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Abstract

We study the dynamic decision making of a financial institution in the presence of a
novel implementation friction that gives rise to operational risk. We distinguish between
internal and external operational risks depending on whether the institution has control
over them. Internal operational risk naturally arises in the context of model risk, as the
institution exposes itself to operational errors whenever it updates and improves its invest-
ment model. In this case, it is no longer optimal to implement the best model available,
thus leaving scope for endogenous deviation from it, and hence model sophistication. We
show that the optimal exposure to operational risk may well become decreasing in the level
of internal operational risk, which in turn makes the exposure to market risk less volatile.
We uncover that financial constraints interact with operational risk, whether internal or
external, and prompt the institution to always adopt a more sophisticated model. While
such constraints are always detrimental when operational risk is internal, they may be
beneficial, despite inducing an excessive level of sophistication, when it is external.
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Systems enhancements and updates, as well as the requisite training, entail
significant costs and create risks associated with implementing

new systems and integrating them with existing ones.
Goldman Sachs, 2014 Form 10-K

1 Introduction

Operational risk has always been present, but in the last 20 years, with rapid changes in

the financial industry leading to larger and more complex financial institutions, a widespread

concern has grown significantly. Jorion (2007) refers to it as the most pernicious form of risk

because of its contribution to numerous failures in financial institutions. The Basel Committee

on Banking Supervision (2001) defines operational risk as:

The risk of loss resulting from inadequate or failed internal processes, people, and

systems or from external events.1

Operational risk is considered internal if the financial institution has control over it, and external

if it is due to uncontrollable events such as natural disasters, security breaches, political risk

(e.g., see Hull, 2012). Well publicized cases of large operational losses include: Salomon Brothers

($303 million, 1993), Knight Capital ($460 million, 2012) and Goldman Sachs (undisclosed

amount, 2013) for changes in computing technology and programming errors; Bank of America

($225 million, 1983), Wells Fargo Bank ($150 million, 1996) and Freddie Mac ($207 million,

2001) for systems integration and transaction processing failures; Barings Bank (£830 million,

1995), Société Générale (e4.9 billion, 2008), and UBS ($2.3 billion, 2011) for rogue trading.

Even though large and infrequent operational losses typically make it to the news, operational

risk is for the majority part induced by small and frequent operational errors. Not surprisingly,

the literature on operational risk is growing rapidly (as discussed below), but it mostly focuses

on measurement issues and statistical properties of operational losses. Little is known about

the interaction between operational and other risks that financial institutions face, and the

choices they make to simultaneously manage the exposure to these risks.

Our goal is to undertake a comprehensive analysis of the decision making of a financial

institution in the presence of operational risk. In particular, we study the implications of

1The Basel Committee on Banking Supervision (2011) also lists eleven Principles (covering governance, the
risk management environment and the role of disclosure) to provide guidance to banks on the management of
operational risk. The Basel Committee on Banking Supervision (2014) reviews the progress of 60 systemically
important banks in implementing the proposed Principles.
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operational risk for an institution’s optimal investment decisions within a simple standard

dynamic asset allocation framework. To our knowledge, ours is the first attempt to directly

embed operational risk into such a familiar framework. The key feature of our work is the

presence of a novel implementation friction that gives rise to operational risk. In particular,

within our setup, a financial institution makes its decisions based on an investment model, but

it has incomplete information on what the true model for investment decisions should be. This

induces model risk, and prompts the institution to update and improve its investment model

with the arrival of new information over time. When implementing the changes to its model, the

financial institution exposes itself to uncertain operational errors (e.g., bugs in programming

codes, mistakes in data collection, computer failures, and execution errors), and hence faces an

additional source of risk, operational risk. This implies that, if the institution tries to implement

a certain model, it will ultimately implement a version of that model which contains operational

errors.2

A form of internal operational risk arises when inadequate implementations are more likely

to occur at times in which the financial institution tries to implement a very sophisticated

model (i.e., a model incorporating larger updates). Operational risk is internal in this case

because the institution can control the exposure to this risk by reducing the sophistication of

its model. This originates a novel trade-off between model sophistication and operational risk:

between a model that is more likely to be profitable, and one that is less likely to contain oper-

ational errors. When, instead, an inadequate implementation of the investment model occurs

for reasons unrelated to its sophistication, the above trade-off is absent and the corresponding

operational risk is external. Our model conveniently nests both cases of internal and external

operational risks, and delivers a tractable analysis, admitting closed-form solutions.

Solving for the optimal model sophistication, we demonstrate that the financial institution

always adopts the most sophisticated model possible when operational risk is external. This

is because compromising the sophistication of its model would not help reduce the exposure

2As disclosed in the 2014 Form 10-K, Goldman Sachs highlights the importance of operational risk with
explicit reference to various operational errors: “our businesses ultimately rely on human beings as our greatest
resource, and from time-to-time, they make mistakes that are not always caught immediately [...]. These can
include calculation errors, mistakes in addressing emails, errors in software development or implementation,
or simple errors in judgment. [...] Human errors, even if promptly discovered and remediated, can result
in material losses and liabilities for the firm.” Typical cases of operational errors include spreadsheet errors.
Recently, JPMorgan reported billions of dollars of losses induced by spreadsheet errors in its VaR model towards
the end of January 2012. From the JPMorgan Task Force Report (2013): “[...] further errors were discovered in
the Basel II.5 model, including, most significantly, an operational error in the calculation of the relative changes
in hazard rates and correlation estimates. Specifically, after subtracting the old rate from the new rate, the
spreadsheet divided by their sum instead of their average, as the modeler had intended. This error likely had
the effect of muting volatility by a factor of two and of lowering the VaR [...].” “[...] additional operational
issues became apparent. For example, the model operated through a series of Excel spreadsheets, which had to
be completed manually, by a process of copying and pasting data from one spreadsheet to another.”
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to operational risk. In contrast, we show that the institution optimally implements a less so-

phisticated model when operational risk is internal. This reduces the likelihood of operational

errors, and hence operational losses. We find the key determinants of the endogenous model

sophistication to be operational and model risks. These risks affect model sophistication in op-

posite ways. If operational risk is high, the financial institution has a strong incentive to reduce

its exposure to this risk by updating its model less over time. Therefore, a high operational

risk results in low model sophistication. A financial institution facing high model risk has the

opposite incentive. Given the high risk of implementing a model that may differ from the true

one, the institution has a strong incentive to incorporate larger upgrades to its model to get

closer to the true one. So, high model risk results in high model sophistication.

Given the endogenous choice of model sophistication, we investigate how operational risk

affects the exposure of the investment model to this risk. We find that while optimal operational

risk exposure is always increasing in operational risk when the risk is external, it may very well

be decreasing when this risk is internal. In particular, it is increasing when operational risk is

sufficiently low, and it is decreasing otherwise. This result is surprising, as one may expect a

financial institution with high operational risk to use a model that is very sensitive to operational

errors. This is not the case if operational risk can be controlled by the institution. Indeed, this

is because an increase in operational risk has two opposing effects on the optimal operational

risk exposure: a positive direct effect due to the higher likelihood of operational errors, and

a negative indirect effect due to the optimal reduction in model sophistication. If operational

risk is internal, the indirect effect is present and it dominates precisely when this risk is high.

In this case, a higher operational risk would result in a lower operational risk exposure.

We also find that operational risk makes the financial institution’s exposure to market

risk (i.e., investment in risky securities) less volatile when operational risk is internal, and

more volatile only when operational risk is external. Notably, in the internal case, a higher

likelihood of operational errors is more than offset by a lower optimal model sophistication,

which makes the investment model overall less sensitive to market news and operational errors.

This offsetting mechanism is absent when operational risk is external. In order to assess how

important it is for a financial institution to optimally adjust the sophistication of its model, we

quantify the costs of sub-optimal sophistication under operational risk. We demonstrate that

these costs are economically significant, and we uncover an asymmetry between the costs of

maximal sophistication and unsophistication.

Finally, we study how financial constraints, due to regulation or self-imposed risk limits,

affect the financial institution’s optimal behavior with operational risk. We find that in the

presence of operational risk, whether internal or external, a constrained financial institution

always adopts a more sophisticated model than one adopted by an otherwise identical un-
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constrained institution. This is because, in the internal case, financial constraints alleviate

the trade-off between a more sophisticated model and a model with high operational risk by

shielding the institution from large operational errors. In the external case, instead, finan-

cial constraints induce a higher model sophistication, prompting the institution to adopt an

excessively sophisticated model, because a higher exposure to market news would reduce the

relative importance of operational risk (vis-à-vis market risk). At the same time, however, the

constraints would shield the excessive exposure to this news. Therefore, operational risk in-

troduces new channels through which financial constraints may influence financial investments.

Indeed, by affecting the sophistication of the model, financial constraints alter the institution’s

exposure to market risk even when the constraints are not binding.

When operational risk is external, we uncover that the financial institution may find finan-

cial constraints beneficial. Two opposing effects are present. On one hand, financial constraints

are beneficial because they prevent the implementation of extreme market risk exposures, pos-

sibly due to large operational errors. On the other hand, they are detrimental as they also

prevent valuable market news to be fully incorporated in the investment decisions. We show

that when operational risk is external and sufficiently high, the former effect dominates and

financial constraints make the institution better off. In contrast, when operational risk is inter-

nal, financial constraints are always detrimental since the financial institution can manage the

exposure to operational risk more effectively by altering its model sophistication.

Our results have several notable cross-sectional implications. To fix ideas, consider a large

investment bank versus a hedge fund. Investment banks are usually more complex institutions,

where an accurate implementation of the investment model requires effective communication

and coordination among several decentralized divisions (e.g., a research team, a structuring

team, and a trading desk). For this reason, it is natural to think of large and complex financial

institutions as being more subject to operational errors than hedge funds with a streamlined

investment process. However, our findings suggest that, despite being less subject to operational

errors, a hedge fund may be overall more exposed to operational risk than a large investment

bank. Indeed, the latter reduces its operational risk exposure by adopting a less sophisticated

model. Our results also suggest that, given the higher model sophistication, a hedge fund

should exhibit more volatile investment decisions. Alternatively, consider two institutions with

similar organizational structures (e.g., a large investment bank and a large insurance company).

Our model implies that, despite being equally subject to operational errors, their exposures to

operational risk may still be different depending on the financial constraints they face. Overall,

these implications underscore the importance of having a theory of operational risk to guide in

the identification of the determinants of operational losses in the data.
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1.1 Related Literature

The importance of operational risk for financial institutions is well recognized and discussed

in detail in leading risk management textbooks (e.g., Jorion, 2007; Hull, 2012; Crouhy, Galai

and Mark, 2014). However, the difficulties in quantifying operational risk have led most of the

recent literature to focus almost exclusively on measurement and estimation issues. Several

studies estimate the distribution of operational risk losses using techniques from extreme value

theory and data on large and infrequent operational losses (Chavez-Demoulin, Embrechts and

Neslehova, 2006; Coleman, 2003; de Fontnouvelle, Rosengren and Jordan, 2006; Ebnother,

Vanini, McNeil and Antolinez-Fehr, 2001; Moscadelli, 2004). These estimates, combined with

VaR models, are then used to determine regulatory capital against operational losses, as required

by the Basel Capital Accord. de Fontnouvelle, Jordan, DeJesus-Ureff and Rosengren (2006)

show that the amount of capital held for operational risk may exceed capital for market risk.

We view our work as complementary to this literature, as our theory provides a microfundation

of operational losses (and their distribution) by considering the endogenous response of financial

institutions to operational risk.

Following the intensity-based framework developed in the reduced form credit risk literature

(Jarrow and Turnbull, 1995; Lando, 1998; Duffie and Singleton, 1999; Jarrow and Yu, 2001;

Duffie, Eckner, Horel and Saita, 2009), Jarrow (2008) and Chernobai, Jorion and Yu (2011)

treat the arrival of operational losses as a conditional Poisson process. Jarrow suggests that

both data internal to the firm and market data are needed to estimate the parameters of the

operational loss processes. Using a large database of operational losses among U.S. financial

institutions, Chernobai, Jorion and Yu find that young and more complex institutions tend to

have a higher operational risk exposure, and identify a positive correlation between operational

risk and credit risk. As opposed to modeling operational risk in reduced form, we propose a

“structural model” of operational risk where operational losses are derived endogenously from

the optimal risk exposure of financial institutions.

