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1 Introduction

As argued by Bernanke (2012), a distinctive feature of the recent crisis was
"run-like" behavior on the major financial institutions in the shadow banking
sector. The runs began to gather steam early in the spring of 2008 around the
time of the Bear Stearns collapse and culminated with the nearly instantaneous
downfall of the entire investment banking sector that September. Though they
differed in detail, the events had the basic features of a classic financial panic.
As concern rose about asset quality, anxious depositors withdrew funds forcing
asset firesales and leading to sharp declines in asset prices along with sharp
increases in credit spreads. The resulting disruption of financial intermediation
was likely the major factor that led the downturn to devolve into the Great
Recession.
It is significant to note that the panic did not happen instantly but rather

played out over nearly the entire course of 2008. Early on, there were "slow"
runs where depositors began a steady stream of withdrawals leading up to a
wave of "fast" runs that September, when panicky depositors withdrew rapidly.
Any full characterization of the financial panic and how it affected real activity,
accordingly, needs to provide an account of the transition from slow to fast runs.
In Gertler and Kiyotaki (2015; hereafter GK) , two of the authors of this

paper develop a simple macroeconomic model with bank runs to analyze the
simultaneous feedback between real economic activity and banking instability.
A corollary result of the paper is that allowing for anticipations of the possibility
of a fast run can induce slow run-like behavior. As the market probability of
a run increases, depositors withdraw some but not all of their funds, a pattern
similar to the steady drain of credit from the shadow banking system that
occurred prior to the outright collapse. Further, by pushing credit spreads up
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and asset prices down, the anticipation of a run can potentially have harmful
effects on the economy even if the run itself does not occur ex post.
Critical to the analysis is how beliefs about the probability of a run are

modeled. As in traditional models of runs (Diamond and Dybvig (1983) a run in
GK is a "sunspot" coordination failure. One important difference, though is that
whether a sunspot equilibrium exists depends on banks’financial exposure to
systemic risk as measured by the depositor recovery rate in the event of failure.
In principle a way to pin down the probability of a run is to apply a global
games approach following Goldstein and Pauzner (2005) where by allowing for
noisy private signals a unique equilibrium emerges with run probabilities tied
to fundamentals. However, the complexity of this approach makes it diffi cult
to apply an infinite horizon general equilibrium model like GK. Accordingly,
GK instead follow the spirit of the global games approach by postulating that
the run probability is a function of the recovery rate, the key fundamental that
determines whether a run equilibrium exists. The run remains a sunspot but the
probability of the sunspot is endogenous. The parameters of the belief function,
however, are arbitrary.
In this paper we propose a simple alternative for forming beliefs about run

probabilities that is fully rational. We decompose the run probability into the
product of two factors: first the probability that a bank run equilibrium exists;
and second the probability that a sunspot run materializes conditional on the
existence of the run equilibrium. We suppose the latter is acyclical and occurs
with a fixed probability π. On the other hand, the probability ωt that a run
equilibrium exists in the following period is endogenously determined by fun-
damentals: it is the probability that the recovery rate is in the range where
banking panics become self fulfilling. The run probability pt is then given by
ωt · π. It remains the case that a run is not uniquely determined by funda-
mentals. However, as in the global games approach, the run probability is tied
concretely to the rational forecast of the relevant fundamentals.
Section 2 briefly summarizes the GKmacroeconomic model of banking panics

and describes in detail our approach to modeling run probabilities. Section 3
presents some simulations of the model. Section 4 concludes.

2 The Basic Model

The framework is based on the infinite horizon macroeconomic model of banking
instability developed in Gertler and Kiyotaki (2015). There are two types of
agents - households and bankers - with a continuum of measure unity of each
type. Banks have expertise in making loans and thus intermediate funds between
households and productive assets. Households may also invest in productive
assets directly, but are less effi cient in doing so than are banks.
Households and bankers each get utility from consuming a perishable non-

durable good. There is a durable asset, "capital", which yields a dividend stream
of the nondurable good Zt per unit at each time t and which is fixed in aggregate
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supply. The dividend process is given by

(Zt+1 − 1) = ρ(Zt − 1) + εt+1 (1)

where the random disturbance εt+1 is i.i.d. with mean zero and is uniformly
distributed over the closed support [−ε, ε]. In addition to the dividend stream
generated by capital, both households and bankers also receive endowments of
the nondurable good as we describe later.
We assume capital does not depreciate and we normalize the total stock at

unity. Claims on the capital may be either held by banks or directly by house-
holds. Let Kb

t be capital holdings by banks and K
h
t holdings by households.

