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1 Introduction

Investor flight-to-safety is pervasive in times of elevated risk (Longstaff (2004), Beber,

Brandt, and Kavajecz (2009), Baele, Bekaert, Inghelbrecht, and Wei (2013)). Economic the-

ories of investor flight-to-safety predict highly nonlinear asset pricing relationships (Vayanos

(2004), Weill (2007), Caballero and Krishnamurthy (2008), Brunnermeier and Pedersen

(2009)). Such nonlinear pricing relationships are difficult to document empirically as the

particular shape of the nonlinearity is model specific, and inference of nonlinear relation-

ships presents econometric challenges.

In this paper, we document an economically and statistically strong nonlinear risk-return

tradeoff by estimating the relationship between stock market volatility as measured by the

VIX and future returns. The nonlinear risk-return tradeoff features evidence of flight-to-

safety from stocks to bonds in times of elevated stock market volatility consistent with the

above cited theories. The VIX strongly forecasts stock and bond returns up to 24 months

into the future when the nonlinearity is accounted for, in sharp contrast to the insignificant

linear relationship.

The nature of the nonlinearity in the risk-return tradeoffs for stocks and bonds are vir-

tually mirror images, as can be seen in Figure 1 on the next page, estimated from a large

cross-section of stocks and bonds. Both stock and bond returns have been normalized by

their unconditional standard deviation in order to allow plotting them in the same figure.

There are three notable regions that characterize the nature of the nonlinear risk-return

tradeoff, defined by the VIX median of 18 and the VIX 99.3rd-percentile of 50. When the

VIX is below its median of 18, both stocks and bonds exhibit a risk return tradeoff that is

relatively insensitive to changes in the VIX. In the intermediate 18-50 percent range of the

VIX, the nonlinearity is very pronounced: as the VIX increases above its unconditional me-

dian, expected Treasury returns tend to fall, while expected stock returns rise. This finding

is consistent with a flight-to-safety from stocks to bonds, raising expected returns to stocks

and compressing expected returns to bonds. For levels of the VIX above 50, which has only
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Figure 1: This figure shows the relationship between the six month cumulative equity market return and
the six month lag of the VIX in red, as well as the relationship between the six month cumulative 1-year
Treasury return and the six month lag of the VIX in blue. Both nonlinear relationships are estimated using
reduced rank sieve regressions on a large cross-section of stocks and bonds. The y-axis is expressed as a ratio
of returns to the full sample standard deviation. The x-axis shows the VIX.

occurred in the aftermath of the Lehman failure, this logic reverses, and a further increase

in the VIX is associated with lower stock and higher bond returns. The latter finding for

very high values of the VIX likely reflects the fact that severe financial crises are followed

by abysmal stock returns and aggressive interest rate cuts, due to a collapse in real activity,

thus reflecting changes in cash flow expectations (see Campbell, Giglio, and Polk (2013)).

What is most notable is that a linear regression using the VIX does not forecast stock

or bond returns significantly at any horizon. Nonlinear regressions, on the other hand, do

forecast stock and bond returns with very high statistical significance and reveal the striking

mirror image property of Figure 1. We study the nature of the nonlinearity and mirror

image property in a variety of ways, using kernel regressions, polynomial regressions, as well
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as nonparametric sieve regressions. In all cases and on subsamples, we find pronounced

nonlinearity within risky assets and reversed nonlinearities for safe assets, in terms of both

statistical and economic magnitudes.

In order to estimate the shape of the nonlinearity in a robust way, we propose a novel

way to nonparametrically estimate the shape using a reduced-rank sieve regression on a large

cross-section of stock and bond returns. We specify a nonlinear forecasting function φh(v)

according to the following set of equations

Rxit+h = aih + bih · φh(vixt) + εit+h, i = 1, . . . , n,

where h denotes the forecasting horizon and i refers to the individual stock and bond port-

folios and Rx are excess returns. The nonlinearity of the function φh(v) is highly significant,

and its forecasting power is very strong. Importantly, when we estimate φh(v) separately

for stocks and bonds, we obtain statistically indistinguishable functions (up to an affine

transformation).

A major advantage of estimating φh(v) from a large panel of stock and bond returns is

that it exploits additional cross-sectional variation unavailable in the univariate regressions

that are typical in the return forecasting literature. The algebra for the estimator can be

described intuitively in two stages. In the first stage, returns to each asset are regressed in

the time series on lagged sieve expansions of the VIX. In the second stage, the rank of the

matrix of forecasting coefficients is reduced using an eigenvalue decomposition, and only a

rank one approximation is retained (see Adrian, Crump, and Moench (2014) for a related

derivation). This is a dimensionality reduction that is optimal when errors are conditionally

Gaussian and the number of regressors are fixed. The resulting factor φh(v) is a nonlinear

function of volatility and is the best common predictor for the whole cross section of stock

and bond returns.

The finding that the VIX forecasts stock and bond returns in a nonlinear fashion is robust
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to the inclusion of standard predictor variables such as the dividend yield, the BAA/10-year

Treasury default spread, the 10-year/3-month Treasury term spread, and the volatility risk

premium. Furthermore, we show that the nonlinear relationship is highly significant for the

1990-2007 sample which excludes the 2008-09 financial crisis. Importantly, the shape of the

nonlinearity in the 1990-2007 and the 1990-2014 sample resemble each other closely, even

though the tail events in those samples are distinct. We also verify that Treasury returns

are forecasted only by a nonlinear function of the VIX, not the Treasury implied volatility

as measured by the MOVE. The latter result suggests that pricing of risk is proxied by the

VIX as a common forecasting variable for stocks and bonds.

The sieve reduced rank regression estimator restricts expected returns of each asset i to

be an affine transformation of φh(v) with intercept aih and slope bih. Asset pricing theories

predict these coefficients to be determined by risk factor loadings. We take this prediction to

the data, estimating the beta representation of a dynamic asset pricing kernel that features

the market return, the one year Treasury return, and innovations to φh(v) as cross-sectional

pricing factors, and φh(v) as price of risk variable. We show that this asset pricing model

performs well in pricing the cross-section of stock, bond, and credit portfolios, and that there

is a tight cross-sectional relationship between the forecasting slopes bih and the risk factor

loadings.

The dynamic asset pricing results indicate that the pricing of risk over time is related to

the level of volatility in a nonlinear fashion. A number of alternative theories are compatible

with such a finding, including 1) flight-to-safety theories due to redemption constraints on

asset managers, 2) macro-finance models with financial intermediaries, and 3) representative

agent models with habit formation. We discuss the extent to which each of these types of

theories are compatible with our findings.

Among asset management pricing theories, our findings are particularly in line with the

theory of Vayanos (2004), where asset managers are subject to funding constraints that (en-

dogenously) depend on the level of market volatility. When volatility increases, the likelihood
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of redemptions rises, leading to a decline in the risk appetite of the asset managers. Increases

in volatility generate flight-to-safety as managers attempt to mitigate the impact of higher

volatility on redemption risk by allocating more to relatively safe assets. In equilibrium, the

dependence of risk appetite on volatility generates expected returns with features that are

qualitatively similar to our estimated function φh(v). Furthermore, Vayanos (2004) theory

gives rise to a dynamic asset pricing kernel that would predict that the forecasting slope bih

is cross sectionally related to risk factor loadings, as explained earlier.

We present direct evidence in favor of the flight-to-safety mechanism related to asset

managers by estimating the shape of global mutual fund flows’ dependence on the VIX. The

shape of the function resembles the shape of the return forecasting function φh(v) closely

for the range of the VIX from 18 to 50. Furthermore, the signs of the loadings on the flow

function exhibits evidence of flight-to-safety. For the VIX below 18, where the slope of the

risk-return tradeoff is negative for stocks and positive for bonds, we conjecture that the

theory of Buffa, Vayanos, and Woolley (2014) might be of help. For the range of the VIX

above 50, where φh(v) is declining for stocks and increasing for bonds, we conjecture that

cash flow news, not discount rate news are key.

Our findings are also closely linked to intermediary asset pricing theories. In Adrian

and Boyarchenko (2012), intermediaries are subject to value at risk (VaR) constraints that

directly link intermediaries’ risk taking ability to the level of volatility. Prices of risk are

a nonlinear function of intermediary leverage, which has a one-to-one relationship to the

level of volatility. A similar nonlinear risk-return tradeoff is also present in the theories of

He and Krishnamurthy (2013) and Brunnermeier and Sannikov (2014). We also discuss the

extent to which our findings are compatible with the habit formation model of Campbell

and Cochrane (1999).

The remainder of the paper is organized as follows. Section 2 provides a brief overview

of the related literature. Section 3 presents evidence of the nonlinearity in the risk-return

tradeoff using polynomial, spline, and kernel regressions for stocks and bonds. Importantly,

5



we develop the sieve reduced rank regression estimator and tests of the stability of the

nonlinear shape across asset classes and over time. Section 4 provides an economic analysis

of the flight to safety feature in the nonlinear risk-return tradeoff, establishing a link to

dynamic asset pricing and resting our findings to theories of flight to safety. Furthermore,

we discuss the theoretical literature in light of our findings in detail. Section 5 concludes.

2 Related literature

Economic theory strongly suggests a risk-return tradeoff in the pricing of risky assets (Sharpe

(1964), Merton (1973), Ross (1976)). An unexpected increase in riskiness should be associ-

ated with a contemporaneous drop in the asset price and an increase in expected returns.

While the first half of this logic is readily verified—asset returns and volatility changes tend

to be strongly negatively correlated contemporaneously—the latter prediction has been much

harder to prove. Indeed, studies that have documented a positive risk return tradeoff in the

time series have typically relied on the use of mixed frequency data (see Ghysels, Santa-

Clara, and Valkanov (2005)), cross-sectional approaches (see Guo and Whitelaw (2006), Bali

and Engle (2010)), or very long historical data (see Lundblad (2007)). A simple regression

of asset returns on lagged measures of risk such as the VIX or realized volatility typically do

not yield any statistically significant relationship for the risk-return tradeoff (e.g. Bekaert

and Hoerova (2014) and Bollerslev, Osterrieder, Sizova, and Tauchen (2013)). In contrast,

we show that there is a strong nonlinear relationship between stock and bond returns and

lagged equity market volatility. Ghysels, Guérin, and Marcellino (2014) present similar re-

sults using a regime switching approach. One regime features high volatility with a negative

risk-return relation, whereas the risk-return relation is positive in the second regime.

The nonlinear risk-return tradeoff that we document exhibits evidence of flight-to-safety,

as the nature of the nonlinearity is reversed for stocks and bonds. This type of nonlin-

ear relationship is broadly consistent with theories of flight-to-safety which tend to predict
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highly nonlinear equilibrium asset pricing relationships (Vayanos (2004), Weill (2007), Ca-

ballero and Krishnamurthy (2008), Brunnermeier and Pedersen (2009), Vayanos and Woolley

(2013)). Our findings can also be rationalized within the context of intermediary asset pric-

ing theories, which generate strongly time varying pricing of risk evolves with aggregate,

endogenous volatility (Adrian and Boyarchenko (2012), Brunnermeier and Sannikov (2014),

He and Krishnamurthy (2013)). By estimating the risk-return relationship for stocks and

bonds, we find that the offsetting relationship in the expected returns to stocks and bonds is

present over the entire spectrum of volatility. In contrast, Ghysels, Guérin, and Marcellino

(2014) argue that flight-to-quality only occurs when stock market volatility is high, and they

document a negative risk-return tradeoff in that regime.

Inference on nonlinear relationships present an econometric challenge, as standard errors

tend to be large, particularly when investigating tail risk in security returns. A techni-

cal contribution of this paper is to propose sieve reduced rank regressions, which combine

nonparametric regressions with a reduced rank assumptions on panel data. We follow the

standard method of sieve approximations to estimate the unknown functions, resulting in

simple, closed-form expressions. Our empirical results consist of a number of asset pricing

tests that can be implemented using standard critical values. The asymptotic properties of

these tests are derived from the results of Chen, Liao, and Sun (2014) with modifications in

the spirit of Hodrick (1992) to account for serial correlation in multi-horizon returns.

Our work falls within the vast literature on asset return forecasting. Seminal papers in-

clude Campbell and Shiller (1988a,b), Lettau and Ludvigson (2001), Cochrane and Piazzesi

(2005), Ang and Bekaert (2007), and are nicely surveyed by Cochrane (2011). The majority

of this literature focuses on forecasting returns using financial ratios or yields. While much

of that literature employs linear forecasting relationships, some do model nonlinearities. Let-

tau and Van Nieuwerburgh (2008) present a regime shifting model for stock return forecast-

ing. Pesaran, Pettenuzzo, and Timmermann (2006) present forecasting relationships for US

Treasury bonds subject to stochastic breakpoint processes. Rossi and Timmermann (2010)
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document a nonlinear risk-return tradeoff in equities using boosted regression trees. To the

best of our knowledge, no paper has estimated a common nonlinear forecasting relationship

across different asset classes. Furthermore, our method is computationally straightforward.

Our finding that expected returns to stocks, Treasury bonds, and credit returns are

forecast by a common nonlinear function φh(v) suggests that this function is a price of risk

variable in a dynamic asset pricing model. Most markedly, we find that functions of Treasury

implied volatility is not forecasting Treasury or equity returns, while functions of the VIX is

forecasting both Treasury and stock returns. Based on this evidence, we estimate a dynamic

asset pricing model the cross-section of stocks, bonds, and credit, and show that φh(vt) is a

highly significant price of risk variable for the market return, the one year Treasury return,

and innovations to φh(vt). These findings thus point towards joint dynamic asset pricing of

stocks and bonds, as explored in linear settings by Mamaysky (2002), Bekaert, Engstrom,

and Grenadier (2010), Lettau and Wachter (2010), Ang and Ulrich (2012), Koijen, Lustig,

and van Nieuwerburgh (2013), and Adrian, Crump, and Moench (2014).

3 Estimation of the Nonlinear Risk-Return Tradeoff

We start this section by presenting evidence from univariate predictive regressions of stock

and bond returns on VIX polynomials, presenting strong evidence of nonlinearity (subsec-

tion 3.1). We find evidence of a mirror image property: the shape of the nonlinearity of

bonds mirrors inversely the shape of the nonlinearity of stocks. We document that this

mirror image property not only holds for polynomial regressions, but also for nonparametric

estimators such as kernel regressions or sieve regressions (subsection 3.2). This motivates

us to develop a panel estimation method for the shape of the nonlinearity that allows each

asset return to be an affine function of a common nonlinear function of market volatility

(subsection 3.3). We label this panel estimation method sieve reduced rank regressions.

This method exploits cross-section variation in excess returns to estimate the shape of the
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nonlinearity. We use the sieve reduced rank regressions to document that the nature of the

nonlinearity is reversed when the excess return to be predicted is the equity market versus

Treasuries, pointing towards flight-to-safety from stocks to bonds as equity market volatility

rises above its unconditional median (subsection 3.4). We also document the robustness of

the predictive relationships across forecasting horizons, Treasury maturities, and for differ-

ent measures of implied volatility. Strikingly, we show that the shape of the nonlinearity is

statistically indistinguishable whether it is extracted from only bonds or only stocks. We

also present results for broader cross sections, including industry sorted portfolios, maturity

sorted Treasury returns, and credit returns (subsection 3.6).