Franks and Mayer (2001) provide a survey of the European asset management industry,

and identify misdealing, settlement problems, and errors in the computation of the asset value

as the major sources of operational risk. These findings are confirmed by Biais, Casamatta

and Rochet (2003) using a different sample of European fund management companies. Biais,

Casamatta and Rochet also propose a theoretical model based on agency frictions in which

investors cannot observe the effort that investment companies exert to reduce operational risk.

They show that the level of funds’ capital can be useful to provide incentives and hence to

reduce operational losses. To the best of our knowledge, this is the only study in which op-

erational risk is not entirely exogenous but rather depends on the optimal actions of financial
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institutions. Our model abstracts from delegation frictions, but considers a novel implemen-

tation friction that highlights the role of model sophistication as an important determinant

of an institution’s exposure to operational risk. This implementation friction may arise due

to ineffective communication and coordination within a financial institution. Related to this,

Vayanos (2003) studies the aggregation of risky positions within a financial institution subject

to communication constraints. Biais, Hombert and Weill (2014) derive the optimal trading

strategy and equilibrium prices when data collection and aggregation delay the incorporation

of relevant information into investment decisions.

In three recent papers Brown, Goetzmann, Liang and Schwarz (2008, 2009, 2012) construct

and use a measure of operational risk in the hedge fund industry, called the ω-score, based

on funds’ mandatory disclosure of past legal and regulatory disputes. Exposure to operational

risk, as measured by the ω-score, is associated with subsequent poor fund’s returns (Brown,

Goetzmann, Liang and Schwarz, 2008), and it may have more predictive power of future fund

failure than financial risk (Brown, Goetzmann, Liang and Schwarz, 2009). The ω-score is then

refined by integrating a database of operational due diligence reports conducted on behalf of

fund investors (Brown, Goetzmann, Liang and Schwarz, 2012). Even though high operational

risk could destroy investor value, the authors show that the investors’ return-chasing behavior

seems to be unaffected by the funds’ exposure to this risk.

More broadly, our paper also contributes to the literature on firms’ organizational structure

(Dessein, 2002; Vayanos, 2003; Dessein and Santos, 2006; Dessein, Galeotti and Santos, 2014).

The choice of sophistication of the investment model defines the internal anatomy of a finan-

cial firm by requiring, for instance, a specific hierarchical structure, internal due diligence, IT

infrastructure, and dedicated quant-desks. Our study is the first to emphasize the connection

between operational risk and financial institutions’ organizational structure.

The reminder of our paper is organized as follows. Section 2 presents our theory of opera-

tional risk, detailing the economic setup and the optimization problem of a financial institution.

Section 3 presents our results on the optimal model sophistication, the exposures to market and

operational risks, and the costs of sub-optimal sophistication. Section 4 analyzes the optimal

behavior of an institution subject to financial constraints and illustrates the beneficial role of

constraints in the presence of operational risk. Section 5 concludes. Appendix A contains the

proofs, and Appendix B presents results for richer specifications of operational risk.
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2 Economy with Operational Risk

The goal in this section is to formally present our theory of operational risk. We consider the

simplest possible economic setting in which we incorporate a notion of operational risk into a

standard dynamic asset allocation framework. In this setting, we formulate the optimal decision

making of a financial institution that accounts for the presence of operational risk.

2.1 Economic Setting

In this section we describe the key ingredients that give rise to an economic role for operational

risk in financial markets. A financial institution – our economic agent – relies on a model to

make investment decisions; however, uncertainty about this model prompts the institution to

change it and improve it over time. The corresponding risk associated with these changes is

what we refer to as model risk.

We consider a finite horizon T economy in which market uncertainty is resolved continuously

and is driven by a standard Brownian motion w, defined on the probability measure P. The

tradable assets in the economy are a riskless security that pays a constant risk-free rate r, and

a risky investment opportunity (e.g., a portfolio of risky loans, a CDO tranche) with return

dynamics given by

dRt = (r + κσ)dt+ σdwt, (1)

where the constants κ and σ > 0 represent the market price of risk and the volatility of the

risky asset, respectively. The drift in (1) is the expected return on the risky investment and is

given by the risk-free rate plus a risk premium. In this context, the parameter κ also represents

the true model for investment decisions.

The financial institution observes the realizations of the risky return process Rt, but has

incomplete information on its dynamics. It deduces σ from the return’s quadratic variation,

but it must estimate the true model κ via its conditional expectation, rationally updating in

a Bayesian fashion. We denote by κ̂t the institution’s estimate of the true model κ at time t,

given its prior and the realizations of the return on the risky asset. Based on this estimate, the

institution’s perceived return dynamics are equal to

dRt = (r + κ̂tσ)dt+ σdŵt, (2)
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where ŵ represents the perceived market uncertainty under a new probability measure P̂, and

is a Brownian motion satisfying dŵt = dwt + (κ− κ̂t)dt.

We assume that the financial institution has a normally distributed prior with mean κ0 and

variance ν0 over the true model κ. Under this assumption, the estimated model is a martingale

under the perceived probability measure P̂, and is characterized by the dynamics (Liptser and

Shiryaev (2001))

dκ̂t = ν̂tdŵt. (3)

The conditional volatility ν̂t is given by

ν̂t =
ν0

1 + ν0t
, (4)

where the driving parameter ν0 is referred to as the model risk in what follows.3

2.2 Modeling Operational Risk

Operational risk arises from the inadequate implementation of the models that financial insti-

tutions adopt to perform their financial operations. Therefore, our theory builds on a novel

implementation friction. According to this friction, an inadequate implementation, which can

be caused by different types of errors (e.g., bugs in programming codes, mistakes in data collec-

tion and processing), is more likely to occur at times when a financial institution makes changes

to its model.

In our framework, as introduced in the previous section, model risk creates the need for a

financial institution to update its model with the arrival of new information. In the presence of

operational risk, however, operational errors introduce a wedge between the estimated model

and the one that is ultimately implemented. In particular, if the financial institution decides

to change its model by dκ̂t, it will end up implementing a change given by dκ̂t + σεdwεt, where

σεdwεt captures the operational error. Here, wε is another standard Brownian motion adapted

to the institution’s filtration, and represents operational uncertainty. The volatility parameter

σε > 0 is a constant and is our measure of operational risk.

3We could in principle start with a stochastic process for the model dynamics satisfying exogenously equation
(3). However, the advantage of our formulation is that it provides a microfoundation for the estimated model κ̂t,
highlighting the underlying determinants. Furthermore, it is consistent with the extant literature on incomplete
information and model risk (e.g., Detemple, 1986, 1991; Genotte, 1986; Veronesi, 1999, 2000; Xia, 2001; Cvitanic,
Lazrak, Martellini and Zapatero, 2006).
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In order for operational risk to play a relevant economic role, we allow the financial insti-

tution to potentially manage its exposure to operational errors by controlling the size of the

changes it makes to its model. This introduces a new trade-off: by reducing the size of these

changes, the institution lowers its exposure to operational errors, but at the same time it com-

promises on the sophistication of its model. This means that the institution may not select the

estimated model, and hence the most sophisticated available, for implementation. Formally, κ∗t

denotes the implemented model at time t, with dynamics

dκ∗t = λdκ̂t + h(λ)σεdwεt. (5)

The quantity λ, which is to be determined endogenously, controls the extent to which the finan-

cial institution may deviate from the estimated model, and we refer to it as model sophistication.

Simultaneously, it may affect the sensitivity of the implemented model to operational errors

through the function h(λ) > 0, with h′(λ) > 0. The function h(λ) simply controls the balance

of the trade-off between model sophistication and operational risk, while the quantity h(λ)σε

captures the exposure to operational uncertainty. In practice, the choice of model sophistication

involves setting up a specific organizational structure within the institution. Considering the

high costs, particularly fixed costs, associated with changes of such organizational structures,

we take λ as constant over the horizon considered.

When the institution is able manage the exposure to operational uncertainty, the above

formulation captures what is termed as internal operational risk, and in this case the function

h(λ) is strictly increasing. On the contrary, when the institution is not able to control how

operational errors affect its model, it is subject to so-called external operational risk. A simple

way to capture a form of external operational risk within our formulation is by restricting the

function h(λ) to be flat, h′(λ) = 0. For the remainder of the paper, we take the function h(λ) to

be linear, h(λ) = λ, which is not only natural to start with, but it also admits tractability and

maintains a simple setting. However, we can also consider a plausible non-linear specification

without altering our main conclusions, as discussed in Appendix B.2. Finally, to make the

comparison between internal and external operational risks more intuitive, we set h(λ) = 1 for

the case of external operational risk, thus yielding an implemented model with dynamics equal

to dκ∗t = λdκ̂t+σεdwεt. Our focus is, of course, on internal operational risk; the case of external

operational risk enables us to better highlight our main insights.4

4External operational risk is often modeled as jump risk (e.g., Jarrow, 2008). However, what really matters
for our analysis is that a financial institution is not able to affect the exposure to external operational risk. To
maintain a simple setting and facilitate the comparison, we consider Brownian uncertainty for both internal and
external operational risks.
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The implemented model, satisfying (5) with h(λ) = λ, can alternatively be expressed as

κ∗t = (1− λ)κ0 + λκ̂t + λσεwεt. (6)

This representation shows that the implemented model is given by the sum of two components.

The first, (1−λ)κ0+λκ̂t, is the model that the institution aims to implement, and is given by an

average of the initial model κ0 and the estimated model κ̂t, weighted by the model sophistication

λ. Henceforth, we refer to κ0 as the least sophisticated model and to κ̂t as the most sophisticated

model, in the sense that there is no better model to be implemented absent operational risk.

The second component, λσεwεt, captures the operational errors that make the implemented

model differ from its target. Operational errors can be further decomposed into operational

uncertainty, wεt, and the exposure to it, λσε. The latter is a key endogenous quantity in our

analysis, and we refer to it as operational risk exposure. We remark that in practice the true

and the most sophisticated models are of course broader and more complex than the simple

notion of a single market price of risk. For example, they may involve multiple sources of risk,

multiple assets and financial market imperfections, and varying degrees of observability.

Our formulation of the implemented model conveniently nests three special cases in the

presence of internal operational risk. When σε = 0, operational risk is absent, and it serves

as our benchmark in the subsequent analysis. When λ = 0, internal operational risk is fully

eliminated by the institution, but it must employ the least sophisticated model for investment

decisions, κ∗t = κ0. When, on the other extreme, λ = 1, the institution aims at implementing

the most sophisticated model, but it is now exposed to the highest level of operational risk,

κ∗t = κ̂t + σεwεt.

For a given level of model sophistication λ, the financial institution makes investment de-

cisions based on the implemented model κ∗t (containing operational errors). Therefore, the

institution’s effective return dynamics under κ∗t are equal to

dRt = (r + κ∗tσ)dt+ σdw∗t , (7)

where w∗ is a corresponding Brownian motion under the probability measure P∗, such that

dw∗t = dŵt + (κ̂t − κ∗t )dt. (8)

To conclude the description of our setting, the two sources of uncertainty in our economy,

market and operational, are naturally taken to be uncorrelated, given the nature of our im-

plementation friction. Although economically less relevant, our analysis can straightforwardly

incorporate any correlation between the two sources of uncertainty, whereby our main insights
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would remain equally valid.5 Moreover, we assume that operational uncertainty does not add

information in forming estimates of the true model κ, over and above the one conveyed by the

return on the risky asset, Ês[(κ − κ̂t)wεt] = 0 for s < t, where Ê[·] denotes the expectation

under the probability measure P̂. Finally, we maintain the assumption that, by the nature

of our implementation friction, operational uncertainty cannot be “undone” despite being ob-

served continuously. This preserves the economic realism of a discrete time formulation and

the tractability of continuous time.

