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1 Introduction

Public school districts increasingly use value-added models (VAMs) to assess teacher and school effectiveness.

Conventional VAM estimates compare test scores across classrooms or schools after regression-adjusting for

students’ demographic characteristics and earlier scores. Achievement differences remaining after adjustment

are attributed to differences in teacher or school quality. Some districts use estimates of teacher value-added

to guide personnel decisions, while others use VAMs to generate “report cards” that allow parents to compare

schools.1 Value-added estimation is a high-stakes statistical exercise: low VAM estimates can lead to school

closure and teacher dismissals, while a growing body of evidence suggests the near-term achievement gains

produced by effective teachers and schools translate into improved outcomes in adulthood (see, e.g., Chetty

et al., 2011 and Chetty et al., 2014b for teachers and Angrist et al., forthcoming and Dobbie and Fryer, 2015

for schools).

Because the stakes are so high, the use of VAM estimates for teacher and school assessment remains

controversial. Critics note that VAM estimates are misleading if the available control variables are inadequate

to ensure ceteris paribus comparisons. VAM estimates are also likely to reflect considerable sampling error.

The accuracy of teacher value-added models is the focus of a large and expanding body of research, but this

work has yet to generate a consensus on the predictive value of VAM estimates or guidelines for “best practice”

VAM estimation (see, for example, Kane and Staiger, 2008; Rothstein, 2010; Koedel and Betts, 2011; Kinsler,

2012; Kane et al., 2013; Chetty et al., 2014a; Bacher-Hicks et al., 2014; and Rothstein, 2014). The VAM

research agenda has also been tilted towards teachers; in particular, while the social significance of school-

level VAMs is similar to that of teacher VAMs, validation of VAMs for schools has received comparatively

less attention than tests of VAMs for teachers.

The proliferation of partially-randomized urban school assignment systems provides a new tool for mea-

suring school value-added. Centralized assignment mechanisms based on the theory of market design, includ-

ing those used in Boston, Chicago, Denver, New Orleans, and New York, use information on parents’ prefer-

ences over schools and schools’ priorities over students to allocate scarce admission offers. These matching

algorithms typically use random sequence numbers to distinguish between students with the same priorities,

thereby creating stratified student assignment lotteries. Similarly, independently-run charter schools often

use admissions lotteries when oversubscribed. Scholars increasingly use these lotteries to identify causal

effects of enrollment in various school sectors, including charter schools, pilot schools, small high schools,

and magnet schools (Cullen et al., 2006; Abdulkadiroğlu et al., 2011; Angrist et al., 2013; Dobbie and Fryer,

2013; Bloom and Unterman, 2014; Deming et al., 2014). Lottery-based estimation of individual school value-

added is less common, however, reflecting the fact that lottery samples for many schools are small, while

other schools are undersubscribed.

1The Education Commission of the States notes that Alabama, Arizona, California, Florida, Indiana, Louisiana, Maine,
Mississippi, New Mexico, North Carolina, Texas, Utah, and Virginia issue letter-grade report cards with grades determined at
least in part by adjusted standardized test scores (http://www.ecs.org/html/educationissues/accountability/stacc_intro.
asp).
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This paper develops econometric methods that leverage school admissions lotteries for VAM testing and

estimation, accounting for the partial coverage of lottery data. Our first contribution is the formulation

of a new lottery-based test of VAM bias. This test builds on recent experimental and quasi-experimental

VAM validation strategies, including the work of Kane and Staiger (2008), Deutsch (2012), Kane et al.

(2013), Chetty et al. (2014a) and Deming (2014). In contrast with these earlier studies, however, we test

the complete set of overidentifying restrictions implicit in an empirical VAM framework augmented with

admissions lotteries. The test developed here asks whether conventional VAM estimates correctly predict

the effect of randomized admission at every school that has a lottery.

Application of this test to data from Boston suggests conventional VAM estimates are biased and may

be misleading. Motivated by this finding, we develop and estimate a hierarchical random coefficients model

that describes the joint distribution of value-added, selection bias, and lottery compliance across schools.

The model is estimated via a simulated minimum distance (SMD) procedure that matches moments of the

distribution of conventional VAM estimates, lottery reduced forms, and first stages to those predicted by

the random coefficients structure. The SMD estimates are then used to compute empirical Bayes posterior

predictions of individual school value-added. The hybrid VAM estimates that emerge from this procedure op-

timally combine relatively imprecise but unbiased instrumental variables (IV) estimates derived from lotteries

with biased but relatively precise ordinary least squares (OLS) estimates. Importantly, the hybrid estimates

make efficient use of the available lottery information without requiring a lottery for every school. Hybrid

estimates for undersubscribed schools are improved by information on the distribution of bias contributed

by schools with oversubscribed lotteries.

We assess the practical consequences of bias in conventional VAM estimates and the payoff to hybrid

estimation in a Monte Carlo simulation of the random coefficients model. Simulation results show that despite

the bias in conventional VAM estimates, policy decisions based on estimates that rely on achievement changes

from grade to grade or that control for baseline test scores are likely to boost achievement. For example,

replacing the lowest-ranked Boston school with an average school is predicted to generate a gain of more than

0.2 standard deviations for affected students, two-thirds of the benefit that could be attained with knowledge

of true value-added. Hybrid estimation reduces the root mean squared error of VAM estimates by about

30 percent, and closure decisions using hybrid estimates yield further gains on the order of 0.1 standard

deviations. These findings suggest that bias in conventional VAMs is not severe enough to fully offset the

benefits of replacing schools that appear to be low-performing, while the addition of lottery information

improves policy targeting considerably.

The rest of the paper is organized as follows. The next section describes the Boston data used for VAM

testing and estimation, and Section 3 describes the conventional value-added framework as applied to these

data. Section 4 derives our VAM validation test and discusses test implementation and results. Section 5

outlines the random coefficients model and empirical Bayes approach to hybrid estimation, while Section

6 reports estimates of the model’s hyperparameters and the resulting posterior predictions of value-added.
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Section 7 discusses the policy simulations. Finally, Section 8 concludes with remarks on how the framework

outlined here might be used in other settings.

2 Setting and Data

2.1 Boston Public Schools

Boston public school students can choose from a diverse set of options, including traditional Boston Public

School (BPS) district schools, charter schools, and pilot schools. As in most districts, Boston’s charter

schools are publicly funded but free to operate within the confines of their charters. For the most part,

charter staff are not covered by collective bargaining agreements and other BPS regulations.2 Boston’s

pilot school sector arose as a union-supported alternative to charter schools, developed jointly by the BPS

district and the Boston Teachers Union. Pilot schools are part of the district but typically operate with more

flexibility over school budgets, scheduling, and curriculum than do traditional public schools. On the other

hand, pilot school teachers work under collective bargaining provisions similar to those in force at traditional

public schools.

Applicants to traditional public and pilot schools rank between three and ten schools as the first step

in a centralized match (students not finishing elementary or middle school who are happy to stay where

they are need not participate in the match). With student preferences in hand, applicants are assigned to

schools via a student-proposing deferred acceptance mechanism (described in Abdulkadiroğlu et al., 2006).

This mechanism combines student preference rankings with a strict priority ranking over students for each

school. Priorities are determined by whether an applicant is already enrolled at the school and therefore

guaranteed admission, has a sibling enrolled at the school, or lives in the school’s walk-zone. Ties within

these coarse priority groups are broken by random sequence numbers, which we refer to as lottery numbers.

In an evaluation of the pilot sector exploiting centralized random assignment, Abdulkadiroğlu et al. (2011)

find mostly small and statistically insignificant effects of pilot school attendance relative to the traditional

public school sector.

In contrast with the centralized match that assigns seats at traditional and pilot schools, charter applicants

apply to individual charter schools separately in the spring of the year they hope to enter. By Massachusetts

law, oversubscribed charter schools must select students in public admissions lotteries, with the exception

of applicants with siblings already enrolled in the charter, who are guaranteed seats. Charter offers and

centralized assignment offers are made independently; students applying to the charter sector can receive

multiple offers. In practice, some Boston charter schools offer all of their applicants seats, while others fail

to retain usable information on admissions lotteries. Studies based on charter lotteries show that Boston

charter schools boost test scores and increase college attendance (see, for example, Abdulkadiroğlu et al.,

2The charter sector includes both “Commonwealth” charters, which are authorized by the state and run as independent
school districts, and “in-district” charters, which are authorized and overseen by the Boston School Committee.
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2011; Angrist et al., forthcoming).

2.2 Data and Descriptive Statistics

The data analyzed here consist of a sample of roughly 28,000 sixth-grade students attending 51 Boston

traditional, pilot, and charter schools in the 2006-2007 through 2013-2014 school years. In Boston, sixth

grade marks the first grade of middle school, so most rising sixth graders participate in the centralized match.

For our purposes, baseline test scores come from fifth grade Massachusetts Comprehensive Assessment System

(MCAS) tests in math and English Language Arts (ELA), while outcomes are measured at the end of sixth

grade. Test scores are standardized to have mean zero and unit variance in the population of Boston charter,

pilot, and traditional public schools, separately by subject, grade, and year. Other variables used in the

empirical analysis are school enrollment, race, sex, subsidized lunch eligibility, special education status,

English-language learner status, and suspensions and absences. Appendix A describes the administrative

files and data processing conventions used to construct the working extract.

Our analysis combines data from the centralized traditional and pilot match with lottery data from

individual charter schools. The BPS lottery instruments code offers at applicants’ first choice (highest

ranked) middle schools in the match. In particular, BPS lottery offers indicate applicants whose lottery

numbers are at least as high as the worst number offered a seat at their first-choice school, among those

in the same priority group. Conditional on application year, first-choice school, and an applicant’s priority

at that school, offers are randomly assigned. Charter lottery offer instruments indicate offers made on the

night of the admissions lottery at each charter school. These offers are randomly assigned for non-siblings

conditional on the target school and application year.

The schools and students analyzed here are described in Table 1. We exclude schools serving fewer than

25 sixth graders in each year, leaving a total of 25 traditional public schools, 9 pilot schools, and 17 charter

schools. Of these, 28 schools (16 traditional, 7 pilot, and 5 charter) had at least 50 students subject to

random assignment. Applicants to these 28 schools constitute our lottery sample. Conventional ordinary

least squares (OLS) value-added models are estimated in a sample of 27,864 Boston sixth graders with

complete baseline, demographic, and outcome information; 8,718 of these students are also in the lottery

sample.

Overall, lottery applicants look broadly similar to the larger BPS population. As shown in Table 2,

lotteried students are slightly more likely to be African American and to qualify for a subsidized lunch, and

somewhat less likely to be white or to have been suspended or recorded as absent in fifth grade. Table 2 also

documents the comparability of students who were and were not offered seats in a lottery. These results,

reported in columns 3-6, compare the baseline characteristics of lottery winners and losers, controlling for

assignment strata. Consistent with conditional random assignment of offers, the estimated differences by

offer status are small and not significantly different from zero, both overall and within school sectors.
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3 Value-added Framework

As in earlier investigations of school value-added, the analysis here builds on a constant-effects causal model.

This reflects a basic premise of the VAM framework: internally valid treatment effects from earlier years and

cohorts are presumed to have predictive value for future cohorts. Student i’s potential test score at school

j, Yij , is therefore written as the sum of two non-interacting components, specifically:

Yij = µj + ai, (1)

where µj is the mean potential outcome at school j and ai is student i’s “ability,” or latent achievement

potential. This additively-separable form implies that causal effects are the same for all students. The

constant effects framework focuses attention on the possibility of selection bias in VAM estimates rather

than treatment effect heterogeneity (though we briefly explore heterogeneity as well).

A dummy variable, Dij , is used to indicate whether student i attended school j in sixth grade. The

observed sixth-grade outcome for student i can therefore be written

Yi = Yi0 +
J∑
j=1

(Yij − Yi0)Dij

= µ0 +
J∑
j=1

βjDij + ai. (2)

The parameter βj ≡ µj − µ0 measures the causal effect of school j relative to an omitted reference school

with index value 0. In other words, βj is school j’s value-added.

Conventional value-added models use regression methods in an attempt to eliminate selection bias. Write

ai = X ′iγ + εi, (3)

for the regression of ai on a vector of controls, Xi, which includes lagged test scores. Note that E [Xiεi] = 0

by definition of γ. This decomposition implies that observed outcomes can be written

Yi = µ0 +
J∑
j=1

βjDij +X ′iγ + εi. (4)

It bears emphasizing that equation (4) is a causal model: εi is defined so as to be orthogonal to Xi, but need

not be uncorrelated with the school attendance indicators, Dij .

We’re interested in how OLS regression estimates compare with the causal parameters in equation (4).
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We therefore define population regression coefficients in a model with the same conditioning variables:

Yi = α0 +
J∑
j=1

αjDij +X ′iΓ + vi. (5)

This is the population projection, so the residuals, vi, are necessarily orthogonal to all right-hand-side

variables, including the school attendance dummies.

