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Abstract

This paper examines non-parametric identifiability of production function when production

functions are heterogenous across firms beyond Hicks-neutral technology terms. Using a finite

mixture specification to capture unobserved heterogeneity in production technology, we shows

that production function for each unobserved type is non-parametrically identified under regu-

larity conditions. We estimate a random coefficients production function using the panel data of

Japanese publicly-traded manufacturing firms and compare it with the estimate of production

function with fixed coefficients estimated by the method of Gandhi, Navarro, and Rivers (2013).

Our estimates for random coefficients production function suggest that there exists substantial

heterogeneity in production function coefficients beyond Hicks neutral term across firms within

narrowly defined industry.

1 Introduction

Estimation of production function is one of the most important topics in empirical economics.

Understanding how the input is related to the output is a fundamental issue in empirical industrial

organization (see, for example, Ackerberg, Benkard, Berry, and Pakes, 2007). In empirical trade

and macroeconomics, researchers are often interested in estimating production function to obtain

a measure of total factor productivity to examine the effect of trade policy on productivity and

∗Address for correspondence: Hiroyuki Kasahara, Vancouver School of Economics, University of British Columbia,
997-1873 East Mall, Vancouver, BC, V6T 1Z1 Canada.
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to analyze the role of resource allocation on aggregate productivity (e.g., Pavcnik, 2002; Kasahara

and Rodrigue, 2008; Hsieh and Klenow, 2009).

As first discussed by Marschak and Andrews (1944), the ordinary least square estimates of

production function suffers from simultaneity bias because inputs are correlated with error term

when a firm makes an input decision based on their productivity level (Griliches and Mairesse, 1998).

Under the assumption that error terms could be decomposed into permanent and idiosyncratic

components, fixed effects estimator may be used but such an assumption could be violated in

practice, and, furthermore, the coefficient of inputs that are persistent over time could be severely

biased downward due to measurement errors (Griliches and Hausman, 1986). More recent literature

attempts to address the simultaneity issue by employing dynamic panel approach (Arellano and

Bond, 1991; Blundell and Bond, 1998; Blundell and Bond, 2000) or developing proxy variable

approach (Olley and Pakes, 1996 (OP, hereafter); Levinsohn and Petrin, 2003 (LP, hereafter);

Ackerberg, Caves, and Frazer, 2006, (ACF, hereafter); Wooldridge, 2009), which are now widely

used in empirical applications.

Despite their popularity, however, potential identification issues of proxy variable approach have

been pointed out in the literature. Bond and Sderbom (2005) and ACF discuss identification issue

due to collinearity under two flexible inputs (i.e., material and labor) in Cobb-Douglas specification.

Gandhi, Navarro, and Rivers (2013, GNR hereafter) argue that, if the firm’s decision follows a

Markovian strategy, then the conditional moment restriction implied by proxy variable approach

may not provide enough restriction for non-parametrically identifying gross production function.

GNR exploit the first order condition with respect to flexible input under profit maximization and

establish the identification of production function without making any functional form assumption.

Based on their identification strategy, GNR proposes an estimation procedure that does not suffer

from simultaneity bias.

This paper extends the identification result of GNR based on the first-order condition to the

case where production functions are heterogenous across firms beyond Hicks-neutral technology

terms. We consider a finite mixture specification in which there are J distinct time-varying pro-

duction technologies and each firm belongs to one of J types. Econometricians do not observe the

type of firms. Without making any functional form assumption on each type of production technol-

ogy, we establish nonparametric identification of J distinct production functions and a population

proportion of each type under the reasonable assumption.

Given that, except for the result of GNR, little formal identification result for production func-

tion estimation in the literature is available, our nonparametric identification result is an important

contribution to the literature. Our identification result on production function with unobserved

heterogeneity is also useful in practice as the random coefficient models for production function

become increasingly popular in empirical analysis (e.g., Mairesse and Griliches, 1990; Van Biese-

broeck, 2003; Doraszelski and Jaumandreu, 2014).

In estimation, we consider a random coefficient specification for production function and propose

two different estimation procedures. The first procedure follows our two-stage identification proof
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and directly maximizes the log-likelihood function of a finite mixture model of production functions

under parametric assumptions, where the EM algorithm can be used to facilitates the computational

complication of maximizing the log-likelihood function of the finite mixture model. In the second

procedure, we first estimate the partial likelihood function under the normality assumption and

use the posterior distribution of type probabilities to classify each firm observation into one of the

J types, generating J data sets; using each of J data sets, we estimate the rest of the type-specific

parameters. The second procedure is computationally much simpler and requires less auxiliary

parametric assumptions than the first one although the second procedure could lead to a biased

estimator due to misclassification of types when T is small.

We provide empirical evidence that production functions are heterogeneous beyond Hicks-

neutral technology term to motivate the necessity of considering production functions with un-

observed heterogeneity in empirical applications. As analyzed by GNR, if Hicks-neutral technology

term is the only source of permanent unobserved heterogeneity in production function and if in-

termediate input is a flexible input, then we expect that the ratio of intermediate input cost to

output value after controlling for the difference in the input level of capital, labor, and intermedi-

ates should not exhibit any serial correlation. However, using the panel of Japanese manufacturing

firms that belongs to machine industry, we find that the serial correlation of the ratio of inter-

mediate input cost to output value is very high at 0.95 and that, even after controlling for the

difference in the input level of capital, labor, and intermediates, the majority of variation in the

ratio of intermediate input cost to output value can be explained by the firm-specific persistent

component rather than the idiosyncratic component. These findings strongly suggest the presence

of unobserved heterogeneity in production technology beyond Hicks-neutral term within the 3-digit

industry classification.

We estimate a random coefficients production function using the panel data of Japanese publicly-

traded manufacturing firms between 1980 and 2007 and compare the results with those from the

original GNR specification without unobserved heterogeneity. Our estimates suggest that there

exists substantial heterogeneity in production function coefficients beyond Hicks neutral term.

When we estimate production function without incorporating heterogeneity using the estimation

procedure suggested by GNR, we found that the majority of variations in total factor productivity

is coming from idiosyncratic ex-post shocks rather than serially correlated shocks. In contrast,

when we estimate production function with random coefficients, the majority of variations in total

factor productivity is explained by the variation in serially correlated shocks. Furthermore, the

estimated serial correlation in ex-post shocks of random coefficients model is substantially lower

than that of homogenous model. We also find that the correlation between estimated productivity

and investment is different across different types of firms, where the correlation is stronger among

a type of firms with capital intensive production technology than other types of firms.
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2 The Model

Assume that we have panel data of firms i = 1, ..., N over periods t = 1, ..., T for output, la-

bor, capital and intermediate inputs denoted by (Yit, Lit,Kit,Mit), respectively. For brevity, let

Xit := (Lit,Kit,Mit)
′ so that (Yit, Lit,Kit,Mit) = (Yit, Xit). Each firm’s observation {Yit, Xit}Tt=1

is randomly sampled from a population distribution P ({Yit, Xit}Tt=1).

We consider a possibility that firms are different in production technology beyond Hick’s neu-

tral productivity shock. Specifically, we use a finite mixture specification to capture permanent

unobserved heterogeneity in firm’s production technology. In the following, the superscript j indi-

cates that functions are specific to type j. Denote the information available to a firm for making

decisions on Mit, Lit+1, and Kit+1 at period t by Iit.

Assumption 1. (a) Each firm belongs to one of J types, where the probability of belonging to type

j is given by πj, and J is known. (b) For the j-th type of production technology at period t, the

output is related to inputs as

Yit = F jt (Xit)e
ωit+εit , (1)

where F jt (Xit) = F jt (Lit,Kit,Mit) is differentiable with respect to Mit.

Assumption 2. (a) For the j-th type, ωit ∈ Iit follows an exogenous first order stationary Markov

process given by

ωit = hj(ωit−1) + ηit, (2)

where ηit|Iit−1 is independently and identically distributed (i.i.d.) with the probability density func-

tion gjη(·), where P jω(ωit|Iit−1) = P jω(ωit|ωit−1) := gjη(ωit−hj(ωit−1)). (b) For the j-th type, εit 6∈ Iit
is an i.i.d. ex-post shock that is not known when Mit is chosen at period t. The probability density

function of εit for type j is denoted by gjε (·), where P jε (εit|Iit) = P jε (εit) := gjε (εit).

Assumption 3. (a) Lit and Kit are determined at period t− 1 so that Lit,Kit ∈ Iit but Lit,Kit 6∈
Iit−1. (b) the conditional distribution of Kit and Lit given It−1 is type specific and only depends

on Lit−1, Kit−1, and ωit−1, i.e., P jt (Lit,Kit|It−1) = P jt (Lit,Kit|Lit−1,Kit−1, ωit−1).

Assumption 4. (a) Mit is flexibly chosen at period t. (b) Mit is a type-specific deterministic

function of Lit, Kit, and ωit that can be written as Mit = Mj
t (Lit,Kit, ωit), where Mj

t is strictly

increasing in ωit for any (Lit,Kit).