Remark 1 (A richer specification of operational risk). A richer specification of the

dynamics of the implemented model is given by

dκ∗t = −ζ(κ∗t − κ̂t)dt+ λdκ̂t + h(λ)σεdwεt (9)

where the mean-reverting component, −ζ(κ∗t − κ̂t)dt, makes the implemented model determin-

istically revert back to the most sophisticated one, and converge to it in the long-run. The

parameter ζ > 0 is responsible for the speed of mean-reversion. Our formulation in (5) is

obtained by “shutting down” this channel, ζ = 0. This implies that the financial institution

makes changes to its model only when new information arrives (dκ̂t 6= 0). Any mean-reversion

component would simply induce the institution to change its model deterministically even in the

absence of new information. For instance, when ζ = λ, the above specification has the discrete-

time interpretation of a financial institution aiming at implementing a model that is given by

the λ-weighted average of the most recent implemented model and the most sophisticated one

available. Since our main insights remain unchanged in the presence of mean reversion, we

leave its treatment to Appendix B.1.

2.3 Optimization Problem

In this section we embed operational risk into the optimal decision making of a financial insti-

tution. Because of the implementation friction, this implies that the institution simultaneously

chooses the model sophistication and its dynamic investments. Towards that, we proceed by

solving the institution’s problem in two steps. First, we fix a level of model sophistication and

we solve for the optimal investment as in a standard asset allocation framework. Then, given

the optimal dynamic investment decision, we solve for the optimal model sophistication.

5If we were to consider correlated sources of uncertainty, the economic interpretation of the operational errors
would not be so meaningful. For instance, if the correlation were positive, it would be more likely that positive
operational errors would occur when the market went up, and vice-versa for negative correlation. This would
imply a systematic bias in the way operational errors are generated.
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The financial institution is initially endowed with capital W0. It chooses a risky investment

process π, where πt denotes the fraction of capital invested in the risky opportunity at time t.

We, henceforth refer to πt as market risk exposure. The institution’s capital process W then

follows

dWt = Wt(r + πtσκ
∗
t (λ))dt+Wtπtσdw

∗
t , (10)

where κ∗t (λ) is as in (6), and dw∗t as in (8). The financial institution is guided by a logarithmic

objective function over the horizon capital, logWT .

We next present the two steps we use to solve the institution’s problem. The first step is

to solve for the optimal dynamic investment for a given model sophistication λ. The optimal

market risk exposure π∗t (λ) is the solution to the following optimization problem

max
π

E∗0[logWT ] (11)

subject to the dynamic budget constraint (10), where E∗[·] denotes the expectation under the

probability measure P∗. The financial institution faces incomplete markets since there are two

sources of uncertainty in the economy, (w∗, wε), and only one risky asset available for trading.

However, the logarithmic specification admits tractability in solving this problem (see Appendix

A).

The second step is to solve for the optimal model sophistication, given the optimal market

risk exposure π∗t (λ) obtained in the first step. The optimal model sophistication λ∗ maximizes

the value function J(·) at time 0, under the probability measure P̂,

max
λ

J(λ;W0) = Ê0[logWT (π∗(λ))] (12)

It is important to emphasize that the financial institution chooses its model sophistication under

P̂ since it rationally takes into account what the most sophisticated model is, and importantly

how undesirable it is to deviate from it. Therefore, all the models κ∗t (λ), each characterized by

a different λ, are evaluated against the most sophisticated model κ̂t, which is known but not

implementable without operational errors.

The optimization problems in the two steps described above can be reasonably interpreted as

the decision problems faced by two separate divisions within a financial institution, an executive

and an investment division. The executive division decides first the organizational structure of

the institution (e.g., hierarchical structure, dedicated quant teams, IT infrastructure, internal

due diligence, training programs), hence the level of sophistication λ∗ characterizing the model

used for investment purposes. Once the organizational structure of the institution is set up,
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the investment division is responsible for the model implementation κ∗t (λ
∗) and the ensuing

asset allocation π∗t (λ
∗). Therefore, our solution procedure entails solving the problem of the

investment division first, followed by that of the executive division.

3 Optimal Behavior with Operational Risk

In this section we characterize explicitly the optimal model sophistication and the optimal

exposures to market and operational risks. A notable finding is that, while operational risk

exposure increases in operational risk when this risk is external, it may actually decrease when

operational risk is internal. Moreover, in contrast to the external case, operational risk also

decreases the variability of the institution’s market risk exposure when it is internal. Finally,

we find that not accounting for model sophistication can have sizable losses.

3.1 Model Sophistication and Risk Exposures

The next proposition provides the optimal model sophistication in closed form and presents its

key properties.

Proposition 1 (Model sophistication). In the presence of external operational risk, the

financial institution always adopts the most sophisticated model, λ∗ = 1. In the presence of

internal operational risk, however, it adopts an under-sophisticated model, 0 < λ∗ < 1, with

λ∗ =
ν0T − log(1 + ν0T )

ν0T − log(1 + ν0T ) + (1/2)σ2
εT

2
, (13)

Consequently, when operational risk is internal,

(i) optimal model sophistication is decreasing in operational risk, ∂λ∗/∂σε < 0;

(ii) optimal model sophistication is increasing in model risk, ∂λ∗/∂ν0 > 0.

Proposition 1 reveals that, when operational risk is external, the financial institution aims

to implement the most sophisticated model. This is intuitive, as in this case there is no trade-off

between model sophistication and operational risk. Instead, when operational risk is internal,

the optimal model sophistication trades off a more sophisticated model against higher opera-
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Figure 1: Optimal model sophistication

In this figure we plot the optimal model sophistication λ∗ as a function of operational risk σε
(left panel) and model risk ν0 (right panel). The dotted line represents the benchmark case of
no operational risk, σε = 0. The solid line refers to the case of internal operational risk, and
the dashed line (which coincides with the dotted line) to the case of external operational risk.
The parameter values are ν0 = 0.25, σε = 0.25, T = 5. The plots are typical.

tional risk. To see this more explicitly, one can show that λ∗, which solves the maximization

problem defined in (12), also minimizes the following expression∫ T

0

ˆvar0[κ∗t (λ)]dt− 2

∫ T

0

ˆcov0[κ∗t (λ), κ̂t]dt, (14)

where ˆvar[·] and ˆcov[·] denote the variance and covariance under the probability measure P̂.

Intuitively, the financial institution wants to achieve two goals. It seeks to implement a model

that has low (accumulated) variance, as captured by the first term in (14), but at the same

time a model that has a high (accumulated) covariance with the most sophisticated model

available, as captured by the second term. The first goal can be achieved by reducing λ, the

second by increasing it. This highlights the aforementioned trade-off, which confirms the result

in Proposition 1 that the financial institution always chooses a less sophisticated model, λ∗ < 1.

Proposition 1 identifies the key determinants of optimal model sophistication with internal

operational risk to be model and operational risks. Moreover, the optimal model sophistication

inherits the desirable properties of being decreasing in operational risk and increasing in model
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risk, as also depicted in Figure 1.6 These are intuitive. A financial institution with high

operational risk (high σε) has an incentive to reduce its model sophistication (low λ) compared to

an otherwise identical institution with low operational risk. This is because aiming to implement

a more sophisticated model is less important when operational risk is high, given the higher

likelihood of operational errors. On the contrary, an institution with high model risk (high

ν0) optimally increases its model sophistication (high λ) compared to an otherwise identical

institution with low model risk. In this case, aiming to be closer to the most sophisticated

model is more desirable when model risk is high, given the higher risk to implement a model

that differs from the true one.

The above results have the following predictions. Consider for instance a large investment

bank versus a small hedge fund. An investment bank is usually a more complex institution,

where the implementation of the investment model is the result of a more decentralized pro-

cess among several divisions (e.g., a research team, a quant team, a structuring team, and a

trading desk). An accurate implementation, therefore, requires effective communication and

coordination among these divisions. For this reason, it is natural to think of large and complex

financial institutions as more subject to operational errors. Our findings suggest that large in-

stitutions find it optimal to implement a less sophisticated model, which requires lesser changes

and updates over time.

We next consider the optimal operational risk exposure, namely the sensitivity of the im-

plemented model to operational uncertainty, and the corresponding distribution of operational

losses.

Proposition 2 (Operational risk exposure). In the presence of external operational risk,

the operational risk exposure is always increasing in the level of operational risk σε. Instead, with

internal operational risk, the optimal operational risk exposure is increasing when operational

risk is sufficiently low, σε < σ̄ε, and it is decreasing otherwise, where the constant σ̄ε > 0 is

provided in Appendix A.

In contrast to the case of external operational risk, we find that the operational risk ex-

posure may well become decreasing in operational risk when this risk is internal. This result

is surprising, as one may reasonably expect that a financial institution with high operational

risk implements a model that is very sensitive to operational uncertainty. This is indeed the

6The plots use the parameter values of κ0 = 0.33, σ = 0.18, ν0 ∈ [0, 0.5] with baseline value equal to 0.25,
σε ∈ [0, 0.5] with baseline value equal to 0.25, t = 1, T = 5. We calibrate κ0 to the average annual market
Sharpe ratio, and σ to the annual market standard deviation. We treat realizations of the Sharpe ratio greater
than 1.15 as occurring with probability lower than 5%, implying (given the normality assumption) that ν0 6 0.5,
and we consider the same range of values for σε. We calibrate the horizon T to 5 years as average tenure of
organizational structures in financial institutions, and we consider as intermediate date t 1 year.
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Figure 2: Operational risk exposure and distribution of operational losses

In this figure we plot the optimal operational risk exposure λ∗σε as a function of operational risk
σε (left panel), and the conditional distribution of operational losses OpL for different levels of
internal operational risk σε (right panel). The solid line refers to the case of internal operational
risk, and the dashed line to the case of external operational risk. In the right panel, the black
line corresponds to σε = 0.1, the blue line to the baseline case σε = 0.25, and the red line to
σε = 0.5. The parameter values are as in Figure 1. The plots are typical.

case, but only if the institution is subject to external operational risk, which is a risk that

cannot be controlled. When, instead, the institution can affect the exposure to operational risk

by changing its organizational structure and hence its model sophistication, the positive effect

of operational risk on the sensitivity to operational uncertainty not only is attenuated, but it

may even reverse. Moreover, this reversal occurs precisely when operational risk is high. The

intuition is as follows. When subject to high internal operational risk, a sophisticated model is

particularly undesirable. Therefore, a particularly low model sophistication is optimal, resulting

in a model that is overall not very sensitive to operational uncertainty.

Cross-sectionally, the result in Proposition 2 implies that institutions with high internal

operational risk may have an optimal operational risk exposure that is lower than the exposure

of institutions with low internal operational risk, as depicted by points B and C in the left panel

of Figure 2. Moreover, two financial institutions with identical risk exposure, as illustrated by

points A and C in the left panel of Figure 2, may well have sharply different model sophis-

tications, as one’s operational risk exposure is increasing in operational risk while the other’s

is decreasing. These results are in sharp contrast with the case of external operational risk.

For instance, (reported) risk exposure by itself cannot always be used to infer the institution’s
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model sophistication and its level of operational risk. Therefore, our findings highlight the

importance of distinguishing between internal and external operational risks for the design of

regulatory environments, given the different implications on institutions’ decision making that

these risks may have.

Operational losses, denoted by OpL, are defined as the percentage change in the horizon

capital WT caused exclusively by the materialization of operational errors,

OpL =
WT (σε;wε = 0)−WT (σε)

WT (σε)
, (15)

and are equal to

OpL = exp

[
(λ∗σε)

2

2

∫ T

0

w2
εtdt+ λ∗(1− λ∗)σε

∫ T

0

(κ0 − κ̂t)wεtdt− λ∗σε
∫ T

0

wεt dŵt

]
− 1, (16)

as derived in Appendix A.1. Since operational errors may also be beneficial to the finan-

cial institution, operational losses can be negative, hence generating operational gains. Even

though this is possible, operational losses are positive on average.7 The right panel in Figure 2

plots the conditional distribution of operational losses, conditional on the losses being positive

pdf(OpL
∣∣OpL > 0), for different levels of internal operational risk. In line with the result in

Proposition 2, the distribution of operational losses becomes flatter with increasing internal

operational risk when this risk is sufficiently small (moving from the black to the blue distri-

bution), and it becomes steeper when this risk is high (from the blue to the red distribution).

