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Safe-Haven CDS Premia

Abstract

We argue that Credit Default Swap (CDS) premia for safe-haven sove-

reigns, like Germany and the United States, are driven to a large extent

by regulatory requirements under which derivatives dealing banks have an

incentive to buy CDS to hedge counterparty credit risk of their counterpar-

ties. We explain the mechanics of the regulatory requirements and develop

a model in which derivatives dealers, who have a derivatives exposure with

sovereigns, need CDS for capital relief. End users without exposure to the

sovereigns sell the CDS and require a positive premium to compensate for

the use of margin capital. The model’s predictions are confirmed using

data on several sovereigns.

CDS premia, Capital charges, Government Bonds; JEL: F34, G12, G15



1 Introduction

Credit Default Swap (CDS) premia are important indicators of the credit quality

of most bond issuers. They are in fact often viewed as a cleaner measure of credit

quality than the yield spreads observed on the underlying bonds themselves. This

is in part because bonds are thought of as carrying higher illiquidity premia and

because a larger amount of capital is required for arbitrageurs who wish to have

a certain credit exposure using corporate bonds instead of CDS. But even if bond

spreads and CDS premia do not measure credit risk only, they are expected to

be positively related – both responding with increasing spreads when the credit

quality of the underlying issuer deteriorates. CDS contracts on very high-rated

sovereign issuers are a striking exception to this rule. Panel A of Figure 1 shows

the time series of German five-year CDS premia and yield spreads. The two

variables do not only differ in levels, they also move in opposite directions. Panel

B shows scatter plots of the time series from Panel A and contrasts the behaviour

of German spreads with the behaviour of French and Italian spreads both of which

display the standard pattern of CDS premia and yield spreads which are typically

positively correlated.

Bonds issued by high-rated sovereigns, such as Germany and the United

States, are considered as both safe and liquid assets. For these reasons and

especially during times of financial distress, these bonds provide a safe haven for

investors and their yield spreads diminish. If we think that credit risk of safe

haven bonds remains vanishingly small even during periods of market-wide dis-

tress, it is surprising that there is such a large market for CDS contracts on safe

sovereigns, and that the premia behave so markedly different from bond spreads.

We argue in this paper that financial regulation is responsible for a large

share of the demand for CDS on safe havens. More precisely, derivatives-dealing

banks engage in OTC derivatives, such as interest rate swaps, with sovereigns.

Most sovereigns do not post collateral in these transactions, which leaves the
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derivatives dealer exposed to counterparty-credit risk. Regulators measure the

counterparty-credit risk using the sovereign’s CDS premium. The risk either adds

to the dealers’ risk-weighted assets (RWAs) or can be hedged using CDS on the

sovereign. Further, we argue that selling CDS, even on a supposedly risk-free

entity, is not cost-free. The seller of the CDS is still required to use a share of

his own capital to provide the initial margin. To compensate him for using his

capital, the seller requires a positive CDS premium. If capital constraints are

binding, for instance in times of financial distress, the seller requires a higher

premium.

We start our analysis by incorporating these arguments into a simple one pe-

riod model in which heterogeneous agents face different margin constraints. The

constraints in the model are similar to those considered in, among others, Gromb

and Vayanos (2002), Ashcraft, Gârleanu, and Pedersen (2011), and Gârleanu and

Pedersen (2011). There are two constrained agents in our model. The first agent

is a derivatives-dealing bank who is engaged in a derivatives transaction with a

sovereign. Due to regulatory requirements, this derivatives transaction adds to

the banks’s RWA, thereby lowering its capital available for other investments. To

free up capital, the bank can buy CDS on the sovereign. For simplicity and in

order to characterize a premium that is independent of credit risk, we assume

that there is no default risk associated with the sovereign. In our model, the

only reason for buying the CDS is regulatory requirements. The CDS premia we

compute for the default-free case would also enter into CDS premia of a credit

risky sovereign provided that this sovereign has entered into a uncollateralized

derivatives transaction with dealer banks. The second agent is an end user of

derivatives, who has no exposure to the risk-free sovereign and acts as seller of

credit protection. He weighs the benefit of receiving the CDS premium against

the cost of having to invest less in the risky asset. In addition to the two con-

strained agents there is a third, unconstrained and more risk-averse, agent. This

agent does not face a margin constraint and it ensures an equilibrium in the mar-
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ket for the risky asset. It is important that both the bank’s and the end user’s

margin constraints are binding and that trading the CDS requires capital. The

bank is willing to pay a premium for freeing up capital to increase its investment

in the risky asset. The end user demands a premium for selling CDS protection

because doing so reduces his room for investing in the risky asset. Hence, even if

the seller of the CDS receives a premium with no risk of having to actually cover

a default loss, the further constraint on his binding margin constraint is costly.

