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1 Introduction

There is a common thread connecting some of the most economically important prob-
lems in finance. For example, how do we determine that a fund manager has “out-
performed” given that there are thousands of managers and even those following
random strategies might outperform? How do we assess whether a variable such as
a dividend yield predicts stock returns given that so many other variables have been
tried? Should we use a three-factor model for asset pricing or a new five factor model
given that recent research documents that over 300 variables have been published as
candidate factors? The common thread is multiple testing or data mining.

Our paper proposes a new method that enables us to better identify the flukes.
The method is based on a bootstrap that allows for general distributional charac-
teristics of the observables, a range of test statistics (e.g., R?, t-ratios, etc.), and,
importantly, preserves both the cross-sectional and time-series dependence in the
data. Our method delivers specific recommendations. For example, for a p-value of
5%, our method delivers a marginal test statistic. In performance evaluation, this
marginal test statistic identifies the funds that outperform or underperform. In our
main application which is asset pricing, it will allow us to choose a specific group of
factors, i.e., we answer the question: How many factors?

Consider the following example in predictive regressions to illustrate the problems
we face. Suppose we have 100 candidate X variables to predict a variable Y. Our first
question is whether any of the 100 X variables appear to be individually significant.
This is not as straightforward as one thinks because what comes out as significant
at the conventional level may be “significant” by luck. We also need to take the
dependence among the X variables into account since large ¢-statistics may come in
bundles if the X variables are highly correlated. Suppose these concerns have been
addressed and we find a significant predictor, how do we proceed to find the next one?
Presumably, the second one needs to predict Y in addition to what the first variable
can predict. This additional predictability again needs to be put under scrutiny
given that 99 variables can be tried. Suppose we establish the second variable is a
significant predictor. When should we stop? Finally, suppose instead of predictive
regressions, we are trying to determine how many factors are important in a cross-
sectional regression. How should our method change in order to answer the same
set of questions but accommodate the potentially time-varying risk loadings in a
Fama-MacBeth type of regression?

We provide a new framework that answers the above questions. Several features
distinguish our approach from existing studies.



First, we take data mining into account.! This is important given the collective
effort in mining new factors by both academia and the finance industry. Data mining
has a large impact on hypothesis testing. In a single test where a single predetermined
variable X is used to explain the left-hand side variable Y, a t-statistic of 2.0 suffices
to overcome the 5% p-value hurdle. When there are 100 candidate X variables and
assuming independence, the 2.0 threshold for the maximal ¢-statistic corresponds to a
p-value of 99% — not even near the acceptable 5%.2 Our paper proposes appropriate
statistical cutoffs that control for the search among the candidate variables.

While cross-sectional independence is a convenient assumption to illustrate the
point of data snooping bias, it turns out to be a big assumption. First, it is unrealistic
for most of our applications since almost all economic and financial variables are
intrinsically linked in complicated ways. Second, a departure from independence may
have a large impact on the results. For instance, in our previous example, if all
100 X variables are perfectly correlated, then there is no need for a multiple testing
adjustment and the 99% p-value incorrectly inflates the original p-value. Recent
work on mutual fund performance shows that taking cross-sectional dependence into
account can materially change inference.?

Our paper provides a framework that is robust to the form and amount of cross-
sectional dependence among the variables. In particular, our method maintains the
dependence information in the data matrix, including higher moment and nonlinear
dependence. Additionally, to the extent that higher moment dependence is difficult
to measure in finite samples and this may bias standard inference, our method auto-
matically takes sampling uncertainty (i.e., the observed sample may underrepresent
the population from which it is drawn from) into account and provides inference that
does not rely on asymptotic approximations.

Our method uses a bootstrap method. When the data are independent through
time, we randomly sample the time periods with replacement. Importantly, when
we bootstrap a particular time period, we draw the entire cross-section at that point
in time. This allows us to preserve the contemporaneous cross-sectional dependence
structure of the data. Additionally, by matching the size of the resampled data
with the original data, we are able to capture the sampling uncertainty of the original
sample. When the data are dependent through time, we sample with blocks to capture
time-series dependence, similar in spirit to White (2000) and Politis and Romano
(1994). In essence, our method reframes the multiple hypothesis testing problem in

! Different literature uses different terminologies. In physics, multiple testing is dubbed “looking
elsewhere” effect. In medical science, “multiple comparison” is often used for simultaneous tests,
particularly in genetic association studies. In finance, “data mining”, “data snooping” and “mul-
tiple testing” are often used interchangeably. We also use these terms interchangeably and do not
distinguish them in this paper.

2Suppose we have 100 tests and each test has a t-statistic of 2.0. Under independence, the
chance to make at least one false discovery is 1 — 0.951%0 = 1 — 0.006 = 0.994.

3See Fama and French (2010) and Ferson and Chen (2015).



regression models in a way that permits the use of bootstrapping to make inferences
that are both intuitive and distribution free.

Empirically, we show how to apply our method to both predictive regression and
cross-sectional regression models — the two areas of research for which data snooping
bias is likely to be the most severe. However, our method applies to other types of
regression models as well. Essentially, what we are providing is a general approach
to specifying a regression model when a researcher is faced with multiple variables to
choose from.

Our paper adds to the recent literature on the multidimensionality of the cross-
section of expected returns. Harvey, Liu and Zhu (2016) document 316 factors discov-
ered by academia and provide a multiple testing framework to adjust for data mining.
Green, Hand and Zhang (2013) study more than 330 return predictive signals that
are mainly accounting based and show the large diversification benefits by suitably
combining these signals. McLean and Pontiff (2015) use an out-of-sample approach
to study the post-publication bias of discovered anomalies. The overall finding of
this literature is that many discovered factors are likely false. But how many factors
are true factors? We provide a new testing framework that simultaneously addresses
multiple testing, variable selection, and test dependence in the context of regression
models.

Our method is inspired by and related to a number of influential papers, in partic-
ular, Foster, Smith and Whaley (FSW, 1997) and Fama and French (FF, 2010). In the
application of time-series prediction, FSW simulate data under the null hypothesis of
no predictability to help identify true predictors. Our method bootstraps the actual
data, can be applied to a number of test statistics, and does not need to appeal to
asymptotic approximations. More importantly, our method can be adapted to study
cross-sectional regressions where the risk loadings can potentially be time-varying.
In the application of manager evaluation, FF (2010) (see also, Kosowski et al., 2006,
Barras et al., 2010, and Ferson and Chen, 2015) employ a bootstrap method that
preserves cross-section dependence. Our method departs from theirs in that we are
able to determine a specific cut-off whereby we can declare that a manager has sig-
nificantly outperformed or that a factor is significant in the cross-section of expected
returns.*

Despite the discovery of hundreds of factors to compete with the original factor
proposed by Sharpe (1964), our analysis of value weighted individual stocks identi-
fies one dominant factor — the one proposed by Sharpe. We also find a role for a
profitability factor but its contribution is economically small. Our analysis of equal
weighting provides some evidence of value and size factors, yet consistent with the
value-weighted analysis these additional factors provide a modest contribution com-
pared to the market factor. It is striking that the market factor is the dominant

4See Harvey and Liu (2015) for the application of our method to investment fund performance
evaluation.



factor used in the practice of corporate finance (see, Graham and Harvey, 2001) yet
this factor has long been out of favor in asset pricing research.

Our paper is organized as follows. In the second section, we present our testing
framework. In the third section, we apply our method to the selection of risk factors.
We offer insights on both tests based on traditional portfolio sorts as well as raw tests
based on individual assets. Some concluding remarks are offered in the final section.

2 Method

Our framework is best illustrated in the context of predictive regressions. We highlight
the difference between our method and the current practice and relate to existing
research. We then extend our method to accommodate cross-sectional regressions.

2.1 Predictive Regressions

Suppose we have a T' x 1 vector Y of returns that we want to predict and a T" x M
matrix X that includes the time-series of M right-hand side variables, i.e., column 2
of matrix X (X;) gives the time-series of variable i. Our goal is to select a subset of
the M regressors to form the “best” predictive regression model. Suppose we measure
the goodness-of-fit of a regression model by the summary statistic . Our framework
permits the use of an arbitrary performance measure ¥, e.g., R?, t-statistic or F-
statistic. This feature stems from our use of the bootstrap method, which does not
require any distributional assumptions on the summary statistics to construct the
test. In contrast, Foster, Smith and Whaley (FSW, 1997) need the finite-sample
distribution on R? to construct their test. To ease the presentation, we describe our
approach with the usual regression £? in mind but will point out the difference when
necessary.

Our bootstrap-based multiple testing adjusted incremental factor selection proce-
dure consists of three major steps:

Step 1. Orthogonalization Under the Null

Suppose we already selected k (0 < k < M) variables and want to test if there exists
another significant predictor and, if there is, what it is. Without loss of generality,
suppose the first k variables are the pre-selected ones and we are testing among the
rest M — k candidate variables, i.e., {Xyi;,j =1,..., M — k}. Our null hypothesis
is that none of these candidate variables provides additional explanatory power of Y,



following White (2000) and FSW (1997). The goal of this step is to modify the data
matrix X such that this null hypothesis appears to be true in-sample.

To achieve this, we first project Y onto the group of pre-selected variables and
obtain the projection residual vector Y**. This residual vector contains informa-
tion that cannot be explained by pre-selected variables. We then orthogonalize
the M — k candidate variables with respect to Y** such that the orthogonalized
variables are uncorrelated with Y®* for the entire sample. In particular, we indi-

vidually project Xj.1, Xjta,...,Xas onto Y% and obtain the projection residuals
Xiv1: Xjigy o Xy, dee,
Xpsj=cj+dY"+ Xp 5, j=1,...,M—k, (1)

where ¢; is the intercept, d; is the slope and X}, ; is the residual vector. By construc-
tion, these residuals have an in-sample correlation of zero with Y¢*. Therefore, they
appear to be independent of Y** if joint normality is assumed between X and Y**.

This is similar to the simulation approach in FSW (1997), in which artificially
generated independent regressors are used to quantify the effect of the multiple test-
ing. Our approach is different from FSW because we use real data. In addition, we
use bootstrap or block bootstrap to approximate the empirical distribution of test
statistics.

We achieve the same goal as FSW while losing as little information as possible for
the dependence structure among the regressors. In particular, our orthogonalization
guarantees that the M — k orthogonalized candidate variables are uncorrelated with
Y®* in-sample.® This resembles the independence requirement between the simulated
regressors and the left-hand side variables in FSW (1997). Our approach is distri-
butional free and maintains as much information as possible among the regressors.
We simply purge Y** out of each of the candidate variables and therefore keep all
the distributional information among the variables that is not linearly related to Y¢*
intact. For instance, the tail dependency among all the variables — both pre-selected
and candidate — is preserved. This is important because higher moment dependence
may have a dramatic impact on the test statistics in finite samples.®

A similar idea has been applied to the recent literature on mutual fund perfor-
mance. In particular, Kosowski et al. (2006) and Fama and French (2010) subtract
the in-sample fitted alphas from fund returns, thereby creating “pseudo” funds that

5In fact, the zero correlation between the candidate variables and Y¢* not only holds in-sample,
but also in the bootstrapped population provided that each sample period has an equal chance of
being sampled in the bootstrapping, which is true in an independent bootstrap. When we use a
stationary bootstrap to take time dependency into account, this is no longer true as samples on the
boundary time periods are sampled less frequently. But we should expect this correlation to be small
for a long enough sample as the boundary periods are a small fraction of the total time periods.

6See Adler, Feldman and Taqqu (1998) for how distributions with heavy tails affect standard
statistical inference.



exactly generate a mean return of zero in-sample. Analogously, we orthogonalize can-
didate regressors such that they exactly have a correlation of zero with what is left
to explain in the left-hand side variable, i.e., Y**.

Step II. Bootstrap

Let us arrange the pre-selected variables into X* = [X;, X», ..., Xi] and the orthog-
onalized candidate variables into X¢ = [X} ,, X} ,,..., X};]. Notice that for both
the residual response vector Y** and the two regressor matrices X* and X¢, rows de-
note time periods and columns denote variables. We bootstrap the time periods (i.e.,
rows) to generate the empirical distributions of the summary statistics for different
regression models. In particular, for each draw of the time index t* = [t5, 5, ... 5],
let the corresponding left-hand side and right variables be Y, X** and X*.

The diagram below illustrates how we bootstrap. Suppose we have five periods,
one pre-selected variable X*, and one candidate variable X¢. The original time index
is given by [t; = 1,t, = 2,t3 = 3,t4 = 4,15 = 5]’. By sampling with replacement,
one possible realization of the time index for the bootstrapped sample is t* = [t} =
3,t5 = 2,15 = 4,t4 = 3,t2 = 1). The diagram shows how we transform the original
data matrix into the bootstrapped data matrix based on the new time index.

vioef af =1 th=3 s @y af
ys x5 T ty =2 th=2 v s g
[Ye,k, XS, Xe] = ys x  xf t3 =3 = th =4 ve @ af _ [Yeb, XSb, Xeb]
v @ te=4 th=3 ez af
ye  xf o« ts =5 tt = ye x5 ag
OWX BOOWtI‘iX

Returning to the general case with k£ pre-selected variables and M — k candidate
variables, we bootstrap and then run M — k regressions. Fach of these regressions
involves the projection of Y** onto a candidate variable from the data matrix X¢. Let
the associated summary statistics be WETLe Wh+26 - yMb and let the maximum
among these summary statistics be ¥4, i.e.,

\I/b _ \Ijk+j7b ) )
RS e N 2

Intuitively, U% measures the performance of the best fitting model that augments
the pre-selected regression model with one variable from the list of orthogonalized
candidate variables.



The max statistic controls for data snooping bias. With M — k factors to choose
from, the factor that is selected may appear to be significant through random chance.
We adopt the max statistic as our test statistic to control for multiple hypothesis
testing, similar to White (2000), Sullivan, Timmermann and White (1999) and FSW
(1997). Our bootstrap approach allows us to obtain the empirical distribution of the
max statistic under the joint null hypothesis that none of the M — k variables is true.
Due to multiple testing, this distribution is very different from the null distribution
of the test statistic in a single test. By comparing the realized (in the data) max
statistic to this distribution, our test takes multiple testing into account.

Which statistic should we use to summarize the additional contribution of a vari-
able in the candidate list? Depending on the regression model, the choice varies.
For instance, in predictive regressions, we typically use the R? or the adjusted R?
as the summary statistic. In cross-sectional regressions, we use the t-statistic to test
whether the average slope is significant.” One appealing feature of our method is
that it does not require an explicit expression for the null distribution of the test
statistic. It therefore can easily accommodate different types of summary statistics.
In contrast, FSW (1997) only works with the R%.

For the rest of the description of our method, we assume that the statistic that
measures the incremental contribution of a variable from the candidate list is given
and generically denote it as Wy or W4 for the b-th bootstrapped sample.

We bootstrap B = 10,000 times to obtain the collection {¥% b = 1,2,..., B},
denoted as (¥)Z, i.e.,
(U)B={vl b=1,2,...,B}. (3)

This is the empirical distribution of W;, which measures the maximal additional
contribution to the regression model when one of the orthogonalized regressors is
considered. Given that none of these orthogonalized regressors is a true predictor
in population, (¥;)? gives the distribution for this maximal additional contribution
when the null hypothesis is true, i.e., null of the M — k candidate variables is true.
(U;)B is the bootstrapped analogue of the distribution for maximal R*’s in FSW
(1997). Similar to White (2000) and advantageous over FSW (1997), our bootstrap
method is essentially distribution-free and allows us to obtain the exact distribution
of the test statistic through sample perturbations.®

Our bootstrapped sample has the same number of time periods as the original
data. This allows us to match the sampling uncertainty of the original data with the

"In cross-sectional regressions, sometimes we use the average pricing errors (e.g., mean absolute
pricing error) as the summary statistics. In this case, ¥°* should be understood as the minimum
among the average pricing errors for the candidate variables.

8We are able to generalize FSW (1997) in two significant ways. First, our approach allows us to
maintain the distributional information among the regressors, helping us avoid the Bonferroni type
of approximation in equation (3) of FSW (1997). Second, even in the case of independence, our use
of bootstrap takes the sampling uncertainty into account, providing a finite sample version of what
is given in equation (2) of FSW (1997).



bootstrapped sample. When there is little time dependence in the data, we simply
treat each time period as the sampling unit and sample with replacement. When
time dependence is an issue, we use a block bootstrap, as explained in detail in the
appendix. In either case, we only resample the time periods. We keep the cross-
section intact to preserve the contemporaneous dependence among the variables.

Step III: Hypothesis Testing and Variable Selection

Working on the original data matrix X, we can obtain a W; statistic that measures
the maximal additional contribution of a candidate variable. We denote this statistic
as Y. Hypothesis testing for the existence of the (k + 1)-th significant predictor
amounts to comparing ¥4 with the distribution of ¥; under the null hypothesis, i.e.,
(U;)B. With a pre-specified significance level of «, say 5%, we reject the null if ¥4
exceeds the (1 — a)-th percentile of (U;)?, that is,

vy > (U)) (4)

11—

where (U;)B s the (1 — a)-th percentile of (¥)5.

The result of the hypothesis test tells us whether there exists a significant predictor
among the remaining M — k candidate variables, after taking multiple testing into
account. Had the decision been positive, we declare the variable with the largest test
statistic (i.e., ¥9) as significant and include it in the list of pre-selected variables.
We then start over from Step I to test for the next predictor, if not all predictors
have been selected. Otherwise, we terminate the algorithm and arrive at the final
conclusion that the pre-selected k variables are the only ones that are significant.

2.2 Panel Regression Models

Our method can be applied to panel regression models commonly used in asset pricing
tests, where asset returns are regressed on a set of common factors. We demean
factor returns such that the demeaned factors have zero impact in explaining the
cross-section of expected returns. However, their ability to explain variation in asset
returns in time-series regressions is preserved. This way, we are able to disentangle
the time-series vs. cross-sectional contribution of a candidate factor.

We start by writing down a time-series regression model,

K
Rit_th:ai+zbijfjt+eitvi:17"'7Na (5)

Jj=1



in which the time-series of excess returns R;; — Ry, are projected onto K contempo-
raneous factor returns f;. Factor returns are the long-short strategy returns corre-
sponding to zero cost investment strategies. If the set of factors are mean-variance
efficient (or, equivalently, if the corresponding beta pricing model is true), the cross-
section of regression intercepts should be indistinguishable from zero. This constitutes
the testable hypothesis for the classic Gibbons, Ross and Shanken (GRS, 1989) test.

The GRS test is widely applied in empirical asset pricing. However, several issues
hinder further applications of the test, or time-series tests in general. First, the GRS
test almost always rejects. This means that almost no model can adequately explain
the cross-section of expected returns. As a result, most researchers use the GRS test
statistic as a heuristic measure for model performance (see, e.g., Fama and French,
2015a). For instance, if Model A generates a smaller GRS statistic than Model B, we
would take Model A as the “better” Model, although neither model survives the GRS
test. But does Model A “significantly” outperform B? The original GRS test cannot
answer answer this question because the overall null of the test is that all intercepts
are strictly at zero. When two competing models both generate intercepts that are
not at zero, the GRS test is not designed to measure the relative performance of the
two models. Our method provides a solution to this problem. In particular, for two
models that are nested, it allows us to tell the incremental contribution of the bigger
model relative to the smaller one, even if both models fail to meet the GRS null
hypothesis.