Assumption 5 (Perfect Competition). (a) A firm is a price taker. (b) The intermediate input

price PM,t and the output price PY,t at period t are common across firms. (c) (PM,t, PY,t) ∈ Iit and

is known to econometrician.

Our Assumptions 1-4 correspond to Assumptions 1-4 of GNR, respectively, but our assump-

tions relax the assumptions of GNR in that we allow for permanent unobserved heterogeneity in

production technology. In Assumption 1, as indicated by the subscript t in F jt (·), type-specific
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production function could be different across periods because of type-specific aggregate shocks or

type-specific biased technological changes. Our Assumption 2 is more stringent than that of GNR

because we assume stochastic independence of ηit and that of εit while GNR only assumes mean

independence. Assumption 3(a) is a simplifying assumption adopted by GNR which helps us to

clarify the essence of our identification argument.1 Assumption 3(b) can be justified by explicitly

considering the dynamic model of investment and labor input choices. Assumption 4(b) implies that

there is one-to-one mapping between (Lit,Kit,Mit) and (Lit,Kit, ωit) and, considering the inverse

function of lnMj
t with respect to ωit, we may write ωit = lnMj

t

−1
(Lit,Kit,Mit). Under Assumption

5(b), the intermediate input price PM,t cannot be used for instrumenting Mit; when intermediate

prices are exogenous and heterogenous across firms, production function could be identified using

the intermediate input prices as instruments (see Doraszelski and Jaumandreu, 2014). Under As-

sumptions 1-5, the information set Iit is given by Iit = {ωit, Lit,Kit, PM,t, PY,t, Zit−1, Zit−2, ...},
where Zit = {εit, ωit, Yit, Xit, PM,t, PY,t}.

Consider a firm i of which type is j. A firm chooses Mit by maximizing its expected profit given

Iit:
Mj
t (Lit,Kit, ωit) = argmax

Mit

PY,tEε[F
j
t (Lit,Kit,Mit)e

ωit+ε|Iit]− PM,tMit.

Under Assumptions 1, 2, 3(a), 4(a), and 5, the first order condition with respect to Mit gives

PY,tF
j
M,t(Xit)e

ωitEj = PM,t, (3)

where Ej =
∫
eεgjε (ε)dε. Note that Assumption 4(b) holds when F jM,t(Lit,Kit,Mit) :=

∂F jt (Lit,Kit,Mit)
∂Mit

is strictly decreasing in Mit given (Lit,Kit). Equations (1) and (3) give a system of equations

lnYit = lnF jt (Xit) + ωit + εit,

lnSit = lnGjM,t(Xit) + ln Ej − εit,
(4)

where

Sit :=
PM,tMit

PY,tYit

is the intermediate input share and GjM,t(Xit; ξit) :=
F jM,t(Xit)Mit

F jt (Xit)
.

In place of Assumption 5, we may alternatively consider the case where firms produce differen-

tiated products and face a demand function with constant price elasticity as follows.

Assumption 6 (Constant Demand Elasticity). (a) A firm faces an inverse demand function with

constant elasticity given by PY,it = Y
−1/σjY
it eε

j
d,it, where εd,it /∈ Iit is an i.i.d. ex-post shock that is

not known when Mit is chosen at period t. (b) A firm is a price taker for intermediate input and

the intermediate input price PM,t at period t is common across firms. (c) PM,t ∈ Iit. (d) PY,it and

1In particular, because we assume that Lit is predetermined, the source of non-identification of the coefficient of
Lit discussed in Ackerberg, Caves, and Fraser (2006) is absent in this setup.
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Yit are not separately observed in the data.

Under Assumption 6, the “revenue” production function is given by PY,itYit = F̃ jt (Xit)e
ω̃it+ε̃it ,

where F̃ jt (Xit) := [F jt (Xit)]

σ
j
Y

−1

σ
j
Y , ω̃it :=

σjY −1

σjY
ωit, and ε̃it := εdit +

σjY −1

σjY
εit. Then, in place of (4), we

have
lnPY,itYit = ln F̃ jt (Xit) + ω̃it + ε̃it,

lnSit = ln G̃jM,t(Xit) + ln Ẽj − ε̃it,
(5)

where G̃jM,t(Xit) :=
∂F̃ jt (Xit)/∂Mit

F̃ jt (Xit)
. When PY,it and Yit are not separately observed in the data, the

observable implication of (5) are the same as that of (4). In particular, we cannot separately identify

the parameter σjY and the production function F jt . Therefore, we focus on the identification analysis

under Assumption 5 although we should be careful in interpreting the empirical result because the

unobserved heterogeneity in revenue production function could partly reflect in difference in demand

elasticity.

3 Nonparametric identification of gross production functions with

unobserved heterogeneity

In this section, we establish the non-parametric identification of production functions with unob-

served heterogeneity using the second equation of (4) as an additional restriction. For notational

brevity, we drop the subscript i in this section. The distribution of {Yt, St, Xt}Tt=1 follows an J-term

mixture distribution

P({Yt, St, Xt}Tt=1) =
J∑
j=1

πjPj({Yt, St, Xt}Tt=1)

=
J∑
j=1

πjPj1(Y1, S1, X1)
T∏
t=2

Pjt (Yt, St, Xt|{Yt−s, St−s, Xt−s}t−1
s=1).

(6)

Proposition 1. Suppose that Assumptions 1-5 hold. Then, the distribution of {Yt, St, Xt}Tt=1

defined in (6) can be written as

P({Yt, St, Xt}Tt=1) =
J∑
j=1

πjPj1(Y1, S1, X1)
T∏
t=2

Pjt (Yt, St, Xt|Yt−1, St−1, Xt−1). (7)

Therefore, {Yt, St, Xt}Tt=1 follows a first order Markov process within subpopulation specified

by type. The result of Proposition 1 allows us to establish the nonparametric identification of

{πj , {Pjt (Yt, St, Xt)}Tt=1}Jj=1 by extending the argument in Kasahara and Shimotsu (2009) and Hu

and Shum (2012).
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Assumption 7. Let Wt := (Yt, St, Xt) and let Wt be the support of Wt. For every (w2, w3) ∈
W2 ×W3, there exists (w̄2, w̄3) ∈ W2 ×W3, (a1, ..., aJ) ∈ WJ

1 and (b1, ..., bJ−1) ∈ WJ−1
4 such that

(a) Lw3, Lw̄3, L̄w2, and L̄w̄2 defined in (33) are nonsingular, (b) P j(W3 = w3|W2 = w̄2) 6= 0 and

P j(W3 = w̄3|W2 = w2) 6= 0 hold for j = 1, ..., J , and (c) all the diagonal elements of Dw2,w̄2,w3,w̄3

defined in (34) take distinct values.

Proposition 2. Suppose that Assumptions 1-5, and 7 hold and T ≥ 4. Then,

{πj ,Pj1(W1), {Pjt (Wt|Wt−1)}Tt=2}Jj=1 is uniquely determined from P({Wt}Tt=1), where Wt := (Yt, St, Xt).

Remark 1. Under the additional assumption of the stationarity, i.e., Pjt (Wt|Wt−1) = Pj(Wt|Wt−1)

for t = 2, ..., T , Kasahara and Shimotsu (2009) establishes the nonparametric identification of the

model (7) when T = 6 while Hu and Shum (2013) shows that T = 4 suffices for identification.

Remark 2. Considering serially correlated continuous unobserved variables {X∗t }, Hu and Shum

(2013) analyze the nonparametric identification of the model

P({Wt}Tt=1) =

∫
P1(W1, X

∗
1 )

T∏
t=2

Pt(Wt, X
∗
t |Wt−1, X

∗
t−1)d({X∗t }Tt=1).

Given the panel data {Wt}Tt=1 with T = 5, Theorem 1 and Corollary 1 of Hu and Shum (2013)

state that, under their Assumptions 1-4, P3(W3, X
∗
3 ), P4(W4, X

∗
4 |W3, X

∗
3 ), and P5(W5, X

∗
5 |W4, X

∗
4 )

are non-parametrically identified but the identification of P1(W1, X
∗
1 ), P2(W2, X

∗
2 |W1, X

∗
1 ), and

P3(W3, X
∗
3 |W2, X

∗
2 ) remains unresolved. Our Proposition 2 shows that, for a model in which un-

observed heterogeneity is discrete and finite, we can nonparametrically identify the type-specific

distribution of {Wt}Tt=1 including the first two periods of the data from T = 4 periods of panel data

without imposing stationarity.

Remark 3. Assumption 7 assumes the rank condition of matrices Lw3, Lw̄3, L̄w2, and L̄w̄2 defined

in (33), of which elements are constructed by evaluating Pj4(W4|W3) and πjPj2(W2|W1)Pj1(W1) at

different points, where Wt := (Yt, St, Xt). These conditions are similar to the assumption stated

in Proposition 1 of Kasahara and Shimotsu (2009). Please refer to Remark 2 of Kasahara and

Shimotsu (2009) for their interpretations. One needs to find only one pair of values (w̄2, w̄3) ∈
W2 × W3 and one set of J − 1 and J points of W1 and W4 to construct nonsingular Lw3, Lw̄3,

L̄w2, and L̄w̄2 for each (w2, w3) ∈ W2 ×W3 and these rank conditions are not stringent when Wt

has continuous support. The identification of P j4 (W4|W3 = w3) and πjP j2 (W2 = w2|W1)P j1 (W1) at

all other points of W4 and W1, respectively, follows without any further requirement on the rank

condition.

