bayesian methods and ML estimation.

Much research in the last several decades, both classical and Bayesian, has been

focused on providing alternatives. In the classical framework, and among other ap-

proaches, the Generalized Method of Moments (GMM; Hansen, 1982) is based on a vector

of moment conditions m(θ, y) that are assumed to have expectation equal to zero under

the true model. A common way to define moments first defines a vector of statistics Z,

a mapping operating on Y, Z = Z (Y) , with sample realization z = Z(y). Let Eθ [Z] be

the expectation of Z under the model and m(θ, y) = z − Eθ [Z] be the moment restric-

tions implied by the model; by construction, these moments have expectation zero when

θ = θ0, where θ0 is the true parameter value. Approximate Bayesian Computing (ABC) is

a set of methods that attempts to use Bayesian ideas when the likelihood function of the

sample is not available, but the model is simulable. An important part of this literature

(e.g., Beaumont et al. 2009; Fearnhead and Prangle, 2012; Blum et al. 2013) focuses on the

posterior of the parameter conditional on a statistic, f (θ|z). In both areas, use of a statis-

tic offers the simple advantage of feasibility, as well as computational advantages, due

to the reduction of the dimensionality of the problem from dim Y to dim Z. The cost is a

possible loss of statistical efficiency, compared to what would obtain were the likelihood

function available.

It is well known that the asymptotic distributions of GMM estimators depend cru-

cially on the specific Z that is chosen. We know that adding statistics to a baseline set

will not cause the asymptotic variance of the GMM estimator to increase, which might

cause one to think that selection of statistics is not important, and that when in doubt,

additional statistics should be included. However, use of weakly informative moment

conditions can lead to very poor small sample performance of the GMM estimator (e.g.,

Tauchen, 1986; Stock, Wright and Yogo, 2002). In some cases, the model can give strong

guidance regarding what moments to use for estimation, but in others, the choice is not

clear, and a researcher may need to select which moments to use from a set that may

include weakly informative and uninformative moments. These issues are also relevant

for ABC with the posterior distribution f (θ|z) in general being sensitive to the choice of

the summary statistics. From a frequentist point of view, ABC is first order asymptotic

equivalent to the efficient GMM estimator based on m(θ, y) = z − Eθ [Z] (see Creel and

Kristensen, 2013 and Forneron and Ng, 2015) and so the above cited results for moment

selection also applies to ABC. Gao and Hong (2015) show how ABC-type ideas can be

employed to compute Bayesian versions of GMM estimators in a general setting.

Thus, an important part of implementing GMM and ABC is the choice of the statis-

tics Z. Systematic methods for selection of statistics have received a good amount of

attention in both the ABC and GMM literatures. Within the ABC literature, Blum et al.

(2013) provide a review of this work, with some new results based on use of regular-
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ization methods. The methods that have been used fall into three classes: best subset

selection; projection methods that define new statistics by combining statistics in some

way to reduce dimension; and regularization techniques such as ridge regression.

This paper adds to this literature by proposing a simple cross validation method for

selecting statistics from a possibly large collection of candidate statistics, denoted W, as-

suming that the model is simulable. The method lies in the best subset selection classifi-

cation of Blum et al. (2013): By searching over the candidate statistics using the simulated

annealing algorithm, it provides a systematic method of dealing with the problem of a

potentially large set of candidate statistics, while limiting computational cost. One of the

examples presented below has 56 candidate statistics, so the number of possible combi-

nations to search over, 256, is more than 70,000 million millions. Specifically, selection

of statistics is investigated based on the idea of minimization of an integrated version

of Bayes expected loss,
∫

L (E [Θ|Z = z]− θ) f (z|θ)π(θ)dzdθ for some loss function L,

with respect to all subsets of statistics, Z, of W. Here, E [Θ|Z = z] is the posterior mean,

f (z|θ) is the density of the statistic conditional on the parameter, and π(θ) is the prior.

The integrated Bayes expected loss cannot be computed analytically, but can easily be

approximated through simulations as demonstrated in the following. The use of Bayes

expected loss in a decision theoretic framework is quite standard, but there one usually

conditions on the particular outcome z that has been observed. Here, on the other hand,

we choose to integrate over all possible outcomes with weights assigned by their likeli-

hoods; this is meant to reflect that we are interested in identifying a universal (“global”)

set of sufficient statistics that work well for the given model irrespectively of the partic-

ular outcome observed. Moreover, this integrated version of Bayes expected loss proves

to be simpler to estimate compared to the conditional version.

The above selection rule aims at minimizing the loss of the posterior mean. If the

interest lies in the whole posterior distribution, and not just its mean, we show how our

method is easily adjusted so as to minimize the integrated Kullback-Leibler distance of

the posterior density for a given set of summary statistics w.r.t. z. This version of our

selection procedure chooses the set of summary statistics that maximizes the information

content over the whole distribution and so is similar in spirit to the one of Barnes et al.

(2012). However, the procedure of Barnes et al. (2012) only performs a partial search over

the set of candidate statistics, while our algorithm does a full search.

From a frequentist point of view, E [Θ|Z = z] can be interpreted as a point estimator

of the true data-generating value; using of the posterior mean as an estimator is defensi-

ble by the first order asymptotic equivalence of the posterior mean and the efficient GMM

estimator (Chernozhukov and Hong, 2003; Creel and Kristensen, 2013). Our procedure

can therefore be thought of as minimizing Bayes Risk, which again is a well-known object

in decision theory, of this estimator. Thus, our procedure also applies to simulation-based

GMM estimators, including the method of simulated moments (McFadden, 1989), indi-

rect inference (Smith, 1993; Gourieroux et al., 1993), and the efficient method of moments

(Gallant and Tauchen, 1996). The specific procedure that we propose for computing the
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integrated Bayes expected loss computation requires that the model of interest is simu-

lable. This, in general, requires a fully specified model. Thus, the implementation of our

procedure would have to be modified in order to use it for selection of moments in GMM

estimation of models that are only partially specified.

In comparison to existing methods developed in the ABC literature, our proposal has

the advantage that it provides a universal search over all possible candidate sets of statis-

tics. In contrast, most competing methods either rely on fairly complex step-up proce-

dures, where one statistic is added at a time, or on the construction of approximately op-

timal statistics. These methods tend to be more complex to implement and require much

computational effort to achieve a solution that is stable across repeated runs. In contrast,

our method is relatively simple to implement and tends to converge quite quickly. We

investigate the performance of the proposed method through two examples, and in both

cases our procedure performs well. The first example takes the form of a linear regres-

sion model, where the optimal statistics are known, and thus it provides a good testing

ground for our procedure. We show that our method can identify these statistics quite

rapidly and does so robustly across many simulated samples. This simple test problem

should be of independent interest since it might be used by proponents of other meth-

ods to evaluate performance and to allow comparison of computational demands. The

second example is more complex. The model is a continuous-time jump-diffusion model

with latent stochastic volatility and jump intensity, with 10 parameters. In this case, the

optimal statistics are unknown, so we cannot directly validate whether our procedure is

identifying the correct statistics from the initial pool, which contains 56 statistics. We can

however compare the performance of the resulting posterior mean, based on the selected

statistics, relative to alternative selection methods (such as including all statistics). We

find that our proposed selection method performs very well in terms of this metric.

In the remaining sections, a particular ABC estimator is first reviewed, and then our

proposal for selection of statistics is presented and discussed in relation to existing sum-

mary statistic selection methods and nonparametric variable selection; we demonstrate

the performance of the proposed algorithm through two examples, and finally, conclu-

sions are offered. Software to replicate the results is available at http://www.runmycode.

org/companion/view/1116. The software is written in the Julia programming language,

which is a free, high level, high performance language that runs on all popular operat-

ing systems. This language may be unfamiliar to many readers, but it has a syntax very

similar to widely used languages, and it is very easy to install and begin using in little

time.

2 Review of the SBIL ABC Estimator

Creel and Kristensen (2013) define several indirect likelihood estimators, one of which,

the simulated Bayesian indirect likelihood (SBIL) estimator, is an ABC estimator. The

SBIL estimator is a specific version of ABC that is focused on point estimation, and which

http://www.runmycode.org/companion/view/1116
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uses particular methods. It is very similar to the ABC estimator proposed by Beaumont,

Zhang and Balding, 2002. Here the name SBIL is used simply to avoid confusion with

other versions of ABC estimators, such as versions which do not use a statistic, rejection-

based ABC, ABC via Markov chain Monte Carlo, etc. The name also serves to highlight

the relationship of the estimator to other indirect likelihood estimators, which are not

ABC estimators.