Given that total holdings must equal total supply:

Kb
t +Kh

t = 1 (2)

Claims on capital may be traded in competitive markets as we discuss below.
Let Qt be the market price of a claim on a unit of capital. Then the gross rate
of return on capital intermediated by banks, Rbt+1, is given by

Rbt+1 =
Zt+1 +Qt+1

Qt
(3)

To capture that households are less effi cient than banks at holding capital
we assume that they must pay a management cost each period that is increasing
and convex in the size of their respective portfolios. In particular, to hold Kh

t

units of capital that earns payoffs at t+ 1 a household must pay a management
fee f(Kh

t ) at t, with f ′(Kh
t ) > 0; f ′′(Kh

t ) > 0. The management fee captures
the household’s relative disadvantage in evaluating and monitoring direct capital
holdings. The convex cost, further, is meant to capture limits on the capacity
of households to manage a capital portfolio. Given the management cost, the
household’s return on capital Rht+1 is given by

Rht+1 =
Zt+1 +Qt+1
Qt + f ′(Kh

t )
(4)

Given Rbt+1 > Rht+1, absent financial frictions banks will intermediate the
entire capital stock. Households in turn will save entirely in the form deposits.
However, when banks are limited in their ability to obtain deposits, households
will directly hold some of the capital. As the constraints tighten in a recession,
as will happen in our model, the share of capital held by households will expand,
forcing asset prices down. In the event of a run, which will become more likely in
a recession, the household share will temporarily rise to unity as banks liquidate
all their holdings, pushing asset prices down to firesale levels.

2.1 Households

Each household consumes and saves either by holding banks deposits or by
holding claims on capital directly. In addition to returns on asset holdings, each
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household receives an endowment of the consumption good ZtWh that varies
proportionately with the aggregate productivity shock Zt.
Intermediary deposits at t are one period bonds that promise to pay a non-

contingent gross rate of return Rt+1 in the absence of a run. In the event of a
run at t+ 1, depositors receive the fraction xt+1 of the promised return, where
the recovery rate xt+1 is the total liquidation value of bank assets per unit of
promised deposit obligations. As we will discuss, bank runs are possible if and
only if this ratio is strictly below unity. Let ptε [0, 1] be the probability of run
in t + 1. Then we can express the gross rate of return on the deposit contract
Rt+1as

Rt+1 =

{
Rt+1 with probability 1− pt
xt+1Rt+1 with probability pt

A run in our model corresponds to a panic failure of households to roll over
deposits as opposed to early withdrawal of demand deposits, as in the classic
Diamond and Dybvig (1983) model.1 For this reason we do not need to im-
pose a "sequential service constraint" which is necessary to generate runs in
Diamond/Dybvig. Instead we make the weaker assumption that all households
receive the same pro rata share of output in a run. Later we describe the con-
ditions that lead to the existence of an equilibrium where a "failure to rollover"
run is possible.
Each period households choose consumption Cht , bank deposits Dt, and di-

rect capital holding Kh
t to maximize an expected discounted stream of utility

from consumption subject to a period budget constraint that equates consump-
tion and saving to current asset and endowment income. Period utility is log-
arithmic in consumption and β ε (0, 1) is the subjective discount factor. The
first order condition for deposits is then given by

1 = [(1− pt)Et {Λt,t+1 |NoRun}+ ptEt {Λt,t+1xt+1 |Run}] ·Rt+1 (5)

Observe that the promised deposit rate Rt+1 that satisfies equation (5) depends
on the run probability pt as well as xt+1.

The first order condition for direct capital holdings is given in turn by

1 = Et{Λt,t+1Rht+1} (6)

So long as households have some direct capital holdings, the first order condition
given by (6) will be key in determining the market price of capital (see also
equation (4)). Further, the market price of capital will tend to be decreasing in
the share of capital since the marginal management cost f ′(Kh

t )is increasing. As
will become clear, in a panic run banks will sell all their securities to households,
leading to a sharp contraction in asset prices.2 The severity of the drop will

1Our modeling of runs as rollover crises follows the Cole and Kehoe (2000) model of self-
fulfilling sovereign debt crises.