Second, compared to cross-sectional regressions (e.g., the Fama-MacBeth regres-
sion), time-series regressions tend to generate a large time-series R2. This makes them
appear more attractive than cross-sectional regressions because the cross-sectional R?
is usually much lower.® However, why would it be the case that a few factors that
explain more than 90% of the time-series variation in returns are often not even sig-
nificant in cross-sectional tests? Why would the market return explain a significant
fraction of variation in individual stock and portfolio returns in time-series regres-
sions but offer little help in explaining the cross-section? These questions point to a
general inquiry into asset pricing tests: is there a way to disentangle the time-series
vs. cross-sectional contribution of a candidate factor? Our method achieves this by
demeaning factor returns. By construction, the demeaned factors have zero impact on
the cross-section while having the same explanatory power in time-series regressions
as the original factors. Through this, we test a factor’s significance in explaining the
cross-section of expected returns, holding its time-series predictability constant.

Third, the inference for the GRS test which is based on asymptotic approximations
can be problematic. For instance, MacKinlay (1987) shows that the test tends to have
low power when the sample size is small. Affleck-Graves and McDonald (1989) show
that nonnormalities in asset returns can severely distort its size and/or power. Our
method relies on bootstrapped simulations and is thus robust to small-sample or

9See Lewellen, Nagel and Shanken (2010).



nonnormality distortions. In fact, bootstrap based resampling techniques are often
recommended to mitigate these sources of bias.

Our method tries to overcome the aforementioned shortcomings in the GRS test
by resorting to our bootstrap framework. The intuition behind our method is already
given in our previous discussion on predictive regressions. In particular, we orthogo-
nalize (or more precisely, demean) factor returns such that the orthogonalized factors
do not impact the cross-section of expected returns.!® This absence of impact on the
cross-section constitutes our null hypothesis. Under this null, we bootstrap to obtain
the empirical distribution of the cross-section of pricing errors. We then compare the
realized (i.e., based on the real data) cross-section of pricing errors generated under
the original factor to this empirical distribution to provide inference on the factor’s
significance. We describe our panel regression method as follows.

Without loss of generality, suppose we only have one factor (e.g., the excess return
on the market fi; = R, — Ry:) on the right-hand side of (5). Taking unconditional
expectations on both sides of (5), we have

E(Ry — Ryi) = a; + b E(fu). (6)

The mean excess return of the asset can be decomposed into two parts. The first part
is the time-series regression intercept (i.e., a;), and the second part is the product of
the time-series regression slope and the average factor return (i.e., by E(f1t)).

In order for the one-factor model to work, we need a; = 0 across all assets.
Imposing this condition in (6), we have b;1 E(fi;) = E(Ri—Ry:). Intuitively, the cross-
section of b;1 E( f1;)’s need to line up with the cross-section of expected asset returns
(i.e., E(Rit — Ry)) in order to fully absorb the intercepts in time-series regressions.
This condition is not easy to satisfy in time-series regressions because the cross-section
of risk loadings (i.e., the b;) are determined by individual time-series regressions. The
risk loadings may happen to line up with the cross-section of asset returns and thereby
making the one-factor model work or they may not. This suggests the possibility that
some factors (e.g., the market factor) may generate large time-series regression R?’s
but contribute little to explaining the cross-section of asset returns.

Another important observation from (6) is that by setting F(fi;) = 0, factor
f1t exactly has zero impact on the cross-section of expected asset returns. Indeed,
if E(f1;) = 0, the cross-section of intercepts from time-series regressions (i.e., the
a;) exactly equal the cross-section of average asset returns (i.e., E(R; — Ry)) that
the factor model is supposed to help explain in the first place. On the other hand,
whether or not the factor mean is zero does not matter for time-series regressions. In

10More precisely, our method makes sure that the orthogonalized factors have a zero impact on
the cross-section of expected returns unconditionally. This is because panel regression models with
constant risk loadings focus on unconditional asset returns.

10



particular, both the regression R? and the slope coefficient (i.e., b;;) are kept intact
when we alter the factor mean.

The above discussion motivates our test design. For the one-factor model, we
define a “pseudo” factor fi; by subtracting the in-sample mean of fi; from its time-
series. This demeaned factor maintains all the time-series predictability of fi; but
has no role in explaining the cross-section of expected returns. With this pseudo
factor, we bootstrap to obtain the distribution of a statistic that summarizes the
cross-section of pricing errors (i.e., regression intercepts). Candidate statistics include
mean/median absolute pricing errors, mean squared pricing errors, and absolute -
statistics. We then compare the realized statistic for the original factor (i.e., fi;) to
this bootstrapped distribution.

Our method generalizes straightforwardly to the situation when we have multiple
factors. Suppose we have K pre-selected factors and we want to test the (K + 1)-th
factor. We first project the (K + 1)-th factor onto the pre-selected factors through
a time-series regression. We then define the new pseudo factor by subtracting the
regression intercept from the (K +1)-th factor. This is analogous to the previous one-
factor model example. In the one-factor model, demeaning is equivalent to projecting
the factor onto a constant.

We use an example to illustrate how our method works when there are multiple
factors. Suppose we have one pre-selected factor (fi;) in the baseline model. The
regression equation for asset i is:

Ry — Ry = a; + bt f1e + e (7)

Now suppose we add another factor fy; to the baseline model and denote the aug-
mented model as:

Rit — Ryy = aj + by fie + b for + €54 (8)

If for were a true factor, compared to a;, a; should be closer to zero. We therefore
want to compare a; with a;. In general, a; # a;. Our goal is to adjust fy such
that the adjusted fo; (denoted as f3,) guarantees a; = a}, that is, the regression
intercept under the augmented model is the same as the intercept under the baseline
model. Our description in the previous paragraph achieves this. In particular, let the
regression equation that projects fo; onto fi; be:

Jor = a+ B fir + &, (9)

and define f3, as
o =Ju—a=PFfu+te (10)

11



Thus defined f3,, when substituting fo; in (8), makes sure that af = a;. To see this,
we replace f3, with fo; in (8) and rewrite the regression equation as:

Ryt — Ry = aj + by fre + bi(Bf1e +&0) + e (11)
= a; + (b + b58) fie + (bjags + €3y) - (12)
Y

it

By construction, both ¢; and e}, are orthogonal to fi; and a vector of ones. Hence, by
treating uj, = bje: + e, as the new regression residual and by comparing (12) with
(7), we must have:

(I;k = a;, bjl + b;k2 = bil- (13)

Our adjustment makes economic sense. Taking unconditional expectations on
both sides of (10), we have

E(f;t) = ﬁE<f1t)- (14)

Therefore, the adjusted factor f3, is absorbed by the pre-selected factor fi; in the sense
that its premium is completely explained by its exposure to the pre-selected factor.
When this happens, the adjusted factor has zero incremental impact on the cross-
section of expected returns. In the meantime, it has perfect time-series correlation
with the original factor in-sample and has the same time-series correlation with the
pre-selected variable as the original factor. Hence, the adjusted factor preserves the
time-series properties of the original factor aside from the mean.

With this pseudo factor, we bootstrap to generate the distribution of pricing
errors. In this step, the difference from the one-factor case is that, for both the
original regression and the bootstrapped regressions based on the pseudo factor, we
always keep the original K factors in the model. This way, our test captures the
incremental contribution of the candidate factor.

2.3 Fama-MacBeth Regressions

Our method can also be adapted to test factor models in cross-sectional regressions.
In particular, we show how an adjustment of our method applies to Fama-MacBeth
type of regressions (FM, Fama and MacBeth, 1973) — a framework that allows for
time-varying risk loadings.

One hurdle in applying our method to FM regressions is the time-varying slopes
in cross-sectional regressions. In particular, separate cross-sectional regressions are
performed for each time period to obtain a collection of cross-sectional regression
slopes. We test the significance of a factor by looking at the time averaged cross-
sectional slope coefficient. Therefore, in the FM framework, the null hypothesis is
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that the slope is zero in population. We adjust our method such that this condition
exactly holds in-sample for the adjusted regressors.

First, we need to orthogonalize. Suppose we run a FM regression on a baseline
model and obtain the panel of residual excess returns. In particular, at time ¢, let the
vector of residual excess returns be Y;. We are testing the incremental contribution
of a candidate factor in explaining the cross-section of expected returns. Let the
vector of risk loadings (i.e., 8’s) for the candidate factor be X;. Suppose there are
n; assets in the cross-section at time ¢ so the dimension of both Y; and X; is n; x 1.
Notice that n; can be time-dependent as it is straightforward for our method to
handle unbalanced panels. In a typical FM regression, we would project Y; onto Xj.
For our orthogonalization to work, we reverse the process, similar to what we do
in predictive regressions. More specifically, we stack the collection of Y;’s and X,’s
into two column vectors that have a dimension of Zthl ny X 1, and run the following
constrained regression model:

Xl ¢1 }/1 &1
X P2 Y, €2
. = . +€1 x1° . + . ) (15)
XT 25:1 nt><1 ¢T Z?:l nt><1 YT ZZ:l TLtXl ET ZZ:l nt><1
where ¢, is the constant vector of intercepts for time ¢, £ 41 is a scalar, and [}, €}, ..., &}’

is the vector of projected regressors that will be used in the follow-up bootstrap anal-
ysis. This is a constrained regression as we have a single regression slope (i.e., &)
throughout the sample. Had we allowed different slopes across time, we would have
the usual unconstrained regression model where X; is projected onto Y; period-by-
period. Having a single slope coefficient is key for us to achieve the null hypothesis
in-sample for the FM model.

Alternatively, we can view the above regression model as an adaptation of the
orthogonalization procedure that we use in predictive regressions. It pools returns
and factor loadings together to estimate a single slope coefficient. What is different,
however, is the use of separate intercepts for different time periods. This is natural
since the FM procedure allows time-varying intercepts and slopes. To purge the
variation in Y;’s out of X;’s, we need to allow for time-varying intercepts as well.
Mathematically, the time-dependent intercepts allow the regression residuals to sum
up to zero within each period. This property proves very important in that it allows
us to form the FM null hypothesis in-sample, as we shall see later.

Next, we scale each residual vector ¢ by its sum of squares €’ and generate the
orthogonalized regressor vectors:

Xi=¢/(eer), t=1,2,...,T. (16)
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These orthogonalized regressors are the FM counterparts of the orthogonalized regres-
sors in predictive regressions. They satisfy the FM null hypothesis in cross-sectional
regressions. In particular, suppose we run cross-sectional OLS with these orthogonal-
ized regressor vectors for each period:

K:/Lt+’7tXf+77tat:172a"'7Ta (17)

where p; is the n; x 1 vector of intercepts, 7, is the scalar slope for the ¢-th period,
and 7, is the n; x 1 vector of residuals. We show in Appendix A that the following
FM null hypothesis holds in-sample:

> =0 (18)

The above orthogonalization is the only step that we need to adapt to apply our
method to the FM procedure. The rest of our method follows for factor selection in
FM regressions. In particular, with a pre-selected set of right-hand side variables, we
orthogonalize the rest of the right-hand side variables to form the joint null hypothesis
that none of them is a true factor. We then bootstrap to test this null hypothesis.
If we reject, we add the most significant one to the list of pre-selected variables and
start over to test the next variable. Otherwise, we stop and end up with the set of
pre-selected variables.

2.4 Discussion

Across the three different scenarios, our orthogonalization works by adjusting the
right-hand side or forecasting variables so they appear irrelevant in-sample. That
is, they achieve what are perceived as the null hypotheses in-sample. However, the
null varies across the regression models. As a result, a particular orthogonalization
method that works in one model may not work in another model. For instance, in the
panel regression model the null is that a factor does not help reduce the cross-section
of pricing errors. In contrast, in Fama-MacBeth type of cross-sectional regressions,
the null is that the time averaged slope coefficients is zero. Following the same
procedure as what we do in panel regressions will not achieve the desired null in the
FM regressions.

Our method builds on the statistics literature on bootstrap. Jeong and Maddala
(1993) suggest that there are two uses of bootstrap that can be justified both theoret-
ically and empirically. First, bootstrap provides a tractable way to conduct statistical
analysis (e.g., hypothesis tests, confidence intervals, etc.) when asymptotic theory is
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not tractable for certain models. Second, even when asymptotic theory is available,
it may not be accurate in smaller samples.!!

Our approach solves at least two problems. First, it is a daunting task to de-
rive asymptotic distributions given the complicated structure of the cross-section of
equity returns, e.g., unbalanced panel, cross-sectional dependency, number of firms
(N) is large relative to the number of time periods (T), etc. Second, as shown in
Affleck-Graves and McDonald (1989), the GRS test is distorted when the returns for
test portfolios are non-normally distributed. The problem is likely to be even worse
given our use of individual stocks as test assets. Our bootstrap method allows us to
overcome these difficulties and conduct robust statistical inference.

More specially, our method falls into the category of nonparametric bootstrap that
is routinely used for hypothesis testing. Hall and Wilson (1991) provide two valuable
guidelines. The first, which can have a large impact on test power, is that bootstrap
resampling should be done in a way that reflects the null hypothesis, even if the true
hypothesis is distant from the null.'> The second is to use pivotal statistics, that is,
statistics whose distributions do not depend on unknown parameters.!?

The design of our tests closely follows these principles. Take our panel regression
model as an example. The first step orthogonalization, which is core to our method,
ensures that the null hypothesis that a factor has no explanatory power for the cross-
section of expected returns is exactly achieved in-sample. Our method therefore
abides by the first principle and can potentially have a higher test power compared
to alternative designs of the hypothesis tests. In addition, when constructing the
test statistics corresponding to the panel regression model, we make sure that pivotal
statistics (e.g., t-statistics of the regression intercepts) are considered along with other
test statistics.

HFor other references on bootstrap and its applications to financial time series, see Li and Mad-
dala (1996), Veall (1992, 1998), Efron and Tibshirani (1993), and MacKinnon (2006).

12Young (1986), Beran (1988) and Hinkley (1989) discuss the first guideline in more detail.

13To give an example of the use of pivotal statistics in bootstrap hypothesis testing, suppose our
sample is {x1,z2,...,2,} and the hypothesis under test is that the population mean equals 6y, i.e.,
Hy: 0 =0y A test statistic one may want to use is 0% — 0y, where 0* = Z?:l x;/n is the sample
mean. However, this statistic is not pivotal in that its distribution depends on the population
standard deviation o, which is an unknown parameter. According to Hall and Wilson (1991), a
better statistic is to divide 6* — 6, by 6*, where 6* is the standard deviation estimate. The new test
statistic (0* — 6)/6* is an example of a pivotal test statistic.
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3 Identifying Factors

3.1 Candidate Risk Factors

In principle, we can apply our method to the grand task of sorting out all the risk
factors that have been proposed. One attractive feature of our method is that it allows
the number of risk factors to be larger than the number of test portfolios, which is
infeasible in conventional multiple regression models. However, we do not pursue this
in the current paper but instead focus on a select group of prominent risk factors.
The choice of the test portfolios is a major confounding issue. Different test portfolios
lead to different results. In contrast, individual stocks avoid the arbitrary portfolio
construction. We apply our method to both popular test portfolios and individual
stocks.

In particular, we apply our panel regression method to 14 risk factors that are
proposed by Fama and French (2015a), Frazzini and Pedersen (2014), Novy-Marx
(2013), Pastor and Stambaugh (2003), Carhart (1997), Asness, Frazzini and Pedersen
(2013), Hou, Xue and Zhang (2015), Harvey and Siddique (2000), and Herskovic,
Kelly, Lustig and Van Nieuwerburgh (2014).*

We first provide acronyms for factors. Fama and French (2015a) add profitability
(rmw) and investment (cma) to the three-factor model of Fama and French (1993),
which has market (mkt), size (smb) and book-to-market (hml) as the pricing factors.
Hou, Xue and Zhang (2015) propose similar profitability (roe) and investment (ia)
factors. Other factors include betting againist beta (bab) in Frazzini and Pedersen
(2014), gross profitability (gp) in Novy-Marx (2013), Pastor and Stambaugh liquidity
(psl) in Pastor and Stambaugh (2003), momentum (mom) in Carhart (1997), quality
minus junk (gmyj) in Asness, Frazzini and Pedersen (2013), co-skewness (skew) in
Harvey and Siddique (2000), and common idiosyncratic volatility (civ) in Herskovic,
Kelly, Lustig, and Van Nieuwerburgh (2014). We treat these 14 factors as candidate
risk factors and incrementally select the group of “true” factors. True is in quotation
marks because there are a number of other issues such as the original set of factors
that we consider. Had we considered a larger set of factors, our results could have
been different. We leave these extensions to future research.

4The factors in Fama and French (2015a), Hou, Xue and Zhang (2015), Harvey and Siddique
(2000) and Herskovic, Kelly, Lustig and Van Nieuwerburgh (2014) are provided by the authors. The
factors for the rest of the papers are obtained from the authors’ webpages. Across the 14 factors,
the liquidity factor in Pdstor and Stambaugh (2003) has the shortest length (i.e., January 1968 -
December 2012). We therefore focus on the January 1968 to December 2012 period to make sure
that all factors have the same sampling period.

16



3.2 Test Statistics

We focus on test statistics that are economically sensible and statistically sound.
Intuitively, a good test statistic in our context should be able to tell the difference
in explaining the cross-section of expected returns between a baseline model and
an augmented model that adds one additional variable to the baseline model. For
the panel regression model, let {a’}Y | and {a?}}, be the cross-section of regression
intercepts for the baseline model and the augmented model, respectively. Let {s?}¥,
be the cross-section of standard errors for regression intercepts under the baseline
model. Our first test statistic is given by

SIT
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where ST denotes ‘scaled intercept’, ‘ew’ denotes equal weighting, and ‘m’ denotes
mean. Intuitively, SI] measures the percentage difference in the absolute regression
intercepts scaled by the standard error for the regression intercept under the baseline
model. We would expect SI! to be negative if the augmented model improves
the baseline model. The significance of the improvement is evaluated against the
bootstrapped empirical distribution that is generated under the null hypothesis that
the additional variable in the augmented model has zero incremental contribution in
explaining the cross-section of expected returns.

While SI77 calculates the percentage difference in the scaled mean absolute in-
tercept, it may not be robust to extreme observations in the cross-section, especially
when we use individual stocks as test assets. We therefore also consider a robust ver-
sion that calculates the percentage difference in the scaled median absolute intercept,
that is,

Sz = (median({|af|/si}iL,) — median({laj]/s7}:11)) /median({la;] /si}iiy).

where median(-) denotes the median of a group of variables and is denoted by a
superscript ‘med’.