Regression model (5) has a causal interpretation when the parameters in this equation coincide with those

in the causal model, equation (4). This in turn requires that school choices be unrelated to the unobserved

component of student ability, an assumption that can be expressed as:

E [εi|Dij ] = 0; j = 1, ..., J. (6)

Restriction (6), sometimes called “selection-on-observables,” means that αj = βj for each school. In practice,

of course, regression estimates need not have a causal interpretation; rather, they may be biased. This

possibility is represented by writing

αj = βj + bj ,

where the bias parameter bj is the difference between the regression and causal parameter for school j.

4 Validating Conventional VAM

4.1 Test Procedure

The variation in school attendance generated by admission lotteries at oversubscribed schools allows us

to assess the causal interpretation of conventional VAM estimates. A vector of dummy variables, Zi =

(Zi1, .., ZiL)′, indicates lottery offers to student i for seats at L oversubscribed schools. Offers at school ` are

randomly assigned conditional on a set of lottery-specific stratifying variables, Ci`. These variables include

an indicator for applying to school ` and possibly other variables such as application cohort and walk zone

status. The vector Ci = (C ′i1, .., C ′iL)′ collects these variables across all lotteries. In practice Ci may include

the vector of value-added controls Xi as well.

We assume that lottery offers are (conditionally) mean-independent of student ability. In other words,

E[εi|Ci, Zi] = λ0 + C ′iλc, (7)

for a vector of parameters λ0 and λc. This implies that admission offers are valid instruments for school

attendance after controlling for lottery assignment strata.

With fewer lotteries than schools (that is, L < J), the restrictions in (7) are insufficient to identify the

parameters of the causal model, equation (4). Even so, these restrictions can be used to test implications of
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the conventional value-added framework. Selection-on-observables implies that vi = εi, so under assumption

(6) the moment conditions (7) are equivalent to

E[vi|Ci, Zi] = λ0 + C ′iλc. (8)

The restrictions described by (8) generate an overidentification test of the sort widely used with IV

estimators. In particular, equation (8) can be tested by checking whether φz = 0 in the regression model

vi = φ0 + C ′iφc + Z ′iφz + ωi. (9)

In practice, equation (9) is estimated using sample OLS residuals, v̂i, rather than population residuals,

adjusting inference to account for first-step estimation of the residuals (as described in Appendix B.1). A

conventional instrumental variables (IV) overidentification test statistic has degrees of freedom given by

the degree of overidentification; the orthogonality restrictions motivating a just-identifed IV model can’t

be tested. Here, however, instruments are unnecessary under the null hypothesis of VAM validity, so the

relevant test procedure has L degrees of freedom and even a single lottery generates a testable restriction.

Two variations on this test procedure help to clarify the nature of the restrictions generated by admissions

lotteries. First, note that the VAM regression residual, vi, is necessarily the difference between observed

achievement and the fitted values generated by conventional OLS VAM estimation, denoted Ŷi. The two

regressions

Yi = ρ0 + C ′iρc + Z ′iρz + ηi, (10)

and

Ŷi = ψ0 + C ′iψc + Z ′iψz + ui, (11)

should therefore produce the same result. In other words, testing the vector equality (again, a set of L

restrictions)

ρz = ψz (12)

is the same as testing φz = 0 in (9). This version of the test captures the intuition that the effects of lottery

offers on test scores should equal their effects on the predictions generated by an unbiased value-added model.

A further revealing implication of the selection-on-observables restriction builds on (12). Specifically,

(10) and (11) can be interpreted as the reduced form and first stage equations associated with a two-stage

least squares procedure that uses lottery offers to instrument a model with Yi on the left-hand side and Ŷi,

treated as an endogenous variable, on the right. In what follows, we refer to this IV estimate as the VAM

“forecast coefficient,” since the resulting estimate gauges the predictive value of VAM estimates. Using all

lottery offers as instruments, or using them one at a time, IV estimates of the forecast coefficient should

equal 1. This too amounts to a set of L restrictions.
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The IV interpretation of the restrictions generated by lotteries links our approach with the tests of

“forecast bias” implemented in previous efforts to validate VAMs (Kane and Staiger, 2008; Kane et al.,

2013; Deming, 2014; Chetty et al., 2014a). These tests ask whether the coefficient on predicted value-added

equals one in IV procedures similar to the one described here. Previously applied tests have one degree of

freedom, however, even though the underlying models generate as many testable restrictions are there are

lottery (or other quasi-experimental) instruments in the relevant data set. Our test evaluates all of these

overidentifying restrictions jointly, exhausting the lottery information in the data. In practice this means

that the test procedure looking only at whether a single over-identified instrumental variables estimate of
ρz/ψz is close to 1 might accept the null hypothesis if ρz = ψz on average across lotteries, even while deviations

from equality might be large and statistically significant for specific lotteries.

4.2 Test Results

The conventional VAM setup assessed here includes four models. The first, referred to as “uncontrolled,”

adjusts only for year effects; estimates from this model are essentially school average test score levels. The

second, a “demographic” specification, includes indicators for sex, race, subsidized lunch eligibility, special

education, English-language learner status, and counts of baseline absences and suspensions. The third,

labeled the “lagged score” model, adds cubic functions of baseline math and ELA test scores. Lagged score

specifications of this type are at the heart of the econometric literature on value-added models (Kane et al.,

2008; Rothstein, 2010; Chetty et al., 2014a). Finally, we consider a “gains” specification that replaces score

levels with grade-to-grade score changes in the demographic specification. This model parallels commonly

seen accountability policies that measure test score growth.3

Figure 1 summarizes the value-added estimates generated by sixth-grade math scores.4 Each bar reports

an estimated standard deviation of αj across schools, expressed in test score standard deviation units (σ)

and adjusted for estimation error.5 Adding controls for demographic variables and previous scores reduces

the standard deviation of αj from 0.5σ in the uncontrolled model to about 0.2σ in the lagged score and gains

models. This implies that observed student characteristics explain a substantial portion of the variation in

school test score levels. The last four bars in Figure 1 report estimates of within-sector value-added standard

deviations, constructed using residuals from regressions of α̂j on dummies for schools in the charter and pilot

school sectors. Controlling for sector effects reduces variation in value-added, suggesting the presence of large

differences in value-added across sectors.

3The gains specification can be motivated as follows: suppose that human capital in grade g, denoted Aig , equals lagged
human capital plus school quality, so that Aig = Aig−1 + qig where qig =

∑
j
βjDij + ηig and ηig is a random component

independent of school choice. Suppose further that test scores are noisy proxies for human capital, so that Yig = Aig + νig
where νig is classical measurement error. Finally, suppose that school choice in grade g is determined solely by Aig−1 and
variables unrelated to achievement. Then a lagged score model that controls for Yig−1 generates biased estimates, but a gains
model with Yig − Yig−1 as the outcome variable measures value-added correctly.

4We focus on math scores because value-added for math appears to be more variable across schools than value-added for
ELA. Bias tests for ELA, presented in Appendix Table A1, yield similar results.

5The estimated standard deviations plotted in the figure are given by σ̂α = ( 1
J

∑
j
[(α̂j − µ̂α)2 − SE(α̂j)2])1/2, where µ̂α

is mean value-added and SE(α̂j) is the standard error of α̂j .
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Table 3 describes the results of tests for bias in conventional VAMs. The first row reports IV estimates

of the VAM forecast coefficient, that is, the coefficient generated by instrumenting VAM fitted values with

lottery offers as in equations (10) and (11). The estimator used here is an optimal IV procedure that is

asymptotically efficient under heteroskedasticity (described by White, 1982). The second row reports first

stage F -statistics measuring the strength of the relationship between lottery offers and predicted value-

added. A strong first stage is an important requirement for the IV version of the test: with a weak first

stage, IV estimates are biased towards the corresponding OLS estimates, which in this case equal one by

construction.6 A weak first stage therefore makes the VAM bias test less likely to reject. The F -statistics in

columns 1-4 range from 26 to 46, suggesting finite-sample bias is unlikely to be a concern in this application.

The remaining rows of Table 3 report p-values for three VAM validity tests. The first is for the null

hypothesis that the forecast coefficient equals one. The second tests the associated set of overidentifying

restrictions, which require that IV estimates of the forecast coefficient be the same for all lotteries, though

not necessarily equal to one. The third tests overidentifying restrictions plus the restriction of a common

value of one for each lottery-generated forecast, implemented by regressing conventional VAM residuals on

lottery offers as in equation (9). Since asymptotic critical values for overidentification tests can be inaccurate,

the table also reports p-values for the third test based on a version of the bootstrap refinement developed in

Hall and Horowitz (1996), implemented via the Bayesian bootstrap (see Appendix B.1 for details).

The results of these tests suggest that conventional value-added estimates are biased. As can be seen

in columns 1 and 2 of Table 3, the uncontrolled and demographic specifications generate forecast coefficient

estimates of about 0.40 and 0.65, and all three specification tests reject the null hypothesis of VAM validity

at conventional levels for these models. Not surprisingly, however, the lagged score and gains models do

better. The forecast coefficient estimates for the lagged score and gains specifications, reported in columns 3

and 4 of the table, equal 0.86 and 0.95; the latter estimate is not statistically different from one. Importantly,

however, the overidentifying restrictions for both of these richly controlled models are rejected, as are the

full set of restrictions implied by the conventional VAM framework.7

The source of these rejections can be seen in Figure 2, which plots reduced form estimates of the effect

of lottery offers on test scores against the corresponding first-stage estimates of the effect of lottery offers

on conventional VAM fitted values. Each panel also shows a line through the origin with slope equal to

the relevant IV coefficient from Table 3 (plotted as a solid line) along with the 45-degree line (plotted as

a dashed line). In other words, Figure 2 gives a visual instrumental variables representation of the VAM

forecast coefficient. A valid VAM should generate points along the 45-degree line, with deviations due solely

to sampling error. Consistent with the results in Table 3, points for the uncontrolled and demographic spec-

ifications are far from the line and many deviations are at least marginally significant (deviations significant
6The OLS version of this model is a regression of test scores on VAM fitted values. When estimated in the same sample

as the value-added model, with no additional controls, any regression of a dependent variable on the corresponding OLS fitted
values necessarily produces a coefficient of one. In practice, the OLS and IV specifications used here differ in that the latter
control for lottery strata and exclude some students.

7As a point of comparison, we also tested VAM validity in the Charlotte-Mecklenberg lottery data analyzed by Deming
(2014). Tests of the full set of conventional VAM restrictions in these data generate a bootstrap-refined p-value of 0.002.

10



at 10% or better are shaded). Slopes are much closer to one for the lagged score and gains specifications, but

points for many individual lotteries remain far from the diagonal, leading to rejection of the overidentifying

restrictions implied by the conventional VAM framework.

The results in Figure 2 highlight the difference between the testing strategy developed here and previous

efforts to validate VAMs. Many discrepancies between VAM predictions and lottery effects arise from points

near the vertical axis and far from the horizontal axis, implying negligible predicted effects but large actual

effects of random offers. Such lotteries contribute weak instruments to the IV model and therefore have

little influence on the overall forecast coefficient. These points clearly indicate that the predictions of the

value-added model are violated, however, a finding that is captured by the overidentification test results.

Earlier validation strategies focus on the forecast coefficient, ignoring overidentifying restrictions. Our test

reveals that forecast bias may be small, even while conventional VAM estimates produce a significantly

biased account of score gains from random assignment to some schools.

Figure 2 also reveals that much of the conventional VAM estimates’ predictive power is generated by

charter school lotteries, which contribute large first stage and reduced form effects. The relationship between

OLS value-added and lottery estimates is weaker in the pilot and traditional public school sectors. This is

confirmed in column 5 of Table 3, which reports results for the lagged score specification excluding charter

lotteries. At 0.55, the estimated forecast coefficient for this model is much farther from one than the forecast

coefficient estimate in the full sample, though the absence of charter lotteries also reduces the precision of

the estimate.8 The corresponding p-value from a test of all restrictions is 0.002, so the conventional VAM

specification can also be rejected without charter lotteries.

4.3 Heterogeneity vs. Bias

The test results in Table 3 show that conventional VAM estimates fail to predict the changes in achievement

generated by randomly assigned offers of admission. In a constant effects model this implies that the

conventional estimates are biased. In a world of heterogeneous causal effects, however, these test results

might instead signal divergence between the local average treatment effects (LATEs) identified by lottery

instruments and possibly more representative effects captured by OLS (Imbens and Angrist, 1994; Angrist

et al., 1996).