3.1 Suggestive Univariate Evidence from VIX Polynomials

To demonstrate the gains that can be obtained by allowing for nonlinearities, we estimate

the linear regression

Rxit+h = aih + bih (vixt) + εit+h, (3.1)

the polynomial regression

Rxit+h = aih + bih(vixt) + cih (vixt)
2 + dih (vixt)

3 + εit+h, (3.2)

Rxit+h = aih + bih(movet) + cih (movet)
2 + dih (movet)

3 + εit+h, (3.3)

and the augmented polynomial regressions

Rxit+h = aih + bih(vixt) + cih (vixt)
2 + dih (vixt)

3

+ bmi
h(movet) + cmi

h (movet)
2 + dmi

h (movet)
3 + f i

′
zt + εit+h (3.4)
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separately for i representing equity market or Treasury excess returns. Here, zt is a vector of

predictors, and Rxit+h = (12/h)[(rit+1 − r
f
t ) + · · ·+ (rit+h − r

f
t+h−1)] denotes the continuously

compounded h-month holding period return of asset i in excess of the one-month riskfree

rate rft (at an annual rate). For comparison, we include both equity market option-implied

volatility (VIX) as well as its Treasury counterpart (MOVE).

Table 1 reports t-statistics for the coefficients of regressions (3.1) through (3.4), as well

as p-values for the joint hypothesis test under the null of no predictability (H0: Rxit+h =

aih + εit+h). While the top panel of Table 1 shows results where Rxit+h represents excess

returns on 1-year maturity US Treasuries for forecasting horizons h = 6, 12, and 18 months,

the bottom panel reports analogous results for excess returns on the CRSP value-weighted

US equity market portfolio. Since our sample represents monthly observations from 1990:1

to 2014:9, we follow Ang and Bekaert (2007) and compute standard errors using the Hodrick

(1992) correction for multihorizon overlapping observations.

The most striking features of Table 1 are the predictive gains obtained by simply aug-

menting the VIX with squares and cubes of itself. For 1-year Treasuries, the t-statistic on

the VIX coefficient jumps from 1.91 in the linear regression to 4.13 when squares and cubes

of VIX are included at the h = 6 month forecasting horizon, from 1.86 to 3.60 at the h = 12

month horizon, and from 1.13 to 3.21 at the h = 18 month horizon. Moreover, the coef-

ficients on the squares and cubes of the VIX are themselves highly statistically significant

– an effect that persists even with the inclusion of standard forecasting variables like the

BAA/10-year Treasury default spread (DEF), the variance risk premium (VRP) following

Bollerslev, Tauchen, and Zhou (2009), the 10-year/3-month Treasury Term Spread (TERM),

and the (log) dividend yield (DY). The p-values also suggest strong evidence for the joint

predictive content of the VIX polynomial.

Similar gains are obtained for equity market excess returns. While we can confirm the

findings of Bekaert and Hoerova (2014) and Bollerslev, Osterrieder, Sizova, and Tauchen

(2013) that the VIX itself does not (linearly) forecast excess stock market returns, we doc-
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ument marked improvements in predictability when polynomials of the VIX are included:

p-values for the joint test of no predictability drop from 0.316 for the linear regression case

to 0.007 for the VIX polynomial case at the h = 6 month horizon, from 0.460 to 0.032 at the

h = 12 month horizon, and from 0.439 to 0.088 at the h = 18 month horizon. More formally,

a direct test of linearity (the joint null hypothesis that the coefficients on the VIX squared

and cube terms are zero) is strongly rejected in favor of higher order polynomial terms.1 For

the short forecast horizon h = 6, we note further that evidence for the VIX polynomial’s

predictability remains even after the inclusion of other forecasting variables, while for longer

horizons, the predictive content of VIX polynomials appears to subside.

The MOVE is an analogous portfolio of yield curve weighted options written on Treasury

futures. To the extent that some form of segmentation between Treasury and equity markets

could give rise to separate pricing kernels for bonds and stocks, one may surmise that excess

returns in either market reflect compensation for exposure to different types of volatility or

uncertainty risk. Somewhat surprisingly, however, Table 1 shows that this is not the case.

Whereas the VIX polynomials exhibit t-statistics at times above five, t-statistics on MOVE

polynomials coefficients are struggling to exceed one. The p-values show that regressions on

the MOVE cannot be statistically distinguished from regressions on a constant.

A final noteworthy feature of Table 1 are the signs on the constant and coefficients of

the VIX polynomials for Treasuries compared to equities. While the coefficients on the VIX,

VIX2, and VIX3 alternate as (b̂ih > 0), (ĉih < 0), and (d̂ih > 0) for i = Treasuries, they

are exactly the opposite for equities across all forecasting horizons. The same is true for

the intercepts: while the intercepts in the Treasury regressions are all negative when VIX

polynomials are included, the intercepts for the equity regressions are all positive. In contrast,

the linear VIX specification appears to make no signed distinction between Treasury and

equity market excess returns and is instead reporting a statistically insignificant relationship
1Strictly speaking, the Hodrick (1992) standard errors were originally derived under the null of no pre-

dictability. However, it is straightforward to show that they extend to hypotheses of weak (local-to-zero)
predictability, making them applicable for tests of nonlinearity. See the appendix for further details.
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between the VIX and future excess returns across all horizons.

To examine predictability for various Treasury maturities and equity market returns

across many forecast horizons, Figure 2 plots p-values by h ranging from 1 to 24 months

for both the linear regression (3.1) (thin line) and polynomial regression (3.2) (thick line).

Several noteworthy features emerge from the figure. First, the predictive gains that result

from allowing for VIX nonlinearities, as measured by the distance between the thin and thick

lines, are substantial for all horizons h, Treasury maturities, and equity returns. In partic-

ular, the polynomial specification dominates the linear one across all Treasury and equity

excess returns for horizons h = 3, . . . , 24. Second, the polynomial specification is strongly

rejected at the 5% level (the thick line falls below the dashed line) for short-maturity Trea-

suries and for a wide range of forecast horizons h. Third, as Treasury maturities lengthen,

VIX polynomial predictability begins to wane as the thick line gradually shifts upward and

becomes insignificant for 10-year Treasuries. Fourth, for equity market returns, the null of

no predictability is rejected at the 5% level for forecast horizons h = 3, . . . , 15 months.

As a robustness check, we examine to what extent the VIX’s predictive results are driven

by the 2008 financial crisis. Figure 3 repeats the exercise of Figure 2 with a sample span-

ning only 1990:1 to 2007:7. On this pre-crisis sample, 1-year Treasuries are still strongly

predicted by VIX polynomials across horizons h = 3, . . . , 24 while outperforming the linear

specification in all panels. As Treasury maturities increase, VIX polynomial predictability

appears stronger than even in the full sample. 10-year Treasuries, in particular, are showing

signs of predictability at longer horizons, which contrasts with the result on the sample end-

ing in 2014. On the other hand, equity market return predictability deteriorates and only

marginally rejects the null of no predictability in favor of the polynomial VIX specification.

In relative terms, however, we again note the gains from allowing the VIX to nonlinearly

predict returns are substantial compared to the linear specification across both Treasuries

and equities.

As a further robustness check, we examine the relationship between volatility nonlinear-
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ities and expected returns on a long sample that includes the Great Depression in Figure

4. Because the VIX is unavailable prior to 1990, we proxy for it with measures of realized

volatility and realized downside volatility. The intuition for considering downside volatility

follows from the observation that put options (which hedge against negative returns) by con-

struction represent a substantial amount of variation in the VIX. Thus in months when daily

returns are frequently negative, downside volatility is high and the value of put options (had

they traded then) should increase if further negative returns are expected. Figure 4 shows

that the analogy between the VIX and downside volatility appears to carry over into excess

return predictability: Using various subsamples, the gains from allowing a nonlinear predic-

tive relationship between realized downside volatility and subsequent excess returns show

up in the p-values for the polynomial regressions, which reveal improvements over the linear

regression case across almost all forecast horizons. Note that in the figure, realized down-

side volatility performs incrementally better than realized (two-sided) volatility, suggesting

a possible role of left-tail risk in the nonlinear predictive regressions.

In the remainder of our analysis, we return our focus on the VIX. We will present an

economic interpretation of the shape of the nonlinear forecasting relationships in section 4.

When the VIX is below its median of 18, both stocks and bonds are relatively insensitive to

changes in the VIX. In the intermediate 18-50 percent range of the VIX, the nonlinearity is

very pronounced: as the VIX increases above its unconditional median, expected Treasury

returns tend to fall, while expected stock returns rise. This finding is consistent with a flight-

to-safety from stocks to bonds, raising expected returns to stocks and compressing expected

returns to bonds. For levels of the VIX above 50 which has only occurred during the 2008

crisis, this logic reverses, and a further increase in the VIX is associated with lower stock

and higher bond returns. The latter finding for very high values of the VIX likely reflects the

fact that severe financial crises are followed by abysmal stock returns and aggressive interest

rate cuts, due to a collapse in real activity, thus reflecting changes in cash flow expectations

(see Campbell, Giglio, and Polk (2013)).
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3.2 Motivation of Sieve Reduced Rank Regressions

The preceding results showed that polynomials – rather than linear functions – of the VIX

have important predictive power for future excess stock and bond returns. But instead of

accepting a cubic VIX polynomial as the true data generating process for excess returns,

we conjecture that the polynomials provide an approximation to some general nonlinear

relationship between equity implied volatility and future excess stock and bond returns. To

test this conjecture, we nonparametrically estimate the relationship between the VIX and

future excess stock and bond returns via the method of sieves, which facilitates intuitive

comparisons to polynomial regressions. To motivate our nonparametric sieve estimation

framework, fix asset i and forecast horizon h and consider

Rxit+h = φih (vt) + εit+h, (3.5)

where vt = vixt. Equation (3.5) effectively replaces the polynomial (aih + bihvt + cihv
2
t + dihv

3
t )

from before with an unknown function φih (vt).

To estimate the function φih (·) nonparametrically, we assume that φih ∈ Φ, where Φ is

a general function space of sufficiently smooth functions. In practice, estimation over the

entire function space Φ is challenging because it is infinite dimensional. In settings like these,

the method of sieves (e.g., Chen (2007)) proceeds instead by estimation on a sequence of

m-dimensional approximating spaces {Φm}∞m=1. We say that {Φm}∞m=1 is a valid sieve for Φ

if it is nested (i.e. Φm ⊂ Φm+1 ⊂ · · · ⊂ Φ) and eventually becomes dense in Φ (i.e. ∪∞m=1Φm

is dense in Φ). Letting m = mT → ∞ slowly as the sample size T → ∞, the idea then is

that the spaces ΦmT
grow and increasingly resemble Φ, so that the least squares solution

φ̂imT ,h
≡ arg min

φ∈ΦmT

1

T

∑T

t=1
(Rxit+h − φ (vt))

2 (3.6)

converges to the true unknown function φih ∈ Φ in (3.5) in some suitable sense.
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For our choice of Φm we use the space spanned by linear combinations of m B-splines of

the VIX. Thus, any element φm ∈ Φm may be written as φm (v) =
∑m

j=1 γj · Bj (v) where

γj ∈ R for j = 1, . . .m, v is a value in the support of the VIX, and Bj is the jth B-spline (see

Appendix for further details). B-splines have a number of appealing features such as well-

established approximation properties and substantial analytical tractability. This is because

for fixed m, the solution to the least squares problem (3.6) is simply the OLS estimator on

B-spline coefficients γh =
(
γh1 , . . . γ

h
m

)′:
γ̂h = (XmX

′
m)
−1
XmRx, , (3.7)

where Rxi =
(
Rxi1+h, . . . , Rx

i
T+h

)′ and Xm is the (m× T ) matrix of predictors with jth row

equal to [Bj (VIXt) , . . . , Bj (VIXT )]. Therefore, for fixed m, the solution to (3.6) becomes

φ̂im,h (v) =
∑m

j=1
γ̂hj ·Bj (v) . (3.8)

Equation (3.8) makes clear that the simple polynomial specification introduced in the pre-

vious section may be thought of as an alternative nonparametric estimate of φih (·) using

powers vj instead of B-splines Bj (v). However, this approach was informal in the sense that

the choice of the maximum degree of polynomial was not made with relation to the sample

size. Instead, we think of the number of basis functions m = mT as growing to infinity at

some optimal rate that depends on the sample size T .2

The top half of Figure 5 shows various estimates for φih (v), where h = 6 and i refers

to either 1-year Treasury excess returns (dashed line) or equity market excess returns (solid

line) over the full sample period from 1990:1 to 2014:9. In the left graph, we show the

cross-validated sieve B-spline estimates φ̂imT ,h
(v) (equation (3.8)), whereas the middle graph

2In particular, it can be shown that m behaves very much like a bandwidth parameter in that it is chosen
to optimally trade notions of bias and variance: heuristically, if m is too small, Φm is too small relative to
Φ, which causes bias, and if m is too big, it results in overfitting. In the remainder of the paper, we follow
the existing literature in sieve estimation and choose mT by leave-one-out cross-validation. See, e.g. Li and
Racine (2007).
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shows the functional form implied by the simple polynomial specification of the previous

section. The estimated functional forms in both the left and middle graphs are very similar,

implying that the cubic polynomial choice in the previous section provided a reasonable

first pass at investigating the nonlinear relationship. As a further robustness check, the right

panel shows the estimated function based on a nonparametric kernel regression, which shows

qualitatively similar impression of φih (v) for stocks and bonds.

Figure 5 also demonstrates another noteworthy empirical regularity. If we compare φ̂ih(v)

using either equity returns or bond returns as test assets it appears that they are related

by a simple scale and reflection transformation. This could already be deduced from the

alternating coefficient signs from the polynomial regressions, and is now additionally con-

firmed with two nonparametric estimators. Moreover, the bottom panel of Figure 5 shows

that the mirror image relationship between φTreasuries
h (v) and φStocks

h (v) existed prior to the

2008 financial crisis and is therefore not an artifact of a few extreme observations. Instead,

the crisis is merely helpful in identifying φih(v) for large v.

We interpret this finding as strongly suggestive that equity market and Treasury excess

returns load on a common φh(v) function, up to location, scale, and reflection transforma-

tions. In this case, we show next that φh (·) could then be estimated jointly across assets

rather than estimating univariate regressions equation by equation, as was done above. This

has the benefit of allowing Treasury returns across multiple maturities as well as the equity

market excess returns to jointly inform the estimate of the common φh (·), thereby exploiting

information in the cross-section of asset returns.

3.3 Derivation of Sieve Reduced Rank Regressions

In this subsection, we formalize the intuition of a common volatility function φh(v) by in-

troducing a reduced-rank, sieve-based procedure which produces a nonparametric estimate

of φh(v) under only weak assumptions. The novelty of our approach is that we use cross-

sectional information across assets to better inform our estimate of this function. We label
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our approach “sieve reduced-rank regression" (SRRR) as it combines the cross-sectional re-

strictions implied by a reduced-rank assumption with the flexibility of a nonparametric sieve

estimator. We will see that the estimator is conveniently available in closed form and hy-

pothesis tests rely on standard critical values.