One key assumption for the validity of our test statistic is that the cross-sectionally
averaged |a?| should be smaller than the cross-sectionally averaged |a?| if the addi-
tional factor in the augmented model is a true risk factor. At the individual asset
level, |af| will be smaller than |a?| in population (i.e., we have long enough factor and
return time-series) if the augmented model is the true underlying factor model. In-
deed, if the augmented model is correctly specified, then af will be zero in population,
which is no greater than |a?| under the (incorrectly specified) baseline model.
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In reality, we never know whether the augmented model is the true underlying
factor model. When the augmented model is misspecified, it is possible that |af| will
be larger than |a?| for certain assets even if the additional factor in the augmented
model is a true risk factor. Model misspecification may cause bias in inference not just
for our method, but most likely all existing asset pricing models. For instance, it is
well-known that Fama-MacBeth regressions are severely biased when the misspecified
factor model includes spurious factors (Kan and Zhang, 1999, Bryzgalova, 2014).
Similarly, when there is model misspecification, the GRS test will likely reject the
factor model, thus unable to identify true risk factors that belong to the underlying
true factor model. Interestingly, by simulating individual stock returns under realistic
assumptions about the underlying true factor model, Harvey and Liu (2016) find that
our method is more robust to model misspecification than existing asset pricing tests.
We therefore focus on the above test statistics to provide inference.

There are many reasons for us to consider the scaled intercept instead of the
original intercept. First, in a time-series regression model, by thinking of the fitted
combination of zero-cost portfolios (that is, factor proxies) as a benchmark index, the
scaled intercept is closely related to the information ratio of the strategy that takes a
long position in the test asset and a short position in the benchmark index.'> When
test assets are not diversified portfolios, information ratio is a better scaled metric
to gauge the economic significance of the investment strategy. This is similar to the
use of the t-statistic instead of the Jensen’s alpha in performance evaluation. The
t-statistic of alpha — not alpha itself — tells us how “abnormal” the returns are that
are produced by a fund manager.

Second, the use of the scaled intercept takes the heterogeneity in return volatilities
into account. Suppose two stocks generate the same regression intercept by fitting a
factor model. Then the degree of mispricing by the factor model, as measured by the
absolute value of the regression intercept, should be higher for the stock that is less
noisy. In other words, we should assign less weight to stocks that are noisier in our
panel regression model. This is particularly important when we consider individual
stocks as test assets as there is a large amount of heterogeneity in return volatility
for individual stocks.

Finally, as mentioned previously, our use of the scaled intercept is consistent with
the second principle for bootstrap hypothesis testing in Hall and Wilson (1991). In
fact, scaling the intercept by the standard deviation is exactly the recommended
transformation in Hall and Wilson (1991) to obtain pivotal statistics.

Another important feature of our test statistics is that we scale the intercepts of
the baseline model and the augmented model by the same standard error, that is,
the standard error of the estimate of the intercept under the baseline model. This
makes sure that our test statistics are exactly zero when the null hypothesis — the
candidate factor has zero incremental contribution to explain the cross-section of

15See Treynor and Black (1973).
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expected returns — is forced to exactly hold in-sample for our procedure. This may
not hold under alternative scaling schemes. For example, one might propose the use
of the standard errors corresponding to the baseline model and the augmented model
to separately scale the regression intercepts under the two models. This does not
work in our setup as the orthogonalized candidate factor (e.g., the demeaned market
factor), which is constructed to have a zero impact on the regression intercepts, may
have non-negligible impacts on the standard errors. As a result, the test statistic
will not equal zero at the null hypothesis since the same intercept is scaled by two
different standard errors. This makes it difficult to disentangle the cross-sectional
impact of a candidate factor from its time-series impact. Our test statistics allow us
to single out the cross-sectional contribution of the candidate factor.

What is the difference between our test and the GRS test? The GRS test hy-
pothesizes that the augmented model is true and evaluates the cross-section of |af
to test this hypothesis. A failure of the test indicates the rejection of the augmented
model but tells us little about the individual significance of the additional factor. In
contrast, our test hypothesizes that the baseline model is true and uses the reduction
in scaled absolute intercepts to evaluate the incremental contribution of the addi-
tional factor in the augmented model. As a result, our test is able to tell whether the
additional factor is individually significant as a risk factor without having to make a
statement about the overall model performance. This is important because given the
uncertainty about the underlying true factor model, any given factor model is likely
to be misspecified. Our test is more robust to model misspecification compared to
the GRS test. We delve further on this point in the next section.

Another difference is that instead of using the entire residual covariance matrix to
weight the cross-section of regression intercepts as in the GRS test, we use the individ-
ual standard errors for the estimation of the intercepts to weight the cross-section of
intercepts. This might seem like a drawback of our test since the GRS test allows one
to use the residual covariance matrix to construct portfolios that are mean-variance
more efficient than portfolios based on the tested factors alone, thereby improving
test power. However, in reality, the instability in the estimation of the covariance
matrix may offset the gain in test power. As shown in Fama and French (2015b),
when applied to portfolios, the GRS test often implies unrealistically large short po-
sitions on certain assets to achieve mean-variance efficiency. This causes trouble in
interpreting the GRS test from an economic perspective. Additionally, when we use
individual stocks as test assets, the covariance matrix will be poorly measured since
the number of assets in the cross-section is larger than the number of periods in the
time-series rendering the GRS test inapplicable. Given these concerns, we believe
that our test has some advantages over the GRS test when applied to a large cross-
section of assets. It allows us to take the residual volatility for each individual asset
into account while at the same time avoiding the estimation of the large dimensional
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residual covariance matrix.!® We provide a more detailed comparison of our method
and the GRS test towards the end of this section.

While we focus on the above test statistics, many other test statistics are feasible.
For example, instead of using the scaled intercepts, one may want to use the orig-
inal intercepts. As another example, we can use value weighting rather than equal
weighting. Intuitively, for two stocks that generate the same regression intercept, the
mispricing of the factor model should be more economically significant for the stock
that has a higher market value. We define alternative test statistics and show the
corresponding results in the online appendix of our paper.

The fact that our framework allows us to consider a variety of test statistics
demonstrates the flexibility of our bootstrap approach. For example, we usually do
not have closed-form asymptotic approximations for test statistics that are based
on quantiles (e.g., the median). Our bootstrap-based approach allows us to provide
inference for test statistics that rely on the median, which is robust to outliers and
therefore instrumental to our application to individual stocks. With a few caveats
in mind for the construction of a well-behaved test statistic, our approach is able to
provide statistical inference for a variety of test statistics, some of which are of great
interest to us from an economic perspective.

Instead of using the equally weighted scaled intercepts, Fama and French (2015a)
use the equally weighted absolute intercepts as the heuristic test statistic to evaluate
the performance of their investment and profitability factors. Our framework allows
us to make precise statements about the statistical significance of their test statistics.
However, as shown in the simulation study in the on-line appendix of our paper, our
test statistics are much more powerful than their intercepts-based test statistics. We
therefore focus on the two aforementioned test statistics (i.e., SI™ and SI™¢) in our

paper.

We can also interpret our test statistics from an investment perspective. However,
we postpone such interpretations to later sections, where we discuss the drawbacks
the GRS test in more detail.

3.3 Results: Portfolios as Test Assets

We first apply our method to popular test portfolios. In particular, we use the
standard 25 size and book-to-market sorted portfolios that are available from Ken
French’s on-line data library.

160One reason for the popularity of the GRS test is that its weighting scheme leads to a test statistic
whose distribution does not depend on unknown model parameters under the null hypothesis. As a
result, researchers can conveniently refer to the standard F' distribution table to perform hypothesis
testing. Under our weighting scheme, the distribution of the test statistic under the null hypothesis
will depend on model parameters such as the residual volatilities of individual assets. Fortunately,
our bootstrap-based framework provides a convenient way to provide inference.
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Table 1 presents the summary statistics on portfolios and factors. The 25 portfolios
display the usual monotonic pattern in mean returns along the size and book-to-
market dimension that we try to explain. The 14 risk factors generate sizable long-
short strategy returns. Nine of the strategy returns generate t-ratios above 3.0 which
is the level advocated by Harvey, Liu and Zhu (2016) that takes multiple testing into
account. The correlation matrix suggests a clustering of some of the factors. There
is a ‘value’ group consisting of book-to-market (hml), Fama and French (2015a)’s
investment factor (¢ma), and Hou, Xue and Zhang (2015)’s investment factor (ia).
There is a ‘profitability’ group consisting of Fama and French (2015a)’s profitability
factor (rmw), Hou, Xue and Zhang (2015)’s profitability factor (roe), and Asness,
Frazzini and Pedersen (2013)’s quality minus junk factor (gmj). For example, cma
and 7a have a correlation of 0.90, and rmw and gmj have a correlation of 0.76. These
high levels of correlations might make it difficult to distinguish the factors within
each of groups.

We use the aforementioned test statistics to capture the cross-sectional goodness-
of-fit of a regression model. In addition, we also include the standard GRS test
statistic. However, our othogonalization design does not guarantee that the GRS
test statistic of the baseline model stays the same as the test statistic when we add
an othogonalized factor to the model. The reason is that, while the othogonalized
factor by construction has zero impact on the cross-section of expected returns, it may
still affect the residual covariance matrix. Since the GRS statistic uses the residual
covariance matrix to weight the regression intercepts, it changes as the estimate for
the covariance matrix. We think the GRS statistic is not appropriate in our framework
as its use of the residual covariance matrix to weight the regression intercepts is no
longer optimal and may distort the comparison between candidate models. Indeed,
for two models that generate the same regression intercepts, the GRS test is biased
towards the model that explains a smaller fraction of variance in returns in time-series
regressions. To avoid this bias, we focus on the two metrics previously defined that
do not rely on a model-based weighting matrix. Again, we postpone a more detailed
discussion of the GRS test to later sections.

We start by testing whether any of the 14 factors is individually significant in
explaining the cross-section of expected returns. Panel A in Table 2 presents the
results. The market factor appears to be the best among the candidate factors. It
reduces the mean scaled absolute intercept by 61%, much higher than what the other
factors deliver.

To evaluate the significance of the market factor, we follow our method and or-
thogonalize the 14 factors so they have a zero impact on the cross-section of expected
returns in-sample. We bootstrap to obtain the empirical distributions of the individ-
ual test statistics. We then evaluate the realized test statistics against these empirical
distributions to provide p-values. As shown in Panel A of Table 2, the bootstrapped
5th percentile of SI7! for the market factor is -0.340. The interpretation is that
bootstrapping under the null, i.e., the market factor has no ability to explain the
cross-section, produces a distribution of increments to the intercept. At the 5th

21



percentile, there is a percentage reduction in the mean scaled intercept of 34%. The
actual factor reduces the mean scaled intercept by more than the 5th percentile, 34%,
and we declare it significant. More precisely, by evaluating the 61% reduction against
the empirical distribution of SI7 for the market factor alone, the single-test p-value
for the market factor is 0.002.

We can also bootstrap to obtain the empirical distribution of the minimum statis-
tic. In particular, following the bootstrap procedure in Section 2, we resample the
time periods. For each bootstrapped sample, we first obtain the test statistic for each
of the 14 orthogonalized factors and then record the minimum test statistic across all
14 statistics. The minimum statistic is the the largest intercept reduction among the
14 factors. Since all factors are orthogonalized and therefore have no impact on the
cross-section of expected returns, the minimum statistic shows what the largest in-
tercept reduction can be just by chance and therefore controls for multiple testing. It
is important that all 14 test statistics are based on the same bootstrapped sample as
this controls for test correlations, as emphasized by Fama and French (2010). Lastly,
we compare the realized minimum statistic with the bootstrapped distribution of the
minimum statistic to provide p-values.

Panel A of Table 2 shows the results on multiple testing as well. In particular, the
bootstrapped 5th percentile of SI7 for the minimum statistic is -0.368. By evaluating
the 61% reduction against the empirical distribution of the minimum statistic for
multiple testing, the p-value is 0.003. Therefore, the multiple-test p-value is below
the 5% cutoff. We therefore also declare the market factor significant from a multiple
testing perspective. Across the two metrics we consider, the market factor is the
dominating factor and is significant at 5% level, both from a single-test and a multiple-
test perspective.

One interesting observation based on Table 2 is that the best factor that is selected
may not be the one with the lowest single test p-value. For instance, in Panel A of
Table 2 and for S17;, the market factor is the first factor that we select despite a lower
single test p-value for civ. On the surface, this happens because the minimum test
statistic picks the factor that has the lowest SI7 (i.e., highest percentage reduction
in the mean scaled absolute intercept), not its p-value. As a result, the market factor,

which has a lower SI™ . is favored over civ.

ew?’

On a deeper level, should we use a minimum test statistic that depends on the
p-values instead of the levels of the SI!’s? We think not. The use of SI7 allows
us to put weight on both the economic as well as statistical significance. This is
especially important for our sequential selection procedure that incrementally identi-
fies the group of true factors. We give a higher priority to a factor that has a large
reduction in absolute intercept while passing a certain statistical hurdle than a factor
that has a tiny reduction in absolute intercept but having a very small p-value.”

1"Notice that a different scaling of a factor (i.e., long-short portfolio return) to alter the volatility
will not change the test statistics or their p-values. This is because we run time-series regressions
on the factors. Factor loadings adjust for different scalings. For example, when mkt is used as the
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After the market factor is declared significant, we continue to identify the second
risk factor. This time, cma has a multiple testing p-value of 0.001 under SI7' and
less than 0.001 under SI™¢ and is therefore declared significant. Notice that the

performance of hml is close to that of cma. This is not surprising given that ¢ma and
hml are highly correlated (correlation coefficient = 0.71).

After ¢ma is identified and included in the baseline model, we continue to search
for the third factor. This time, gp and smb are the best performing factors among
the remaining factors under SI7 and SI™ respectively. Overall, across the two
test statistics, smb seems to be a better performing factor compared to gp as it is
close to gp under SI™ and a lot better than gp under SI™*?. Nonetheless, neither
smb nor gp is significant under multiple testing. We therefore terminate the search

and conclude with a two-factor model, i.e., mkt + cma.

Overall, our results using equally weighted scaled regression intercepts confirm the
idea that mkt and cma, a factor that is closely related to Aml, are helpful in explaining
the cross-section of returns of Fama-French 25 portfolios. This is not surprising as
hml and Fama-French 25 portfolios use the same characteristics to sort the cross-
section of stocks. What is interesting in our results is that cma survives after mkt is
included. smb does not. This suggests that either smb is not a true risk factor or the
Fama-French 25 portfolios have limited power to identify smb as a true risk factor.
As we shall see later, the latter explanation seems more plausible.

Our findings seem to be at odds with past studies that also use the Fama-French 25
portfolios to test the market factor. Most of these studies rely on the two-stage Fama-
MacBeth regression and find that slope estimates from the second stage regressions
are not statistically different from zero. Hence, the market factor is not priced. If
one plots the estimated portfolio average returns against the actual average returns,
one will see a flat line instead of a 45-degree line as one would expect to see if CAPM
holds. In our framework, the market factor is highly significant. Indeed, based on
Panel A of 2, the market factor single-handedly reduces the scaled absolute regression
intercept by about 60%.

The difference in inference between our approach and past studies stems from the
difference in the test design. The test method used by past studies implicitly assumes
that CAPM is true, that is, a single-factor model that includes the market factor is
the true underlying factor model. However, this assumption is unlikely to hold for
the Fama-French 25 portfolios as there may exist other risk factors (e.g., smb and
hml). Suppose the underlying true factor model is a two-factor model that includes
the market factor and another factor X. When we run Fama-MacBeth regressions for
the market factor, because of the omitted factor X, the relationship between market
betas and expected portfolio returns are non-monotonic. As a result, the estimate for
the market risk premium will be biased. In fact, depending on what the true model

factor, suppose we have a beta estimate of 1.0 for a certain asset. When 2 x mkt is used, the beta
estimate will drop to 0.5, offsetting the scaling on mkt. Meanwhile, neither the regression intercept
nor its significance will be affected by the scaling.

23



is, the estimate market risk premium can go anywhere from positive to negative.
Harvey and Liu (2016) discuss the bias in Fama-MacBeth regressions when there is
model misspecification for the underling factor model. Compared to Fama-MacBeth
regressions, our approach is more robust to model misspecification.

While our results based on Fama-French 25 portfolios are interesting, we are re-
luctant to offer any deeper interpretation given the main drawback of the portfolio
approach: tests based on characteristics-sorted portfolios are likely to be biased to-
wards factors that are constructed using the same characteristics. In the next section,
we apply our method to individual stocks and hope to provide an unbiased assessment
of the 14 risk factors.
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Table 1: Summary Statistics, January 1968 - December 2012

Summary statistics on portfolios and factors. We report the mean annual returns for Fama-
French size and book-to-market sorted 25 portfolios and the five risk factors in Fama and
French (2015a) (i.e., excess market return (mkt), size (smb), book-to-market (hml), profitabil-
ity (rmw), and investment (cma)), betting against beta (bab) in Frazzini and Pedersen (2014),
gross profitability (gp) in Novy-Marx (2013), Pastor and Stambaugh liquidity (psl) in Pastor and
Stambaugh (2003), momentum (mom) in Carhart (1997), quality minus junk (gmj) in Asness,
Frazzini and Pedersen (2013), investment (ia) and profitability (roe) in Hou, Xue and Zhang
(2015), co-skewness (skew) in Harvey and Siddique (2000), and common idiosyncratic volatility
(civ) in Herskovic, Kelly, Lustig and Van Nieuwerburgh (2014). We also report the correlation
matrix for factor returns. The sample period is from January 1968 to December 2012.

Panel A: Portfolio Returns

Low 2 3 4 High
Small 0.009 0.078 0.085 0.106 0.120
2 0.039 0.074 0.095 0.101 0.108

3 0.047 0.082 0.082 0.093 0.119

4 0.062 0.061 0.077 0.087 0.090
Big 0.046 0.061 0.053 0.059 0.069

Panel B.1: Factor Returns

mkt smb hml mom skew psl roe ia gmj bab gp cma Tmw cw
Mean 0.052 0.022 0.048 0.081 0.024 0.055 0.068 0.057 0.048 0.105 0.039 0.047 0.033 0.060
t-stat [2.17] [1.32] [3.08] [3.54] [1.84] [2.99] [5.09] [5.76] [3.74] [5.98] [3.24] [4.44] [2.92] [3.48]

Panel B.2: Factor Correlation Matrix

mkt smb hml mom skew psl roe ia gmj bab gp cma Tmw cw
mkt 1.00
smb 0.30 1.00
hml -0.32 -0.24 1.00
mom -0.14 -0.03 -0.15 1.00
skew -0.02 -0.05 0.23 0.03 1.00
psl -0.05 -0.04 0.03 -0.03 0.10 1.00
roe -0.19 -0.39 -0.11 0.51 0.19 -0.06 1.00
ia  -0.39 -0.26 0.69 0.04 0.15 0.02 0.04 1.00
gmj -0.54 -0.54 0.02 0.26 0.13 0.03 0.68 0.15 1.00
bab -0.09 -0.07 0.40 0.18 0.24 0.06 0.25 0.35 0.19 1.00
gp 0.08 0.06 -0.34 0.01 -0.01 -0.03 0.34 -0.26 0.45 -0.11 1.00
cma -0.41 -0.16 0.71 0.01 0.05 0.03 -0.10 0.90 0.07 0.32 -0.34 1.00
rmw -0.21 -0.42 0.11 0.10 0.27 0.03 0.68 0.05 0.76 0.26 0.49 -0.08 1.00
civ 0.17 0.27 0.13 -0.18 0.04 0.05 -0.26 -0.00 -0.28 0.11 -0.00 0.04 -0.10 1.00
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Table 2: Portfolios as Test Assets

Test results on 14 risk factors using Fama-French size and book-to-market sorted 25 portfolios. (See Table 1 for the
definitions of risk factors.). The baseline model refers to the model that includes the pre-selected risk factors. We
focus on the panel regression model described in Section 2.2. The two metrics (i.e., ST and SI™¢?), which measure
the difference in equally weighted scaled mean/median absolute regression intercepts, are defined in Section 3.2. GRS
reports the Gibbons, Ross and Shanken (1989) test statistic.