It bears emphasizing that rejections driven by effect heterogeneity pose a general problem for the value-

added framework. In the presence of heterogeneous school effects, OLS VAM estimators capture a variance-of-

treatment weighted average causal effect that need not have predictive value for specific individuals (Angrist,

1998). The value-added enterprise is built on a foundation of limited variation in causal effects: the goal

here is prediction, and value-added estimates are of little use if they fail to reliably predict the effects of

8The first stage F -statistic for the specification without charter lotteries is 11.2, suggesting weak instruments might be a
problem. It’s encouraging, therefore, that the LIML estimate of the forecast coefficient for this specification is virtually the
same as the IV estimate.
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changing school assignments.9 Nevertheless, it’s worth exploring the roles of bias and effect heterogeneity in

driving the rejections in Table 3.

Two analyses shed light on the distinction between heterogeneity and bias. The first is a set of bias

tests using OLS VAM specifications that allow school effects to differ across covariate-defined “types” of

students (e.g. special education students or those with low levels of baseline achievement). Intuitively, this

approach accounts for variation in school effects across covariate cells that may be weighted differently by

IV and OLS; see Appendix B.2 for a formal justification of this strategy for quantifying heterogeneity. The

second analysis tests for bias in OLS VAMs estimated in the lottery sample. This approach asks whether

differences between IV and OLS are caused by differences between students subject to lottery assignment

and the general student population.

The results of these analyses suggest the test results in Table 3 reflect bias rather than heterogeneity.

Panel A of Table 4 reports test results for a version of the lagged score model with school effects that vary

across student types. Column 2 shows the results of allowing VAM estimates to differ by year, thereby

accommodating “drift” in school effects over time; Chetty et al. (2014a) document such drift in teacher

value-added. Columns 3-5 show results for subgroups defined by subsidized lunch eligibility, special education

status, and baseline test score terciles. Finally, column 6 reports the test results from models that allow

value-added to differ across cells constructed by fully interacting race, sex, subsidized lunch eligibility, special

education, English-language learner status, and baseline score tercile. Each variation generates a clear

rejection, in spite of the fact that the underlying subsample and cell-specific VAM estimates are relatively

imprecise. Similarly, as can be seen in panel B of Table 4, test statistics constructed for the quasi-experimental

sample also reject the null hypothesis of conventional VAM validity. These findings suggest that differences

between lottery applicants or compliers and other students are not the primary force behind the rejections

in Table 3.

5 The Distribution of School Effectiveness

The test results in Table 3 suggest conventional VAM estimates are biased. At the same time, Figure 2 shows

that OLS VAM estimates are correlated with lottery reduced forms, while the estimated forecast coefficients

for the lagged score and gains specifications are close to one. OLS estimates would therefore seem to be

of value even if imperfect. This section develops a hybrid estimation strategy that combines lottery and

OLS estimates in an effort to produce the most accurate value-added estimates possible. We also develop a

strategy to gauge the consequences of accountability policies that rely on value-added models.

9See Condie et al. (2014) for a discussion of the hazards of teacher value-added estimation with heterogeneous effects.
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5.1 A Random Coefficients Lottery Model

The hybrid estimation strategy uses a random coefficients model to describe the joint distribution of value-

added, bias, and lottery compliance across schools. The model is built on a set of OLS, lottery reduced form,

and first stage estimates. Let ρ`z denote the element of the reduced form coefficient vector, ρz, corresponding

to lottery offer dummy Zi`. Equations (4) and (7) imply that

ρ`z =
J∑
j=1

π`jβj ,

where π`j is the first-stage coefficient on Zi` from a regression of Dij on Zi and Ci.10 This expression shows

that the lottery at school ` identifies a linear combination of value-added parameters, with coefficients given

by the shares of students shifted into or out of each school by the `th lottery offer. Estimates of the first-stage

coefficients, π`j , can be obtained by substituting Dij for Yi on the left-hand side of (10).

OLS, reduced form, and first stage estimates are modeled as noisy measures of school-specific parameters,

which are in turn modeled as draws from a distribution of random coefficients in the population of schools.

Specifically, the estimates are written:

α̂j = βj + bj + eαj ,

ρ̂`z =
∑
j

π`jβj + eρ` , (13)

π̂`j = π`j + eπ`j ;

where eαj , e
ρ
` and eπ`j are mean-zero estimation errors that vanish as within-school and within-lottery samples

tend to infinity. Subject to the usual asymptotic approximation, these errors can be modeled as normally

distributed with a known covariance structure. Table 1 shows that the OLS and lottery estimation samples

used here typically include hundreds of students per school, so the use of asymptotic results seems justified.

The second level of the model treats the school-specific parameters βj , bj and
{
π`j
}L
`=1 as draws from a

joint distribution of causal effects, bias, and lottery compliance patterns. The effect of admission at school

` on the probability of attending this school is parameterized as

π`` = exp (δ`)
1 + exp(δ`)

, (14)

where the parameter δ` can be viewed as the mean utility in a binary logit model predicting compliance with

a random offer of a seat at school `. Likewise, the effect of an offer to attend school ` 6= j on attendance at

10Conditional random assignment of admission offers implies that Zi is conditionally independent of baseline covariates Xi
in addition to εi. Zi is therefore conditionally mean independent of all terms in equation (4) except

∑
j
βjDij , so a regression

of this quantity on Zi controlling for Ci produces ρz .
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school j is modeled as

π`j = −π`` ·
exp

(
ξj + ν`j

)
1 +

∑
k 6=` exp

(
ξk + ν`k

) . (15)

In this expression, the quantity ξj+ν`j is the mean utility for school j in a multinomial logit model predicting

alternative school choices among students that comply with offers in lottery `. The parameter ξj allows for

the possibility that some schools are systematically more or less likely to serve as fallback options for lottery

losers. ν`j is a random utility shock specific to school j in the lottery at school `. The parametrization in (14)

and (15) ensures that lottery offers increase the probability of enrollment at the target school and reduce

enrollment probabilities at other schools, and that offer effects on all probabilities are between zero and one

in absolute value.11

Each school is characterized by a vector of four parameters: a value-added coefficient, βj ; a selection bias

term, bj ; an offer compliance utility, δj ; and a mean fallback utility, ξj . These are modeled as draws from

a prior distribution in a hierarchical Bayesian framework. A key assumption in this framework is that the

distribution of VAM bias is the same for schools with and without oversubscribed lotteries. This assumption

allows the model to “borrow” information from schools with lotteries and to generate posterior distributions

for non-lottery schools that account for bias in conventional VAM estimates. Importantly, however, we allow

for the possibility that average value-added may differ between schools with and without lotteries (Section

6.2 investigates the empirical relationship between over-subscription and bias).

Let Qj denote an indicator for whether quasi-experimental lottery data are available for school j. School-

specific parameters are modeled as draws from the following conditional multivariate normal distribution:

(βj , bj , δj , ξj)|Qj ∼ N ((β0 + βQQj , b0, δ0, ξ0),Σ) . (16)

The parameter βQ capture the possibility that average value-added differs for schools with lotteries. The

matrix Σ describes the variances and covariances of value-added, bias, and first stage utility parameters,

and is assumed to be the same for lottery and non-lottery schools. Finally, lottery and school-specific utility

shocks are also modeled as conditionally normal:

ν`j |Qj ∼ N
(
0, σ2

ν

)
. (17)

The vector θ ≡ (β0, βQ, b0, δ0, ξ0,Σ, σ2
ν) contains the hyperparameters governing the prior distribution

of school-specific parameters. Our empirical Bayes (EB) framework first estimates these hyperparameters

and then uses the estimated prior distribution to compute posterior value-added predictions for individual

schools. Some of the specifications considered below extend the setup outlined here to allow the parameter

vector (β0, b0, δ0, ξ0) to vary across school sectors (traditional, charter, and pilot).

11This parametrization implies that 0 < π`` < 1, −1 < π`j < 0 for j 6= `, and π`` > −
∑J

j=1,j 6=` π
`
j . The total probability∑J

j=1 π
`
j is minus the effect of an offer at the omitted school with index zero, also guaranteed to be between −1 and 0.
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5.2 Simulated Minimum Distance Estimation

We estimate hyperparameters by simulated minimum distance (SMD), a variant of the method of simulated

moments (McFadden, 1989). SMD focuses on moments that are determined by the parameters of interest,

minimizing deviations between sample moments and the corresponding model-based predictions. Our SMD

implementation uses means, variances, and covariances of functions of the OLS value-added estimates α̂j ,

lottery reduced forms, ρ̂`z, and first stage coefficients, π̂`j . For example, one moment to be fit is the average

α̂j across schools; another is the cross-school variance of the α̂j . Other moments are means and variances

of reduced form and first stage estimates across lotteries. Appendix B.3 lists all moments used for SMD

estimation.

The fact that the moments in this context are complicated functions of the hyperparameters motivates a

simulation approach. For example, the mean reduced form is E[ρz` ] =
∑
j E
[
π`jβj

]
. This is the expectation

of the product of a normally distributed random variable with a ratio involving correlated log-normals, a

moment for which no analytical expression is readily available. Moments are therefore simulated by fixing

a value of θ and drawing a vector of school-level parameters using equations (16) and (17). Likewise, the

simulation draws a vector of the estimation errors in (13) from the joint asymptotic distribution of the OLS,

reduced form and first stage estimates. The parameter and estimation draws are combined to generate a

simulated vector of parameter estimates for the given value of θ. Finally, these are used to construct a set of

model-based predicted moments. The SMD estimator minimizes a quadratic form in the difference between

predicted moments and the corresponding moments observed in the data. As described in Appendix B.3,

the SMD estimates reported here are generated by a two-step procedure with an efficient weighting matrix

in the second step.

5.3 Empirical Bayes Posteriors

Studies of teacher and school value-added typically employ EB strategies that generate posterior predictions

of value-added by shrinking noisy teacher- and school-specific estimates towards the grand mean, reducing

mean squared error (see, e.g., Kane et al., 2008 and Jacob and Lefgren, 2008). In a conventional VAM model

where OLS estimates are presumed unbiased, the posterior mean value-added for school j is

E [αj |α̂j ] = σ2
α

σ2
α + V ar(eαj ) α̂j +

(
1− σ2

α

σ2
α + V ar(eαj )

)
α0, (18)

where α0 and σ2
α are the mean and variance of the conventional OLS VAM estimates. An EB posterior mean

plugs estimates of these hyperparameters into (18).

Our setup extends this idea to a scenario where the estimated α̂j may be biased but lottery estimates are

available to reduce bias. The price for eliminating bias is a loss of precision: because IV uses only the variation

generated by random assignment, lottery-based estimates are much less precise than the corresponding OLS
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estimates. Some schools are also undersubscribed, so there are fewer instruments than schools and a lottery-

based IV model is underidentified. The empirical Bayes approach trades off the advantages and disadvantages

of OLS and IV to generate minimum mean squared error (MMSE) estimates of value-added.12

To see how this trade-off works in our setting, suppose the first stage parameters, π`j , are known rather

than estimated (i.e. eπ`j = 0 ∀`, j). Let Π denote the L × J matrix of these parameters, and let β, α̂ and

ρ̂z denote vectors collecting βj , α̂j and ρ̂`z. Appendix B.4 shows that the posterior distribution for β in this

case is multivariate normal with mean:

E [β|α̂, ρ̂z] = W1(α̂− b0ι) +W2ρ̂z + (IJ −W1 −W2Π)β0ι, (19)

where ι is a J × 1 vector of ones and IJ is the J-dimensional identity matrix. Posterior mean value-added is

a linear combination of OLS estimates net of the mean bias, (α̂ − b0ι), lottery reduced form estimates, ρ̂z,

and mean value-added, β0ι. The weighting matrices, W1 and W2, are functions of the first stage parameters

and the covariance matrix of estimation error, value-added, and bias. Expressions for these matrices appear

in Appendix B.4.

As with conventional EB posteriors, an empirical Bayes version of the posterior mean plugs first-step

estimates of b0, β0, W1, and W2 into equation (19). With known first stage coefficients, hyperparameter

estimation is simplified by noting that

E[ρ̂`z] =
∑
j π

`
jβ0,

E[α̂j ] = β0 + b0.

The mean hyperparameters, β0 and b0, may therefore be estimated as

β̂0 = 1
L

∑
`

ρ̂`z∑
j π

`
j

,

b̂0 = 1
J

∑
j α̂j − β̂0.

The hyperparameters that determine W1 and W2 may likewise be estimated from second moments of α̂j and

ρ̂`z.

Suppose that all schools are oversubscribed, so L = J . In this case, the first stage matrix, Π, is square;

if it is also full rank, the parameters of equation (4) are identified using lotteries alone. A vector of IV

value-added estimates may then be computed by indirect least squares as β̂ = Π−1ρ̂z. The posterior mean

in equation (19) becomes

E [β|α̂, ρ̂z] = W1(α̂− b0ι) + W̃2β̂ + (IJ −W1 − W̃2)β0ι, (20)
12This is in the spirit of the combination estimators discussed by Judge and Mittlehammer (2004; 2005; 2007). Chetty and

Hendren (2015) apply related techniques in an analysis of neighborhood effects.
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for W̃2 = W2Π. This expression reveals that when a lottery-based value-added model is identified, the

posterior mean for value-added is a weighted average of IV estimates, OLS estimates net of mean bias, and

mean value-added, with weights that sum to the identity matrix. The weights are chosen so as to minimize

(asymptotic) mean-squared error.

