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Abstract

A key assumption in regression discontinuity analysis is that units cannot manipu-

late the value of their running variable in a way that guarantees or avoids assignment

to the treatment. Standard identification arguments break down if this condition is

violated. This paper shows that treatment effects remain partially identified in this

case. We derive sharp bounds on the treatment effects, show how to estimate them,

and propose ways to construct valid confidence intervals. Our results apply to both

sharp and fuzzy regression discontinuity designs. We illustrate our methods by study-

ing the effect of unemployment insurance on unemployment duration in Brazil, where

we find strong evidence of manipulation at eligibility cutoffs.

1 Introduction

The regression discontinuity (RD) design (Thistlethwaite and Campbell, 1960) has become

a popular empirical strategy in economics to evaluate the causal impact of treatments using

observational data. Its distinct feature is that units are assigned to receive the treatment if

and only if their value of a continuous running variable exceeds a fixed cutoff. This structure

provides a transparent way to identify and estimate treatment effects for units close to the

cutoff. The key idea is that the design creates a form of local randomization: conditional
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on a unit being close to the cutoff, it is essentially random whether its value of the running

variable falls to the left or to the right of the cutoff. Treatment effects can thus be inferred

by comparing the outcomes of units on either side of the cutoff (Lee and Lemieux, 2010).

A concern regarding the validity of this argument in practice is that in many contexts

units can influence their value of the running variable through strategic behavior. We refer

to any such behavior as manipulation of the running variable in this paper. Manipulation

is problematic if it leads to units just to the left and right of the cutoff being no longer

comparable due to self-selection, in which case treatment effects are no longer point identified.

This is indeed an issue that arises in many empirical applications.1

A jump in the density of the running variable at the cutoff is a strong indication that an

RD design is impacted by manipulation (McCrary, 2008). In the applied literature, it has

therefore become current practice to address concerns about manipulation by testing the null

hypothesis that the density of the running variable is smooth around the cutoff. If this null

hypothesis is not rejected, researchers typically proceed with their empirical analysis under

the assumption that no manipulation occurs, while when facing a rejection they often give

up on using the cutoff for inference on treatment effects.2 This practice is problematic for

at least two reasons. First, a non-rejection might not be due to the absence of manipulation

but to lack of statistical power. The local randomization property could still be violated in

such cases, and estimates based on ignoring this possibility be severely biased. Second, even

if a test rejects the null hypothesis of no manipulation, the number of “problematic” units

could still be relatively modest, and the data thus still be informative to some extent.

1For instance, Urquiola and Verhoogen (2009) document that schools manipulate enrollment to avoid
having to add an additional classroom when faced with class-size caps in Chile. Other examples abound in
education (e.g. Card and Giuliano, 2014; Dee, Dobbie, Jacob, and Rockoff, 2014; Scott-Clayton, 2011) as
well as in other applied fields (e.g. Camacho and Conover, 2011). Manipulation of running variables around
discontinuities (or “notches”) in tax and transfer systems has even generated its own literature in public
finance (Kleven and Waseem, 2013).

2There is a small number of papers that develop tailored solutions that are valid only under strong
assumptions in this case. For examples, see Anderson and Magruder (2012), Bajari, Hong, Park, and Town
(2011), and Davis, Engberg, Epple, Sieg, and Zimmer (2013).
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In this paper, we propose a partial identification approach to dealing with the issue of

potentially manipulated running variables in RD designs. We show that while the data are

unable to uniquely pin down (or point identify) treatment effects under a general manipula-

tion pattern, they are still informative in the sense that they imply bounds on (or partially

identify) the value of interesting causal parameters. Our main contribution is to derive and

explicitly characterize these bounds. We also propose methods for estimating our bounds,

and discuss how to construct confidence intervals for treatment effects that have good cov-

erage properties. Our results apply to both sharp and fuzzy RD designs. The approach is

illustrated with an application to the Brazilian unemployment insurance system.

Our paper focuses on settings where manipulation of the running variable breaks the

local randomization property by creating two unobservable types of units: always-assigned

units for which the realization of the running variable is always on one particular side of the

cutoff (which we normalize to be to the right of the cutoff), and potentially-assigned units

that behave as postulated by the standard assumptions of an RD design. Such a structure

can arise from various patterns of strategic behavior. The most immediate is one where

always-assigned units are “manipulators” who have control over the value of the running

variable and can ensure a realization that is to the right of the cutoff. However, we also

discuss several other examples of settings that fit our framework.

We focus on the causal effect among potentially-assigned units as our parameter of inter-

est. This is because the lack of local randomization makes it difficult to derive meaningful

conclusions about causal effects among always-assigned units.3 Our identification argument

consists of two steps. First, building on McCrary (2008), we use the magnitude of the dis-

continuity in the density of the running variable at the cutoff to identify the proportion of

always-assigned units among all units close to the cutoff. Second, we use this information to

3By definition, we never observe such a unit being assigned not to receive the treatment. It is therefore
impossible to construct non-trivial bounds on such a unit’s expected outcome in the absence of the treatment.
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bound treatment effects by considering the “worst case” scenarios, in which always-assigned

units are those with either the highest or the lowest values of the outcome variable, and

then trimming the respective observations. We also explore how additional assumptions or

covariates can be used to shrink the identified set. Our approach shares some similarities

with that of Lee (2009) for bounding treatment effects in randomized experiments under

sample selection,4 but it is more involved especially in the case of a fuzzy RD design due its

more complicated structure.

Estimates of our bounds are relatively straightforward to obtain in practice since our

partial identification results deliver explicit expressions for them. We propose computation-

ally convenient sample analogue estimators that involve nonparametric estimation of density,

conditional quantile, and (truncated) conditional expectation functions using local polyno-

mial smoothing (Fan and Gijbels, 1996). Our approach also includes a novel “polynomial

truncation” method, which is required due to the particular structure of our problem. Fi-

nally, we discuss how to construct valid confidence intervals using existing techniques from

the partial identification literature. We recommend the use of such confidence intervals in

applications irrespective of the outcome of McCrary’s (2008) test in order to ensure that

inference is robust against the possibility of manipulation.

Last, we apply our approach to study the effect of unemployment insurance (UI) takeup

around an eligibility cutoff in Brazil. The main purpose of this exercise is to illustrate our

approach, but the empirical application is also relevant in itself. UI programs have been

adopted or considered in a growing number of developing countries, but there is still limited

evidence on their impacts. Moreover, providing new evidence may be challenging because

manipulation of UI eligibility around existing cutoffs may be more likely in countries where

informal employment is prevalent. We find strong evidence of manipulation around the

4Chen and Flores (2012) extend Lee (2009) to sample selection in randomized experiments with imperfect
compliance. Kim (2012) and Dong (2015) extend Lee (2009) to sample selection in RD designs.
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eligibility cutoff. Yet, we are able to infer that UI takeup increases the time it takes to

return to a formal job by at least 24% for potentially-assigned workers at this cutoff (in the

first year after layoff).

Our paper contributes to the growing methodological literature on RD designs. For

references, see Hahn, Todd, and Van der Klaauw (2001), Porter (2003), Lee and Card (2008),

McCrary (2008), Frandsen, Frölich, and Melly (2012), Imbens and Kalyanaraman (2012),

Angrist and Rokkanen (forthcoming), and Calonico, Cattaneo, and Titiunik (2015). Our

paper is also related to the extensive literature on partial identification. For references, see

Manski (1990), Manski (1997), Horowitz and Manski (1995), Horowitz and Manski (2000),

Manski and Tamer (2002), Imbens and Manski (2004), Chernozhukov, Hong, and Tamer

(2007), Andrews and Soares (2010), and Chernozhukov, Lee, and Rosen (2013).

The remainder of the paper is organized as follows. Section 2 introduces a framework for

RD designs with manipulation. Section 3 studies partial identification of treatment effects

in both Sharp and Fuzzy RD designs. Sections 4 and 5 discuss estimation and inference,

respectively. Section 6 contains the empirical application. Finally, Section 7 concludes.

Proofs and additional material can be found in the Appendix.

2 Setup

2.1 Basic RD Design

The aim of an RD design is to study the causal effect of a binary treatment or intervention

on some outcome variable. We observe a random sample of n units, indexed by i = 1, . . . , n,

from some large population. The effect of the treatment is potentially heterogeneous among

these units, which could be individuals or firms for instance. Following Rubin (1974), each

unit is therefore characterized by a pair of potential outcomes, Yi(1) and Yi(0), which denote

the outcome of unit i with and without receiving the treatment, respectively. Out of these

two potential outcomes, we only observe the one corresponding to the realized treatment
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status. Let Di ∈ {0, 1} denote the treatment status of unit i, with Di = 1 if unit i receives

the treatment, and Di = 0 if unit i does not receive the treatment. The observed outcome

can then be written as Yi = DiYi(1) + (1−Di)Yi(0).

In an RD design, the treatment assignment of each unit i is a deterministic function of a

so-called running variable Xi that is measured prior to, or is not affected by, the treatment.

Let Zi ∈ {0, 1} denote the treatment assignment of unit i, with Zi = 1 if unit i is assigned

to receive the treatment, and Zi = 0 if unit i is not assigned to receive the treatment. Then

Zi = I (Xi ≥ c) for some fixed cutoff value c. Let the potential treatment status of unit

i as a function of the running variable be Di(x), so that the observed treatment status is

Di = Di(Xi). Also define the limits D+
i = Di(c

+) ≡ limx↓cDi(x) and D−i = Di(c
−) ≡

limx↑cDi(x).5 The extent to which units comply with their assignment distinguishes the two

types of RD designs that are commonly distinguished in the literature: the Sharp RD (SRD)

design and the Fuzzy RD (FRD) design. In a SRD design, compliance with the treatment

assignment is perfect, and thus D+
i = 1 and D−i = 0 for all units i. In a FRD design,

on the other hand, values of D+
i and D−i differ across units, but the conditional treatment

probability E(Di|Xi = x) is discontinuous at x = c.

2.2 Manipulation

Identification in standard RD designs relies on the intuition that conditional on the realiza-

tion of a unit’s running variable being close to the cutoff, it is essentially random whether

this realization falls to the left or right of the cutoff.6 Such “local randomization” ensures

that units on different sides of the cutoff are comparable except for their treatment assign-

ments. Treatment effects can thus be identified by comparing outcomes (and treatment

5Throughout the paper, we use the notation that g(c+) = limx↓c g(x) and g(c−) = limx↑c g(x) for a
generic function g(·). We also follow the convention that whenever we take a limit we implicitly assume
that this limit exists and is finite. Similarly, whenever an expectation or some other moment of a random
variable is taken, it is implicitly assumed that the corresponding object exists and is finite.

6Such an interpretation is justified under a continuity condition on the distribution of potential outcomes;
see below.
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probabilities) of units on different sides of the cutoff. This source of identification may break

down if at least some units behave strategically and can influence the value of their running

variable. Throughout the paper, we refer to any pattern of behavior that fits this rather

general description as manipulation of the running variable.

Manipulation by itself does not necessarily break the local randomization property of

an RD design. For example, if students take a test, the presence of a pass/fail cutoff may

increase effort among those who expect that their score will be close to the cutoff relative

to those who are confident that they will pass. Despite such clear strategic behavior, the

distribution of exerted effort is comparable among students just to the left and right of the

cutoff in this case. An RD design thus identifies the causal effect of passing the test in this

case. More generally, the RD design remains valid as long as manipulation does not lead to

a discontinuity at the cutoff in the distribution of the underlying characteristics of the units.

Our paper focuses on settings where manipulation of the running variable is likely to

break the local randomization property by creating two unobservable types of units: always-

assigned units whose value of the running variable only takes on values to the right of the

cutoff, and potentially-assigned units who can potentially be observed on either side of the

cutoff. Such a structure can arise from several type of behavior. The most immediate is one

where some units have control over the value of the running variable to the extent that they

can ensure a realization to the right of the cutoff (and assignment to treatment is desirable

for all units). We discuss several concrete examples and alternative mechanisms that also fit

our framework below.

More formally, let Mi ∈ {0, 1} denote an indicator for the unobserved type of unit i, with

Mi = 1 if unit i is always-assigned and Mi = 0 if unit i is potentially-assigned. We then

impose three assumptions for our analysis. The first one implies that the standard conditions

from the RD literature (e.g. Hahn, Todd, and Van der Klaauw, 2001) are satisfied among

potentially-assigned units.
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Assumption 1. (i) P(Di = 1|Xi = c+,Mi = 0) > P(Di = 1|Xi = c−,Mi = 0); (ii)

P(D+
i ≥ D−i |Xi = c,Mi = 0) = 1; (iii) E(Yi(d)|D+

i = d1, D−i = d0, Xi = x,Mi = 0),

P(D+
i = 1|Xi = x,Mi = 0) and P(D−i = 1|Xi = x,Mi = 0) are continuous in x at c for

d, d0, d1 ∈ {0, 1}; (iv) FX|M=0(x) is differentiable in x at c, and the derivative is strictly

positive.