Panel A: Baseline = No factor Panel B: Baseline = mkt

single test single test single test single test

Factor SI[; 5th-percentile p-value SI;ZJEd 5th-percentile p-value GRS SII, 5Sth-percentile p-value SI;'L)ECL 5th-percentile p-value

mkt -0.607 -0.340 (0.002) -0.672 -0.333 (0.000) 4.290
smb  -0.209 -0.243 (0.072) -0.108 -0.257 (0.215) 4.402 | -0.068 -0.174 (0.251) -0.007 -0.211 (0.481)
hml 0.189 -0.100 (0.999) 0.230 -0.110 (0.997) 4.050 |-0.434 -0.260 (0.000) -0.397 -0.302 (0.009)
mom  0.224 -0.108 (0.998) 0.256 -0.120 (0.998) 4.302 0.218 -0.071 (0.999) 0.210 -0.113 (0.985)
skew -0.014 -0.040 (0.195) 0.007 -0.053 (0.731) 4.454 |-0.116 -0.085 (0.025) -0.134 -0.117 (0.039)
psl 0.043 -0.038 (0.946) 0.054 -0.044 (0.952) 4.286 |-0.038 -0.034 (0.040) -0.135 -0.055 (0.004)
roe 0.504 -0.150 (1.000) 0.470 -0.144 (0.999) 4.919 0.375 -0.106 (1.000) 0.366 -0.137 (0.998)
ia 0.607 -0.157 (1.000) 0.637 -0.164 (1.000) 4.553 |-0.318 -0.168 (0.001) -0.262 -0.206 (0.012)
qmyj 0.820 -0.275 (0.990) 0.806 -0.273 (0.983) 5.594 0.560 -0.134 (1.000) 0.898 -0.173 (1.000)
bab 0.036 -0.042 (0.952) 0.030 -0.055 (0.908) 3.718 |-0.442 -0.154 (0.000) -0.447 -0.179 (0.000)
gp -0.042 -0.037 (0.039) 0.026 -0.049 (0.892) 4.096 0.202 -0.087 (1.000) 0.200 -0.128 (0.988)
cma  0.450 -0.143 (1.000) 0.464 -0.155 (0.999) 4.238 |-0.476 -0.196 (0.000) -0.500 -0.225 (0.000)
rmw  0.268 -0.126 (0.991) 0.273 -0.124 (0.987) 4.325 0.055 -0.056 (0.991) 0.132 -0.119 (0.962)
civ -0.281 -0.140 (0.000) -0.283 -0.141 (0.002) 4.132 |-0.219 -0.094 (0.001) -0.099 -0.128 (0.088)

multiple test multiple test multiple test multiple test

min [-0.368] (0.003) [-0.373] (0.000) min [-0.289] (0.001) [-0.342] (0.000)

Panel C: Baseline = mkt + cma

single test single test

Factor SI[ 5th-percentile p-value SIT}®® 5th-percentile p-value

mkt
smb  -0.232 [-0.353] (0.171) -0.295 [-0.454] (0.188)
hml 0.001 [-0.136] (0.657) 0.013 [-0.230] (0.615)
mom  0.091 [-0.067] (0.981) 0.115 [-0.139] (0.930)
skew  0.005 [-0.058] (0.654) 0.093 [-0.134] (0.896)
psl -0.027 [-0.028] (0.054) 0.222 [-0.069] (0.992)
roe  0.911 [-0.128] (1.000)  1.271 [-0.228] (1.000)
ia 0.382 [-0.106] (1.000) 0.631 [-0.181] (1.000)
qmyj 1.381 [-0.153] (1.000) 1.857 [-0.242] (1.000)
bab 0.101 [-0.069] (0.991) 0.080 [-0.153] (0.880)
gp -0.260 [-0.073] (0.061) -0.084 [-0.104] (0.081)

cma
rmw  0.561 [-0.119] (1.000) 0.644 [-0.188] (1.000)
civ -0.160 [-0.100] (0.013) -0.214 [-0.211] (0.049)

multiple test multiple test

min [-0.356] (0.148) [-0.464] (0.253)
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3.4 Why We Abandon the GRS

The GRS test statistic is problematic in our context from a variety of perspectives.
For instance, with mkt as the only factor in the baseline model and by adding the
orthogonalized smb to the baseline model, the GRS is 6.039 (not shown in table),
much larger than 4.290 in Panel A of Table 2, which is the GRS for the real data
with mkt as the only factor. This means that by adding the orthogonalized smb,
the GRS becomes much larger. By construction, the orthogonalized smb has no
impact on the regression intercepts. The only way it can affect the GRS is through
the error covariance matrix. Hence, the orthogonalized factor makes the GRS larger
by reducing the error variance estimates. This insight also explains the discrepancy
between SI[ and the GRS in Panel A of Table 2: mkt, which implies a much smaller
mean absolute intercept in the cross-section, has a larger GRS than bab as mkt absorbs
a larger fraction of variance in returns in time-series regressions and thereby putting
more weight on regression intercepts compared to bab.

The weighting in the GRS does not seem appropriate for model comparison when
none of the candidate models is expected to be the true model, i.e., the true underlying
factor model that fully explains the cross-section of expected returns. Between two
models that imply the same time-series regression intercepts, it favors the model that
explains a smaller fraction of variance in returns. This does not make sense. We
choose to focus on our proposed metrics that do not depend on the error covariance
matrix estimate.

The way that the GRS test uses the residual covariance matrix to scale regression
intercepts is likely to become even more problematic when we use individual stocks
as test assets. Given a large cross-section and a limited time-series, the residual
covariance matrix will be poorly measured. To make things worse, this covariance
matrix needs to be inverted to obtain the weights for intercepts. As a result, the GRS
test is likely to be very unstable and potentially distorted when applied to individual
stocks.'®

Our findings about the GRS test resonate with a recent study by Fama and
French (2015b). They find that the GRS test often implies unrealistically large short
positions on certain assets, which does not make economic sense. To explain their
findings, notice that the GRS test can be interpreted as the difference between the
Sharpe ratio constructed using both the left-hand side assets and the right-hand side
factors (call this Sharpe ratio SR;) and the Sharpe ratio using only the right-hand
side factors (call this Sharpe ratio SRy). A rejection is found if SRy is significantly
larger than SRy. What Fama and French (2015b) find is that certain left-hand side
assets need to take extreme short positions in order to achieve SR;. By imposing
short sale constraints, SR is often much smaller, reducing the contribution of the
left-hand side assets to the tangency portfolio formed using the right-hand side factors
alone. This causes us to question the economic usefulness of the GRS test.

18See Gagliardini et al. (2014) for a similar argument.
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Our framework provides an economically meaningful approach to evaluate the
incremental contribution of SRy over SRy. In a panel regression model, the regression
intercepts capture mispricing for the assets in the cross-section. An investor who is
trying to exploit this mispricing will be long assets that have positive intercepts and
short assets that have negative intercepts. By taking equally-weighted positions in the
cross-section, the abnormal return for her portfolio (that is, returns with factor risks
purged out) equals the equally weighted absolute intercepts plus a residual component
that is the equally weighted average of the regression residuals. When we have a large
cross-section — which will be the case when we use individual stocks as test assets
— the residual component will be small. Therefore, the equally weighted absolute
intercepts captures the abnormal return earned by an investor that tries to exploit
the mispricing of the cross-section of assets relative to a factor model.

While we explore the equally weighted absolute intercepts in our on-line appendix,
an obvious extension is to take the estimation uncertainty into account by using the
standard errors to scale the regression intercepts. This motivates our test statistics
(e.g., SII) that are based on the scaled intercepts. As we show in the on-line ap-
pendix, our test statistics have substantially higher test power compared to tests that
are based on the original intercepts. Finally, an average investor in the economy will
invest in proportion to the market capitalizations of assets. Hence, a value-weighted
metric may better reflect the economic significance of asset mispricing in the cross-
section. We explore this metric in the next section when we use individual stocks as
test assets.

3.5 Results: Individual Stocks as Test Assets

Instead of characteristics-sorted portfolios, can we use individual stocks to provide
inference? Conventional wisdom says no. Indeed, Black, Jensen and Scholes (1972)
and Fama and MacBeth (1973) argue that individual stocks are too noisy to serve as
test assets. The GRS test also prohibits the use of individual stocks as the inversion
of the large variance-covariance matrix of the return residuals is problematic (see
Fama and French, 2010, Gagliardini et al., 2014). Subsequent researchers follow these
suggestions and use popular portfolios, in particular the Fama-French 25 portfolios,
to test risk factors.

A counter argument is that the use of portfolios may introduce bias and inefficiency
in asset pricing tests. Avramov and Chordia (2006) show that the asset pricing
implications differ a lot when we use single securities instead of portfolios. Ang, Liu,
and Schwarz (2010) argue that the larger dispersion in beta by using individual stocks
can potentially enhance the power of the test.'® Lewellen, Nagel, and Shanken (2010)

9Estimation uncertainty for the estimated betas makes the gain in power of the method in Ang,
Liu and Schwarz (2010) vanish asymptotically. However, in finite samples, the gain in power by
using a larger set of test assets may be non-negligible.
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suggest the use of a large number of assets instead of a small number of portfolios to
judge model performance.

We believe that the single dominating reason for considering individual stocks is
that they provide an unbiased test of risk factors. Tests based on characteristics-
sorted portfolios are likely to be biased towards identifying the risk factors that are
constructed using the same set of test portfolios. The use of individual stocks guards
against the data-snooping bias induced by portfolio-based asset pricing tests, as shown
in Lo and MacKinlay (1990). Additionally, if we rephrase the argument in Black,
Jensen and Scholes (1972) and Fama and MacBeth (1973) as saying that the high
level of noise in individual stocks renders most tests inefficient, then the problem is
not about individual stocks themselves, but about the lack of statistical tests that
help alleviate the noise in stocks. Our paper provides such a test. In particular, our
framework allows us to make inference on test statistics that take stock volatilities and
market values into account. It therefore alleviates the noise issue for individual stocks
by downweighing the impact of small and noisy stocks. We also use economically
motivated test statistics that do not rely on the estimation of the variance-covariance
matrix, thereby circumventing the difficulty in using the GRS test.

More specifically, our framework provides a way to overcome many of the chal-
lenges in the use of individual stocks. First, we use an unbalanced panel of equity
returns, which creates difficulty for standard panel regression models. Our bootstrap-
based approach, by allowing the size of the bootstrapped sample to be proportional
to the original sample, takes sampling uncertainty (i.e., between two samples drawn
from the same population, the inference based on the shorter sample is less accurate
than the inference based on the longer sample). Second, there is a large amount of
heterogeneity in the cross-section of stocks in terms of firm size, volatility, etc. Our
method allows different weighting schemes that take various sources of heterogene-
ity into account. Finally, given the existence of extreme observations in the returns
of individual stocks, our method allows the use of test statistics that are robust to
outliers (e.g., median).

3.5.1 A Simulation Study

We first run a simulation study to see whether our tests have statistical power in
correctly identifying a true risk factor. This is important given the concern that the
high level of noise in individual stock returns might render our test powerless. We
do not pursue a full-blown simulation study that investigates every aspect of our
procedure but instead focus on the selection of a candidate risk factor that provides
additional information to the market factor in explaining the cross-section of expected
returns. This is motivated by the fact that the market factor is the single dominating
factor that is always selected first in our previous study based on portfolios. It is
more interesting to examine the next factor that enters our factor list.

29



Two features distinguish our simulation study from standard simulation frame-
works. First, we take the cross-sectional distribution of factor loadings in the data as
given. Second, we bootstrap the realized return residuals to construct the simulated
panel of returns. Compared to standard simulation studies that assume a paramet-
ric distribution for the factor loadings and/or return residuals, our method brings
the simulated data closer to the actual data, and therefore provides a more realistic
assessment of test power. Appendix B describes our simulation study in detail.

To benchmark our results against existing methods, we consider two popular beta
sorts. The first method is unconditional beta sorts that first sorts stocks based on
their unconditional univariate factor loadings estimated over the entire sample, and
then forms the long-short portfolio by having a long position in stocks that are in the
top beta decile and a short position in stocks that are in the bottom beta decile.?’ The
t-statistic of the portfolios returns is used to test the significance of the candidate
factor. The second method involves time-varying beta sorts. We estimate factor
loadings based on a five-year rolling window and construct a long-short portfolio that
we hold out-of-sample for one year. We again use the t-statistic of the portfolio
returns to test the significance of the candidate factor.

There are several takeaways from our simulation study. First, compared to the
beta sorts, our bootstrap-based tests are more powerful. In particular, when the
factor risk premium is similar to what we see in the real data, the power of our tests
based on the t-statistics is on average (across different factors) about 10% higher than
that based on beta sorts. Additionally, when the number of time periods is about
the same as in the real data, the power of our tests is well above 70% across different
risk factors. Hence, our tests have power in an absolute sense as well.

Second, we are not necessarily losing test power by considering individual stocks.
In particular, we redo our exercise using Fama-French 25 portfolios and find that the
average performance of our tests based on portfolios is similar to that of our tests
based on individual stocks. The key assumption for our simulation study is that a
two-factor model is the true underlying factor model. In reality, the Fama-French 25
portfolios follow a tight factor structure and therefore are likely to favor factors that
are correlated with the Fama-French factors (see Lewellen, Nagel, and Shanken, 2010).
In contrast, individual stocks can potentially provide unbiased and significantly richer
information to identify the true factor model.

3.5.2 Value Weighted Test Statistic

In addition to the previously mentioned test statistics that rely on equally weighted
scaled regression intercepts, we consider a value weighted version of them. Value
weighting makes economic sense. For two stocks that generate the same regression

20Sorts based on multivariate factor loadings yield similar results as the candidate factors are not
highly correlated with the market factor.
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intercept, the mispricing of the factor model should be more significant economically
for the stock that has a higher market value. Our value weighted test statistic there-
fore uses market values to weight the cross-section of scaled intercepts. In particular,
let {me; ;}1 | be the time-series of market equity for stock i, and let M E;, = Zfil me; ¢
be the aggregate market equity at time ¢. The test statistic is given by

T N ; T N ;
(D emy 2oim G x 1adl/s) )T = (3oi=y Doty S ¥ labl/s?)/T
T N i )
(Zt:l Zi:l T/jeéz X |a§’|/s§?)/T

Slyw =

where vw denotes value weighting. S1,, calculates the percentage difference in the
time averaged value-weighted level of mispricing between the augmented model and
the baseline model. Our value weighted test statistic takes the time variation in
market value into account.

3.5.3 Test Results with Individual Stocks

Table 3 (equal weights) and 4 (value weights) present the results based on individual
stocks. Under both weighting schemes and consistent with the results based on the
Fama-French 25 portfolios, the market factor is always the first factor selected and is
highly significant.

The fact that we always declare the market factor as significant in our framework
is not a trivial empirical finding. Although the market factor has a strong theoretical
motivation and is probably the first risk factor tested (see Black, Jensen and Scholes,
1972), different papers, by using different testing methods and test assets, often arrive
at conflicting conclusions. Therefore, there is no consensus as to whether the market
factor is a valid risk factor empirically. Nonetheless, perhaps due to its intuitive
appeal and theoretical relevance, most routinely use it for risk adjustment and cost of
capital calculation. More recently, by also using individual stocks as test assets and
using the Fama-MacBeth cross-sectional test, Jegadeesh and Noh (2014) reject the
market factor as a risk factor. Chordia, Goyal, and Shanken (2015) only find weak
support for the market factor.

In contrast, our results suggest that the market factor is by far the dominant risk
factor in explaining the cross-sectional variation in expected returns, both for well-
diversified portfolios and individual stocks. We believe this is due to our use of the
panel regression test.

Fama (2015) summarizes the difference between the Fama-MacBeth approach and
the panel regression approach. The panel regression approach essentially assumes that
the factor risk premium is given by its in-sample estimate, and tries to evaluate what
percentage of the expected return is explained by the risk exposure to the factor (i.e.,
beta times risk premium). The GRS test is one example of a panel regression test.
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It focuses on the extreme case where the percentage of the expected return explained
by the factor model has to be 100%, that is, the factor model is correctly specified
and it is the underlying true factor model. Our test is less extreme than the GRS test
in that this percentage does not have to be 100%. A factor could be declared true as
long as it explains a significant amount of expected returns for a given cross-section
of assets. Indeed, in Table 3 and 4, we show that the market factor single-handedly
explains 44% and 20% of expected returns under value weighting and equal weighting,
respectively. These numbers are large from an economic perspective.

More precisely, as shown in Harvey and Liu (2016), when there is uncertainty
around the underlying true factor model and the factor model being tested is likely
misspecified, cross-sectional regressions (e.g., Fama-MacBeth) sometimes generate
risk premium estimates that are severely biased and lead to size distortions for hy-
pothesis tests. In contrast, panel regression models provide an attractive setting for
testing risk factors.

In Panel B of Table 3, after the market factor is identified, smb is the best factor
among the remaining factors. The percentage reduction in scaled absolute intercept
is 4.1% under SI™ and 6.2% under SI7. The corresponding multiple testing p-
values are 0.071 and 0.039. Given that SI™* is more robust to outliers among the
cross-section of scaled intercepts, we put more weight on SI™¢ and therefore declare
smb significant.

In Panel C of Table 3, after both the market factor and smb are included in the
baseline model, hml is the best factor among the remaining factors, reducing the
scaled absolute intercept by 1.7% under SI™ and 4.0% under ST, It also has a
significant multiple testing p-value under SI™¢ (i.e., 1.8%). We therefore declare it
significant and include it in the baseline model. After mkt, smb, and hml are included
in the baseline model, none of the remaining factors is significant, as shown in Panel
D of Table 3. We therefore terminate our testing procedure and identify the true
factor model as mkt+smb-+hml using the equally weighted test statistic.