Once the type-specific distribution of {Yt, St, Xt} is identified, we may apply the argument of

GNR to prove the nonparametric identification of θ = {{gjε (·), gjη(·), hj(·), Ej , πj , {GjM,t(·), F
j
t (·)}Tt=1}Jj=1}.

Proposition 3. Suppose that Assumptions 1-5, and 7 hold and T ≥ 4. Then, (a) θ1 :=

{πj , gjε (·), Ej , {GjM,t(·)}Tt=1}Jj=1 is uniquely determined from P({St, Xt}Tt=1). (b) θ2 :=

{{{F jt (·)}Tt=1}Jj=1, h
j(·), gjη(·)} is uniquely determined from P({Yt, St, Xt}Tt=1) and θ1.
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Therefore, type-specific production functions as well as the distribution of unobserved variables

can be non-parametrically identified. In estimation, we focus our attention to the case where

type-specific function is given by Cobb-Douglas production function with random coefficients.

Example 1 (Random Coefficients Model). Consider a Cobb-Douglas production function with

(potentially time-varying) random coefficients:

lnF jt (Xt) = αjt + αj`,t`t + αjk,tkt + αjm,tmt, (8)

where the intermediate share equation is given by

lnSt = ln(αjm,tEj)− εt. (9)

Then, equation (7) holds with

Pj1(S1, X1) = Pj1(S1)P j1 (X1) and Pjt (St, Xt|Xt−1) = Pjt (St)P
j
t (Xt|Xt−1),

where Pjt (St) = gjε (ln(αjm,tEj)− lnSt). Under Assumptions 1-5, and 7, we may nonparametrically

identify gjε (·), hj(·), gjη(·), P j1 (X1), and P jt (Xt|Xt−1), and {αjt , α
j
`,t, α

j
k,t, α

j
m,t} for t = 1, ..., 4 and

j = 1, ..., J from the panel data {Yt, St, Xt}4t=1.

In the appendix, we discuss the conditions under which Assumption 7 holds when the production

function is Cobb-Douglas.

The following corollary shows that type-specific distribution of the intermediate share, St, can

be identified from the joint distribution of {St}Tt=1 for Cobb-Douglas specification.

Corollary 1. Suppose that Assumptions 1-5, and 7 hold and T ≥ 4. Suppose that production

function is Cobb-Douglas given by (8). Then, {πj , {Pj1(St)}Tt=1}Jj=1 is uniquely determined from

P({St}Tt=1).

4 Estimation of production function with random coefficients

4.1 Cobb-Douglas production function with random coefficients

Denote the log values of (Yit, Lit,Kit,Mit, Sit) by (yit, `it, kit,mit, sit) and let xit := (`it, kit,mit).

We assume that f jt (xit) = αjt + αjmmit + αj``it + αjkkit so that

yit = αjt + αjmmit + αj``it + αjkkit + ωit + εit, (10)

for j = 1, ..., J . The first order condition with respect to Mit implies

sit = ln Ej + lnαjm − εit. (11)
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Therefore, the distribution of Sit does not depend on Xit under Cobb-Douglas assumption. We

also assume that ωit follows a first order autoregressive process

ωit = ρjωit−1 + ηit, (12)

where E[ηit|ωit−1] = 0. Denote the true type of firm i by j∗(i) and an index set of firms of type j

by Ij := {i : j∗(i) = j}.

Assumption 8. (a) The production function of type j is given by (10). (b) The stochastic process

of ω of type j is given by (12). (c) εit|xit, i ∈ Ij
iid∼ N(0, (σjε )2) for j = 1, ..., J . (d) J is known.

The normality assumption in Assumption 8(c) can be relaxed, for example, using the maximum

smoothed likelihood estimator of finite mixture models of Levine et al. (2011) in which the type-

specific distribution of εit is non-parametrically specified although its asymptotic distribution is

not known. Kasahara and Shimotsu (2015) develop a likelihood-based procedure for testing the

number of components in normal mixture regression models.

We propose two different estimation procedures. The first procedure directly maximizes the log-

likelihood function of a finite mixture model of production functions under additional parametric

assumptions, where the likelihood function is a parametric version of (7). Because the maximum

likelihood estimator utilizes the distributional information, it is consistent even when T is small as

long as T ≥ 4. Our estimation procedure follows the two-stage identification proof of Proposition

2(b)(c). The EM algorithm can be used to facilitates the computational complication of maximizing

the log-likelihood function of the finite mixture model.

In the second procedure, we first estimate the partial likelihood function of the intermediate

share equation (11) under the normality assumption and use the posterior distribution of type

probabilities to classify each firm observation into one of the J types under the assumption that

T → ∞. This generates J data sets, where a firm’s production technology becomes increasingly

homogenous within each of the J data sets as T → ∞. In the second stage, we estimate the rest

of the type-specific parameters by using each of J data sets by following the estimation procedure

proposed by GNR.2

The first procedure can consistently estimate the parameter even when T is small as long

as T ≥ 4 and N → ∞ but it is computationally more complicated and requires more auxiliary

parametric assumptions than the second one. We introduce the second procedure because it is

computationally much simpler than the first one although, when T is small, the second procedure

leads to a biased estimator due to misclassification of types.

2Note that the identification of production function immediately follows from T → ∞ without appealing to
Proposition 2 because, in principle, each firm’s production function can be identified from the time-series data of
each firm.
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4.2 Maximum likelihood estimator

We make the parametric distributional assumptions and develop parametric maximum likelihood

estimator. Let zit := (`it, kit, ωit)
′ and z̃it := (1, z′it)

′.

Assumption 9. (a) T is fixed at T ≥ 4 and N → ∞. (b) zi1|i ∈ Ij
iid∼ N(µj1,Σ

j
1), where

µj1 = (µj` , µ
j
k, µ

j
ω)′. (c) (`it, kit)

′|zi,t−1, i ∈ Ij
iid∼ N((ρjz)′z̃it−1,Σ

j
z), where ρjz = (ρj` , ρ

j
k) is an 4 × 2

matrix. (d) ωit = ρjωωit−1 + ηit with ηit|kit, `it, i ∈ Ij
iid∼ N(0, (σjη)2).

Collect the model parameters into θ1, and θ2 as follows. Let

θ1 = (π′, θ1
1, ..., θ

J
1 )′ and θ2 = ((θ1

2)′, ..., (θJ2 )′)′, where

θj1 = (αjm, σ
j
ε )
′ and

θj2 = (αj2, ..., α
j
T , α

j
` , α

j
k, (µ

j
1)′, vech(Σj

1)′, vech(ρjz)
′, vech(Σj

z)
′, ρjω, σ

j
η)
′.

Under Proposition 1 and Cobb-Douglas specification (10) and noting that f jt (mit|yit, sit) = 1

under Assumption 5(c) because mit = sit + yit + pt with pt := lnPM,t/PY,t, we may write the

probability density function of {yit, sit,mit, kit, `it}Tt=1 for type j as

fjt ({yit, sit,mit, `it, kit}Tt=1) =
T∏
t=1

fjt (sit; θ
j
1)︸ ︷︷ ︸

=L1i(θ
j
1)

× fj1(yi1, `it, kit|si1; θj1, θ
j
2)

T∏
t=2

fjt (yit|sit, `it, kit, yit−1, sit−1, xit−1; θj1, θ
j
2)ft(`it, kit|yit−1, sit−1, xit−1; θj1, θ

j
2)︸ ︷︷ ︸

=L2i(θ
j
2,θ

j
1)

,

(13)

where the exact expressions for L1i(θ
j
1) and L2i(θ

j
2, θ

j
1) are derived as follows.3

We consider a random sample of N independent observations {{yit, sit, xit}Tt=1}Ni=1 from the true

J-component mixture model
∑J

j=1 π
jfjt ({yit, sit, xit}Tt=1), where fjt ({yit, sit, xit}Tt=1) is given in (13).

Given the decomposition (13), we estimate the model by two-stage maximum likelihood estimation

procedure. In the first stage, we estimate π and θ1 by maximizing
∑N

i=1 log(
∑J

j=1 π
jL1i(θ

j
1)) over

π and θ1. In the second stage, we estimate θ2 given the first stage estimate π̂ and θ̂1 by maximizing∑N
i=1 log(

∑J
j=1 π̂

jL1i(θ̂
j
1)L2i(θ

j
2, θ̂

j
1)) over θ2.