This finding highlights the endogenous nature of operational losses and their dependence on

the optimal choice of model sophistication. Our microfundation for operational errors provides

a mechanism that links operational risk to operational losses, and should help the identification

of the determinants of these losses in the data.

We conclude this section with the analysis of the optimal market risk exposure.

7Note that

E[log(1 +OpL)] = E

[
(λ∗σε)

2

2

∫ T

0

w2
εtdt+ λ∗(1− λ∗)σε

∫ T

0

(κ0 − κ̂t)wεtdt− λ∗σε
∫ T

0

wεt dŵt

]
=

(λ∗σεT )2

4
.

Since by Jensen’s inequality log(1 + E[OpL]) > E[log(1 +OpL)], we can conclude that E[OpL] > 0.

17



Proposition 3 (Market risk exposure). In the presence of external operational risk, the

optimal market risk exposure is given by π∗t = κ̂t/σ + (σε/σ)wεt. In the presence of internal

operational risk, it is instead given by

π∗t (λ
∗) =

κ̂t
σ

+
(1− λ∗)(κ0 − κ̂t) + λ∗σεwεt

σ
, (17)

where λ∗ is as in (13). Consequently, the variance of the market risk exposure,

ˆvar0[π∗t ] =

(
λ∗

σ

)2(
ν2

0

1 + ν0t
+ σ2

ε

)
t, (18)

(i) is increasing in operational risk when it is external, ∂ ˆvar0[π∗t ]/∂σε > 0;

(ii) is decreasing in operational risk when it is internal, ∂ ˆvar0[π∗t ]/∂σε < 0.

Operational risk is the risk of implementing a model that contains operational errors. As a

consequence, one may naturally think that an institution’s exposure to market risk, resulting

from the implementation of its model, would be more volatile the higher the level of operational

risk is. This is indeed the case in the presence of external operational risk. However, the

exact opposite occurs when operational risk is internal. In this case, as Proposition 3 reveals,

operational risk always decreases the variability of market risk exposure, implying that this

variability is higher when operational risk is absent. The logic behind this counterintuitive

result is as follows. An increase in (internal) operational risk σε by itself indeed increases the

variability of the model and hence of the market risk exposure. However, it simultaneously

induces an optimal reduction in model sophistication λ (Proposition 1), which in turn makes

the model less sensitive to both market and operational uncertainty. Overall, the latter effect

dominates, causing the variability of market risk exposure to be decreasing in the level of

internal operational risk. When, instead, operational risk is external this offsetting mechanism

is absent.

The results in Proposition 3 have the following cross-sectional implications. Institutions

with high internal operational risk always have an optimal market risk exposure that is less

volatile than the market exposure of institutions with low internal operational risk. This is

depicted by the three points in Figure 3. Moreover, two institutions with different levels of in-

ternal operational risk may have identical operational risk exposures (points A and C in Figure

2), while at the same time exhibiting very different variability in their exposure to market risk

(points A and C in Figure 3). Therefore, observing an institution with a volatile market expo-

sure does not necessarily imply that this institution is more exposed to operational uncertainty.

Indeed, its volatility is mainly driven by fundamental market news that is incorporated into a

more sophisticated investment model.
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Figure 3: Variability of market risk exposure

In this figure we plot the variance at time 0 of the optimal market risk exposure π∗t as a function
of operational risk σε. The dotted line represents the benchmark case of no operational risk,
σε = 0. The solid line refers to the case of internal operational risk, and the dashed line to the
case of external operational risk. The parameter values are σ = 0.18, t = 1 and the remainder
are as in Figure 1. The plots are typical.

Finally, Equation (18) also reveals that the variance of market risk exposure is increasing

in model risk ν0. This is the result of two compounding simultaneous forces. First, an increase

in model risk directly increases the variability of market risk exposure, as the arrival of more

unexpected market news leads to larger changes to the implemented model, and hence to larger

changes to the market exposure. At the same time, as shown in Proposition 1, an increase in

model risk induces an optimally higher model sophistication, which amplifies the increase in

the variability of market risk exposure by making the implemented model more sensitive to

both market and operational uncertainty.

3.2 Costs of Sub-Optimal Behavior under Operational Risk

We next analyze the economic significance for a financial institution to be able to manage

internal operational risk by optimally adjusting the sophistication of its investment model. In

particular, we quantify the costs of adopting the most or the least sophisticated model, instead

of the model with optimal sophistication λ∗.
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Towards that, we consider a cost measure ηλ=1 that represents the percentage of initial

capital W0 that an institution, adopting the most sophisticated model, must additionally have

in order to be indifferent to the optimal model sophistication λ∗,

ηλ=1 : J(1;W0(1 + ηλ=1)) = J(λ∗;W0). (19)

The measure ηλ=1 quantifies the cost of maximal sophistication. Similarly, we consider a cost

measure ηλ=0 that represents the percentage of initial capital W0 that an institution, adopting

the least sophisticated model, must additionally have in order to be indifferent to the optimal

model sophistication λ∗,

ηλ=0 : J(0;W0(1 + ηλ=0)) = J(λ∗;W0). (20)

The measure ηλ=0 quantifies the cost of unsophistication.

The next proposition identifies the cost measures of sub-optimal sophistication explicitly in

terms of the underlying primitives.

Proposition 4 (Costs of sub-optimal sophistication). The cost measures for sub-optimally

adopting the most and least sophisticated models are given by

ηλ=1 = exp

[
(1/4)σ4

εT
4

2 (ν0T − log(1 + ν0T )) + σ2
εT

2

]
− 1, (21)

ηλ=0 = exp

[
(ν0T − log(1 + ν0T ))2

2 (ν0T − log(1 + ν0T )) + σ2
εT

2

]
− 1. (22)

Proposition 4 and its corresponding Figure 4 show that the costs of sub-optimal sophistica-

tion are driven by the level of operational and model risks. In particular, we find that the cost

of maximal sophistication ηλ=1 is increasing in operational risk and decreasing in model risk,

whereas the cost of unsophistication ηλ=0 is decreasing in operational risk and increasing in

model risk. As demonstrated in Proposition 1, an increase in operational risk σε decreases the

optimal model sophistication λ∗, because a higher likelihood of operational errors more than

offsets the benefits of sophistication. This in turn makes maximal sophistication more costly,

while unsophistication less costly. Instead, an increase in model risk ν0 increases the optimal

model sophistication λ∗, hereby making maximal sophistication less costly and unsophistication

more costly. Indeed, a higher level of model risk increases the benefits of sophistication, as the

risk of implementing a model that differs from the true one becomes higher.
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Figure 4: Costs of sub-optimal model sophistication

In this figure we plot the cost measures of sub-optimal model sophistication ηλ=1 and ηλ=0 in
percentages, as a function of operational risk σε (left panel) and model risk ν0 (right panel).
The blue line represents the cost of maximal sophistication ηλ=1, and the red line represents
the cost of unsophistication ηλ=0. The parameter values are as in Figure 1.

Importantly, our model allows us to assess quantitatively the significance of a financial

institution’s optimal behavior under operational risk. The left panel in Figure 4 illustrates

that when operational risk is severe, a financial institution may need twice as much capital

to compensate for the potential losses associated with an maximal sophisticated model. When

instead operational risk is mild, it may need an amount of additional capital in the range of 20%

to compensate for the potential losses associated with an unsophisticated model. These large

magnitudes reveal the economic importance of optimally managing internal operational risk.

Moreover, these magnitudes suggest that maximal sophistication may be more detrimental

than unsophistication, highlighting a notable asymmetry between the costs of sub-optimal

sophistication with respect to operational risk. Finally, the right panel in Figure 4 shows that,

for a financial institution with an intermediate level of operational risk, the cost of maximal

sophistication decreases from roughly 50% to 15% for increasing levels of model risk, whereas the

cost of unsophistication increases from 0 to almost 50%. This confirms the economic relevance

of optimal model sophistication for a wide range of model risks.
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4 Operational Risk and Financial Constraints

In this section we study how financial constraints interact with operational risk and thereby

influence the institutions’ choice of model sophistication. Our main finding is that in the

presence of operational risk, whether internal or external, a constrained financial institution

optimally adopts a more sophisticated model as compared to an unconstrained one. Moreover,

we uncover that an institution subject to external operational risk implements an excessively

sophisticated model and may find financial constraints beneficial. In contrast, an institution

subject to internal operational would always find those constraints detrimental.

4.1 Optimization Problem with Constraints

We consider an economic environment in which a financial institution is subject to financial

constraints either due to regulation or self-imposed risk limits. More specifically, we focus on

upper- and lower-bound constraints on the proportion of capital invested in the risky opportu-

nity. Let C denote the set of feasible investment choices,

πt ∈ C ≡ {π ∈ R : α 6 π 6 β̄} (23)

with β̄ > α. This set features some of the most common constraints financial institutions face.

Examples of lower-bound constraints πt > α include short-selling constraints and concentration

constraints. Examples of upper-bound constraints πt 6 β̄ include leverage constraints, bor-

rowing constraints, and margin requirements. We focus our analysis on the case in which the

least sophisticated model κ0 implies an asset allocation, π0, that does not violate the financial

constraints, α 6 π0 6 β̄. Indeed, this allows us to isolate the effects of possible future viola-

tions of the financial constraints on the optimal model sophistication. Under our maintained

assumption, these effects are not confounded by the fact that the least sophisticated model may

be constrained to begin with, admitting a clearer comparison across constrained environments

(see footnote 9).

The optimization problem faced by the financial institution follows the steps presented in

section 2.3. The optimal market risk exposure for a given model sophistication πct (λ) maxi-

mizes the objective E∗0[logWT ], subject to the dynamic budget constraint (10) and the financial

constraints πt ∈ C. The optimal model sophistication λc is then obtained by solving

max
λ

J c(λ;W0) = Ê0[logWT (πc(λ))], (24)
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where J c(·) denotes the value function in the presence of financial constraints.

4.2 Optimal Behavior with Constraints and Operational Risk

The optimal model sophistication in the presence of financial constraints cannot be obtained in

closed-form given the highly non-linear nature of the problem. However, the next proposition

provides a characterization for it and reports a key property.

Proposition 5 (Model sophistication with financial constraints). In the presence of

operational risk, internal or external, financial constraints C increase the optimal model sophis-

tication,

λc > λ∗, (25)

where λ∗ is the unconstrained model sophistication in (13). When operational risk is internal,

the financial institution still adopts an under-sophisticated model, 0 < λc < 1, which solves the

equation

λc = 1−

∫ T
0

[
Ω

(
σα−κ0√

λc2(ν0ν̂t+σ2
ε )t

)
− Ω

(
σβ̄−κ0√

λc2(ν0ν̂t+σ2
ε )t

)]
λcσ2

ε t dt∫ T
0

[
Ω

(
σα−κ0√

λc2(ν0ν̂t+σ2
ε )t

)
− Ω

(
σβ̄−κ0√

λc2(ν0ν̂t+σ2
ε )t

)]
ν0ν̂tt dt

, (26)

where the function Ω(x) = n(x)x+
∫∞
x
n(s)ds and n(·) represents the probability density function

of a standard normal distribution. Instead, when operational risk is external, the financial

institution adopts an excessively sophisticated model, λc > 1, which solves the equation

λc = 1 +

∫ T
0

[
n

(
σβ̄−κ0√

(λc2ν0ν̂t+σ2
ε )t

)
σβ̄−κ0

(λc2ν0ν̂tt+σ2
ε t)

3
2
− n

(
σα−κ0√

(λc2ν0ν̂t+σ2
ε )t

)
σα−κ0

(λc2ν0ν̂tt+σ2
ε t)

3
2

]
(ν0ν̂tt)σ

2
ε t dt∫ T

0

[
Ω

(
σα−κ0√

(λc2ν0ν̂t+σ2
ε )t

)
− Ω

(
σβ̄−κ0√

(λc2ν0ν̂t+σ2
ε )t

)]
ν0ν̂tt dt

.