Suppose we have a fully specified model indexed by a parameter θ ∈ R
k. Given a

random sample of, say n, observations, y, which is a realization of the random vector Y,

generated at the unknown true parameter value θ0, define a random vector of statistics

Z = Z (Y), and let z = Z(y) be the realized sample value of the statistic. Let Θ be the ran-

dom parameter vector, in the Bayesian context. Creel and Kristensen, 2013 (henceforth,

CK13) propose a Bayesian indirect likelihood (BIL) estimator

θ̂BIL = E [Θ|Z = z] =
∫

Θ
θ f (θ|z) dθ, (2.1)

where, for some prior density π(θ) on the parameter space Θ, f (θ|z) is the posterior

distribution given by

f (θ|z) =
f (z, θ)

f (z)
=

f (z|θ)π (θ)∫
Θ

f (z|θ)π (θ) dθ
.

This same concept is found in Fearnhead and Prangle (2012, Theorem 3). This is very

much like the widely used Bayesian posterior mean, except that the likelihood is for-

mulated in terms of the density of the statistic, f (z|θ), rather than the full sample. Ad-

vantages of the BIL estimator over GMM are the avoidance of optimization, avoidance

of the need to compute the efficient weight matrix (see Hansen, 1982), and higher order

efficiency relative to the GMM estimator that uses the same statistic and the associated

optimal weight matrix (CK13).

Computation of the BIL estimator requires f (z|θ), which is normally not known. Just

as the simulated method of moments may be required when GMM is not possible, sim-

ulation and nonparametric regression may be used to compute a simulated BIL (SBIL)

estimator. This is implemented as follows (using standard notation from the literature on

nonparametric regression):

Algorithm 1. Basic SBIL algorithm (Beaumont, Zhang and Balding, 2002).

1. Make independent and identically distributed draws θs, s = 1, ..., S, from the prior density

π(θ)

2. For each draw, generate a realized sample y(θs) from the model at this parameter value, and

then compute the corresponding statistic zs = Z(y(θs)), s = 1, ..., S.

3. Given the i.i.d. draws (θs, zs), s = 1, ...S, the SBIL estimator is

θ̂SBIL = ÊS (θ|z) =
∑

S
s=1 θsKh (z

s − z)

∑
S
s=1 Kh (zs − z)

,
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where Kh(z) = K (z/h) /hdim z, K(z) ≥ 0 is a kernel function, and h > 0 is a common band-

width parameter.

The computation of the conditional mean in Step 3 is implemented using a kernel re-

gression (or smoother) estimator with a global bandwidth, but other nonparametric re-

gression estimators can be used in its place. For example, it could be computed using a

nearest neighbor estimator, where the bandwidth is adaptive, so that the kernel places

nonzero weight only on the k closest neighbors to z. In practice, this is what we do. One

could also employ local linear estimators as advocated by Gao and Hong (2015).

Several factors affect the SBIL estimator. Among these are the prior, the kernel, the

bandwidth, and the statistics chosen to form Z. Choice of kernels and bandwidths has

been addressed in detail in the literature on nonparametric regression. Choice of the

kernel is known to be relatively unimportant, if the bandwidth is selected appropriately

(Marron and Nolan, 1989). In this work, we use simple K nearest neighbors regression,

with the number of neighbors K selected using a rule of thumb, K = S0.25, rounded down

to the nearest integer. We do not enter further into these particular details, as they are

not in the scope of this paper and the details are given in the code that accompanies the

paper.

Regarding the prior, the basic SBIL algorithm outlined above uses simple sampling

from the prior. When the prior and the posterior are not similar, direct sampling from

the prior can be computationally inefficient, because many draws of the parameter θs

lead to simulated statistics zs that are often so far away from the observed statistic, z, so

that the associated parameter draw is rarely retained as one of the neighbors that affects

the estimated value. Recognizing this problem, methods of computing estimators us-

ing likelihood-free Markov chain Monte Carlo, sequential Monte Carlo, and importance

sampling have been studied in some detail in the ABC literature (among others, see Mar-

joram et al., 2003; Sisson, Fan and Tanaka, 2007; Beaumont et al. 2009; Del Moral, Doucet

and Jasra, 2012). As noted in Creel and Kristensen (2011), one way of improving com-

putational efficiency is to adapt the basic SBIL algorithm to use importance sampling as

follows:

Algorithm 2. Importance Sampling SBIL algorithm.

1. Make i.i.d. draws θs, s = 1, ..., S, from an importance sampling density g (θ|z)

2. For each draw, generate a sample and compute the corresponding statistic, zs.

3. Given the i.i.d. draws (θs, zs), s = 1, ...S, we can obtain the SBIL estimator using

θ̂SBIL = ÊS [Θ|Z = z] =
∑

S
s=1 θswsKh (z

s − z)

∑
S
s=1 wsKh (zs − z)

,

where ws = π (θs) /g (θs|z) are the importance sampling weights.

If the importance sampling density g (θ|z) is close to the posterior density, then this

algorithm will allow accurate computation of the estimator using many fewer draws (S)
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than would be needed if Algorithm 1 were used. This is a straightforward application of

importance sampling, and no claims to originality are made.

The following algorithm is a means of constructing an importance sampling density.

The final importance sampling density g (θ|z) is simply a finite mixture density. The al-

gorithm uses perturbation and a particular method of selection to determine the location

parameters of the component densities. Because the algorithm has similarities to particle

filtering methods, the means of the components of the mixture are referred to as “parti-

cles”. The algorithm adaptively perturbs and selects the components in order to obtain a

final density that has high mass in the region around the observed z.

Algorithm 3. Construction of Importance Sampling density.

1. Generate S0 particles (draws) θs, s = 1, 2, ..., S0 from the prior π(θ) and compute the

associated statistics zs for each particle. Set the iteration counter i to 0.

2. Set iteration counter i to i + 1.

3. Select the best S1 current particles, based on proximity of zs to z.

4. From the selected particles, randomly draw, with replacement, Si particles.

5. Perturb each of the new particles by adding a mean zero random draw to one or more of the

elements.

6. Generate a zs for each of the Si perturbed particles. Add the new particles to the current set

of particles from Step 3, so that the set of current particles has S1 + Si elements

7. Proceed to step 8 if the iteration counter is equal to a pre-established limit, otherwise, go to

step 2.

8. Choose the best S particles from the S1 + Si current particles, as in step 3.

9. Define the importance sampling density as the mixture of densities associated with each

final particle: g (θ|z) = 1
S ∑

S
s=1 gs (θ|z; θs).

To give a concrete example, if the particles are subjected to a mean zero multivariate

normal perturbation in step 5, so that the density of a perturbation is N(0, Σ), then the

components of the final importance sampling density defined in Step 9 are gs (θ|z; θs) =

N(θs, Σ).

This algorithm has strong similarities to the sequential Monte Carlo (particle filter-

ing) versions of ABC that have been proposed. For example, it is similar to the popula-

tion Monte Carlo algorithm of Beaumont et al. (2009), to the replenishment algorithm of

Drovandi and Pettitt (2011) and to Algorithm 4 of Marin et al., (2012). However, there are

differences, too. The goal is simply to construct an importance sampling density, rather

than an ABC posterior, so there is no declining tolerance level in the proposed algorithm.

The actual ABC estimation is done using Algorithm 2, after the importance sampling

density is constructed; it is not the product of the algorithm. Also, selection of particles

is by nearest neighbors, rather than rejection. Previous experience with this algorithm

(Creel and Kristensen, 2015) indicates that it is very effective in restricting attention to

the portion of the parameter space that has non-negligible mass, which allows one to
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specify a relatively uninformative initial prior, because the algorithm quickly focuses at-

tention on the region which can generate auxiliary statistics that are close to the observed

z. The only drawback to setting a very uninformative prior is that S0 in Step 1 may need

to be increased to compensate for excessive dispersion of the initial statistics, zs. Note

that steps 1, 4, 5 and 6 are “embarrassingly parallelizable” and step 3 can also be paral-

lelized with some communications overhead. This means that the algorithm can easily

be programmed to take advantage of available computational resources, such as multiple

cores or a cluster of computers. In the application of Creel and Kristensen (2015), S1 of

step 3 was set to retain the best 20% of the particles. A careful exploration of the effect of

this and other tuning details, such as the perturbation method, remains a topic for further

study.