Suppose we observe excess returns on i = 1, . . . , n assets that follow

Rxit+h = aih + bih · φh (vt) + εit+h. (3.9)

Here, aih and bih are asset-specific shift and scale parameters, φh (·) is the same for all assets,

and vt = vixt. This specification can be compared with equation (3.5), which held that

Rxit+h = φih (vt) + εit+h. Thus in the univariate regressions from the previous section, φih (vt)

was estimated separately for each asset i, with no cross-asset restrictions imposed. In con-

trast, the specification (3.9) implies that the same function φh (vt) forecasts returns across

assets, which amounts to the restriction φih (vt) = aih + bih · φh (vt).

If we take the same approach as in the univariate specification we can rewrite this equation

as

Rxit+h = aih + bih (γ′hXm,t) + f ihzt + ε̃it+h (3.10)

where

ε̃it+h = εit+h + bih · (φh (vt)− γ′hXm,t) . (3.11)

ε̃it+h in equation (3.11) is composed of two terms. The first term is a standard error term

from the original regression equation. The second term represents the approximation error

of the true nonlinear function and the best approximation from the space Φm. As m grows

with the sample size this approximation error vanishes in the appropriate sense.

If we stack equation (3.10) across n assets we obtain

Rxt+h = ah + AhXm,t + FhZt + ε̃t+h, Ah = bhγ
′
h (3.12)
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where ah = (a1
h, . . . , a

n
h)
′, bh = (b1

h, . . . , b
n
h)
′, Rxt+h =

(
Rxit+h, . . . , Rx

n
t+h

)′ and ε̃t+h =(
ε̃1
t+h, . . . , ε̃

n
t+h

)′. For any fixed m, equation (3.12) is a reduced-rank regression where Ah

is assumed to be of rank one.3 The parameters (a′h,b
′
h, γ

′
h,F

′
h)
′ may be estimated in closed

form. However, in order to separately identify ah and bh additional restrictions must be im-

posed. In our empirical analysis we impose the normalization φh(0) = 0 and b1
h = bMKT

h = 1.

The first restriction allows us to identify the constant term for each asset, while the second

implies that the market return is our reference asset.

To describe the estimation procedure, let âh,ols (n× 1), Âh,ols (n×m) and F̂h,ols (n× p)

be the stacked OLS estimates and W2 a symmetric, positive-definite weight matrix. In

our empirical application, we set W2 to a diagonal matrix that scales excess returns by

the inverse of their standard deviation to avoid overweighting high-variance assets in the

estimation. Then,

b̂h =
b̃h

b̃1
h

, γ̂h = γ̃h · b̃1
h,

[
âh 99

9 F̂h

]
=
[
âh,ols 99

9 F̂h,ols

]
+
(
Âh,ols − b̃hγ̃

′
h

)
XmZ

′ (ZZ ′)
−1 ,

where Z = (Z1, Z2, . . . , ZT ), b̃h = W
−1/2
2 L, γ̃h = Â′h,olsW2b̂h and L is the eigenvector as-

sociated with the maximum eigenvalue of the matrix Âh,ols (XmMZX
′
m) Â′h,ols where MZ =

IT − Z (ZZ ′)−1 Z ′. If it were the case that ε̃t+h ∼iid N
(
0,W−1

2

)
and m was fixed, then(

â′h, b̂
′
h, γ̂

′
h, vec

(
F̂h

)′)′
would be the maximum likelihood estimates of

(
a′h,b

′
h, γ

′
h, vec (Fh)

′)′.
In this paper there are three primary hypotheses of interest:

H1,0 : bjh φh = 0 H1,A : bjh φh 6= 0

H2,0 : bhφh = 0n H2,A : bhφh 6= 0n

H3,0 : φh (v̄) = 0 H3,A : φh (v̄) 6= 0

(3.13)

The first hypothesis tests the null that φh does not predict excess returns Rxjt+h of asset

3See Reinsel and Velu (1998) for a general introduction. Examples of parametric reduced-rank regressions
are systems-based cointegration analysis (see e.g. Johansen (1995)), beta representations of dynamic asset
pricing models (see e.g. Adrian, Crump, and Moench (2013, 2014)), and bond return forecasting (see e.g.
Cochrane and Piazzesi (2008)).
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j, while allowing it to predict another asset i 6= j. This test replaces t-tests on the loadings

bjh because the scale of bh cannot be determined separately from the scale of φh, which

prompted our normalization b1
h = 1. This means, in particular, that a test of b1

h = 0 cannot

be conducted, motivating our test on the product bjh φh. In finite samples when the number

of sieve expansion terms is fixed at somem, we show below that H1,0 is tested with a standard

χ2(m + 1) test on the product bjh (γ1
h, . . . , γ

m
h ).4 This represents an additional convenient

aspect of the sieve-based nonparametric procedure, since it allows us to test hypotheses

about predictability in effectively the same way as a parametric joint test of significance.

The second hypothesis is a joint test of significance for whether the whole cross-section of

test assets jointly loads on φh. Finally, the third hypothesis is a comparison of whether

the function φh (·) is different from zero at a fixed value v̄. By inverting a test of this

hypothesis for different values of v̄ we are able to construct pointwise confidence intervals

for the unknown function.

Proposition 1. Under regularity conditions given in the Appendix

[
vec
(
b̂jhγ̂h

)′
V̂1 vec

(
b̂jhγ̂h

)
− (m+ 1)

]
/
√

2(m+ 1) → d,H1,0 N (0, 1)[
vec
(
b̂hγ̂h

)′
V̂2 vec

(
b̂hγ̂h

)
− (m+ n− 1)

]
/
√

2(m+ n− 1) → d,H2,0 N (0, 1)

φ̂h,m (v̄)− φ (v̄)

V̂3

→ d,H3,0 N (0, 1)

as T →∞, where V̂1, V̂2, and V̂3 are defined in the Appendix and→d,H0 signifies convergence

in distribution under the hypothesis H0.

Proposition 1 provides the appropriate limiting distributions to conduct the asset pricing

tests for the paper and relies on extensions of the Hodrick (1992) standard errors to the n

asset sieve reduced rank setting.5 The underlying distribution theory relies on the procedures
4The use of a χ2 test is a small sample correction. See Crump, Hotz, Imbens, and Mitnik (2008) and the

references therein.
5An extension of the Hodrick (1992) to our setting was necessary to remove the serial dependence induced
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of Chen, Liao, and Sun (2014). Comprehensive details about the empirical implementation

are provided in the Appendix.

3.4 Estimation of Sieve Reduced Rank Regressions

Our main empirical findings using the SRRRs (3.5) for the market return and the maturity

sorted bond returns are presented in Table 3. As we had seen in the univariate VIX poly-

nomial regressions, substantial improvements are gained when allowing the cross-section of

market returns and maturity sorted bond returns to depend on the VIX nonlinearly: Whereas

the VIX does not linearly forecast excess returns in panel (1), the nonlinear forecasting re-

lationship for stocks and bonds is highly significant in panel (2). Moreover, panel (3) shows

that the nonlinear forecasting factor is robust to the inclusion of common predictor vari-

ables (the default spread DEF, the variance risk premium VRP, the term spread TERM,

and the log dividend yield DY). Furthermore, the significant predictability is present in the

1990-2007 period which excludes the financial crisis (Table 4).

Examining Table 3 in more detail, we see that the market return is most strongly pre-

dicted at the six month horizon at the one percent level. Per construction, the coefficient

on the market return is 1. Overall, the strongest predictability appears for shorter-maturity

bonds, as the one year bond return is highly significantly predicted at the one percent level

for the 6, 12, and 18 month horizons. Interestingly, the significance is unchanged when even

the variance risk premium (a volatility measure constructed from the VIX) is included, sug-

gesting that the nonlinear forecasting factor is unrelated to VRP. Longer maturity Treasuries

such as the five year or the ten year bond return tend to be somewhat less significant at

longer horizons, but their significance is actually aided by the inclusion of the other predictor

variables. The sign on all of the Treasury variables is negative whereas the market return is

positive, indicating a flight-to-safety feature that is strongest for liquid short-maturity Trea-

suries. While individual coefficient significance was tested by H1,0, joint significance for the

by estimating multi-horizon returns with overlapping data. We therefore construct valid standard errors from
“reverse" regressions under a weak assumption of covariance stationarity. See also Wei and Wright (2013).
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function φh(vixt) in the cross-section of excess returns is tested with H2,0. Again the joint

test provides strong justification for nonlinearities φh(vixt) across all forecasting horizons,

whereas the linear VIX specification cannot be statistically distinguished from regressions

on constants aih.

For the pre-crisis period 1990-2007 presented in Table 4, the equity market is only signif-

icant at the longer 18 month horizon, and not at the shorter 6 and twelve months horizons.

On the other hand, Treasury returns are again very significant, and result in stronger rejec-

tions for shorter maturity Treasuries. In particular, the one-year Treasury is significant at

the one percent level across all specifications and forecasting horizons both the pre-crisis and

full samples, which include the specifications with common predictor variables. Furthermore,

test H2,0 confirms that φh(vixt) is a strong predictor of excess returns jointly across all test

assets and horizons. We highlight again the gains obtained by allowing excess returns to

nonlinearly depend on the VIX. Most importantly, the mirror image property between stock

and bond returns is revealed in the pre-crisis period as suggested by the coefficient signs,

although we are careful to point out that for specification (3), coefficient signs are difficult to

interpret when φh interacts with the control predictors. In sum, we find that the nonlinear

sieve reduced rank regressions reveal the mirror image property, which is not manifested for

the linear VIX regressions.

We again note that the dependence of expected returns on the VIX changes sign for

both stocks and bonds when the VIX is above 50. This property is entirely due to the 2008

financial crisis data. While the positive dependence of future stock returns on the VIX up to

50 and the negative dependence of future bond returns on the VIX up to 50 is consistent with

theories of flight to safety, the same cannot be said for the reversal of those dependencies

when the VIX is above 50. In our view, the latter phenomenon reflects the abysmal cash

flow news that is generated during severe financial crises, as is also argued by Campbell,

Giglio, and Polk (2013). We discuss the economic interpretation in more detail in section 4.
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3.5 Out-of-Sample Evidence

The preceding tables strongly suggest that expected excess returns for the market and Trea-

sury returns are driven by a common nonlinear function of the VIX, i.e. Et[Rx
i
t+h] =

aih + bihφh(vixt). We next examine the extent to which this relation holds out of sample

by studying the risk-adjusted returns of a portfolio that uses the forecasting information

Et[Rx
i
t+h] = aih + bihφh(vixt). Intuitively, the risk-adjusted returns of such a portfolio should

reflect the compensation that investors receive for taking on equity market risk and selling

Treasuries in moderate- to high volatility periods.

To this end, we split our monthly sample of excess returns Rxt = (RxMKT
t , Rxcmt1t , . . . ,

Rxcmt30
t )′ and the VIX for t = 1, . . . , T into an initial in-sample estimation period t =

1, . . . , t∗, and an out-of-sample forecasting period t = (t∗ + 1), . . . , T . Using in-sample

data from t = 1, . . . , t∗, we estimate (3.9) via sieve reduced rank regressions and form the

out-of-sample joint forecast of excess returns Et∗ [Rxt∗+h] for h = 6 months ahead. Given

the forecast, we form standard risk-weighted portfolios with weights ωt∗ = V −1
t∗ Et∗ [Rxt∗+h],

where risk weights V −1
t∗ are the unconditional variances of excess returns using data from

t = 1, . . . , t∗.6 The portfolio is held for the h = 6 months, and then the in-sample period

is expanded to t = 1, . . . , (t∗ + h), yielding a new out-of-sample forecast Et∗+h[Rxt∗+2h] and

new portfolio weights ωt∗+h. Note that V −1
t∗ is not rolled forward in order to isolate the effect

of the forecast Et∗+h[Rxt∗+2h]. The process is iterated every h = 6 months, yielding pseudo

out-of-sample excess returns for t = (t∗ + 1), . . . , T .

Table 5 column (1) shows the annualized Sharpe ratios of the pseudo out-of-sample

portfolio returns thus obtained for various in-sample cutoffs (t∗/T ) = 0.4, 0.5, and 0.6.

Remaining columns show the Sharpe ratios of alternative portfolios over the same out-of-

sample period. In particular, columns (2) and (3) represent Sharpe ratios of portfolios formed

6Since our interest is in evaluating the forecasting performance of Et[Rxt+h], we hold V −1t∗ constant
throughout to facilitate comparisons of alternative ways to compute the “numerator" Et[Rxt+h]. Intuitively,
scaling excess return forecasts by the inverse of variance helps put Treasury excess returns (which have small
variance) and MKT returns on equal footing. Alternative choices of Vt∗ yield very similar results.
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with identical risk weights V −1
t∗ as above, but with differing excess return forecasts: Column

(2) uses linear reduced rank forecasts Et[Rxit+h] = aih+bih vixt, while column (3) uses running

mean forecasts Et[Rxit+h] = aih. Thus, the portfolios in columns (1) through (3) differ only

in how the “numerator" Et[Rxit+h] is formed, since the “denominator" V −1
t∗ is held fixed. In

contrast, column (4) shows Sharpe ratios for an equally-weighted portfolio of market and

Treasury excess returns. The remaining columns place full weight on the indicated asset.

The results show that the portfolios formed on the sieve reduced rank forecasts Et[Rxit+h] =

aih+bihφh(vixt) receive higher risk-adjusted returns relative to the displayed alternatives. The

sole exception is the risk-adjusted return on the 1-year Treasury over the out-of-sample pe-

riod from 1999 to 2014. However, for the other in-sample cutoffs, the SRRR forecasts yield

nontrivially higher Sharpe ratios. Interestingly, the linear VIX forecast and the uncondi-

tional excess return forecast yield very similar risk-adjusted returns. This corroborates our

in-sample findings of Tables 3 and 4, which showed that the linear VIX specification can-

not be statistically distinguished from a regression on a constant. Hence it is perhaps not

surprising that using the linear VIX in forecasting excess returns in the portfolio decision

problem does not result in higher ex-post risk-adjusted returns than the portfolio formed on

the running mean forecast Et[Rxit+h] = aih.

It is also helpful to take a conditional view by examining when the SRRR based portfolio

is earning its risk-adjusted returns. Figure 9 shows the cumulative returns of the SRRR

based portfolio over the out-of-sample period (t∗ + 1), . . . , T , where (t∗/T ) splits the sam-

ple in half, alongside the cumulative returns to an investment in the market and a levered

investment in the 1-year Treasury portfolio. (All returns in the figure are scaled (levered)

to have the same ex-post variance of the market excess return.) In particular, we find that

the SRRR based portfolio is earning its highest returns during high-volatility periods. In

contrast, during the low-volatility expansionary periods from 2003 to 2007 and 2012 to 2014,

the SRRR based portfolio did not accumulate significant returns. This is consistent with the

regression functions in Figure 1, which shows a relatively unresponsive relationship between
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uncertainty and expected returns for low volatility periods, and a very strong relationship

between uncertainty and expected returns for the market and Treasuries during high volatil-

ity periods. Hence the nonlinear forecasting relationship Et[Rxit+h] = aih+bihφh(vixt) is most

helpful in the portfolio formation stage during high volatility periods.