This assumption is stated here for the general case of a Fuzzy RD design. Assumption 1(i)

requires that the treatment probability changes discontinuously at the cutoff value of the

running variable, with the direction of the change normalized to be positive. Assumption 1(ii)

is a monotonicity condition stating that the response of treatment selection to crossing the

cutoff is monotone for every unit. Assumption 1(iii) is a continuity condition which roughly

speaking requires the mean of potential outcomes and potential treatment status to be the

same on both sides of the cutoff. Finally, Assumption 1(iv) implies that the running variable

has a positive density at the cutoff, and thus that there are potentially-assigned units close

to the cutoff on either side. Note that Assumptions 1(i)-(iii) simplify to the condition that

E(Yi(d)|Xi = x,Mi = 0) is continuous in x at c for d ∈ {0, 1} for the special case of a Sharp

RD design.

Assumption 2. The derivative of FX|M=0(x) is continuous in x at c.

Assumption 2 is a weak regularity condition on the distribution of the running variable

among potentially-assigned units. Together with Assumption 1(iv), this assumption implies

that the density of Xi among potentially-assigned units is smooth and strictly positive over

some open neighborhood of c. Continuity of the running variable’s density around the cutoff

is a reasonable condition in applications, and is generally considered to be an indication for

the absence of manipulation in the literature (McCrary, 2008).

Assumption 3. (i) P(Xi ≥ c|Mi = 1) = 1, (ii) FX|M=1(x) is right-differentiable in x at c.
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Assumption 3 is the only restriction we impose on the properties of always-assigned units

in our setup. Its first part, which is key to our analysis, is the defining property of this group.

Together with Assumption 1, it implies that the running variable only takes on values to the

right of the cutoff among those units that are problematic for the validity of the standard RD

design. This is similar to, although much less restrictive than, the assumption of monotonic

manipulation in McCrary (2008). The second part rules out mass points in the distribution

of Xi around the cutoff. In particular, it rules out that the running variable is exactly equal

to the cutoff among always-assigned units. However, the distribution of Xi is allowed to be

arbitrarily highly concentrated close to c. In view of Assumption 1(iv), this condition implies

that a unit’s type cannot simply be inferred from the value of its running variable (without

such a condition the analysis would be trivial). It also implies that in the full population,

which contains both always-assigned and potentially-assigned units, the observed running

variable Xi is continuously distributed, with a density that is generally discontinuous at c.

Moreover, Assumption 1(iv) and 3 together imply that all units observed to the left of the

cutoff are of the potentially-assigned type, i.e. P (Mi = 1|Xi = c−) = 0, whereas to the right

of the cutoff we observe a mixture of types.

2.3 Discussion

Several types of strategic behavior can generate subgroups of always-assigned and potentially-

assigned units. To illustrate this point, consider the example of an income transfer program

for which eligibility is based on a cutoff value of a poverty score Xi, and the formula used

to calculate the score takes as inputs household characteristics recorded during home visits

by local administrators. Programs of this type are found in many developing countries, and

various types of manipulation have been documented in this context (Camacho and Conover,

2011). We now give some examples of strategic behavior that fit into our setup.

1. Suppose that the formula for the poverty score is not publicly known. Then neither house-
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holds nor local administrators can ensure program assignment through misreporting of

input variables within reasonable bounds. There are thus no always-assigned households.

Every household is potentially-assigned and a standard RD design is valid.

2. Suppose that some households know the formula for the poverty score, and are well

connected to local administrators, who turn a blind eye when the households report

inaccurate information. Those households can report combinations of variables such that

Xi is to the right of the cutoff. They are thus always-assigned, while all other households

are potentially-assigned.7 Alternatively, suppose that some local administrators refuse

to collaborate such that only a fraction of households is able to carry out its intended

manipulation. Only those households that succeed in manipulating the running variable

would then be always-assigned. The subset of households whose manipulation efforts fail

would be counted as potentially-assigned along with those households that never made a

manipulation attempt.

3. Suppose that all households report information truthfully, but local administrators fill

in combinations of variables such that Xi is to the right of the cutoff irrespective of the

reported information if a household strongly supports local elected officials. Such house-

holds are then always-assigned, even though they are not engaging in any manipulation

themselves.

4. Suppose that households can request a second home visit after learning the outcome of the

first one, and that only the most recent score is relevant for program eligibility. Let Xji

be the poverty score based on the jth visit of household i, and suppose that households

will request a second visit if and only if they were ineligible based on the first visit. Then

the observed running variable is Xi = X1i · I (X1i ≥ c) +X2i · I (X1i < c). All households

with X1i ≥ c are always-assigned, whereas all households that receive a second visit are

7Misreporting households should have an incentive not to report information in such a away that their
poverty score is exactly equal to the cutoff in order to avoid detection by e.g. central administrators. This
makes the assumption of a continuously distributed running variable among always-assigned units palatable.
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potentially-assigned. “Manipulation” occurs in this case even though nobody is doing

anything illegal or against the terms of the program.

One can easily construct further variants of these examples which still fit into our setup.8

The examples also have natural analogues in other contexts. Consider for instance an edu-

cational program for which students are eligible if their score in a test falls to the right of

some cutoff. Teachers could then directly manipulate test scores, or students could retake

the test if their score falls to the left of the cutoff. Our setup thus applies to a wide range of

empirical settings.

2.4 Parameters of Interest

Our parameter of interest is the average causal effect of the treatment among potentially-

assigned units. This is because the lack of local randomization makes it difficult to derive

meaningful conclusions about causal effects among always-assigned units. Specifically, we

study the identification of

Γ0 ≡ E(Yi(1)− Yi(0)|Xi = c,D+
i > D−i ,Mi = 0), (2.1)

which can be understood as the local average treatment effect for the subgroup of potentially-

assigned “compliers”, who receive the treatment if and only if their value of the running

variable Xi is to the right of the cutoff (Imbens and Angrist, 1994). In the special case of

a sharp design, where D+
i > D−i for all units, the conditioning on “compliers” in (2.1) is

redundant, and Γ0 can be interpreted as a standard average treatment effect.

One reason for the popularity of the RD design is that in settings without manipulation,

where every unit is potentially-assigned, the parameter Γ0 is likely policy relevant. Specifi-

cally, it captures the causal effect for units whose program assignment would change following

8For example, misreporting household information or requesting a second home visit may be costly, with
the cost depending on the distance between the cutoff and the true or initial poverty score, respectively.
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marginal changes in the level of the cutoff. We can use the same examples as in the previous

subsection to discuss the policy relevance of Γ0 in the presence of always-assigned units.

In the examples involving active manipulation of input variables, the same units are likely

to be always-assigned irrespective of marginal changes in the level of the cutoff. Γ0 would

therefore capture the policy-relevant effect in this case given that such marginal changes

would only affect program assignment for potentially-assigned households.

In contrast, Γ0 would not capture the causal effect for all units whose program assignment

will change with marginal changes in the level of the cutoff in the example involving a second

home visit. Consider a small increase of the cutoff from c to c̃. Households with X1i < c and

X2i ∈ [c, c̃) will still request a second home visit, but will not be assigned to the program

anymore. Γ0 captures the local average treatment effect for these households. However, other

households may also lose eligibility for the program. Households with X1i ∈ [c, c̃) will now

request a second home visit, but only those with X2i > c̃ will remain eligible. Moreover, some

households that would have become eligible thanks to a second visit may stop requesting

such a visit if doing so involves a cost that is, e.g., increasing in the distance between the

cutoff and the initial poverty score. We cannot identify the local average treatment effect

for these other types of households. Therefore Γ0 always captures part of the policy-relevant

effect, but the degree of its policy relevance depends on the context and behaviors at play.

3 Identification under Manipulation

Since we cannot infer whether any given unit is always-assigned or potentially-assigned,

the local average treatment effect Γ0 defined in (2.1) is generally not point identified. In

this section, we therefore derive bounds on this quantity. By Assumption 1 and standard

arguments from the RD literature (e.g. Hahn, Todd, and Van der Klaauw, 2001), it follows

12



that Γ0 = ∆0/Ψ0, where

∆0 ≡ E(Yi|Xi = c+,Mi = 0)− E(Yi|Xi = c−,Mi = 0) and

Ψ0 ≡ E(Di|Xi = c+,Mi = 0)− E(Di|Xi = c−,Mi = 0).

When the RD design is sharp this representation can be further simplified, as Ψ0 = 1 and

thus Γ0 = ∆0 in this case. We work with these representations in our identification analysis.

3.1 Proportion of Always-Assigned Units

In order to obtain bounds on treatment effects, we first study identification of two impor-

tant intermediate quantities. These are τ ≡ P (Mi = 1|Xi = c+), the proportion of always-

assigned units among all units just to the right of the cutoff, and τd ≡ P(Mi = 1|Xi =

c+, Di = d), the proportion of always-assigned units among units with treatment status

d ∈ {0, 1} just to the right of the cutoff. While we cannot observe or infer the type of any

given unit, under our assumptions we can point identify τ from the size of the discontinuity

in the density of the observed running variable at the cutoff.

Lemma 1. Suppose Assumptions 1–3 hold. Then τ = 1−fX(c−)/fX(c+), where fX denotes

the density of Xi.

The two probabilities τ1 and τ0 are not point identified but only partially identified in

our model. There are two logical restrictions on the range of their plausible values. First,

by the law of total probability, any pair of candidate values (τ1, τ0) ∈ [0, 1]2 has to satisfy

the restriction that

τ = τ1 · E(Di|Xi = c+) + τ0 · (1− E(Di|Xi = c+)). (3.1)

Second, our monotonicity condition in Assumption 1(i) implies that

E(Di|Xi = c+) · 1− τ1
1− τ

> E(Di|Xi = c−). (3.2)
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With T denoting the set containing those (τ1, τ0) ∈ [0, 1]2 that satisfy the two restric-

tions (3.1)–(3.2), we have the following result.

Lemma 2. Suppose that Assumptions 1–3 hold. Then T is a sharp identified set for the

pair of probabilities (τ1, τ0).

Geometrically, the set T is a straight line in [0, 1]2. For our following analysis, it will be

notationally convenient to represent this set in terms of the location of the endpoints of the

line. That is, we can write

T = {(η1(t), η0(t)) : t ∈ [0, 1]} with ηd(t) = τLd + t · (τUd − τLd )

for d ∈ {0, 1}, where

τL1 = max

{
0, 1− 1− τ

g+

}
,

τL0 = min

{
1,

τ

1− g+

}
,

τU1 = min

{
1− (1− τ) · g−

g+
,
τ

g+

}
,

τU0 = max

{
0, τ − (1− τ) · (g+ − g−)

1− g+

}
,

using the shorthand notation that g+ = P(Di = 1|Xi = c+) and g− = P(Di = 1|Xi = c−).

3.2 Bounds on Treatment Effects for Potentially-Assigned Units

Using the above results on the proportion of always-assigned units, we can derive bounds

on Γ0. It is instructive to first consider a sharp RD design before studying the more general

case of a fuzzy RD design.

3.2.1 Sharp RD Designs

Since D+
i > D−i for every unit i in a sharp RD design, the causal parameter Γ0 simplifies to

an average treatment effect in this case. Since also Ψ0 = 1, it can be written as

Γ0 = E(Yi|Xi = c+,Mi = 0)− E(Yi|Xi = c−,Mi = 0). (3.3)

14



As we only observe potentially-assigned units to the left of the cutoff, we have that E(Yi|Xi =

c−,Mi = 0) = E(Yi|Xi = c−) is point identified. We thus only need to bound the remaining

conditional expectation on the right-hand side of (3.3).

Exploiting the fact that τ is point identified, this can be achieved by following a strategy

similar to that in Lee (2009) for sample selection in randomized experiments. An upper

bound on the expected outcome of potentially-assigned units just to the right of the cutoff

is given by the expected outcome of all units there whose outcome is bigger than the corre-

sponding τ quantile. Similarly, a lower bound is given by the expected outcome of those units

with outcomes smaller than the corresponding 1− τ quantile. These bounds correspond to

the two “worst case” scenarios in which the proportion τ of units with either the highest or

the lowest outcomes are the always-assigned units. These bounds are sharp in the sense that

the corresponding “worst case” scenarios are empirically conceivable, and thus the upper or

lower bound could potentially coincide with the parameter of interest. Theorem 1 combines

these arguments into bounds on Γ0.

Theorem 1. Suppose Assumptions 1–3 hold, that D+
i > D−i for all i = 1, . . . , n, and that

FY |X(y|c+) is continuous in y. Let QY |X denote the conditional quantile function of Yi given

Xi. Then sharp lower and upper bounds on Γ0 are given, respectively, by

ΓL0,SRD = E
(
Yi|Xi = c+, Yi ≤ QY |X

(
1− τ |c+

))
− E

(
Yi|Xi = c−

)
and

ΓU0,SRD = E
(
Yi|Xi = c+, Yi ≥ QY |X

(
τ |c+

))
− E

(
Yi|Xi = c−

)
.