This discussion makes clear the nature of the estimator. The BIL estimator, E [Θ|z]

(which cannot actually be computed) is a posterior mean, conditional on a statistic, rather

than the full sample. The BIL estimator has the same asymptotic normal distribution as

the optimal GMM estimator that uses the same statistic (CK13, see also Chernozhukov

and Hong, 2003). Thus, the relationship between the BIL estimator and the ordinary pos-

terior mean E [Θ|y] based on the full sample is essentially the same as the relationship

between the GMM estimator and the maximum likelihood estimator: the first is in gen-

eral not fully efficient, while the second is. The relationship between the SBIL estimator,

which can be computed using importance sampling and nonparametric regression, and

the BIL estimator, is like that between an ordinary Bayesian posterior mean computed

using Markov chain Monte Carlo or some other computational technique, and the de-

sired true posterior mean: the first is a numeric approximation of the second, which can

be made as precise as needed by means of additional computational resources. Our ar-

gument for using the SBIL estimator is one of computational convenience and statistical

performance. In terms of convenience, the SBIL estimator can be reliably computed us-

ing the above outlined algorithms, which are amenable to parallel computing techniques.

There is no need for minimization or computation of the efficient weight matrix, as is the

case for the GMM estimator. The remaining question is statistical performance, and this

is fundamentally related to the main topic of this paper, the choice of which statistics to

include in Z. Six factors are essential to the performance of the SBIL estimator: the prior,

the number of simulations S, the importance sampling density, the kernel, the band-

width, and the statistics chosen to form Z. The first five of these have been addressed in

this section. We now turn to the last.

3 Selection of Auxiliary Statistics

In most implementations of the ABC estimator, a large number of candidate statistics are

available, say, W. In such scenarios it may be tempting to simply include all of them

in the computation of the estimator. However, recall that the simulated version of the

ABC estimator takes the form of a nonparametric regression estimator, and such esti-
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mators are known to suffer from the so-called curse-of-dimensionality: For a given set of

simulations of size S and bandwidth choice h, the bias and variance of ÊS [Θ|W = w]

due to simulations is of order O
(
h2
)

and O(1/(Shdim(W))), respectively, assuming that

a so-called second order kernel is employed, c.f. Creel and Kristensen (2013). In partic-

ular, the optimal bandwidth choice should be of order h = O
(

S−1/(4+dim(W)
)

yielding

an error rate due to simulations of O(S−2/(4+dim(W))). Thus, the performance of the ABC

estimator deteriorates as the number of summary statistics, dim(W), increases. For a

good performance, we would therefore ideally like to only use the “relevant” portion of

the set of candidate statistics W, where by relevant we mean summary statistics from W

that are informative about θ0, while leaving out the irrelevant ones. This is not special to

the particular ABC estimator considered here. The same issue arises in the approximate

Bayesian computation of the posterior density given W. There, the best rate one can hope

for is O(S−2/(4+dim(θ)+dim(W)).

To formalize this idea, let δ be a dim(W) × 1 vector of zeros and ones, where a zero

indicates that the corresponding auxiliary statistic is not used in the computation of the

ABC estimator, and a one indicates that it is, and let Z(δ) be the corresponding vector

of selected statistics. Let ∆ = {0, 1}dim(W) be the set of all possible values of δ. This set

has 2dim(W) elements, a number which can be very large when a number of statistics are

under consideration. We then define δ0 as the minimal set of statistics for which there is

no predictive loss,

δ0 = arg min
δ∈∆

dim(W)

∑
k=1

δk subject to E [Θ|W] = E [Θ|Z (δ)] .

Note that the set of permissible δ’s are non-empty since δ = (1, ...., 1) satisfies the con-

straint. The corresponding set of summary statistics Z0 = Z (δ0) ⊆ W is the minimal set

of statistics for which

E [Θ|W] = E [Θ|Z0] . (3.1)

This is a weaker property compared to the concept of sufficient statistics. For Z0 to be

a sufficient statistic we would need that f (θ|z0) = f (θ|y) which in turn would imply

that E [Θ|Y] = E [Θ|Z0]. In contrast, the criterion we use for selecting relevant statistics

only considers the impact of the summary statistic on the posterior mean and only ask

it to be sufficient relative to the initial set of candidate statistics W, not the full sample.

One could strengthen the above objective and require that Z0 satisfies f (θ|z0) = f (θ|w),

where f (θ|w) is the posterior of θ|W = w. In the next section, we explain how our

proposed method can be modified so as to select statistics that satisfy this property.

The goal is then to identify δ0 (or correspondingly, Z0) satisfying eq. (3.1). Evidently,

given the model is fully parametric, Z0 could in principle be obtained given knowledge

of f (θ, W) = f (W|θ) π (θ). Unfortunately, f (θ, W) is not known on closed form; we can

only simulate values from this distribution. Thus, based on a finite set of draws (θs, ws),

s = 1, ...S, we wish to develop a statistical procedure for choosing “an estimate” of Z0.
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For this purpose, we introduce the Bayesian expected loss of the action ÊS [Θ|Z (δ) = z (δ)]

associated with a given decision δ ∈ ∆,

BS (δ|w) := E
[
L
(
Θ − ÊS [Θ|Z (δ)]

)
|Z (δ) = z (δ)

]
(3.2)

=
∫

Rk
L
(
θ − ÊS [θ|Z (δ) = z (δ)]

)
f (θ|z (δ)) dθ,

where L : R
k 7→ R+ is some loss function chosen by the researcher. A natural choice

of L is the (weighted) L2 loss, LΣ (θ) = θ′Σθ for some positive definite weighting matrix

Σ ∈ R
k×k, but alternative risk measures are allowed for, such as (weighted) L1 loss. Given

data w, we could then seek to minimize this w.r.t. δ. The above criterion reflects that

E [Θ|Z (δ) = z (δ)] is approximated (estimated) by ÊS [Θ|Z (δ) = z (δ)], and takes into

account the additional errors that the simulation draws generate. As pointed out earlier,

these additional errors are a major reason for trying to reduce the number of summary

statistics. As is well-known, BS (δ|w) can also be given a frequentist interpretation in

terms of Bayes risk of the simulated estimator ÊS [Θ|Z (δ)] associated with a particular

choice of summary statistics.

The δ that minimizes the Bayesian expected loss would be dependent on the particu-

lar observation w of W in our sample. Here, we aim at finding a universal (global) set of

statistics that works well for the model of interest, independently of the sample, and so

modify the above expected loss function by integrating over all possible outcomes of W

w.r.t. its marginal distribution f (w), yielding the following integrated loss function LS (δ),

LS (δ) :=
∫

BS (δ|w) f (w) dw =
∫ ∫

L
(
θ − ÊS [θ|Z (δ) = z (δ)]

)
f (θ, z (δ)) dθdz (δ) .

(3.3)

We will then use this for selecting statistics. In Section 4, we discuss how the proce-

dure described below can be modified if one would rather select statistics according to

BS (δ|w).

In principle, we would now minimize LS (δ) to obtain an estimate of δ0. However, the

integrals appearing in eq. (3.3) cannot be computed analytically, but Monte Carlo integra-

tion may be used: Let θ̃r be a draw from the prior and z̃r (δ) be the associated simulated

draw from Z (δ) generated at the parameter value θ̃r, r = 1, ..., R. Note that (θ̃r, z̃r (δ)),

r = 1, ..., R, are drawn independently of the draws used to compute ÊS [Θ|Z (δ) = z (δ)];

to emphasize this feature, we here use˜for the “test sample” of size R in order to differ-

entiate it from the initial set of draws of size S. We then obtain the following simulated

version of LS (δ),

L̂S (δ) =
1
R

R

∑
r=1

L
(
θ̃r − ÊS [Θ|Z (δ) = z̃r (δ)]

)
.

One can think of this procedure as a “split sample method”, where we have a pool of

S + R draws from the target distribution, and we then set aside the last R draws for
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evaluation of ÊS [Θ|Z (δ) = z (δ)]. This criterion is designed to do variable selection while

safe guarding against over-fitting, which in our case corresponds to including irrelevant

summary statistics. Instead of the simple sample splitting method used in L̂S (δ), one

could employ more advanced cross-validation method to evaluate the “out-of-sample”

performance of ÊS [Θ|Z (δ) = z̃r (δ)]; we refer to Stone (1974) and the discussion in the

following section for more on this issue.