To confirm the underlying assumptions of our theory, we discuss the market for

safe-haven CDS and practical issues with the new regulatory requirements. First,

we show that the market for safe-haven CDS is large relative to other single-name

CDS markets, but that only a small fraction of the sovereign bonds is insured by

CDS. Afterwards, we show that derivatives dealers are net buyers of sovereign

CDS. We then use data from Germany’s interest rate swap holdings to provide

sample calculations based on the new regulatory requirements. These calculations

confirm that it is always preferable for the dealer bank to buy CDS to free up

regulatory capital. Putting the resulting notional from our sample calculation

in relation with the CDS volumes outstanding, we find that the CDS demand

due to Basel III can account for more than 50% of the whole sovereign CDS

volume outstanding, a number that is in line with industry research letters. We

also discuss practical issues regarding Basel III, the implementation of the new

regulations in regional law, and hedging practices of major derivatives-dealing

banks.

To test our model results, we extend and formalize our analysis of the anomaly

exhibited in Figure 1, using data on three risky European sovereigns (Italy, Por-

tugal, and Spain), three less-risky European sovereigns (Austria, Finland, and

France) and the largest four safe sovereigns (Germany, Great Britain, Japan, and

the United States). In theory, bond yields should be driven by the risk-free in-

terest rate and the credit risk of the bond issuer. While this relationship clearly

holds for the risky and less-risky sovereigns in our sample, it does not hold for
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most of the safe sovereigns. For Germany, Japan, and the United States CDS pre-

mia are not a significant explanatory variable for bond yields. For Great Britain

the CDS premium is significant, but only at a 10% level.

One could argue that the credit risk premium in safe-haven bond yields might

increase during times of financial distress, but is simply offset by the convenience

benefit of holding safe and liquid assets. This is not a likely explanation because

CDS premia on safe government bonds are simply too large to be explained by

credit risk only. To illustrate this point, we compare a proxy for the convenience

yield of German government bonds with the 5-year CDS premium in Figure 2.

The figure shows that the convenience benefit of holding German government

bonds is not high enough to offset the credit risk implied by the CDS contract.

We conclude our empirical analysis by formalizing this argument. We include

a proxy for the convenience yield of safe haven bonds in our regression analysis

and find that including this variable does not change the results of our analysis

significantly.

Finally, we test whether proxies for regulatory capital are capable of explaining

CDS premia. We find that for the risky sovereigns, Italy, Portugal, and Spain,

CDS premia are mainly drive by credit risk. For the low-risk sovereigns Austria,

Finland, and France, we find that both credit and regulatory capital proxies have

strong explanatory power for CDS premia. Therefore, our theory does not only

apply to safe-haven sovereigns but extends to entities with a low credit risk. For

the safe havens Germany, UK, Japan, and the US, we find that regulatory proxies

are significant and can explain up to 33% of the variation in CDS premia.

Related Literature

In theory, the anomaly in Figure 1 could not occur in a frictionless market where

an increase in the CDS premium would also increase the corresponding bond

yield. More precisely, the CDS premium and bond yield spread should be equal
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due to an arbitrage relationship. Hence, our article is related to the growing

literature on the limits of arbitrage, as introduced by Shleifer and Vishny (1997)

and studied by Gromb and Vayanos (2002) for the case when arbitrageurs need to

collateralize their positions. Gromb and Vayanos (2010) survey the literature on

limits of arbitrage and summarize the basic idea in these models. An exogenous

demand shock for a certain asset occurs to outside investors and arbitrageurs, who

both are utility-maximizing and constrained, and take advantage of the shock by

providing the asset. The demand in our model is a demand for capital relief. In

that sense, our article is related to Yorulmazer (2013).