Our results under equal weighting contribute to the literature by identifying smb
and hml, perhaps the two most well-known anomaly variables, as significant risk
factors that drive the cross-section of individual stock returns. Our approach distin-
guishes itself from existing studies in several aspects. First, our method allows us
to explore the rich information in the large cross-section of individual stocks while
controlling for the noise in individual stock returns and being robust to extreme ob-
servations. Second, we do not seek to find the true factor model that completely
explains the cross-sectional variation in expected returns. Neither do we impose the
existence of such a model in the construction of our test. We try to evaluate the
incremental contribution of a factor and sequentially select the list of significant fac-
tors. We believe these two features of our model make it advantageous over existing
methods and allow us to successfully detect true risk factors.
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Contrary to our results, Chordia, Goyal, and Shanken (2015) and Jegadeesh and
Noh (2014) also use individual stocks and find that several popular factors (e.g., smb
and hml) that are potentially risk factors do not seem to be priced. Both papers
rely on the Fama-MacBeth regression (corrected for errors-in-variables bias) and use
OLS in the second stage regression. This method effectively equal weights the cross-
section of stocks and is, therefore, consistent with our weighting scheme in Table 3.
However, as shown in Harvey and Liu (2016), the key assumption for the inference
of the Fama-MacBeth regression to work is that the factor model tested is the true
underlying factor model that fully explains the returns of test assets. When there is
model misspecification, which is likely to be the case for individual stocks, the Fama-
MacBeth approach can be severely biased. Our method is more robust to model
misspecification.
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Table 3: Individual Stocks as Test Assets, Equally Weighted Scaled Inter-
cepts

Test results on 14 risk factors using equally weighted individual stocks. (See Table 1 for the definitions of risk factors).
We use individual stocks from CRSP that cover the 1968— 2012 period to test 14 risk factors. A stock needs to have
at least 36 monthly observations (either in the original or the bootstrapped sample) to enter our tests. The baseline
model refers to the model that includes the pre-selected risk factors. We focus on the panel regression model described
in Section 2.2. The two metrics (i.e., SI7 and SI7¢?), which measure the difference in equally weighted scaled
mean/median absolute regression intercept, are defined in Section 3.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt
single test single test single test single test
Factor SI[, 5th-percentile p-value SI;’:UCd 5th-percentile p-value SI[%, bSth-percentile p-value SI;’I;d 5th-percentile p-value
mkt -0.192 -0.093 (0.003) -0.206 -0.095 (0.001)
smb  -0.081 -0.081 (0.056) -0.109 -0.117 (0.061) |-0.041 -0.045 (0.063) -0.062 -0.052 (0.032)
hml 0.088 -0.022 (0.983) 0.108 -0.029 (1.000) -0.021 -0.030 (0.131) -0.047 -0.028 (0.014)
mom  0.091 -0.034 (1.000) 0.110 -0.044 (1.000) 0.070 -0.007 (1.000) 0.089 -0.012 (1.000)
skew -0.008 -0.031 (0.278) -0.002 -0.034 (0.478) -0.004 -0.009 (0.167) -0.003 -0.013 (0.319)
psl 0.011 -0.019 (0.920) 0.002 -0.030 (0.682) 0.001 -0.004 (0.409) -0.003 -0.012 (0.237)
roe 0.163 -0.042 (0.951) 0.187 -0.064 (1.000) 0.142 -0.019 (1.000) 0.180 -0.029 (1.000)
ia 0.264 -0.040 (1.000) 0.291 -0.048 (1.000) 0.027 -0.009 (0.968) 0.015 -0.015 (0.934)
qmy 0.316 -0.072 (0.995) 0.358 -0.090 (0.998) 0.149 -0.024 (0.972) 0.193 -0.029 (0.973)
bab  -0.006 -0.039 (0.594) -0.049 -0.050 (0.107) 0.018 -0.010 (0.983) -0.014 -0.017 (0.181)
gp 0.017 -0.008 (0.529) 0.030 -0.007 (0.727) 0.023 -0.005 (0.961) 0.017 -0.007 (0.790)
cma  0.176 -0.034 (1.000) 0.199 -0.035 (1.000) -0.012 -0.013 (0.057) -0.031 -0.019 (0.027)
rmw  0.116 -0.011 (0.986) 0.137 -0.017 (0.994) 0.040 -0.014 (1.000) 0.048 -0.020 (0.975)
civ  -0.096 -0.044 (0.023) -0.130 -0.062 (0.031) -0.018 -0.018 (0.052) -0.049 -0.030 (0.021)
multiple test multiple test multiple test multiple test
min [-0.109] (0.004) [-0.147] (0.002) min [-0.045] (0.071) [-0.057] (0.039)
Panel C: Baseline = mkt+smb Panel D: Baseline = mkt 4+ smb-+hml
single test single test single test single test

Factor SI[, 5th-percentile p-value SIJ.°® 5th-percentile p-value SI[%, 5th-percentile p-value SIT¢% Bth-percentile p-value

mkt
smb
hml -0.017 [-0.020] (0.061) -0.040 [-0.025] (0.011)
mom  0.055 -0.004 (1.000) 0.076 -0.010 (1.000) 0.026 -0.005 (1.000) 0.046 -0.013 (1.000)
skew -0.013 -0.010 (0.029) -0.015 -0.013 (0.036) 0.006 -0.002 (0.463) -0.001 -0.005 (0.313)
psl 0.011 -0.002 (0.945) 0.016 -0.005 (0.970) 0.010 -0.002 (0.937) 0.007 -0.005 (0.771)
roe 0.058 -0.006 (0.987) 0.074 -0.010 (0.967) 0.072 -0.004 (1.000) 0.080 -0.011 (1.000)
ia 0.020 -0.012 (0.967) 0.008 -0.013 (0.719) 0.038 -0.004 (0.975) 0.051 -0.008 (1.000)
qmj 0.052 -0.007 (0.976) 0.061 -0.008 (0.998) 0.128 -0.004 (0.982) 0.137 -0.006 (0.971)
bab 0.016 -0.010 (0.896) -0.014 -0.013 (0.043) 0.045 -0.003 (0.989) 0.040 -0.007 (0.954)
gp 0.022 -0.003 (0.972) 0.020 -0.009 (0.951) 0.059 -0.001 (0.992) 0.055 -0.006 (0.984)
cma  0.001 -0.009 (0.341) -0.009 -0.012 (0.137) 0.022 -0.002 (0.980) 0.023 -0.005 (0.967)
rmw  -0.009 -0.019 (0.147) -0.016 -0.020 (0.086) 0.036 -0.002 (1.000) 0.043 -0.006 (0.992)
civ 0.014 -0.009 (0.981) 0.003 -0.019 (0.615) 0.015 -0.008 (0.991) 0.016 -0.015 (0.981)
multiple test multiple test multiple test multiple test
min [-0.022] (0.122) [-0.027] (0.018) min -0.011 (0.997) -0.017 (0.932)
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Table 4: Individual Stocks as Test Assets, Value Weighted Scaled Intercepts

Test results on 14 risk factors using value weighted individual stocks. (See Table 1 for the definitions
of risk factors). We use individual stocks from CRSP that cover the 1968— 2012 period to test 14 risk
factors. A stock needs to have at least 36 monthly observations (either in the original or the bootstrapped
sample) to enter our tests. The baseline model refers to the model that includes the pre-selected risk
factors. We focus on the panel regression model described in Section 2.2. The metric (i.e., SI,,), which
measures the difference in value weighted scaled absolute regression intercept, is defined in Section 3.5.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt Panel C: Baseline = mkt+qmj
single test single test single test
Factor SI,, bHth-percentile p-value | SI,, 5th-percentile p-value | SI,, 5th-percentile p-value
mkt -0.444 [-0.258] (0.000)
smb -0.059 [-0.054] (0.041) 0.018 [-0.042] (0.831) 0.076 [-0.032] (0.994)
hml 0.144 [-0.059] (0.972) |-0.038 [-0.045] (0.128) |-0.016 [-0.062] (0.471)
mom 0.153 [-0.064] (1.000) 0.130 [-0.012] (1.000) 0.125 [-0.026] (1.000)
skew -0.027 [-0.052] (0.158) |-0.044 [-0.033] (0.029) |-0.020 [-0.025] (0.088)
psl  0.035 [-0.023] (0.970) 0.016 [-0.011] (0.996) 0.034 [-0.028] (0.991)
roe  0.105 [-0.043] (0.993) |-0.079 [-0.043] (0.021) 0.038 [-0.025] (0.967)
ia 0.382 [-0.086] (0.984) |-0.042 [-0.048] [0.083] 0.078 [-0.047] (0.935)
gmj  0.363 [-0.112] (0.892) [-0.149 [-0.079] (0.002)
bab -0.048 [-0.035] (0.026) |-0.088 [-0.049] (0.006) |-0.026 [-0.037] (0.157)
gp -0.082 [-0.038] (0.009) |-0.037 [-0.043] (0.073) |-0.022 [-0.046] (0.242)
cma 0.314 [-0.107] (0.982) |-0.052 [-0.034] (0.028) 0.019 [-0.038] (0.941)
rmw 0.045 [-0.014] (0.942) |-0.146 [-0.066] (0.019) 0.053 [-0.033] (1.000)
civ -0.115 [-0.062] (0.002) 0.035 [-0.019] (0.973) |-0.017 [-0.024] (0.113)
multiple test multiple test multiple test
min [-0.258] (0.000) [-0.083] (0.004) [-0.069] (0.637)
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Compared to our results based on the Fama-French 25 portfolios, we seem to
have power in detecting risk factors by using individual stocks. Indeed, when we use
the Fama-French 25 portfolios, only cma, a factor closely related to hml, is tested
as significant besides the market factor. When we use individual stocks, we uncover
both smb and hAml. This corroborates the evidence in our simulation study that we
are not necessarily losing test power by using individual stocks.

The use of robust test statistics such as SI7 seems important for tests based
on individual stocks. Without SI™¢ and by only using SI™ , we would only be able
to declare smb marginally significant and hml insignificant. Our bootstrap-based
framework allows us to make statistical inference on robust test statistics that are
otherwise difficult to evaluate under conventional testing frameworks.

Table 4 shows the results with value weighting. Under value weighting, it seems
that many of the factors have a larger impact on the cross-section than under equal
weighting. First, the economic magnitudes of the test statistics are much larger under
value weighting than under equal weighting. For example, when the market factor is
included in the baseline model, the reduction of the scaled absolute intercept is 44.4%
under value weighting (Table 4) and about 20% under equal weighting (Table 3).
Second, after the market factor is selected, more of the remaining candidate factors
appear to be able to reduce the cross-section of mispricing under value weighting
than under equal weighting. Taken together, our results suggest that many of the
discovered factors play a bigger role as risk factors in explaining the expected returns
for large stocks than for small stocks.

Under value weighting, the market factor is again the best performing factor. Its
multiple testing p-value is less than 0.001, suggesting that the market factor is a highly
significant risk factor. After the market factor is identified, the next best factor is
gmj, which has a multiple testing p-value of 0.004. After both the market factor and
gmy are identified and included in the baseline model, none of the remaining factors
is significant. Indeed, the multiple testing p-value for the next best factor (i.e., bab)
is 0.637. Therefore, under value weighting, we find a two-factor model that includes
mkt and gmy.

When we sequentially build the factor model, the drop in statistical significance
for the best available candidate factor is remarkable. What is equally impressive is
the drop in economic significance. For example, the market factor reduces the value-
weighted absolute scaled intercept by 44.4%. After the market factor is included in
the baseline model, the incremental reduction by the second identified factor (gmy)
is 14.9%. After both factors are included in the baseline model, the incremental
reduction of the next best candidate (bab) is only 2.6%. This drop in economic
significance gives us confidence in the final model we arrive at.

Although our test picks up ¢gmj as the true risk factor, we want to stress that
gmy is representative of a group of factors, that is, the profitability group. This group

36



includes gmyg, rmw, and roe. The three factors within the group are highly correlated
and have similar performances in our regression test.?!

Our identification of a profitability factor under value weighting makes economic
sense. Papers that propose profitability factors often use theories of firm investment
to motivate their findings (e.g., Fama and French, 2015, Hou et al., 2014). Intuitively,
larger firms have fewer frictions and therefore can better engage in value maximiza-
tion — the key assumption for investment theories to work. The fact that our test
allows us to value weight the cross-section of intercepts demonstrates the flexibility
of our approach. We are able to provide rigorous statistical inference on economi-
cally meaningful tests that are otherwise difficult to deal with in traditional testing
frameworks.

Chordia, Goyal, and Shanken (2015) use a modified Fama-MacBeth approach that
corrects the bias in the return-premium estimation and find weak support for rmw
as a priced risk factor. They do not consider gmj. The support for the profitability
factors (both rmw and gmyj) is much stronger in our model than in Chordia, Goyal,
Shanken. We think that both value weighting and our panel regression framework
contribute to the significance of profitability factors as priced risk factors.

In our on-line appendix, we also perform our tests on the Fama-French 25 port-
folios under value weighting. Interestingly, we find a a single-factor model that only
includes the market factor. That is, none of the profitability factors (or other fac-
tors) is significant in explaining the returns of the Fama-French 25 portfolios. This is
suggestive of a gain in power when using individual stocks as opposed to portfolios.

Our results using value weighting have important implications for the current
practice of using portfolios as test assets in asset pricing tests. Average portfolio
returns are disperse in the cross-section, which is good news for asset pricing tests as
it can potentially increase test power. However, the cross-section is small. Indeed,
the dispersion of returns of the Fama-French 25 portfolios is largely driven by a few
portfolios that are dominated by small stocks. Under equal weighting, current asset
pricing tests are likely to identify factors that can explain these few extreme portfolios.
This is also consistent with it being relatively easy to data mine a factor that fits
(accidentally) these extreme portfolios.?? This also makes little economic sense as
portfolios that cover small stocks are less important than portfolios that cover big
stocks to an average investor that invests heavily in big stocks. Our approach provides
a new way to take the market value of a portfolio into account when constructing an
asset pricing test.

Taken as a whole, our results provide a stronger support for the market factor,
conventional factors (i.e., smb and hml), and profitability factors that are discovered
by the literature than concurrent papers that also look at individual stocks. We

21For example, ¢mj reduces the scaled absolute intercept by 14.9% and rmw is not far from being
chosen with 14.6%.
228ee Lewellen et al. (2010) for a similar argument.
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believe this can be attributed to two features of our framework. First, we assume
constant factor loadings for our panel regression approach. This may seem restrictive
compared to the Fama-MacBeth approach that allows for time-varying factor loadings
but can provide more stable parameter estimates. This is especially important for
individual stocks. The reduction in estimation uncertainty for factor loadings is likely
to outweigh the increase in bias induced by fixed factor loadings (see Section 4 for
extensions of our framework to allow for time-varying factor loadings).

Second, running cross-sectional regressions as in the Fama-MacBeth approach is
likely to be problematic for individual stocks as extreme observations in the cross-
section are frequently observed. Trimming is an ill-advised practice as sometimes large
observations provide important information for parameter estimates. In contrast, our
panel regression framework focuses on the reduction in regression intercept or the
t-statistic of intercept, both of which rely on the entire return time-series and are less
affected by a single observation.

3.6 Robustness

In Appendix C, we consider various robustness checks of our results. First, to con-
trol for the impact of small stocks, we drop the bottom 10% of stocks in terms of
market capitalization in each year and rerun our analysis. The results are similar to
our current results that use the entire cross-section of stocks. Second, we explore the
Fama-French 49 industry portfolios as an alternative to the Fama-French 25 port-
folios. Under equal weighting, we are unable to identify either smb or hml as risk
factors. Under value weighting, investment factors are still significant. Third, to
allow for time-series dependence for both stock returns and factor returns, we use
block bootstrap instead of independent bootstrap. Fourth, to mitigate the impact of
infrequent trading for certain stocks, we consider lagged factor returns and test the
combined impact of the original factors and their lags. Neither time-series depen-
dence nor infrequent trading has a material impact on our results. For further details
on robustness checks, see Appendix C.

4 QOther issues

4.1 Time-varying Factor Loadings

Our application focuses on panel regressions with fixed factor loadings. Our setting
is therefore analogous to the environment of the GRS test where asset returns are
projected onto factor proxies with constant factor loadings. It is also related to the
two-pass cross-sectional regression method with time-invariant factor loadings, see,
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e.g., Shanken (1992), Jagannathan and Wang (1998), Shanken and Zhou (2007), and
Kan, Robotti, and Shanken (2013).

While unconditional models approximate the asset pricing environment in a simple
fashion, the true model might be conditional. Therefore, it might seem reasonable to
always use a conditional model when possible. This is not true. Even when the true
model is conditional, estimation errors for conditional betas may outweigh the gain
of correctly specifying the true model, rendering the inference less efficient than an
unconditional model specification. See Ghysels (1998).

Having discussed the pros and cons of conditional and unconditional model specifi-
cations, we explore two extensions of our panel regression tests that can accommodate
time-varying factor loadings. The first extension is to explicitly model the condition-
ing variables as functions of financial and macroeconomic variables, as in Shanken
(1990), Ferson and Harvey (1991), and Lettau and Ludvigson (2001). This effectively
introduces new factors that interact the original factors with financial and macroeco-
nomic variables. Our method follows by testing these new factors in addition to the
original factors.

The second extension is to use the adapted Fama-MacBeth framework that we laid
out in Section 2.3. We show how to modify the Fama-MacBeth framework so that the
null hypothesis — the average of the time-series slope coefficients is zero — is exactly
achieved in sample. We can then use this framework to incrementally select the list of
true risk factors, similar to what we do with panel regressions. This framework allows
us to take time-varying factor loadings into account as in the original Fama-MacBeth
approach.

In this paper, we focus on unconditional models and leave these extensions to
future research.

4.2 Stepwise Model Selection

Our method falls in the realm of stepwise model selection, in particular forward
selection for which we sequentially build up the true factor model. Unlike traditional
F-tests or R-square procedures, we pay particular attention to the multiple testing
issue, making sure that the Wilkinson and Dallal (1981) critique does not apply to
our method.

Having said this, we are aware of the issue that the p-value of our overall pro-
cedure, however defined, is likely to be a complex function of the p-values of the
individual steps. In our simulation study, we also sidestep this issue by only con-
sidering the incremental selection of the second risk factor after the market factor
is pre-determined. Notice that at each step, our method proposes a self-contained
hypothesis testing framework that tests the incremental contribution of a group of
candidate factors to a set of pre-determined factors. The p-value represents the mul-
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tiple testing adjusted statistical significance of the best candidate variable. We leave
a more detailed simulation study of our framework, in particular its overall perfor-
mance in terms of selecting the true model or a model that has a significant overlap
with the true model, to future research.