3.2.2 Fuzzy RD Designs

We now extend the partial identification result for Γ0 in the Sharp RD design to the case of

a Fuzzy RD design, which requires a more involved argument. Recall that we can write the
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parameter of interest as

Γ0 =
E(Yi|Xi = c+,Mi = 0)− E(Yi|Xi = c−,Mi = 0)

E(Di|Xi = c+,Mi = 0)− E(Di|Xi = c−,Mi = 0)
=

∆0

Ψ0

in the FRD design. The two expectations in this expression that condition on Xi = c− are

again point identified: as only potentially-assigned units are observed to the left of the cutoff,

the conditioning on Mi = 0 is redundant for these terms. The form of the two remaining

conditional expectations is familiar from the previous subsection, but simply applying the

techniques used there to each of them separately would be unnecessarily conservative. This

is because the sets of units that would be trimmed when maximizing the numerator and

minimizing the denominator, respectively, would not necessarily be the same. Thus these

bounds would not be jointly achievable.

To derive sharp (that is, best possible) bounds on the parameter of interest, write the

unknown term in the definition of ∆0 as

E(Yi|Xi = c+,Mi = 0)

=
∑

d∈{0,1}

E(Yi|Xi = c+,Mi = 0, Di = d) · P(Di = d|Xi = c+,Mi = 0),

and suppose for a moment that τ1 and τ0 were actually known. Then the two conditional

expectations on the right-hand side of the previous equation can be bounded sharply by

considering the “worst case” scenarios in which the always-assigned units in either treatment

status are the units with the highest or the lowest outcomes. That is, an upper bound on

the expectation that conditions on Di = 1 can be obtained by trimming the treated units

just to the right of the cutoff with outcomes below the corresponding τ1 quantile, and for

the expectation that conditions on Di = 0 by trimming those untreated units just to the

right of the cutoff with outcomes below the corresponding τ0 quantile. Lower bounds can be

obtained analogously. Moreover, by Bayes’ Theorem, the two probabilities on the right-hand
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side of the last equation are point identified since

P(Di = d|Xi = c+,Mi = 0) = P(Di = d|Xi = c+) · 1− τd
1− τ

for d ∈ {0, 1},

Given knowledge of τ1 and τ0, sharp lower and upper bounds on ∆0 are thus given by

∆L
0 (τ1, τ0) =

∑
d=0,1

E(Yi|Xi = c+, Yi ≤ QY |XD(1− τd|c+, d), Di = d)

× P(Di = d|Xi = c+) · 1− τd
1− τ

− E(Yi|Xi = c−) and

∆U
0 (τ1, τ0) =

∑
d=0,1

E(Yi|Xi = c+, Yi ≥ QY |XD(τd|c+, d), Di = d)

× P(Di = d|Xi = c+) · 1− τd
1− τ

− E(Yi|Xi = c−),

respectively. Moreover, with knowledge of τ1 and τ0 the term Ψ0 would also be point identified

through the relationship

Ψ0 = E(Di|Xi = c+) · 1− τ1
1− τ

− E(Di|Xi = c−) ≡ Ψ0(τ1). (3.4)

If we knew the values of τ1 and τ0, sharp lower and upper bounds on Γ0 would thus be given,

respectively, by

ΓL0 (τ1, τ0) ≡
∆L

0 (τ1, τ0)

Ψ0(τ1)
and ΓU0 (τ1, τ0) ≡

∆U
0 (τ1, τ0)

Ψ0(τ1)
, . (3.5)

These bounds are not practially useful by themselves since τ1 and τ0 are in fact not known

in our setup; but (following the result in Lemma 2) only partially identified. However, we

can use them to obtain sharp bounds on Γ0 by finding those values of (τ1, τ0) ∈ T that lead

to the most extreme values of the quantities defined in (3.5). This “worst case” approach is

formalized in the following theorem.

Theorem 2. Suppose that Assumptions 1–3 hold, and that FY |XD (y|c+, d) is continuous in
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y for d ∈ {0, 1}. Then sharp lower and upper bounds on Γ0 are given, respectively, by

ΓL0,FRD = inf
(t1,t0)∈T

∆L
0 (t1, t0)

Ψ0(t1)
and ΓU0,FRD = sup

(t1,t0)∈T

∆U
0 (t1, t0)

Ψ0(t1)
.

In general, it could be the case that ΓL0 = −∞ and/or ΓU0 = ∞ because Ψ0(t1) is not

necessarily bounded away from zero. A simple sufficient condition that ensures finiteness of

both the upper and lower bound in Theorem 2 is that

τ <
E(Di|Xi = c+)− E(Di|Xi = c−)

1− E(Di|Xi = c−)
.

With more excessive levels of manipulation it might not be possible to distinguish empirically

between a setting where always-assigned units just to the right of the cutoff have very low

treatment probabilities, and a setting where the treatment probability of potentially-assigned

units on either side of the cutoff is identical. In the latter setting, Γ0 would not be identified

even if we could observe each unit’s type.

3.2.3 Fuzzy RD Designs with Additional Restrictions

The bounds in Theorem 2 can be narrowed if one is willing to impose stronger assumptions

on the units’ behavior than the (rather weak) ones that we have imposed so far. Consider

for instance a setting where always-assigned units obtain values of the running variable to

the right of the cutoff by actively misreporting some information. Such units thus make the

conscious choice to become eligible for the treatment. It might therefore seem plausible to

assume that their probability of actually receiving the treatment conditional on being eligible

is relatively high in some appropriate sense. Depending on the exact details of the empirical

application, one might be willing to assume, for example, that always-assigned units are at

least as likely to get treated as eligible potentially-assigned units. The following Theorem

provides expressions for the bounds under this assumption.

Theorem 3. Suppose that the conditions of Theorem 2 hold, and that E(Di|Xi = c+,Mi =
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1) ≥ E(Di|Xi = c+,Mi = 0). Then the set Ta of possible values of (τ1, τ0) that are compatible

with the data is given by

Ta ≡ {(t1, t0) : (t1, t0) ∈ T and t1 ≥ τ},

and thus sharp lower and upper bounds on Γ0 are given, respectively, by

ΓL0,FRD(a) = inf
(t1,t0)∈Ta

∆L
0 (t1, t0)

Ψ0(t1)
and ΓU0,FRD(a) = sup

(t1,t0)∈Ta

∆U
0 (t1, t0)

Ψ0(t1)
.

In some cases, it may be reasonable to drive this line of reasoning further and consider the

identifying power of the assumption that always-assigned units always receive the treatment.

The following theorem provides expressions for the bounds under this assumption.

Theorem 4. Suppose that the conditions of Theorem 2 hold, and that E(Di|Xi = c+,Mi =

1) = 1. Then the values τ1 and τ0 are point identified:

τ1 =
τ

E(Di|Xi = c+)
and τ0 = 0;

and sharp lower and upper bounds on Γ0 are given, respectively, by

ΓL0,FRD(b) =
∆L

0 (τ/E(Di|Xi = c+), 0)

Ψ0(τ/E(Di|Xi = c+))
and ΓU0,FRD(b) =

∆U
0 (τ/E(Di|Xi = c+), 0)

Ψ0(τ/E(Di|Xi = c+))
.

Comparing the first part of the Theorem 3 to Lemma 2 and the following discussion, we

see the additional restrictions on treatment probabilities increase the lowest possible value

of τ1 from max{0, 1 + (τ − 1)/E(Di|Xi = c+)} to τ , and correspondingly decrease the largest

possible value for τ0 from min{1, τ/(1 − E(Di|Xi = c+))} to τ . Hence Ta ⊂ T , and we

obtain narrower bounds because optimization is carried out over a smaller set. Under the

conditions of Theorem 4, the set of plausible values of (τ1, τ0) shrinks to a singleton, which

means that sharp bounds on Γ0 can be defined without invoking an optimization operator.
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3.3 Further Extensions and Remarks

In this subsection, we discuss a number of extensions and remarks related to the main results

that we derived in the previous subsection.

3.3.1 Using Covariates to Tighten the Bounds

It is possible to use covariates that are measured prior to the treatment to obtain bounds

on causal effects that are more narrow than the ones derived above, and thus potentially

more informative in applications. Let Wi be a vector of such covariates with a support W .

By using arguments similar to those in Lee (2009), one can then narrow the bounds on Γ0

in the SRD and FRD designs as described in Corollaries 1 and 2, respectively. The idea is

that if the proportion of always-assigned units varies with the value of Wi, trimming units

based on their position in the outcome distribution conditional on Wi will lead to a smaller

number of units with extreme outcomes being trimmed overall, which narrows the bounds.

Corollary 1. Suppose that the assumptions of Theorem 1 hold, mutatis mutandis, condi-

tional on the covariates Wi with probability 1. Then sharp lower and upper bounds on Γ0 are

given by

ΓL0,FRD−W =

∫
E(Yi|Xi = c+, Yi ≤ QY |XW (1− τ(w)|c+, w),Wi = w)dFW |X(w|c−)

− E(Yi|Xi = c−) and

ΓU0,FRD−W =

∫
E(Yi|Xi = c+, Yi ≥ QY |XW (τ(w)|c+, w),Wi = w)dFW |X(w|c−)

− E(Yi|Xi = c−),

respectively, where τ(w) = 1− fX|W (c+|w)/fX|W (c−|w).

Corollary 2. Suppose that the assumptions of Theorem 2 hold, mutatis mutandis, condi-

tional on the covariates Wi with probability 1. Then sharp lower and upper bounds on Γ0 are
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given by

ΓL0,FRD−W = inf
(t1(w),t0(w))∈T (w),w∈W

∫
∆L

0 (t1(w), t0(w)|Wi = w)dFW |X(w|c−)∫
Ψ0(t1(w)|Wi = w)dFW |X(w|c−)

and

ΓU0,FRD−W = sup
(t1(w),t0(w))∈T (w),w∈W

∫
∆U

0 (t1(w), t0(w)|Wi = w)dFW |X(w|c−)∫
Ψ0(t1(w)|Wi = w)dFW |X(w|c−)

,

respectively, where t1(w), t0(w), T (w), ∆L
0 (t1(w), t0(w)|Wi = w), ∆U

0 (t1(w), t0(w)|Wi = w),

and Ψ0(t1(w)|Wi = w) are as defined above, conditioning throughout on Wi = w.

3.3.2 Bounds for Discrete Outcomes

The results in Theorems 1 and 2 are stated for the case in which the outcome variable is

continuously distributed. This is for notational convenience only, and our results immediately

generalize to the case of a discrete outcome variable. This additional flexibility can be

important in many empirical settings. The following corollaries provide these generalizations.

Corollary 3. Suppose that the assumptions of Theorem 1 hold, and that supp(Yi|Xi = c+)

is a finite set. Then sharp lower and upper bounds on Γ0 are given by

ΓL0,SRD = (1− θL)E(Yi|Xi = c+, Yi < QY |X(1− τ |c+))

+ θLQY |X(1− τ |c+)− E(Yi|Xi = c−) and

ΓU0,SRD = (1− θU)E(Yi|Xi = c+, Yi > QY |X(τ |c+))

+ θUQY |X(τ |c+)− E(Yi|Xi = c−),

respectively, with

θL =
P(Yi ≥ QY |X(1− τ |c+)|Xi = c+)− τ

1− τ
and

θU =
P(Yi ≤ QY |X(τ |c+)|Xi = c+)− τ

1− τ
,

using the convention that E(A|A < min supp(A)) = E(A|A > max supp(A)) = 0 for a generic

random variable A with finite support.
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Corollary 4. Suppose that the assumptions of Theorem 2 hold, and that supp(Yi|Xi = c+)

is a finite set. Then sharp lower and upper bounds on Γ0 are given by

ΓL0,FRD = inf
(t1,t0)∈T

∆L
0 (t1, t0)

Ψ0(t1)
and ΓU0,FRD = sup

(t1,t0)∈T

∆U
0 (t1, t0)

Ψ0(t1)
,

respectively, with

∆L
0 (τ1, τ0) =

∑
d=0,1

((1− θLd )E(Yi|Xi = c+, Yi < QY |XD(1− τd|c+, d), Di = d)

+ θLdQY |XD(1− τd|c+, d))P(Di = d|Xi = c+)
1− τd
1− τ

− E(Yi|Xi = c−) and

∆U
0 (τ1, τ0) =

∑
d=0,1

((1− θUd )E(Yi|Xi = c+, Yi > QY |XD(τd|c+, d), Di = d)

+ θUd QY |XD(τd|c+, d))P(Di = d|Xi = c+)
1− τd
1− τ

− E(Yi|Xi = c−),

and with

θLd =
P(Yi ≥ QY |XD(1− τd|c+, d)|Xi = c+, Di = d)− τd

1− τd
and

θUd =
P(Yi ≤ QY |XD(τd|c+, d)|Xi = c+, Di = d)− τd

1− τd

for d ∈ {0, 1}, using the convention that E(A|A < min supp(A)) = E(A|A > max supp(A)) =

0 for a generic random variable A with finite support.

3.3.3 Identifying the Characteristics of Always-Assigned and Potentially-Assigned Units

It is not possible to determine whether any given unit belongs to the group of always-

assigned ones or the group of potentially-assigned ones in our setup. This does not mean,

however, that it is impossible to give any further characterization of these two subgroups.

In particular, if the data include a vector Wi of predetermined covariates, it is possible to

identify the distribution of these covariates among always-assigned and potentially-assigned

units just to the right of the cutoff as long as the distribution of Wi (conditional on type)
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does not change discontinuously at c. This could be useful, for instance, to target policies

aimed at mitigating manipulation. The following corollary formally states the result.