(27)

Absent operational risk, the most sophisticated model is always implemented, even in the

presence of financial constraints: λc = λ∗ = 1. This implies that the implemented model is

not affected by financial constraints when operational risk is not present.8 In contrast, when

operational risk is present, financial constraints always affect the degree of model sophistication

that financial institutions optimally choose. This result underscores the fact that operational

8Setting σε = 0 in both Equation (26) and Equation (27), it is immediate to see that λc = 1.
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risk, whether internal or external, interacts with a constrained environment that limits the

investment decisions of financial institutions.

Proposition 5 reveals that a financial institution that is subject to financial constraints

always adopts a more sophisticated model, as compared to an otherwise identical institution

that faces no constraints. However, while the implemented model remains under-sophisticated

when operational risk is internal, it becomes excessively sophisticated when operational risk

is external. We highlight the different economic mechanisms behind these results in the next

paragraphs.

Consider the materialization of an operational error in the implemented model. A positive

operational error may induce an over-exposure to market risk, while a negative operational

error may induce an under-exposure to market risk. When operational risk is internal, a

financial institution can reduce the likelihood of these events by adopting a less sophisticated

model. However, a less sophisticated model delivers investment decisions that are less accurate.

As discussed in the previous section, the optimal model sophistication trades off these two

opposing effects. The presence of financial constraints of the form in (23), say leverage or

short-selling constraints, would limit the over- or under-exposure to market risk when large

realizations of operational uncertainty wε occur. As a consequence, the trade-off between a

more sophisticated model and a model with high internal operational risk gets alleviated, thus

inducing a constrained financial institution to increase its model sophistication.9

Even though the implemented model of a constrained financial institution subject to internal

operational risk incorporates more market news, λc > λ∗, it still under-reacts to this news

when compared to the most sophisticated model, λc < 1. In contrast, with external operational

risk, financial constraints induce a financial institution to optimally over-react to market news

through the choice of a model which is excessively sophisticated, λc > 1. The intuition for

this finding is as follows. Despite the exposure to external operational risk being constant, and

hence not affected by the choice of model sophistication, the financial institution can reduce

the relative contribution of operational uncertainty to the total variability of the investment

9 The knife-edge case of λc = λ∗ obtains only when one of the two constraints is initially exactly binding
(π0 = α or π0 = β̄) and the other is absent (β̄ =∞ or α = −∞). Moreover, if our maintained assumption α 6
κ0/σ 6 β̄ is violated, the analysis become less transparent as the mechanism highlighted above gets confounded
by different initial conditions characterizing constrained and unconstrained financial institutions. In this case,
the trade-off between model sophistication and operational risk may not be alleviated and model sophistication
may be reduced simply because the scope for sophistication is initially constrained. The comparison between a
constrained and an unconstrained institution becomes less informative. Indeed, we would not be able to attribute
the change in model sophistication solely to the implemented model possibly violating financial constraints in
the future, as it could also be attributed to the use of a constrained model to begin with.
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model by increasing its sophistication. In fact, the ratio between the conditional variance of

the implemented model driven only by operational uncertainty and its total variance,

σ2
ε

λ2ν0ν̂t + σ2
ε

,

is decreasing in λ. This alone creates an incentive for the institution to increase the sophisti-

cation of its model, even to the extent of making it overly sophisticated (λ > 1). As shown

in Proposition 1, when financial constraints are absent, this incentive is perfectly offset by

the implicit cost of adopting a model that over-reacts to market news, thus rendering the

most sophisticated model (λ = 1) optimal. In contrast, when a financial institution is sub-

ject to financial constraints, the implicit cost of adopting a model that over-reacts to market

news becomes less severe. Indeed, the presence of financial constraints would limit the over- or

under-exposure to market risk when large realizations of market uncertainty w occur. As a con-

sequence, a constrained financial institution optimally increases λ above 1, thus implementing

an excessively sophisticated model.

Therefore, financial constraints affect model sophistication through different channels. Ef-

fectively, they shield financial institutions from large operational errors when operational risk

in internal, and they shield them from an excessive exposure to market news when operational

risk is external.

The desirable properties of the optimal model sophistication, discussed in Proposition 1 for

the case of unconstrained financial institutions, hold true also for the case of constrained insti-

tutions: λc is decreasing in operational risk, and increasing in model risk. Figure 5 depicts the

(percentage) difference in model sophistication between a constrained and an otherwise identi-

cal unconstrained financial institution, (λc − λ∗) /λ∗, as a function of financial constraints, and

operational risk. The left and right panels show that when financial constraints are tightened

(α increases, β̄ decreases), the difference in model sophistication tends to increase. This is

the case for both internal (top panels) and external (bottom panels) operational risks, in line

with the economic intuition aforementioned. However, when the constraints are very tight,

the difference in model sophistication, although remaining positive, may also decrease. This

occurs because a very tight constraint also limits the advantage of adopting a more sophisti-

cated model (internal operational risk), and increases the disadvantage of adopting an overly

sophisticated model (external operational risk). Indeed, a model that is very responsive to

market uncertainty (i.e., to positive or negative market news) is less valuable when the mar-

ket risk exposure is very constrained. The top-right panel shows that an increase in internal

operational risk first widens and then narrows the difference in model sophistication. When

internal operational risk is particularly high, a sophisticated model is particularly undesirable,
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Figure 5: Change in model sophistication with financial constraints

In this figure we plot the change in model sophistication ∆λ ≡ (λc − λ∗) /λ∗ in percentages
induced by the financial constraints α 6 πt 6 β̄, as a function of the lower-bound constraint
α (left panels), the upper-bound constraint β̄ (central panels), and operational risk σε (right
panels). The dotted line represents the benchmark case of no operational risk (σε = 0). The
solid line refers to the case of internal operational risk (top panels), and the dashed line to the
case of external operational risk (bottom panels). The parameter values are κ0 = 0.33, α = 0,
β̄ = 3, and the remainder are as in Figure 3. The plots are typical.

and the shielding role of financial constraints against operational risk becomes less relevant. In

contrast, bottom-right panel shows that an increase in external operational risk always widens

the difference in model sophistication. When external operational risk increases, the incentive

to reduce the relative contribution of operational uncertainty to the total variability of the

implemented model becomes stronger.

The next proposition presents the effects of financial constraints on the optimal market risk

exposure.
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Proposition 6 (Market risk exposure with financial constraints). In the presence of

financial constraints C, the optimal market risk exposure is

πct = π∗t (λ
c) +

[
(α− π∗t (λc))

+ −
(
π∗t (λ

c)− β̄
)+
]
, (28)

where π∗t (·) is the unconstrained market risk exposure in (17). Consequently, when the con-

strained market risk exposure is not binding, α < πct < β̄, it coincides with the unconstrained

market risk exposure absent operational risk, πct = π∗t , and it always differs in the presence of

operational risk,

πct − π∗t = (λc − λ∗)
(
κ̂t − κ0 + σεwεt

σ

)
6= 0, (29)

where λ∗ is as in (13) and λc solves (26) when operational risk is internal and solves (27) when

external.

Equation (28) reveals that the constrained market risk exposure πct is given by the uncon-

strained market risk exposure evaluated at the constrained model sophistication λc, plus an

additional term that arises due to the presence of financial constraints. Such constraints affect

the optimal market risk exposure not only directly by imposing lower and/or upper limits,

but also indirectly by changing the sophistication of the model that a constrained institution

optimally adopts. This implies that, as reported in (29), even when financial constraints are

not binding, the market risk exposure differs from the unconstrained one. This highlights a

new channel through which financial constraints affect financial investments.

4.3 Benefits of Financial Constraints

We next study how financial constraints affect the profitability of a financial institution. In

particular, we analyze whether financial constraints can be beneficial when operational risk is

present.

We consider a benefit-cost measure of financial constraints ηc that represents the percentage

of initial capital W0 that an institution without financial constraints must additionally have in

order to be indifferent to the constraints C:

ηc : J c(λc;W0) = J(λ∗;W0(1 + ηc)). (30)

When this measure is negative (ηc < 0) financial constraints are detrimental, and when positive

(ηc > 0) they are beneficial. Even though we have an analytical representation for the benefit-
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cost measure (as reported in Appendix A.2) we find it more helpful to present our results with

plots.

Figure 6 depicts the benefits-cost measure of financial constraints. The left panel reveals

that financial constraints are costly when operational risk is absent (dotted line) or when it

is internal (solid line). Indeed one would expect the constraints to typically be detrimental

(ηc < 0) since they restrict the set of possible investment choices (i.e., market risk exposures).

In stark contract, the left panel also reveals that financial constraints may be beneficial (ηc > 0)

when operational risk is external (dashed line), particularly for higher levels of operational risk.

This occurs because of two opposing effects. First, financial constraints may be beneficial as

they prevent the implementation of extreme market risk exposures that are possibly due to large

realizations of operational uncertainty. For this reason, constraints help reduce the exposure to

operational risk. At the same time, financial constraints may be detrimental as they also prevent

valuable market news to be fully incorporated in the investment choices. When operational risk

is external and sufficiently high, the former effect dominates and financial constraints make a

financial institution better off. In contrast, when operational risk is internal, the exposure to

operational risk is managed more efficiently by altering the sophistication of the investment

model, and when it is absent, there is no operational risk to be managed. Therefore, in these

cases financial constraints are always detrimental.10

Notably, the largest costs of financial constraints are always associated with the case of

no operational risk, implying that financial constraints are less costly when operational risk

is present. This is because, absent operational risk, an institution’s market risk exposure is

more responsive to market news (since the most sophisticated model is always implemented),

and hence it is more likely that the financial constraints are binding. Moreover, the shielding

role of constraints against operational risk are absent. The center and left panels in Figure 6

depict the effects of tighter financial constraints. When operational risk is absent or is internal,

the constraints become increasingly costlier as α increases (left panel), or β̄ decreases (right

panel). With external operational risk, instead, the benefits of financial constraints increase

first and, once the constraints become very tight, they decrease. Moreover, these benefits are

economically significant, as unveiled by all the plots in Figure 6.

Our findings also provide novel insights on the economic role of self-imposed risk limits

when financial institutions are subject to forms of operational risk that cannot be directly

managed internally. Consider for instance an error made by mis-typing a trade, also known

as a “fat finger” mistake. This represents a type of external operational risk, since reducing

10In the presence of external operational risk, financial constraints are also beneficial (ηc > 0) for lower levels
of model risk. The same aforementioned intuition holds, as low model risk makes the second opposing effect
less important.
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Figure 6: Benefits of financial constraints

In this figure we plot the benefit-cost measure of financial constraints ηc in percentages, as a
function of operational risk σε (left panel), the lower-bound constraint α (center panel), and
the upper-bound constraint β̄ (right panel). The dotted line represents the benchmark case of
no operational risk (σε = 0). The solid line refers to the case of internal operational risk, and
the dashed line to the case of external operational risk. The parameter values are as in Figure
5. The plots are typical.

the sophistication of the model would not reduce the exposure to these errors. However, the

presence of risk limits, either self-imposed or due to regulation, would contain the damage of

these mistakes.

5 Conclusions

In this paper we study the decision making of a financial institution in the presence of a novel

implementation friction that gives rise to operational risk. This is a first step towards incorpo-

rating operational risk into a dynamic asset allocation framework. Our setting emerges rich in

implications. When operational risk is internal, a financial institution optimally adopts a less

sophisticated investment model in order to reduce the likelihood and the severity of operational

losses. Because of the endogenous nature of model sophistication, the exposure of a financial

institution to operational risk becomes decreasing in the level of operational risk precisely when

this risk is high. As a consequence, operational risk also makes the financial institution’s expo-

sure to market risk less volatile. Furthermore, financial constraints that institutions may face

due to regulatory or self-imposed risk limits, interact with both internal and external opera-

tional risk, and ultimately affect the optimal choice of model sophistication. In particular, a

constrained financial institution has the incentive to increase the sophistication of its invest-
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ment model, as compared to an otherwise identical unconstrained institution. However, while

the implemented model remains under-sophisticated if operational risk is internal, it becomes

excessively sophisticated if it is external. When model sophistication is not effective in reducing

the exposure to operational risk, i.e., when operational risk is external, financial constraints

prove to be beneficial.