Finally, one can introduce a penalty term p(δ) to encourage a more parsimonious

selection. One example that will be used in the following is

p(δ) =

(
1 + a

dim Wn

∑
i=1

δi

)
, (3.4)

where a > 0 is a penalty weight, but other choices are possible. This penalty is increasing

in the number of nonzero elements in δ. Multiplying the penalty onto the simulated loss

function, so that the penalty increases the basic loss by a percentage, we arrive at our

recommended decision rule:

δ̂ = arg min
δ∈∆

CV (δ|p) ,

where

CV (δ|p) =
p(δ)

R

R

∑
r=1

L
(
θ̃r − ÊS [Θ|Z (δ) = z̃r (δ)]

)
. (3.5)

In normal usage, cross validation by itself already enforces a parsimonious selection of

statistics, so the penalty term p(δ) can be neutralized by setting a in equation (3.4) to zero.

An example of use of the penalty term is given below in Section 5.2, when selection of

statistics is targeted to a single parameter, in an effort to reduce bias.

The method is simple to implement in practice:

Algorithm 4. Selection of statistics.

1. draw R θr from the prior π(θ).

2. for each θr, generate the realized candidate statistics wr.

3. minimize the criterion in equation (3.5) with respect to δ (recall that zr is determined by δ,

given wr) to obtain δ̂, which defines the selected statistics.

Note that Steps 1 and 2 of Algorithm 1 need be performed only once, and then the

result may be used for all of the iterations in Step 3 of Algorithm 4. A user only needs

to supply a set of draws from the prior and the associated candidate statistics. This is

a trivial requirement if the user is engaged in estimation using any ABC method. The

algorithm does the rest.

Minimization of CV(δ) in equation (3.5) presents us with a non-differentiable mini-

mization problem over a discrete choice set that potentially (depending on the number

of candidate statistics) contains an extremely large number of possible combinations. We

propose to resolve this issue by employing simulated annealing (Černý, 1985; Goffe et al.,
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1994), a global optimization method that performs a stochastic search over the domain of

the objective function. Simulated annealing is an algorithm that is well known in many

areas, including economics, where applications include Wu and Wang (1998), for the

computation of economic equilibria, and Örkcü (2013), for selection of regressors in lin-

ear regression models. It is related to the Metropolis-Hastings algorithm, which should

be familiar to users of Markov Chain Monte Carlo method in that movements that do not

improve the objective function may be accepted, which allows the algorithm to escape

from local minima, but the probability of accepting such upward movements declines

as the algorithm progresses. The rate at which this probability declines is known as the

cooling schedule of the algorithm. A slow cooling rate helps to ensure that the algorithm

does not converge to a local minimum, but it also leads to a longer run time.

Our version of the algorithm is loosely based on the Fortran code provided by Goffe

et al. (1994), with adaptation to a discrete choice set. It is written in the Julia program-

ming language (http://julialang.org), which is a high level, high performance sci-

entific programming language, with syntax not unlike that of Matlab, but performance

that is similar to that of C. We obtain an approximately optimal set of statistics by apply-

ing simulated annealing to approximately minimize the cross validation score over the

discrete choice set. The simulated annealing algorithm can theoretically find the actual

minimizer, if the cooling schedule is slow enough (Černý, 1985), but this may entail a

very high computational demand. It is possible to contract the search space faster than is

allowed for convergence to the actual minimizer, or one may simply limit the number of

objective function evaluations. If this is done, the actual minimizing value of δ may not

be found, depending on how smooth and regular is the objective function, but at least

a systematic means of search is used, and by dedicating enough computational power,

the final solution should be close to being optimal. It is easy to do parallel runs of the

minimization, to more thoroughly explore the δ space.

4 Discussion

We here discuss our proposal, relative to existing methods found in the ABC literature,

and to variable selection methods developed in the literature on nonparametric regres-

sion. As mentioned earlier, existing methods for selection of summary statistics can

broadly be categorized into three groups: best subset selection, projection methods and

regularization techniques.

Among papers that use projection, Fearnhead and Prangle (2012) explore using a

training set of simulated observations, regressing parameters drawn from the prior on

statistics computed using the simulated data, and then using the fitted values (a weighted

index of the initial statistics that is an approximation of the posterior mean of the param-

eter) as a single statistic for ABC estimation, for each parameter in turn. This approach

reduces to one (per parameter) the dimension of the initial large set of statistics. This may

lead to an excessive loss of information, in that there may exist no single linear index that

http://julialang.org
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captures the information in the large body of initial statistics. A further limitation is the

use of linear regression, which may perform poorly if the true relationship between the

parameter and the informative statistics is nonlinear. Fearnhead and Prangle (2012) ad-

dress this by using methods to endogenously choose the training set from a region of

reasonably high posterior mass. In contrast, our method works with a consistent esti-

mator of the posterior mean and so avoids any biases due to the use of linear regression

techniques.

As an example of papers that select a subset of statistics, Joyce and Marjoram (2008)

propose an algorithm to determine whether or not a new statistic should be added to a

previously selected set of statistics, based on approximations of the posterior odds ratio,

computed using rejection-based ABC. If the new statistic is added, then removal of the

previously selected statistics is contemplated. This proceeds until all statistics have been

considered. Also proposing a subset selection strategy, Nunes and Balding (2010) per-

form rejection-based ABC for all subsets of the candidate statistics, and select statistics to

minimize the entropy of the resulting ABC posterior. This may be followed by a second

step that again searches over all subsets of the candidate statistics to minimize a criterion

that depends in part on the statistics that were selected in the first step. The first step of

their procedure may not work well in certain contexts (see Blum, et al., 2013), and this

could undermine the effectiveness of the second step. Their second step is quite similar

to what is proposed in the present paper. However, the present paper proposes a system-

atic and computationally efficient method to do the minimization, rather than searching

over all possible solutions, which may not be possible to do when a large number of

candidates are under consideration. A final example of papers that use subset selection

is Barnes et al. (2012). This paper proposes a stepwise method of introducing statistics

until the Kullback-Leibler divergence between ABC posterior distributions is below a tol-

erance. This method is interesting, and appealing from the Bayesian perspective, in that

the full posterior influences the selection of statistics, compared to the method proposed

here, which uses only the posterior mean. In comparison to these methods, we conduct a

full search over the set of possible candidate statistics without relying on step-wise pro-

cedures. Moreover, our method is computationally very simple as Algorithm 4 reveals.

In particular, our procedure does not involve any additional tuning parameters (besides,

optionally, the penalization weight). Below, we discuss how the information theoretic

criterion developed in Barnes, et al. (2012) in principle could be combined with the ideas

of this paper to yield an alternative version of our cross-validation method.

In the GMM literature, attention has also been given to the choice of moment con-

ditions (which corresponds to the summary statistics in our setting). Notable examples

include Andrews and Lu (2001), Cheng and Liao (2012) and Hall et al. (2012) who pro-

posed methods for selecting moment conditions out of a potentially large set of possible

moment conditions using penalization methods. All these papers focus on the case of a

partially specified model which complicates the selection algorithms and their analysis

considerably, which tends to rely on asymptotic arguments. In contrast, since we have a
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fully specifed model, more information about the relative importance of a given statistic

is available, and an exact analysis can be made.

Our proposed cross-validation method is also related to variable selection methods in

nonparametric regression. By definition, we know that the ABC estimator related to the

set of ideal set of statistics Z0 satisfies

Θ = m (Z0) + ǫ, m (z0) := E [Θ|Z0 = z0] , (4.1)

where E [ǫ|Z0] = 0. In the context of this regression, one can interpret the problem as

one of variable selection: If we add more statistics (regressors) to the above regression,

there will be no improvement in the fit, while at the same time the nonparametric esti-

mator of m will deteriorate due to the curse-of-dimensionality. In this context, we would

like to choose δ so as to minimize the distance between the optimal predictor, m (z0) and

ÊS [θ|Z (δ) = z] while taking into account the simulations. This could be done by mini-

mizing

∫
E
[
LΣ

(
m (z0)− ÊS [Θ|Z (δ) = z (δ)]

)]
f (z (δ)) dz =

∫
E
[
LΣ

(
θ − ÊS [Θ|Z (δ) = z(δ)]

)]
f (z(δ)) dz +E [LΣ (ǫ)] ,

where, as before, f (z(δ)) is the density of Z (δ), while E [·] denotes expectations w.r.t.

the simulations, and LΣ (θ) = θ′Σθ is the weighted L2 -loss. Note that the first term on

the right hand side is simply LS (δ) while the second one is independent of δ. Thus, one

can interpret our procedure as one of variable selection in a nonparametric regression

framework. In the literature on nonparametric regression, LS (δ) is usually estimated by

C̃V (δ) :=
1
S

S

∑
s=1

LΣ

(
θs − Ê−s [Θ|Z (δ) = zs(δ)]

)
,

where Ê−s [Θ|Z (δ) = z(δ)] is the so-called leave-on-out version of ÊS [Θ|Z (δ) = z(δ)].