In practice, some lotteries are undersubscribed, so IV estimates of value-added can’t be computed. Nev-

ertheless, equation (19) shows that predictions at schools without lotteries may still be improved by lottery

information from other schools. Lottery reduced form parameters contain information for all fallback schools,

including for those without their own lotteries. This is a consequence of the relationship described by equa-

tion (13), which shows that the reduced form for any school with a lottery depends on the value-added of all

other schools that applicants to this school might attend. If π`j 6= 0 the reduced form for lottery ` contains

information that can be used to improve the posterior prediction of βj .

Finally, equation (19) reveals how knowledge of conventional VAM bias can be used to improve posterior

predictions even for schools that are never lottery fallbacks. Appendix B.4 shows that the posterior mean

for βj gives no weight to ρ̂z when π`j = 0 and Cov(eαj , e
ρ
` ) = 0 for all lotteries, `. With the added assumption

that Cov(eαj , eαk ) = 0 for k 6= j, the jth element of equation (19) simplifies to

E [βj |α̂, ρ̂z] =
σ2
β + τσβσb

σ2
β + σ2

b + 2τσβσb + V ar
(
eαj
) (α̂j − b0) +

(
1−

σ2
β + τσβσb

σ2
β + σ2

b + 2τσβσb + V ar
(
eαj
))β0, (21)

where σβ and σb are the standard deviations of βj and bj and τ is their correlation. Even without a lottery at

school j, predictions based on equation (21) improve upon the conventional VAM posterior given by equation

(18). The improvement here comes from the fact that the schools with lotteries provide information that can

be used to estimate the distribution of bias, allowing at least a partial correction for bias in OLS estimates

at schools without lotteries.13

Equation (19) is a pedagogical formula derived assuming first stage parameters are known. With an

estimated first stage, the posterior distribution does not have a closed form. Although the posterior mean

for the general case can be approximated using Markov Chain Monte Carlo (MCMC), with a high-dimensional

random coefficient vector, MCMC may be sensitive to starting values or other user parameters. Therefore,

as in Chamberlain and Imbens (2004), we report EB posterior modes (also known as maximum a posteriori

estimates; see, e.g., Gelman et al. (2013)). The posterior mode is relatively easily calculated; see Appendix

B.4 for details. When posterior value-added is normally distributed as in the fixed first stage case, the

posterior mode and posterior mean coincide. As a practical matter, the posterior modes computed here are

similar to the weighted averages generated by equation (19) under the fixed first stages assumption, with a

correlation across schools of 0.82 in the lagged score model.

13Using the fact that αj = βj + bj , equation (18) can be written to look more like equation (21):

E [αj |α̂j ] =
σ2
β

+σ2
b

+2τσβσb
σ2
β

+σ2
b

+2τσβσb+V ar(eα
j

) α̂j +
(

1−
σ2
β

+σ2
b

+2τσβσb
σ2
β

+σ2
b

+2τσβσb+V ar(eα
j

)

)
(β0 + b0) .
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6 Parameter Estimates

6.1 Hyperparameters

The SMD procedure for estimating the hyperparameters takes as input a single set of lottery reduced form

and first stage estimates, along with conventional VAM estimates from the four models tested in Table 3.

The lottery estimates come from regressions of test scores and school attendance indicators (the set of Dij)

on lottery offer dummies (Zi), with controls for randomization strata (Ci) and the baseline covariates from

the lagged score VAM specification (strata controls are necessary for instrument validity, while lagged scores

and other covariates increase precision). Combining the lottery estimates with the four sets of estimates of

αj generates four sets of hyperparameter estimates, one for each VAM model.

As can be seen in columns 1-4 of Table 5, the hyperparameter estimates reveal substantial heterogeneity

in both causal value-added and selection bias across schools. The standard deviation of value-added, σβ , is

similar across specifications, ranging from about 0.20σ in the gains specification to 0.22σ in the lagged score

model. This stability is reassuring: the control variables that distinguish these models should not change

the underlying distribution of school effectiveness if our estimation procedure works as we hope.

In contrast with the relatively stable estimates of σβ , the estimated standard deviation of bias, σb, shrinks

from 0.49σ in the uncontrolled model to about 0.17σ in the lagged score and gains specifications. Evidently,

controlling for observed student characteristics dramatically reduces the degree of bias in conventional value-

added estimates. On the other hand, the estimated standard deviations of bias are statistically significant

for all models, implying that controls for demographic variables and baseline achievement are not sufficient

to produce unbiased comparisons. The estimates in columns 3 and 4 of Table 5 show that even for the

relatively successful lagged score and gains specifications, the estimated variance of bias is almost as large

as the estimated variance of causal value-added.

The estimated correlation between βj and bj (the hyperparameter τ) is negative for the lagged score and

gains specifications, a result that can be seen in the third row of Table 5. This suggests that conventional

models may overstate the effectiveness of low-quality schools and understate the effectiveness of high-quality

schools, though the estimates of τ are too imprecise to be conclusive. Estimates of βQ, the lottery school

value-added shifter, are mostly small and none are significantly different from zero. This suggests that

differences between oversubscribed and undersubscribed schools are modest. The negative estimates of βQ
for models without sector effects, reported in columns 1-4 of the table, imply that, if anything, lottery schools

generate slightly smaller gains than schools without over-subscribed lotteries.

Earlier work on school effectiveness explores differences between Boston’s charter, pilot, and traditional

public sectors (Abdulkadiroğlu et al., 2011; Angrist et al., forthcoming). These estimates show strong charter

school treatment effects in Boston, a finding that suggests accounting for sector differences may improve the

predictive accuracy of school value-added models. Columns 5 and 6 of Table 5 therefore report estimates of

lagged score and gains models in which the means of random coefficients depend on school sector (Appendix
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Table A2 reports the complete set of parameter estimates for this model).

Consistent with earlier findings, models with sector effects suggest that average charter school value-

added exceeds traditional public school value-added by 0.35σ. Estimated differences in value-added between

pilot and traditional public schools are smaller and statistically insignificant. By contrast, bias seems unre-

lated to sector, implying that conventional VAM models with demographic and lagged achievement controls

accurately reproduce lottery-based comparisons of the charter, pilot and traditional sectors. Estimates of

βQ in these specifications are positive, but again small and not significantly different from zero. Finally,

the estimates of σβ and σb show that sector effects reduce cross-school variation in value-added and bias by

about 20-25 percent. In other words, most of the variation in school quality appears to be within sectors,

rather than between.

6.2 Empirical Bayes Posteriors for Value-added and Bias

The posterior modes generated by our hybrid estimation strategy are positively correlated with conventional

posterior means that presume no bias in OLS value-added estimates. This is evident in Figure 3, which

plots hybrid modes against posterior means for each conventional model. Not surprisingly, the correlation is

strongest for the lagged score and gains specifications. On the other hand, rank correlations in the lagged

score and gains models are around 0.77, so hybrid estimation changes some schools’ ranks. This finding

suggests that accountability decisions based on estimated value-added might change when based on hybrid

as opposed to conventional estimates.

Hybrid estimation generates posterior modes for bias as well as value-added. The resulting estimated

bias modes can be used to explore the relationship between bias and over-subscription, providing evidence

relevant for the assumption that bias distributions are the same for schools with and without lotteries.

A weak or nonexistent relationship between bias and the degree of oversubscription is consistent with the

hypothesis that bias distributions are similar for schools where lottery information is and is not available.

For the purposes of this exploration, the oversubscription rate is defined as the ratio of the annual average

number of lottery applicants to the average number of seats for charter schools, and the ratio of the average

number of first-choice applicants to the average number of seats for traditional and pilot schools.

As can be seen in Figure 4, these measures of oversubscription are essentially unrelated to bias. Specifi-

cally, the figure plots bias posterior modes from the lagged score model with sector effects against oversub-

scription rates at lottery schools, after regression-adjusting for sector. The slope of the regression line in the

figure is 0.01 with a standard error of 0.04.

7 Policy Simulations

Accurate value-added estimates are useful for policymakers and parents making decisions about schools;

we use a Monte Carlo simulation to gauge the accuracy and value of VAM estimates for such decision-
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making. The simulation draws values of causal value-added, bias, and lottery parameters from the estimated

distributions underlying Table 5. Simulations of the uncontrolled, demographic and gains specifications

are based on restricted SMD estimates imposing the joint distribution of (βj , π`j) estimated in the lagged

score model. Remaining cross-model differences in simulated values are therefore driven solely by differences

in sampling error and bias. Estimation errors are drawn from the joint asymptotic distribution of OLS

and lottery estimates. The parameter and estimation error draws are combined to construct simulated OLS,

reduced form and first stage parameter estimates. Finally, these estimates are used to construct conventional

and hybrid EB posterior predictions for each simulation.

7.1 Mean Squared Error and Accountability Targeting

The root-mean-squared error (RMSE) of conventional VAM estimates across simulations falls sharply as

controls are added (and when the outcome is a score gain). In contrast, the RMSE of hybrid VAM estimates

is much more stable. This can be seen in Figure 5, which compares RMSE across specifications and estimation

procedures. The sharp decline in the RMSE of conventional VAM estimates as the set of controls grows

reflects reduced bias in the conventional estimates, while the stability of the hybrid procedure’s RMSE is

evidence of successful bias mitigation regardless of the conventional starting point. For example, starting from

RMSEs of 0.48σ and 0.31σ for conventional estimates in the uncontrolled and demographic specifications,

the hybrid posterior mode pulls RMSE below 0.2σ for both models. The hybrid posterior corrects for the

fact that most of the variation in α̂j is due to bias when α̂j is estimated in models that don’t adjust for

previous scores.

Conventional VAM estimates generate much lower RMSE values when computed using the lagged score

and gains specifications, but the hybrid approach yields improvements for these specifications as well. An

RMSE of 0.17σ for conventional posteriors derived from the lagged score and gains specifications falls to 0.14σ

for the hybrid. When sector effects are included, hybrid posteriors generate an even larger improvement,

reducing RMSE from 0.14σ to about 0.10σ, a reduction of almost 30 percent.

Like many states and school districts, the Massachusetts Department of Elementary and Secondary

Education implements an accountability scheme based on standardized tests. Massachusetts’ Framework

for School Accountability and Assistance places schools into five “levels” based on four-year histories of test

score levels and changes. Schools in the bottom quintile of this measure are designated level 3 or higher. A

subset of these schools are classified in levels 4 and 5, a designation that puts them at risk of restructuring

or closure.14

Table 6 looks at the accuracy of VAM-based accountability classification schemes of this sort. Specifically,

this table reports simulated misclassification rates for policies aimed at identifying traditional BPS and pilot

schools above or below various percentiles of the true value-added distribution. The error rate in column

14The Massachusetts accountability system also uses information on graduation, dropout rates and from site visits to classify
schools; see http://www.doe.mass.edu/apa/sss/turnaround/level5/schools/FAQ.html for details.
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1 is the frequency at which schools in the lowest decile of causal value-added are mis-identified as having

higher scores. Columns 2-3 report the same sort of misclassification rates for lowest quintile and lowest

tercile schools, while columns 4-6 show error rates for highest decile, quintile and tercile schools. Note that

because true and estimated classification tiers are the same size, the probability that a school is incorrectly

classified as being, say, outside the lowest decile is equal to the fraction of schools classified in the lowest

decile that do not belong there.

Uncontrolled value-added estimates produce highly inaccurate school rankings. As can be seen in the

second row of Table 6, uncontrolled VAM misclassifies 86 percent of lowest decile schools, 74 percent of lowest

quintile schools, and 63 percent of lowest tercile schools. These rates are not much better than the error rates

for a policy that simply ranks schools randomly (90, 80 and 67 percent, shown in the first row). This finding

implies that school report cards based on unadjusted achievement levels, distributed in many states and

districts, are likely to be highly misleading.15 Hybrid posterior modes that combine uncontrolled OLS and

lottery estimates misclassify 67, 52 and 41 percent of lowest decile, quintile and tercile schools. Although still

high, these error rates represent a marked improvement on the rates produced by the conventional posterior

mean from an uncontrolled model. Compare, for example a hybrid misclassification rate of 41 percent for

lowest-tercile schools with the corresponding rate of 63 percent when using conventional posterior means.