Given that ln Ej = 0.5(σjε )2 in equation (11), we can compute εit as

ε∗(sit; θ
j
1) := −sit + lnαjm + 0.5(σjε )

2. (14)

3Equation (13) holds because fjt({yit, sit, xit}Tt=1) = fjt(yi1, si1, xi1)
∏T
t=2 fjt(yit, sit, xit|yit−1, sit−1, xit−1)=

fjt(mi1|yi1, ki1, `i1, si1)fjt(yi1, `i1, ki1|si1)fjt(si1)
∏T
t=2 fjt(mit|yit, sit, `it, kit, yit−1, sit−1, xit−1)fjt(yit|sit, `it, kit, yit−1, sit−1, xit−1)

fjt(sit|`it, kit, yit−1, sit−1, xit−1)fjt(`it, kit|yit−1, sit−1, xit−1)= fjt(yi1, `i1, ki1|si1) f(si1)
∏T
t=2 fjt(yit|sit, `it, kit, yit−1, sit−1, xit−1)fjt(sit)

fjt(`it, kit|yit−1, sit−1, xit−1) where the first equality follows from Proposition 1, the second equality always holds
via repeated conditioning, and the third equality holds because fjt(mit|yit, sit) = 1 under Assumption 5(c) and
f(sit|`it, kit, yit−1, sit−1, xit−1) = f(sit) under Cobb-Douglas assumption.

10



Under Assumptions 8-9, in the first stage, we estimate θ1 by the maximum likelihood estimator

given by

θ̂1 = argmax
θ1

N∑
i=1

ln

 J∑
j=1

πjL1i(θ
j
1)

 with L1i(θ
j
1) :=

T∏
t=1

1

σjε
φ

(
ε∗(sit; θ

j
1)

σjε

)
.

In the second stage, because mit = yit + sit + pt, we have

ωit = ω∗(yit, sit, `it, kit; θ
j
1, θ

j
2) := (1− αjm)yit − αjmsit − αjmpt − ε∗(sit; θ

j
1)− αjt − α

j
``it − α

j
kkit.

(15)

By the change of variables in equation (15), we can relate the probability density function of yit

conditional on sit, `it, and kit to the probability of density function of ωit as fjt (yit|sit, `it, kit) =

(1− αjm)fjt (ωit). Then, we have

fj1(yi1, `i1, ki1|si1; θj1, θ
j
2) = (1− αm)fj1(ωi1, `i1, ki1; θj1, θ

j
2), (16)

fjt (yit|sit, `it, kit, yit−1, sit−1, xit−1; θj1, θ
j
2) = (1− αm)fjt (ωit|yit−1, `it, kit, sit−1, xit−1; θj1, θ

j
2)

= (1− αm)fjt (ωit|ωit−1; θj1, θ
j
2), (17)

fjt (`it, kit|yit−1, sit−1, xit−1; θj1, θ
j
2) = fjt (`it, kit|`it−1, kit−1, ωit−1; θj1, θ

j
2), (18)

where (16) and the first equality of (17) follow from the change of variables from yit to ωit in view

of (15), the second equality of (17) holds because ωit follows the exogenous Markov process under

Assumption 2(a) where the value of ωit−1 can be recovered from (yit−1, sit−1, `it−1, kit−1) as in (15),

and (18) follows from Assumption 3(b). Therefore, from (13), (16)-(18), we have

L2i(θ
j
2, θ

j
1) = (1− αm)f1(ωi1, `i1, ki1; θj1, θ

j
2)

×
T∏
t=2

(1− αm)fjt (ωit|ωit−1; θj1, θ
j
2)fjt (`it, kit|`it−1, kit−1, ωit−1; θj1, θ

j
2).

Recall zit := (`it, kit, ωit)
′ and z̃it := (1, z′it)

′. As stated in Assumption 9, we approximate the

distribution of the initial distribution of (`it, kit, ωit) by multivariate normal distribution while we

approximate the distribution of (`it, kit) conditional on (ωit−1, `it−1, kit−1) by a normal regression

model so that, given θj2, we have

f1(ωi1, `i1, ki1; θj1, θ
j
2) = (2π)−3/2|Σj

1|
−1/2 exp

(
−1

2
(zi1 − µj1)′(Σj

1)−1(zi1 − µj1)

)

11



and

fjt (ωit|ωit−1; θj1, θ
j
2) =

1

σjη
φ

(
η̂∗it(θ

j
2; θ̂j1)

σjη

)
,

fjt (`it, kit|`it−1, kit−1, ωit−1; θj1, θ
j
2) =

(2π)−1|Σj
z|−1/2 exp

(
−1

2
((`it, kit)

′ − (ρjz)
′z̃it−1)′(Σj

z)
−1((`it, kit)

′ − (ρjz)
′z̃it−1)

)
,

where

η̂∗it(θ
j
2; θ̂j1) := ω∗(yit, sit, `it, kit; θ

j
1, θ

j
2)− ρjωω∗(yit−1, sit−1, `it−1, kit−1; θj1, θ

j
2). (19)

Therefore,

L2i(θ
j
2, θ̂

j
1) := (1− αm)T (2π)−3/2|Σj

1|
−1/2 exp

(
−1

2
(zi1 − µj1)′(Σj

1)−1(zi1 − µj1)

)
×

T∏
t=2

{
1

σjη
φ

(
η̂∗it(θ

j
2; θ̂j1)

σjη

)
(2π)−1|Σj

z|−1/2 exp

(
−1

2
((`it, kit)

′ − (ρjz)
′z̃it−1)′(Σj

z)
−1((`it, kit)

′ − (ρjz)
′z̃it−1)

)}
.

Given the first stage estimate θ̂1 and {ε̂jit}, the parameter π and θ2 can be estimated by maximizing

the log-likelihood function as

(π̂, θ̂2) = argmax
π,θ2

N∑
i=1

log

 J∑
j=1

πjL1i(θ̂
j
1)L2i(θ

j
2, θ̂

j
1)

 .

In practice, we use EM algorithm to estimate θ1, θ2, and π as discussed in the Appendix.

4.3 Estimation by classifying each observation into one of the J types

Collect the model parameters into θ1 and θ2 as follows. Let θ1 := (π′,αm
′,σε

′)′ with π′ =

(π1, ..., πJ), αm
′ = (α1

m, ..., α
J
m), σε

′ = (σ1
ε , ..., σ

J
ε ) and let θ2 = ((θ1

2)′, ..., (θJ2 )′)′ with θj2 =

({αjt}Tt=2, α
j
` , α

j
k)
′ for j = 1, ..., J . We consider the following assumption.

Note that P jt (Sit|Xit) = P jt (Sit) under Cobb-Douglas assumption. Then, by integrating {Yt, Xt}Tt=1

in (7), we obtain the distribution of {Sit}Tt=1 under Assumption 8 as

P({Sit}Tt=1) =

J∑
j=1

πjL1i(θ
j
1;T ), (20)

where

L1i(θ
j
1;T ) :=

T∏
t=1

L1it(θ
j
1) with L1it(θ

j
1) :=

1

σjε
φ

(
ε∗(sit; θ

j
1)

σjε

)
.

The type-specific distribution of {Sit}Tt=1 can be identified from the joint distribution of {Sit}Tt=1 as

in Corollary 1. Therefore, in the first stage, we estimate θ1 by the maximum likelihood estimator

12



as

θ̂1 = argmax
θ1

N∑
i=1

ln

 J∑
j=1

πjL1i(θ
j
1;T )

 .

Given the estimate θ̂1, define the posterior probability of being type j for each firm i by

π̂ji =
π̂jL1i(θ̂

j
1;T )∑J

k=1 π̂
kL1i(θ̂k1 ;T )

for j = 1, ..., J . (21)

We classify each firm into one of the J types by taking the type that gives the highest posterior

probability as its type. Then, our estimator of Ij is given by

Îj := {i : ĵ(i) = j} with ĵ(i) = argmax
j=1,..,J

{π̂ji }.

Denote the true value of θj1 by θj∗1 . We assume that T → ∞ but require that T goes to ∞ at

much slower rate than N .

Assumption 10. N,T →∞ and
√
N

exp(ajT )/
√
T
→ 0 for j = 1, ..., J , where aj = mink 6=j E[lnL1it(θ

j∗
1 )−

lnL1it(θ
k∗
1 )|i ∈ Ij ].

Proposition 4. For each i ∈ Ij, π̂ji − 1 = Op(N
−1/2) under Assumption 10.

Proposition 4 implies that, when Assumption 10 holds, the possible classification error across

types does not affect our inference.

In the second stage, we compute the estimate of ηjit for t = 2, ..., T for each a candidate value

of θj2 given the first stage estimate θ̂j1 as

η̃∗it(θ
j
2; θ̂j1) := ω∗(yit, sit, `it, kit; θ̂

j
1, θ

j
2)− ρ̂jωω∗(yit−1, sit−1, `it−1, kit−1; θ̂j1, θ

j
2)

where ρ̂jω is the estimate of ρjω obtained by regressing ω∗(yit, sit, `it, kit; θ̂
j
1, θ

j
2) on ω∗(yit−1, sit−1, `it−1, kit−1; θ̂j1, θ

j
2)

using the subsample of firms that belong to Îj . Then, stacking the moment conditions implied by

E[η̂∗it(θ
j
2; θ̂j1)|kit, `it] = 0 for t = 2, ..., T , we can use standard GMM procedure to estimate θj2 as

θ̂j2 = argmin
θ2

 1

#Îj
∑
i∈Îj

gi(θ2)

 1

#Îj
∑
i∈Îj

gi(θ2)

′ for j = 1, ..., J ,

where #Îj is the number of elements of Îj while gi(θ2) := (η̃∗i2(θj2; θ̂j1)Z ′i2, ..., η̃
∗
iT (θj2; θ̂j1)Z ′iT )′ with

Zit := (`it, kit)
′.