Very often penalty terms are added to C̃V (δ) in order to further regularize the selection

procedure; see e.g., Härdle et al. (1998, p. 88). Thus, the main difference between the

above alternative cross-validation criterion and the one proposed in the previous section

are that while we use sample splitting, C̃V (δ) estimates the integrated loss using the

same simulated sample which is used to estimate E [Θ|Z (δ) = z(δ)]. The two measures

CV (δ|p) (with p = 1) and C̃V (δ) are asymptotically equivalent, but in practice, with not

too large R, CV (δ) is faster to implement relative to C̃V (δ) since they involve RS and S2

computations, respectively.

Cross-validation methods are mostly used for bandwidth selection (see, e.g., Härdle

et al., 1998), but can also be used for variable selection as advocated by Hall et al. (2004) in

the context of conditional density estimation. For variable selection, all candidate statis-

tics, W, are included in the nonparametric kernel regression, but with individual band-
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widths h1, ..., hdim W so that

Ê [Θ|W = w] =
∑

S
s=1 θsKH (ws − w)

∑
S
s=1 KH (ws − w)

,

where KH (ws − w) = |H|−1 K
(

H−1 (ws − w)
)
, and H is the diagonal matrix with diago-

nal elements h1, ..., hdim W . By choosing these bandwidths to minimize C̃V (h1, ..., hdim W) =
1
S ∑

S
s=1 LΣ

(
θs − Ê−s [Θ|W = ws]

)
, where Ê−s [Θ|W = ws] is the leave-one-out estimator,

bandwidth selection and variable selection is done jointly with irrelevant statistics be-

ing removed implicitly by being assigned (very) large bandwidths, making them vanish

in practice; see Hall et al. (2004). Comparing this variable selection method with the

one proposed here, one can think of our procedure as a computational shortcut to the

variable selection procedure using multiple bandwidths: When dim W is large, the joint

minimization problem of C̃V (h1, ..., hdim W) w.r.t. h1, ..., hdim W is quite challenging and

very time consuming, with local minima very often being present. In contrast, by using

a single bandwidth for all variables and using δ to select statistics, our variable selection

problem is of a lower dimension which can be solved more quickly and is numerically

more stable.

The selection rule developed in the previous section chooses the summary statistics

so as to minimize the (integrated) Bayes loss of the posterior mean. In many cases, the

interest lies in the whole of the posterior distribution, not just its mean, however. For-

tunately, it is straightforward to modify our selection rule to handle this case by simply

replacing the Bayes loss as objective function by the Kullback-Leibler information crite-

rion (KLIC) of the posterior distribution conditional on data. The (conditional) KLIC of

the posterior distribution, corresponding to a given choice Z (δ), relative to the full set of

candidate summaries is given by

KL (δ|w) =
∫

log f (θ|w) f (θ|w) dθ −
∫

log f (θ|z (δ)) f (θ|w) dθ.

One can now minimize KL (δ|w) to obtain the minimal set of summary statistics for

which f (θ|z0) = f (θ|w), where Z0 = Z (δ0) and δ0 = minδ KL (δ|w). Thus, compared

to the selection criterion proposed in the previous section, this KLIC selection rule sat-

isfies the stronger property of Z0 being a sufficient statistic relative to the candidate set

of statistics W. The use of KLIC for selecting summary statistics was already proposed

by Barnes et al. (2012); however, while they use a step-up procedure for identifying δ0,

where one statistic is added at a time until there is no further improvement in terms of

KLIC, we here do a full search over all possible sets of candidates.

As already noted by Barnes et al. (2012), KLIC is only of theoretical interest since its

computation involves approximating f (θ|w) which is a high-dimensional problem when

dim W is large. To resolve this issue, we proceed as in the previous section and introduce
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the integrated (or expected) version of this measure,

KL (δ) =
∫

KL (δ|w) f (w) dw

=
∫ ∫

log f (θ|w) f (θ|w) f (w) dθdw −
∫ ∫

log f (θ|z (δ)) f (θ|w) f (w) dθdw

=
∫ ∫

log f (θ|w) f (θ) dθdw −
∫ ∫

log f (θ|z (δ)) f (θ, z (δ)) dθdz (δ) .

Note that the first term in the expression of KL (δ) is independent of δ, while the second

term can be estimated by 1
R ∑

R
r=1 log f̂S (θ

r|zr (δ)) where f̂S (θ|z (δ)) is the kernel density

estimator of the posterior density,

f̂S (θ|z (δ)) =
∑

S
s=1 Kh (θ

s − θ) Kh (z
s (δ)− z (δ))

∑
S
s=1 Kh (zs (δ)− z (δ))

.

Note again that we use sample splitting to safeguard against over-fitting (i.e., including

irrelevant summary statistics). With this simulated version of the posterior density, we

then propose the following KLIC selection rule,

δ̂KL = arg max
δ∈∆

1
R

R

∑
r=1

log f̂S (θ
r|zr (δ)) .

As with the Bayes expected loss, one could add a penalty term to the above objective

function so as to further regularize the problem.

In large samples, the KLIC and the Bayes expected loss versions of our selection

method will be asymptotically equivalent under certain regularity conditions. Specifi-

cally, if the summary statistics satisfy a central limit theorem, the posterior distribution is

well-approximated by a Gaussian distribution centered around the posterior mean (see

Creel and Kristensen, 2013),

log f (θ|z) ∝ (θ − E [Θ|Z = z])′Ω−1 (θ) (θ − E [Θ|Z = z]),

where Ω (θ) is the asymptotic variance of E [Θ|Z = z]. This implies that the two cross-

validation methods using KLIC and Bayes expected loss (using a weighted L2 loss func-

tion), respectively, will in many cases be asymptotically equivalent, as sample sizes in-

crease.

If the objective is to identify the optimal set of statistics for the given sample at hand,

our proposed method is easily adjusted to handle this: Using the “test sample” (θr, zr),

r = 1, ..., R, to estimate the posterior density f (θ|z (δ)) and then substitute this into the

Bayes expected loss BS (δ|z (δ)) defined in eq. (3.2), we obtain

B̂S (δ|w) =
∫

Rk
L
(
θ − ÊS [θ|Z (δ) = z (δ)]

)
f̂R (θ|z (δ)) dθ

=
∑

R
r=1 L

(
θ̃r − ÊS [θ|Z (δ) = z (δ)]

)
Kh (z̃

r (δ)− z (δ))

∑
R
r=1 Kh (z̃r (δ)− z (δ))

.
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One could now minimize this criterion w.r.t. δ using simulated annealing to obtain an

estimate of the optimal set of summary statistics conditional on the observed sample.

The precise algorithm is an obvious adjustment of Algorithm 4. One disadvantage of

this procedure is that B̂S (δ|w) is more sensitive to the bandwidth h compared to L̂S (δ) -

one would in fact probably wish to use a different bandwidth for the test sample of size

R. To reduce the effect of h, one could potentially proceed in two steps: First, minimize

CV (δ), and then do a second stage of selection of statistics by minimizing B̂S (δ|w) with

initial starting value chosen as the estimated obtained in the first stage. This idea is

similar to Nunes and Balding’s (2010) second stage procedure, which has a criterion that

depends on the accepted draws, and to Fearnhead and Prangle’s (2012) suggestion to

use an endogenously chosen target set, given z, to focus on regions of non-negligible

posterior density.