Corollary 5. Suppose that Assumptions 1–2 hold, and that E (g (Wi) |Xi = x,Mi = 0) is

continuous in x at c for some known function g(·). Then

E
(
g (Wi) |Xi = c+,Mi = 1

)
=

1

τ

(
E
(
g (Wi) |Xi = c+

)
− E

(
g (Wi) |Xi = c−

))
+ E

(
g (Wi) |Xi = c−

)
and

E
(
g (Wi) |Xi = c+,Mi = 0

)
= E

(
g (Wi) |Xi = c−

)
.

By putting g(w) = wk, for example, the corollary shows that the data identify the kth

moment of the distribution of Wi among always-assigned and potentially-assigned units just

to the right of the cutoff, where k ∈ N. If Wi is the age of an individual, for instance,

it is possible to determine whether always-assigned individuals are older on average than

potentially-assigned individuals. By putting g(w) = I {w ≤ r}, we obtain an identification

result for the conditional CDF of the covariates at any level r ∈ R. This means that we can

identify any feature of the conditional distribution of Wi.

4 Estimation

In this section, we describe how the upper and lower bounds on treatment effects that

we derived in the previous section can be estimated in practice. This requires combining

a number of intermediate steps in which the right and/or left limits of various density,

conditional quantile or (truncated) conditional expectation functions have to be estimated.

Following the recent RD literature, we focus on flexible nonparametric methods, and in

particular local polynomial smoothing, for this task. Local polynomial estimators are well-

known to have good properties in boundary regions, and are thus appealing for RD settings.

The main idea is to approximate the respective unknown function with a polynomial of
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order p ∈ Z+, often taken to be 1 in applications, and then to estimate the coefficients of the

approximating polynomial by minimizing some weighted measure of distance. The weighting

results in a local approximation of the unknown function in the sense that the weights are

decreasing to zero with the distance of an observation to the cutoff. The exact values of

these weights are determined by a smoothing parameter, or bandwidth, h ∈ R+ and a kernel

function K(·), taken to be a symmetric density function on the interval [−1, 1].

4.1 Estimation of Intermediate Quantities

We begin by describing the construction of a number of intermediate estimators. To simplify

the exposition, we use the same polynomial order p, bandwidth h and kernel function K(·)

in all intermediate estimation steps in this paper. We also use the notation that πp(x) =

(1/0!, x/1!, x2/2!, . . . , xp/p!)′ and Kh(x) = K(x/h)/h for any x ∈ R, and define the (p + 1)-

vector e1 = (1, 0, . . . , 0)′. The data available to the econometrician is an independent and

identically distributed sample {(Yi, Di, Xi), i = 1, . . . , n} of size n.

4.1.1 Proportion of Always-Assigned Units

Following the result in Lemma 1, estimating τ requires estimates of the right and left limits of

the density at the cutoff. There are a number of nonparametric estimators that can be used

to estimate densities at boundary points; see for example Lejeune and Sarda (1992), Jones

(1993), Cheng (1997) or Cattaneo, Jansson, and Ma (2015). Here we use a particularly simple

procedure that corresponds to a standard Rosenblatt-Parzen estimator using the equivalent

kernel of a local polynomial regression of order p. Specifically, our estimators of fX(c+) and

fX(c−) are given by

f̂+ =
1

n

n∑
i=1

Kp+
h (Xi − c)I {Xi ≥ c} and f̂− =

1

n

n∑
i=1

Kp−
h (Xi − c)I {Xi < c} ,

respectively, where Kp+(x) = e′1S
−1(1, x, . . . , xp)′K(x) with S = (aj+l)0≤j,l≤p a matrix of

dimension (p+ 1)× (p+ 1) and aj =
∫∞
0
ujK(u)du for j = 1, . . . , 2p being constants that de-
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pend on the kernel function only; and Kp−(x) is defined analogously with bj =
∫ 0

−∞ u
jK(u)du

replacing the aj. In view of Lemma 1, and the fact that by assumption the proportion of

always-assigned units among units just to the right of the cutoff has to be non-negative, our

estimate of τ is then given by

τ̂ = max{τ̃ , 0}, where τ̃ = 1− f̂−/f̂+.

To see the connection with local polynomial regression, let f̃n(x) = 1
n

∑n
i=1 I {Xi = x} be

the empirical density function of the sample points {X1, . . . , Xn}. Then we have that

f̂+ = e′1 argmin
β∈Rp+1

∫ ∞
c

(f̃n(x)− πp(x− c)′β)2Kh(x− c)dx and

f̂− = e′1 argmin
β∈Rp+1

∫ c

−∞
(f̃n(x)− πp(x− c)′β)2Kh(x− c)dx.

These two estimators can thus be interpreted as local polynomial approximations to the

empirical density function (cf. Lejeune and Sarda, 1992).

4.1.2 Conditional Quantile Functions

Next, we construct estimates of the conditional quantile function of the outcome given the

running variable, and of the outcome given the running variable and the unit’s treatment

status. For reasons explained below, we not only estimate these functions themselves, but

also their right derivatives with respect to the running variable up to order p. To simplify

the notation, we denote the vectors that contain the right limit of the respective conditional

quantile functions and their first p derivatives by

Q+
∇(t) = (QY |X(t, c+), ∂xQY |X(t, x)|x=c+ , . . . , ∂pxQY |X(t, x)|x=c+)′ and

Q+
∇(t, d) = (QY |XD(t, c+, d), ∂xQY |XD(t, x, d)|x=c+ , . . . , ∂pxQY |XD(t, x, d)|x=c+)′.

Note that to keep the notation simple we distinguish these two vectors of functions through

their arguments only. For any t ∈ (0, 1) and d ∈ {0, 1}, our estimates of these two objects
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are then given by

Q̂+
∇(t) = argmin

β∈Rp+1

n∑
i=1

ρt(Yi − πp(Xi − c)′β)Kh(Xi − c)I {Xi ≥ c} , and

Q̂+
∇(t, d) = argmin

β∈Rp+1

n∑
i=1

ρt(Yi − πp(Xi − c)′β)Kh(Xi − c)I {Xi ≥ c,Di = d} ,

respectively, where ρt(x) = (t − I {x < 0})x is the “check” function commonly used in the

quantile regression literature (Koenker and Bassett, 1978; Koenker, 2005). See Yu and Jones

(1998) for more details on local polynomial quantile regression. From a numerical point of

view, these estimation steps can be carried out by any software package able to compute a

weighted linear quantile regression estimator.

4.1.3 Conditional Expectations

Our last groups of intermediate estimands are the left and right limits of various (possi-

bly truncated) conditional expectation functions. To simplify the exposition, we use the

shorthand notation that

Q+(t) = QY |X(t, c+) and Q+(t, d) = QY |XD(t, c+, d)

for the conditional quantiles, write

mL+(t) = E(Yi|Xi = c+, Yi ≤ Q+(t)),

mU+(t) = E(Yi|Xi = c+, Yi ≥ Q+(1− t)),

mL+(t1, t0, d) = E(Yi|Xi = c+, Yi ≤ Q+(td, d), Di = d),

mU+(t1, t0, d) = E(Yi|Xi = c+, Yi ≥ Q+(1− td, d), Di = d),
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Figure 4.1: Illustration of the benefits of polynomial truncation.

for the various truncated conditional expectation functions, and denote the “non-truncated”

conditional expectations that we have to estimate by

m− = E(Yi|Xi = c−), g+ = E(Di|Xi = c+), g− = E(Di|Xi = c−).
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Estimation of the truncated conditional expectations mL+(τ) and mU+(τ) involves a sub-

tle issue. At first sight, one might think that a natural way to estimate these objects is to

run local polynomial regressions in the subsamples with Yi ≤ Q̂+(τ̂) and Yi ≥ Q̂+(1 − τ̂),

respectively. However, such a “constant truncation” rule has several undesirable properties,

as illustrated in the top left panel of Figure 4.1 for the case of mL+(τ) and a linear approxi-

mating function, that is p = 1. Suppose that the conditional quantiles of Y given X = x are

downward sloping in x over the area from c to c + h, the right neighborhood of the cutoff.

Then first the proportion of units that is truncated from this neighborhood is substantially

smaller than τ̂ . And second, those units that are truncated all have values of Xi very close

to the cutoff. This leads to an additional bias in the local linear estimator (similar to the

bias of the OLS estimator in a standard linear model with fixed censoring).

An alternative, seemingly natural way to estimate mL+(τ) and mU+(τ) if a uniform

kernel is used would be to run local polynomial regressions in the subsamples with Yi ≤

Q̂Y |c<X<c+h(τ̂) and Yi ≥ Q̂Y |c<X<c+h(1 − τ̂), respectively, where Q̂Y |c<X<c+h denotes the

empirical quantile function of the outcomes of those units whose value of Xi falls into the

right neighborhood of the cutoff. As illustrated in the top right panel of Figure 4.1, this

alternative “constant truncation” rule does not resolve the problem, as it again tends to

remove a disproportionate number of units very close to the cutoff.

To address the problem, we propose to use a “polynomial truncation” rule, which removes

units whose value of Yi is below the value of a polynomial approximation of the conditional

quantile function, before fitting an approximate regression function. The bottom panel of

Figure 4.1 illustrates how proceeding like this can remove a substantial amount of bias from

the estimates. In a first step, we compute

Q̂+
poly(t, x) = πp(x− c)′Q̂+

∇(t),

which is the estimated pth order polynomial approximation of the conditional quantile func-
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tion x 7→ QY |X(t, x) in a local neighborhood to the right of the cutoff. In a second step, we

then estimate mL+(τ) and mU+(τ) by running local polynomial regression in the subsamples

with Yi ≤ Q̂+
poly(τ̂ , Xi) and Yi ≥ Q̂+

poly(1− τ̂ , Xi), respectively:

m̂L+(τ̂) = e′1 argmin
β∈Rp+1

n∑
i=1

(Yi − πp(Xi − c)′β)2Kh(Xi − c)I
{
Xi ≥ c, Yi ≤ Q̂+

poly(τ̂ , Xi)
}

m̂U+(τ̂) = e′1 argmin
β∈Rp+1

n∑
i=1

(Yi − πp(Xi − c)′β)2Kh(Xi − c)I
{
Xi ≥ c, Yi ≥ Q̂+

poly(1− τ̂ , Xi)
}
.

The same issue that complicates estimating mL+(τ) and mU+(τ) must also be taken into

account when estimating mL+(t1, t0) and mU+(t1, t0). By following the same reasoning as

above, we propose similar “polynomially truncated” local polynomial regression estimators

for this task. We begin by computing

Q̂+
poly(t, x, d) = πp(x− c)′Q̂+

∇(t, d),

which is the estimated pth order polynomial approximation of the conditional quantile func-

tion x 7→ QY |XD(t, x, d) in a local neighborhood to the right of the cutoff, and then estimate

mL+(t1, t0, d) and mU+(t1, t0, d) by

m̂L+(t1, t0, d) = e′1 argmin
β∈Rp+1

n∑
i=1

(Yi − πp(Xi − c)′β)2Kh(Xi − c)ILi (t1, t0, d),

m̂U+(t1, t0, d) = e′1 argmin
β∈Rp+1

n∑
i=1

(Yi − πp(Xi − c)′β)2Kh(Xi − c)IUi (t1, t0, d)

respectively, with

ILi (t1, t0, d) = I
{
Xi ≥ c, Yi ≤ Q̂+

poly(td, Xi, d), Di = d
}
,

IUi (t1, t0, d) = I
{
Xi ≥ c, Yi ≥ Q̂+

poly(1− td, Xi, d), Di = d
}
.

Estimating the remaining conditional expectations we mentioned above poses no particular
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difficulties. Estimates of m−, g+ and g− can be obtained by local polynomial regression:

m̂− = e′1 argmin
β∈Rp+1

n∑
i=1

(Yi − πp(Xi − c)′β)2Kh(Xi − c)I {Xi < c} ,

ĝ+ = e′1 argmin
β∈Rp+1

n∑
i=1

(Di − πp(Xi − c)′β)2Kh(Xi − c)I {Xi ≥ c} ,

ĝ− = e′1 argmin
β∈Rp+1

n∑
i=1

(Di − πp(Xi − c)′β)2Kh(Xi − c)I {Xi < c} ,

Again, any software package able to solve weighted least squares problems can be used to

compute all the above estimates.

4.2 Estimation of Bounds

Using the intermediate estimates defined in the previous subsection, it is now straightforward

to construct sample analogue estimators of the lower and upper bounds on the treatment

effect Γ0 in the sharp RD design. Specifically, our estimators of ΓL0,SRD and ΓU0,SRD from

Theorem 1 are given by

Γ̂L0,SRD = m̂L+(τ̂)− m̂− and Γ̂U0,SRD = m̂U+(τ̂)− m̂−.

These estimators can be shown to be consistent under general conditions. We explore their

large sample properties in more detail in our discussion of inference below.