Finally we note that the gains to the SRRR based portfolio returns are not merely accrued

during the 2007-2009 financial crisis. Indeed, the VIX frequently exceeded it’s unconditional

median of about 18 in the post-crisis period in response to uncertainty about the robustness

of the recovery and events surrounding the European sovereign debt crises. Correspondingly,

the SRRR based portfolio accrued substantial gains over the 2009-2012 period as well.

3.6 Evidence Using Broader Cross-Sections of Assets

While our results so far have focused on the aggregate stock return and maturity sorted

Treasury bond portfolios, we now estimate the SRRR on a broader set of test assets in order

to improve the economic insight. We use the 12 industry sorted stock portfolios from Kenneth

French’s website7 and the industry and rating sorted investment grade credit returns from

Barclays. We also continue to include the maturity sorted Treasury bond portfolios.

Figure 6 displays the results of hypothesis tests H2,0. The height of bar j represents

the point estimate of b̂jh for h = 6. For each j = 1, . . . , n, the color of the bar denotes the

significance of the associated b̂jh coefficient based on the results in Proposition 1. The figure

shows that the majority of stock and Treasury portfolios load significantly on φh(vixt).

Manufacturing, known to be highly procyclical, has a strong positive exposure while the

only equity portfolios that appear invariant to the volatility factor are non-durables, energy,

utilities, and healthcare, which are known to represent inelastic sectors. Most strikingly, the

only assets with negative exposures to the volatility factor φ̂h(v) are Treasury portfolios and

AAA corporate bonds, which is consistent with a flight to safety interpretation. Furthermore,

the results confirm our previously reported findings, which showed the strongest predictive
7http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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content for nonlinear VIX functions at shorter maturity Treasuries. For h = 6, however, the

corporate bond loadings are not statistically significant.

Next, Figure 7 shows Êt[Rxit+h] = âih + b̂ihφ̂h(v) for each of the i = 1, . . . , 26 portfolios

and horizon h = 6 months. The dashed lines in blue represent assets with a negative b̂ih

exposure to φ̂h(v), while the solid lines in red denote positive b̂ih exposures. To differentiate

our reference asset, the black line denotes the market excess return estimate, whereas the

gray dashed line represents the short-maturity Treasury return. We note again that all

dashed assets (blue and gray) are Treasury returns and the AAA corporate bond return and

are distinguished by their negative loadings on φ̂h(v).

Finally, we examine the plausibility of the affine structure in (3.9) by estimating Rxit+h =

aih + bihφh (vt) + εit+h by SRRR separately for i ranging equities and i ranging over bonds.

That is, we estimate sieve reduced rank regressions, where the left-hand side variables are

the excess return on the equity market and 11 industry portfolios, which yields an esti-

mate of φ̂Stocks
h (·).8 Next, we repeat the regression, but where i includes only the seven

maturity-sorted Treasury portfolios, yielding an estimate of φ̂Treas
h (·). Under the common

φh(v) assumption implicit in (3.9), φStocks
h (·) and φTreas

h (·) should be equivalent in the popula-

tion when identified separately from stocks and bonds, up to a location and scale parameter.

We find the location and scale parameters by regressing φ̂Stocks
h (v) on φ̂Treas

h (v) for a range of

v in the support of the VIX. The result of this exercise is plotted in Figure 8 which shows

φ̂Stocks
h (v) along with the location- and scale-shifted φ̂Treas

h (v). The figure clearly supports our

conjecture of a common φh(v) function when estimation error is taken into account.

4 Economics of Flight-to-Safety

We now turn to the economic interpretation of the nonlinear risk-return tradeoff. We first

establish the link of the SRRR model to dynamic asset pricing theories (subsection 4.1).

We empirically show that the cross-sectional dispersion of the forecasting slopes bih from
8The 12th industry portfolio is omitted because the market portfolio is included in the regression.
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the SRRR are related to risk factor loadings on the market return, the one year Treasury

return, and the nonlinear volatility function φh(vt). This is evidence in favor of a dynamic

pricing kernel where φh(vt) is a price of risk variable. We next turn to asset pricing theories

that are giving rise to time varying effective risk aversion as a nonlinear function of market

volatility. The first types of theories that we discuss feature flight-to-safety (subsection 4.2)

that leads to time varying pricing of risk because asset managers are subject to withdrawal

after poor performance. The theory of Vayanos (2004) gives rise to a dynamic pricing kernel

that is qualitatively similar to our estimated φh(vt) relationship for the range of the VIX

below 50. We also verify empirically that global mutual fund flows exhibit the nonlinear

(contemporaneous) relationship to the VIX as the expected returns do. We then review

intermediary asset pricing theories that link the pricing of risk to the level of volatility,

for example due to the VaR constraint of Adrian and Boyarchenko (2012) (subsection 4.3).

We also discuss the extent to which habit formation theories might explain the shape of

φh(vt) (subsection 4.4). Finally, we show in subsection 4.5 that the VIX also forecasts

macroeconomic activity in a nonlinear fashion when the crisis period is included.

4.1 Dynamic Asset Pricing

Equation (3.9) shows that expected returns are affine functions of φh(vt) with intercept ai and

slope bi. Asset pricing theory suggests that these intercepts and slopes are cross-sectionally

related to risk factor loadings (see Sharpe (1964), Merton (1973), Ross (1976)). In particular,

an equilibrium pricing kernel with affine prices of risk, as for example presented by Adrian,

Crump, and Moench (2014), would suggest that

Et[Rx
i
t+h] = αih + βih (λ0 + λ1φh(vt) + Λ2xt) . (4.1)

In this expression, βih denotes a (1 × K) vector of risk factor loadings, λ0 is the (K × 1)

vector of constants for the prices of risk, λ1 is the (K × 1) vector defining how prices of risk
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vary as a function of φh(vt), and Λ2 is the (K × p) matrix mapping defining how the price

of risk depends on p additional risk factors xt. The expression also allows for a pricing error

αih, representing deviations from no-arbitrage due to trading frictions. Equation 4.1 is the

beta representation of expected returns when the pricing kernel is of an essentially affine

form (see Duffee (2002)).

Equation (4.1) has time series and cross-sectional predictions, which in turn can be linked

to alternative theories of time varying pricing of risk. We start with an investigation of the

cross-sectional predictions. In comparison to the SRRR model of equation (3.9), the asset

pricing theories of equation (4.1) put the following constraints on the intercept and slope:

aih = αih + βihλ0 (4.2)

bih = βihλ1. (4.3)

In order to show that the cross-sectional dispersion of aih and slope bih is compatible with such

asset pricing restrictions, we proceed in two steps. We first estimate the unrestricted panel

forecasting relationship Rxit+h = aih+bihφh(vt)+ε
i
t+h by sieve reduced rank regression, yielding

a cross-section of parametric estimates of aih and bih and a single nonparametric estimate of

φh(vt). Here, i = 1, . . . , n ranges over the CRSP market excess return, maturity-sorted

Treasury excess returns, industry-sorted portfolio excess returns, and ratings and industry

sorted corporate bond excess returns. Next, we estimate prices of risk as well as risk factor

exposures according to the dynamic asset pricing restrictions in (4.1). That is, we estimate

jointly Rxit+h = (αih + βihλ0) + βihλ1φh(vt) + βiut+h + εit+h, where the estimate of φh(vt) is

taken as given from the unrestricted first step regression, and where ut+h ≡ Yt+h − Et[Yt+h]

represents vector autoregression innovations to the risk factors Yt consisting of the market

return, the one-year Treasury return, and the nonlinear volatility factor φh(vt). Results of

the regressions are given in Table 6, while Figure 10 shows the cross-sectional relationships
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between aih and αih + βihλ0 and between bih and βihλ1 for h = 1.9

Table 6 shows that the industry portfolios and credit portfolios are highly significantly

exposed to equity market risk, while few if any of the Treasury returns loads significantly

on the market return. The Treasury and corporate bond returns are significantly exposed

to the one year Treasury return and also to innovations to the nonlinear volatility factor,

although to a lesser extent. Importantly, the prices of risk λ1 show that the market return

commands a significant positive risk premium, while the Treasury return and nonlinear

volatility factor each command a negative risk premium, which is consistent with a flight

to safety interpretation. Taken together, the product βihλ1, representing loadings on the

forecasting factor φh(vt), has negative signs for all bond returns and positive signs for all

equity returns.

Figure 10 shows the cross-sectional relationship between the forecasting intercept aih and

slope bih and the risk factor exposures. The top left panel shows that the forecasting slope bih

is strongly related to the risk factor loadings βih and prices of risk λ1. Correspondingly, when

deviations from arbitrage αih are permitted, the top right panel supports the view that the

dynamic asset pricing model that restricts slope coefficients bih to be βihλ1 results in correct

predictions about unconditional excess returns in the cross-section. These predictions are also

captured in the unrestricted forecasting regressions (bottom right panel). However, under

no-arbitrage in frictionless markets αih is forced to zero, the pricing performance deteriorates

in the bottom left panel. 10 Taken together, the results from Table 6 and Figure 10 strongly

suggest the interpretation of φh(vt) as a price of risk variable in a dynamic asset pricing

model with frictions.

Equation (4.1) also has the time series prediction that φh(vt) might be related to alterna-
9Because the right-hand side regressors in Rxit+h = (αih+βihλ0) +βihλ1φh(vt) +βiut+h+ εit+h mix lagged

and contemporaneous variables, overlapping regressions that result from using h > 1 imply certain parameter
restrictions. To avoid the need to model such restrictions, we follow Adrian, Crump, and Moench (2014)
and focus on the h = 1 case.

10The deterioration in pricing performance is attributable to our choice of industry sorted portfolios as test
assets for the equities, as those are well known to generate pricing errors relative to risk based explanations.
Size or book to market sorted portfolios would improve cross-sectional pricing performance.
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tive proxies for the time variation in pricing of risk. There is a large literature documenting

the extent to which asset prices are predictable. An obvious question is to what extent our

estimated return predictor φh(vt) is related to other forecasting variables that have been

shown to be significant. To do so, we plot six commonly used variables together with φh(vt)

in the time series for h = 6.11 In particular, we show the slope of the Treasury yield curve

as measured by TERM, the Cochrane and Piazzesi (2005) CP factor, the BAA-AAA credit

spread (DEF), the dividend yield (DY) of the S&P500, the CAY factor by Lettau and

Ludvigson (2001), and the variance risk premium (VRP) of Bollerslev, Tauchen, and Zhou

(2009). It is apparent from Figure 11 that the relationships of φ6(vt) with all six variables

is very weak. The only two variables that bear some resemblance are the credit spread DEF

and the variance risk premium VRP, both of which increase during the financial crisis in

tandem with φ6(vt). However, our earlier SRRR forecasting results showed that DEF and

VRP do not impact the significance of φh(vt) markedly.

4.2 Theories and Evidence of Flight-to-Safety

The theoretical literature has proposed a number of distinct mechanisms generating flight-

to-safety. Vayanos (2004) studies equilibrium asset pricing where volatility is stochastic,

and assets are invested by fund managers. Assets’ illiquidity arises as trading is subject to

fixed transactions costs. Fund managers are subject to withdrawals when fund performance

is poor, generating a preference for liquidity that is a time varying function of volatility.

Vayanos (2004) derives equilibrium expected returns of the following form12

Et
[
Rxit+1

]
= αi (vt) + A (vt)Covt

(
Rxit+1, Rx

M
t+1

)
+ Z (vt)Covt

(
Rxit+1, vt+1

)
. (4.4)

11We provide a visual representation of the alternative forecasting variables, since four of the six plotted
series were previously shown to be unrelated to the predictive content of φh(vt) (Tables 1, 3, and 4), and
since CAY is only available quarterly. In separate results (not included for brevity), we also included the
CP factor as a predictive control and found that it did not affect our results.

12We are changing notation from continuous to discrete time to make it consistent with the rest of the
notation in this paper.
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Expected returns are thus functions of their covariance with the market return and with

volatility, where the impact of these covariances on expected returns depends on the en-

dogenously time varying effective risk aversion A (vt) and the endogenously time varying

volatility risk premium Z (vt). Our estimated function φ (vt) corresponds to A (vt) · vt and

our estimated exposures on φ (vt) are related to the covariance of asset returns with the

risk factors, including market risk and interest rate risk. The solution for A (vt) is highly

nonlinear, and must be computed numerically. Pricing errors αit are related to trading costs

across assets times the withdrawal likelihood, and are also a function of vt, but they are

unrelated to risk factor loadings. We note, however, that the downward sloping φ (vt) for

the VIX below its median and above its 99th percentile is not an immediate implication of

the theory. We will discuss possible explanations below.

What is key to the framework of Vayanos (2004) is that A (vt) is convex. Furthermore,

our estimated φ (vt) has to be compared to A (vt)·vt, making it more convex. Our estimate of

φ (vt) is convex when the VIX is above its median and below the 99th percentile. Within the

theory, this is because risk premia are affected by fund managers’ concern with withdrawals.

Withdrawals are costly to the managers because the managers’ fee is reduced, and holding

a riskier portfolio makes withdrawals more likely by increasing the probability that perfor-

mance falls below the threshold. When volatility is low, managers are not concerned with

withdrawals and hence the component of the risk premium that corresponds to withdrawals

is very small and almost insensitive to volatility. That component starts increasing rapidly,

however, when volatility increases, leading the managers’ effective risk aversion to increase

with volatility.

The theory of Vayanos (2004) also features a volatility risk premium, Z (vt). The dynamic

asset pricing setup allows us to separate out Z (vt) and A (vt), as we estimate prices of risk

for the market, interest rate risk, and volatility risk to be affine functions of φ (vt). Z (vt)

captures managers’ reduced willingness to hold illiquid assets during volatile times, leading

liquidity premia to increase with volatility. We do note, however, that the volatility premium
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is also convex because when volatility is low, managers are not concerned with withdrawals

because the event that performance falls below the threshold requires a movement of several

standard deviations. When volatility increases the probability of withdrawals starts increas-

ing rapidly, and so does the volatility premium. Importantly, the theory of Vayanos (2004)

also gives rise to αs due to transaction costs. In equilibrium, those transaction costs are also

related to the level of volatility, and to the withdrawal intensity of mutual fund investors.

We next investigate direct evidence of flight-to-safety by analyzing global mutual fund

flows from the Investment Company Institute (ICI) (Table 7). The table reports a contem-

poraneous SRRR of the mutual fund flows on the VIX. The regression is contemporaneous,

as flows drive expected returns contemporaneously with volatility. The table shows that US

equity, world equity, and hybrid funds have strongly negative loadings on the fund flow func-

tion φFF (vt) while government bond funds exhibit strongly positive loadings. To interpret

the meaning of these opposite signs, the top left panel of Figure 12 plots SRRR-estimated

fund flows F̂ lowsit = âi + b̂iφ̂FF (vt) for government bond fund flows and the three significant

equity fund flows, where v ranges over the empirical support of the VIX. The plot shows

that as the VIX rises above 22, government bond funds experience inflows. As the VIX rises

a few points higher, the risky equity funds experience outflows, presenting direct evidence of

flight-to-safety at a slightly higher VIX threshold than we previously identified from excess

returns data. Table 7 also shows that the flight-to-safety pattern in loading signs is present

in the mutual fund flows whether the crisis is included or not. It is interesting to note that

money market funds are not found to be a safe asset in these regressions, consistent with

the fact that investors ran on money market funds.