Traditional model selection methods such as the Akaike information criterion
(AIC) or the Bayesian information criterion (BIC) are unlikely to work in our frame-
work. We have a large panel of assets. The number of parameters to be estimated is
proportional to the size of the cross-section. As a result, the asymptotic approxima-
tions that are required by AIC and BIC are unlikely to hold in our framework. Our
bootstrap-based method provides a convenient way to make inference for a limited
sample.

An alternative approach to forward selection is backward selection. That is, we
start with an overall factor model and sequentially eliminate redundant factors. Our
method does not apply to backward selection. To see why this is the case, imagine
that we have 30 candidate variables. Based on our method, each time we single out
one variable and measure how much it adds to the explanatory power of the other
29 variables. We do this 30 times. However, there is no baseline model across the 30
tests. Each model has a different null hypothesis and we do not have an overall null.

Besides the technical difficulty of backward selection, we think that forward selec-
tion makes more sense for our application. For the selection of risk factors, as a prior,
we usually do not believe that there should exist hundreds of variables explaining a
certain phenomenon. Forward selection is consistent with this prior.

4.3 Spurious Factors

Spurious factors in factor models refer to factors that have weak covariance with asset
returns. As shown in Kan and Zhang (1999) and Bryzgalova (2014), spurious factors
make the usual inference methods problematic as the risk premia in factor models are
weakly identified. Kan and Zhang (1999) and Bryzgalova (2014) propose diagnostic
tools as well as shrinkage methods to detect and test spurious factors.

Our testing framework departs from the usual two-stage Fama-MacBeth frame-
work or the associated generalized methods of moments (GMM) approach. In partic-
ular, we do not need to use the differences in factor loadings in the cross-section to
identify factor risk premia, which is the source of the identification problem studied
in Kan and Zhang (1999) and Bryzgalova (2014). Our method uses the reduction in
absolute regression intercept (i.e., mispricing) as the test metric to gauge the success
of a factor model. A spurious factor, by having a factor loading that is close to zero,
naturally implies a small reduction in regression intercept and is likely to be identified
as a false risk factor in our framework. Harvey and Liu (2016) provide a more detailed
discussion of spurious factors and our tests.
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4.4 Factor Model Uncertainty and Model Misspecification

To better link our method to the GRS test, one can think of the baseline model as
the null hypothesis and the augmented model as the alternative hypothesis. The
GRS test hypothesizes that the augmented model is the true underlying factor model
and tests the deviations of the absolute regression intercepts from zero under this
hypothesis. In this sense, the GRS test works under the alternative hypothesis. In
contrast, our method works under the null hypothesis. We assume that the baseline
model performs as well as the augmented model, that is, the additional factor in the
augmented model has a zero contribution to explaining the cross-section of expected
returns. We test whether the augmented model improves on the baseline model under
this assumption.

Due to the above difference in the testing framework, our model is likely to be more
powerful in identifying risk factors that belong to the true underlying factor model.
For example, suppose the baseline model is simply a constant and the augmented
model has the market factor as the candidate risk factor. For a given set of test assets
and under GRS, we will reject the GRS null hypothesis (that is, CAPM is the true
factor model) since there likely exist other factors that also drive asset returns but do
not enter our test. As a result, we reject CAPM and conclude that the market factor
cannot fully explain the returns of the test assets. This tells us little about whether
the market factor is a true risk factor or not. In contrast, in our framework, we are
likely to identify the market factor as true since the augmented model significantly
improves on the baseline model (that is, a constant) in explaining the cross-section
of expected returns.

In general, given the existence of hundreds of factors that are potential candidates
for risk factors, there is a large amount of uncertainty around the true underlying
factor model. As a result, any given factor model is likely to be misspecified. The use
of the GRS test is limited since almost all models will be rejected in the end. Our
test is less sensitive to model misspecifications and allows one to sequentially build
the factor list. It does not try to make a statement about the underlying true factor
model as in the GRS test. However, it tells us which factors are likely to be the
members of the underlying true factor model. Harvey and Liu (2016) have a detailed
discussion of factor model uncertainty and asset pricing tests.

5 Conclusions

We present a new method that allows researchers to meet the challenge of multiple
testing in financial economics. Our method is based on a bootstrap approach and
allows for general distributional characteristics, cross-sectional as well as time-series
dependency, and a range of test statistics.
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We apply our method to the identification of risk factors. Hundred of factors have
been proposed in asset pricing to explain the cross-section of expected returns. Some
may appear to be significant risk factors just by chance. In addition, there has long
been a suspicion in empirical asset pricing research that portfolios sorted by certain
characteristics influence the discovery of new factors. We avoid the portfolio sorting
critique by applying our technique to an unbalanced panel of individual stocks.

Our results may seem surprising to many. Our analysis points to one dominant
factor — the original market factor proposed by Sharpe (1964). When we value weight
individual stocks we do find some support for a second factor linked to profitability,
however, its contribution is economically small compared to the market factor.

Finally, while we have applied our method to factor discovery in finance, we want
to emphasize that our technique can be applied to any regression model in finance
or outside of finance that faces the problem of multiple testing. Indeed, there is a
growing need for new tools to navigate the vast array of “big data”. We offer a new
compass.
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A Proof for Fama-MacBeth Regressions

The corresponding objective function for the regression model in (15) is given by:

£:

t

[Xi = (¢ + YD) [Xe — (0 + EVI)]. (19)

T
=1

Taking first order derivatives with respect to {¢;}1_, and &, respectively, we have

% = L;gt:O’tZL...,T, (20)

t

oL =,

7 = X Y=o (21)
t=1

where ¢; is a ny X 1 vector of ones. (20) says that the residuals within each time
period sum up to zero, and (21) says that the Y;’s are on average orthogonal to the
g¢'s across time. Importantly, Y; is not necessarily orthogonal to ; within each time
period. As explained in the main text, we next define the orthogonalized regressor
X7 as the rescaled residuals, i.e.,

Xi=¢e/(ger), t=1,...,T. (22)

Solving the OLS (17) for each time period, we have:

Ve = (Xf,Xf)_lXte/(Y;f — Lefhe), (23)
= (XI/XOTIXY, — (XXX vy, t=1,...,T. 24
t t t t t t

We calculate the two components in (24) separately. First, notice X is a rescaled
version of ;. By (20), the second component (i.e., (X' X)X 1) equals zero.
The first component is calculated as:

€t

Et Et

(XFX)XTY = [ )Y, (25)

' -1
52515) (5257&)] (5£5t
= 5;)/;,25:1,...,T, (26)

where we again use the definition of X7 in equation (25). Hence, we have:

=Y, t=1,...,T. (27)

48



Finally, applying (21), we have:

T T
Z’Yt = Z@;Yt =0.
t=1 t=1
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B A Simulation Study

A full-blown simulation study that takes all aspects of our method into account (e.g.,
the error rate for the first factor to be falsely identified, the error rate for the second
factor to be falsely identified conditional on the first factor being correctly identified,
etc.) is beyond the scope of this paper.?> Our main goal for this simulation study
is to evaluate the power of our bootstrap-based test in correctly identifying a risk
factor that has incremental contribution (relative to the market factor) in explaining
the cross-section of individual stock returns. This is motivated by the fact that the
market factor is always found to be the most significant factor in our empirical study.

We first focus on firms that have a complete return history for the past twenty
years. This gives us a balanced panel with N = 2,732 firms in the cross-section and
T = 240 months in time-series. A balanced panel is not required for our method to
work. However, we use a balanced panel in our simulation study as it allows us to fix
the number of firms in the cross-section. This allows us to better evaluate how the
test power changes with the length of the return time series.

We assume that a two-factor model (i.e., the market factor plus a candidate factor
denoted as f;) is the true model. We construct the panel of returns corresponding to
the true model by sampling from the real data. In particular, we first project stock
returns onto the two factors:

Rit — Ryt = oy + Bimmkty + B ¢ fr + €iz.

Let €, = [g;1,€i2,- .., cir) denote the vector of factor model residuals for stock i. We
collect the cross-section of factor loadings and residuals into matrices B and E:

B(2><N) = Hﬁl,ma BQ,ma s 7ﬁN,m]/7 [Bl,fa ﬁQ,fu s 7ﬁN,f]l}/7
Erxny = el es, ... er]

We also project the candidate factor f; onto the market factor mkt,:
fir = ay + Bmkt, + €54 (28)

The magnitude of oy determines how “true” the candidate factor is after its correla-
tion with the market factor is taken into account. For example, oy = 0 means that
the candidate factor is “spanned” by the market factor so it has a zero incremental
contribution to explaining the cross-section of expected returns. This constitutes the
null hypothesis. Table (B.1) summarizes ay for all candidate factors for the past

238ee Harvey, Liu and Zhu (2015) for a discussion on test power when there are multiple hypothesis
tests.
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twenty years. For our follow-up analysis, we choose to present results for the top five
factors based on the ranking of their ¢-statistics for ay. Results for the other factors
are similar.

Table B.1: Summary Statistics on ay, January 1993 - December 2012

Summary statistics on ay. We project a candidate factor f; onto the market factor mkt; through
the regression: f; = ay+ B,mkt; +er;. We report the level and the t-statistic of the regression
intercept ay corresponding to the five risk factors in Fama and French (2015a) (i.e., excess
market return (mkt), size (smb), book-to-market (hml), profitability (rmw), and investment
(cma)), betting against beta (bab) in Frazzini and Pedersen (2014), gross profitability (gp)
in Novy-Marx (2013), Pastor and Stambaugh liquidity (psl) in Pastor and Stambaugh (2003),
momentum (mom) in Carhart (1997), quality minus junk (¢gmj) in Asness, Frazzini and Pedersen
(2013), investment (¢a) and profitability (roe) in Hou, Xue and Zhang (2015), co-skewness (skew)
in Harvey and Siddique (2000), and common idiosyncratic volatility (civ) in Herskovic, Kelly,
Lustig and Van Nieuwerburgh (2014).

smb  hml mom skew psl roe ia gmj bab gp cma rmw cw
Mean 0.014 0.047 0.083 0.033 0.078 0.072 0.054 0.078 0.112 0.056 0.056 0.061 0.067
t-stat [0.52] [1.86] [2.08] [1.63] [2.48] [3.60] [3.40] [4.45] [3.63] [3.13] [3.56] [3.11] [2.28]

To evaluate the test power corresponding to different alternative hypotheses re-
garding the candidate factor, we assume that the true candidate factor is

= Ax ap+ Bumkt; + 54 (29)

By setting A at zero, the factor premium is completely explained by its exposure to
the market factor. As a result, the candidate factor has zero incremental explanatory
power of the cross-section of expected returns. This constitutes our null hypothesis.
The test power corresponding to the null hypothesis tells us the size of the test.
By setting A at other values, the alternative hypothesis is true. By changing the
magnitude of A, we are able to evaluate the test power corresponding to different
levels of factor premiums, which indicate how significant the candidate factor is in
offering incremental information to explain the cross-section of expected returns.

Using the factor loadings and return residuals stored in B and E, we create the
panel of returns corresponding to the true model. In particular, for a resampled time
index {t¥ }]T:1 and for a given level of A, the panel of excess returns is given by

raf = Bimmkte + Bigfis + i (30)
= @,mmktt;) —i—ﬁi,f(A X af+ 5mmktt;’ +€f7t}ﬂ) + ity jg=1....T;i=1,...,N.
(31)
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The way we construct the return panel is slightly different from standard simulation
methods in that instead of using Gaussian variables to simulate return residuals, we
use bootstrapped residuals based on the real data. This allows us to take the non-
normality in returns into account while at the same time maintain the dependency
among the cross-section of realized return residuals, as emphasized by Fama and
French (2010).

Let the simulated return panel corresponding to the w-th resampled time index
be RX"Y. For this sample, we use our method to make a decision on whether the
candidate factor is significant. Let D,, = 1 denote the event that the candidate factor
is declared significant (D,, = 0 denotes otherwise). We bootstrap the time index W
(= 1,000) times and use 3./"_, D,,/W to approximate the test power.

To compare our approach with alternative testing methods, we consider two pop-
ular methods based on beta sorts. The first method is unconditional beta sorts that
first sorts stocks based on their unconditional factor loadings estimated over the entire
sample, and then forms the long-short portfolio by having a long position in stocks
that are in the top beta decile and a short position in stocks that are in the bottom
beta decile. The t-statistic of the portfolios returns is used to test the significance of
the candidate factor. The second method is conditional beta sorts. We estimate fac-
tor loadings based on a five-year rolling window and construct the long-short portfolio
that we hold out-of-sample for one year. We again use the t-statistic of the portfolio
returns to test the significance of the candidate factor.

To examine how the length of the time series affects test power, we double the
length of the time series by creating a new return panel that fixes the cross-section
and repeats the time series of the original panel. Essentially, we are assuming that
returns are stationary so we can draw their future realizations from their past realiza-
tions. Similarly, we create new factor time series. We then follow the aforementioned
procedures of the simulation study to examine test power when the sample size of the
time series doubles.

Table B.2 and B.3 show the simulation results for 7" = 240 and T = 480, re-
spectively. When T" = 240 and A = 0, the significance levels of all tests seem to be
controlled at 5%, which is the pre-specified significance level. However, they seem to
under-reject the null as the Type I errors of many of these tests are below 5%. This
is likely because the size of the time series is small. When 7' is increased to 480, the
significance levels of most tests are higher and are closer to 5%.

When A = 1.0 (that is, factor risk premium is the same as the original factor),
the power of our tests based on the t-statistics is in general higher than that based on
both types of beta sorts. In particular, when 7" = 240, our tests universally dominate
those based on beta sorts. The gain in power by using our tests is about 10% on
average. However, the gain is not uniform across factors. For example, the power
of our tests is similar to that based on the unconditional beta sorts for ia, and is
about 20% higher than both conditional and unconditional beta sorts for gmj. On
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the other hand, within the four types of tests based on our method, the tests based
on the t-statistics are more powerful than those that are based on the intercepts. We
therefore favor the t-statistics-based tests when there is inconsistency between results
that are based on different tests.

When T" = 480, which is closer to the size of the 1968-2012 period that we examine
in the paper, the power of our tests seems high. For A = 1.0 and for tests based on
t-statistics, it ranges from 72% (bab) to 95% (gmj). For our application with the
real data, we have T = 540. However, we do not have N = 2,732 firms that exist
throughout the entire sample. The total number of firm-month observations in our
sample is about 1.8 times that of the simulation study.?* We therefore believe that
our tests should have a high power for the real applications.

Overall, our simulation results based on individual stocks suggest that our tests,
in particular the tests based on t-statistic, have high test power, both in an absolute
and relative sense. When the length of the time series is close to our applications, the
simulation results show that the power of our tests is well above 70%. It also compares
favorably with the tests that are based on either unconditional or conditional beta
sorts.

We redo the same simulation exercise based on the Fama-French 25 portfolios,
as shown in Table B.4. For A = 1.0, our tests based on t-statistics again dominate
those are based on beta sorts. The increase in power of our tests EW}' relative to
the unconditional beta sorts (i.e., the better one between the two beta sorts) is again
nonuniform across factors but is on average about 15%.

More interestingly, comparing Table B.4 with B.3, which has a similar number
of time periods to Table B.4, we are not necessarily losing power by considering
individual stocks. Focusing on our tests based on EW* and when A = 1.0, our tests
based on individual stocks have a higher power for roe and ¢gmj than our tests based
on the Fama-French 25 portfolios. Overall, across the five factors, our tests based
on individual stocks have a similar power to our tests based on the Fama-French 25
portfolios. This seems to be at odds with the conventional thinking that individual
stocks are more noisy and thus less informative than portfolios in factor tests. Our
t-statistics-based tests, by taking the return volatility into account, seems to be able
to detect a true factor as often as tests based on portfolios.

There are several takeaways from our simulation study. First, our tests based
on t-statistics seem to be uniformly more powerful than our tests based on alter-
native statistics. We therefore favor our tests that are based on t-statistics in our
applications.

Second, compared to traditional beta sorts, we are not losing power by using our
bootstrap-based approach. In fact, we see mild increase in power across a variety

24We have slightly more than 20,000 firms in the cross-section. On average, a firm exists for
around 10 years. Therefore, our sample size is about 1.8 (= (20,000 x 120)/(2732 x 480)) times that
of the simulation study.

53



of factors by using both individual stocks and Fama-French 25 portfolios. While
bootstrap is not essential for the two-factor exercise we perform in the simulation
study, it is key to our tests in the paper that build on the maximum/minimum test
statistics. When extreme test statistics are used to adjust for multiple testing, tradi-
tional tests (e.g., conditional or unconditional beta sorts) are no longer appropriate as
the asymptotic distributions for the extreme test statistics are not known in closed-
form. Moreover, we do not know how well the asymptotic distributions work in finite
samples. Bootstrap offers a convenient way to provide inference, as shown in White
(2000). It is therefore important to show that the bootstrap-based approach has
power in the context of application.

Third, we are not losing power by considering individual stocks. The average
performance of our tests based on individual stocks are similar to that of our tests
based on the Fama-French 25 portfolios. The key assumption for our simulation study
is that a two-factor model is the true underlying factor model, either for individual
stocks or the Fama-French 25 portfolios. In reality, asset returns could be determined
by a more complicated model. Compared to the Fama-French 25 portfolios, which
are constructed to maximize the exposure to two existing factors, individual stocks
potentially can provide unbiased and significantly richer information to identify the
true factor model.
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Table B.2: Test Power, Individual Stocks, 7" = 240

Test power for risk factors. For a given risk factor f, we project it onto the market
return (equation 28) to obtain the regression intercept. We then construct a new
factor (f“) based on equation (29), with A controlling the factor risk premium that
is not explained by the market factor. We run D = 1,000 sets of simulations. For
each set, we bootstrap the sample period to construct the time series for both the new
factor given in equation (29) and the market factor, and, by assuming the two-factor
model is true, construct a panel of returns through equation (31), where the return
innovations are resampled from the return innovations based on the real data. Based
on the bootstrapped factors and return panels, we test whether f# has incremental
power to explain the cross-section of expected returns. We calculate the test power
by averaging the number of rejections across simulations. We consider six tests. Four
of them are EW™, EW@, EWF, and EW{ that are explained in Section 3.2. The
rest are two beta sorts. The unconditional beta sorts (Uncond.f) first sorts stocks
based on their unconditional factor loadings estimated over the entire sample, and
then forms the long-short portfolio by having a long position in stocks that are in the
top beta decile and a short position in stocks that are in the bottom beta decile. The
t-statistic of the portfolios returns is used to test the significance of the candidate
factor. The conditional beta sorts (Cond.3) first estimates factor loadings based on
a five-year rolling window and then constructs the long-short portfolio that we hold
out-of-sample for one year. The t-statistic of the portfolio returns is used to test the
significance of the candidate factor. The five factors examined are explained in Table
1. We set T' = 240 and focus on a cross-section of 2,732 firms that have a complete
return history for the past twenty years.