It would be of interest to undertake our analysis in several other directions. One extension

would be to allow for an inter-temporal choice of model sophistication. In this setting, a financial

institution would initially choose an organizational structure taking into account the possibility

to change this structure in the future. This would allow us to examine the dynamics of model

sophistication. Another direction for further investigation would be to study the implications

of operational risk on equilibrium asset prices. Interestingly, even if the operational errors

affecting the investment decisions of different financial institutions were to cancel each other

out, operational risk would still indirectly affect equilibrium prices through the institutions’

optimal choices of model sophistication. Moreover, endogenizing asset prices would also offer

the opportunity to perform a normative analysis with emphasis on policy implications.
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Appendix A: Proofs

Proof of Proposition 1. As discussed in Section 2.3, the financial institution’s optimization
problem can be solved in two steps. The optimal model sophistication λ∗ is obtained in the
second step.

Step 1. The first step is to solve for the optimal market risk exposure π∗t for a given model
sophistication λ. This entails solving the optimization problem in (11) subject to the dynamic
budget constraint (10). From the dynamic budget constraint, we obtain the institution’s capital
at time T ,

WT = W0 exp

[∫ T

0

(
r + πtσκ

∗
t (λ)− 1

2
π2
t σ

2

)
dt+

∫ T

0

πtσdw
∗
t

]
. (A.1)

Consequently, the optimization problem in (11) subject to (10) becomes

{π∗t }T0 ∈ arg max
π

E∗0
[∫ T

0

(
πtσκ

∗
t (λ)− 1

2
π2
t σ

2

)
dt

]
. (A.2)

where κ∗t (λ) is as in (6). For a given realization of (w∗t , wεt), we can solve the optimization
point-wise, thus obtaining

π∗t (λ) =
κ∗t (λ)

σ
=
κ̂t
σ

+
(1− λ)(κ0 − κ̂t) + λσεwεt

σ
. (A.3)

Step 2. The second step is to solve for the optimal model sophistication λ∗, given the op-
timal market risk exposure π∗t (λ) in (A.3). This entails solving the optimization problem in
(12). Substituting (A.3) into (A.1) and evaluating the institution’s horizon capital under the
probability measure P̂, making use of (8), we obtain

WT = W0 exp

[∫ T

0

(
r + κ∗t (λ)κ̂t −

1

2
κ∗t (λ)2

)
dt+

∫ T

0

κ∗t (λ)dŵt

]
. (A.4)

It follows that the value function in (12) is equal to

J(λ;W0) = logW0 + rT + Ê0

[∫ T

0

(
κ∗t (λ)κ̂t −

1

2
κ∗t (λ)2

)
dt+

∫ T

0

κ∗t (λ)dŵt

]
, (A.5)

which can be further simplified to

J(λ;W0) = logW0 +

(
r +

1

2
κ2

0

)
T +

∫ T

0

ˆcov0[κ∗t (λ), κ̂t] dt−
1

2

∫ T

0

ˆvar0[κ∗t (λ)] dt. (A.6)
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When operational risk is internal, κ∗t is as in (6), the covariance between the implemented
and the most sophisticated models and the variance of the implemented model are given by

ˆcov0[κ∗t (λ), κ̂t] = λ

(
ν2

0t

1 + ν0t

)
, (A.7)

ˆvar0[κ∗t (λ)] = λ2

(
ν2

0t

1 + ν0t
+ σ2

ε t

)
, (A.8)

respectively. Consequently,

λ∗ ∈ arg max
λ

λ

∫ T

0

ν2
0t

1 + ν0t
dt− λ2

2

∫ T

0

ν2
0t

1 + ν0t
+ σ2

ε t dt, (A.9)

yielding

λ∗ =

∫ T
0

ν20 t

1+ν0t
dt∫ T

0

ν20 t

1+ν0t
+ σ2

ε t dt
, (A.10)

which satisfies 0 < λc < 1 for any non-degenerate levels of model and operational risks. Since∫ T

0

ν2
0t

1 + ν0t
dt = ν0T − log(1 + ν0T ), (A.11)

(13) obtains. The partial derivatives of λ∗ in (13) with respect to σε and ν0 are equal to

∂λ∗

∂σε
= − (ν0T − log(1 + ν0T ))σεT

2

(ν0T − log(1 + ν0T ) + (1/2)σ2
εT

2)2 , (A.12)

∂λ∗

∂ν0

=
ν0σ

2
εT

4

2(1 + ν0T ) (ν0T − log(1 + ν0T ) + (1/2)σ2
εT

2)2 , (A.13)

respectively, where the first one is always negative and the second one always positive.

When operational risk is external, κ∗t = (1− λ)κ0 + λκ̂t + σεwεt, the covariance between the
implemented and the most sophisticated models remains as in (A.7), whereas the variance of
the implemented model becomes equal to

ˆvar0[κ∗t (λ)] = λ2

(
ν2

0t

1 + ν0t

)
+ σ2

ε t. (A.14)

Consequently,

λ∗ ∈ arg max
λ

(
λ− λ2

2

)∫ T

0

ν2
0t

1 + ν0t
dt− 1

2

∫ T

0

σ2
ε t dt, (A.15)

yielding λ∗ = 1.
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Proof of Proposition 2. When operational risk is internal, the optimal operational risk ex-
posure equals

λ∗σε =
(ν0T − log(1 + ν0T ))σε

ν0T − log(1 + ν0T ) + (1/2)σ2
εT

2
. (A.16)

The partial derivative of λ∗σε with respect to σε,

∂λ∗σε
∂σε

=
(ν0T − log(1 + ν0T ))

(ν0T − log(1 + ν0T ) + (1/2)σ2
εT

2)2

(
ν0T − log(1 + ν0T )− σ2

εT
2

2

)
, (A.17)

is positive for σε < σ̄ε, and negative otherwise, where

σ̄ε =

√
2 (ν0T − log(1 + ν0T ))

T
(A.18)

is obtained by setting the partial derivative in (A.17) equal to 0.

When operational risk is external, the optimal operational risk exposure equals σε, and
hence it is always increasing in σε.

Proof of Proposition 3. We obtain the optimal market risk exposure for the cases of internal
and external operational risk by substituting (13) and λ∗ = 1 into (A.3), respectively.

When operational risk is internal, the variance of the optimal market risk exposure is equal
to

ˆvar0[π∗t ] =

(
ν0T − log(1 + ν0T )

σ (ν0T − log(1 + ν0T ) + (1/2)σ2
εT

2)

)2(
ν2

0

1 + ν0t
+ σ2

ε

)
t. (A.19)

Since

∂ ˆvar0[π∗t ]

∂σε
= −

(
σ2
εT

2 + log(1 + ν0T )− ν0T
1+ν0t

)
λ∗2σεt

σ2 (ν0T − log(1 + ν0T ) + (1/2)σ2
εT

2)
, (A.20)

and log(1 + x)− x/(1 + x) > 0 for any x > 0, the variance of the optimal market risk exposure
is always decreasing in σε.

When operational risk is external, the variance of the optimal market risk exposure is equal
to

ˆvar0[π∗t ] =
1

σ2

(
ν2

0

1 + ν0t
+ σ2

ε

)
t, (A.21)

which is increasing in σε.
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Proof of Proposition 4. The value function associated with the optimal model sophistication
J(λ∗;W0) in the presence of internal operational risk is obtained by substituting (13) into (A.6):

J(λ∗;W0) = logW0 +

(
r +

1

2
κ2

0

)
T +

(ν0T − log(1 + ν0T ))2

2 (ν0T − log(1 + ν0T ) + (1/2)σ2
εT

2)
. (A.22)

The value functions associated with the cases of maximal sophistication and unsophistication
are equal to

J(1;W0) = logW0 +

(
r +

1

2
κ2

0

)
T +

1

2

(
ν0T − log(1 + ν0T )− σ2

εT
2

2

)
, (A.23)

J(0;W0) = logW0 +

(
r +

1

2
κ2

0

)
T, (A.24)

respectively. Given the definitions in (19) and (20), the costs of maximal sophistication and
unsophistication are given by

ηλ=1 = exp [J(λ∗;W0)− J(1;W0)]− 1, (A.25)

ηλ=0 = exp [J(λ∗;W0)− J(0;W0)]− 1, (A.26)

thus yielding (21) and (22), respectively.

Lemma A.1. Consider the standardized normal bivariate distribution of probability density

ϕ(x, y; ρ) = γ(2π)−1 exp

{
−γ

2

2

(
x2 − 2ρxy + y2

)}
where ρ is the coefficient of correlation between x and y, and γ ≡ (1− ρ2)−(1/2). Consider the
truncation x > a, where a is a constant. Then, the following moments hold true:

E(x1{x>a}) = n(a) (A.27)

E(y1{x>a}) = ρ n(a) (A.28)

E(x21{x>a}) = n(a) a+ 1−N(a) (A.29)

E(y21{x>a}) = ρ2n(a) a+ 1−N(a) (A.30)

E(xy1{x>a}) = ρ [n(a) a+ 1−N(a)] (A.31)

where

n(a) = (2π)−(1/2)e−(1/2)a2 , N(a) =

∫ a

−∞
n(s)ds. (A.32)

Proof. See Weiler (1959).
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Lemma A.2. Consider two sets of deterministic time-weights ω1t and ω2t, defined over the
time interval [0, T ], that satisfy the following conditions:

(i) The inter-temporal sum of the time-weights over the time interval [0, T ] is equal to 1:∫ T

0

ωit dt = 1 for i = 1, 2. (A.33)

(ii) The initial time-weights are 0: ωi0 = 0 for i = 1, 2.

(iii) The time-weights are increasing and concave in time:

∂ωit
∂t

> 0,
∂2ωit
∂t2

< 0 ∀ t ∈ [0, T ] and for i = 1, 2. (A.34)

(iv) Without loss of generality,

∂ω1t

∂t

∣∣∣∣
t=0

>
∂ω2t

∂t

∣∣∣∣
t=0

. (A.35)

Consider a deterministic function of time f(t). If f(t) is decreasing in time,

∂f(t)

∂t
6 0 ∀ t ∈ [0, T ], (A.36)

then ∫ T

0

f(t)ω1t dt >
∫ T

0

f(t)ω2t dt. (A.37)

Proof. Properties (i), (ii) and (iii) imply that the time-weights ω1t and ω2t cross only once in
the time interval [0, T ]. Adding property (iv) implies that ω1T < ω2T . Therefore, it immediately
follows that ∫ t

0

ω1s ds >
∫ t

0

ω2s ds ∀ t ∈ [0, T ] (A.38)

Integrating by parts, we obtain that∫ T

0

f(t) (ω1t − ω2t) dt = f(T )

∫ T

0

(ω1t − ω2t) −
∫ T

0

∂f(t)

∂t

[∫ t

0

(ω1s − ω2s) ds

]
dt > 0. (A.39)

The first term on the RHS of (A.39) is equal to zero because of (A.33), and the second term is
(weakly) positive because of (A.36) and (A.38).

35



Proof of Proposition 5. We follow closely the two steps in Proposition 1 to solve the opti-
mization problem of a constrained financial institution.

Step 1. We first determine the optimal market risk exposure πct (for a given model sophistica-
tion λ) by solving the optimization problem in (11) subject to the dynamic budget constraint
(10) and the financial constraints in (23). The logarithmic preferences enables us to solve
the dynamic optimization problem with constraints as a point-wise constrained problem. We
could alternatively use the methodology of Cvitanic and Karatzas (1992), who study a class of
portfolio choice problems with constraints and general preferences. The institution’s capital at
time T is as in (A.1). Consequently, the optimization problem in (11) subject to (10) and (23)
becomes

{πct}T0 ∈ arg max
π∈C

E∗0
[∫ T

0

(
πtσκ

∗
t (λ)− 1

2
π2
t σ

2

)
dt

]
. (A.40)

where κ∗t (λ) is as in (6). For a given realization of (w∗t , wεt), we can solve the optimization
point-wise, thus obtaining

πct (λ) =
κ∗t (λ)

σ
+

[(
α− κ∗t (λ)

σ

)+

−
(
κ∗t (λ)

σ
− β̄

)+
]
, (A.41)

where we adopt the notation x+ ≡ max{x, 0}.