2 In practice, the runs during the crisis occurred in wholesale funding markets where banks
lend to one another, as opposed to retail markets where households lend to banks. Gertler,
Kiyotaki and Prestipino, forthcoming, extend the GK model to allow for runs in wholesale
markets.
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depend on the quantity of sales and the convexity of the management cost
function.

2.2 Bankers

Bankers manage financial intermediaries. They fund capital investments Qtkbt
by issuing deposits dt to households and also by using their own equity, or net
worth nt:

Qtk
b
t = dt + nt (7)

Due to financial market frictions bankers may be constrained in their ability to
obtain deposits from households.
Each banker has an i.i.d. probability of surviving until the next period and

a probability 1 − σ of exiting. The expected lifetime is then 1/(1 − σ). We
introduce finite expected lifetimes for bankers to keep them from accumulating
retained earnings to the point where they can fully self finance their investments.
Each period 1−σ new bankers enter which keeps the total population constant.
Bankers consume their net worth upon exit. We assume each banker’s utility

is linear in terminal consumption (which is the same as their terminal net worth).
Accordingly, we can express the expected utility of a surviving banker at t, Vt,
which we refer to as the bank franchise value, as

Vt = Et{βΩt,t+1nt+1}

where the bank uses the stochastic discount factor βΩt,t+1 to value net worth
realized in t+ 1,and Ωt,t+1 is the banker’s shadow value of a unit of net worth
at t + 1, averaged across the likelihood of exit and the likelihood of survival,
given by

Ωt,t+1 = 1− σ + σ
Vt+1
nt+1

(8)

With probability 1 − σ the banker exits, implying a unit of net worth equals
unity (the number of consumption goods it can purchase). With probability
σ the banker survives implying the marginal value of nt is

Vt+1
nt+1

, the franchise
value of the bank per unit of net worth. As will become clear, to the extent
that an additional unit of net worth relaxes the financial market friction, Vt+1nt+1

in general will exceed unity.
We assume that surviving banks accumulate net worth through retained

earnings. Conditional on the realization of Zt, nt for surviving bankers is given
by

nt = RbtQt−1k
b
t−1 −Rtdt−1. (9)

We suppose that for each new banker, nt equals simply a "startup" endowment
wb, received only in the first period of business.
Absent a run at t (i.e. a failure of depositors to roll over), the bank pays its

creditors the promised rate Rt. In the event of a run, however, it liquidates its
assets (by selling to households) and uses the proceeds to pay its creditors. Let
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Q∗t be the liquidation price of bank assets conditional on a run. Then we can
express the recovery rate on banks deposits

xt = min[1,
(Q∗t + Zt)k

b
t−1

Rtdt−1
] (10)

Note that in this instance the bank’s net worth goes to zero in the event of a
run.
To motivate a limit on the bank’s ability to issue deposits (which is also

critical for open the possibility of a bank run equilibrium), we introduce the
following moral hazard problem: After accepting deposits at the beginning of
t and purchasing assets, but still during the period, the banker has the option
of diverting a fraction θ of assets for personal use. The banker can do so by
secretly selling the assets on the secondary market. Because this process takes
time (in order to remain undetected), the banker must decide whether to divert
at time t prior to the realization of uncertainty at t+ 1. The cost to the banker
of siphoning funds is that the depositors can force the bank into liquidation at
the beginning of next period.
The banker’s decision over whether to divert funds at t reduces to compar-

ing the franchise value of the bank, Vt, which measure the benefit in discounted
profits from operating honestly, with the gain from diverting funds, θQtkbt . Ra-
tional depositors will not agree to lend funds if the bank prefers to divert them.
Accordingly, any financial arrangement between the bank and its depositors
must satisfy the following condition, which eliminates the bank’s incentive to
divert:

θQtk
b
t ≤ Vt (11)

Given the linearity in the bank’s portfolio decision problem we conjecture
and then verify subsequently, that the bank’s franchise value Vt is proportional
to it’s net worth nt.We can then restate the objective as to maximize Vt/nt. Let
φt ≡ Qtkbt/nt be the ratio of bank assets to net worth, which we will refer to as
the "leverage multiple". Combining equations (7) and (9) with the expression
for Vt yields the following representation of the bank’s objective