The difference between the CDS premium and the yield spread is commonly

referred to as the CDS-bond basis and there is a large strand of literature aim-

ing to explain this basis. Empirically, the CDS-bond basis has been studied for

corporates by, among others, Longstaff, Mithal, and Neis (2005) and Bai and

Collin-Dufresne (2013). Fontana and Scheicher (2014), Gyntelberg, Hördahl,

Ters, and Urban (2013), and O’Kane (2012) analyze the CDS-bond basis for Eu-

ropean sovereigns. Our empirical analysis complements this strand of literature

by showing that there is not only a CDS-bond basis for safe government bonds,

rather CDS premia and yield spreads are completely unrelated. This result is re-

lated to the literature on the drivers of sovereign CDS premia. Previous studies

like, Pan and Singleton (2008), Longstaff, Pan, Pedersen, and Singleton (2011),

and Ang and Longstaff (2013) analyze sovereign CDS premia and explain them

by global investors’ risk appetite and systemic risk. While investors’ risk appetite

explains why risky sovereign CDS increase in times of market distress this expla-

nation fails to explain why safe sovereign CDS increase at the same time. Our

model gives an alternative explanation why safe sovereign CDS increase in times

of market distress.

The remainder of this article is organized as follows. We provide an overview

of the market for sovereign CDS and the new regulatory requirements in Section

2. In Section 3, we develop a model that is capable of explaining positive CDS
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premia, even for risk-free underlyings. We then provide further details on the

new regulatory requirements in Section 4.1. We provide empirical evidence for

our theory in Section 5. Section 6 concludes.

2 Stylized Facts and Institutional Background

Table 1 provides an overview of the CDS and bond volumes outstanding for 10

of the worlds largest sovereigns. We consider 4 of these 10 sovereigns as safe

havens (Germany, Great Britain, Japan, and the United States). The sovereigns

in Table 1 are ranked by CDS notional outstanding. The ranking is relative to

all single-name CDS, including corporates and financials. Table 1 shows that the

market for safe-haven CDS is a large, relative to other single-name CDS markets.

It also shows that only a small fraction of the sovereign debt is insured using

CDS. According to the ranking, CDS on Germany have the third highest net

notional outstanding, followed by Japan on place 6, Great Britain on place 13,

and the United States on place 32.

Figure 6 shows that from 2010 on, derivatives dealers are net buyers of

sovereign CDS. This is interesting because in most other markets derivatives

dealers act as net sellers of CDS contracts.1 This observation is in line with con-

cerns from the financial industry that there are no natural sellers of sovereign

CDS.2

1Unfortunately, there is no information for the buyers and sellers of individual sovereigns

available. Hence, we cannot claim that the variation of the notional amount of sovereign CDS

bought by dealers can only be traced to financial regulation. It is also possible that, especially

during the European debt crisis, the end-users’ demand for CDS on risky sovereigns increased.
2See, for instance, US treasury borrowing and advisory committee report,

May 2010 http://www.treasury.gov/resource-center/data-chart-center/quarterly-

refunding/Documents/dc-2010-q2.pdf.
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2.1 The Regulatory Framework

A significant part of large dealer banks’ exposure to sovereign entities comes

from interest rate swaps and other over-the-counter (OTC) derivative positions.

Unlike financial entities, most sovereigns do not post collateral in OTC derivatives

positions and this leaves dealer banks exposed to counterparty credit risk. The

current regulatory regime, referred to in short as Basel III (see Basel Committee

on Banking Supervision (2011)), contains a charge related to this counterparty

credit risk. In essence, an uncollateralized OTC exposure, which is not hedged

using CDS contracts, adds to a bank’s risk-weighted assets. The size of the

addition depends on a so-called CVA VaR measure which measures potential

fluctuations in the value of the OTC exposure that are due to fluctuations in the

credit risk of the counterparty.

We now explain the notions of CVA, CVA VaR and the implications for risk-

weighted assets in more detail. This will be useful both for an important pa-

rameter choice in our model and for estimating the size of the demand for CDS

contracts that might be driven by banks seeking reduction in CVA VaR-based

regulatory capital requirements.