Step 2. We now determine the optimal model sophistication λc with financial constraints,
given the optimal market risk exposure πct (λ) in (A.41), by solving the optimization problem
in (24). Substituting (A.41) into (A.1) and evaluating the institution’s horizon capital under
the probability measure P̂, making use of (8), we obtain

WT = W0 exp

[∫ T

0

(
r + σπct (λ)κ̂t −

σ2

2
πct (λ)2

)
dt+

∫ T

0

σπct (λ) dŵt

]
. (A.42)

It follows that the value function in (24) is equal to

J c(λ;W0) = logW0 + rT +

∫ T

0

σ Ê0[πct (λ)κ̂t] dt−
1

2

∫ T

0

σ2 Ê0[πct (λ)2] dt. (A.43)

To make use of Lemma A.1, we conveniently write σπct (λ) as

σπct (λ) = κ∗t (λ)1{κ∗t (λ)>α} − κ∗t (λ)1{κ∗t (λ)>β} + α− α1{κ∗t (λ)>α} + β1{κ∗t (λ)>β}, (A.44)

where α ≡ σα and β ≡ σβ̄. Consequently, the moments in (A.43) are equal to

σ Ê0[πct (λ)κ̂t] = Ê0[κ∗t (λ)κ̂t1{κ∗t (λ)>α}]− Ê0[κ∗t (λ)κ̂t1{κ∗t (λ)>β}] + ακ0

− αÊ0[κ̂t1{κ∗t (λ)>α}] + βÊ0[κ̂t1{κ∗t (λ)>β}], (A.45)
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σ2 Ê0[πct (λ)2] = Ê0[κ∗t (λ)21{κ∗t (λ)>α}]− Ê0[κ∗t (λ)21{κ∗t (λ)>β}]

+ α2P̂0[κ∗t (λ) < α] + β2P̂0[κ∗t (λ) > β]. (A.46)

Since both the most sophisticated and the implemented models at time t are (uncondition-
ally) normally distributed, we can express them as

κ̂t = κ0 + σ̂tẑt, (A.47)

κ∗t = κ0 + σ∗t (λ)z∗t , (A.48)

where

σ̂t =
√
ν0ν̂tt, (A.49)

σ∗t (λ) =
√
λ2ν0ν̂tt+ h(λ)2σ2

ε t, (A.50)

and ν̂t is as in (4). Note that our cases of internal and external operational risk are nested
in the above specification for h(λ) = λ and h(λ) = 1, respectively. (z∗t , ẑt) are distributed
according to a standardized normal bivariate distribution for any t, with coefficient of correlation
%t = λν0ν̂tt/σ̂tσ

∗
t (λ). The conditions κ∗t (λ) > α and κ∗t (λ) > β imply that z∗t > at(λ) and

z∗t > bt(λ), respectively, where

at(λ) ≡ α− κ0

σ∗t (λ)
, bt(λ) ≡ β − κ0

σ∗t (λ)
. (A.51)

We use the results in Lemma A.1 to evaluate the expectations and probabilities in (A.45) and
(A.46):

Ê0[κ̂t1{κ∗t (λ)>α}] = (1−N(at(λ)))κ0 + n(at(λ))%tσ̂t, (A.52)

Ê0[κ̂t1{κ∗t (λ)>β}] = (1−N(bt(λ)))κ0 + n(bt(λ))%tσ̂t, (A.53)

Ê0[κ∗t (λ)κ̂t1{κ∗t (λ)>α}] = (1−N(at(λ)))
(
κ2

0 + %tσ̂tσ
∗
t (λ)

)
+ n(at(λ)) (at(λ)%tσ̂tσ

∗
t (λ) + κ0%tσ̂t + κ0σ

∗
t (λ)) , (A.54)

Ê0[κ∗t (λ)κ̂t1{κ∗t (λ)>β}] = (1−N(bt(λ)))
(
κ2

0 + %tσ̂tσ
∗
t (λ)

)
+ n(bt(λ)) (bt(λ)%tσ̂tσ

∗
t (λ) + κ0%tσ̂t + κ0σ

∗
t (λ)) , (A.55)

Ê0[κ∗t (λ)21{κ∗t (λ)>α}] = (1−N(at(λ)))
(
κ2

0 + σ∗t (λ)2
)

+ n(at(λ))
(
at(λ)σ∗t (λ)2 + 2κ0σ

∗
t (λ)

)
, (A.56)

Ê0[κ∗t (λ)21{κ∗t (λ)>β}] = (1−N(bt(λ)))
(
κ2

0 + σ∗t (λ)2
)

+ n(bt(λ))
(
bt(λ)σ∗t (λ)2 + 2κ0σ

∗
t (λ)

)
, (A.57)

P̂0[κ∗t (λ) < α] = N(at(λ)), (A.58)

P̂0[κ∗t (λ) > β] = 1−N(bt(λ)), (A.59)
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where n(·) and N(·) represent the probability density function and cumulative distribution
function of a standard normal distribution, respectively, and are defined in (A.32). Substituting
(A.52)-(A.59) into (A.43), using (A.45) and (A.46), we obtain

J c(λ;W0) = logW0 +

(
r +

1

2
κ2

0

)
T − 1

2

∫ T

0

N(at(λ))(α− κ0)2 + (1−N(bt(λ)))(β − κ0)2dt

+

∫ T

0

[N(bt(λ))−N(at(λ))]λν0ν̂tt−
1

2
[Ω(at(λ))− Ω(bt(λ))]σ∗t (λ)2dt, (A.60)

where

Ω(x) ≡ n(x)x+ 1−N(x). (A.61)

The optimal model sophistication in the presence of financial constraints λc maximizes the value
function J c(λ;W0) in (A.60). Exploiting the properties of standard normal distributions,

N ′(x) = n(x), n′(x) = −n(x)x, (A.62)

we obtain the following first-order condition:∫ T

0

{
[N(bt(λ

c))−N(at(λ
c))] + [n(at(λ

c))at(λ
c)− n(bt(λ

c))bt(λ
c)]

λc

σ∗t (λ
c)

∂σ∗t (λ
c)

∂λc

}
ν0ν̂tt dt

−
∫ T

0

[Ω(at(λ
c))− Ω(bt(λ

c))]σ∗t (λ
c)
∂σ∗t (λ

c)

∂λc
dt = 0. (A.63)

We next specialize the proof for two cases of internal and external operational risk.

Internal operational risk. When operational risk is internal, given our linear specification
h(λ) = λ, the standard deviation of the implemented model in (A.50) becomes equal to

σ∗t (λ) =
√
λ2(ν0ν̂t + σ2

ε )t, (A.64)

with partial derivative with respect to model sophistication

∂σ∗t (λ)

∂λ
=
σ∗t (λ)

λ
. (A.65)

Substituting (A.64) and (A.65) into (A.63), we obtain∫ T

0

[Ω(at(λ
c))− Ω(bt(λ

c))]
{

(1− λc)ν0ν̂tt− λcσ2
ε t
}
dt = 0, (A.66)

which coincides with (26) after rearranging terms and using the definitions in (A.51).
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We next show that λc > λ∗. To this purpose, let f(t) denote a function of time t, defined as

f(t) ≡ Ω

 σα− κ0√
λc2(ν0ν̂t + σ2

ε )t

− Ω

 σβ̄ − κ0√
λc2(ν0ν̂t + σ2

ε )t

 , (A.67)

where Ω(·) is as in (A.61). It follows from the first-order condition (A.66) that the optimal
model sophistication with internal operational risk can be expressed as

λc =

∫ T
0
f(t)ν0ν̂tt dt∫ T

0
f(t) (ν0ν̂t + σ2

ε ) t dt
, (A.68)

where the above expression is not an explicit solution for λc as the function f(t) depends on
λc. However, since f(t) > 0, we can conclude that 0 < λc < 1 for any non-degenerate levels
of model and operational risks. Absent financial constraints, corresponding to the nested case
α = −∞ and β̄ = +∞, the function f(t) = 1, thus yielding an explicit solution for λ∗,

λ∗ =

∫ T
0
ν0ν̂tt dt∫ T

0
(ν0ν̂t + σ2

ε ) t dt
, (A.69)

which is as in (A.10). Given (A.68) and (A.69), the following inequality∫ T

0

f(t)
ν0ν̂tt∫ T

0
ν0ν̂ss ds

dt >
∫ T

0

f(t)
(ν0ν̂t + σ2

ε ) t∫ T
0

(ν0ν̂s + σ2
ε ) s ds

dt. (A.70)

implies λc > λ∗. We make use of Lemma A.2 to show that the sufficient conditions for (A.70)
to hold are satisfied. Let us define,

ω1t ≡
ν0ν̂tt∫ T

0
ν0ν̂ss ds

, ω2t ≡
(ν0ν̂t + σ2

ε ) t∫ T
0

(ν0ν̂s + σ2
ε ) s ds

. (A.71)

It is immediate to see that the time-weights ω1t and ω2t in (A.71) satisfy conditions (i) and (ii)
in Lemma A.2. The following partial derivatives,

∂ω1t

∂t
=

1

ν0T − log(1 + ν0T )

(
ν2

0

(1 + ν0t)2

)
> 0, (A.72)

∂ω2t

∂t
=

1

ν0T − log(1 + ν0T ) + (1/2)σ2
εT

2

(
ν2

0

(1 + ν0t)2
+ σ2

ε

)
> 0, (A.73)

∂2ω1t

∂t2
= − 2

ν0T − log(1 + ν0T )

(
ν3

0

(1 + ν0t)3

)
< 0, (A.74)

∂2ω1t

∂t2
= − 2

ν0T − log(1 + ν0T ) + (1/2)σ2
εT

2

(
ν3

0

(1 + ν0t)3

)
< 0, (A.75)
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confirm that condition (iii) is satisfied. Evaluating (A.72) and (A.73) at t = 0, we can deduce
that also condition (iv) is satisfied, given that log(1 + x) − x + x2/2 > 0 for any x > 0. We
conclude this part of the proof by showing that f(t) is decreasing:

∂f(t)

∂t
=
∂Ω(at)

∂at

∂at
∂σ∗t

∂σ∗t
∂t
− ∂Ω(bt)

∂bt

∂bt
∂σ∗t

∂σ∗t
∂t

=
∂σ∗t
∂t

(
∂Ω(at)

∂at

(κ0 − α)

σ∗t
2 +

∂Ω(bt)

∂bt

(β − κ0)

σ∗t
2

)
< 0 (A.76)

since Ω′(x) = −n(x)x2 < 0 for any x ∈ R, ∂σ∗t /∂t is positive given the sign of the partial
derivative in (A.73), and α 6 κ0 6 β under our maintained assumption.

External operational risk. When operational risk is external, h(λ) = 1, the standard deviation
of the implemented model in (A.50) becomes equal to

σ∗t (λ) =
√
λ2ν0ν̂tt+ σ2

ε t, (A.77)

with partial derivative with respect to model sophistication

∂σ∗t (λ)

∂λ
=
σ∗t (λ)

λ
− σ2

ε t

λσ∗t (λ)
. (A.78)

Substituting (A.77) and (A.78) into (A.63), we obtain∫ T

0

[Ω(at(λ
c))− Ω(bt(λ

c))] (1− λc)ν0ν̂tt dt

+

∫ T

0

[n(bt(λ
c))bt(λ

c)− n(at(λ
c))at(λ

c)]

(λc2ν0ν̂t + σ2
ε )t

(ν0ν̂tt)σ
2
ε t dt = 0, (A.79)

which coincides with (27) after rearranging terms and using the definitions in (A.51). Since the
second term on the RHS of (27) is always positive for any non-degenerate levels of model and
operational risks, we can conclude that λc > 1. Since by Proposition 1 λ∗ = 1 in the presence
of external operational risk, it follows that λc > λ∗.