Vt
nt

= max
φt

(1− pt)Et{βΩt,t+1(R
b
t+1 −Rt+1)φt +Rt+1 | no run} (12)

subject to the incentive constraint (obtained from equation (11)):

θφt ≤
Vt
nt

(13)

and the deposit rate constraint (obtained from equations (5) and (10)):

Rt+1 =

[
(1− pt)Et {Λt,t+1 | no run}+ ptEt

{
Λt,t+1

φt
φt − 1

Rb∗t+1
Rt+1

| run
}]−1
(14)
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where Rb∗t+1 ≡ [Zt+1 + Q∗t+1]/Qt is the gross return on bank asset conditional
on a run and where φtR

b∗
t+1/(φt − 1)Rt+1 = xt+1.

3

In what follows we restrict our attention to a symmetric equilibrium in which
all banks choose the same leverage multiple φt and all depositors coordinate on
the same rollover decision. It follows that all banks will default in the event of a
run and will survive without a run.4 Given this, pt will be common across banks
and we can proceed to characterize the representative bank’s optimal choice of
the leverage multiple φt. Let µt be the expected discounted excess return on
banks assets relative to deposit costs and let νt be the expected discounted
return from reducing deposits a unit:

µt = (1− pt)Et{βΩt,t+1[(R
b
t+1 −Rt+1) |no run} (15)

νt = (1− pt)Et{βΩt,t+1Rt+1 |no run}

Next define µrt as the expected discounted marginal excess return to bank assets

µrt = µt − νt
(φt − 1)

Rt+1

dRt+1 (φt)

dφt
< µt (16)

The second term on the right of equation (16) reflects the effect of the increase in
Rt+1 that arises as the bank increases φt. An increase in φt reduces the recovery
rate, forcing Rt+1 up to compensate depositors, as equation (14) suggests. The
term νt (φt − 1) then reflects the reduction in the bank franchise value that
results from each percentage increase in Rt+1. Due to the marginal effect on
Rt+1 from expanding φt, the marginal excess return µ

r
t is below the average

excess return µt.
The solution for φt depends on whether or not the incentive constraint (13)

is binding. In the case where it binds, φt is given by

φt =
νt

θ − µt
; with µrt > 0 (17)

Conversely, when the constraint is not binding,

µrt = 0; with φt <
νt

θ − µt
(18)

The constraint (17) limits the leverage multiple to the point where the bank’s
gain from diverting funds per unit of net worth is exactly balanced by the cost

3Notice that banks are not internalizing how changes in their leverage affect the probability
they will experience individual runs. This does not alter their first order conditions however
because an infinitesimal reduction in leverage allows banks to survive a run at the thresold
level Z̄t+1, see below. But at this level thier networth is zero.

4 It does not mean that there is no asymmetric equilibrium in which some banks survive in
the event of a run. One simple environment in which banks behave symmetrically arises by
asssuming that an individual bank survivng a systemic run would lose an additional fraction
of the franchise value due to, for example, network externalities or reputation costs. The
asymmetric equilibrium without such auxiliary assumption is a topic for further research.
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per unit of net worth of losing the franchise value, which is measured by Vt/nt =
µtφt + νt. Note that the excess return µt tends to move countercyclically since
the spread between Rbt+1−Rt+1 widens as the borrowing constraint tightens in
recessions. As a results, φt tends to move countercyclically.
If the constraint does not bind, banks asset positions may still be limited

by its net worth, so long as there is a possibility that the incentive constraint
could bind in the future. In this instance, as in Brunnermeier and Sannikov
(2014) and He and Krishnamurthy (2015) banks have a precautionary motive
for scaling back their respective leverage multiples.5 The precautionary motive
is captured by the presence of the discount factor Ωt,t+1 in the measure of the
discounted excess return. The multiplier Ωt,t+1, which reflects the shadow value
of net worth, tends to vary countercyclically given that borrowing constraints
tighten in downturns. By reducing their leverage multiples, banks reduce the
risk of taking losses when the shadow value of net worth is high.
In either case, as we conjectured, the franchise value of the bank Vt is pro-

portionate to nt by a factor that is independent of bank-specific factors. When
the incentive constraint is binding, Vt = θφt ·nt.When is not currently binding,
Vt = {[νt (φt−1)Rt+1

dRt+1(φt)
dφt

]φt + νt} · nt (since µrt = 0). An important corollary is

that the bank cannot operate with zero net worth. In this instance Vt falls to
zero, implying that the incentive constraint (11) would always be violated if the
bank tried to issue deposits. As we show, a necessary condition for a bank run
is that banks cannot operate with zero net worth.