13



5 Empirical applications

5.1 Data

We use Japanese publicly traded manufacturing firms, 1980-2007. The data set compiled by the

Development Bank of Japan (DBJ) contains detailed corporate balance sheet/income statement

data for the firms listed on the Tokyo Stock Exchange.4 The initial value of capital (K) is defined

as fixed asset less land from the firm’s balance sheet and the subsequent values of capital are

constructed by perpetual inventory method. The labor input (L) is the number of employees. The

intermediate input (M) is defined as the sum of energy input, material input, transportation cost,

outsourcing cost, and changes in input inventories. The output (Y ) is defined as the value of total

sales plus the changes in inventories of finished goods. The machine investment rate (
Im,it
Km,it

) is

defined as the ratio of machine investment to machine capital stock. In this preliminary version,

we focus on a sample from Machine industry. Table 1 presents summary statistics for the variables

we use in our empirical analysis.

Table 1: Summary statistics

Statistic N Mean St. Dev. Min Max

lnYit 5602 17.108 1.368 12.191 21.785
lnMit 5602 16.314 1.472 9.003 21.306
lnLit 5602 6.647 1.189 2.890 10.978
lnKit 5602 15.926 1.415 12.223 21.328

ln
PM,tMit

PY,tYit
5602 -0.777 0.510 -6.930 1.708

Iit
Kit

5602 0.100 0.151 -0.491 2.849

5.2 Evidence for unobserved heterogeneity

In the data, the material share is heterogenous across firms and persistent over time within firm.

Figure 1 presents the histogram of
PM,tMit

PY,tYit
across all observations that belongs to Machine industry,

which shows a large variation in material shares. In the model, the variation in material shares is

coming from idiosyncratic ex-post shocks εit. We may eliminate most of idiosyncratic components

by considering the firm-level average of material shares over 28 years; however, in Figure 2, the

persistent component of the ratio of intermediate inputs to total sales substantially varies across

firms. As shown in Figures 3 and 4, we also observe a large variation in the persistent component

in the ratio of intermediate cost to the sum of intermediate cost and total wage bills,
PM,tMt

PM,tMit+WtLit
,

of which variation is not likely to be driven by a variation in markups.

4Because firm’s financial data do not necessarily refer to a calendar year, we assign year t to an observation if the
given firm’s closing date is between June of year t and May of year t + 1. If firms change their closing dates, the
data after the change may refer to less than 12 months. When it occurs, we multiply the data xit by 12/m where m
represents the number of months to which the data refer.
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Figure 5 plots each firm’s material share, output, and inputs from 1980 to 2007. The presence

of heterogeneity across firms and the persistence within each firm in materials shares are apparent

in the upper left panel of Figure 5. It also appears that labour and capital inputs are changing over

time more smoothly than material input, suggesting that material input responds to idiosyncratic

shocks more than labour and capital inputs do within a short period of time. As shown in Figure

6, the heterogeneity in material shares across firms do not disappear even when we examine firms

within the subindustries of Machine industry, which roughly corresponds to 4-digit ISIC.

In view of the intermediate share equation in (4), a large cross-sectional variation in the per-

sistent component of the ratio of intermediate inputs to total sales suggests either heterogeneity in

production function or the persistence in inputs over time. To examine further, we regress lnSit

on the third order polynomials of (lit, kit,mit) to get residuals, denoted by eit, and decompose eit

into permanent components and idiosyncratic components as ξ̂i := T−1
∑T

t=1 eit and ζ̂it := eit− ξi.
Comparing the variance of ξ̂i with that of ζ̂it, we found that Var(ξ̂i)

Var(ξ̂i)+Var(ζ̂it)
= 0.612. Therefore, the

majority of variation is coming from the permanent component even after controlling the observed

input (lit, kit,mit), suggesting that production function is heterogeneous beyond Hicks-neutral term.

We also estimated the value added Cobb-Douglas specification

yvait = αvat + αva` `it + αvak kit + ωvait + εvait ,

by the approach developed by Levinsohn and Petrin, where yvait is the logarithm of value added.

When we compute the serial correlation of estimated values of εvait , we found that the correlation

coefficient of 0.85.5 One possible reason for this high correlation of estimated values of εvait is the

presence of unobserved heterogeneity in (αvat , α
va
` , α

va
k ).

5.3 Estimation of production function

Given the relatively long length of our panel data, we apply our proposed estimation method based

on classifying each firm into one of the J types. Table 2 presents the parameter estimates for the

number of components equal to J = 1, 3, and 5. Setting J = 1 gives the homogenous production

function specification considered by GNR.

The estimated coefficients across different types when J = 3 and 5 suggest that there are

substantial differences in the output elasticities with respect to materials, labor, and capital across

firms. For the model with J = 3, the material share is lowest for Type 1 and highest for Type 3

while Type 1 is more labor intensive than Type 2 or 3. For the model with J = 5, the material

share of Type 1 is the highest while the material share of Type 2 is the lowest among three types.

The degree of capital intensity is also different across five types, where Type 5 is the most capital

intensive while Type 2 is the most labor intensive.

Figure 7 shows the distribution of posterior type probabilities, defined in (21), across firms for

5Using the OP approach with the value-added specification, Fox and Smeets (2007) also report the high serial
correlation of estimated values of idiosyncratic shocks.
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Table 2: Estimates of Production Function (10): Machine Industry in Japan, 1980-2008

Estimation by Classification
GNR Random Coefficients Model
J = 1 J = 3 J = 5

Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 4 Type 5

βjm 0.340 0.623 0.184 0.438 0.112 0.642 0.387 0.267 0.509

βj` 0.422 0.215 0.845 0.416 0.954 0.200 0.577 0.611 0.357

βjk 0.260 0.162 0.134 0.195 0.097 0.154 0.089 0.230 0.162

βjm + βj` + βjk 1.021 1.000 1.163 1.049 1.163 0.995 1.054 1.109 1.028

βjk/β
j
` 0.617 0.753 0.159 0.470 0.102 0.772 0.155 0.376 0.455

πj 1.000 0.467 0.200 0.333 0.082 0.373 0.155 0.113 0.277

No. of Obs. 5602
No. of firms 240

the model with J = 3 and 5, respectively. The posterior probabilities for each type are concentrated

on around 0 or 1, which is consistent with the result of Proposition 4 where Assumption 10 could

be roughly applied here given T = 28 in our data set. We assign one of the J types to each firm

based on its posterior type probability that achieves the highest value across J types.

Figure 8 plots each firm’s material share and the log of output from 1980 to 2007, where different

colours represent different types for the model with J = 3. From the left panel of Figure 8, it is

clear that each firm’s type is identified with its average material share. On the other hand, it does

not appear that there is any systematic difference across types in terms of the distribution of firm

sizes measured by outputs.

Table 3 shows a fraction of firms belonging to each type of the J types within subindustries

of Machine industry for the model with J = 3 and 5. See Figure 6 for the definition of subindus-

tries. The distribution of types is quite different across subindustries. Figure 9 plots each firm’s

material share from 1980 to 2007 where different colours identify firm’s type for the model with

J = 3, suggesting that our framework flexibly captures the unobserved heterogeneity in production

technology within more narrowly defined subindustries.

The first two rows of Table 4 present the standard deviations of ω̂it + α̂jt and ε̂it. To compute

the standard deviations of ω̂it + α̂jt and ε̂it, we compute ω̂it, ξ̂i, and ε̂it by assigning one of the

J = 3 types to each firm based on its posterior type probabilities. As the number of components

J increases from 1 to 3, and then to 5, the standard deviations of ω̂it + α̂jt and ε̂it within each

type decrease on average across types. This indicates a possibility of substantial upward bias in

the estimated variation in ex-post shocks in homogenous model with J = 1 as a result of ignoring

unobserved heterogeneity.