Adding controls for demographics and previous achievement reduces misclassification rates based on both

conventional and hybrid estimates, but does not eliminate the utility of hybrid estimation. Conventional

misclassification rates for lowest decile, quintile and tercile schools are 57, 47 and 39 percent when rankings

are based on estimates from the gains specification. In this model, hybrid estimation reduces classification

error in the lowest decile from 57 to 50 percent, 12 percent fewer mistakes. The hybrid advantage is larger

when classifying lowest quintile and lowest tercile schools, reducing error rates by 21 and 18 percent in the

gains specification. The improvements generated by hybrid classification of high-performing schools are even

larger: incorporating lotteries cuts mistakes by 24, 21 and 20 percent for highest decile, quintile and tercile

schools. The pattern of classification improvement from the lagged score and gains specifications are broadly

similar. For both the lagged score and gains models, hybrid estimation cuts mistakes in classifying upper

and lower tercile schools to under one third.

The relationship between school rankings based on true and estimated value-added summarizes the

predictive value of VAM estimates. Column 7 reports coefficients from regressions of a school’s rank in the

causal value-added distribution on its rank in each estimated distribution. This rank coefficient increases from

0.14 in the uncontrolled conventional model to 0.61 in the conventional gains specification. Hybrid estimation

boosts the rank coefficient for gains to 0.72. In other words, sufficiently controlled VAM estimates strongly

predict relative value-added: a one-position increase in a school’s VAM rank translates into an average

increase of 0.6-0.7 positions in the distribution of true school quality. At the same time, even the largest

15California’s School Accountability Report Cards list school proficiency levels (see http://www.sarconline.org). Mas-
sachusetts’ school and district profiles provide information on proficiency levels and test score growth (see http://profiles.
doe.mass.edu).
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rank coefficients in the table remain well below one, suggesting there is still considerable scope for mistakes

in classification decisions based on estimated VAM. It’s of interest, therefore, to consider the consequences

of imperfect classification for the students directly affected by policies built on these estimates.

7.2 Effects on Students

Massachusetts’ accountability framework uses value-added to guide decisions about school closures, school

restructuring and turnarounds, and charter school expansion. A stylized version of these decisions replaces

weak schools with those judged to be stronger on the basis of their value-added. We therefore simulate the

achievement consequences of closing the lowest-ranked district school (traditional or pilot) and sending its

students to a school with average or better estimated value-added.

This analysis ignores any transition effects such as possible disruption due to school closure, peer effects

resulting from changes in school composition, or general equilibrium effects that might inhibit replication of

successful schools. The results should nevertheless provide a rough guide to the potential consequences of

VAM-based policy decisions. Quasi-experimental analyses of charter takeovers and other school reconstitu-

tions in Boston, New Orleans, and Houston have shown large gains when low-performing schools are replaced

by schools operating according to pedagogical principles seen to be effective elsewhere (Fryer, 2014; Abdulka-

diroğlu et al., 2015). This suggests transitional consequences are dominated by longer-run determinants of

school quality, at least for modest policy interventions of the sort considered here.

Consistent with the high misclassification rates generated by uncontrolled VAMs, Table 7 shows that

policies based on uncontrolled VAM estimates generate negligible score gains. Using the simplest VAM

model as a guide, replacing the lowest-scoring district school with an average school is predicted to increase

scores for affected students by only about 0.04σ. Likewise, a policy that replaces the lowest-ranked school

with an expansion of an average school ranked in the top quintile generates a gain of rougly 0.06σ. These

small effects reflect the large variation in bias evident for the uncontrolled model in Table 5; closure decisions

based on uncontrolled estimates target schools with many low achievers rather than low value-added. On the

other hand, adjusting naive VAM estimates for selection bias via hybrid estimation increases student gains

from closure to 0.16σ when the replacement school is average and to 0.29σ when the replacement school is

from the top quintile.

Conventional VAM specifications that adjust for lagged scores are considerably less biased than are the

estimates from uncontrolled models and models that adjust only for demographic controls. Closure and

replacement decisions based on the lagged score and gains models are therefore predicted to yield substantial

achievement gains. For instance, replacing the lowest-ranked school with an average school boosts scores by

roughly 0.24σ in the gains specification. This is 66 percent of the corresponding benefit for an infeasible

policy that ranks schools by true value-added (0.36σ). Hybrid estimation of the gains model increases the

estimated gains from closure to 0.29σ, generating over 80 percent of the maximum possible gain using true

value-added.
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The effects of VAM-based policies and the incremental benefits of using lotteries to estimate value-added

grow when value-added predictions are used to choose expansion schools in addition to closures. In the gains

specification, for example, replacing the lowest-ranked school with a typical top-quintile school generates

an improvement of 0.38σ when conventional posteriors are used to estimate VAM and an improvement of

0.47σ when rankings are based on hybrid predictions. The latter effect is 82 percent of the theoretical

maximum benefit generated by replacing the least effective school in the Boston district (as ranked by causal

value-added) with an average school in the top quintile of causal value-added.

The largest gains seen in Table 7 result from a policy that replaces the lowest-ranking school with an

average charter school. This mirrors Boston’s ongoing in-district charter conversion policy experiment. As a

result of the large difference in mean value-added between charter and district schools, charter conversion is

predicted to generate large gains regardless of how value-added is estimated. Accurate value-added estimation

increases the efficacy of charter conversion, however: selecting a school for conversion based on the hybrid

gains specification rather than the naive uncontrolled model boosts the effect of charter expansion from 0.35σ

to 0.61σ, close to the maximum possible gain of 0.67σ.

Tables 6 and 7 reveal that, despite substantial misclassification rates, VAM-based policies have the

potential to boost student achievement markedly. Even when VAM estimates are far from perfect, they

predict causal value-added. For example, causal value-added is more than 0.2σ below average for schools

ranked at the bottom by the conventional lagged score and gains specifications. As can be seen in Table 5,

this represents roughly a full standard deviation in the distribution of true school quality. Value-added for

low-ranked schools is even more negative when rankings are based on hybrid estimates. The misclassification

rates in Table 6 show that schools selected for closure based on VAM-based rankings are unlikely to be the

very worst schools in the district. At the same time, they are likely to be worse than average, so policies

that replace them with schools predicted to do better generate large achievement gains. We see especially

large improvements when value-added is estimated using the relatively sophisticated lagged score and gains

specifications, augmented with lotteries to mitgate bias.

8 Conclusions and Next Steps

School districts increasingly rely on regression-based value-added models to gauge and report on school

quality. This paper leverages admissions lotteries to test and improve conventional OLS estimates of school

value-added. An application of our approach to data from Boston suggests that conventional value-added

estimates for Boston’s traditional public schools are biased. Controls for lagged test scores reduce but do not

eliminate this bias. Nevertheless, policy simulations show that accountability decisions based on conventional

VAM estimates are likely to boost achievement. A hybrid estimation procedure that combines conventional

and lottery-based estimates leads to substantially more accurate value-added predictions, improved policy

targeting, and larger achievement gains.
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Our hybrid approach requires some kind of lottery-based admissions scheme, such as those increasingly

used for student assignment in many of America’s large urban districts. As our analysis of charter schools

shows, however, admissions need not be centralized for lotteries to be useful. Equally important, the strate-

gies outlined here remain useful even for districts, like Boston, where lottery data are missing or irrelevant

for a large minority of schools.

The methods developed here may also be useful for the estimation of teacher value-added. Lotteries for

teacher assignment are rare, but the methods outlined here may be extended to exploit other sources of

quasi-experimental variation. A complication in the teacher context is the more elaborate hierarchical data

structure arising from the fact that teacher assignment has both within- and between-school components.

This suggests a somewhat more complicated model for bias in teacher VAMs may be necessary. Finally, the

framework outlined here seems likely to be useful for testing and improving VAM estimates in settings outside

schools. Candidates for this extension include the quantification of doctor, hospital, and neighborhood effects.
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Figure 1: Standard deviations of school effects from value-added models

Notes: This figure compares standard deviations of school effects from four math 
value-added models; see Table 3's notes for a description of the models. For each 
model, the total variance of school effects is obtained by subtracting the average 
squared standard error from the sample variance of value-added estimates, then taking 
the square root. Within-sector variances are obtained by first regressing value-added 
estimates on charter and pilot dummies, then subtracting the average squared standard 
error from the sample variance of residuals and taking the square root.
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Figure 2: Visual instrumental variables tests for bias

Notes: This figure plots lottery reduced form effects against value-added first stages from each of the 28 school lotteries. 
See the notes for Table 3 for a description of the value-added models and lottery specification. Filled markers indicate 
estimates that are significant at the 10% level. Slopes of solid lines correspond to the forecast coefficients from Table 3, 
while dashed lines indicate the 45-degree line. 
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Figure 3: Empirical Bayes posterior predictions of school value-added

Notes: This figure plots empirical Bayes posterior mode predictions of value-added from the random coefficients model 
against posterior means based on OLS value-added. Posterior modes are computed by maximizing the sum of the log-
likelihood of the OLS, reduced form, and first stage estimates conditional on all school-specific parameters plus the log-
likelihood of these parameters given the estimated random coefficient distribution. Conventional posteriors shrink OLS 
estimates towards the mean in proportion to one minus the signal-to-noise ratio.
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Figure 4: Relationship between bias and oversubscription among lottery schools

Notes: This figure plots posterior mode predictions of bias against oversubscription rates for 
schools with lotteries. The oversubscription rate is defined as the ratio of the average number of 
first-choice applicants (for traditional and pilot schools) or the average number of total 
applicants (for charters) to the average number of available seats. Bias modes come from the 
lagged score model with sector effects. Points in the figure are constructed by first regressing 
bias modes and oversubscription rates on pilot and charter indicators, then computing residuals 
from these regressions. 
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Figure 5: Root mean squared error for value-added posterior predictions

Notes: This figure plots root mean squared error for posterior predictions of school value-added. 
Conventional predictions are posterior means constructed from OLS value-added estimates. Hybrid 
predictions are posterior modes constructed from OLS and lottery estimates. Root mean squared error is 
calculated from 100 simulated samples drawn from the data generating processes implied by the estimates in 
Table 5. The random coefficients model is re-estimated in each simulated sample.
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School OLS sample Lottery sample Lottery school? OLS sample Lottery sample Lottery school?

(1) (2) (3) (4) (5) (6) (7) (8)

1 1,095 79 Y 1 538 310 Y
2 1,025 445 Y 2 1,260 433 Y
3 1,713 1,084 Y 3 585 296 Y
4 547 218 Y 4 78 5
5 217 46 5 453 46 Y
6 1,354 581 Y 6 380 67 Y
7 263 44 7 242 179 Y
8 1,637 492 Y 8 558 73 Y
9 472 104 9 18 12

10 1,238 591 Y
11 537 11 1 738 406 Y
12 331 35 Y 2 361 23
13 335 82 3 357 215
14 952 232 Y 4 393 332 Y
15 294 71 Y 5 338 16
16 333 90 6 511 115 Y
17 766 243 Y 7 71 8
18 372 47 Y 8 300 23
19 137 14 9 389 342 Y
20 1,091 225 Y 10 654 34
21 1,086 127 Y 11 45 3
22 577 104 Y 12 53 2
23 622 61 13 415 305 Y
24 906 270 Y 14 70 6

25 (Ref.) 267 19 15 104 23
16 701 92

All schools: 27,864 8,718 28 17 85 37

Enrollment

A. Traditional publics

Table 1: Boston students and schools

Notes: This table counts the students and schools included in the observational (OLS) and lottery samples. The sample covers cohorts attending 6th 
grade in Boston between the 2006-2007 and 2013-2014 school years. Traditional public school #25 is the designated omitted enrollment category 
for value-added estimation. Columns (4) and (8) indicate whether the school has enough students subject to conditionally-random offer variation to 
be included in the lottery sample.