The bottom panel of Figure 12 corroborates the SRRR findings in the time series. The

plot shows the relationship between the VIX and aggregated flight-to-safety flows, defined as

the sum of equity fund outflows and contemporaneous government bond fund inflows. Our

earlier risk premium-based estimates of φ(vt) indicated the expected returns to stocks and

bonds begin to diverge when the VIX rises above its median of 18. The plot correspondingly
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shows that in states of the world where the VIX exceeds its median threshold, flight-to-safety

flows strongly co-move with the VIX, with a correlation of 68%.

The top right panel of Figure 12 compares (an affine transformation of) the shape of

the nonlinearity from the fund flows, φFF (vt), to the φ(vt) function estimated from excess

returns. While the mutual fund flows line up with the φ(vt) function in the intermediate

range of the VIX between 18 and 50, the φ(vt) function is downward sloping outside of

that range. For the lower end of the range, the theory by Buffa, Vayanos, and Woolley

(2014) might offer an explanation. The upper part of the range, when stock returns depend

negatively on volatility when the VIX is above 50 is not consistent with Vayanos (2004). In

our interpretation, that negative dependence of future returns on the VIX is due to changes

in cash flow news during the depth of the financial crisis, as argued by Campbell, Giglio,

and Polk (2013).13

Buffa, Vayanos, and Woolley (2014) augment the Vayanos (2004) model with competition

among fund managers. Because of agency frictions, investors make managers’ fees more

sensitive to performance and benchmark performance against a market index. This makes

managers unwilling to deviate from the index and exacerbates price distortions. Because

trading against overvaluation exposes managers to greater risk of deviating from the index

than trading against undervaluation, agency frictions bias the aggregate market upwards.

They can also generate a negative relationship between risk and return because they raise
13Note that our interpretation of the economic driver of the nonlinear risk return tradeoff differs from

the interpretation by Ghysels, Guérin, and Marcellino (2014), who argue that the high volatility regime
corresponds to the flight-to-safety regime. In contrast, our evidence presented in this paper is that flight-to-
safety is most relevant for the range of the VIX between 18 and 50, which occurs 49.3 percent of the time.
For the VIX above 50 (occurring .7 percent of the sample), we conjecture that cash flow news, not discount
rate news is the main driver of returns.
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the volatility of overvalued assets.14 15 16

Caballero and Krishnamurthy (2008) study a very different but complementary mech-

anism for flight to safety, based on Knightian uncertainty. In their model, agents faced

with Knightian uncertainty consider the worst case among the scenarios over which they

are uncertain. When the aggregate quantity of liquidity is limited, Knightian agents grow

concerned with liquidity shortages and they therefore sell risky financial claims in favor of

safe and uncontingent claims, i.e. there is flight to safety. Even though the flight to safety

seems prudent from individuals’ point of views, it is collectively costly for the macroecon-

omy because scarce liquidity goes wasted. To the extent that a high level of the VIX might

trigger Knightian agents to flight to safety, or a high level of the VIX is correlated with an

increase in uncertainty, the predictions of Caballero and Krishnamurthy (2008) broadly sup-

port our empirical finding that riskier securites tend to load positively on φ (vt), while safe

securities load negatively on φ (vt). More importantly, Caballero and Krishnamurthy (2008)

implies that flight to safety might be associated with adverse macroeconomic consequences

in extreme tail events. The latter provides a possible economic mechanism why the φ(vt)

14An earlier paper by Vayanos andWoolley (2013) features exogenous fund flows that enter into equilibrium
pricing relationships. As a result, expected returns depend on covariance with fund flows as well as covariance
with the market return. The price of risk of fund flow risk and market risk is in turn a function of fund
flows, which are also correlated with equilibrium volatility. Hence Vayanos and Woolley (2013) also imply a
nonlinear relationship between expected returns and market volatility, but only indirectly. However, there
is no negative risk-return tradeoff.

15A related literature studies the role of market makers for flight-to-safety. Building on work by Gromb and
Vayanos (2002), Weill (2007) models financial crises in a setting where market makers provide liquidity by
absorbing external selling pressure. Market makers buy when selling pressure is large, accumulate inventories,
and sell when the pressure alleviates. Weill (2007) points out that market makers can only provide liquidity
when they have sufficient capital, justifying central bank lending in times of financial market disruptions.
Equilibrium pricing is highly nonlinear, and related to volatility, but does not lend itself to a reduced form,
empirically implementable representation as is the case with Vayanos (2004) model. Hence we cannot map
our estimated φ (vt) directly into the model of Weill (2007).

16Another extension of Gromb and Vayanos (2002) is provided by Brunnermeier and Pedersen (2009),
who introduce an explicit role for stochastic volatility within a pricing setting that feature arbitrage capi-
tal. Brunnermeier and Pedersen (2009) present a model that links an asset’s market liquidity and traders’
funding liquidity. Traders’ ability to provide funding is in turn linked to asset return volatility via margin
setting. As a result, expected returns are linked to market volatility via traders’ ability to provide liquidity.
Under certain conditions, margins are destabilizing and market liquidity and funding liquidity are mutually
reinforcing, leading to liquidity spirals that are associated with flight to safety, and widening expected re-
turns to risky assets. The model of Brunnermeier and Pedersen (2009) gives rise to a strongly nonlinear and
potentially discontinuous relationship between future returns and volatility, which is broadly consistent with
our estimated φ (vt) function.
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curve starts to slope down when the VIX is above the VIX’s 99th percentile of 50. In those

extreme states, flight to safety might have severe consequences on expectations of future cash

flows, so that our estimated relationship between expected returns and the VIX no longer

reflects the pricing of risk, but rather the expectations about future cash flows in extreme

tail events. Our observations for the VIX at these extreme levels are concentrated in the

months following the Lehman failure of 2008, which was followed by abysmal macroeconomic

performance and cash flows, leading to ever declining stock prices and yields. The decline

in yields, in turn, is at least partially attributable to central bank liquidity injections. The

reversal of the relationship between expected returns and volatility for very high levels of

volatility is fully consistent with the framework of Caballero and Krishnamurthy (2008), as

extreme uncertainty leads to extreme flight to safety, causing potentially large macroeco-

nomic costs. This interpretation that the negative relationship between the expected equity

market return and the VIX is due to cash flow news is also consistent with the empirical

evidence presented by Campbell, Giglio, and Polk (2013).

4.3 Intermediary Asset Pricing Theories

Intermediary asset pricing theories model the impact of intermediary balance sheet frictions

on the pricing of risk and real activity within dynamic general equilibrium models of the

macroeconomy. The strand of literature was pioneered by He and Krishnamurthy (2013),

who model an intermediary sector whose ability to raise external equity capital depends on

past performance, similar to Vayanos (2004). However, in He and Krishnamurthy (2013),

volatility is an endogenous variable, while it is exogenous in Vayanos (2004). He and Krish-

namurthy (2013) feature a single state variable, which is the share of intermediary wealth

relative to total wealth in the economy. Aggregate volatility is a nonlinear function of the

share of that state variable. The approach of Brunnermeier and Sannikov (2014) has many

commonalities with He and Krishnamurthy (2013). Even though constraints on the interme-

diary sector differ, the model of Brunnermeier and Sannikov (2014) also features the wealth
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share of intermediaries as single state variable that determines the pricing of risk, the level

of endogenous volatility, and real activity.

Adrian and Boyarchenko (2012) expand on those intermediary asset pricing theories by

introducing intermediary leverage as an additional state variable. The intermediary lever-

age state variable arises endogenously, as intermediaries are subject to value at risk (VaR)

constraints. Furthermore, intermediaries face liquidity shocks in addition to productivity

shocks, while the models of He and Krishnamurthy (2013) and Brunnermeier and Sannikov

(2014) only feature a single shock. The pricing kernel of Adrian and Boyarchenko (2012) is

expressed in terms of shocks to output and shocks to leverage, with prices of risk depending

on relative intermediary wealth (as in He-Krishnamurthy and Brunnermeier-Sannikov) as

well as the level of leverage. This type of pricing kernel is well supported by empirical asset

pricing evidence. Adrian, Moench, and Shin (2010) show that intermediary leverage is a

strong forecasting factor for asset returns, while Adrian, Etula, and Muir (2014) demon-

strate that shocks to intermediary leverage is a priced risk factor. Adrian, Moench, and Shin

(2014) combine both of these results and present a dynamic asset pricing model that features

leverage as a pricing factor, and a price of risk variable.

The important connection between the present paper, and Adrian and Boyarchenko

(2012), is the fact that the VaR constraint directly links aggregate volatility to the leverage

of intermediaries. Hence the pricing kernel of Adrian-Boyarchenko could be expressed as

a function of volatility—instead of a function of leverage—both for the pricing factor, and

the pricing of risk. Intuitively, increases in volatility, which arise endogenously, tighten the

leverage constraints on intermediaries, increasing their effective risk aversion, as well as equi-

librium pricing of risk. Booms correspond to periods when volatility is endogenously low,

pricing of risk is compressed, and intermediary leverage is elevated. When adverse shocks

hit, either to productivity or to liquidity, volatility rises endogenously, tightening balance

sheet constraints and leading to a widening in the pricing of risk.

In order to gauge the relationship of our pricing of risk function φ (vt) to intermediary
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asset pricing theories, we estimate the relationship between the cross-section of VaRs over

time and the VIX, using SRRRs. We obtain the VaRs from Bloomberg for Bank of America,

Citigroup, Goldman Sachs, JP Morgan, and Morgan Stanley. VaRs are expressed in dollar

terms. We use the aforementioned five banks as those institutions are the main US banking

organizations with trading operations that have reported data continuously since 2004. The

VaR data is, unfortunately, only available at a quarterly frequency, so that return forecasting

regressions have very few observations.17 Instead, we present in Figure 13 the results of

regressing the panel of VaRs contemporaneously on the VIX, using SRRR regressions. The

result of this is shown in the lower panel of Figure 13, while the upper panel presents the

sum of VaRs together with the VIX. We can see that there is a tight association between

the VIX and the VaRs, and that the SRRR is suggestive of a slightly concave relationship.

The empirical results of Figure 13 support the assumption of Adrian and Boyarchenko

(2012) that intermediary balance sheet constraints are related to market volatility due to risk

management constraints. Furthermore, our earlier finding that expected returns are system-

atically related to the VIX are compatible with the notion that constraints on intermediary

balance sheets matter for the pricing of risk. Of course, this evidence is only suggestive, and

more rigorous analysis would require the calibration of intermediary asset pricing models, or

an identification strategy for exogenous variation in dealer balance sheet capacity. We leave

such research for future work.

4.4 Time Varying Pricing of Risk in Consumption-Based Asset

Pricing

Besides theories of flight-to-safety and intermediary asset pricing theories, consumption-

based asset pricing models can also give rise to variation in the pricing of risk. Among the

workhorse consumption-based asset pricing models, we consider habit formation and long-
17We did perform SRRRs of the stock and bond portfolios on the six month lag of the summed VaRs and

found significant forecasting ability using the SRRRs. We also uncovered the mirror image property.

36



run risk models with recursive preferences and compare them with the SRRR-implied time

varying price of risk.

In habit formation theories, utility depends not just on the level of current consumption,

but rather on current consumption in excess of previously experienced consumption. Asset

pricing implications of habit formation were pioneered by Abel (1990), Constantinides (1990),

and Sundaresan (1989). Our discussion will focus on the theory by Campbell and Cochrane

(1999, 2000), which has synthesized earlier work, and proven successful in explaining asset

pricing puzzles.

The key state variable in the Campbell and Cochrane (1999, 2000) setup is the surplus

consumption ratio st, which is a slow moving, mean reverting function of past shocks to

aggregate consumption. The pricing of risk is a function of the surplus consumption ratio.

Campbell and Cochrane (1999, 2000) present parameter calibrations that have been shown

to be able to explain asset pricing puzzles, both in the cross-section and in the time series.

In order to gauge the plausibility of our estimated φ (vt) function within the Campbell

and Cochrane (1999, 2000) asset pricing context, we consider the conditional Sharpe ratio

generated by that pricing kernel,
Et[R∗

t+1]√
V art[R∗

t+1]
=
√
V art (lnMt+1) = γ (1 + λ (st))σ, where

R∗t+1 corresponds to the returns of the maximum Sharpe ratio portfolio. Because the maxi-

mum Sharpe ratio represents the conditional variance of the (log) stochastic discount factor,

it provides an analytically tractable way to study the habit model’s price of risk. Given the

SRRR-estimated φ (vt) interpretation as a price of risk, the time-variation in the two objects

can be meaningfully compared.

In long-run risk (LRR) models, preferences are recursive and consumption and divi-

dends contain a small, persistent expected growth rate component, as well as stochastic

consumption volatility. Bansal and Yaron (2004) initially showed that such models capture

salient features of the equity premium, the risk-free rate, and market volatility. By anal-

ogy to the habit model, we examine the LRR-implied maximum Sharpe ratio
Et[R∗

t+1]√
V art[R∗

t+1]
=√

V art (lnMt+1) =
√
a0 + a1σ2

t , which is driven by conditional consumption volatility σt,
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and use the parameter calibrations for a0 and a1 from the empirical LRR implementation in

Bansal, Kiku, and Yaron (2012). σt is estimated as a 4-quarter moving average of squared

consumption AR(1) innovations that have been projected on lagged innovations and the

dividend yield.18

The top panel of Figure 14 shows the Campbell-Cochrane implied maximum conditional

Sharpe ratio together with the (mean shifted) SRRR-implied price of risk φ (vt) over time.

The bottom panel shows the analogous figure for the long-run risk maximum Sharpe ratio.

There is some positive correlation among the two consumption-based price of risk measures,

and the SRRR implied price of risk φ (vt). For example, during the financial crisis, when φ (vt)

increases sharply, the Sharpe ratio from the habit model and the LRR model also increases

unusually strongly. However, while φ (vt) reverts back to lower levels after 2009, the habit

Sharpe ratio remains high through 2015. The LRR Sharpe ratio also stays elevated through

2011. Another striking divergence occurs during the late 1990s and early 2000s, when the

tech boom in the stock market was associated with high volatility, but a low level of the

habit and LRR Sharpe ratios. Hence overall, the correlations between the φ (vt) and the

consumption-based Sharpe ratios (0.07 for habit and 0.21 for LRR) are fairly low.