The third row of Table 4 reports the serial correlation in ε̂it. The serial correlation in ε̂it is very

high at 0.951 when J = 1. Given that the presence of high serial correlation indicates a possibility

of misspecificaiton of the model, a smaller value of serial correlation is more desirable. When the
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Table 3: A fraction of firms for each type by subindustry for the model with J = 3 and 5

J = 3 J = 5
Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 4 Type 5

2511 0.890 0.000 0.110 0.000 0.890 0.110 0.000 0.000
2521 0.734 0.122 0.144 0.045 0.614 0.000 0.077 0.264
2522 0.599 0.288 0.114 0.220 0.379 0.000 0.068 0.333
2523 0.120 0.776 0.104 0.000 0.120 0.104 0.776 0.000
2529 0.000 0.417 0.583 0.000 0.000 0.583 0.417 0.000
2531 0.564 0.178 0.258 0.000 0.195 0.000 0.178 0.628
2532 0.231 0.391 0.378 0.338 0.102 0.120 0.053 0.387
2533 0.481 0.000 0.519 0.000 0.481 0.193 0.000 0.326
2534 0.762 0.140 0.098 0.140 0.738 0.000 0.000 0.122
2535 0.377 0.449 0.174 0.247 0.237 0.130 0.154 0.233
2536 0.506 0.090 0.404 0.008 0.364 0.138 0.082 0.408
2537 0.462 0.120 0.418 0.071 0.399 0.165 0.049 0.316
2541 0.154 0.215 0.631 0.046 0.133 0.471 0.170 0.181

Notes: Subindustries are 2511: Boiler prime mover, 2521: Metal machine tools, 2522: Metal
working machinery, 2523: Machinery tool, 2531: Textile machinery, 2532: Agricultural machines,
2533: Construction and mining equipment, 2534: Chemical machinery, 2535: Office machinery,
2536: Special industrial machinery, 2537: General industrial machinery, 2541: General Mechanical
Components.
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number of components increases from J = 1 to J = 3, and then to J = 5, the average serial

correlation in ε̂it across types decreases from 0.951 to 0.762, and then to 0.693, indicating that the

very high serial correlation in ε̂it when J = 1 is partly due to ignoring unobserved heterogeneity

in production function coefficients. On the other hand, the level of serial correlation in ε̂it is still

high at 0.693 when J = 5. To examine this issue, we also consider a more flexible model in which

the material share parameter is firm-specific. In this case, the material share equation is given by

firm-fixed effects model: sit = αm,i − εit. The estimated serial correlation in εit for this firm-fixed

effects model remains quite strong at 0.773, suggesting that the material share parameter could

change over time persistently within the same firm.

Ignoring unobserved heterogeneity may lead to substantial biases in the measurement of produc-

tivity growth. To examine this issue, we take a specification with J = 5 as the true model and com-

pute the bias in the measurement of productivity growth when we use a misspecified model with J =

1. Specifically, let ∆ωit := ∆yit−(α̂jt+α̂
j
m∆mit+α̂

j
`∆`it+α̂

j
k∆kit+∆ε̂jit) for j = 1, 2, ..., 5 be an esti-

mated productivity growth when J = 5 and let ∆ω̃it := ∆yit−(ᾱt+ᾱm∆mit+ᾱ`∆`it+ᾱk∆kit+∆ε̄it)

be an estimated productivity growth when J = 1, where {α̂jt , α̂
j
m, α̂

j
` , α̂

j
k}

5
j=1 and {ᾱt, ᾱjm, ᾱj` , ᾱ

j
k}

denote estimated coefficients when J = 5 and J = 1, respectively. Then, we compute the bias as

∆ω̃it = ∆ωit + (β̄m − β̂jm)∆mit + (β̄` − β̂j` )∆`it + (β̄jk − β̂
j
k)∆kit + (∆ε̄it −∆ε̂jit)︸ ︷︷ ︸

:=Biasit

.

Table 5 reports the ratio of the average absolute value of bias to the average productivity growth

within each of five subsamples, classified by types. The magnitude of the bias is high on average and

substantially different across different types. In particular, the bias in the measured productivity

growth when J = 1 is larger than 40 percent of the average productivity growth for Type 1

and 2, indicating that ignoring unobserved heterogeneity could result in serious bias in estimated

productivity growth.

As an example of using the estimated productivity growth in empirical analysis, we now ex-

amine whether unobserved heterogeneity captured by type-specific production function parameter

is important for investment decision. Specifically, for each of subsample classified by types, we

estimate the following linear investment model

Iit
Kit

= α0 + αωω̂it + quadratic of `it and kit + ζit,

where Iit/Kit denotes the ratio of investment to capital stock.

Table 6 reports the estimated coefficients of ωit across different specifications and different types

for J = 1, 3, and 5. The coefficient of ωit is estimated significantly at 0.016 when J = 1. For the

model with J = 3 and 5, the estimated coefficients of ωit are substantially different across different

types of firms. For J = 3, the coefficient of ωit for Type 2 is insignificant at -0.007 while the

coefficients of ωit are estimated significantly at 0.090 and 0.068 for Type 1 and 3, respectively. As
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Table 5: Bias in the measurement of productivity: Machine Industry in Japan, 1980-2008

Estimation by Classification
J = 5

Type 1 Type 2 Type 3 Type 4 Type 5
Mean of |Biasit|
Mean of |∆ω̃it| 0.403 0.453 0.170 0.123 0.257

Table 6: The Effect of ωit on Investment

by Classification

J = 1 J = 3 J = 5
Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 4 Type 5

αω 0.016 0.090 -0.007 0.068 -0.016 0.094 0.054 0.010 0.083
( 0.004 ) ( 0.018 ) ( 0.006 ) ( 0.014 ) ( 0.007 ) ( 0.022 ) ( 0.014 ) ( 0.013 ) ( 0.020 )

βjm 0.340 0.623 0.184 0.438 0.112 0.642 0.387 0.267 0.509

βjk/β
j
` 0.617 0.753 0.159 0.470 0.102 0.772 0.155 0.376 0.455

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

reported in the second and third rows of Table 6, the material shares of Type 1 and 3 are higher

than that of Type 2 while Type 1 and 3 is more capital intensive than Type 2 for the model with

J = 3. For J = 5, the coefficients of ωit are high at 0.094 and 0.083 for Type 2 and 5, respectively,

both of which have relatively higher material shares and more capital intensive technology than

other three types. Therefore, we find that the correlation between productivity and investment

is stronger among a type of firms with high material shares and high capital intensive production

technology than other types of firms.
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A Appendix

A.1 Proof of Proposition 1

The distribution of {Yt, St, Xt}Tt=1 for type j is given by

Pjt ({Yt, St, Xt}Tt=1) = Pj1(Y1, S1, X1)
T∏
t=2

Pjt (Yt, St, Xt|{Yt−s, St−s, Xt−s}t−1
s=1)

= Pj1(Y1|S1, X1)Pj1(S1, X1)

×
T∏
t=2

Pjt (Yt|St, Xt, {Yt−s, St−s, Xt−s}t−1
s=1)Pjt (St|Xt, {Yt−s, St−s, Xt−s}t−1

s=1)Pjt (Xt|{Yt−s, St−s, Xt−s}t−1
s=1).

(22)

For t ≥ 2, in view of the second equation of (4), we have

Pjt (St|Xt, {Yt−s, St−s, Xt−s}t−1
s=1) = Pjt (St|Xt) := gε(lnG

j
M,t(Xt) + ln E − lnSt). (23)

Furthermore,

Pjt (Xt|{Yt−s, St−s, Xt−s}t−1
s=1) = Pjt (Lt,Kt, ωt|{Yt−s, St−s, Lt−s,Kt−s, ωt−s}t−1

s=1)

= Pjt (ωt|Lt,Kt, {Yt−s, St−s, Lt−s,Kt−s, ωt−s}t−1
s=1)Pjt (Lt,Kt|{Yt−s, St−s, Lt−s,Kt−s, ωt−s}t−1

s=1)

= Pjω(ωt|ωt−1)Pjt (Lt,Kt|Lt−1,Kt−1, ωt−1)

= Pjt (Lt,Kt, ωt|Lt−1,Kt−1, ωt−1)

= Pjt (Xt|Xt−1),

(24)

where the first and the last equality hold because there is one-to-one mapping between Xt and

(Lt,Kt, ω) in view of Assumption 4(b) while the third equality follows from Assumptions 2(a) and

3(b).

The stated result follows from (22)-(24) if we show that Pjt (Yt|St, Xt, {Yt−s, St−s, Xt−s}t−1
s=1) =

Pjt (Yt|St, Xt, Yt−1, St−1, Xt−1). Given θ1 := {gjε (·), Ej , {GjM,t(·)}Tt=1}Jj=1, define

εjt (St, Xt; θ1) := ln(GjM,t(Xt)Ej)− lnSt,

Yjt (Yt, St, Xt; θ1) := lnYt −
∫
GjM,t(Lt,Kt,Mt)

Mt
dMt − εjt (St, Xt; θ1).

(25)

Integrating both sides of
GjM,t(Lt,Kt,Mt)

Mt
= (∂/∂Mt) lnF jt (Lt,Kt,Mt) with respect to Mt gives

∫
GjM,t(Lt,Kt,Mt)

Mt
dMt = lnF jt (Lt,Kt,Mt) + Cjt (Lt,Kt), (26)

where Cjt (Lt,Kt) is a function that only depends on (Lt,Kt). Then, substituting (26) into the
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second equation of (25) and combining it with (4) gives

ωit = Yjt (Yt, St, Xt; θ1) + Cjt (Kt, Lt). (27)

Then, it follows from (2), (4), (25), and (27) that

Yjt (Yt, St, Xt; θ1) = −Cjt (Kt, Lt) + hj
(
Yjt−1(Yt−1, St−1, Xt−1; θ1) + Cjt−1(Kt−1, Lt−1)

)
︸ ︷︷ ︸

=h̃j(Yjt−1(Yt−1,St−1,Xt−1;θ1),Kt−1,Lt−1)

+ηt. (28)

Because ηt is i.i.d., equation (28) implies that

Pjt (Yt|St, Xt, {Yt−s, St−s, Xt−s}t−1
s=1) = Pjt (Yt|St, Xt, Yt−1, St−1, Xt−1), (29)

and the stated result follows.