B. Pilots

C. Charters

School
Enrollment



OLS sample Lottery sample All lotteries Traditional Pilot Charter
Baseline covariate (1) (2) (3) (4) (5) (6)
Hispanic 0.345 0.354 -0.017 -0.007 0.003 -0.006

(0.013) (0.017) (0.033) (0.018)
Black 0.410 0.485 -0.011 -0.005 -0.052 -0.009

(0.014) (0.018) (0.034) (0.020)
White 0.122 0.072 0.010 0.006 0.005 0.009

(0.007) (0.008) (0.015) (0.010)
Female 0.490 0.504 0.017 0.034* -0.013 -0.025

(0.014) (0.019) (0.037) (0.020)
Subsidized lunch 0.806 0.830 0.020* 0.020 0.006 -0.005

(0.010) (0.013) (0.026) (0.016)
Special education 0.208 0.195 0.006 -0.003 -0.022 0.015

(0.011) (0.013) (0.030) (0.016)
English-language learner 0.205 0.206 0.006 -0.001 0.018 0.004

(0.011) (0.014) (0.027) (0.016)
Suspensions 0.093 0.076 -0.025 -0.025 0.009 -0.016

(0.016) (0.023) (0.025) (0.017)
Absences 1.710 1.534 -0.087 -0.138* -0.092 0.110

(0.095) (0.080) (0.260) (0.167)
Math score 0.058 0.004 0.022 -0.026 0.080 0.036

(0.024) (0.030) (0.061) (0.035)
ELA score 0.030 0.013 0.035 0.045 0.060 0.013

(0.025) (0.030) (0.061) (0.036)

N 27,864 8,718 8,718 4,849 1,303 3,655

Table 2: Descriptive statistics

Notes: This table reports sample mean characteristics and investigates balance of random lottery offers. Column (1) shows mean characteristics for 
all Boston 6th graders enrolled between the 2006-2007 and 2013-2014 school years, and column (2) shows mean characteristics for randomized 
lottery applicants. Columns (3)-(6) report coefficients from regressions of baseline characteristics on lottery offers, controlling for lottery strata. 
Robust standard errors are reported in parenthenses.
*significant at 10%; **significant at 5%; ***significant at 1%

Offer instrument balanceMeans



Lagged Lagged score,
score no charter lotteries

(1) (2) (3) (4) (5)
Forecast coefficient 0.396 0.645 0.864 0.950 0.549

(0.056) (0.065) (0.075) (0.084) (0.164)

First stage F-statistic 45.6 36.1 29.6 26.6 11.2

p-values:
Forecast coef. equals 1 <0.001 <0.001 0.071 0.554 0.006
Overid. restrictions <0.001 <0.001 0.003 0.006 0.043
All restrictions <0.001 <0.001 <0.001 <0.001 0.002
All restrictions (bootstrap refinement) <0.001 <0.001 <0.001 <0.001 0.002

Notes: This table reports estimates of the VAM forecast coefficient and the results of tests for bias in conventional value-added models for 
6th grade math scores. Estimated forecast coefficients are from regressions of 6th grade scores on fitted values from conventional value-
added models, instrumented by the set of offer dummies for all school lotteries. Models are estimated via a two-step optimal GMM 
procedure that is efficient with arbitrary heteroskedasticity. Joint p-values come from OLS regressions of value-added residuals on offer 
dummies. The uncontrolled model includes only year-of-test indicators as controls. The demographic model adds indicators for student 
sex, race, subsidized lunch, special education, limited-English proficiency, and counts of baseline absences and suspensions. The lagged 
score model adds cubic polynomials in baseline math and ELA scores. The gains model includes the same controls as the demographic 
model and uses score gains from baseline as the outcome. Column (5) excludes charter school lotteries from the lottery sample in testing 
the lagged score model. All IV models control for lottery strata fixed effects, demographic variables, and lagged scores. Standard errors 
are reported in parentheses.  Bootstrap p-values are based on 500 Bayesian bootstrap replications (see Appendix B for details).

Table 3: Tests for bias in conventional value-added models

Uncontrolled Demographic Gains



Baseline 
year

Subsidized 
lunch

Special 
education

Baseline score 
tercile

Interacted 
groups

(1) (2) (3) (4) (5) (6)

Forecast coefficient 0.864 0.916 0.849 0.863 0.866 0.930
(0.075) (0.072) (0.075) (0.074) (0.075) (0.061)

Bootstrap-refined VAM validity p-value <0.001 <0.001 <0.001 <0.001 <0.001 0.002

Forecast coefficient 0.868 0.962 0.851 0.872 0.873 0.934
(0.070) (0.068) (0.069) (0.070) (0.070) (0.052)

Bootstrap-refined VAM validity p-value <0.001 0.002 <0.001 <0.001 <0.001 0.004
Notes: This table reports lottery-based tests for bias in school value-added models that allow for treatment effect heterogeneity by baseline characteristics.  
Forecast coefficients come from IV regressions of 6th grade math scores on fitted values from value-added models, instrumented by the set of offer 
dummies for all schol lotteries. Models are estimated via a two-step optimal GMM procedure that is efficient with arbitrary heteroskedasticity. Joint p-
values come from OLS regressions of value-added residuals on offer dummies. The OLS value-added specification includes demographics and lagged 
scores. Panel A estimates value-added in the full observational sample, while Panel B restricts estimation to the lottery subsample. Column (1) repeats 
estimates from Table 3, while columns (2)-(6) allow value-added to differ across cells defined by the covariates in the column headings. The covariates 
used to define subgroups in column (6) are hispanic, black, and female indicators, dummies for subsidized lunch, special education, and english language 
learner status, and indicators for baseline score terciles, based on average 5th grade math and ELA test scores in the observational sample. All IV models 
control for lottery strata fixed effects, demographics, and lagged scores. Inference is robust to heteroskedasticity and accounts for first-step VAM 
estimation error. Bootstrap refinements to first-order asymptotics are based on 500 Bayesian bootstrap replications (see Appendix B).

Table 4: Robustness of bias tests to effect heterogeneity

Baseline VAM 
specification

VAM estimated by subgroup

A. VAM estimated on the OLS sample

B. VAM estimated on the lottery sample



Uncontrolled Demographic Lagged score Gains Lagged score Gains
Parameter Description (1) (2) (3) (4) (5) (6)

σβ Std. dev. of causal 0.210 0.212 0.218 0.199 0.158 0.169
value-added (0.063) (0.062) (0.061) (0.060) (0.070) (0.066)

σb Std. dev. of bias in 0.487 0.314 0.171 0.168 0.140 0.130
OLS value-added (0.068) (0.055) (0.074) (0.060) (0.068) (0.078)

τ Correlation of -0.132 0.048 -0.293 -0.399 -0.480 -0.595
value-added and bias (0.250) (0.329) (0.385) (0.356) (0.428) (0.348)

VA shifters Lottery school -0.055 -0.103 -0.058 -0.066 0.077 0.059
(0.141) (0.110) (0.068) (0.056) (0.048) (0.046)

Charter 0.353 0.358
(0.118) (0.124)

Pilot 0.057 0.064
(0.137) (0.143)

Bias shifters Charter 0.052 -0.023
(0.115) (0.119)

Pilot -0.060 -0.043
(0.134) (0.138)

J-statistic (d.f.): 5.64 (4) 7.41 (4) 3.05 (4) 2.98 (4) 4.09 (4) 2.95 (4)
Overid. p-value: 0.228 0.116 0.549 0.562 0.393 0.566

Table 5: Joint distribution of causal value-added and OLS bias

Notes: This table reports simulated minimum distance estimates of parameters of the joint distribution of causal school value-added and OLS bias. The moments used in 
estimation are functions of the observed OLS, reduced form, and first stage estimates, as described in Appendix B. Simulated moments are computed from 500 samples 
constructed by drawing estimation errors from the asymptotic covariance matrix of the observed estimates, along with school-specific parameters drawn from the random 
coefficient distribution. Moments are weighted by an estimate of the inverse covariance matrix of the moment conditions, calculated from a first-step estimate using an identity 
weighting matrix. The weighting matrix is produced using 10,000 simulations, drawn independently from the samples used to compute the estimator. See notes to Table 3 for a 
description of the control variables included in each OLS value-added model.

Models with sector effectsModels without sector effects



Lowest decile Lowest quintile Lowest tercile Highest decile Highest quintile Highest tercile Rank coefficient
Value-added model Posterior method (1) (2) (3) (4) (5) (6) (7)

- Random 0.900 0.800 0.667 0.900 0.800 0.667 0.000

Uncontrolled Conventional 0.863 0.736 0.628 0.893 0.740 0.606 0.144
Hybrid 0.670 0.516 0.411 0.573 0.480 0.418 0.538

Demographic Conventional 0.774 0.632 0.526 0.795 0.639 0.507 0.352
Hybrid 0.623 0.486 0.402 0.599 0.465 0.404 0.563

Lagged score Conventional 0.619 0.504 0.412 0.704 0.518 0.416 0.548
Hybrid 0.517 0.391 0.326 0.486 0.370 0.306 0.702

Gains Conventional 0.570 0.474 0.390 0.650 0.466 0.374 0.611
Hybrid 0.503 0.376 0.323 0.493 0.366 0.299 0.724

Table 6: Error rates for classification decisions among district schools

Notes: This table reports misclassification rates for policies based on empirical Bayes posterior predictions of value-added. The first row shows results for a system that ranks schools at 
random. Column (1) shows the fraction of district schools in the lowest decile of true value-added that are not classified in the lowest decile of estimated value-added for each model. 
Columns (2) and (3) report corresponding misclassification rates for the lowest quintile and tercile. Columns (4)-(6) report misclassification rates for schools in the highest decile, quintile 
and tercile of true value-added. Column (7) reports the coefficient from a regression of a school's rank in the true value-added distribution on its rank in the estimated distribution. See 
notes to Table 3 for a description of the controls included in each value-added model. Conventional empirical Bayes posteriors are means conditional on OLS estimates only, while hybrid 
posteriors are modes conditional on OLS and lottery estimates. All models include sector effects. Statistics are based on 100 simulated samples, and the random coefficients model is re-
estimated in each sample.

Low-performing schools High-performing schools



Average school
Average above-
median school

Average top-
quintile school

Average charter 
school

Value-added model Posterior method (1) (2) (3) (4)
- True value-added 0.357 0.488 0.570 0.666

Uncontrolled Conventional 0.036 0.057 0.064 0.345
Hybrid 0.163 0.242 0.294 0.472

Demographic Conventional 0.106 0.154 0.182 0.415
Hybrid 0.188 0.266 0.321 0.496

Lagged score Conventional 0.206 0.281 0.332 0.515
Hybrid 0.266 0.363 0.434 0.575

Gains Conventional 0.237 0.326 0.383 0.557
Hybrid 0.290 0.394 0.467 0.610

Table 7: Consequences of closing the lowest-ranked district school for affected children

Notes: This table reports simulated test score impacts of closing the lowest-ranked district school based on value-added 
predictions. The reported impacts are effects on test scores for students at the closed school. Column (1) replaces the lowest-
ranked district school with an average district school. Columns (2), (3) and (4) replace the lowest-ranked school with an average 
above-median district school, an average top-quintile district school, or the highest-ranked district school. Column (5) replaces the 
lowest-ranked district school with an average charter school. See notes to Table 3 for a description of the controls included in each 
value-added model. Conventional empirical Bayes posteriors are means conditional on OLS estimates only, while hybrid 
posteriors are modes conditional on OLS and lottery estimates. All models include sector effects. Statistics are based on 100 
simulated samples, and the random coefficients model is re-estimated in each sample.

Replacement school:
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Appendix A: Data

The administrative data used for this project come from student demographic and attendance information in

the Massachusetts Student Information Management System (SIMS), standardized student test scores from

the Massachusetts Comprehensive Assessment System (MCAS) database, Boston charter school admission

lottery records, and information from the centralized BPS student assignment system. We describe each

data source and our cleaning and matching process in detail below; the construction of our main analysis

file closely follows that of previous studies, in particular Abdulkadiroğlu et al. (2011).

A.1 Student enrollment, demographics, and test scores

The Massachusetts SIMS contains snapshots of all students in a public school in Massachusetts in October

and at the end of each school year. These records contain demographic information on students, their current

schools, their residence, and their attendance. We work with SIMS files for the 2005-2006 through the 2013-

2014 school years and limit the sample to students enrolled in a Boston school over this period. Schools

are classified as charters by the Massachusetts Department of Elementary and Secondary Education website

(http://www.profiles.doe.mass.edu), and as pilots by the Boston pilot school network website (http:

//www.ccebos.org/pilotschools/schools.html). All remaining Boston schools are considered traditional

public schools for the purposes of this study.

Enrollment in the SIMS is grade-specific. When a student repeats grades, we retain the first school a

student attended in that grade. We then record students attending multiple schools in a given school year

as enrolled in the school for which the attendance duration is longest, with duration ties broken randomly.

This results in a unique student panel across grades; for the purposes of this study we restrict focus to 6th

grade students enrolled from 2006-2007 to 2013-2014, using their 5th grade information for baseline controls.

These controls include indicators for student race (Hispanic, black, white, Asian, and other race), sex, free-

or reduced-price lunch eligibility, special education status, and English-language learner status, as well as

counts of the number of days a student was suspended or truant over the school year. Suspension data are

unavailable in the SIMS starting in the 2012-2013 school year; we include an indicator for students missing

this baseline information whenever suspensions are used.