Proof of Proposition 6. We obtain the optimal market risk exposure in the presence of fi-
nancial constraints for the cases of external and internal operational risk by substituting λc,
obtained from (27) and (26), into (A.41), respectively. When the constrained market risk expo-
sure is not binding, α < πct (λ

c) < β̄, the difference between the constrained and unconstrained
market risk exposure is given by

πct (λ
c)− π∗t (λ∗) = π∗t (λ

c)− π∗t (λ∗), (A.80)

which is different from zero in the presence of operational risk since, from Proposition 5, λc > λ∗,
and it is equal to zero absent operational risk, since λc = λ∗ = 1.
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A.1 Operational Losses

Given the definition of operational losses in (15) for the case of internal operational risk, and
the institution’s horizon capital in (A.4),

WT (σε;wε = 0) = W0 exp

[ ∫ T

0

(
r + (κ0 + λ∗(κ̂t − κ0))κ̂t −

1

2
(κ0 + λ∗(κ̂t − κ0))2

)
dt

+

∫ T

0

(κ0 + λ∗(κ̂t − κ0)) dŵt

]
, (A.81)

WT (σε) = W0 exp

[ ∫ T

0

(
r + (κ0 + λ∗(κ̂t − κ0 + σεwεt))κ̂t −

1

2
(κ0 + λ∗(κ̂t − κ0 + σεwεt))

2

)
dt

+

∫ T

0

(κ0 + λ∗(κ̂t − κ0 + σεwεt)) dŵt

]
. (A.82)

Taking the ratio between (A.81) and (A.82) yields

exp

[
(λ∗σε)

2

2

∫ T

0

w2
εtdt+ λ∗(1− λ∗)σε

∫ T

0

(κ0 − κ̂t)wεtdt− λ∗σε
∫ T

0

wεt dŵt

]
. (A.83)

A.2 Benefit-Cost Measure of Financial Constraints

Given the definition in (30), the benefit-cost measure of financial constraints with internal
operational risk is equal to

ηc = exp [J c(λc;W0)− J(λ∗,W0)]− 1 (A.84)

= exp

[
− 1

2

∫ T

0

N(at(λ
c))(α− κ0)2 + (1−N(bt(λ

c)))(β − κ0)2dt

+

∫ T

0

[N(bt(λ
c))−N(at(λ

c))]λcν0ν̂tt−
1

2
[Ω(at(λ

c))− Ω(bt(λ
c))]λc2

(
ν0ν̂t + σ2

ε

)
t dt

− 1

2

(
(ν0T − log(1 + ν0T ))2

ν0T − log(1 + ν0T ) + (1/2)σ2
εT

2

)]
− 1, (A.85)

where λ∗ is as in (13), and λc solves (26).

41



The benefit-cost measure of financial constraints with external operational risk is equal to

ηc = exp [J c(λc;W0)− J(1,W0)]− 1 (A.86)

= exp

[
− 1

2

∫ T

0

N(at(λ
c))(α− κ0)2 + (1−N(bt(λ

c)))(β − κ0)2dt

+

∫ T

0

[N(bt(λ
c))−N(at(λ

c))]λcν0ν̂tt−
1

2
[Ω(at(λ

c))− Ω(bt(λ
c))]
(
λc2ν0ν̂tt+ σ2

ε t
)
dt

− 1

2

(
ν0T − log(1 + ν0T )− σ2

εT
2

2

)]
− 1, (A.87)

where λc solves (27).

Appendix B: Richer Specifications of Operational Risk

B.1 Mean-Reversion in Implemented Model Dynamics

In this section we consider our analysis in a richer framework with the implemented model fea-
turing deterministic mean-reversion, and investigate the ensuing optimal model sophistication
and risk exposures. As discussed in Remark 1, we consider ζ = λ which captures the case of a
financial institution aiming at implementing a model that is given by the λ-weighted average of
the most recent implemented model and the most sophisticated one available. For simplicity,
consider the discrete time formulation,

κ∗t+dt = (1− λ)κ∗t + λκ̂t+dt + λσε(wεt+dt − wεt). (B.1)

Subtracting κ∗t from both sides and taking limit dt → 0, we obtain the following stochastic
differential equation:

dκ∗t = −λ(κ∗t − κ̂t)dt+ λdκ̂t + λσεdwεt (B.2)

Proposition B.1 (Model sophistication with mean-reversion). When the implemented
model features a determining mean-reversion towards the most sophisticated model, the optimal
model sophistication with external operational risk is given by λ∗ = 1, while with internal
operational risk it solves the following equation:

4(1− λ)λ2((1− λ)(1 + ν0T ) + ν0)

(
Ei

(
2λT +

2λ

ν0

)
− Ei

(
2λ

ν

))
+ ν0e

2λ
ν0

(
ν0 + λ

(
2λ2(1 + ν0T )− λ

(
ν0 + 4(1 + ν0T ) + σ2

εT
)

+ 2(1 + ν0T )
)

+ e2λT
(
λ
(
λ
(
4− 2λ+ ν0 + σ2

εT
)
− 2
)
− ν0

))
= 0, (B.3)
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where Ei(·) denotes the exponential integral function, Ei(x) = −
∫∞
−x e

−t/t dt.

Proof. Let θt denote the difference between the implemented and the most sophisticate models,
θt(λ) ≡ κ∗t (λ)− κ̂t. Given the dynamics in (3) and (B.2), it follows that

dθt(λ) = −λθt(λ)dt− (1− λ)ν̂tdŵt + λσεdwεt. (B.4)

Let consider the function g(θt, t) = θt(λ)eλt. By Ito’s lemma,

dg(θt, t) = (1− λ)eλtν̂tdŵt + λeλtσεdwεt. (B.5)

Since θ0 = 0, integrating both sides of (B.5) between 0 and t, we obtain

θt(λ) = (1− λ)

∫ t

0

e−λ(t−s)ν̂sdŵs + λ

∫ t

0

e−λ(t−s)σεdwεt. (B.6)

Note that, since ˆvar0[κ̂t] does not depend on λ, the optimal model sophistication λ∗ maximizing
(A.6) also minimizes the following,

λ∗ ∈ arg min
λ

∫ T

0

ˆvar0[θt(λ)] dt, (B.7)

where

ˆvar0[θt(λ)] = (1− λ)2

∫ t

0

e−2λ(t−s)
(

ν0

1 + ν0t

)2

ds+ λ2σ2
ε

∫ t

0

e−2λ(t−s)ds. (B.8)

Applying Fubini’s theorem,∫ T

0

∫ t

0

e−2λ(t−s)
(

ν0

1 + ν0t

)2

ds dt (B.9)

=

∫ T

0

(
ν0

1 + ν0s

)2 ∫ T

s

e−2λ(t−s)dt ds (B.10)

=

∫ T

0

(
ν0

1 + ν0s

)2(
1− e−2λ(T−s)

2λ

)
ds (B.11)

=
e
−2λ

(
T+ 1

ν0

)
2λ

(
e

2λ
ν0

(
e2Tλ − 1

)
ν0 − 2λEi

(
2λT +

2λ

ν0

)
+ 2λEi

(
2λ

ν0

))
, (B.12)

and ∫ T

0

∫ t

0

e−2λ(t−s)ds dt =
e−2λT − 1 + 2λT

4λ2
. (B.13)

Therefore, λ∗ minimizes

(1− λ)2e
−2λ

(
T+ 1

ν0

)
2λ

(
e
2λ
ν0 (e2Tλ−1)ν0−2λEi

(
2λ
ν0

+2λT
)

+2λEi

(
2λ
ν0

))
+ λ2σ2

ε

(
e−2λT−1+2λT

4λ2

)
. (B.14)
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λ∗(σε)× σε ˆvar0[π∗
t (σε)]
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Figure B.1: Operational risk exposure and variability of market risk exposure with
mean-reversion

In this figure we plot the optimal operational risk exposure λ∗σε (left panel), and the variance
at time 0 of the optimal market risk exposure π∗t (right panel), as a function of operational risk
σε. The dotted line represents the benchmark case of no operational risk, σε = 0. The dashed
line refers to the case of external operational risk, the solid blue line to the case of internal
operational risk without mean-reversion, the solid red line to the case of internal operational
risk with mean-reversion. The parameter values are as in Figure 3. The plots are typical.

Taking the first-order condition with respect to λ, and simplifying, we obtain (B.3).

Figure B.1 shows that our results on the optimal operational and market risk exposures,
in Proposition 2 and Propostion 3 respectively, are valid for the case of mean-reversion in
the implemented model dynamics. The red line in both panels refers to the case of internal
operational risk with mean-reversion.

B.2 Non-Linear Operational Risk Trade-Off

In this section we generalize our framework to incorporate a non-linear operational risk trade-off
function h(λ) given in (5). The implemented model is given by

κ∗t = (1− λ)κ0 + λκ̂t + h(λ)σεwεt. (B.15)
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To keep the maximization problem well defined, we maintain that the second derivative of h(λ)
is not too negative:

h′′(λ) > −h
′(λ)2

h(λ)
(B.16)

Proposition B.2 (Model sophistication with non-linear operational risk). When the
operational risk trade-off is captured by a non-linear function h(λ), the optimal model sophisti-
cation solves the following equation:

(1− λ∗) (ν0T − log(1 + ν0T ))− h(λ∗)h′(λ∗)
σ2
εT

2

2
= 0. (B.17)

Proof. Following the steps in Proposition 1, the covariance between the implemented and the
most sophisticated models is as in (A.7), whereas the variance of the implemented model is
now equal to

ˆvar0[κ∗t (λ)] = λ2

(
ν2

0t

1 + ν0t

)
+ h(λ)2σ2

ε t. (B.18)

Therefore,

λ∗ ∈ arg max
λ

(
λ− λ2

2

)∫ T

0

ν2
0t

1 + ν0t
dt− h(λ)2

2

∫ T

0

σ2
ε t dt, (B.19)

yielding the first-order condition (B.17). If follows from condition (B.16) that the second-order
condition of the optimization problem is satisfied.

We next present two examples of non-linear operational risk trade-off, which allow for ana-
lytic solutions of the optimal model sophistication λ∗. Example 1 considers a concave trade-off,
Example 2 a convex one.

Example 1 (Concave operational risk trade-off). Let us consider the function form

h(λ) = λ
3
4 . Since h′′(λ) < 0, the operational risk trade-off is concave in model sophistication.

This implies that, starting from the most sophisticated model, a larger reduction in model
sophistication (compared to the linear case) is needed to significantly reduce the exposure to
operational risk. The optimal model sophistication can be solved explicitly and is given by

λ∗ = 1− 3

32

(√
64 + 9σ4

εX
2 − 3σ2

εX
)
σ2
εX, (B.20)

where

X ≡ T 2

2 (ν0T − log(1 + ν0T ))
. (B.21)
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h(λ∗(σε))× σε ˆvar0[π∗
t (σε)]
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Figure B.2: Operational risk exposure and variability of market risk exposure with
non-linear trade-off

In this figure we plot the optimal operational risk exposure h(λ∗)σε (left panel), and the variance
at time 0 of the optimal market risk exposure π∗t (right panel), as a function of operational risk
σε. The dotted line represents the benchmark case of no operational risk, σε = 0. The dashed
line refers to the case of external operational risk and the solid lines to the cases of internal
operational risk with different operational risk trade-offs. The blue line corresponds to a linear
trade-off (h(λ) = λ), the black line to a concave trade-off (h(λ) = λ3/4), the red line to a convex
trade-off (h(λ) = λ3/2). The parameter values are as in Figure 3. The plots are typical.

Example 2 (Convex operational risk trade-off). Let us consider the function form

h(λ) = λ
3
2 . Since h′′(λ) > 0, the operational risk trade-off is convex in model sophistica-

tion. This implies that, starting from the least sophisticated model, a larger increase in model
sophistication (compared to the linear case) is needed to significantly increase the exposure to
operational risk. The optimal model sophistication can be solved explicitly and is given by

λ∗ =
2

1 +
√

1 + 6σ2
εX

, (B.22)

where X is as in (B.21).

Our results in Proposition 2 and Propostion 3, as well as the corresponding cross-sectional
implications, remain equally valid, as shown in Figure B.2.
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