Factor Method A=0(null) A=05 A=10 A=15 A=20

roe  EW} 0.017 0051 0336 0561  0.762
EW{ 0.023 0.064 0288  0.494  0.644
EWn 0.022 0114 0524 0773 0.865
EWg 0.027 0113 0402  0.706  0.832
Cond.p 0.016 0151 0397  0.636  0.826
Uncond.f  0.008 0055 0329 0709  0.906
ia  EWP 0.016 0101 0436 0710  0.845
EW{ 0.027 0134 0450  0.746  0.879
EWR 0.022 0171 0582  0.838  0.969
EW 0.029 0.156  0.549  0.810  0.947
Cond.p 0.025 0.144 0435 0717  0.869
Uncond.f  0.014 0191 0532 0827  0.961
gmj ~ EW 0.020 0141  0.558  0.856  0.937
EW{ 0.021 0139 0435 0731  0.895
EW? 0.018 0217 0756  0.958  0.986
EW 0.029 0177  0.654  0.923  0.957
Cond.3 0.010 0181 0529  0.823  0.961
Uncond.f  0.012 0.161  0.578  0.940  0.977
bab  EW 0.016 0.062 0286  0.578  0.772
EW{ 0.026 0077 0316  0.578  0.754
EW 0.024 0100 0446  0.756  0.928
EW 0.031 0.061 0437 0727  0.898
Cond. 0.005 0114 0370  0.667  0.858
Uncond.f  0.008 0.087 0302  0.746  0.923
cma  EWP 0.022 0131 0462  0.740  0.903
EW{ 0.019 0159 0523 0754  0.916
EWp 0.037 0.188  0.631  0.903  0.982
EWg 0.041 0.136 0557  0.870  0.981
Cond.p 0.036 0.155 0393  0.641  0.817
Uncond.f  0.047 0184 0521  0.810  0.963
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Table B.3: Test Power, Individual Stocks, 7" = 480

Test power for risk factors. For a given risk factor f, we project it onto the market
return (equation 28) to obtain the regression intercept. We then construct a new
factor (f“) based on equation (29), with A controlling the factor risk premium that
is not explained by the market factor. We run D = 1,000 sets of simulations. For
each set, we bootstrap the sample period to construct the time series for both the new
factor given in equation (29) and the market factor, and, by assuming the two-factor
model is true, construct a panel of returns through equation (31), where the return
innovations are resampled from the return innovations based on the real data. Based
on the bootstrapped factors and return panels, we test whether f# has incremental
power to explain the cross-section of expected returns. We calculate the test power
by averaging the number of rejections across simulations. We consider six tests. Four
of them are EW™, EW@, EWF, and EW{ that are explained in Section 3.2. The
rest are two beta sorts. The unconditional beta sorts (Uncond.f) first sorts stocks
based on their unconditional factor loadings estimated over the entire sample, and
then forms the long-short portfolio by having a long position in stocks that are in the
top beta decile and a short position in stocks that are in the bottom beta decile. The
t-statistic of the portfolios returns is used to test the significance of the candidate
factor. The conditional beta sorts (Cond.3) first estimates factor loadings based on
a five-year rolling window and then constructs the long-short portfolio that we hold
out-of-sample for one year. The t-statistic of the portfolio returns is used to test the
significance of the candidate factor. The five factors examined are explained in Table
1. We set T' = 480 by repeating the returns for a cross-section of 2,732 firms that
have a complete return history for the past twenty years.

Factor Method A=0(null) A=05 A=10 A=15 A=20

roe Ewm 0.020 0.318 0.733 0.944 0.964
EWId 0.033 0.295 0.637 0.866 0.965

EWR 0.024 0.399 0.809 0.963 0.984

E‘W% 0.025 0.332 0.766 0.960 0.985
Cond.f 0.013 0.163 0.580 0.910 0.994
Uncond.p 0.020 0.108 0.631 0.933 0.982

ia EWM™ 0.021 0.295 0.776 0.962 0.972
EWId 0.025 0.291 0.763 0.965 0.990

EW 0.037 0.378 0.861 0.974 1.000

EW{,% 0.029 0.351 0.834 0.973 1.000
Cond.f 0.026 0.274 0.756 0.948 0.990
Uncond.B 0.030 0.383 0.849 0.970 0.992

qmj Ewm 0.013 0.439 0.927 0.988 1.000
EWId 0.028 0.407 0.880 0.973 1.000

EwW 0.017 0.552 0.952 0.999 1.000

EW% 0.029 0.486 0.946 1.000 1.000
Cond.f 0.011 0.328 0.825 0.987 1.000
Uncond.p 0.016 0.286 0.879 0.996 1.000

bab Ewm 0.011 0.241 0.713 0.923 0.993
EW;i 0.033 0.224 0.694 0.908 0.990

EwW 0.028 0.289 0.801 0.973 0.992

EW% 0.021 0.247 0.721 0.964 0.995
Cond.f3 0.015 0.175 0.633 0.935 0.995
Uncond.p 0.008 0.147 0.649 0.971 0.997

cma Ewm 0.043 0.311 0.771 0.963 1.000
EWId 0.033 0.320 0.780 0.952 1.000

EWR 0.053 0.373 0.849 0.990 1.000

E‘W% 0.031 0.359 0.784 0.985 1.000
Cond.f 0.056 0.211 0.683 0.918 0.981
Uncond.p 0.051 0.329 0.821 0.983 1.000
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Table B.4: Test Power, Fama-French 25 Portfolios, 1968-2012.

Test power for risk factors. For a given risk factor f, we project it onto the market
return (equation 28) to obtain the regression intercept. We then construct a new
factor (f4) based on equation (29), with A controlling the factor risk premium that
is not explained by the market factor. We run D = 1,000 sets of simulations. For
each set, we bootstrap the sample period to construct the time series for both the new
factor given in equation (29) and the market factor, and, by assuming the two-factor
model is true, construct a panel of returns through equation (31), where the return
innovations are resampled from the return innovations based on the real data. Based
on the bootstrapped factors and return panels, we test whether f# has incremental
power to explain the cross-section of expected returns. We calculate the test power
by averaging the number of rejections across simulations. We consider six tests. Four
of them are EW™, EW@, EWF, and EW{ that are explained in Section 3.2. The
rest are two beta sorts. The unconditional beta sorts (Uncond.() first sorts stocks
based on their unconditional factor loadings estimated over the entire sample, and
then forms the long-short portfolio by having a long position in stocks that are in the
top beta decile and a short position in stocks that are in the bottom beta decile. The
t-statistic of the portfolios returns is used to test the significance of the candidate
factor. The conditional beta sorts (Cond.S) first estimates factor loadings based on
a five-year rolling window and then constructs the long-short portfolio that we hold
out-of-sample for one year. The t-statistic of the portfolio returns is used to test the
significance of the candidate factor. The five factors examined are explained in Table
1. We focus on the Fama-French 25 portfolios that cover the period 1968-2012.

Factor Method A=0(null) A=05 A=10 A=15 A=20

roe EWM™ 0.018 0.496 0.779 0.892 0.950
EWId 0.047 0.421 0.682 0.837 0.931

EWg 0.039 0.519 0.793 0.926 0.975

EW% 0.043 0.507 0.725 0.890 0.956
Cond.f 0.027 0.183 0.509 0.817 0.982
Uncond.p 0.019 0.156 0.591 0.913 0.983

ia EWM™ 0.029 0.609 0.948 1.000 1.000
EWfl 0.031 0.517 0.927 0.998 1.000

EwW 0.053 0.638 0.970 1.000 1.000

EW% 0.037 0.569 0.943 1.000 1.000
Cond.f 0.014 0.243 0.817 0.992 1.000
Uncond.p 0.012 0.301 0.836 0.994 1.000

qmj Ew™ 0.031 0.461 0.871 0.973 0.992
EW;i 0.052 0.419 0.832 0.952 0.995

EwW 0.053 0.517 0.886 0.978 0.997

EW% 0.047 0.468 0.850 0.962 0.998
Cond. 0.015 0.247 0.752 0.991 0.992
Uncond.p 0.009 0.212 0.841 0.993 0.994

bab Ewm 0.027 0.383 0.782 0.905 0.987
EWId 0.029 0.341 0.778 0.897 0.980

EWR 0.032 0.465 0.831 0.954 1.000

EWQ‘{ 0.029 0.417 0.768 0.939 0.981
Cond.f 0.013 0.083 0.312 0.642 0.872
Uncond.B 0.009 0.049 0.379 0.681 0.923

cma EWM™ 0.018 0.451 0.882 0.997 1.000
EWId 0.037 0.396 0.880 0.983 1.000

EW 0.041 0.559 0.913 0.990 1.000

EW% 0.061 0.507 0.870 0.996 1.000
Cond.f 0.019 0.209 0.673 0.973 1.000
Uncond.p 0.039 0.240 0.796 0.991 1.000
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C The Block Bootstrap

Our block bootstrap follows the so-called stationary bootstrap proposed by Politis and
Romano (1994) and subsequently applied by White (2000) and Sullivan, Timmermann
and White (1999). The stationary bootstrap applies to a strictly stationary and
weakly dependent time-series to generate a pseudo time series that is stationary. The
stationary bootstrap allows us to resample blocks of the original data, with the length
of the block being random and following a geometric distribution with a mean of 1/q.
Therefore, the smoothing parameter g controls the average length of the blocks. A
small ¢ (i.e., on average long blocks) is needed for data with strong dependence and a
large ¢ (i.e., on average short blocks) is appropriate for data with little dependence.
We describe the details of the algorithm in this section.

Suppose the set of time indices for the original data is 1,2,...,7T. For each boot-
strapped sample, our goal is to generate a new set of time indices {0(¢)}._,. Following
Politis and Romano (1994), we first need to choose a smoothing parameter g that can
be thought of as the reciprocal of the average block length. The conditions that
q = @, needs to satisfies are:

0<q,<1,q,— 0,ng, = 0.

Given this smoothing parameter, we follow the following steps to generate the new
set of time indices for each bootstrapped sample:
e Step I. Set ¢t = 1 and draw 6(1) independently and uniformly from 1,2,..., 7.

e Step II. Move forward one period by setting t = t+1. Stop if £ > T'. Otherwise,
independently draw a uniformly distributed random variable U on the unit
interval.

1. If U < ¢, draw 0(t) independently and uniformly from 1,2,...,7T.

2. Otherwise (i.e., U > q),set 6(t) =0(t — 1)+ 1if 6(¢t) < T and 0(t) = 1 if
o(t) > T.

e Step III. Repeat step II.

For most of our applications, we experiment with different levels of ¢ and show
how our results change with respect to the level of q.
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Table D.1.1: Individual Stocks as Test Assets, Big Stocks, Equally Weighted
Intercepts

Test results on 14 risk factors using individual stocks. We use individual stocks from CRSP that cover the 1968— 2012
period to test 14 risk factors. At the beginning of each year, we rank stocks based on their market capitalizations
and focus on stocks that have a market capitalization that is above the 10th percentile of the cross-section of market
capitalizations (that is, “big stocks”). A stock needs to have at least 36 monthly observations (either in the original
or the bootstrapped sample) to enter our tests. The 14 risk factors are excess market return (mkt), size (smb), book-
to-market (hml), profitability (rmw), and investment (cma) in Fama and French (2015a), betting against beta (bab)
in Frazzini and Pedersen (2014), gross profitability (gp) in Novy-Marx (2013), Pastor and Stambaugh liquidity (psl)
in Pastor and Stambaugh (2003), momentum (mom) in Carhart (1997), quality minus junk (gmy) in Asness, Frazzini
and Pedersen (2013), investment (ia) and profitability (roe) in Hou, Xue and Zhang (2015), co-skewness (skew) in
Harvey and Siddique (2000), and common idiosyncratic volatility in Herskovic, Kelly, Lustig and Van Nieuwerburgh
(2014). The baseline model refers to the model that includes the pre-selected risk factors. We focus on the panel
regression model described in Section 2.2. The two metrics (i.e., EW ™ and EW{), which measure the difference in
equally weighted mean/median absolute intercepts, are defined in Section 4.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt
single test single test single test single test
Factor EW[* 5th-percentile p-value EWId Sth-percentile p-value | EW™ 5th-percentile p-value EWId 5th-percentile p-value
mkt -0.197 [-0.226] (0.116) -0.271 [-0.247] (0.027)
smb -0.040 [-0.096] (0.275)  -0.056 [-0.075] (0.136) |-0.028 [-0.058] (0.382) -0.009 [-0.033] (0.504)
hml 0.186 [-0.056] (0.995) 0.157 [-0.058] (0.998) | 0.035 [-0.032] (0.992)  0.003 [-0.030] (0.716)
mom  0.053 [-0.078] (1.000)  0.092 [-0.063] (1.000) | 0.003 [-0.018] (0.621)  0.035 [-0.020] (1.000)
skew 0.030 [-0.043] (0.868) -0.009 [-0.034] (0.301) | 0.026 [-0.008] (0.975) -0.005 [-0.021] (0.456)
psl  0.044 [-0.041] (0.987)  0.035 [-0.041] (1.000) | 0.009 [-0.017] (0.718)  0.006 [-0.018] (0.754)
roe 0.138 [-0.104] (1.000) 0.085 [-0.087] (1.000) | 0.050 [-0.022] (1.000) 0.035 [-0.021] (1.000)
ia 0.385 [-0.079] (1.000) 0.375 [-0.079] [1.000] | 0.039 [-0.029] (0.983)  0.005 [-0.031] (0.732)
gmj  0.395 [-0.103] (1.000) 0.380 [-0.089] (1.000) | 0.045 [-0.028] (1.000) 0.032 [-0.030] (1.000)
bab  0.108 [-0.058] (1.000) -0.019 [-0.054] (0.348) | 0.077 [-0.006] (1.000)  0.020 [-0.022] (0.932)
gp 0.020 [-0.049] (0.827) -0.031 [-0.038] (0.096) | 0.037 [-0.020] (0.996)  0.009 [-0.022] (0.915)
cma 0.275 [-0.082] (0.997)  0.255 [-0.086] (0.987) |-0.024 [-0.014] (0.991) -0.008 [-0.028] (0.343)
rmw 0.166 [-0.046] (0.995)  0.081 [-0.035] (1.000) | 0.038 [-0.025] (1.000) -0.007 [-0.033] (0.654)
civ  -0.095 [-0.063] (0.015) -0.094 [-0.051] (0.003) | 0.011 [-0.020] (0.929) 0.010 [-0.018] (0.895)
multiple test multiple test multiple test multiple test
min [-0.226] (0.113) [-0.247] (0.021) min [-0.058] (0.443) [-0.044] (0.951)
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Table D.1.2: Individual Stocks as Test Assets, Big Stocks, Equally Weighted
T-Statistics

Test results on 14 risk factors using individual stocks. We use individual stocks from CRSP that cover the 1968— 2012
period to test 14 risk factors. At the beginning of each year, we rank stocks based on their market capitalizations
and focus on stocks that have a market capitalization that is above the 10th percentile of the cross-section of market
capitalizations (that is, “big stocks”). A stock needs to have at least 36 monthly observations (either in the original
or the bootstrapped sample) to enter our tests. The 14 risk factors are excess market return (mkt), size (smb), book-
to-market (hml), profitability (rmw), and investment (cma) in Fama and French (2015a), betting against beta (bab)
in Frazzini and Pedersen (2014), gross profitability (gp) in Novy-Marx (2013), Pastor and Stambaugh liquidity (psl)
in Pastor and Stambaugh (2003), momentum (mom) in Carhart (1997), quality minus junk (gmy) in Asness, Frazzini
and Pedersen (2013), investment (ia) and profitability (roe) in Hou, Xue and Zhang (2015), co-skewness (skew) in
Harvey and Siddique (2000), and common idiosyncratic volatility in Herskovic, Kelly, Lustig and Van Nieuwerburgh
(2014). The baseline model refers to the model that includes the pre-selected risk factors. We focus on the panel
regression model described in Section 2.2. The two metrics (i.e., EW and EW{), which measure the difference in
equally weighted mean/median absolute ¢-statistics, are defined in Section 4.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt

single test single test single test single test

Factor EW/? 5th-percentile p-value EWZ 5th-percentile p-value | EW/* 5th-percentile p-value EWZ2 5th-percentile p-value
T T T T

mkt -0.257 [-0.234] (0.039) -0.241 [-0.253] (0.053)
smb -0.038 [-0.050] (0.698) -0.056 [-0.080] (0.079) | -0.007 [-0.031] (0.419) -0.030 [-0.039] (0.147)
hml  0.200 [-0.029] (1.000) 0.210 [-0.030] (1.000) |-0.005 [-0.039] (0.408) -0.022 [-0.039] (0.162)
mom  0.092 [-0.046] (0.972) 0.076 [-0.049] (0.979) | 0.036 [-0.009] (1.000) 0.031 [-0.014] (0.927)
skew -0.009 [-0.042] (0.215)  0.009 [-0.046] (0.595) |-0.013 [-0.012] (0.234)  0.006 [-0.019] (0.530)
psl  0.039 [-0.038] (0.973)  0.040 [-0.046] (0.966) | -0.005 [-0.016] (0.206) -0.013 [-0.022] (0.098)
roe  0.097 [-0.101] (1.000) 0.093 [-0.123] (1.000) | 0.010 [-0.024] (0.863)  0.007 [-0.026] (0.778)
ia 0.431 [-0.047] (1.000) 0.447 [-0.047] [1.000] |-0.029 [-0.039] (0.093) -0.054 [-0.039] (0.001)
gmj  0.508 [-0.097] (1.000) 0.555 [-0.115] (1.000) | -0.005 [-0.028] (0.517)  0.005 [-0.039] (0.752)
bab -0.053 [-0.068] (0.096) -0.102 [-0.075] (0.027) |-0.012 [-0.025] (0.182) -0.043 [-0.031] (0.013)
gp -0.026 [-0.048] (0.241) -0.017 [-0.056] (0.322) | 0.025 [-0.019] (0.991) 0.011 [-0.029] (0.789)
cma 0.319 [-0.070] (1.000) 0.323 [-0.078] (1.000) |-0.032 [-0.038] (0.073) -0.058 [-0.037] (0.012)
rmw 0.128 [-0.024] (0.992) 0.141 [-0.029] (0.995) | 0.013 [-0.032] (0.301) -0.025 [-0.042] (0.215)
civ -0.120 [-0.045] (0.008) -0.141 [-0.050] (0.006) | 0.011 [-0.016] (0.948) -0.001 [-0.028] (0.643)

multiple test multiple test multiple test multiple test
min [-0.234] (0.041) [-0.253] (0.055) min [-0.053] (0.213) [-0.060] (0.039)
Panel C: Baseline = mkt + cma
single test single test