5 Examples

5.1 A simple example

This section presents a simple example that illustrates the proposed methods using Bayes

expected loss as criterion. The data generated by a simple linear regression model with

normally distributed errors

yi = α +
4

∑
j=1

β jxij + σui, (5.1)

i = 1, 2, ..., n. The xij are all independently drawn from the standard normal distribution,

as is the error ui. We investigate selection for two sample sizes: n =30 and n = 100

observations. The parameter vector is θ = (α, β1, β2, β3, β4, σ) . The priors for the α and

β parameters are independent U(−2, 2) densities, and the prior for σ is U(0, 5). To be

clear, the regressors are random, so they vary across samples, but for every sample, they

are observed without error. The model is simply the classical linear regression model

with Gaussian errors, with the exception that the regressors are not fixed across repeated

samples. The model details are apparent in the accompanying code “make_simdata.jl”.

[insert online link to “make_simdata.jl” accompanying text file about here]

For this linear model, the ordinary least squares (OLS) estimator of the α and the

β parameters is the maximum likelihood estimator, and this vector, along with the as-

sociated estimator of σ, provide auxiliary statistics for the SBIL estimator such that it

is asymptotically efficient as a point estimator. This is because (i) these statistics cause

the just identified efficient GMM estimator to coincide with the ML estimator, which is

asymptotically efficient, and (ii) the efficient GMM and SBIL estimators are first order

asymptotically equivalent (CK13). To clarify the first point, the GMM estimator uses the

moment conditions m(θ) = θ − θ̂, where θ̂ are the OLS estimates of the parameters. The

GMM criterion to be minimized is s(θ) = [m(θ)]′ m(θ). The solution is clearly to set the

GMM estimate to the OLS estimate, which is the ML estimate. Thus, the SBIL estimator
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that uses these statistics is fully asymptotically efficient as a point estimator, and these

statistics are optimal in this sense. We do not claim that these statistics lead to an optimal

posterior density, in any sense. It is of interest to include optimal statistics in the pool of

candidates to see whether or not the selection procedure can select them.

Together with the “optimal” statistics, we added the OLS regression coefficients and

estimators of σ from two incorrectly specified models:

yi = α +
4

∑
j=1

β jxij +
4

∑
j=1

γjx
2
ij + σui (5.2)

and

yi = α +
4

∑
j=1

β jxij +
4

∑
j=1

γjx
2
ij +

4

∑
j=1

δjx
3
ij + σui. (5.3)

These models include irrelevant regressors. The estimators of the α, β and σ parameters

from the quadratic and cubic regressions are still consistent estimators of the associated

parameters, though. However, the α and β estimators from these regressions are not

efficient, due to the added irrelevant regressors. The σ estimators are asymptotically

efficient in all three of the regressions, so we expect that selection between them will

be more or less evenly spread. The estimated γ and δ parameters of the quadratic and

cubic regressions will be partially informative for the β parameters, due to collinearity

between the x regressors and the square and cubic terms. Thus, these are informative,

but not optimal statistics. Finally, 5 statistics that are simply standard normal white noise

are added to the set of candidates. These statistics are completely uninformative, and

ideally, will never be chosen by the selection procedure. Thus, the entire set of candidate

statistics includes:

• 6 optimal statistics from the estimation of equation 5.1

• 9 relevant but non-optimal statistics, and one optimal statistic, from the estimation

of equation 5.2

• 13 relevant but non-optimal statistics, and one optimal statistic, from the estimation

of equation 5.3

• 5 irrelevant (pure noise) statistics

for a total of 35 statistics. There are 5 optimal statistics for the α and β parameters, one for

each element, coming from the linear regression. There are 3 alternative optimal statistics

for σ, from each of the 3 regressions. The best possible result of a selection method would

be to choose the α and β estimators from the linear regression model, and one of the σ

estimators, from any of the three regressions models. The file “make_simdata.jl” which

accompanies this paper allows one to generate replications of (θs, zs).

The loss function L in equation (3.5) is chosen as the mean absolute error of the SBIL

estimator, with scaling by the inverse of prior standard deviation of each parameter. That
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is, L (θ) = 1
dim θ ∑

dim θ
j=1

1
σj

∣∣θj

∣∣. Here, σj is the sample standard deviation of the jth param-

eter in the S draws made in the first step of Algorithm 1. Scaling is important to make

the cross validation criterion place similar weight on all parameters. In its absence, if

some parameter had a much tighter prior than the others, it would have little effect on

the chosen statistics. The penalty term p(δ) in equation (3.5) has no effect, because a in

equation (3.4) is set to zero. The number of draws from the prior (R in equation 3.5) is set

to R = 1000, and the number of simulations (S in algorithm 1) is set to S = 10000.

[insert online links to “Selection.jl” and “Selection_mpi.jl” accompanying

text files about here]

The main selection algorithm is contained in the file “Selection.jl”, which accompanies

this paper. A version which uses the message passing interface (MPI) to run on a mul-

ticore computer or a cluster is in the file “Selection_mpi.jl”. Instructions for how to do

this are in the file “README”, which accompanies the paper. The previously mentioned

file “make_simdata.jl” can be used to generate the data sets used by these scripts. All of

the code may be downloaded in one file from http://www.runmycode.org/companion/

view/1116.

[insert online link to README accompanying text file about here]

The selection algorithm was run using a battery of 100 simulated annealing mini-

mizations, for both sample sizes. We may think of this as investigation of 100 separate

runs of the algorithm, or as investigation of a single conservative run, where the use of a

battery of runs allows more rapid cooling than would otherwise be advisable. The results

are summarized in Table 1. Interpreting the results for the overall battery (the columns

headed with “selected in best run”), over the 100 replications, the replication that had

the smallest criterion value selected the optimal (in the sense defined above) statistics

that correspond to the estimated parameters using the linear model, for the sample size

n = 30. For the sample size n = 100, the same statistics were selected, with the exception

that the regression coefficient for β3 from the quadratic model was selected, and the cor-

responding coefficient from the linear model was not. In both cases, only 6 statistics were

selected to estimate the six parameters.

Next, we may interpret the 100 runs separately, to examine what results might be ex-

pected if the method is used with less care. For both sample sizes, the γi and δi statistics

of the quadratic and cubic models were never selected in any of the runs, so they do not

appear in the table. Two of the pure noise statistics were selected, one time each, for the

sample size n = 30. Overall, this is an important result: weakly informative and non-

informative statistics are almost never selected. However, the estimators of α,β and σ of

the linear, quadratic and cubic models are all more strongly informative, and they may be

fairly close substitutes for one another. For the sample size n = 30, the “optimal” statis-

tics corresponding to the linear model were selected almost always, the β estimators of

the quadratic model were selected with some frequency, and the β estimators of the cu-

bic model were selected rarely. For this sample size, the quadratic and cubic models are

certainly over-parameterized, so their estimators have fairly high variances, compared

http://www.runmycode.org/companion/view/1116
http://www.runmycode.org/companion/view/1116
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Tab. 1: Selected statistics, linear regression example, 100 replications of selection proce-
dure

Statistic n = 30 n = 100

% times selected
selected in

best run
% times selected

selected in
best run

α̂L 100 * 98 *
β̂1L 100 * 75 *
β̂2L 97 * 76 *
β̂3L 98 * 74
β̂4L 100 * 92 *
σ̂L 64 * 52 *
α̂Q 3 10
β̂1Q 24 56
β̂2Q 23 47
β̂3Q 21 48 *
β̂4Q 16 55
σ̂Q 66 56
α̂C 0 13
β̂1C 2 6
β̂2C 2 10
β̂3C 1 9
β̂4C 1 8
σ̂C 55 54
N2 1 0
N5 1 0
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to the variances of the corresponding estimators of the linear model. The selection pro-

cedure is able to choose the estimators of the linear model, which does not suffer from

over-parameterization. However, for the sample size n = 100, the over-parameterization

problem is less severe, and we see that the α and β estimators of the quadratic and cubic

models are selected more often, as they become closer substitutes for the corresponding

estimators of the linear model. For the σ parameter, recall that the estimators of all three

models have the same asymptotic distribution. This explains why the estimators from

all three models are selected more or less evenly, for both sample sizes. Note that if we

sum, over the linear, quadratic and cubic models, the number of times an estimator of a

given parameter is selected, the result is greater than 100, which means that the selection

procedure sometimes selects more than one statistic that is informative about a given

parameter.