Estimating the bounds on Γ0 that we derived in Theorem 2 for the fuzzy RD design is a

more difficult problem because our estimands take the form of a non-smooth functional of the

population distribution of the data. Hirano and Porter (2012) show that it is not possible

to construct locally asymptotically unbiased estimators for such objects, and that overly

aggressive attempts at bias correction must eventually cause the variance of the estimator

to explode. Like all conceivable estimators, our proposed estimators are therefore biased.

To describe them, recall the representation of the set T given after Lemma 2, and note that
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the lower and upper bound on Γ0 from Theorem 2 can be written as

ΓL0,FRD = inf
t∈[0,1]

ΓL0 (t) and ΓU0,FRD = sup
t∈[0,1]

ΓU0 (t),

respectively, where Γj0(t) = ∆j
0(η1(t), η0(t))/Ψ0(η1(t)) for j ∈ {L,U}. This notation, which

incorporates the shape of the set T into the definition of the bounding function, has the

advantage that the area over which optimization takes place does no longer depend on

nuisance parameters. We then define the corresponding sample analogues

Γ̂j0(t) = ∆̂j
0(η̂1(t), η̂0(t))/Ψ̂0(η̂1(t)),

∆̂j
0(t1, t0) = m̂j+(t1, t0, 1) · ĝ

+(1− t1)
1− τ̂

+ m̂j+(t1, t0, 0) · (1− ĝ+)(1− t0)
1− τ̂

− m̂−,

Ψ̂0(t1) =
ĝ+ · (1− t1)

1− τ̂
− ĝ−, η̂d(t) = τ̂Ld + t · (τ̂Ud − τ̂Ld );

for j ∈ {L,U}; and our estimates of the endpoints of the line T are given by

τ̂L1 = max

{
0, 1− 1− τ̂

ĝ+

}
,

τ̂L0 = min

{
1,

τ̂

1− ĝ+

}
,

τ̂U1 = min

{
1− (1− τ̂) · ĝ−

ĝ+
,
τ̂

ĝ+

}
,

τ̂U0 = max

{
0, τ̂ − (1− τ̂) · (ĝ+ − ĝ−)

1− ĝ+

}
.

Our estimators of ΓL0,FRD and ΓU0,FRD from Theorem 2 are then given by

Γ̂L0,FRD = inf
t∈[0,1]

Γ̂L0 (t) and Γ̂U0,FRD = sup
t∈[0,1]

Γ̂U0 (t),

respectively. These estimators are consistent under general conditions, but in finite samples

Γ̂L0,FRD is downward biased for ΓL0,FRD, and Γ̂U0,FRD is upward biased for ΓU0,FRD. These esti-

mators thus tend to overstate the degree of partial identification, and produce conservative

estimates of the identified set that are generally too wide. This has to be taken into account

when interpreting results in any empirical setting.

Estimation under the conditions of Theorems 3 and 4 is conceptually similar to that

under the conditions of Theorem 2 and 1, respectively, and thus we keep the discussion of
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the empirical implementation of our refined bounds in these cases rather brief. Following the

remark after Theorem 3, estimates Γ̂L0,FRD(a) and Γ̂U0,FRD(a) of ΓL0,FRD(a) and ΓU0,FRD(a) can be

obtained by proceeding exactly as in the case of the basic fuzzy RD design, after redefining

τ̂L1 = τ̂L0 = τ̂ . Estimates of the bounds ΓL0,FRD(b) and ΓU0,FRD(b) from Theorem 4 can be

constructed as Γ̂L0,FRD(b) = ∆̂L
0 (τ̂ /ĝ+, 0)/Ψ̂0(τ̂ /ĝ

+) and Γ̂U0,FRD(b) = ∆̂L
0 (τ̂ /ĝ+, 0)/Ψ̂0(τ̂ /ĝ

+),

respectively. Implementing one the of various refinements from Section 3.3 can also be

accomplished along similar lines.

5 Inference

In this section, we construct “manipulation-robust” confidence intervals for Γ0 that are valid

irrespective of the true value of τ . These confidence intervals apply to both sharp and fuzzy

RD designs. We also propose an alternative approach to inference that is particularly suited

for settings where researchers have strong prior beliefs that manipulation is either absent or

at least very rare in their application, but where τ is only imprecisely estimated.

5.1 Confidence Intervals in the Sharp RD Design

We begin by considering “manipulation-robust” inference on Γ0 in the sharp RD design. Note

that the identified set for Γ0 is an interval, and that we have estimates Γ̂L0,SRD and Γ̂U0,SRD of its

lower and upper bounds. If these estimates were jointly asymptotically normal irrespective of

the true value of τ , then our setup would be a special case of the one studied by Imbens and

Manski (2004) and Stoye (2009), and we could use their proposed construction of a confidence

interval. However, in our setup Γ̂L0,SRD and Γ̂U0,SRD are only jointly asymptotically normal if

τ > 0 (under appropriate regularity conditions; see the appendix). When τ = 0 their limiting

distribution is non-Gaussian, as the estimated level of manipulation τ̂ = max{0, 1− f̂−/f̂+}

fails to be asymptotically normal in this case.9

9Under standard regularity conditions we have that
√
nh(τ̂ − τ)

d→ max{0, Z} if τ = 0, where Z is a
Gaussian random variable with mean zero.
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Due to the discontinuity in the limiting distribution at τ = 0, a Gaussian approximation

to the distribution of Γ̂L0,SRD and Γ̂U0,SRD is poor in finite samples of any size if τ is not

well-separated from zero. Moreover, it is well known that the standard bootstrap is unable

to consistently estimate the limiting distribution in this case (Andrews, 2000). To obtain a

confidence interval that is uniformly valid in the level of manipulation, we therefore propose

to estimate the limiting distribution for a level of manipulation that is biased away from its

point estimate τ̂ into the least favorable direction, which is away from zero. This approach

is analogous to the idea of moment selection in the moment inequality literature. Such

a “biased” limiting distribution is Gaussian, but due to the complexity of its asymptotic

variance we suggest estimating it via the bootstrap. Specifically, we construct a bootstrap

distribution under which the bootstrap analogue of τ̃ = 1 − f̂−/f̂+ is centered around

max{τ̂ , κnŝτ̃}, where ŝτ̃ is the standard error of τ̃ , and κn is a sequence of constants that

slowly tends to infinity. Following much of the moment inequality literature, we choose

κn = log(n)1/2 in this paper. The algorithm for our bootstrap is as follows.

1. Generate bootstrap samples {Yi,b, Di,b, Xi,b}ni=1, b = 1, . . . , B by sampling with replace-

ment from the original data {Yi, Di, Xi}ni=1; for some large integer B.

2. Calculate τ̃ ∗b = 1− f̂−b /f̂
+
b , and put ŝτ̃ as the sample standard deviation of {τ̃ ∗b }Bb=1.

3. Calculate τ̃b = τ̃ ∗b − τ̃ + max{τ̂ , κnŝτ̃} and τ̂b = max{τ̃b, 0}.

4. For j ∈ {U,L}, calculate Γ̂j0,SRD,b using the redefined estimate τ̂b from the previous

step, and put ŝj as the sample standard deviation of {Γ̂j0,SRD,b}Bb=1.

Now define Γ̂L∗0,SRD = m̂L+(τ̂ ∗)− m̂− and Γ̂U∗0,SRD = m̂U+(τ̂ ∗)− m̂−, with τ̂ ∗ = max{τ̃ , κnŝτ̃},

as estimates of the lower and upper bound on Γ0 using a conservatively biased estimate of

τ . A uniformly valid 1− α confidence interval for Γ0 is then given by

CSRD1−α ≡
[
Γ̂L∗0,SRD − rα · ŝL, Γ̂U∗0,SRD + rα · ŝU

]
,
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where rα is the value that solves the equation

Φ

(
rα +

Γ̂U∗0,SRD − Γ̂L∗0,SRD
max{ŝL, ŝU}

)
− Φ(−rα) = 1− α,

and Φ(·) is the CDF of the standard normal distribution. Note that for α < 0.5 the critical

value rα satisfies Φ−1(1− α) < rα < Φ−1(1− α/2); and that rα is, all else equal, decreasing

in the length Γ̂U∗0,SRD − Γ̂L∗0,SRD of the estimated identified set. As pointed out by Imbens

and Manski (2004), this choice of critical value ensures that the confidence interval has good

finite-sample coverage properties irrespective of the length of the identified set.

5.2 Confidence Intervals in the Fuzzy RD Design

Constructing a confidence interval for Γ0 under the conditions of Theorem 2 involves some

further complications due to the presence of optimization operators in the definitions of the

upper and lower bounds. Our setup is different from the one in Chernozhukov, Lee, and

Rosen (2013), who study inference on intersection bounds of the form [supv θ(v), infv θ(v)].

Our problem is an example of union bounds, where the role of the inf and the sup oper-

ator in the definition of the identified set is reversed. We are not aware of any general

results regarding inference for union bounds, but the problem can be addressed using the

intersection-union testing principle of Berger (1982).

The main idea is the following. Recall the definition of the set of feasible values for (τ1, τ0),

which is T = {η(t) ≡ (η1(t), η0(t)) : t ∈ [0, 1]} with ηd(t) = τLd + t · (τUd − τLd ), and note that

our construction of the bounds on Γ0 involved showing that if we knew that (τ1, τ0) = η(t)

for some fixed value of t ∈ [0, 1], the sharp lower and upper bound on Γ0 would be ΓL0 (t)

and ΓU0 (t) respectively. Now suppose that for every t ∈ [0, 1] we had a 1 − α confidence

interval CFRD1−α (t) for Γ0 that was valid if the true value of (τ1, τ0) was equal to η(t). Then the

intersection-union testing principle implies that CFRD1−α = ∪t∈[0,1]CFRD1−α (t) is an asymptotically

valid 1−α confidence interval for Γ0. That is, a candidate value for Γ0 is outside of CFRD1−α if
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and only if it is outside of CFRD1−α (t) for all t ∈ [0, 1]. An important feature of this approach

is that both the “fixed t” and the overall confidence interval have level 1 − α: there is no

need for a multiplicity adjustment to account for the fact that we are implicitly testing a

continuum of hypotheses.

The problem of constructing a confidence interval for Γ0 under the conditions of The-

orem 2 is thus reduced to constructing a confidence interval for Γ0 under the assumption

that (τ1, τ0) = η(t) for some known t ∈ [0, 1]. Such a confidence interval can be based on

the estimates Γ̂L0 (t) and Γ̂U0 (t). For reasons analogous to those in the previous section, the

limiting distribution of these estimators is discontinuous at τ = 0. We therefore consider a

modified bootstrap procedure to estimate of the distribution of Γ̂L0 (t) and Γ̂U0 (t) in which the

value of τ is again biased away from zero. The algorithm is as follows.

1. Generate bootstrap samples {Yi,b, Di,b, Xi,b}ni=1, b = 1, . . . , B by sampling with replace-

ment from the original data {Yi, Di, Xi}ni=1; for some large integer B.

2. Calculate τ̃ ∗b = 1− f̂−b /f̂
+
b , and put ŝτ̃ as the sample standard deviation of {τ̃ ∗b }Bb=1.

3. Calculate τ̃b = τ̃ ∗b − τ̃ + max{τ̂ , κnŝτ̃} and τ̂b = max{τ̃b, 0}.

4. For j ∈ {U,L}, calculate Γ̂j0,b(t) using the redefined estimate τ̂b from the previous step,

and put ŝj(t) as the sample standard deviation of {Γ̂j0,b(t)}Bb=1.

Now define Γ̂L∗0 (t) and Γ̂U∗0 (t) exactly as Γ̂L0 (t) and Γ̂U0 (t), with the exception that τ̂ ∗ =

max{τ̃ , κnŝτ̃} is used in place of τ̂ in the calculations. Then our “fixed t” confidence interval

for Γ0 with nominal level 1− α is given by

CFRD1−α (t) =
[
Γ̂L∗0 (t)− rα(t) · ŝL(t), Γ̂U∗0 (t) + rα(t) · ŝU(t)

]
,

where rα(t) is the value that solves the equation

Φ

(
rα(t) +

Γ̂U∗0 (t)− Γ̂L∗0 (t)

max{ŝL(t), ŝU(t)}

)
− Φ(−rα(t)) = 1− α,
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and Φ(·) is the CDF of the standard normal distribution. The final intersection-union con-

fidence interval for Γ0 is then given by

CFRD1−α =

[
inf
t∈[0,1]

(
Γ̂L0 (t)− rα(t) · ŝL(t)

)
, sup
t∈[0,1]

(
Γ̂U0 (t) + rα(t) · ŝU(t)

)]
.

The construction of this confidence interval does not account for the fact that the limiting

distribution of the Γ̂j0(t) is not only discontinuous at τ = 0, but also at those values of τ

under which (i) the denominator Ψ0(η1(t)) in the definition of Γj0(t) becomes equal to zero;

and (ii) one of the various max and min operators in the definition of the function ηd(·)

becomes binding. Our confidence interval might thus not have the correct size if the true

value of τ is close to either of these discontinuities. On the other hand, our approach should

work well if

τ � E(Di|Xi = c+)− E(Di|Xi = c−)

1− E(Di|Xi = c−)
, (5.1)

as this rules out issue (i), and if either

τ � 1− E(Di|Xi = c+) or τ � 1− E(Di|Xi = c+), (5.2)

as this rules out issue (ii). Both conditions appear reasonable for many applications, includ-

ing the one we study below. To keep the exposition simply, we therefore do not include any

“safeguards” against such cases into our bootstrap procedure.