Our primary outcome for measuring school value-added are 6th grade standardized test scores from the

Massachusetts Comprehensive Assessment System (MCAS) database. We normalize MCAS math and ELA

scores by grade and year to be mean-zero and have standard deviation one within a combined BPS and

Boston charter school reference population. MCAS scores are merged to SIMS data via a state-assigned

unique student identifier. We also merge baseline (5th grade) math and ELA test scores for each student in

our sample (5th grade MCAS information is available starting in the 2005-2006 school year).
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A.2 Charter school lotteries

We use annual lottery records for five of the six Boston middle school charters with 6th grade admission for

the 2006-2007 through the 2013-2014 academic year. These schools are Academy of the Pacific Rim, Boston

Preparatory, MATCH Charter Public Middle School, Roxbury Preparatory, and UP Academy Charter School

of Boston. The remaining school, Smith Leadership Academy, has declined to participate in our studies. For

each school and each oversubscribed year we obtain a list of names of students eligible for entry by lottery,

as well as information on whether each student was offered a seat on lottery night. Students are marked as

ineligible if they submit an incomplete or late application; we also exclude students with a sibling currently

enrolled in the school, as they are guaranteed admission. For UP Boston, which is an in-district charter

school, students applying from outside of BPS are placed in a lower lottery priority group.

A student is coded as receiving a charter admission offer if she is offered a seat on lottery night. These

offers are randomly assigned within strata defined by school, application year, and, in the case of UP Boston,

BPS priority group. Students are retained the first year they apply to a charter school. We match the set

of charter offers and randomization strata to state data by student name, grade, and application year; 97%

of charter lottery applicants are successfully matched.

A.3 The BPS mechanism

We obtain a complete record of student-submitted preferences, school priorities, random tie-breaking se-

quence numbers, and assignments from the BPS deferred-acceptance mechanism, 2006-2007 though 2013-

2014. For each year, we identify groups of students subject to the same priorities (given by whether a student

has an enrolled sibling and whether she resides in a school’s walk-zone, a 1.5 mile radius) at schools that

they rank first. In forming these groups we exclude students that are guaranteed admission by virtue of

being currently enrolled in the school, as well as certain other students with guaranteed or nonstandard

priorities (see Abdulkadiroğlu et al. (2006) for a complete description of priorities in BPS). Within groups

we construct indicators for whether an applying student has a random sequence number that is better than

the worst number belonging to a student in the group that is assigned to each school. A student qualified in

such a way is assigned to it by the mechanism, and such offers are randomly assigned within strata defined

by school, application year, and priority group. We drop all schools with fewer than 50 students subject to

conditionally-random admission, and match offers and randomization strata to state data via a BPS unique

student identifier. Students are retained the first year they enter the BPS mechanism for 6th grade entry.

A.4 Sample Selection

We restrict attention to Boston public schools with at least 25 6th grade students enrolled in each year of

operation from 2006-2007 to 2013-2014. In our merged analysis file this leaves 51 schools (see Table 1).

Students enrolled at these schools are retained if they were enrolled in Boston in both 5th and 6th grade, if
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their baseline demographic, attendance, and test score information is available, and if we observe their 6th

grade MCAS test scores. These restrictions leave a total of 27,864 Boston students, summarized in detail in

Table 2. Of these, 8,718 students are subject to quasi-experimental variation in 6th grade admission at 28

schools, either from a charter school lottery or from assignment by the BPS mechanism.
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Appendix B: Econometric Methods

B.1 VAM Bias Tests

We test for bias in conventional VAMs by regressing VAM residuals on a vector of lottery offers Zi and

lottery strata controls Ci as in equation (9). In practice this regression uses sample residuals v̂i, which

are noisy estimates of the population residuals vi that would be observable if the coefficients in the OLS

value-added model (5) were known rather than estimated. We therefore adjust inference to account for the

resulting estimation error.

Let Xi = (1, Di1, . . . , DiJ , X
′
i)
′ and Zi = (1, C ′i, Z ′i)

′. OLS estimates of equation (9) may be written in

matrix form as

φ̂ = (Z′Z)−1 Z′v̂.

Moreover,

φ̂− φ = (Z′Z)−1 Z′ (ω + (v̂ − v)) ,

while by equation (5),

v̂ − v = Y −X (X′X)−1 X′ (Xβ + v)− v

= −X (X′X)−1 X′v.

We then have that:

√
N(φ̂− φ) =

√
N (Z′Z)−1

(
Z′ω − Z′X (X′X)−1 X′v

)
=

(
1
N

N∑
i=1

ZiZ′i

)−1
1√
N

N∑
i=1

Ziωi −
1
N

N∑
i=1

ZiX′i

(
1
N

N∑
i=1

XiX′i

)−1

Xivi

 .

Under iid sampling the weak law of large numbers ensures 1
N

∑N
i=1 ZiZ′i

p−→ E [ZiZ′i], 1
N

∑N
i=1 ZiX′i

p−→

E [ZiX′i], and 1
N

∑N
i=1 XiX′i

p−→ E [XiX′i], provided such moments exist. Furthermore the Lindeberg–Lévy

central limit theorem implies:

1√
N

N∑
i=1

(
Ziωi − E [ZiX′i] (E [XiX′i])

−1 Xivi

)
⇒ N (0,Λ) ,

provided

Λ = E

[(
Ziωi − E [ZiX′i] (E [XiX′i])

−1 Xivi

)(
Ziωi − E [ZiX′i] (E [XiX′i])

−1 Xivi

)′]
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is finite. By Slutsky’s theorem,

√
N(φ̂− φ) ⇒ N (0,Ξ)

for

Ξ = (E [ZiZ′i])
−1 Λ (E [ZiZ′i])

−1
.

We base asymptotic inference on φ by forming sample analogues of each component of Ξ. Note that this

estimate differs from the usual White (1980) heteroskedasticity-consistent covariance matrix estimator by

the second term in the inner product of Λ. This term accounts for estimation error in the first-step residuals.

The Wald test statistic for the null hypothesis of VAM validity, φz = 0, is then

F = φ̂′z

(
Ξ̂z/N

)−1
φ̂z,

where Ξ̂z is the sub-matrix of our estimate of Ξ corresponding to φ̂z. The distribution of F is first-order

equivalent to χ2
L. Analogous steps are used to derive asymptotic variances for instrumental variables esti-

mators based on equations (10) and (11).

Bootstrapping asymptotically-pivotal test statistics often yields critical values that are more accurate

than those derived from first-order asymptotics (Hall and Horowitz, 1996). We report bootstrap-refined p-

values for tests based on equation (9). Our implementation uses the Bayesian bootstrap procedure of Rubin

(1981), which smooths out bootstrap samples by reweighting rather than resampling observations. This

prevents the omission of small lottery strata in our data that would occasionally be dropped in standard

nonparametric bootstrap resampling. The Bayesian and nonparametric bootstraps are special cases of the

generalized bootstrap and both are consistent under weak conditions (Mason and Newton, 1992).

To implement the Bayesian bootstrap we draw random vectors of Dirichlet(1,....,1) weights, then re-

estimate the value-added model (5) and residual regression (9) by weighted least squares. We then use the

results to construct a set of re-centered test statistics,

F b =
(
φ̂
b

z − φ̂z
)′ (

Ξ̂bz/N
)−1 (

φ̂bz − φ̂z
)
,

where the variance matrix Ξ̂bz is estimated in each bootstrap trial as described above, weighting all sample

moments with the Dirichlet weights. The resulting bootstrap-refined p-value is

p = 1
B

B∑
b=1

1[F b > F ].
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B.2 Heterogeneous School Effects

We next generalize our lottery-based tests for bias to a model that allows school effects to vary across

students. For a set of mutually-exclusive and exhaustive “types” t, we write potential achievement as

Yij =
∑
t

µjtTit + ai +mij , (22)

where Tit is an indicator for belonging to type t, µjt is average potential achievement at school j for individuals

of type t, and ai is student ability, which is orthogonal to student type by definition. The decomposition in

equation (22) also allows for an unrestricted match component in achievement, mij , and is therefore fully

general.

Equation (22) implies that the observed outcome for student i can be written

Yi =
∑
t

µ0tTit +
J∑
j=1

∑
t

βjtDijTit +X ′iγ + εi, (23)

where βjt = µjt − µj0 is the value-added of school j for type t and the error term is εi =
∑J
j=1

∑
t(mij −

mi0)DijTiw + εi0, with εi0 the residual from a projection of ai +mi0 on Xi.

The following assumptions extends selection-on-observables to the case with effect heterogeneity:

E [εi0|Di] = 0, (24)

E [mij −mi0|Di, Ti] = 0, (25)

where Ti is the vector of all type dummies. Assumption (24) requires general student ability to be unrelated

to school choices after controlling forXi, similar to (6). The additional assumption (25) requires idiosyncratic

match effects to also be independent of school choices conditional on Ti. In other words, any relationship

between school effects and school choices occurs through the type-specific effects βjt, not through sorting on

gains within type. Assumption (25) relates to the “conditional effect ignorability” assumption described by

Angrist and Fernandez-Val (2013).

The OLS regression corresponding to the causal model (23) is

Yi =
∑
t

α0tTit +
J∑
j=1

∑
t

αjtDijTit +X ′iΓ + vi, (26)

with vi orthogonal to Tit, Dij and Xi by definition. Together with the maintained exclusion restriction (7),

assumptions (24) and (25) imply that residuals from model (26) should be orthogonal to lottery offers after

controlling for randomization strata. If rejection of the more restrictive model (4) is caused by heterogeneity

in school effects across student types rather than bias, tests based on (26) will not reject. In section 4.4 we

conduct tests with student types defined in a variety of ways.
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B.3 Simulated Minimum Distance

We estimate Bayesian hyperparameters via simulated minimum distanced (SMD). The vector of parameters

to be estimated is

θ =
(
α0, β0, βQ, δ0, ξ0,Σ, σ2

ν

)′.
These parameters are estimated by fitting means, variances, and covariances of OLS value-added, lottery

reduced form, and first stage estimates. The complete vector of observed estimates is

Ω̂ =
(
α̂1, ..., α̂J , ρ̂

1
z, ..., ρ̂

L
z , π̂

1
1 , ..., π̂

L
1 , ..., π̂

L
J

)′.
Let Ω = (α1, ..., π

L
J )′ denote the probability limits of these estimates. Assume that the sampling distribution

of Ω̂ is well approximated by asymptotic theory, so that

Ω̂ ∼ N (Ω, Ve),

where Ve is a covariance matrix derived from conventional asymptotics. This requires within-school and

within-lottery samples to be large enough for asymptotic approximations to be accurate. Under this as-

sumption and the distributional assumptions in equations (14) through (17), values of Ω and Ω̂ can be

simulated for any value of θ. We use this procedure to generate simulated data sets, and estimate θ by

minimizing the distance between simulated and observed moments.

Our estimation procedure targets the following first moments:

m̂1 = 1
J

∑
j α̂j ,

m̂2 = 1
L

∑
j Qjα̂j ,

m̂3 = 1
L

∑
` ρ̂

`
z,

m̂4 = 1
L

∑
` π̂

`
` ,

m̂5 = − 1
L

∑
`

∑
j 6=` π̂

`
j ,

m̂6 = − 1
L(J−1)

∑
`

∑
j 6=`

π̂`j
π̂`
`

,

m̂7 = 1
L

∑
`

[
(π̂``)2∑
k
(π̂kk)

2

]
·
(
ρ̂`z
λ̂`z

)
.

m̂1 is the mean OLS coefficient, which provides information about β0 + b0, the sum of mean value-added

and mean bias. m̂2 is the mean OLS coefficient among lottery schools, which helps to identify βQ, the

difference in value-added between lottery and non-lottery schools. m̂3 is the mean reduced form, which

provides information about β0. m̂4 is the mean first stage across lotteries, which can be used to estimate δ0.

m̂5 is the average sum of fallback probabilities for included schools across lotteries, and m̂6 is the average
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ratio of this sum to the first stage, which gives the share of compliers drawn from included schools. These

two moments help to estimate ξ0, the mean fallback utility for included schools relative to the omitted school.

m̂7 is the average ratio of the lottery reduced form to a “pseudo-reduced form” prediction that uses OLS

value-added estimates, given by λ̂`z =
∑
j π̂

`
jα̂j . We weight this average by the squared lottery first stage to

avoid unstable ratios caused by small first stages. This moment yields information about the variance of bj ,

the bias in conventional value-added estimates, along with the correlation between βj and bj .

The next seven moments are variances of parameter estimates:

m̂8 = 1
J

∑
j (α̂j − ᾱ)2,

m̂9 = 1
L

∑
`

(
ρ̂`z − ρ̄

)2,
m̂10 = 1

L

∑
`(λ̂`z − λ̄)2,

m̂11 = 1
L

∑
`

(
π̂`` − π̄own

)2,
m̂12 = 1

J

∑
j

[(
1

L−1
∑
`6=j π̂

`
j

)
− π̄other

]2
,

m̂13 = 1
J

∑
j

[(
1

L−1
∑
`6=j

π̂`j
π̂`
`

)
− s̄other

]2
,

m̂14 = 1
J(L−1)

∑
j

∑
`6=j
(
π̂`j − π̄j,other

)2.
Here ᾱ indicates the sample average of the αj , and similarly for other variables. m̂8 is the variance of

conventional value-added estimates across schools, which depends on the variances of value-added and bias

as well as their covariance. m̂9 and m̂10 are variances of the lottery reduced form and predicted reduced

form, which contain additional information about the joint distribution of value-added and bias. m̂11 is

the variance of the first stage across lotteries, which helps to identify the variance of δj . m̂12 computes the

mean share of students drawn from each school across lotteries, then takes the variance of this mean share

across schools. This is the between-school variance in fallback probabilities. m̂13 is the variance of the mean

share of compliers drawn from a particular school; s̄other is the mean of this variable. These two moments

yield information about the variances of ξj and ν`j , which govern heterogeneity in fallback probabilities. m̂14

computes the variance of fallback shares across lotteries at every school, then averages across schools. This

is the average within-school variance in fallback probabilities. This moment helps to separate the variance

of ξj , the school-specific mean fallback utility, from σ2
ν , the variance of idiosyncratic school-by-lottery utility

shocks.