2.3 Aggregation and equilibrium without bank runs

Given that individual bank portfolio decisions are homogenous in net worth, the
leverage multiple φt is independent of bank-specific factors. Accordingly, we can
aggregate across banks to obtain the following relation between aggregate bank
asset holdings QtKb

t and the aggregate quantity of net worth in the banking
sector:

QtK
b
t

Nt
= φt (19)

Summing across both surviving and entering bankers yields the following ex-
pression for the evolution of net worth

Nt = σ[(Rbt −Rt)φt−1 +Rt]Nt−1 +W b (20)

where W b = (1 − σ)wb is the total endowment of entering bankers. The first
term is the total net worth of bankers that operated at t− 1 and survived until
t.
Conversely, exiting bankers consume the fraction 1 − σ of net earnings on

assets:
Cbt = (1− σ)[(Rbt −Rt)φt−1 +Rt]Nt−1

5One difference from these papers is that because default is possible (in the event of a run),
the bank’s decision over its leverage multiple also affects to promised deposit rate, which affects
the cost of funds at the margin. This effect provides an additional motive for the bank to
reduce its leverage multiple.
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Finally, output net management costs is consumed by bankers and households.

Cht + Cbt = Zt +Wh +W b − α

2
(Kh)2

2.4 Condition for a bank run equilibrium

As in Diamond and Dybvig (1983), the runs we consider are runs on the entire
banking system and not an individual bank. A run on an individual bank will
not have aggregate effects as depositors simply shuffl e their funds from one bank
to another. We differ from Diamond and Dybvig though in that runs reflect a
panic failure to roll over deposits as opposed to early withdrawal (similar to
Cole and Kehoe 2000). In addition, runs are anticipated.
Consider the behavior of a household that acquired deposits at t − 1. The

household must then decide whether to roll over deposits at t. A self-fulfilling
"run" equilibrium is possible if the household perceives that in the event all
other depositors run, forcing the banking system into liquidation, the household
will lose money if it rolls over its deposits. Note that this condition is satisfied if
the liquidation makes the banking system insolvent, i.e. drives aggregate bank
net worth to zero. Given the moral hazard problem, a household that deposits
in a zero net worth bank will simply lose its money (as the bank runs away with
it).
The condition for a bank run equilibrium at t, accordingly, is that in the

event of liquidation following a run, bank net worth goes to zero. Recall that
earlier we defined the depositor recovery rate, xt, as the ratio of the value of
bank assets in liquidation to promised obligations to depositors. Accordingly,
the condition for a bank run equilibrium is simply that the recovery rate is
below unity:

xt =
(Q∗t + Zt)K

b
t−1

R̄tDt−1
< 1 (21)

=
Rb∗t
R̄t
· 1

1− 1/φt−1
< 1

where as earlier Rb∗t is the return on bank assets conditional on liquidation.

2.5 Liquidation prices and recovery after a run

Key to the condition for a bank run equilibrium is the behavior of the liquidation
priceQ∗t . A depositor run at t induces all banks to liquidate their assets by selling
them to households. Accordingly in the wake of the run:

Kh
t = K = 1 (22)

The banking system then rebuilds itself over time as new banks enter. We
suppose that new banks enter one period after the panic. The evolution of net
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worth following the run at t is given by

Nt+1 = W b + σW b, (23)

Nt+i = σ[(Zt+i +Qt+i)K
b
t+i−1 −Rt+iDt+i−1] +W b, for all i ≥ 2.

To obtain Q∗t , we invert the household Euler equation to obtain:

Q∗t = Et

[ ∞∑
i=1

Λt,t+i(Zt+i − f ′(Kh
t+i))

]
− .f ′(1) (24)

The liquidation price is thus equal to the expected discounted stream of divi-
dends net marginal management costs. Since marginal management costs are
at a maximum when Kh

t equal unity, Q
∗
t is at a minimum, given the expected

future path of Kh
t .
6 Further, the longer it takes the banking system to recover

(so Kh
t to falls back to steady state) the lower will be Q

∗
t . Finally, note that

shocks to Zt will cause Q∗t to move procyclically.