A.2 Proof of Proposition 2

We apply the argument of Kasahara and Shimotsu (2009) and Hu and Shum (2012) under the

assumption that unobserved heterogeneity is permanent and discrete. The proof is constructive.

Consider the case that T = 4. Fix (W2,W3) at (w2, w3) and choose (w̄2, w̄3) ∈ W2 × W3,

(a1, ..., aJ) ∈ WJ
1 and (b1, ..., bJ−1) ∈ WJ−1

4 that satisfy Assumption 7. Evaluating (7) at (W2,W3) =

(w2, w3) gives

P ({Wt}4t=1) =
J∑
j=1

πjP j4 (W4|w3)P j3 (w3|w2)P j2 (w2|W1)P j1 (W1)

=
J∑
j=1

λj4(W4|w3)λj3(w3|w2)λ̄j2(W1, w2),

(30)

where λj4(W4|w3) := P j4 (W4|W3 = w3), λj3(w3|w2) := P j3 (W3 = w3|W2 = w2), and λ̄j2(W1, w2) :=

πjP j2 (W2 = w2|W1)P j1 (W1). Integrating out W4 from (30) gives

P ({Wt}3t=1) =

J∑
j=1

λj3(w3|w2)λ̄j2(W1, w2). (31)

Let fw2,w3(a, b) := P ((W1,W2,W3,W4) = (a,w2, w3, b)) and f̄w2,w3(a) := P ((W1,W2,W3) =

(a,w2, w3)). Evaluating (30) at W1 = a1, ..., aJ and W4 = b1, ..., bJ−1 gives M(M − 1) equations

while evaluating (31) at W1 = a1, ..., aJ gives M equations. Collecting these M(M − 1) +M = M2

equations and denoting them using matrix notation, we have

Pw2,w3 = L′w3
Dw3|w2

L̄w2 , (32)
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where

Pw2,w3 :=


f̄w2,w3(a1) f̄w2,w3(a2) · · · f̄w2,w3(aJ)

fw2,w3(a1, b1) fw2,w3(a2, b1) · · · fw2,w3(aJ , b1)
...

... . . .
...

fw2,w3(a1, bJ−1) fw2,w3(a2, b1) · · · fw2,w3(aJ , bJ−1)

 ,

Lw3 :=


1 λ1

4(b1|w3) · · · λ1
4(bJ−1|w3)

...
... . . .

...

1 λJ4 (b1|w3) · · · λJ4 (bJ−1|w3)

 , L̄w2 :=


λ̄1

2(a1, w2) · · · λ̄1
2(aJ , w2)

...
... . . .

λ̄J2 (a1, w2) · · · λ̄J2 (aJ , w2)

 ,
(33)

and Dw3|w2
:= diag

(
λ1

3(w3|w2), ..., λJ3 (w3|w2)
)
. Evaluating (32) at four different points, (w2, w3),

(w̄2, w3), (w2, w̄3), and (w̄2, w̄3) gives

Pw2,w3 = L′w3
Dw3|w2

L̄w2 , Pw̄2,w3 = L′w3
Dw3|w̄2

L̄w̄2 ,

Pw2,w̄3 = L′w̄3
Dw̄3|w2

L̄w2 , Pw̄2,w̄3 = L′w̄3
Dw̄3|w̄2

L̄w̄2 .

Then, under Assumption 7,

A := Pw2,w3(Pw2,w̄3)−1Pw̄2,w̄3(Pw̄2,w3)−1 = L′w3
Dw2,w̄2,w3,w̄3(L′w3

)−1,

where

Dw2,w̄2,w3,w̄3 := Dw3|w2
(Dw̄3|w2

)−1Dw̄3|w̄2
(Dw3|w̄2

)−1. (34)

Because AL′w3
= L′w3

Dw2,w̄2,w3,w̄3 , the eignvalues of A determine the diagonal elements of

Dw2,w̄2,w3,w̄3 while the right eigenvectors of A determine the columns of L′w3
up to multiplicative

constant. Denote the right eigenvectors of A by L′w3
C, where C is some diagonal matrix. Now we

can determine the diagonal matrix Dw2,w̄2,w3,w̄3C from the first row of AL′w3
C = L′w3

Dw2,w̄2,w3,w̄3C

because the first row of L′w3
is a vector of ones. Then, L′w3

is determined uniquely from AL′w3
C and

Dw2,w̄2,w3,w̄3C as L′w3
= (AL′w3

C)(Dw2,w̄2,w3,w̄3C)−1 in view of AL′w3
= L′w3

Dw2,w̄2,w3,w̄3 . Therefore,

Lw3 is identified. Repeating the above argument for all values of w3 ∈ W3 identifies {P j4 (W4|W3 =

w3)}Jj=1 for each w3 ∈ W3 for W4 = (b1, ..., bJ−1) that satisfies Assumption 7(a).

Evaluating P (W4,W3|W2) at (W2,W3) = (w2, w3), we have

P (W4,W3 = w3|W2 = w2) =
J∑
j=1

π̃jw2
P j4 (W4|w3)P j3 (w3|w2) =

J∑
j=1

λj4(W4|w3)λ̃j3(w3|w2), (35)

where π̃jw2 :=
πjP j2 (W2=w2)
P2(W2=w2) and λ̃j3(w3|w2) := π̃jw2P

j
3 (W3 = w3|W2 = w2). Then, evaluating (35)

at W4 = b1, ..., bJ−1 and collecting them into a vector together with P (W3 = w3|W2 = w2) =∑J
j=1 λ̃

j
3(w3|w2) gives

pw3|w2
= L′w3

dw3|w2
,
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where dw3|w2
= (λ̃1

3(w3|w2), ...., λ̃J3 (w3|w2))′ and pw3|w2
= (P (W3 = w3|W2 = w2), P ((W4,W3) =

(b1, w3)|W2 = w2), ..., P ((W4,W3) = (bJ−1, w3)|W2 = w2))′. Therefore, we uniquely determine

π̃jw2P
j
3 (W3 = w3|W2 = w2) from dw3|w2

= (L′w3
)−1pw3|w2

. Repeating the above argument across

all possible values of (w2, w3) ∈ W2 ×W3 determines the value of π̃jw2P
j
3 (W3 = w3|W2 = w2) for

every (w2, w3) ∈ W2×W3. Then, π̃jw2 and P j3 (W3 = w3|W2 = w2) are uniquely identified as π̃jw2 =∫
W3

π̃jw2P
j
3 (W3|W2 = w2)dW3 and P j(W3 = w3|W2 = w2) = [π̃jw2P

j
3 (W3 = w3|W2 = w2)]/π̃jw2 .

Therefore, {P j3 (W3|W2)}Jj=1 is identified.

Evaluating P j3 (W3|W2) at (W2,W3) = (w3, w2) for j = 1, ..., J identifies Dw3|w2
and, from

(32), L̄w2 is identified as L̄w2 = (Dw3|w2
)−1(L′w3

)−1Pw2,w3 . Once Dw3|w2
and L̄w2 are identified,

we can determine `w3(ζ) = (λ1
4(ζ|w3), ..., λJ4 (ζ|w3))′ for any ζ ∈ W4 by constructing pw2,w3(ζ) =

(fw2,w3(a1, ζ), fw2,w3(a2, ζ), ..., fw2,w3(aJ , ζ)) from the observed data, and using the relationship

`w3(ζ) = (Dw3|w2
)−1(L̄′w2

)−1pw2,w3(ζ)′. Similarly, we can determine ¯̀
w2(ξ) = (λ̄1

2(ξ, w2), ..., λ̄J2 (ξ, w2))′

for any ξ ∈ W1 by constructing p̄w2,w3(ξ) = (f̄w2,w3(ξ), fw2,w3(ξ, b1), fw2,w3(ξ, b2), ..., fw2,w3(ξ, bJ−1))′

and using the relationship ¯̀
w2(ξ) = (Dw3|w2

)−1(L′w3
)−1p̄w2,w3(ξ). Therefore, {P j4 (W4|W3 = w3), πjP j2 (W2 =

w2|W1)P j1 (W1)}Jj=1 is identified. Repeating this argument for all possible values of (w2, w3) ∈
W2×W3 identifies {P j4 (W4|W3), πjP j2 (W2|W1)P j1 (W1)}Jj=1. Finally, {πj , P j2 (W2|W1), P j1 (W1)}Jj=1 is

identified from {πjP j2 (W2|W1)P j1 (W1)}Jj=1 as πj =
∫
W1

∫
W2

[πjP j2 (W2|W1)P j1 (W1)]dW2dW1, P j1 (W1) =

[
∫
W2

[πjP j2 (W2|W1)P j1 (W1)]dW2]/πj , and P j2 (W2|W1) = [πjP j2 (W2|W1)P j1 (W1)]/[πj×P j1 (W1)]. This

proves the stated result.