Our takeaway from this finding is that time variation of expected returns derived from

the SRRRs on the VIX captures distinct economic mechanism when compared to the time

variation of expected returns induced by habit formation. While habit formation and LRR

pricing kernels are very tightly linked to the growth of aggregate consumption, expected re-

turns derived from the VIX are likely to capture funding constraints on financial institutions

such as major banking organizations and fund managers, as we argued above. Hence the

two sources of time variation in expected returns and Sharpe ratios capture complementary

economic forces.
18We thank Amir Yaron for providing us with this data.
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4.5 Macroeconomic Consequences

Our final investigation concerns macroeconomic aggregates. In general equilibrium, varia-

tions in the pricing of risk associated with fund flows or bank balance sheet constraints will

translate into distortions of consumption and savings decisions. The work of He and Krish-

namurthy (2013), Brunnermeier and Sannikov (2014), and Adrian and Boyarchenko (2012)

formalize this link in dynamic macro-finance theories. One would therefore expect the VIX

to forecast macroeconomic aggregates. Table 8 reports the output of SRRRs on the five

business cycle indicators that receive the largest weight in the Chicago Fed National Activ-

ity Index (CFNAI): industrial production (IP), IP manufacturing (IPMFG), manufacturing

capacity utilization (CUMFG), change in goods-producing employment (LAGOODA), and

total private nonfarm payroll series (LAPRIVA), with the market return included as the

reference series.19 We can see that the VIX strongly forecasts macro activity, with all of

the business cycle indicators receiving the same sign. Furthermore, allowing for nonlinearity

helps in terms of explanatory power.

Figure 15 shows the relationship between macroeconomic activity, as measured by the

CFNAI’s 3-month moving average, and φh(vixt), estimated solely from asset return data as

in Section 3.6 using our benchmark 6-month forecast horizon. The figure illustrates that

the reversal of φh(vixt) as VIX rises above its 99th percentile in the fall of 2008 (vertical

line) presages the subsequent collapse in real activity. We therefore conjecture that very

extreme observations of the VIX lead to a drastic update of expected cash flows, leading to

the downward sloping φh (vt) seen in prior figures. For Treasury returns, expectations about

accommodative monetary policy might lead to the sharp rise in the relation between returns

and the VIX, preserving the mirror image property even at extreme events. Because the

entire cross-section of asset returns considered is pricing this reversal in expected returns,

we emphasize that the shape of φh (vt) is still precisely estimated for these extreme values
19We use the same stationarity-inducing transformations employed in the actual CFNAI calcula-

tion. For more details, see https://www.chicagofed.org/~/media/publications/cfnai/background/
cfnai-technical-report-pdf.pdf.
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of the VIX.

5 Conclusion

We propose sieve reduced rank regressions (SRRR) to extract a common nonlinear function

of the VIX that jointly forecasts stock and bond returns at horizons up to two years. We show

that the forecasting function φh(v) is the same across diverse sets of stock, bond, and credit

returns, up to affine transformations. Intriguingly, the loadings of stock and bond returns

on the common forecasting variable switches signs when comparing stocks and bonds. This

is evidence of investor flight-to-safety: when the VIX rises above its median value, investors

tend to reallocate from stocks to bonds, leading to an increase in expected returns for stocks

and a compression of expected returns for bonds. We show that the shape of the functional

form is robust across asset classes and across time. We can extract virtually indistinguishable

shapes from only stocks or only bonds, or use subsamples of the data that include the 1987

crash but exclude the 2008 crisis, or vice versa.

When we relate φh(v) to common return predictors, we find only very weak relationships,

suggesting that the nonlinear function of equity market volatility captures economic forces

that are complementary to previously documented forecasting variables. Cross-sectional

regressions show that the loadings of future returns on φh(v) are cross-sectionally related risk

factor loadings, suggesting that φh(v) is a price of risk variable in a dynamic asset pricing

model. Our findings support the nonlinear pricing predictions of the asset management

theory by Vayanos (2004) where flight-to-safety is associated with increases in equity market

volatility, and the intermediary asset pricing theory of Adrian and Boyarchenko (2012) where

value at risk constraints on banks give rise to a tight relationship between the pricing of

risk and the level of aggregate volatility. We provide supportive evidence for both theories

by analyzing global mutual fund flows and the value at risk constraints of major banking

organizations.
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Appendix

A.1 Details of Empirical Implementation

Robust Multi-Horizon Inference As discussed in the main text we utilize the “reverse regres-

sion” approach of Hodrick (1992) to our multivariate setting to ameliorate concerns about spurious

inference induced by the overlapping returns. For a similar derivation for the univariate case see

Wei and Wright (2013). Consider the multivariate h-period long-horizon return regression where

R
(h)
t+h = Rt+1 +Rt+2 + · · ·+Rt+h,

R
(h)
t+h = ah + AhXt + εt+h, t = 1, . . . , T ,

where E [εt+h ⊗Xt] = 0 and E [εt+h] = 0. Then, Ah = C (Rt+h, Xt)V (Xt)
−1 so long as V (Xt) is

of full rank. Similarily, for the multivariate h-period reverse regression,

Rt+1 = a + AX
(h)
t + εt+1, t = 1, . . . , T ,

then A = C
(
Rt+1, X

(h)
t

)
V
(
X

(h)
t

)−1
where X(h)

t = Xt + Xt−1 + · · · + Xt−h. Then, under the

assumption of covariance stationarity of the joint process (Rt, Xt) we have that C
(
R

(h)
t+h, Xt

)
=

C
(
Rt+1, X

(h)
t

)
and so

Ah = C
(
R

(h)
t+h, Xt

)
V (Xt)

−1 = C
(
Rt+1, X

(h)
t

)
V
(
X

(h)
t

)−1
V
(
X

(h)
t

)
V (Xt)

−1 = AV
(
X

(h)
t

)
V (Xt)

−1 .

Thus, the ith row of Ah has all elements equal to zero if and only if the ith row of A has all elements

equal to zero. Thus, tests of the null hypothesis of no predictability of asset i in the forward regres-

sion are equivalent to the same test in the reverse regression which formally justifies our empirical

approach.

Proof of Proposition 1: The first and second results follow by the same steps as in Crump,

Hotz, Imbens, and Mitnik (2008), except the Berry-Esseen bound used in their Lemma A.3 is re-
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placed by its counterpart for weakly dependent processes, as in Bulinskii and Shashkin (2004). Then

for sufficiently smooth φ(·), the convergence holds. For the second result, to establish that m+n−1

is the correct degrees of freedom, note that the rank of the variance matrix given in equation (3.20)

of Anderson (1999) can be shown to be m + n − 1 in our notation, using the rank result of Cline

and Funderlic (1979). Finally, the third result follows from Chen, Liao, and Sun (2014).
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Figure 2: P-values by Forecast Horizon: 1990 to 2014

This figure plots p-values by forecast horizon for linear and polynomial VIX predictive regres-
sions. The regressions Reit+h = ai0 + ai1V IXt + εit+h and Reit+h = bi0 + bi1V IXt + bi2V IX

2
t +

bi3V IX
3
t + εit+h are each estimated by OLS for h = 1, . . . 24, where i ranges over 1-year,

2-year, 3-year, 5-year, and 10-year Treasury excess returns and stock market excess returns.
p-values for Wald tests of joint significance of slope coefficients H0 : bi1 = bi2 = bi3 = 0 using
Hodrick (1992) standard errors are reported. The sample period is 1990:1-2014:9.

47



Figure 3: P-values by Forecast Horizon: 1990 to 2007

This figure plots p-values by forecast horizon for linear and polynomial VIX predictive regres-
sions. The regressions Reit+h = ai0 + ai1V IXt + εit+h and Reit+h = bi0 + bi1V IXt + bi2V IX

2
t +

bi3V IX
3
t + εit+h are each estimated by OLS for h = 1, . . . 24, where i ranges over 1-year,

2-year, 3-year, 5-year, and 10-year Treasury excess returns and stock market excess returns.
p-values for Wald tests of joint significance of slope coefficients H0 : bi1 = bi2 = bi3 = 0 using
Hodrick (1992) standard errors are reported. The sample period is 1990:1-2007:7.
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Figure 4: Robustness of Nonlinear Predictability to Using Realized Volatility

This figure plots p-values from monthly regressions of equity market excess returns on h-
month lagged realized downside volatility. The blue dashed line represents p-values for
regressions of excess returns on a constant and lagged realized downside volatility (RV),
whereas the red lineshows a nonlinear regression of excess returns on a lagged cubic polyno-
mial of realized downside volatility. p-values were computed using Hodrick (1992) standard
errors, and the black dashed line indicates significance at the 10% level. Sample periods are
indicated above each plot.
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Figure 5: Univariate Nonparametric and Polynomial Estimates of φih(v)

This figure shows sieve, polynomial, and kernel estimates of the nonlinear volatility function
φih(v) from univariate predictive regressions Rxit+h = φih(vt)+εt+h, where Et[Rxit+h] = φih(vt).
The superscript i indexes separate regressions in which the left hand side variable is either
equity market excess returns (solid line) or 1-year Treasury excess returns (dashed line). In the
top panel, the sample consists of monthly observations on vt = V IXt from 1990:1 to 2014:9,
whereas in the bottom panel, the sample consists of monthly observations from 1990:1 to 2007:7.
In both panels, the forecast horizon plotted is h = 6 months. Within each panel, the left plot
shows the nonparametric sieve estimate of φih(vt), where the number of B-spline basis functions
used in the estimation is chosen by out-of-sample cross validation. The middle plot shows a
parametric cubic polynomial regression where φih(vt) = ai0 + ai1vt + ai2v

2
t + ai3v

3
t , and the right

plot shows φih(vt) estimated by a Nadaraya-Watson kernel regression, where the bandwidth was
chosen by Silverman’s rule of thumb. The y-axis was rescaled by the unconditional standard
deviation of Rxit to display risk-adjusted returns.

φih(V IX) 1990:1 to 2014:9

φih(V IX) 1990:1 to 2007:7
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Figure 6: SRRR Loadings: b̂ih
This figure plots SRRR estimated portfolio loadings b̂ih, where i ranges over the market
return (MKT), 11 industry portfolio returns, constant-maturity Treasury returns with 1, 2,
5, 7, 10, 20, and 30 year maturities, and Barclays corporate bond portfolios. The shades
of bars denote outcomes of the hypothesis test H1,0 : bihφh = 0 of whether asset i loads
signficantly on φh(v) (see Proposition 1). The samples consist of monthly observations from
1990:1 to 2014:10.
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Figure 7: SRRR: Expected Excess Returns for ith Portfolio

This figure plots normalized SRRR estimated excess returns on portfolio i,
Êt[Rx

i
t+h]/σ̂(Rxit+h), where Êt[Rxit+h] = α̂ih + b̂ihφ̂h(vt), σ̂(Rxit+h) scales by unconditional

excess return standard deviation, and where i ranges over the market return (MKT), 11
industry portfolio returns, constant-maturity Treasury returns with 1, 2, 5, 7, 10, 20, and 30
year maturities, and Barclays corporate bond portfolios. Red lines denote estimated excess
returns with positive b̂ih loadings, and blue dashed lines denote estimated excess returns
with negative b̂ih loadings. The forecast horizon is h = 6, and the sample consists of monthly
observations from 1990:1 to 2014:9.
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Figure 8: SRRR φh(v): Separately Estimated from Equities and Treasuries

This figure plots two versions of SRRR-estimated φ̂h(v). The first estimates φ̂h(v) from the
sieve reduced rank regression Rxit+h = aih+bihφh(v)+εit+h where i ranges over equity industry
and market portfolios only (red dashed). The second estimate of φh(v) comes from the same
sieve reduced rank regression, but where i ranges over Treasury return portfolios only (blue).
The figure examines whether the two resulting nonlinear volatility functions φ̂Treas

h (v) and
φ̂Equity
h (v) differ only by location and scale. This is tested by regressing φ̂Equity

h (vt) on
φ̂Treas
h (vt) and a constant, and then plotting φ̂Equity

h (v) and ĉ1 + ĉ2φ̂
Treas
h (v) alongside each

other, where ĉ1 and ĉ2 are the regression coefficients. Dotted lines represent 95-percent
confidence intervals from test H3,0 in Proposition 1 in the text. The forecast horizon is
h = 6, and the sample consists of monthly observations from 1990:1 to 2014:9.
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Figure 9: Out-of-Sample Performance

This figure plots cumulative excess returns of the CRSP value-weighted market portfo-
lio (MKT), the 1-year constant maturity Treasury portfolio (cmt1), and a portfolio of
assets formed using pseudo out-of-sample forecasts of the sieve reduced rank regressions
Et[Rx

i
t+h] = aih + bihφh(vixt), for i ranging over MKT and cmt1, . . . , cmt30. That is, given

data on excess returns Rxt = (RxMKT
t , Rxcmt1t , . . . , Rxcmt30t )′ and the VIX for t = 1, . . . , T ,

the sample is split into an initial in-sample data set t = 1, . . . , t∗ and an out-of-sample data
set t∗ + 1, . . . , T , where (t∗/T ) = 0.5 is the fraction of available data reserved for the first
out-of-sample forecast. Then, using in-sample data, a pseudo out-of-sample joint forecast
Et∗ [Rxt∗+h] is made for h = 6 months by sieve reduced rank regression. Based on this
forecast, an optimal portfolio with weight ωt∗ = V −1t∗ Et∗ [Rxt∗+h] is formed and held for
h = 6 months, where risk weights V −1t∗ are the unconditional variances of excess returns
using data from t = 1, . . . , t∗. After h = 6 months, the in-sample data set is expanded to
t = 1, . . . , t∗ + h, yielding a new out-of-sample forecast Et∗+h[Rxt∗+2h] and new portfolio
weights ωt∗+h. The process is repeated, yielding pseudo out-of-sample excess returns from
t∗ + 1, . . . , T whose cumulative return is displayed in the figure. All returns were scaled
(levered) to have the same ex-post variance as MKT.
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Figure 10: Cross-Sectional Pricing

This figure plots the results of the unrestricted joint forecasting regressions Rxit+1 = ai +
biφ(vt) + εit+1 against the restricted joint forecasting regressions Rxit+1 = (αi + βiλ0) +
βiλ1φ(vt) +βiut+1 + εit+1, obtained from a dynamic asset pricing model with affine prices of
risk. The innovations ut+1 = Yt+1−Et[Yt+1] correspond to the cross-sectional pricing factors
Yt = (MKTt, TSY 1t, φ(vt)), where MKT is the return to the CRSP value-weighted equity
market return, TSY1 is the return to the one year Treasury, and φ(vt) is the nonlinear pricing
factor for vt = vixt. Excess returns over i refer to 11 equity portfolios sorted by industry
from Ken French’s website, seven maturity-sorted Treasury portfolios, the six Barclay’s
industry and ratings sorted corporate bond portfolios, and the CRSP market return. To
obtain estimates, the unrestricted regression is estimated by sieve reduced rank regression,
yielding parametric estimates of ai and bi and a nonparametric estimate of φ(vt). Then the
restricted joint forecasting regression is estimated by taking φ(vt) as given, making ai and bi
from the unrestricted forecasts directly comparable to (αi+βiλ0) and βiλ1 in the restricted
regressions. The comparisons are scattered in the plots. The sample consists of monthly
observations from 1990:1 to 2014:9.
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Figure 11: φ̂6(vt) and Price of Risk Factors: 1990:3 to 2013:9

This figure plots a nonlinear function of the VIX, φ6(vt), estimated by sieve reduced rank
regression (SRRR) against known price of risk factors: the 10-year Treasury yield (TSY10),
the term spread between the 10-year and 3-month Treasury yield (TERM), the Cochrane-
Piazzesi Factor (CP), the spread between Moody’s Baa-rated corporate bonds and the 10-
year Treasury yield (DEF), the log dividend yield (DY), and the Lettau-Ludvigson CAY
factor (CAY). To facilitate visual comparisons, all variables are demeaned and scaled by
their unconditional standard deviatons.The sample period is 1990:3-2013:9.
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Figure 12: Fund Flows, φh(vixt), and Flight-to-Safety