Banks were already required to account for the credit risk of their deriva-

tives counterparties in their valuation of derivatives positions before the default

of Lehman Brothers. To adjust the value of a derivative position the banks

would compute the so-called Credit Value Adjustment (CVA), which measures

the difference between the value of a derivative with a risk-free counterparty

and a derivative with a credit-risky counterparty. Motivated by the large losses

in values of derivatives positions that arose from deteriorating credit quality of

counterparties during the crisis, Basel III introduced a capital charge to increase

the banks’ robustness to such losses. The Basel Committe defines CVA (see Basel

Committee on Banking Supervision (2011), page 31) as follows:
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CVA = LGD
T∑
i=1

Q(τ ∈ (ti−1, ti))EE(ti−1, ti). (1)

We have introduced τ as the default time of the counterparty, and we use Q to

emphasize the fact that probability of default of the counterparty in the time

interval is computed using CDS implied default probabilities, i.e., risk-neutral

probabilities. Intuitively, the formula computes the loss of value in a derivatives

position by summing up the value of potential losses in a series of time intervals

representing all future revaluation dates until maturity of the derivative at time

T. For each revaluation date, the value of the potential credit loss is computed

as a product of loss given default (LGD), the probability that a default occurs in

the time interval, and the expected exposure (EE). The exposure is positive if the

derivative has positive value to the bank and zero otherwise. The exposure for the

period (ti−1, ti), EE(ti−1, ti), is computed as an average of discounted exposure at

time ti−1 and discounted exposure at time ti. The exposure calculation captures

the fact, that the bank will owe a defaulting counterparty the full value of the

derivatives position if the position has positive value to the counterparty, whereas

the bank will only recover a fraction of the value of the position if it has a positive

value to the bank. We give an example of how to compute this exposure in

Section 4.1. In Basel Committee on Banking Supervision (2011), the probability

of default is defined as

Q(τ ∈ (ti−1, ti)) = max

[
0,

(
exp

(
−si−1ti−1

LGD

)
− exp

(
− siti

LGD

))]
,

where si is the CDS premium on the counterparty for a CDS with maturity date

i. The maximum will ensure non-negative default probabilities. It is irrelevant for

our computations where we use a constant CDS premium based on the five-year

rate.

CVA VaR is a VaR measure which depends on the sensitivity of CVA to

changes in the credit risk of the counterparty, i.e., the sensitivity of CVA to
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changes in the CDS premium. It takes the form:3

CVA VaR = 3×WorstCase× CS01. (2)

CS01 represents the sensitivity of CVA towards a one-basis-point change in the

CDS premium. To simplify calculations we assume throughout the paper that

the CDS term structure is flat and that CS01 measures the risk of a parallel

shift. With this assumption, the credit delta CS01 is given as on page 33 of Basel

Committee on Banking Supervision (2011):

CS01 = EE × 10−4

×
T∑
i=1

(
ti exp

(
− sti
LGD

)
− ti−1 exp

(
− sti−1

LGD

))
Di−1 +Di

2
. (3)

WorstCase is given as

annual CDS volatility×
√

10

252
× Φ−1(0.99). (4)

Thus, WorstCase × CS01 represents a linear approximation of a move in CVA

which is not surpassed with a probability of 99% over a 10-trading day period (as-

suming normally distributed movements of the CDS premium). 3 is a supervisory

multiplier, see Gregory (2012).

The exact same type of formula is used to compute a so-called stressed CVA

VaR in which the maximum annual volatility observed over the last three years is

plugged into the WorstCase part instead of the annual volatility computed over

the last year. Having computed the CVA in both a normal version and a stressed

version, the addition to risk-weighted asset, RWA, is conservatively set to be the

sum of the two VaR measures:

RWA = 12.5× (CV A V aR + CV A Stressed V aR). (5)

3We follow Gregory (2012), page 390 with this formula. Different banks might use dif-

ferent approaches to compute VaR. A more common way among banks with more than one

counterparty would be to use historical simulation to compute the CVA VaR.

9



In Section 4.1 we will provide a stylized computation of CVA VaR and RWA

based on the case of Germany as the counterparty.