2.6 The run probability

We next turn to the determination of the run probability. Let ξt+1 be a binary
variable that takes on a value of 1 with probability π and a value of 0 with
probability 1 − π. In the event of 1, depositors coordinate on a run if a bank
run equilibrium exists. Accordingly, a bank run arises at t+ 1iff (i) a bank run
equilibrium exists at t+ 1 and (ii) ξt+1 = 1. Let ωt be the probability at t that
a bank run equilibrium exists at t + 1. Then the probability pt that of run at
t+ 1 is given by

pt = ωt · π (25)

We find ωt as follows. Define Zt+1 as the value of Zt+1 that makes the
recovery rate xt+1 unity. That is

x(Zt+1) =
(Q∗(Zt+1)t+1 + Zt+1)K

b
t

R̄t+1Dt
= 1 (26)

For values of Zt+1 below Zt+1, xt+1 is below unity and a bank run equilibrium
exists. The probability of a bank run equilibrium existing is accordingly the
probability that Zt+1 is below Zt+1:

ωt = prob{Zt+1 < Zt+1 | Zt}

It follows that the probability of a run varies inversely with Etxt+1. The lower
the forecast of the depositor recovery rate, the higher ωt and thus the higher pt.
As discussed in Gertler and Kiyotaki (2015), negative shocks to banks returns
Zt will increase the probability of future runs through two channels: first by

6Within our framework the management cost provides a simple way to motivate firesale
prices being substantially below normal prices. For a more explicit modelling of this phenom-
enom, see Kurlat (forthcoming).
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increasing banks’leverage they decrease expected recovery rates; second, as long
as shocks are persistent, a negative shock to Zt lowers the expected liquidation
value of banks assets. In this way the model captures that an unexpected
weakening of the banking system raises the likelihood of a run. As we show
next, there is an interesting feedback: a rise in the run probability will weaken
the banking system.

3 Numerical Examples

In this section we present several simulations to illustrate the dynamic interac-
tion between the macroeconomy and banking panics. We focus in particular on
how the model produces slow versus fast runs.
We begin with a description of the calibration and then turn to the simula-

tions.

3.1 Parameter Choices

The numerical examples here are meant to be illustrative of the model’s mech-
anisms that explain how banking fragility interacts with the real economy as
opposed to any kind of serious attempt to explain the data. In this spirit Table
1 lists the parameter values we use in the numerical experiments. We set the
discount factor β to its conventional value of .99. Households’endowment Wh,
which is meant to capture employment income, equals three times average cap-
ital income. The rest of the parameters are calibrated by comparing moments
from model simulations to their empirical counterparts as explained below.
We choose the value of α, the parameter controlling households managerial

costs, in order for the average proportion of capital intermediated by households,
E
{
Kh
t

}
, to equal one third of total capital. The parameters governing banker’s

survival probability, σ, and their seizure rate, θ, are set to obtain an average level
of banks leverage , E {φt} , of seven and an annual spread between the expected
return on bank assets and the deposit rate of two hundred basis points.
The endowment of new bankers W b is key in determining the dynamics of

the economy after a run, as total banks net worth in the period right after a
run has happened is given by (1 + σ)W b. Therefore, we set this parameter so
that the increase in credit spreads upon a bank run matches the increase in the
excess bond premium after the collapse of Lehmann in 2008.
We choose a value for the probability of observing a sunspot, π, in order for

bank runs to occur once every twenty years on average. The standard deviation
of productivity shocks is set to 2% in order to match the unconditional standard
deviation of linearly detrended US consumption from 1983Q1 to 2014Q4. And
finally, we choose a relatively low value for the serial correlation of Zt in order to
emphasize how transitory shocks to banks returns are endogenously propagated
within our setup.
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Parameter Description V alue
β Discount factor .99
Wh Household endowment .0378
α Household Managerial Cost .007
σ Banker′s Survival Probability .975
θ Banker′s Seizure Rate .2
W b New Bankers Endowment .001
π Probability of Sunspot .15
σz Std Deviation of Productivity Shocks .02
ρ Serial Correlation of Productivity .6