Using a panel of mutual fund flows, we estimate sieve reduced rank regressions Flowsit = ai+

biφFF (vixt)+ε
i
t. The top left panel shows the predicted fund flows F̂ lowsit = âi+b̂iφ̂FF (vixt)

for the subset of fund types that were found to load significantly on φFF (vixt) (Table 7).
The dashed vertical line indicates when government bond funds experience net inflows. The
top right panel shows φ̂FF (v) alongside φ̂h(v) estimated separately from sieve reduced rank
regressions Rxit+h = aih + bihφh(vt) + εit+h, where h = 6 months and i = 1, . . . , n ranges
over the CRSP value-weighted market excess return and the seven CRSP constant maturity
Treasury excess returns corresponding to 1, 2, 5, 7, 10, 20, and 30 years to maturity. Given
the different units in each regression, φFF (v) was affine-translated to the scale of φFF (v).
The sample period is 1990:1 to 2014:9. The bottom panel plots values of the VIX above
its sample median (left axis, solid blue line) next to combined stock fund outflows and
government bond fund inflows (right axis, dashed red line). Stock fund outflows are the sum
of US equity, non-US equity, and hybrid equity mutual fund outflows. The sample consists of
monthly observations from 2000:1 to 2014:12. Source: ICI Trends in Mutual Fund Activity.
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Figure 13: SRRR: Value-at-Risk Cross-Section and the VIX

The top panel of this figure plots the VIX (left axis, solid line) next to major dealer banks’
summed Value-at-Risks (VaR) (right axis, dashed line) over time. The bottom panel shows
the estimated φV aR(vix) from the contemporaneous sieve reduced rank regression of dealers’
disaggregated VaRs on the VIX, V aRit = ai + biφV aR(vixt) + εit, where i = 1, . . . , 5 indexes
individual VaRs of the dealer banks that comprise the aggregate measure: Bank of America,
Citigroup, Goldman Sachs, JP Morgan, and Morgan Stanley. Dotted lines represent 95-
percent confidence intervals from test H3,0 in Proposition 1 in the text. The sample consists
of quarterly observations from 2004:1 to 2014:4.
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Figure 14: Relation to Consumption-Based Asset Pricing

The plot shows the SRRR-estimated nonlinear price of risk φh(vixt) together with the max-
imum Sharpe ratio of the habit formation model by Campbell and Cochrane (1999, 2000)
(top panel) and the long-run risk model of Bansal and Yaron (2004) (bottom panel). For
the habit model, we use NIPA consumption data on nondurable goods and services and
generate a time series st of the log surplus consumption ratio, yielding the maximal implied
time-varying Sharpe Ratio as a function of st (plotted in dashed red). For the long-run risk
model, the maximal Sharpe ratio is a function of conditional consumption volatility, which
is estimated as a 4-quarter moving average of squared consumption AR(1) innovations that
have been projected on lagged innovations and the dividend yield. φh(vixt) is plotted in
solid red. The sample consists of quarterly observations from 1990:1 to 2014:4.
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Figure 15: Real Activity and φh(vixt)

This plot shows the Federal Reserve Bank of Chicago’s measure of real activity, the CFNAI-
MA3, alongside φ(vt) estimated from stocks and bonds alone. The sample consists of monthly
observations from 1990:1 to 2014:9.
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Table 1: Excess Return Predictability: VIX and MOVE Polynomials: 1990 to
2014

This table reports Hodrick (1992) t-statistics for coefficients from the regressions Rxit+h = aih +
bih(vixt, vix

2
t , vix

3
t )
′+ cih(movet,move

2
t ,move

3
t )
′+ f ihzt + εit+h, where vixt is the VIX equity implied volatil-

ity index at time t, and movet is the MOVE Treasury implied volatility index. The superscript i indexes
separate regressions in which the left hand side variable is either the indicated Treasury excess return (top
panel) or the equity market excess return (bottom panel). zt consists of control variables representing the
default spread between the 10-year Treasury yield and Moody’s BAA corporate bond yield, the variance
risk premium, the term spread between the 10-year and 3-month Treasury yield, and the log dividend yield.
p-values report the outcome of the joint hypothesis test under the null of no predictability. The line labeled
Linearity reports the p-values for the test of linearity in VIX, which corresponds to the null hypothesis that
the coefficients on vix2t and vix3t are zero. The sample consists of monthly observations from 1990:1 to
2014:9.

1-year Treasury Excess Returns

h = 6 months h = 12 months h = 18 months
V IX1 1.91 4.13 5.01 1.86 3.60 5.02 1.13 3.21 4.73
V IX2 -4.08 -4.77 -3.61 -4.86 -3.37 -4.71
V IX3 3.89 4.66 3.51 4.76 3.38 4.64
MOV E1 0.26 -0.57 -0.58 -1.94 -0.23 -2.21
MOV E2 0.17 0.81 1.00 2.14 0.54 2.43
MOV E3 -0.35 -0.97 -1.16 -2.27 -0.69 -2.57
DEF -0.99 -0.99 -1.23
VRP 2.49 2.84 3.87
TERM -1.45 -2.76 -3.47
DY 3.34 3.58 3.24
const 1.40 -3.42 -0.14 0.58 1.65 -2.75 1.05 1.57 2.17 -2.19 1.19 1.63

p-value 0.057 0.001 0.089 0.000 0.064 0.005 0.303 0.000 0.260 0.004 0.845 0.000
Linearity 0.000 0.000 0.002 0.000 0.004 0.000

Stock Excess Returns

h = 6 months h = 12 months h = 18 months
V IX1 1.00 -3.18 -2.68 0.74 -2.47 -1.98 0.78 -1.87 -1.35
V IX2 3.36 2.90 2.61 2.22 2.01 1.54
V IX3 -3.24 -2.68 -2.45 -2.15 -1.87 -1.48
MOV E1 0.15 0.27 1.14 1.26 0.13 0.33
MOV E2 -0.06 -0.23 -1.17 -1.35 -0.07 -0.41
MOV E3 -0.01 -0.01 1.20 1.23 0.16 0.40
DEF -0.58 -0.62 -0.34
VRP -2.34 -2.03 -2.33
TERM 0.47 0.94 1.03
DY 1.17 1.51 1.63
const -0.15 3.28 0.13 2.43 0.50 2.68 -0.65 2.06 0.58 2.10 0.15 2.01

p-value 0.316 0.007 0.991 0.018 0.460 0.032 0.674 0.075 0.439 0.088 0.810 0.112
Linearity 0.004 0.013 0.031 0.085 0.119 0.296
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Table 2: Nonlinear VIX Predictability using the Cross-Section: 1990 - 2014
This table reports results from three predictive sieve reduced rank regressions (SRRR) for each of h = 6, 12,
and 18 month ahead forecasting horizons: (1) estimates of aih and bih from the SRRR Rxit+h = aih+bihvt+ε

i
t+h

of portfolio i’s excess returns on linear vt = vixt; (2) estimates of aih and bih from the SRRR Rxit+h =
aih + bihφh(vt) + εit+h of portfolio i’s excess return on the common nonparametric function φh(·) of vt = vixt;
(3) the same regression augmented with controls f i · (DEFt, V RPt, TERMt, DYt)

′ representing the default
spread (DEF, 10-year Treasury yield minus Moody’s BAA corporate bond yield), the variance risk premium
(VRP, realized volatility minus VIX), the term spread (TERM, 10-year minus 3-month Treasury yields), and
the S&P 500’s (log) dividend yield. The index i = 1, . . . , n ranges over the CRSP value-weighted market
excess return and the seven CRSP constant maturity Treasury excess returns corresponding to 1, 2, 5, 7,
10, 20, and 30 years to maturity. The sieve reduced rank regressions are introduced in section 3 in the text.
***, **, and * denote statistical significance at the 1%, 5%, and 10% level for t-statistics on ai and f i and
for the χ2-statistic on biφh(·) derived in Proposition 1. The joint test p-value reports the likelihood that the
sample was generated from the model where (b1, . . . , bn) · φh(·) = 0.

Horizon h = 6

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT −0.01 1.00 1.00* 1.00*** 0.31 1.00*** 0.05**−1.42***−0.01 0.17
cmt1 0.00 0.07* −0.05* −0.07*** −0.09**−0.20*** 0.00 0.03* 0.00* 0.02***
cmt2 0.01 0.09 −0.11* −0.14*** −0.15* −0.32*** 0.00 0.08** 0.00 0.02**
cmt5 0.03 0.04 −0.26 −0.31*** −0.25 −0.60***−0.02* 0.23** 0.01** 0.01
cmt7 0.04 0.04 −0.31 −0.38** −0.27 −0.70***−0.03** 0.32** 0.02** 0.00
cmt10 0.05 −0.08 −0.30 −0.37** −0.25 −0.66** −0.03** 0.39** 0.03*** 0.01
cmt20 0.08 −0.22 −0.39 −0.49 −0.23 −0.74 −0.05*** 0.51* 0.05***−0.03
cmt30 0.10 −0.52 −0.58 −0.68 −0.29 −0.98 −0.07*** 0.70* 0.06***−0.06

Joint p-val 0.273 0.000 0.000

Horizon h = 12

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.03 1.00 0.64 1.00* 0.09 1.00* 0.03**−0.70*** 0.00* 0.18
cmt1 0.00 0.11* −0.05 −0.10*** −0.08 −0.36*** 0.00 0.03** 0.00** 0.02***
cmt2 0.01 0.22 −0.08 −0.18** −0.12 −0.57*** 0.00 0.05** 0.00 0.03***
cmt5 0.02 0.33 −0.18 −0.39* −0.21 −1.03** −0.01 0.08* 0.01 0.03
cmt7 0.02 0.35 −0.23 −0.48* −0.24 −1.23* −0.02* 0.12* 0.01** 0.02
cmt10 0.03 0.15 −0.22 −0.47* −0.25 −1.25* −0.02** 0.13* 0.02** 0.03
cmt20 0.05 0.12 −0.31 −0.65 −0.27 −1.52 −0.04** 0.16 0.03*** 0.00
cmt30 0.06 −0.17 −0.44 −0.88 −0.33 −1.92 −0.05** 0.21 0.04***−0.01

Joint p-val 0.380 0.002 0.000

Horizon h = 18

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.03 1.00 0.44 1.00 −0.03 1.00 0.02**−0.59*** 0.01 0.18
cmt1 0.01 0.07 −0.04 −0.13*** −0.06 −0.60*** 0.00 0.04*** 0.00** 0.02***
cmt2 0.01 0.19 −0.07 −0.24** −0.10 −0.95*** 0.00 0.07***−0.01 0.03***
cmt5 0.02 0.36 −0.14 −0.48* −0.18 −1.65***−0.01 0.11** 0.00 0.03**
cmt7 0.02 0.38 −0.16 −0.56 −0.19 −1.87** −0.01* 0.14** 0.00 0.03*
cmt10 0.03 0.23 −0.15 −0.52 −0.20 −1.90* −0.01* 0.15** 0.01* 0.04
cmt20 0.04 0.29 −0.19 −0.69 −0.20 −2.16 −0.02* 0.15 0.02** 0.01
cmt30 0.05 0.04 −0.28 −0.91 −0.24 −2.63 −0.03** 0.18 0.03** 0.00

Joint p-val 0.586 0.025 0.000
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Table 3: Nonlinear VIX Predictability using the Cross-Section: 1990 - 2014
This table reports results from three predictive sieve reduced rank regressions (SRRR) for each of h = 6, 12,
and 18 month ahead forecasting horizons: (1) estimates of aih and bih from the SRRR Rxit+h = aih+bihvt+ε

i
t+h

of portfolio i’s excess returns on linear vt = vixt; (2) estimates of aih and bih from the SRRR Rxit+h =
aih + bihφh(vt) + εit+h of portfolio i’s excess return on the common nonparametric function φh(·) of vt = vixt;
(3) the same regression augmented with controls f i · (DEFt, V RPt, TERMt, DYt)

′ representing the default
spread (DEF, 10-year Treasury yield minus Moody’s BAA corporate bond yield), the variance risk premium
(VRP, realized volatility minus VIX), the term spread (TERM, 10-year minus 3-month Treasury yields), and
the S&P 500’s (log) dividend yield. The index i = 1, . . . , n ranges over the CRSP value-weighted market
excess return and the seven CRSP constant maturity Treasury excess returns corresponding to 1, 2, 5, 7,
10, 20, and 30 years to maturity. The sieve reduced rank regressions are introduced in section 3 in the text.
***, **, and * denote statistical significance at the 1%, 5%, and 10% level for t-statistics on ai and f i and
for the χ2-statistic on biφh(·) derived in Proposition 1. The joint test p-value reports the likelihood that the
sample was generated from the model where (b1, . . . , bn) · φh(·) = 0.