5.3 An Alternative Strategy for Inference

A price one has to be pay for the uniform validity of the above-mentioned confidence intervals

over all plausible values of τ is that they might be quite conservative in settings where τ is

close or equal to zero, but measured rather imprecisely. Such confidence intervals accurately

reflect the uncertainty about Γ0 from the point of view of a researcher that is a priori agnostic

about what the true value of τ is, and wants to ensure correct coverage properties of the
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confidence interval under all values of τ that are not ruled out with near-certainty by the

data. In many applications, however, researchers have strong prior beliefs that manipulation

is either completely absent or at least quite rare in their setting. When this view is confirmed

by a point estimate of τ that is close to zero, imposing the restriction that τ is equal to κnŝτ

in the bootstrap world might seem overly pessimistic to them.

We therefore consider an alternative strategy for inference that can be used in such

situations. The idea is as follows. Suppose that the main interest of the researcher is in

testing the hypothesis that Γ0 = G against the alternative that Γ0 6= G, where G is some

constant. We then propose to construct confidence intervals C1−α(τ ∗) for Γ0 that are derived

under the (counterfactual) assumption that it is known that τ = τ ∗. For τ ∗ = 0, this yields

the usual “no manipulation” confidence interval, and generally C1−α(τ ∗) becomes wider as

τ ∗ increases. The researcher can then plot the upper and lower boundary of C1−α(τ ∗) as a

function of τ ∗, and check graphically for which levels of manipulation the point Γ0 = G is

contained in the confidence interval. For example, suppose that G /∈ C1−α(0), but that

G ∈ C1−α(τ ∗) for τ ∗ ≥ 0.1. Then the researcher can report that in his preferred “no

manipulation” specification the null hypothesis that Γ0 = G is rejected at the critical level α,

and that at least a 10% level of manipulation around the cutoff would be needed to reverse

this result.

We believe that such an exercise is a useful robustness check for every RD study, and a

reasonable way to visualize the impact of potential manipulation when the above-mentioned

“manipulation-robust” confidence intervals are deemed to be too conservative. We now

describe the necessary modifications of our bootstrap algorithms for this approach.

“Fixed Manipulation” Bootstrap in the Sharp RD Design

1. For τ ∗ ∈ [0, 1], define Γ̂L0,SRD(τ ∗) = m̂L+(τ ∗)− m̂− and Γ̂U0,SRD(τ ∗) = m̂U+(τ ∗)− m̂−.

2. Generate bootstrap samples {Yi,b, Di,b, Xi,b}ni=1, b = 1, . . . , B by sampling with replace-
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ment from the original data {Yi, Di, Xi}ni=1; for some large integer B.

3. For j ∈ {U,L}, calculate Γ̂j0,SRD,b(τ
∗), and put ŝj(τ ∗) as the sample standard deviation

of {Γ̂0,SRD,b(τ
∗)j}Bb=1.

4. Compute the 1− α confidence interval

CSRD1−α (τ ∗) ≡
[
Γ̂L0,SRD(τ ∗)− rα(τ ∗) · ŝL(τ ∗), Γ̂U0,SRD(τ ∗) + rα(τ ∗) · ŝU(τ ∗)

]
,

where rα(τ ∗) is the value that solves the equation

Φ

(
rα(τ ∗) +

Γ̂U0,SRD(τ ∗)− Γ̂L0,SRD(τ ∗)

max{ŝL(τ ∗), ŝU(τ ∗)}

)
− Φ(−rα(τ ∗)) = 1− α.

“Fixed Manipulation” Bootstrap in the Fuzzy RD Design

1. For τ ∗ ∈ [0, 1] and t ∈ [0, 1], define Γ̂L0 (τ ∗, t) and Γ̂U0 (τ ∗, t) exactly as Γ̂L0 (t) and Γ̂U0 (t),

with the exception that τ ∗ is used in place of τ̂ in the calculations.

2. Generate bootstrap samples {Yi,b, Di,b, Xi,b}ni=1, b = 1, . . . , B by sampling with replace-

ment from the original data {Yi, Di, Xi}ni=1; for some large integer B.

3. For j ∈ {U,L}, calculate Γ̂j0,b(τ
∗, t), and put ŝj(τ ∗, t) as the sample standard deviation of

{Γ̂j0,b(τ ∗, t)}Bb=1.

4. Compute the 1− α confidence interval

CFRD1−α (τ ∗)

=

[
inf
t∈[0,1]

(
Γ̂L0 (τ ∗, t)− rα(τ ∗, t) · ŝL(τ ∗, t)

)
, sup
t∈[0,1]

(
Γ̂U0 (τ ∗, t) + rα(τ ∗, t) · ŝU(τ ∗, t)

)]
,

where rα(τ ∗, t) is the value that solves the equation

Φ

(
rα(τ ∗, t) +

Γ̂U0 (τ ∗, t)− Γ̂L0 (τ ∗, t)

max{ŝL(τ ∗, t), ŝU(τ ∗, t)}

)
− Φ(−rα(τ ∗, t)) = 1− α.
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6 Empirical Application

In this section, we apply the estimation and inference procedures developed above to bound

the effect of unemployment insurance (UI) takeup around an eligibility cutoff in Brazil.

UI is a good example of a program for which our approach is useful. There is a whole

literature that is interested in the effect of UI on the time it takes for displaced workers to

find a new job. RD designs are natural empirical strategies to estimate this effect because

UI programs typically feature discontinuities in eligibility based on the level of some running

variable, such as the number of months of employment prior to layoff. At the same time,

there is another literature studying how UI may increase turnover and layoffs when benefits

are not fully experience-rated, i.e. when firms are not paying at the margin for the benefits

drawn by their workers (e.g. Feldstein, 1976; Anderson and Meyer, 2000). In practice, UI

benefits are never fully experience-rated. The possibility that manipulation of the running

variable could invalidate the standard assumption for an RD design is thus a serious concern

in the UI context. This concern may be particularly severe in countries with high labor

market informality, such as Brazil. The utility costs of being (reported as) laid off when

eligible for UI may be relatively low for some workers if they can work informally, possibly in

the very same firm that they are supposedly being laid off from. Finally, our key identifying

assumption (“one-sided manipulation”) is likely to apply: all displaced workers are likely to

have a (weak) preference for being eligible for (additional) UI benefits.10

The main purpose of our empirical exercise is to illustrate the applicability of our ap-

proach. However, its results are relevant for their own sake. The effect of UI on non-formal-

employment duration (i.e., the time between two formal jobs), for which we estimate bounds

below, is an important input to the evaluation of the optimal design of UI programs.11

10They always have the choice to not take up UI.
11See for instance Baily (1978) and Chetty (2008). The literature typically refers to the effect on non-

employment duration because it considers countries where all jobs are assumed to be formal.
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Specifically, the local average treatment effect at an eligibility cutoff would be an important

input for the welfare effect of marginal changes in the location of the cutoff. Moreover,

UI programs have been adopted or considered in a number of developing countries. Yet,

the existing evidence for developing countries, whose labor markets present distinctive fea-

tures such as a high prevalence of informal work opportunities, remains limited (Gerard and

Gonzaga, 2014).

6.1 Institutional Details, Data, and Sample Selection

In Brazil, a worker who is reported as involuntarily laid off from a private formal job is

eligible for UI under two conditions. First, she must have at least six months of continuous

job tenure at layoff. Second, there must be at least 16 months between the date of her layoff

and the date of the last layoff after which she applied for and drew UI benefits. We focus

on the eligibility cutoff created by this second condition.12 Eligible workers can draw three,

four, or five months of UI benefits if they accumulated more than 6, 12, or 24 months of

formal employment in the 36 months prior to layoff. Their benefit level depends nonlinearly

on their average wage in the three months prior to layoff. The replacement rate is 100%

at the bottom of the wage distribution but already down to 60% for a worker who earned

three times the minimum wage (the benefit schedule is shown in the Appendix). Finally, UI

benefits are not experience-rated in Brazil as they are financed by a tax on firms’ total sales.

Our empirical analysis relies on two administrative datasets. The first one is a longitu-

dinal matched employee-employer dataset covering by law the universe of formal employees.

Every year, firms must report all workers formally employed at some point during the previ-

ous calendar year. The data include information on wage, tenure, age, race, gender, educa-

tion, sector of activity, and establishment size. Importantly, the data also include hiring and

12There is evidence of manipulation around the six-month cutoff as well (Gerard and Gonzaga, 2014). The
16-month cutoff is more arbitrary and thus less likely to coincide with other possible discontinuities. For
instance, six months of job tenure may be a salient milestone for evaluating employees’ performance.
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separation dates, as well as the reason for separation. The second dataset is the registry of all

UI payments. Individuals can be matched in both datasets as they are identified through the

same ID number. Combining the datasets, we know whether any displaced formal employee

is eligible for UI, how many UI payments she draws, and when she is formally reemployed.

Our sample of analysis is constructed as follows. First, we consider all workers, 18 to

55 years old, who lost a private full-time formal job and drew UI benefits between 2002

and 2010. Second, workers who find a new formal job before exhausting their benefits are

entitled to draw the remaining benefits after a new layoff, even if it occurred before the 16-

month cutoff. We thus limit the sample to workers who exhausted their UI benefits (a large

majority; see Gerard and Gonzaga, 2014) such that the change in eligibility at the 16-month

cutoff is sharp. To do so, we select workers who drew the maximum number of UI benefits

because we can only measure the number of UI benefits a worker is eligible for imprecisely in

our data (see Gerard and Gonzaga, 2014, for details). Third, we drop workers whose layoff

date fell after the 28th of a month. This is because policy rules create bunching in the layoff

density at the 16-month cutoff even in the absence of manipulation among these workers.

For instance, all workers laid off between October 29th and 31st in 2007, became eligible on

February 28th in 2009, because there are only 28 days in February. Fourth, we follow each

worker in our sample until her first subsequent layoff. We keep workers who had more than

six month of job tenure at layoff (which is the first eligibility condition) and whose new layoff

date fell within 120 days of the 16-month eligibility cutoff. Finally, we follow workers for at

least one year after the new layoff date. As a result, we drop workers whose new layoff date

fell in 2010. Our sample ultimately consists of workers with a relatively high attachment to

the labor force, a relatively high turnover rate, and a relatively high ability to find a new

formal job rapidly.13 These are not the characteristics of the average formal employee or UI

13They were previously eligible for five months of UI, so they had accumulated 24 months of formal
employment within a 36-month window. They were laid off twice in 16 months and they had accumulated at
least six month of continuous tenure at layoff. Therefore, they found a job relatively quickly after their first
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beneficiary in Brazil, but characteristics of workers for whom the 16-month cutoff may be

binding.

6.2 Graphical Evidence

Figure 6.2 displays graphically some of the patterns in our data. Observations are aggregated

by day between the layoff date and the 16-month eligibility cutoff. Panel A provides evidence

of manipulation. The share of observations located just to the right of the cutoff is higher

than the share located just to the left of the cutoff by about 9%. Several types of behavior

could lead to this pattern. Some workers may provoke their layoff (e.g. shirk) or ask their

employer to report their quit as a layoff once they are eligible for UI. As in more developed

countries, employers may put some workers on temporary layoff once they are eligible for

UI, but possibly keeping them on an informal payroll in the context of developing countries.

Alternatively, workers laid off before the 16-month cutoff may lobby their employers to

(officially) lay them off after the cutoff, a behavior that could be modeled similarly to the

example of a second home visit in Section 2. The manipulation in panel A is likely the result

of a combination of these different types of behaviors (and possibly others).

Panels B-F then display similar graphs for various outcome variables. Panel B suggests

that workers were at least partially aware of the eligibility rule, a likely condition for ma-

nipulation to take place. The share of workers applying for UI benefits is monotonically

increasing to the left of the cutoff, but it jumps by about 40%-points at the cutoff. Panel C

shows that the eligibility rule was enforced. The share of workers drawing some UI benefits

is close to zero to the left of the cutoff, but takeup jumps to about 80% at the cutoff. Eligible

workers drew on average 3.2 months of UI benefits (panel D), implying that UI takers drew

on average four months of UI benefits (= 3.2/.8). Panel E displays the share of workers who

layoff. Indeed, Gerard and Gonzaga (2014) document that about 50% of workers eligible for five months of
UI benefits remain without a formal job one year after layoff.
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Figure 6.2: Graphical evidence for our empirical application

The figure displays the mean of different variables on each side of the cutoff by day between the layoff and
eligibility dates, as well as local linear regressions on each side of the cutoff using an edge kernel and a
bandwidth of 30 days.

43



remain without a formal job for at least one year after layoff. It increases discontinuously

from 23.5% to 29% at the cutoff. Relatedly, panel F shows a clear discontinuity in non-

formal-employment duration (censored at one year), which increases from about 170 days

to 220 days at the cutoff. Note that the discontinuity for the outcome in panel E implies

that the effect on non-formal-employment duration censored at a later point (e.g. two years)

would be larger (in levels, but not necessarily in percents). Our estimates below could easily

be obtained using other censoring points at the cost of a smaller sample.