A.3 Proof of Proposition 3

Given that Pjt (Yt, St, Xt) is identified from Proposition 2, we may apply the argument in section

3 of GNR to prove the stated result. For part (a), we may generate infinitely many observations

of {St, Xt} from Pjt (St, Xt) and nonparametric regression of lnSt on Xt identifies GjM,tEj and

εt = ln(GjM,t(Xt)Ej) − lnSt. Consequently, we may identify gjε from {εt}, and Ej and GjM,t are

identified as Ej = Eε[e
ε|type = j] and GjM,t = (GjM,tEj)/Ej , respectively. Therefore, θ1 is identified,

proving part (a).

For part (b), we can identify Cjt (Kt, Lt) from (28) given infinitely many observations ran-

domly drawn from Pj({Yt, St, Xt}Tt=1) via non-parametric regression of Yjt := Yjt (Yt, St, Xt; θ1) on

(Kt, Lt,Yjt−1,Kt−1, Lt−1) while imposing additive separability implied by (28). Given Cjt (Kt, Lt),

the identification of F jt (·) and {ωt}Tt=1 follows from (26) and (27), respectively, and hj(·) is identi-

fied from {ωt}Tt=1. Finally, because ηt is identified from (28), gjη(·) is also identified. This proves

part (b).
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A.4 Proof of Proposition 4

Consider i ∈ Ij so that j = j∗(i). For each T , let πjT := πj∗L1i(α
j∗
m ,σ

j∗
ε ;T )∑J

k=1 π
k∗L1i(αk∗m ,σk∗ε ;T )

, where (πj∗, αj∗m , σ
j∗
ε )

is the true value of (πj , αjm, σ
j
ε ). Then,

π̂ji − 1 = (π̂ji − π
j
T ) + (πjT − 1). (36)

For the first term, π̂ji − π
j
T = Op(N

−1/2) as N → ∞ because the maximum likelihood estimator

(π̂j , α̂jm, σ̂
j
ε ) is a root-N consistent estimator of (πj∗, αj∗m , σ

j∗
ε ) when the number of components J is

correctly specified.

For the second term of (36), define ξjkit := lnL1it(α
j∗
m , σ

j∗
ε )−lnL1it(α

k∗
m , σ

k∗
ε ) and ajk := E[ξjkit |i ∈

Ij ] > 0, and we have

πjT =
1

1 +
∑

k 6=j (πk∗/πj∗) exp
(
−
∑T

t=1 ξ
jk
it

) . (37)

For i ∈ Ij , k 6= j,

exp

(
−

T∑
t=1

ξjkit

)
=

{
exp

(
−

T∑
t=1

ξjkit

)
− exp(−ajkT )

}
+ exp(−ajkT )

= exp(−ajkT )

{
exp

(
−

T∑
t=1

(ξjkit − a
jk)

)
− 1

}
︸ ︷︷ ︸

Op(T 1/2)

+ exp(−ajkT )

= Op

(
exp(−ajkT )T 1/2

)
as T → ∞. It follows that

∑
k 6=j

(
πk

∗
/πj∗

)
exp

(
−
∑T

t=1 ξ
jk
it

)
is Op

(
exp(−ajT )T 1/2

)
, where aj :=

mink 6=j a
jk. Therefore, in view of (37), the consistency of πjT as T →∞ and the mean value theorem

give

πjT − 1 = Op

(
exp(−ajT )T 1/2

)
. (38)

Then, the stated result follows from (36), (38), and π̂ji−π
j
T = Op(N

−1/2) becauseOp
(
exp(−ajT )T 1/2

)
=

op(N
−1/2) as N,T →∞ under Assumption 10.

A.5 Assumption 7 under Cobb-Douglas production function

In the following, we discuss the conditions under which Assumption 7 holds when the production

function is Cobb-Douglas.

Example 1 (continued). For random coefficients model (8), we may write Lw̄3, L̄w̄2, and Dw̄3|w̄2
as

follows. Throughout the analysis, we fix the value of {Yt}Tt=1 at, say, {yt}Tt=1 so that the variation in

the values of aj’s and bj’s are due the variation in the values of W1 and W4. Denote w̄3 = (y3, s̄3, x̄3)
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and bh = (y3, b
s
h, x̄4) for h = 1, ..., J − 1. Then,

λjw̄3
(bh) = P j4 (S4 = bsh|X4 = x̄4)P j4 (X4 = x̄4|X3 = x̄3) = cj4g

j
ε (ln(αjm,4E

j)− ln bsh),

where cj4 = P j4 (X4 = x̄4|X3 = x̄3). Therefore, we have

Lw̄3 = diag{c1
4, ...., c

J
4 }


1 g1

ε (ln(α1
m,4E1)− ln bs1) · · · g1

ε (ln(α1
m,4E1)− ln bsJ−1)

...
... . . .

...

1 gJε (ln(αJm,4EJ)− ln bs1) · · · gJε (ln(αJm,4EJ)− ln bsJ−1)

 .
Similarly, denote w̄2 = (s̄2, x̄2) and ah = (ash, x̄1) for h = 1, ..., J . Then,

λjw̄2
(ah) = P j2 (S2 = s̄2|X2 = x̄2)P j1 (S1 = ash|X1 = x̄1)P j1 (X1 = x̄1) = cj2g

j
ε (ln a

s
h − ln(αjmE)),

where cj2 = P j2 (S2 = s̄2|X2 = x̄2)P j1 (X1 = x̄1). Then, we have

L̄w̄2 = diag{c1
2, ...., c

J
2 }


g1
ε (ln(α1

m,1E1)− ln as1) · · · g1
ε (ln(α1

m,1E1)− ln asJ)
... . . .

...

gJε (ln(αJm,1EJ)− ln as1) · · · gJε (ln(αJm,1EJ)− ln asJ)

 .
For Assumption 7(a), we choose x̄4, x̄3, x̄2, x̄1, and s̄2 so that cj2 6= 0 and cj3 6= 0 for any j and

find (as1, ..., a
s
J) and (bs1, ..., b

s
J−1) such that Lw̄3 and L̄w̄2 are nonsingular. Because each point of

(as1, ..., a
s
J) and (bs1, ..., b

s
J−1) refers to a value of lnS1 and lnS4, the full rank condition of Lw̄3 and

L̄w̄2 holds if the value of probability density function of lnS1 and lnS4 changes heterogeneously

across types when we change the value of lnS1 and lnS4.

Let w̄3 = (s̄3, x̄3) and w̄2 = (s̄2, x̄2). Then,

λj(w̄3|w̄2) = πjgjε (ln s̄3 − ln(αjm,3E
j))P j3 (X3 = x̄3|X2 = x̄2). (39)

Pick w3 = (s3, x3) and w2 = (s2, x2). Assumption 7(b) holds if P j3 (x̄3|x2) 6= 0 and P j3 (x3|x̄2) 6= 0

for all j. Then, we have

Dw3|w2
(Dw̄3|w2

)−1Dw̄3|w̄2
(Dw3|w̄2

)−1 = diag

{
P 1

3 (x3|x2)

P 1
3 (x̄3|x2)

P 1
3 (x̄3|x̄2)

P 1
3 (x3|x̄2)

, ...,
P J3 (x3|x2)

P J3 (x̄3|x2)

P J3 (x̄3|x̄2)

P J3 (x3|x̄2)

}
.

Therefore, Assumption 7(c) requires that
P j3 (x3|x2)

P j3 (x̄3|x2)

P j3 (x̄3|x̄2)

P j3 (x3|x̄2)
takes different values across different

j’s, namely, the transition probability of X3 given X2 changes heterogeneously across types when

we change the value of X2.
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Figure 1: Histogram of
PM,tMit

PY,tYit
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Figure 2: Histogram of
(
PM,tMit

PY,tYit

)
i

over 28 years
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Figure 3:
PM,tMit

PM,tMit+WtLit
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Figure 4:
(

PM,tMit

PM,tMit+WtLit

)
i

over 28 yrs
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Figure 5: Trends in the log of
PM,tMit

PY,tYit
, output, and inputs in Machine industry
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Notes: This figure shows each firms’ inputs and outputs in each year. Each line represents a different firm.
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Figure 6: Trends in
PM,tMit

PY,tYit
for subindustries in Machine industry
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2511: Boiler prime mover 2521: Metal machine tools 2522: Metal working machinery
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2523: Machinery tool 2531: Textile machinery 2532: Agricultural machines
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2533: Construction and mining equipment 2534: Chemical machinery 2535: Office machinery
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2536: Special industrial machinery 2537: General industrial machinery 2541: General Mechanical Components

Figure 7: Posterior probabilities for J = 3 and J = 5
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Figure 8: Trends in
PM,tMit

PY,tYit
and lnYit in Machine industry for J = 3
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Figure 9: Trends in
PM,tMit

PY,tYit
in subindustries when J = 3
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