3.2 Impulse Responses: Recessions and Runs

Here we illustrate the workings of the model by showing the impulse response
of the economy to a transitory shock to productivity Zt. We first solve the
model nonlinearly, allowing for the incentive constraint to be only occasionally
binding. We next define a steady state for economy as the (non-run) state where
all variables remain constant as long as Zt stays at its mean. With the economy
in steady state we then trace out the effect of an unanticipated shock to Zt
assuming no other shocks occur in the future.
We consider two types of experiments. The first is a negative shock to Zt

which raises market anticipations of a run but where a run does not occur ex
post. In the second we allow for a run after two periods.
Figure 1 shows the first experiment. Here we consider a negative two stan-

dard deviation shock to Zt, which correspond to a four percent drop. Given
our calibration, the incentive constraint does not bind in steady state. How-
ever, the negative shock to Zt leads losses in returns on bank assets, causing
bank net worth to fall roughly twenty-five percent to the point where the in-
centive constraint binds. Symptomatic of the binding balance sheet constraint
is a sharp increase in the credit spread to nearly two hundred fifty basis points.
The increase in the spread, in turn, raises the cost of capital, magnifying the
drop in asset prices. In a production economy, the magnified increase in the cost
of capital would enhance the decline in investment and output. This kind of
financial accelerator/ credit cycle mechanism occurs independently of outright
banking panics (see e.g., Gertler and Kiyotaki 2010)).
There is however an additional channel that opens up as the weakening of

bank financial positions increases market perceptions of the probability of a
run pt, which increases from a steady state value of roughly 0.25 percent per
quarter to 3.50 percent per quarter in response to the shock. The increase in
the run probability places upward pressure on deposit spreads and downward
pressure on asset prices, weakening bank’s financial positions. The net effect is
to magnify the financial accelerator. Further, as a consequence, the rise in the
anticipation of a run magnifies the outflow of deposits from banks, which drop
roughly 12 percent helping generate something like the kind of "slow run" that
we described earlier.
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In Figure 2 we consider the same experiment, but this time we allow the
run to occur two periods after the shock. At least qualitatively, the experiment
captures the movement from a slow to fast run. In the first period the negative
shock produces an increase in the credit spread and withdrawal of a fraction of
the deposits, as depositors become increasingly nervous that the banks might
collapse. In the second period, there is a complete collapse of the banking
system as depositors coordinate on a "no rollover" equilibrium. As a result,
banks liquidate all their assets leading to a sharp drop in asset prices and rise in
spreads. Asset prices drop 20 percent to their liquidation values while spreads
increase to more than 300 basis points. Output (net management costs) drops
to eight percent below steady state, more than double the drop in Zt, reflecting
the ineffi ciency from the complete loss of banking services.
Absent a government policy intervention, recovery from the run is quite slow.

It takes time for banks to rebuild their balance sheets. Hindering the process is
that the probability of a subsequent run stays high. High excess returns after
the run permit banks to raise their leverage multiples. Doing so, however, raise
the run probability which has a dampening effect by placing downward pressure
on asset prices and upward pressure on spreads.

4 Conclusion

A salient feature of the Great Recession was a protracted period of turmoil in
financial markets that started with the credit crunch in the summer of 2007
and culminated an year later with the collapse of the entire shadow banking
system. The staeady withdrawal of funds from major financial institutions that
took place over the period was akin to a "slow run" that eventually turned into
a "fast run" around the collapse of Lehman Brothers in the fall of 2008. The
resulting disruption of financial intermediation was likely the major factor that
led the downturn to devolve into the Great Recession.
In this paper we build on existing literature to develop a model that can

endogenously generate this transition from a slow run to a fast run. Slow runs in
the model arise as negative retruns on banks assets raise creditors concerns about
financial stability, leading them to increase their assessment of the probability
that a bank run will materialize in the future and hence withdraw deposits from
banks. This in turn weakens banks balance sheet positions by forcing asset prices
down and increasing the cost of banks borrowing, so that depositors worries are
self confirming. When agents actually coordinate on a run equilibrium, a fast
run ensues where the entire banking sector is forced to liquidate assets at firesale
prices and the economy suffers a very long and deep recession.
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