The discontinuities in panels E and F could be due to a treatment effect, but they

could also be due to a selection bias. Workers on each side of the cutoff may have different

potential outcomes in the presence of manipulation. For instance, we show below that always-

assigned workers have different observable characteristics than potentially-assigned workers.

The estimators developed above allow us to bound treatment effects for potentially-assigned

workers, despite the possibility of sample selection.

6.3 Estimates

We implement our estimation and inference procedures for the outcome in panel F, non-

formal-employment duration. We censor the outcome at one year so that we can measure it

for all workers in our sample. The censoring also serves an illustrative purpose. The share

of right-censored observations is always larger than the estimated share of always-assigned

units. Our lower bound thus always truncates a discrete outcome (whether an observation is

right censored or not), while our upper bound essentially truncates a continuous outcome.14

Results are presented in Table 1 for an edge kernel (Cheng, Fan, and Marron, 1997)

and a bandwidth of 30 days around the cutoff.15 For bounds in the FRD case that involve

numerical optimization, we use a grid search to look for the infimum and supremum using 51

14The distribution of outcomes just to the left and right of the cutoff is shown in the Appendix.
15We do not have theoretical results on the optimal bandwidth for the estimation of our bounds. Our

estimates are similar if we use bandwidths of 10 or 50 days (available upon request).
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Table 1: The effect of UI on non-formal employment duration at the eligibility cutoff

Point/Interval Estimate 95% Conf. Interval

A. Basic Inputs

Share of always-assigned workers (τ) .0882 [.0665,.1099]

Increase in UI take-up at the cutoff .7583 [.7511,.7655]

B. ITT/SRD estimates

ITT - Ignoring Manipulation 49.27 [45.99,52.54]

ITT - Standard Bounds (Th.1) [34.86,69.58] [30.37,74.83]

ITT - Bounds using covariates (Cor.1) [34.87,69.35] [30.54,74.44]

C. LATE/FRD estimates

LATE - Ignoring Manipulation 64.97 [60.81,69.13]

LATE - Standard Bounds (Th.2) [45.09,86.36] [39.88,92.07]

LATE - Bounds using refinement A (Th.3) [45.99,85.65] [40.17,90.77]

LATE - Bounds using refinement B (Th.4) [47.38,85.48] [41.58,90.57]

LATE - Bounds using covariates (Cor.2) [45.09,86.18] [39.60,91.58]

Total number of observations within our bandwidth of 30 days around the cutoff: 120,862. The counter-
factual value of the outcome at the cutoff for potentially-assigned workers (m̂−) was estimated at 167.4.
Confidence intervals have nominal level of 95% and are based on 500 bootstrap samples. Bounds that
use covariates only use gender.

values for t ∈ [0, 1]. “Manipulation-robust” confidence intervals are based on 500 bootstrap

samples. We note that in our setting the value of τ seems to be well-separated from zero,

so that the safeguards that ensure uniform validity of these confidence intervals for small

values of τ are not of any practical importance here.

Panel A of Table 1 first reports estimates of key inputs for our bounds. Always-assigned

workers are estimated to account for 8.8% of observations just to the right of the cutoff and

UI takeup is estimated to increase by 76%-points at the cutoff.

We then report results from two types of exercises. First, we consider a SRD design in

which UI eligibility is defined as the treatment of interest (panel B). The causal effect on the

outcome can be interpreted as an intention-to-treat (ITT) parameter in this case. Second,

we consider the usual FRD design with UI takeup as the treatment (panel C). Naive RD esti-

45



mates that assume no manipulation yield a 49.3-day increase in non-formal-employment du-

ration from being eligible for UI (ITT/SRD) and a 65-day increase in non-formal-employment

duration from UI takeup (LATE/FRD). Those estimates, however, confound treatment ef-

fects and selection bias. Table 1 thus also provides estimates of our bounds for the treatment

effects, using the SRD formulas (resp. the FRD formulas) for the ITT (resp. the LATE).

The bounds are relatively large, which is not surprising given the extent of manipulation.

Point estimates for the standard upper bounds are 69.6 days (ITT) and 86.4 days (LATE).

Point estimates for the standard lower bounds are 34.9 days (ITT) and 45.1 days (LATE).

Table 1 also provides estimates that use behavioral assumptions (our refinements A and

B) or covariates (here, gender) to tighten our bounds. These refinements have no meaningful

additional identifying power in this case, yielding bounds that are qualitatively very similar

to the standard ones. This is because, although mean outcomes differ, tails of the outcome

distribution do not differ much by takeup status or covariate.

Finally, we present the results of two additional exercises. First, we illustrate the alter-

native strategy for inference that we recommend when researchers have strong prior beliefs

that manipulation is either absent or very rare in their setting. We display point estimates

and confidence intervals for our bounds in the SRD and FRD cases for various fixed levels

of the extent of manipulation (share of always-assigned units). Figure 6.3 shows that infer-

ence on treatment effects can be quite sensitive to the extent of manipulation. For instance,

the width of the confidence intervals more than doubles when we assume a small degree of

manipulation (a share of always-assigned units of 2.5%) rather than no manipulation. This

illustrates the importance of taking into account the possibility of manipulation even when

the McCrary (2008) test fails to reject the null hypothesis of no manipulation.

Second, we estimate the characteristics of potentially-assigned and always-assigned work-

ers. This could be useful to target policies aimed at mitigating manipulation in the timing
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Figure 6.3: Fixed-manipulation inference for our empirical application

The figure displays point estimates and confidence intervals for our bounds for fixed levels of the degree
of manipulation. The solid vertical line (resp. dashed vertical lines) corresponds to our point estimate
(confidence interval) for the extent of manipulation (see Table 1).

of layoff. Table 2 displays the estimated difference in the mean of workers’ characteristics

at the cutoff (column 1), as would be typically presented in an RD analysis. The associated

graphs are presented in the Appendix. We find significant evidence of selection in terms of

gender, wage (and thus replacement rate), sector of activity, and firm size. Columns (2) and

(3) then display the estimated means for potentially-assigned and always-assigned workers.

Always-assigned workers are 14%-points less likely to be male, earned on average .22 log

point less, are 19%-points more likely (resp. 24%-point less likely) to come from the indus-

trial sector (resp. service sector), and are 14%-point more likely to come from a small firm

than the potentially-assigned workers. The large difference in gender composition motivated

the choice of using gender to construct bounds in Table 1.

In sum, a naive RD design that ignores manipulation estimates that UI takeup increases

non-formal-employment in the first year after layoff by about 39% (= 65/167) at the eligibil-

ity cutoff. However, we find significant evidence of manipulation and selection at the cutoff.

Our bounds imply that the magnitude of this estimate may be heavily affected by selection,

47



Table 2: Characteristics of always- and potentially-assigned workers

Difference Potentially- Always-

at cutoff assigned assigned

(1) (2) (3)

Share male -.0122 .7021 .5642

[-.0229,-.0014] [.694,.7103] [.4415,.6869]

Average age -.1559 32.59 30.82

[-.3461,.0342] [32.44,32.73] [28.70,32.94]

Average years of education .0092 9.066 9.171

[-.0566,.075] [9.015,9.118] [8.463,9.878]

Average tenure .0107 8.513 8.635

[-.0276,.049] [8.49,8.536] [8.203,9.067]

Average log wage (R$) -.0195 6.682 6.461

[-.0328,-.0063] [6.672,6.692] [6.307,6.614]

Average replacement rate .0067 .7322 .8085

[.0026,.0108] [.7292,.7353] [.7602,.8567]

Share from .0044 .3624 .4119

commercial sector [-.0067,.0155] [.354,.3708] [.2896,.5342]

Share from -.0002 .0996 .0976

construction sector [-.0079,.0075] [.0938,.1053] [.0128,.1825]

Share from .017 .2376 .4307

industrial sector [.0058,.0282] [.2295,.2458] [.304,.5574]

Share from -.0212 .3004 .0597

service sector [-.0331,-.0094] [.2916,.3092] [-.0817,.2011]

Share from small firm .0121 .3931 .5298

(< 10 employees) [.0010,.0231] [.3843,.4019] [.4041,.6555]

Total number of observations within our bandwidth of 30 days around the cutoff: 120862. Numbers in
square brackets are 95% confidence intervals calculated by adding ±1.96×standard error to the respective
point estimate, where standard errors are calculated via the bootstrap with 500 replications.
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but that the treatment effect for potentially-assigned units is an increase of at least 24%

(lower limit of the confidence interval). UI takeup thus leads to significant delay in formal

reemployment at the existing cutoff. Of course, this estimate is particular to the sample of

workers for whom the cutoff may be binding.16 It must also be put in perspective with the

welfare gains from providing these workers with insurance. For example, the welfare gain is

arguably lower for workers with high turnover rates, for whom layoff is an expected event.

7 Conclusions

In this paper, we propose a partial identification approach to deal with the issue of poten-

tially manipulated running variables in RD designs. We show that while the data are unable

to uniquely pin down treatment effects if manipulation occurs, they are generally still infor-

mative in the sense that they imply bounds on the value of interesting causal parameters in

both sharp and fuzzy RD designs. Our main contribution is to derive and explicitly char-

acterize these bounds. We also propose methods to estimate our bounds in practice, and

discuss how to construct confidence intervals for treatment effects that have good coverage

properties. The approach is illustrated with an application to the Brazilian unemployment

insurance (UI) system. We recommend the use of our approach in applications irrespective

of the outcome of McCrary’s (2008) test for manipulation.

Our approach can also be useful for RD designs where running variables are not manipu-

lated. Suppose for example that the probability of missing outcomes changes discontinuously

at the cutoff. This could be the case if outcomes are based on surveys, and units are easier

to locate and survey if they were assigned to the program. Our approach could be used

to partially identify causal effects of the program at the cutoff for units whose outcomes

would not be missing in the absence of program assignment. Another possibility is that

16These workers may be particularly responsive to the incentives created by UI given that they have a
relatively high ability to find a new formal job rapidly (based on past employment history).
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the characteristics of a program (e.g. the level of UI benefits) change at the cutoff rather

than program assignment per se. In this case, a standard RD design will not identify the

causal effect of program characteristics conditional on program takeup if program takeup is

a function of program characteristics. Our approach could be used to partially identify such

a causal effect for units that would takeup the program in absence of the change in program

characteristics.

A Proofs of Identification Results

A.1 Proof of Lemma 1

Since the density of Xi is continuous around c among potentially-assigned units by Assumption 2,

we have that fX|M=0 (c−) = fX|M=0 (c+), and therefore fX (c+) = (1− P (M = 1)) fX|M=0 (c−) +

P (M = 1) fX|M=1 (c+) . Since fX|M=1(x) = 0 for x < c by Assumption 3, we also have that

fX (c−) = (1− P (M = 1)) fX|M=0 (c−). Hence (fX (c+) − fX (c−))/fX (c+) = fX|M=1(c
+)P(M =

1)/fX(c+) = τ , where the last equality follows from Bayes’ Theorem.

A.2 Proof of Lemma 2

By Assumption 1(i) and the law of total probability, our model implies that E(Di|Xi = c+) ·

(1 − τ1)/(1 − τ) > E(Di|Xi = c−) and τ = τ1 · E(Di|Xi = c+) + τ0 · (1 − E(Di|Xi = c+)). By

construction, any point (τ1, τ0) /∈ T is incompatible with at least one of these two restrictions.

It thus remains to be shown that any point (τ1, τ0) ∈ T is compatible with our model and the

observed joint distribution of (Y,D,X). Note that it suffices to consider the latter distribution for

X ∈ (c − ε, c + ε) for some small ε > 0, as our model has no implications for the distribution of

observables outside that range. Let (Ỹ (1), Ỹ (0), D̃+, D̃−, M̃ , X̃) be a random vector taking values

on the support of (Y (1), Y (0), D+, D−,M,X), and define D̃ and Ỹ analogous to D and Y in our

Section 2.1. We now construct a particular joint distribution of (Ỹ (1), Ỹ (0), D̃+, D̃−, M̃ , X̃). For
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x ∈ (c− ε, c+ ε), let

fX̃(x) = fX(x) and P(M̃ = 1|X̃ = x) =


1− fX(c−)/fX(x) if x ≥ c

0 if x < c.

Moreover, let

P(D̃− = 0, D̃+ = 1|X̃ = x, M̃ = 0) =


P(D = 1|X = x) · 1−τ11−τ − P(D = 1|X = c−) if x ≥ c,

P(D = 1|X = c+) · 1−τ11−τ − P(D = 1|X = x) if x < c,

P(D̃− = 1, D̃+ = 1|X̃ = x, M̃ = 0) =


P(D = 1|X = c−) if x ≥ c,

P(D = 1|X = x) if x < c,

P(D̃− = 0, D̃+ = 0|X̃ = x, M̃ = 0) = 1− P(D̃− = 0, D̃+ = 1|X̃ = x, M̃ = 0)

− P(D̃− = 1, D̃+ = 1|X̃ = x, M̃ = 0),

P(D̃− = 1, D̃+ = 0|X̃ = x, M̃ = 0) = 0,

and

P(D̃− = 0, D̃+ = 1|X̃ = x, M̃ = 1) =


P(D = 1|X = x) · τ1τ − h(x) if x ≥ c,

P(D = 1|X = c+) · τ1τ − h(c+) if x < c,

P(D̃− = 1, D̃+ = 1|X̃ = x, M̃ = 1) =


h(x) if x ≥ c,

h(c+) if x < c,

P(D̃− = 0, D̃+ = 0|X̃ = x, M̃ = 1) = 1− P(D̃− = 0, D̃+ = 1|X̃ = x, M̃ = 1),

− P(D̃− = 1, D̃+ = 1|X̃ = x, M̃ = 1),

P(D̃− = 1, D̃+ = 0|X̃ = x, M̃ = 1) = 0,

where h(·) is an arbitrary continuous function satisfying that 0 ≤ h(x) ≤ P(D = 1|X = x) · τ1/τ .