To summarize, this discussion of the 100 separate runs is indicative of the result one

could obtain if the selection procedure is used without much care, seeking a quick selec-

tion, rather than a careful selection. We see that we still obtain quite good results: weakly

informative and uninformative statistics are almost never selected. There is some diffi-

culty in choosing between statistics that are close substitutes. However, when statistics

are close substitutes, either one will do well for the final ABC estimation, so the choice

between them is not too important. When the procedure is used with care, selecting the

best of repeated runs, the problem of not distinguishing between statistics that are close

substitutes disappears.

Regarding the time needed to perform selection, a single run using a single core of

a Macbook Air notebook computer, setting S = 10000 and R = 1000, takes less than 13

minutes. The “Selection_mpi.jl” version of the code uses MPI for parallel execution, al-

lowing a number of runs to be done simultaneously, which helps a great deal if one wants

to use a battery of runs. However, if one does not have MPI installed, it is also possible

to improve selection using a single run, by making some small changes to Selection.jl.

One may use a slower cooling schedule (set rt closer to 1), or use a larger “in sample”

data set (S) and/or a larger “out of sample” data set (R). Such changes will improve the

chances of arriving to the global minimum, or close to it, at the cost of increasing execu-

tion time. In this simple example, the number of candidate statistics is 35, so a method

that uses an exhaustive search over all possible combinations of statistics, such as that

of Nunes and Balding (2010), would require evaluating 235 combinations, which is infea-

sible. The proposed method can deal with a large number of candidate statistics while

using a reasonable amount of computational time.

5.2 Selection of statistics for a jump-diffusion stochastic volatility model

Creel and Kristensen (2015; henceforth CK15) use ABC methods to estimate a continuous

time stochastic volatility model that has non-constant drift, leverage, and jumps with
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dynamic jump intensity. In this model, the true log price, pt, solves

dpt = (µ0 + µ1(ht − α)/σ) dt +
√

exp (ht)dW1,t + JtdNt. (5.4)

where ht is log volatility, Jt is jump size, and Nt is a Poisson process with time-varying

jump intensity λt. Log-volatility is specified to follow

dht = ht + κ(α − ht)dt + σ

(
ρdW1,t +

√
1 − ρ2dW2,t

)
, (5.5)

where W1,t and W2,t are two independent standard Brownian motions. Jump sizes, con-

ditional on the occurrence of a jump, are independent and conditionally normally dis-

tributed: Jt ∼ N(µJ , σ2
J ). Finally, the jump intensity process λt is modeled as

λt = 1(λ∗
t > 0) where λ∗

t = λ0 + λ0λ1(ht − α)/σ.

CK15 discusses the model and interprets the parameters. One of the results was that

measurement error in pt is not an important factor for the data set that was studied. For

this reason, here, we use the model that does not include measurement error. We collect

the 10 parameters of the model in the vector θ = (µ0, µ1, α, κ, σ, ρ, λ0, λ1, µJ , σJ).

The data series available for computing statistics include daily returns, r, realized

volatility measured using 5 minute intervals (RV) , and realized bipower variation (BV),

which is a measure of volatility that is robust to jumps. The candidate statistics are func-

tions of these three variables. The variable I J = RV − BV is constructed as indicator of

jump activity, as is discussed by Andersen, Bollerslev and Diebold (2007). Another vari-

able, r2, is identical to r, except that returns are set to zero in periods when I Jt is greater

than 2.5 of its own standard deviations. This is an attempt to create a returns series that is

net of jumps. The candidate statistics are: the mean of the jump indicator (statistic 1); the

correlation of the jump indicator with the average of its 10 most recent lags (statistic 2);

the mean, standard deviation, skew and kurtosis of the variables r, r2, RV, BV, I J (statis-

tics 3-22); the correlations between the same 5 variables (statistics 23-32), and regression

coefficients, standard errors and R2 from several auxiliary models (statistics 33-53), along

with cross equation correlations of the residuals of regressions 2, 3 and 4 (statistics 54-56).

The four auxiliary regressions are:

Aux. reg. 1: log BVt = α1
log BVt−1 − log BVt−2

2
+ α2

log BVt−3 − log BVt−4

2
+ ǫ1t

Aux. reg. 2:I Jt = α1 log BVt−1 + α2

(
∑

10
j=1 I Jt−j

10

)
+ ǫ2t

Aux. reg. 3: log BVt = α1 log BVt−1 + α2r2t−1 + α3 (log BVt−1)
2 + α4 (log r2t−1)

2 + ǫ3t
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Aux. reg. 4: log r2t = α1r2t−1 + α2 log BVt−1 + α3 (r2t−1)
2 + α4 (log BVt−1)

2 + ǫ4t,

where all variables in the auxiliary regressions are standardized and and normalized

before estimation of parameters. These auxiliary statistics are somewhat different than

those used in CK15. In particular, the EGARCH model used in that paper was the most

costly statistic to compute, but it contributed no statistics to those that were selected, so

it has been dropped. There have been some other minor adjustments to the auxiliary

regressions, too, but overall, the statistics in the candidate set are very similar to those of

the previous paper.

The prior is different from that used in CK15, because the uniform prior of CK15, and

the broad bounds chosen for its support, are probably unrealistically uninformative, and

because CK15 already presents results using selected statistics, for the original prior. For

the purpose of selecting informative statistics, it is probably of more interest to investi-

gate how the procedure performs when draws are made from a region of non-negligible

posterior mass. Thus, the prior used here is one that makes use of the previous esti-

mation results for the S&P 500 series, during the period 2008-2011, to focus on such a

region. Nevertheless, we seek to select statistics which will perform well even if market

conditions change. Specifically, the prior is that the parameters have independent normal

distributions with means given by the estimates for the S&P 500 series during the period

2008-2011, found in Table 3 of CK15, and standard deviations equal to two times the es-

timated standard errors, also reported in the same table. However, the lower and upper

bounds for parameters given in Table 1 of CK15 continue to be enforced, through rejec-

tion sampling. Thus, the prior is not exactly unbiased, because the parameter bounds are

occasionally binding for certain parameters (most notably, µ0 and ρ).

To apply the selection procedure, we set S = 20000 and R = 1000. A larger value

of S is used than was the case for the linear regression model, because the number of

candidate statistics is much larger, and a larger sample is required to help ensure that

ÊS [Θ|Z (δ) = z̃r (δ)] in equation (3.5) is a reasonably accurate nonparametric fit. The loss

function is the same mean absolute error criterion as was used in the previous example.

We performed a battery of 100 runs of the selection procedure. The time to complete

this entire computation, using parallel evaluation on 20 computational cores of a single

powerful server, was approximately 250 minutes.

Table 2 lists the selected statistics from the best of the 100 runs, and describes each

selected statistic. Of the 56 candidate statistics, 17 were selected. Perhaps the most im-

portant point to highlight is that the selected statistics are a subset of the candidate set

which one would be unlikely to arrive at if unsystematic experimentation were done. It

is encouraging to see that statistics indicative of jump activity (statistic 1), jump dynam-

ics (statistic 2) and leverage (statistics 25 and 55) are selected, because these features are

present in the model. The means of r2 and BV are selected, but variances, skewness and
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Tab. 2: Selected statistics, jump-diffusion stochastic volatility model
Statistic Description Statistic Description

1 jump detection 36 σ̂ǫ, aux. reg. 1
2 jump clustering 43 α̂2, aux. reg. 3
4 mean r2 44 α̂3, aux. reg. 3
6 mean BV 50 α̂3, aux. reg. 4

23 corr(r, r2) 52 α̂4, aux. reg. 4
25 corr(r,BV) 53 R2, aux. reg. 4
30 corr(RV, BV) 55 corr(ǫ̂3,ǫ̂4)
31 corr(RV,I J) 56 corr(ǫ̂2,ǫ̂4)
34 α̂2, aux. reg. 1

kurtosis are never selected. Several correlations between variables are selected, and two

of the cross equation residual correlations are selected. The four auxiliary regressions all

contribute to the set of selected statistics.