Finally, we match six covariances:

m̂15 = 1
L

∑
`

(
ρ̂`z − ρ̄

) (
λ̂`z − λ̄

)
,

m̂16 = 1
L

∑
`

(
ρ̂`z − ρ̄

) (
π̂`` − π̄own

)
,
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m̂17 = 1
L

∑
` (α̂` − ᾱ)

(
π̂`` − π̄own

)
,

m̂18 = 1
L

∑
`

(
ρ̂`z − ρ̄

) [( 1
L−1

∑
k 6=` π̂

k
`

)
− π̄other

]
,

m̂19 = 1
L

∑
` (α̂` − ᾱ)

[(
1

L−1
∑
k 6=` π̂

k
`

)
− π̄other

]
,

m̂20 = 1
L

∑
`

(
π̂`` − π̄own

) [( 1
L−1

∑
k 6=` π̂

k
`

)
− π̄other

]
.

m̂15 is the covariance of the reduced form and pseudo-reduced form, which helps to identify variation in

bias, as well as the covariance between bias and value-added. m̂16 is the covariance between reduced forms

and first stages, which is informative about the covariance between βj and πjj . m̂17 is the covariance of

conventional value-added and the first stage, which helps to identify the covariance between bj and δj . m̂18

is the covariance of the reduced form and average fallback probability, which helps to identify the covariance

of βj and ξj . m̂19 is the covariance of OLS value-added with the average fallback probability, which depends

on the covariance between bj and ξj . m̂20 is the covariance of a school’s first stage and average fallback

probability, which provides information about the covariance of ξj and δj .

There are 16 elements of θ and 20 moments, so the model has four overidentifying restrictions. Models

that include charter and pilot school effects add sector-specific values of m̂1, m̂2, m̂3 and m̂4, yielding 20

parameters and 24 moments. Let m̂ = (m̂1, ..., m̂24)′ be the vector of observed moments, and let m̃(θ) be the

corresponding vector of simulated predictions. The simulated minimum distance estimator with weighting

matrix A is

θ̂SMD(A) = arg min
θ

J (m̂− m̃(θ))′A (m̂− m̃(θ)).

The set of simulation draws used to construct m̃(θ) is held constant throughout the optimization. For each

evaluation of the objective function the vector θ is used to transform these draws to have the appropriate

distributions.

We produce a first-step estimate of θ with an identity weighting matrix, then use this estimate to compute

a model-based covariance matrix by simulation. Altonji and Segal (1996) show that estimation error in the

weighting matrix can generate finite-sample bias in two-step optimal minimum distance estimates. This bias

is caused by correlation between the observations used to compute the moment conditions and those used

to construct the weighting matrix. We therefore compute the model-based weighting matrix using a second

set of simulation draws independent of the draws used to compute the moments. The weighting matrix is

given by

Â =
[
J · 1

R

∑
r

(
m̃r
(
θ̂SMD(I)

)
− m̄

)(
m̃r
(
θ̂SMD(I)

)
− m̄

)′]−1
,

where r indexes a second independent set of R = 10, 000 simulation draws and m̄ is the mean of the simulated

moments. An efficient two-step estimate is given by θ̂SMD

(
Â
)
.

Under the null hypothesis that the model’s overidentifying restrictions hold and standard regularity

conditions, the minimized SMD criterion function follows a χ2 distribution (Sargan, 1958; Hansen, 1982):

49



J
(
m̂− m̃

(
θ̂SMD(Â)

))′
Â
(
m̂− m̃

(
θ̂SMD(Â)

))
∼ χ2

q,

where q is the number of overidentifying restrictions. Table 5 reports the results of overidentification tests

based on this J-statistic.

B.4 Empirical Bayes Posteriors

We next derive expressions for hybrid empirical Bayes posterior predictions of school value-added that

condition on lottery and OLS estimates. Begin by assuming that the first stage matrix, Π, is known. In this

case the posterior distribution for βj and bj can be derived analytically. In matrix form the model can be

written

α̂ = β + b+ eα,

ρ̂z = Πβ + eρ,

(e′α, e′ρ)|β, b ∼ N(0, Ve),

(β′, b′)′ ∼ N
(
(ι′β0, ι

′b)′ , VΘ
)
,

where we have set βQ = 0 for simplicity. The posterior density for the random coefficients Θ = (β, b)

conditional on the observed estimates Ω̂ = (α̂, ρ̂z) is given by

fΘ|Ω̂

(
Θ|Ω̂; θ

)
=
fΩ̂|Θ

(
Ω̂|Θ

)
fΘ (Θ; θ)

fΩ̂

(
Ω̂; θ

) . (27)

The estimation errors and random coefficients are normally distributed, so we can write

−2 log fΘ|Ω̂

(
Θ|Ω̂; θ

)
=
(
(α̂− β − b)′ , (ρ̂z −Πβ)′

)′  vαα vαρ

v′αρ vρρ

 α̂− β − b

ρ̂z −Πβ



+ ((β − β0ι)′, (b− b0ι)′)′
 vββ vβb

v′βb vbb

 β − β0ι

b− b0ι

+ C1,

where vαα, vαρ and vρρ are blocks of V −1
e ; vββ , vβb and vbb are blocks of V −1

Θ ; and C1 is a constant that

does not depend on Θ.

Rearranging this expression yields

−2 log fΘ|Ω̂

(
Θ|Ω̂; θ

)
= ((β − β∗)′, (b− b∗)′

 v∗ββ v∗βb

v∗′βb v∗bb

 β − β∗

b− b∗

+ C2, (28)

where C2 is another constant. The parameters of this expression are

v∗ββ = vαα + Π′v′αρ + vαρΠ + Π′vρρΠ + vββ ,
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v∗βb = vαα + Π′v′αρ + vβb,

v∗bb = vαα + vbb,

and

β∗ = W1(α̂− b0ι) +W2ρ̂z + (I −W1 −W2Π)β0ι

with

W1 = B−1((vαα + vbb)(vαα + Π′v′αρ + vβb)−1(vαα + Π′v′αρ)− vαα),

W2 = B−1((vαα + vbb)(vαα + Π′v′αρ + vβb)−1(vαρ + Π′vρρ)− vαρ),

B = (vαα + vbb)(vαα + Π′v′αρ + vβb)−1(vαα + Π′v′αρ + vαρΠ + Π′vρρΠ + vββ)− (vαα + vαρΠ + v′βb).

Equation (28) implies that the posterior for (β, b) is normal:

(β′, b′)′|α̂, ρ̂z ∼ N
(
(β∗′, b∗′)′ , V ∗

)
,

with

V ∗ =

 v∗ββ v∗βb

v∗′βb v∗bb

−1

.

An empirical Bayes version of the posterior mean β∗ is formed by plugging θ̂SMD and an estimate of Ve into

the expressions for W1 and W2.

In practice the first stage matrix Π is unknown and must be estimated. The vector of unknown school-

specific parameters is then

Θ =
(
β1, b1, δ1, ξ1, ...., βJ , bJ , δJ , ξJ , ν

1
1 , ..., ν

L
J

)′.
Up to a scaling constant, the posterior density for Θ conditional on the observed estimates Ω̂ and the prior

parameters θ can be expressed

fΘ|Ω̂

(
Θ|Ω̂; θ

)
∝ φm

(
Ω̂− Ω(Θ);V

)
φm
(
Θ− Θ̄(θ); Γ(θ)

)
, (29)

where

Θ̄(θ) = (β0 + βQ, b0, δ0, ξ0, ...β0, b0, δ0, ξ0, 0, ....0)′,

φm(x; v) is the multivariate normal density function with mean zero and covariance matrix v, and

Γ(θ) =

 IJ ⊗ Σ 0

0 σ2
νILJ

.
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Note that the probability limit of the vector of observed estimates, Ω, is a function of Θ, so we write Ω(Θ).

As before we form an empirical Bayes posterior density by plugging θ̂SMD into (29). The empirical Bayes

posterior mean is

Θ∗mean =
´

ΘfΘ|Ω̂

(
Θ|Ω̂; θ̂SMD

)
dΘ.

Since the first stage parameters π`j are nonlinear functions of δ and ξ, the density in (29) will not generally

be normal. As a result the integral for the posterior mean does not have a closed form and it is not possible

to sample directly from the posterior distribution. To avoid integration we instead work with the posterior

mode:

Θ∗mode = arg max
Θ

logφm
(

Ω̂− Ω(Θ);Ve
)

+ log φm
(

Θ− Θ̄
(
θ̂SMD

)
; Γ
(
θ̂SMD

))
.

The posterior mode coincides with the posterior mean in the fixed first stage case where the posterior

distribution is normal. The mode is computationally convenient in the estimated first stage case, as it

simply requires solving a regularized maximum likelihood problem.

We compare posterior modes for the βj with conventional empirical Bayes posterior means based on OLS

estimates of value-added. The conventional predictions are given by

α∗j. = σ̂2
α

σ̂2
α + V ar(eαj ) α̂j +

(
1− σ̂2

α

σ̂2
α + V ar(eαj )

)
µ̂α, (30)

where

µ̂α = 1
J

∑
j α̂j ,

σ̂2
α = 1

J

∑
j

[
(α̂j − µ̂α)2 − V ar

(
eαj
)]
.

Models with sector effects replace µ̂α in equation (30) with the regression predictions

µ̂αj = P ′j
[ 1
J

∑
k PkP

′
k

]−1 [ 1
J

∑
k Pkα̂k

]
,

where Pj is a vector including a constant and charter and pilot school indicators.
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Lagged Lagged score,
score no charter lotteries

(1) (2) (3) (4) (5)
Forecast coefficient 0.358 0.660 0.864 0.722 0.423

(0.087) (0.130) (0.167) (0.172) (0.310)

First stage F-statistic 33.1 27.0 26.8 29.4 14.0

p-values:
Forecast coef. equals 1 <0.001 0.009 0.416 0.105 0.063
Overid. restrictions 0.011 0.057 0.039 0.007 0.157
All restrictions <0.001 0.008 0.018 0.001 0.040
All restrictions (bootstrap refinement) <0.001 <0.001 <0.001 0.002 <0.001

Table A1: Tests for bias in ELA school value-added models

Uncontrolled Demographic

Notes: This table reports estimates of the VAM forecast coefficient and the results of tests for bias in conventional value-added models 
for 6th grade ELA scores. Estimated forecast coefficients are from regressions of 6th grade scores on fitted values from conventional 
value-added models, instrumented by the set of offer dummies for all school lotteries. Models are estimated via a two-step optimal 
GMM procedure that is efficient with arbitrary heteroskedasticity. Joint p-values come from OLS regressions of value-added residuals 
on offer dummies. The uncontrolled model includes only year-of-test indicators as controls. The demographic model adds indicators for 
student sex, race, subsidized lunch, special education, limited-English proficiency, and counts of baseline absences and suspensions. The 
lagged score model adds cubic polynomials in baseline math and ELA scores. The gains model includes the same controls as the 
demographic model and uses score gains from baseline as the outcome. Column (5) excludes charter school lotteries from the lottery 
sample in testing the lagged score model. All IV models control for lottery strata fixed effects, demographic variables, and lagged 
scores. Standard errors are reported in parentheses.  Bootstrap p-values are based on 500 Bayesian bootstrap replications (see Appendix 
B for details).

Gains



β j b j δ j ξ j

(1) (2) (3) (4)
Standard deviation 0.158 0.140 0.954 0.951

(0.070) (0.068) (0.112) (0.227)

Correlation w/β j 1
-

Correlation w/b j -0.480 1
(0.427) -

Correlation w/δ j 0.119 0.361 1
(0.391) (0.426) -

Correlation w/ξ j 0.428 -0.522 -0.651 1
(0.544) (0.578) (0.175) -

Std. dev. of νlj

Table A2: Random coefficient distribution

1.315
(0.183)

Notes: This table reports simulated minimum distance estimates of parameters governing the distribution 
of value-added, bias, and first-stage compliance across schools for a lagged score value-added model with 
sector effects. See notes to Table 5 for a description of the estimation procedure.