With these choices, the implied distribution of (D̃, X̃)|X̃ ∈ (c − ε, c + ε) is the same as that of

(D,X)|X ∈ (c− ε, c+ ε) for every (τ1, τ0) ∈ T . It thus remains to be shown that one can construct
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a distribution of (Ỹ (1), Ỹ (0)) given (D̃+, D̃−, X̃, M̃) that is compatible with our assumptions and

such that the distribution of Ỹ given (D̃, X̃) for X̃ ∈ (c− ε, c+ ε) is the same as the distribution of

Y given (D,X) for X ∈ (c− ε, c+ ε) for every (τ1, τ0) ∈ T . But this is always possible because our

model encompasses the setting in which the label “always-assigned unit” is randomly assigned with

probability τd to units with treatment status d and running variable to the right of the cutoff. Put

differently, the conditional distribution of (Y (1), Y (0)) given (D+, D−, X,M) implies no restrictions

on the feasible values of τ1 and τ0.

A.3 Proof of Theorem 1

By Assumption 3, we have that E (Yi | Xi = c−) = E (Yi|Xi = c−,Mi = 0). Showing that E(Yi|Xi =

c+, Yi ≤ QY |X(1−τ | c+)) and E(Yi|Xi = c+, Yi ≥ QY |X(τ | c+)) are sharp lower and upper bounds

for E(Yi|Xi = c+,Mi = 0) therefore suffices to prove the result. This follows from Corollary 4.1 in

Horowitz and Manski (1995) using the following two steps. First, by the total law of probability, we

can write FY |X(y|c+) = (1− τ))FY |X,M=0(y|c+) + τFY |X,M=1(y|c+). Second, set Q = FY |X(y|c+),

P11 = FY |X,M=0(y|c+), P00 = FY |X,M=1(y|c+), and p = τ in their notation.

A.4 Proof of Theorem 2

If τ1 and τ0 are known, it follows along the lines of the main text that Ψ0(τ1) = Ψ0. Let us now

show that ∆L
0 (τ1, τ0) and ∆L

0 (τ1, τ0) are sharp lower and upper bounds for ∆0. By Assumption 3,

E (Yi | Xi = c−) = E (Yi | Xi = c−,Mi = 0). Following the main text’s argument, we thus only need

to show that

E(Yi|Xi = c+, Yi ≤ QY |XD(1− τ1 | c+, 1), Di = 1) · P(Di = 1|Xi = c+) · (1− τ1)
1− τ

+ E(Yi|Xi = c+, Yi ≤ QY |XD(1− τ0 | c+, 0), Di = 0) · P(Di = 0|Xi = c+) · (1− τ0)
1− τ

and

E(Yi|Xi = c+, Yi ≥ QY |XD(τ1 | c+, 1), Di = 1) · P(Di = 1|Xi = c+) · (1− τ1)
1− τ

+ E(Yi|Xi = c+, Yi ≥ QY |XD(τ0 | c+, 0), Di = 0) · P(Di = 0|Xi = c+) · (1− τ0)
1− τ
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are sharp lower and upper bounds for E(Yi|Xi = c+,Mi = 0). Using the same reasoning as in the

proof of Theorem 1, we find that E(Yi|Xi = c+, Yi ≤ QY |XD(1− τ1 | c+, 1), Di = 1) and E(Yi|Xi =

c+, Yi ≤ QY |XD(1 − τ0 | c+, 0), Di = 0) are sharp lower bounds for E(Yi|Xi = c+,Mi = 0, Di = 1)

and E(Yi|Xi = c+,Mi = 0, Di = 0). Similarly, we find that E(Yi|Xi = c+, Yi ≥ QY |XD(τ1 |

c+, 1), Di = 1) and E(Yi|Xi = c+, Yi ≥ QY |XD(τ0 | c+, 0), Di = 0) are sharp upper bounds for

E(Yi|Xi = c+,Mi = 0, Di = 1) and E(Yi|Xi = c+,Mi = 0, Di = 0). Since Ψ0(τ1) = Ψ0, the

result then follows by noting that the conditional bounds are simultaneously attainable since the

expectations are over disjoint subsets of the sample space.

We have now shown that given knowledge of τ1 and τ0 the terms ∆L
0 (τ1, τ0)/Ψ0(τ1) and

∆U
0 (τ1, τ0)/Ψ0(τ1) are sharp lower and upper bounds for Γ0. In general, we only know however

that (τ1, τ0) is contained in the set T . Due to the sharpness result in Lemma 2, any element of T

is a feasible candidate for the value of (τ1, τ0). Thus, the bounds ΓL0 and ΓU0 are sharp.

A.5 Proof of Theorem 3 and Theorem 4

The proof of Theorem 3 follows the same steps as the proof of Lemma 2, noting that P(Di = 1 |

Xi = c+,Mi = 1) ≥ P(Di = 1 | Xi = c+,Mi = 0) implies the additional restriction that τ1 ≥ τ .

This follows from applying Bayes’ Theorem to both sides of the inequality and rearranging terms.

For Theorem 4, it follows again from Bayes’ Theorem that P(Di = 1 | Xi = c+,Mi = 1) = 1 implies

τ1 = τ/E (Di | X∗i = c−). In addition, P(Di = 1 | Xi = c+,Mi = 1) = 1 implies that τ0 = 0.

B Asymptotic Theory for the SRD Design

In this Appendix, we derive the asymptotic properties of the estimates of the upper and lower

bound on Γ0 in the SRD design. We impose the following regularity conditions, which are mostly

standard in the context of local polynomial estimation in an regression discontinuity context.

Assumption B.1. The data {(Yi, Xi, Di)}ni=1 are an independent and identically distributed sample

from the distribution of some random vector (Y,X,D).

Assumption B.2. For some κ > 0, κ1 = [c, c+ κ) and κ0 = (c− κ, c] the following holds.

53



(a) fX(x) is continuous, bounded, and bounded away from zero for x ∈ κ1 and x ∈ κ0.

(b) E(Yi|Xi = x, Yi ≤ Q+(τ)), E(Yi|Xi = x, Yi ≥ Q+(1− τ)), QY |X(τ, x) and QY |X(1− τ, x) are

p+ 1 times continuously differentiable for x ∈ κ1.

(c) E(Yi|Xi = x) is p+ 1 times continuously differentiable for x ∈ κ0.

(d) V(Yi|Xi = x, Yi ≤ Q+(τ)), V(Yi|Xi = x, Yi ≥ Q+(1 − τ)) are continuous and bounded away

from zero for x ∈ κ1; and V(Yi|Xi = x) is continuous and bounded away from zero for x ∈ κ0.

(e) fY |X(y, x) is continuous, bounded and bounded away from zero in y for x ∈ κ1.

Assumption B.3. The kernel function K is a symmetric, continuous probability density function

with compact support, say [−1, 1].

Assumption B.4. The bandwidth h = h(n) is such that nh2p+1 → 0 and nh→∞ as n→∞.

Under these conditions, we have the following result.

Theorem B.1. Suppose that Assumptions B.1–B.4 hold, and that τ > 0. Then

√
nh

Γ̂L0,SRD − ΓL0,SRD

Γ̂U0,SRD − ΓU0,SRD

 d→ N(0,Σ),

where Σ is a 2× 2 matrix described more explicitly in the proof of the theorem.

Proof. Proving this result involves many arguments that are standard when analyzing the properties

of kernel-based nonparametric estimators. We therefore only provide a sketch that focuses on the

main issues. We begin by defining the following shorthand notation for various derivatives:

mL+
Q = ∂tE(Yi|Xi = c+, Yi ≤ t)|t=Q+(τ),

mU+
Q = ∂tE(Yi|Xi = c+, Yi ≥ t)|t=Q+(1−τ),

mL+
τ = ∂tE(Yi|Xi = c+, Yi ≤ Q+(t))|t=τ ,

mU+
τ = ∂tE(Yi|Xi = c+, Yi ≥ Q+(1− t))|t=τ .

We also define the following infeasible estimators of mL+ and mU+, in which the true conditional
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quantile function is used to truncate the sample instead of the polynomial approximation:

m̃L+ = e′1 argmin
β∈Rp+1

n∑
i=1

(Yi − πp(Xi − c)′β)2Kh(Xi − c)I
{
Xi > c, Yi ≤ QY |X(τ,Xi)

}
m̃U+ = e′1 argmin

β∈Rp+1

n∑
i=1

(Yi − πp(Xi − c)′β)2Kh(Xi − c)I
{
Xi > c, Yi ≥ QY |X(1− τ,Xi)

}
Finally, with 0 = (0, 0, . . . , 0)′, 1 = (1, 1, . . . , 1)′ and hp = (1, h, h2, . . . , hp)′, we define the matrix

A ≡

1 0 1′ ·mL+
Q 0′ mL+

τ −1

0 1 0′ 1′ ·mU+
Q mU+

τ −1


and the following random vector of (possibly scaled) intermediate estimators:

v ≡



m̃L+ −mL+

m̃U+ −mU+

h′pQ̂
+
∇(τ)− h′pQ

+
∇(τ)

h′pQ̂
+
∇(1− τ)− h′pQ

+
∇(1− τ)

τ̂ − τ

m̂− −m−


.

It can then be shown that under Assumptions B.1–B.4 it holds that
√
nh · v d→ N(0, V ) for some

positive definite matrix V as follows. Using standard arguments (e.g. Kong, Linton, and Xia,

2010), we obtain that each component of the random vector v can be written as the sum of three

terms: (i) a kernel-weighted sum of independent and identically distributed random variables that

has mean zero and variance of order O((nh)−1); (ii) a deterministic bias term that is of order

O(hp+1); and (iii) a remainder term of the order oP ((nh)−1/2) + hp+1). The result is then implied

by the restrictions on h and p; and the multivariate version of Ljapunov’s CLT. We do not give

an explicit formula for every element of V as the related calculation are tedious but standard, and

thus not very insightful.

Next, by using stochastic equicontinuity arguments one can show that the estimators m̂L+ and
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m̂U+ satisfy the following stochastic decomposition:

m̂L+ = m̃L+ +mL+
Q(τ)h

′
p(Q̂

+
∇(τ)−Q+

∇(τ)) +mL+
τ (τ̂ − τ) + oP ((nh)−1/2) +O(hp+1)

m̂U+ = m̃U+ +mU+
Q(1−τ)h

′
p(Q̂

+
∇(1− τ)−Q+

∇(1− τ)) +mU+
τ (τ̂ − τ) + oP ((nh)−1/2) +O(hp+1).

The statement of the theorem then follows from the above arguments with Σ = AV A′, where A is

as defined above.

C Additional Tables and Graphs

We present here some supporting graphs. Figure C.4 displays the distribution of our outcome

variable (duration without a formal job, censored at one year after layoff) on the left and on the

right of the cutoff (30-day window around the cutoff). Figure C.5 displays the distribution of our

outcome variable on the right of the cutoff for female and male, separetely. Figure C.6 displays the

full schedule of the UI benefit level, which is a function of a beneficiary’s average monthly wage in

the three years prior to her layoff. Figure C.7 displays the mean of different covariates on each side

of the cutoff by day between the layoff and eligibility dates.
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Figure C.4: Distribution of our outcome variable on each side of the cutoff

The figure displays the distribution of our outcome variable (duration without a formal job, censored at one
year after layoff) on the left and on the right of the cutoff (30-day window on each side of the cutoff).
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Figure C.5: Distribution of our outcome variable on the right side of the cutoff by gender

The figure displays the distribution of our outcome variable (duration without a formal job, censored at one
year after layoff) on the right of the cutoff (30-day window on each side of the cutoff) for female and male,
separately.
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Figure C.6: Monthly UI benefit amount

The figure displays the relationship between a UI beneficiary’s average monthly wage in the three months
prior to her layoff and her monthly UI benefit level. All monetary values are indexed to the federal minimum
wage, which changes every year. The replacement rate is 100% at the bottom of the wage distribution as the
minimum benefit level is one minimum wage. The graph displays a slope of 0% until 1.25 minimum wages,
then of 80% until 1.65 minimum wages, and finally of 50% until 2.75 minimum wages. The maximum benefit
level is 1.87 minimum wages.
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Figure C.7: Graphical evidence for the characteristics of always-assigned units in our empirical
application

The figure displays the mean of different covariates on each side of the cutoff by day between the layoff and
eligibility dates.
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