Next, to investigate how well the selection procedure performs, we do a Monte Carlo

exercise similar to that of CK15. The sample size is n = 2000, as in CK15. For each esti-

mator explored, we perform only 100 Monte Carlo replications of the ABC estimator, as

the goal is not to explore carefully the performance of the ABC estimator, but rather to

focus on how well the selection procedure performs. The true parameter values are the

estimated parameters for the 2008-2011 period, in Table 3 of CK15. Table 3 presents bias

and root mean squared error for the prior, the ABC estimator using the selected statistics

described in the previous paragraph (the “Baseline” results), the ABC estimator that uses

all 56 statistics in the candidate set, and an ABC estimator that uses 17 randomly selected

statistics, out of the 56 candidate statistics. We may note that the prior is essentially unbi-

ased, except for µ0 and ρ, for which the parameter bounds are sometimes binding. Com-

paring the “Prior” and “Baseline” columns, we see that the selection procedure yields

an ABC estimator that reduces root mean squared error (RMSE), for all parameters. In a

number of cases, the reduction is more than 50%. The “Baseline” results are more biased

than the prior, for most parameters. This is not surprising, because the prior only has

bias because of the enforcement of parameter bounds. However, the bias for α, ρ and λ1

is perhaps larger than we would like to see. Comparing to the ABC estimator that uses

all available statistics (“All” in the table), the selection procedure achieves a reduction,

in some cases considerable, of RMSE, for most parameters. It is perhaps somewhat sur-

prising how well the estimator that uses all statistics performs. This may be due to two

factors: first, the set of candidate statistics may have been chosen well, in that most or

all statistics are in fact are informative, and secondly, Algorithm 3, which is used for the

ABC estimation, is successful in concentrating on an area of high posterior mass, even

when the conditioning statistic has high dimension. Finally, the column labeled “Ran-

dom” give results for an ABC estimator that uses 17 randomly selected statistics (this is

the same number of statistics as was selected for the “Baseline” results). We note that this

estimator has considerably larger RMSE than does the estimator that uses the “Baseline”
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Tab. 3: Monte Carlo results, Stochastic volatility model
Prior Baseline All Random

Param. True Bias RMSE Bias RMSE Bias RMSE Bias RMSE
µ0 -0.021 0.012 0.052 -0.007 0.026 -0.015 0.023 -0.022 0.029
µ1 -0.013 0.000 0.036 -0.017 0.027 -0.021 0.039 -0.013 0.031
α 0.785 -0.003 0.357 0.103 0.176 0.136 0.232 0.227 0.303
κ 0.036 0.003 0.021 0.007 0.008 0.007 0.013 0.009 0.011
σ 0.204 0.000 0.048 -0.010 0.025 -0.007 0.029 0.014 0.028
ρ -0.713 0.014 0.147 0.027 0.089 -0.046 0.117 0.023 0.132

λ0 0.016 0.000 0.008 0.006 0.006 0.004 0.005 0.004 0.005
λ1 1.152 0.000 0.331 0.074 0.126 0.054 0.130 0.088 0.142
µJ -0.002 0.000 0.012 -0.001 0.003 -0.001 0.003 0.000 0.003
σJ 1.472 0.000 0.072 0.014 0.023 0.002 0.018 -0.005 0.025

set, which is indicative that the selection procedure does in fact succeed in choosing in-

formative statistics out of a candidate set. The “Random” results do give a reduction in

RMSE, compared to the prior. This is not surprising, because the candidate set was cho-

sen to include statistics that one would hope are informative. Also, one should note that

the results for the “Random” set are only indicative, because they depend on the specific

set of 17 statistics that were drawn in a single case. The main point is that the selection

procedure performs considerably better than the random selection.

The ABC estimator using the “Baseline” set of statistics exhibits some biases that we

might like to try to address. It is possible to modify the criterion that the selection pro-

cedure minimizes to focus on the mean absolute error (MAE) of one or more param-

eters, rather than on all of the parameters. The default criterion minimizes the scaled

MAE, averaged over all of the parameters: the loss function L in equation (3.5) is set to

L (θ) = 1
dim θ ∑

dim θ
j=1

1
σj

∣∣θj

∣∣. If we are interested in selecting statistics to fit well a certain

parameter, for example, the fourth parameter, without regard to the other parameters,

we can set the loss function to L (θ) = 1
σ4
|θ4|. This targets only the selected parameter.

It may also be useful to introduce the penalty term p(δ) in equation (3.5), by setting a in

equation to a number greater than zero, in order to find a small set of statistics that are

most informative for the chosen parameter. We did this for the parameters α, ρ and λ1,

each in turn, setting a = 0.05. For α, the selected statistics were 5 and 48. For ρ, the se-

lected statistics were 30, 34 and 55. For λ1, only statistic 25 was selected. Statistics 25, 30,

34 and 55 were already selected in the baseline set, so for ρ and λ1, the targeted procedure

did not find new statistics to add to the baseline set. For α, however, new statistics were

selected when using targeting. Table 4 presents ABC Monte Carlo results when statistics

5 and 48 are added to the baseline set, in order to target α. In this case, the bias of the

ABC estimator drops from 0.103 (“Baseline” results in Table 3) to 0.018, in Table 4. RMSE

also drops slightly. For the other parameters, bias and RMSE are not affected in any sys-

tematic way by the inclusion of the two additional statistics. Some variation is expected,

due to the fact that only 100 Monte Carlo replications were used. This exercise illustrates
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Tab. 4: Monte Carlo results, Stochastic volatility model, adding statistics targeted to α

Param. True Bias RMSE
µ0 -0.021 -0.010 0.030
µ1 -0.013 -0.016 0.023
α 0.785 0.018 0.174
κ 0.036 0.009 0.011
σ 0.204 -0.000 0.030
ρ -0.713 0.015 0.098

λ0 0.016 0.006 0.006
λ1 1.152 0.079 0.124
µJ -0.002 -0.000 0.003
σJ 1.472 0.013 0.023

the fact that the selection procedure can be performed for all parameters jointly, which is

the normal usage of most general interest, and it can be targeted to certain parameters, if

these parameters are of special interest, or if one has reason to believe that the overall se-

lection procedure may not have found statistics that are sufficiently informative for these

parameters. The final set of statistics used for ABC estimation can be determined using

both sources of information.

6 Conclusion

This paper presents a method of selection of statistics for ABC (and simulation-based

GMM estimators) that is conceptually simple and easy to implement. It is designed to

select statistics for accurate point inference, throughout the support of the prior (or on a

parameter space). While one might hope that this would lead to an accurate posterior,

no claims are made that this is the case. The method relies on the widely accepted crite-

rion of minimizing mean absolute error (or a similar measure, such as root mean squared

error), possibly with a penalty to encourage parsimonious selection. The criterion to be

minimized is directly related to a point estimator associated with the ABC or GMM es-

timator of interest - there is no projection or dimension reduction step that intervenes.

The criterion must be minimized over a discrete search space that has many elements.

Simulated annealing, which is a widely used and well known tool, was used to address

this problem. In principle, any global minimization algorithm that operates on a discrete

choice set could be used in place of simulated annealing. Simulated annealing was cho-

sen simply because it is well known in the economics literature and related fields, and

because it works well for this application. It is a simple matter to run multiple simu-

lated annealing minimizations in parallel, to speed up the search for a set of statistics

that minimize the criterion.

It is to be emphasized that other researchers who wish to use the method for their own

ABC research can very easily make use of the provided software. The only requirement is

that the user provides a set of parameters, drawn from the prior, and the corresponding
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candidate statistics, {(θs, Ws)}. This is easy to do, as it is an essential part of any ABC

method that is based on statistics. The software provided will then select Z, the subset

of W, according to the default criterion, or the criterion that the user specifies. This takes

very little effort on the part of the user.

The method has been tested using a simple example, for which theory tells us which

statistics should be selected, and it is found to be able to select these statistics with good

accuracy. In spite of the simplicity of the example, it is important to note that the model

contains 6 parameters, and a candidate set of statistics with 35 elements. The stochastic

volatility example presents a model with 10 parameters and 56 candidate statistics. In

this case, theory does not tell us what are the optimal statistics. However, the Monte

Carlo results show that the selection method results in precise estimation, compared to

results using different sets of statistics. This second example also shows that the proposed

methods can be applied when the model is complex, with numerous parameters and a

large set of candidate statistics.

The criterion function that is minimized focuses on minimizing the integrated Bayes

expected loss of simulated posterior mean. As explained in Section 4, it is a simple matter

to change the criterion function in order to focus on other features of the posterior distri-

bution, including the full distribution, and still use the simulated annealing algorithm for

minimization. In order to do so, one would simply edit the function “select_obj” which is

near the top of the file “SelectionAlgorithm.jl” and replace the least-squares criterion by

the KLIC criterion developed in Section 4. The performance of this alternative selection

method is left for future research.

[insert online link to SelectionAlgorithm.jl accompanying text file about

here]
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