Horizon h = 6

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT −0.01 1.00 1.00* 1.00*** 0.31 1.00*** 0.05**−1.42***−0.01 0.17
cmt1 0.00 0.07* −0.05* −0.07*** −0.09**−0.20*** 0.00 0.03* 0.00* 0.02***
cmt2 0.01 0.09 −0.11* −0.14*** −0.15* −0.32*** 0.00 0.08** 0.00 0.02**
cmt5 0.03 0.04 −0.26 −0.31*** −0.25 −0.60***−0.02* 0.23** 0.01** 0.01
cmt7 0.04 0.04 −0.31 −0.38** −0.27 −0.70***−0.03** 0.32** 0.02** 0.00
cmt10 0.05 −0.08 −0.30 −0.37** −0.25 −0.66** −0.03** 0.39** 0.03*** 0.01
cmt20 0.08 −0.22 −0.39 −0.49 −0.23 −0.74 −0.05*** 0.51* 0.05***−0.03
cmt30 0.10 −0.52 −0.58 −0.68 −0.29 −0.98 −0.07*** 0.70* 0.06***−0.06

Joint p-val 0.273 0.000 0.000

Horizon h = 12

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.03 1.00 0.64 1.00* 0.09 1.00* 0.03**−0.70*** 0.00* 0.18
cmt1 0.00 0.11* −0.05 −0.10*** −0.08 −0.36*** 0.00 0.03** 0.00** 0.02***
cmt2 0.01 0.22 −0.08 −0.18** −0.12 −0.57*** 0.00 0.05** 0.00 0.03***
cmt5 0.02 0.33 −0.18 −0.39* −0.21 −1.03** −0.01 0.08* 0.01 0.03
cmt7 0.02 0.35 −0.23 −0.48* −0.24 −1.23* −0.02* 0.12* 0.01** 0.02
cmt10 0.03 0.15 −0.22 −0.47* −0.25 −1.25* −0.02** 0.13* 0.02** 0.03
cmt20 0.05 0.12 −0.31 −0.65 −0.27 −1.52 −0.04** 0.16 0.03*** 0.00
cmt30 0.06 −0.17 −0.44 −0.88 −0.33 −1.92 −0.05** 0.21 0.04***−0.01

Joint p-val 0.380 0.002 0.000

Horizon h = 18

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.03 1.00 0.44 1.00 −0.03 1.00 0.02**−0.59*** 0.01 0.18
cmt1 0.01 0.07 −0.04 −0.13*** −0.06 −0.60*** 0.00 0.04*** 0.00** 0.02***
cmt2 0.01 0.19 −0.07 −0.24** −0.10 −0.95*** 0.00 0.07***−0.01 0.03***
cmt5 0.02 0.36 −0.14 −0.48* −0.18 −1.65***−0.01 0.11** 0.00 0.03**
cmt7 0.02 0.38 −0.16 −0.56 −0.19 −1.87** −0.01* 0.14** 0.00 0.03*
cmt10 0.03 0.23 −0.15 −0.52 −0.20 −1.90* −0.01* 0.15** 0.01* 0.04
cmt20 0.04 0.29 −0.19 −0.69 −0.20 −2.16 −0.02* 0.15 0.02** 0.01
cmt30 0.05 0.04 −0.28 −0.91 −0.24 −2.63 −0.03** 0.18 0.03** 0.00

Joint p-val 0.586 0.025 0.000
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Table 4: Nonlinear VIX Predictability using the Cross-Section: 1990 - 2007
This table reports results from three predictive sieve reduced rank regressions (SRRR) for each of h = 6, 12,
and 18 month ahead forecasting horizons: (1) estimates of aih and bih from the SRRR Rxit+h = aih+bihvt+ε

i
t+h

of portfolio i’s excess returns on linear vt = vixt; (2) estimates of aih and bih from the SRRR Rxit+h =
aih + bihφh(vt) + εit+h of portfolio i’s excess return on the common nonparametric function φh(·) of vt = vixt;
(3) the same regression augmented with controls f i · (DEFt, V RPt, TERMt, DYt)

′ representing the default
spread (DEF, 10-year Treasury yield minus Moody’s BAA corporate bond yield), the variance risk premium
(VRP, realized volatility minus VIX), the term spread (TERM, 10-year minus 3-month Treasury yields), and
the S&P 500’s (log) dividend yield. The index i = 1, . . . , n ranges over the CRSP value-weighted market
excess return and the seven CRSP constant maturity Treasury excess returns corresponding to 1, 2, 5, 7,
10, 20, and 30 years to maturity. The sieve reduced rank regressions are introduced in section 3 in the text.
***, **, and * denote statistical significance at the 1%, 5%, and 10% level for t-statistics on ai and f i and
for the χ2-statistic on biφh(·) derived in Proposition 1. The joint test p-value reports the likelihood that the
sample was generated from the model where (b1, . . . , bn) · φh(·) = 0.

Horizon h = 6

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.03 1.00 0.72 1.00 0.25 1.00 −0.03 −0.84* 0.00 0.12
cmt1 0.00 0.23** −0.09 −0.16*** −0.15 −0.59*** 0.01 0.03 0.00* 0.03***
cmt2 0.00 0.29 −0.16 −0.28** −0.22 −0.92*** 0.01 0.10* 0.00 0.03***
cmt5 0.01 0.30 −0.31 −0.53* −0.34 −1.57*** 0.00 0.25* 0.01 0.03*
cmt7 0.03 0.18 −0.36 −0.62* −0.35 −1.75** −0.01 0.31* 0.02 0.02
cmt10 0.04 −0.23 −0.37 −0.62 −0.32 −1.74* −0.03 0.36* 0.02* 0.02
cmt20 0.06 −0.16 −0.42 −0.72 −0.31 −1.95 −0.05 0.46** 0.03**−0.01
cmt30 0.05 −0.27 −0.51 −0.85 −0.35 −2.25 −0.06 0.58** 0.04**−0.03

Joint p-val 0.058 0.001 0.000

Horizon h = 12

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.09 1.00 0.46 1.00 −0.01 1.00 −0.03 −0.52* 0.00 0.16
cmt1 0.00 −2.09** −0.08 −0.23*** −0.12 3.25*** 0.00 0.03 0.00 0.03***
cmt2 0.00 −3.21* −0.13 −0.40*** −0.18 5.27*** 0.00 0.07* 0.00 0.03***
cmt5 0.00 −4.69 −0.24 −0.72** −0.31 9.32*** 0.00 0.12 0.01 0.04
cmt7 0.01 −3.98 −0.28 −0.84** −0.33 10.77***−0.01 0.13 0.01* 0.03
cmt10 0.03 −0.71 −0.27 −0.80* −0.33 11.27** −0.03* 0.14 0.02** 0.04
cmt20 0.04 −1.06 −0.33 −1.00* −0.34 13.10** −0.04** 0.14 0.03** 0.01
cmt30 0.04 −1.15 −0.40 −1.17* −0.39 15.27** −0.06** 0.16 0.04*** 0.00

Joint p-val 0.008 0.001 0.000

Horizon h = 18

(1) Linear VIX (2) Nonlinear VIX (3) Nonlinear VIX and Controls
ai bi ai bi ai bi f iDEF f iVRP f iTERM f iDY

MKT 0.11 1.00 0.57 1.00** 0.13 1.00 −0.03 −0.54** 0.00 0.13
cmt1 0.00 −0.36** −0.07 −0.17*** −0.11 −0.92*** 0.00 0.05** 0.00 0.03***
cmt2 0.00 −0.59 −0.13 −0.30*** −0.19 −1.55*** 0.00 0.11** 0.00 0.03***
cmt5 0.00 −0.93 −0.24 −0.55*** −0.35 −2.83*** 0.01* 0.19** 0.00 0.05*
cmt7 0.01 −0.86 −0.27 −0.63*** −0.39 −3.28*** 0.00** 0.22** 0.01* 0.05
cmt10 0.03 −0.25 −0.25 −0.59*** −0.40 −3.44***−0.01** 0.24** 0.01** 0.06
cmt20 0.04 −0.45 −0.29 −0.70** −0.41 −3.81***−0.02** 0.20* 0.02** 0.03
cmt30 0.03 −0.43 −0.37 −0.85** −0.50 −4.55***−0.03** 0.25** 0.03*** 0.03

Joint p-val 0.019 0.000 0.000
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Table 5: Out-of-Sample Performance

This table examines the forecasting performance of the sieve reduced rank regressions
Et[Rx

i
t+h] = aih + bihφh(vixt) by comparing pseudo out-of-sample Sharpe ratios of port-

folios formed using information from the joint forecasts Et[Rxit+h]. As in previous tables, i
ranges over CRSP excess market return (MKT) and the seven constant maturity Treasury
portfolios (CMT) with maturities of 1, 2, 5, 7, 10, 20, and 30 years. Given data on excess
returns Rxt = (RxMKT

t , Rxcmt1t , . . . , Rxcmt30t )′ and the VIX for t = 1, . . . , T , the sample is
split into an initial in-sample data set t = 1, . . . , t∗ and an out-of-sample data set t∗+1, . . . , T ,
where (t∗/T ) is the fraction displayed in the first column. Using in-sample data, a pseudo
out-of-sample joint forecast Et∗ [Rxt∗+h] is made for h = 6 months by sieve reduced rank
regression. Based on this forecast, an optimal portfolio with weight ωt∗ = V −1t∗ Et∗ [Rxt∗+h]
is formed and held for h = 6 months, where risk weights V −1t∗ are the unconditional variances
of excess returns using data from t = 1, . . . , t∗. After h = 6 months, the in-sample data set
is expanded to t = 1, . . . , t∗ + h, yielding a new forecast Et∗+h[Rxt∗+2h] and new portfolio
weights ωt∗+h. The process is repeated, yielding pseudo out-of-sample excess returns from
t∗ + 1, . . . , T whose ex-post Sharpe ratios are displayed in the table. The column labeled
“φh(vixt)” uses sieve reduced rank forecasts Et[Rxit+h] = aih+bihφh(vixt), the column labeled
“vixt” uses linear reduced rank forecasts Et[Rxit+h] = aih+bih vixt. The column labeled “Un-
cond.” uses running mean forecasts Et[Rxit+h] = aih. The column labeled “EQL” represents
an equal-weighted portfolio of MKT and cmt1, . . . , cmt30. The remaining columns put all
of the portfolio weight on the indicated asset.

Annualized Sharpe Ratio
In-Sample (1) (2) (3) (4) (5) (6) (7) (8) (9)
Cutoff
(t∗/T ) φh(vixt) vixt Uncond. EQL MKT cmt1 cmt5 cmt10 cmt30

0.4 (Nov-1999) 1.03 0.87 0.88 0.79 0.24 1.04 0.79 0.61 0.47
0.5 (May-2002) 0.91 0.73 0.72 0.82 0.53 0.71 0.68 0.59 0.45
0.6 (Nov-2004) 1.12 0.77 0.73 0.77 0.46 0.76 0.66 0.58 0.41
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Table 6: Dynamic Asset Pricing: Factor Risk Exposures and Prices of Risk
This table provides estimates of factor risk exposures and prices of risk from the dynamic asset pricing model
Rxit+1 = (αi + βiλ0) + βiλ1φ(vt) + βiut+1 + εit+1, where i ranges over the test assets in the left column:
MKT denotes the CRSP value-weighted market excess return, (NoDur . . . Fin) are industry-sorted portfolio
excess returns from Ken French’s website, (cmt1, . . . , cmt30) are constant maturity Treasury portfolio excess
returns, and (AAA, . . . , igfin) are Barclay’s ratings and industry sorted corporate bond excess returns. In a
first stage, φ(vt) is estimated from a sieve reduced rank regression Rxit+1 = ai + biφ(vt) + εit+1 jointly across
i. The factor innovations ut+1 = Yt+1 − Et[Yt+1] are then estimated from a VAR on the market (MKT),
Treasury (TSY1), and nonlinear volatility factor (φ(vt)), for vt = vixt. In a second stage, coefficients are
estimated jointly across all i = 1, . . . , n via a reduced rank regression. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% level.

Exposures βiMKT βiTSY 1 βiφ(v) βiλ1 (αi + βiλ0)

MKT 1.00*** −0.24*** 0.02 1.08*** 0.33***
NoDur 0.61*** 0.45 0.01 0.49** 0.21***
Durbl 1.19*** −2.24** 1.90** 0.68 0.23
Manuf 1.09*** −0.86 0.85*** 0.83*** 0.30***
Enrgy 0.71*** −1.11 1.11 0.36 0.18
Chems 0.75*** −0.80 0.20 0.87*** 0.30***
BusEq 1.44*** −1.76** −1.47*** 2.88*** 0.80***
Telcm 0.94*** 0.06 0.27 0.77* 0.25**
Utils 0.39*** 0.10 0.59 0.01 0.08
Shops 0.86*** −0.64 0.10 0.99*** 0.32***
Hlth 0.69*** 1.04 0.12 0.33 0.18**
Fin 1.08*** 1.26 −0.24 0.90** 0.30***
cmt1 0.00 0.73*** −0.07 −0.16** −0.03*
cmt2 −0.01 1.40*** −0.14 −0.32** −0.06*
cmt5 −0.03* 2.90*** 0.16 −0.95*** −0.19***
cmt7 −0.04* 3.55*** 0.77* −1.52*** −0.32***
cmt10 −0.04 3.90*** 1.19*** −1.88*** −0.41***
cmt20 −0.08* 4.76*** 1.96*** −2.64*** −0.57***
cmt30 −0.12** 5.45*** 2.23* −3.03*** −0.67***
AAA 0.02 2.54*** 0.68 −1.11*** −0.23***
AA 0.06*** 2.28*** 0.71 −1.02*** −0.21***
A 0.09*** 2.00*** 1.24*** −1.24*** −0.26***
BAA 0.12*** 1.55*** 1.58*** −1.29*** −0.26***
igind 0.08*** 1.90*** 1.67*** −1.48*** −0.31***
igutil 0.07** 1.99*** 1.73*** −1.56*** −0.33***
igfin 0.11*** 1.83*** 0.57 −0.76*** −0.14**

Prices of Risk MKT TSY 1 φ(vt)

λ1 1.02*** −0.28** −0.62**
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Table 7: Fund Flows and Nonlinear VIX
This table reports results from the contemporaneous panel regressions of mutual fund flows into the funds of
indicated type i (left column) on the common nonparametric function φFF (vixt), Flowsit = ai+biφFF (vixt)+
εit. The panel regressions were estimated via the sieve reduced rank regressions introduced in section 3 in
the text. ***, **, and * denote statistical significance at the 1%, 5%, and 10% level for t-statistics on ai and
f i and for the χ2-statistic on biφFF (·) derived in Proposition 1. The joint test p-value reports the likelihood
that the sample was generated from the model where (b1, . . . , bn) · φFF (·) = 0.

Sample: 1990 - 2014 Sample: 1990 - 2007

ai bi ai bi

us equity 9361.10 −1.00*** 4590.51 −1.00
world equity 8729.01 −0.89*** −2154.22 −1.86***
hybrid 4332.69 −0.44*** −994.43 −0.79***
corporate bond 1596.10* −0.06 677.27*** 0.01
HY bond 280.97 0.01 302.78 0.02
world bond 1976.57 −0.14* −28.00 −0.06
govt bond −1677.29 0.27*** 2448.24 0.91***
strategic income 2591.58** −0.02 2377.08 0.25
muni bond 575.98 0.01 384.06 −0.03
govt mmmf −10 568.01 2.06 3836.77 0.96
nongovt mmmf 812.84 0.09 11 653.76 2.67
national mmmf 192.97 0.00 1410.59 0.21
state mmmf 639.50 −0.09*** 560.80 0.06

Joint p-value 0.000 0.000
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Table 8: Business Cycle Panel Predictability
This table reports results from two cross-sectional predictability regressions of various macro business cycle
indicators on h = 6 month lagged functions of vt = V IXt. The left panel is estimated on our full sample of
monthly observations from 1990 to 2014, whereas the right panel is estimated on the pre-crisis subsample.
The business cycle indicators represent the industrial production index (IP), the IP manufacturing index
(IPMFG), the manufacturing capacity utilization index (CUMFG), the change in goods-producing employ-
ment (LAGOODA), and the total private nonfarm payroll series (LAPRIVA), which receive the largest weight
within the Chicago Fed National Activity index. The leading reference asset is the market excess return. The
left panel shows estimates of aih and bih from the sieve reduced rank regression yit+h = aih+bihφ

macro(vt)+εit+h
of series i on the common nonparametric function φmacro

h (·). ***, **, and * denote statistical significance
at the 1%, 5%, and 10% level for t-statistics on ai and for the χ2-statistic on biφmacro

h (·) derived in Propo-
sition 1. The joint test p-value reports the likelihood that the sample was generated from the model where
(b1, . . . , bn) · φh(·) = 0.

Sample: 1990 - 2014 Sample: 1990 - 2007

ai bi ai bi

MKT −0.02 1.00 0.10 1.00
IP 0.01 −0.06*** 0.00 −0.22***
IPMFG 0.01 −0.07*** 0.00 −0.25***
CUMFG 0.00 −0.05** −0.01 −0.26***
LAPRIVA 0.00 −0.04*** 0.00 −0.14***
LAGOODA 0.01 −0.07*** −0.01 −0.26***
Joint p-value 0.000 0.000
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