Factor EW ' 5th-percentile p-value EW% 5th-percentile p-value

mkt
smb  0.002 [0.031]  (0.538) -0.001  [-0.031]  (0.515)
hml 0.013 [-0.009] (0.491) 0.015 [-0.019] (0.598)
mom -0.007 [-0.011] (0.138) -0.007 [-0.018] (0.175)
skew 0.011 [-0.012] (0.708) 0.010 [-0.017] (0.628)
psl  0.003 [-0.019] (0.660) -0.007 [-0.028] (0.382)
roe  0.014 [-0.028] (0.940) 0.004 [-0.028] (0.653)
ia  -0.007 [-0.020] (0.317)  0.001 [-0.026] (0.618)
gmj  0.029 [0.014]  (0.968) 0.013 [-0.021]  (0.719)
bab  0.041 [-0.009] (1.000) 0.017 [-0.020] (0.871)
gp  0.046 [-0.007] (1.000) 0.039 [-0.034] (1.000)

cma
rmw 0.021 [-0.024] (0.972) 0.010 [-0.027] (0.758)
civ  0.014 [-0.016] (0.913) 0.015 [-0.020] (0.851)

multiple test multiple test

min [-0.041] (0.842) [-0.040] (0.908)
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Table D.1.3: Individual Stocks as Test Assets, Big Stocks, Value Weighted
Intercepts/T-Statistics

Test results on 14 risk factors using individual stocks. We use individual stocks from CRSP that cover the 1968— 2012
period to test 14 risk factors. At the beginning of each year, we rank stocks based on their market capitalizations
and focus on stocks that have a market capitalization that is above the 10th percentile of the cross-section of market
capitalizations (that is, “big stocks”). A stock needs to have at least 36 monthly observations (either in the original
or the bootstrapped sample) to enter our tests. The 14 risk factors are excess market return (mkt), size (smb), book-
to-market (hml), profitability (rmw), and investment (cma) in Fama and French (2015a), betting against beta (bab)
in Frazzini and Pedersen (2014), gross profitability (gp) in Novy-Marx (2013), Pastor and Stambaugh liquidity (psl)
in Pastor and Stambaugh (2003), momentum (mom) in Carhart (1997), quality minus junk (gmy) in Asness, Frazzini
and Pedersen (2013), investment (ia) and profitability (roe) in Hou, Xue and Zhang (2015), co-skewness (skew) in
Harvey and Siddique (2000), and common idiosyncratic volatility in Herskovic, Kelly, Lustig and Van Nieuwerburgh
(2014). The baseline model refers to the model that includes the pre-selected risk factors. We focus on the panel
regression model described in Section 2.2. The two metrics (i.e., VIW; and VWr), which measure the difference in
value-weighted absolute intercepts and t-statistics, are defined in Section 4.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt

single test single test single test single test

Factor VW) b5th-percentile p-value VWyp 5th-percentile p-value | VW7 5th-percentile p-value V Wy 5th-percentile p-value

mkt -0.367 [-0.300] (0.025) -0.702 [-0.458] (0.015)
smb -0.050 [-0.065] (0.087) -0.067 [-0.056] (0.027) | 0.006 [-0.025] (0.831)  0.056 [-0.093] (0.848)
hml 0.152 [-0.095] (1.000) 0.322 [-0.119] (1.000) | 0.022 [-0.028] (0.996) -0.008 [-0.077] (0.235)
mom 0.118 [-0.068] (1.000) 0.266 [-0.105] (1.000) | 0.047 [-0.008] (1.000) 0.128 [-0.011] (1.000)
skew -0.004 [-0.040] (0.351) -0.036 [-0.069] (0.146) | -0.005 [-0.007] (0.095) -0.043 [-0.038] (0.033)
psl  0.032 [-0.031] (0.991)  0.060 [-0.053] (0.951) | 0.012 [-0.006] (1.000) 0.017 [-0.014] (0.949)
roe  0.100 [-0.077] (1.000) 0.128 [-0.065] (1.000) |-0.022 [-0.024] (0.054) -0.163 [-0.064] (0.007)
ia 0.365 [-0.088] (1.000) 0.728 [-0.151] (1.000) | 0.030 [-0.027] (1.000) -0.060 [-0.100] (0.089)
gmj 0.338 [-0.136] (1.000) 0.734 [-0.177] (1.000) |-0.043 [-0.034] (0.014) -0.246 [-0.139] (0.003)
bab  0.012 [-0.047] (0.914) -0.109 [-0.079] (0.014) | 0.010 [-0.013] (0.992) -0.103 [-0.052] (0.002)
gp -0.066 [-0.043] (0.013) -0.161 [-0.056] (0.003) |-0.016 [-0.030] (0.372) -0.026 [-0.038] (0.106)
cma 0.297 [-0.099] (1.000) 0.641 [-0.171] (0.998) | 0.020 [-0.022] (1.000) -0.054 [-0.065] (0.070)
rmw 0.071 [-0.026] (0.994) 0.077 [-0.015] (0.924) |-0.032 [-0.021] (0.029) -0.183 [-0.110] (0.000)
civ -0.104 [-0.061] (0.005) -0.210 [-0.092] (0.001) | 0.018 [-0.009] (0.998) 0.063 [-0.033] (0.991)

multiple test multiple test multiple test multiple test
min [-0.300] (0.031) [-0.458] (0.021) min [-0.039] (0.032) [-0.155] (0.001)
Panel C: Baseline = mkt + bab
single test single test

Factor VW7 5th-percentile p-value V Wy 5th-percentile p-value

mkt
smb  0.035 [-0.020] (1.000) 0.146 [-0.045] (1.000)
hml  0.036 [-0.033] (1.000) 0.023 [-0.068] (0.873)
mom 0038  [-0.018]  (1.000) 0.107  [-0.043]  (1.000)
skew 0.022 [-0.008] (0.463) -0.008 [-0.021] (0.118)
psl  0.015 [-0.009] (0.997)  0.036 [-0.022] (0.993)
roe  0.009 [-0.013] (0.988) 0.028 [-0.024] (0.982)
ia  0.069 [-0.030] (1.000) 0.088 [-0.071] (1.000)

qmj
bab  0.030 [-0.016] (0.991) -0.001 [-0.032] (0.476)
gp -0.014  [-0.035] (0.438) -0.014  [-0.047]  (0.301)
cma  0.051 [-0.024] (1.000) 0.031 [-0.052] (0.937)
rmw  0.010  [-0.011]  (0.977) 0.039  [-0.024]  (0.985)
civ  0.000 [-0.011] (0.721)  -0.000 [-0.023] (0.428)

multiple test multiple test

min [-0.039] (0.832) [-0.090] (0.867)
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Table D.2.1: 49 Industries, Equally Weighted Intercepts

Test results on 14 risk factors using 49 industry portfolios. We use the 49 industry portfolios that are available on Ken
French’s on-line data library to test 14 risk factors. The 14 risk factors are excess market return (mkt), size (smb),
book-to-market (hmi), profitability (rmw), and investment (cma) in Fama and French (2015a), betting against beta
(bad) in Frazzini and Pedersen (2014), gross profitability (gp) in Novy-Marx (2013), Pastor and Stambaugh liquidity
(psl) in Pastor and Stambaugh (2003), momentum (mom) in Carhart (1997), quality minus junk (gmj) in Asness,
Frazzini and Pedersen (2013), investment (ia) and profitability (roe) in Hou, Xue and Zhang (2015), co-skewness (skew)
in Harvey and Siddique (2000), and common idiosyncratic volatility in Herskovic, Kelly, Lustig and Van Nieuwerburgh
(2014). The baseline model refers to the model that includes the pre-selected risk factors. We focus on the panel
regression model described in Section 2.2. The two metrics (i.e., EW]" and EW]d), which measure the difference in
equally weighted mean/median absolute intercepts, are defined in Section 4.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt
single test single test single test single test
Factor EW[™ 5th-percentile p-value EWId Sth-percentile p-value | EW[™ 5th-percentile p-value EWId 5th-percentile p-value
mkt -0.370 [-0.342] (0.0410) -0.416 [-0.350] (0.023)
smb -0.098 [-0.126] (0.093) -0.073 [-0.129] (0.168) | 0.011 [-0.029] (0.887) 0.013 [-0.036] (0.842)
hml 0.147 [-0.078] (0.998)  0.162 [-0.083] (0.999) | 0.010 [-0.025] (0.908) 0.025 [-0.041] (0.942)
mom 0.164 [-0.084] (0.999) 0.179 [-0.092] (0.999) | 0.021 [-0.010] (0.996) 0.049 [-0.024] (0.999)
skew -0.022 [-0.027] (0.070)  0.003 [-0.034] (0.662) |-0.023 [-0.018] (0.029) -0.012 [-0.026] (0.165)
psl  0.016 [-0.019] (0.916)  0.041 [-0.026] (0.979) | -0.005 [-0.006] (0.082) 0.010 [-0.014] (0.891)
roe  0.207 [-0.074] (1.000) 0.191 [-0.083] (1.000) |-0.015 [-0.019] (0.084) 0.018 [-0.028] (0.912)
ia 0.397 [-0.107] (1.000)  0.395 [-0.114] [1.000] | 0.026 [-0.024] (0.991) 0.025 [-0.038] (0.950)
gmj  0.402 [-0.168] (1.000)  0.403 [-0.175] (1.000) |-0.013 [-0.023] (0.142) -0.024 [-0.032] (0.087)
bab  0.019 [-0.020] (0.940) -0.009 [-0.031] (0.232) |-0.003 [-0.024] (0.386) 0.005 [-0.036] (0.701)
gp -0.069 [-0.040] (0.012) -0.082 [-0.053] (0.010) | 0.026 [-0.016] (1.000) 0.001 [-0.029] (0.542)
cma 0.334 [-0.116] (1.000)  0.332 [-0.121] (1.000) |-0.020 [-0.014] (0.822) 0.034 [-0.032] (0.985)
rmw 0.091 [-0.047] (0.998)  0.067 [-0.051] (0.977) |-0.023 [-0.031] (0.086) -0.023 [-0.039] (0.131)
civ  -0.160 [-0.078] (0.002) -0.182 [-0.082] (0.002) | 0.015 [-0.009] (0.988) 0.028 [-0.020] (0.977)
multiple test multiple test multiple test multiple test
min [-0.342] (0.041) [-0.350] (0.023) min [-0.042] (0.263) [-0.060] (0.466)
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Table D.2.2: 49 Industry, Equally Weighted T-Statistics

Test results on 14 risk factors using 49 industry portfolios. We use the 49 industry portfolios that are available on Ken
French’s on-line data library to test 14 risk factors. The 14 risk factors are excess market return (mkt), size (smb),
book-to-market (hml), profitability (rmw), and investment (cma) in Fama and French (2015a), betting against beta
(bad) in Frazzini and Pedersen (2014), gross profitability (gp) in Novy-Marx (2013), Pastor and Stambaugh liquidity
(psl) in Pastor and Stambaugh (2003), momentum (mom) in Carhart (1997), quality minus junk (gmj) in Asness,
Frazzini and Pedersen (2013), investment (ia) and profitability (roe) in Hou, Xue and Zhang (2015), co-skewness (skew)
in Harvey and Siddique (2000), and common idiosyncratic volatility in Herskovic, Kelly, Lustig and Van Nieuwerburgh
(2014). The baseline model refers to the model that includes the pre-selected risk factors. We focus on the panel
regression model described in Section 2.2. The two metrics (i.e., EW™ and EW{), which measure the difference in
equally weighted mean/median absolute t-statistics, are defined in Section 4.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt
single test single test single test single test
Factor EW* 5th-percentile p-value EW;! Sth-percentile p-value | EWp' 5th-percentile p-value E'W% 5th-percentile p-value
mkt -1.023 [-0.105] (0.003) -1.325 [-0.147] (0.003)
smb -0.261 [-0.289] (0.064) -0.297 [-0.336] (0.063) | 0.083 [-0.118] (0.854) 0.147 [-0.167] (0.916)
hml 0.524 [-0.210] (0.997) 0.533 [-0.235] (0.996) | 0.068 [-0.113] (0.841) 0.044 [-0.184] (0.652)
mom 0.571 [-0.249] (1.000) 0.717 [-0.285] (1.000) | 0.142 [-0.040] (0.999) 0.326 [-0.105] (1.000)
skew -0.084 [-0.090] (0.060) -0.110 [-0.117] (0.056) |-0.114 [-0.075] (0.018) -0.136 [-0.119] (0.035)
psl  0.040 [-0.068] (0.859) 0.071 [-0.089] (0.888) |-0.023 [-0.028] (0.079) -0.007 [-0.080] (0.378)
roe  0.639 [-0.205] (1.000) 0.658 [-0.245] (0.999) |-0.088 [-0.093] (0.057) 0.057 [-0.141] (0.762)
ia 1.339 [-0.271] (1.000) 1.340 [-0.337] [1.000] | 0.081 [-0.098] (0.937) 0.196 [-0.162] (0.980)
gmj 1.614 [-0.441] (1.000) 1.561 [-0.471] (1.000) |-0.085 [-0.111] (0.076) -0.025 [-0.140] (0.285)
bab -0.025 [-0.058] (0.144) -0.185 [-0.103] (0.014) |-0.009 [-0.097] (0.253)  0.049 [-0.164] (0.704)
gp -0.243 [-0.118] (0.004) -0.375 [-0.159] (0.001) | 0.104 [-0.045] (0.998) 0.104 [-0.107] (0.856)
cma 1.186 [-0.321] (1.000) 1.243 [-0.364] (1.000) |0.000 [-0.090] (0.327) 0.137 [-0.145] (0.954)
rmw 0.288 [-0.132] (0.993) 0.276 [-0.165] (0.968) |-0.129 [-0.117] (0.037) -0.017 [-0.181] (0.343)
civ -0.528 [-0.231] (0.001) -0.637 [-0.265] (0.001) | 0.075 [-0.048] (0.982) 0.076 [-0.100] (0.889)
multiple test multiple test multiple test multiple test
min [-0.555] (0.003) [-0.629] (0.003) | min [-0.201] (0.176) [-0.311] (0.339)
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Table D.2.3: 49 Industry Portfolios, Value Weighted Intercepts/T-Statistics

Test results on 14 risk factors using 49 industry portfolios. We use the 49 industry portfolios that are available on Ken
French’s on-line data library to test 14 risk factors. The 14 risk factors are excess market return (mkt), size (smb),
book-to-market (hml), profitability (rmw), and investment (cma) in Fama and French (2015a), betting against beta
(babd) in Frazzini and Pedersen (2014), gross profitability (gp) in Novy-Marx (2013), Pastor and Stambaugh liquidity
(psl) in Pastor and Stambaugh (2003), momentum (mom) in Carhart (1997), quality minus junk (gmj) in Asness,
Frazzini and Pedersen (2013), investment (ia) and profitability (roe) in Hou, Xue and Zhang (2015), co-skewness (skew)
in Harvey and Siddique (2000), and common idiosyncratic volatility in Herskovic, Kelly, Lustig and Van Nieuwerburgh
(2014). The baseline model refers to the model that includes the pre-selected risk factors. We focus on the panel
regression model described in Section 2.2. The two metrics (i.e., VIW; and VWr), which measure the difference in
value-weighted absolute intercepts, are defined in Section 4.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt

single test single test single test single test

Factor VW) b5th-percentile p-value VWyp 5th-percentile p-value | VW7 5th-percentile p-value V Wy 5th-percentile p-value

mkt -0.371 [-0.306] (0.018) -1.066 [-0.141] (0.002)
smb -0.062 [-0.076] (0.083) -0.178 [-0.220] (0.078) | 0.013 [-0.028] (0.803)  0.092 [-0.126] (0.829)
hml 0.124 [-0.064] (0.997) 0.470 [-0.184] (0.998) |-0.033 [-0.037] (0.069) -0.144 [-0.147] (0.052)
mom 0.136 [-0.063] (0.998) 0.488 [-0.202] (0.997) | 0.019 [-0.007] (0.992) 0.112 [-0.035] (0.999)
skew -0.020 [-0.026] (0.085) -0.081 [-0.092] (0.062) | -0.035 [-0.026] (0.018) -0.169 [-0.105] (0.013)
psl  0.015 [-0.016] (0.903) 0.038 [-0.078] (0.857) |-0.001 [-0.006] (0.365) -0.016 [-0.027] (0.123)
roe 0.133 [-0.047] (1.000) 0.414 [-0.157] (0.999) | -0.062 [-0.033] (0.004) -0.293 [-0.133] (0.004)
ia 0.317 [-0.084] (1.000) 1.117 [-0.272] (1.000) |-0.046 [-0.034] (0.018) -0.244 [-0.144] (0.007)
gmj  0.301 [-0.133] (1.000) 1.258 [-0.329] (1.000) |-0.084 [-0.041] (0.002) -0.390 [-0.166] (0.001)
bab -0.010 [-0.016] (0.092) -0.136 [-0.060] (0.007) |-0.067 [-0.040] (0.009) -0.320 [-0.163] (0.004)
gp -0.070 [-0.036] (0.007) -0.248 [-0.114] (0.004) | 0.007 [-0.016] (0.951) 0.051 [-0.043] (0.755)
cma  0.270 [-0.094] (1.000) 1.006 [-0.305] (1.000) |-0.055 [-0.032] (0.008) -0.282 [-0.130] (0.001)
rmw  0.049 [-0.027] (0.988) 0.159 [-0.058] (0.975) |-0.076 [-0.047] (0.010) -0.353 [-0.195] (0.009)
civ -0.121 [-0.062] (0.003) -0.426 [-0.187] (0.002) | 0.020 [-0.011] (0.993) 0.100 [-0.043] (0.988)

multiple test multiple test multiple test multiple test
min [-0.306] (0.018) [-0.428] (0.002) min [-0.062] (0.011) [-0.272] (0.009)
Panel C: Baseline = mkt + bab
single test single test

Factor VWj b5th-percentile p-value VWp 5th-percentile p-value

mkt
smb 0.044 [-0.013] (1.000) 0.259 [-0.070] (1.000)
hml 0.032 [-0.038] (0.990) 0.210 [-0.173] (0.994)
mom  0.027 [-0.015] (0.999) 0.142 [-0.065] (0.996)
skew 0.003 [-0.015] (0.816)  0.031 [-0.062] (0.827)
psl  -0.004  [-0.007]  (0.108) -0.036  [-0.033]  (0.046)
roe  0.010 [-0.010] (0.990) 0.060 [-0.037] (0.983)
ia 0.040 [-0.031] (0.998) 0.230 [-0.134] (1.000)

qmj
bab  0.020 [-0.024] (0.973) 0.148 [-0.100] (0.995)
gp -0.007 [-0.033] (0.341) -0.008 [-0.116] (0.283)
cma  0.019 [-0.029] (0.929) 0.128 [-0.131] (0.959)
rmw  0.021 [0.026]  (0.977) 0.110  [-0.107]  (0.973)
civ  0.029 [-0.011] (1.000) 0.134 [-0.039] (1.000)

multiple test multiple test

min [-0.048]  (0.795) [-0.201]  (0.653)
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E FAQ

E.1 General Questions

e [sn't weighting by market cap just another way of creating size portfolios? (Sec-
tion 2)

In our paper, value weighting allows us to take into account the differential im-
pact of a factor across size groups. It could be the significance (e.g., t-statistic)
of the factor across size groups. This is different from the return differential
across size groups that are caused by the size effect.
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