The demand for CDS contracts on safe sovereigns is driven by the fact that

derivatives dealers are allowed to hedge CVA VaR with CDS contracts which

are only ’used for the purpose of mitigating CVA risk’ (cf Basel Committee on

Banking Supervision (2011), page 34).4 That is, by entering a CDS with a certain

notional, the bank can remove the contribution to RWA that comes from, say, an

interest-rate swap contract with a sovereign counterparty. In summary, the bank

has the choice between hedging its counterparty exposure using a CDS with a

notional amount EE, that is equal to the expected exposure, or having to secure

additional equity funding equal to xEE, where x depends on the RWA computed

above and the fraction of RWA that the bank needs as equity capital. It is this

trade-off that is fundamental to our model in the next section. In Section 4.1

we will approximate the actual need for CDS hedging that could be explained

by dealer banks’ interest rate swap positions with the German government as

counterparty.

3 The Model

We start by analyzing a simple one-period model that focuses on determining

the CDS premium. In this model, a bank has an incentive to purchase CDS

protection on a riskless entity for capital relief purposes and an end user earns

the CDS premium for providing the insurance but also uses trading capital to do

so.

4A distinct feature of the new regulatory requirements is that ’the sensitivity of CVA to

changes in other market factors, such as changes in the value of the reference asset’ is not

relevant (cf Basel Committee on Banking Supervision (2011), page 34).
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3.1 The Assets

We assume that there are three different assets in the economy. First, there is a

risky asset in unit supply with price normalized to one. The payoff of the risky

asset at time t = 1 is given as r̃ and we assume that r̃ is normally distributed

with mean 1 + µ and variance σ2. σ2 is exogenous, but µ will be determined

in equilibrium. Further, the risky asset has a margin requirement m for both

buying and short-selling the asset. This means that an agent with initial wealth

1 can at most buy or sell 1/m units of the risky asset. Second, there is a risk-free

asset which pays off 1 + r for each unit invested in it at time 0. We assume that

the risk-free asset is in perfectly elastic supply and that r is an exogenously given

constant. Third, there is a CDS contract on a risk-free asset with premium s and

initial margin n+ for buying the CDS and n− for selling the CDS. The notional

amount is determined in equilibrium. s, n+ and n− are all per unit of insured

notional, so the relevant dollar amounts are obtained by multiplying the numbers

with the notional amount on the CDS contract. We refer to a long position in

the CDS as representing a purchase of insurance.

In order to keep our model simple, we assume that the CDS is written on a

default-free underlying. Selling the CDS therefore gives a risk-free premium of s

per unit of notional, and this would of course be an arbitrage opportunity if there

were no frictions. The goal is to characterize an additional premium unrelated to

credit risk of the reference security that a bank is willing to pay for capital relief

purposes. We note that the assumption of no default risk is highly stylized, but

not completely unrealistic. A recent article in Risk magazine5 points out that

derivatives dealers buy CDS protection for CVA hedging, even if they never pay

off.

Despite the riskless nature of the reference entity, agents still have to post

initial margin. This is in line with real-world margin requirements which exist

5Carver (2011), ’CVA desks to keep buying sovereign CDSs – even if they never pay out’
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even for the least risky sovereigns. Selling CDS requires a margin that depends on

the risk of the underlying plus a short-selling margin. The risk of the underlying

is computed as a Value-at-Risk number, considering the past volatility. The short

charge is to mitigate the risk of a joint default of the protection seller and the

underlying entity.6 The margin requirement can be thought of in the spirit of

in Brunnermeier and Pedersen (2009), as being set by a different agent, like a

regulator or Central Clearing Counterparty, who has a different information set

than the agents in our model and who worry about tail risk events.

3.2 The Agents and Their Constraints

We assume that there are three agents. A risk averse agent A, a derivatives-

dealing bank B, and an end-user of derivatives E. Agent i ∈ {A,B,E} has a

negative exponential utility, i.e. u(W ) = − exp(−γiW ) and initial wealth W i
0.

Each agent maximizes his expected utility of time-one wealth:

max
g,ḡ

E[u(W i
1)]

W i
1 = W i

0(1 + r) + g(r̃ − r)− ḡs,

where g ∈ {a, b, e} denotes the dollar amount of wealth invested in the risky

asset for each agent type, and ḡ ∈ {ā, b̄, ē} denotes the notional amount insured

by the CDS for each agent type. So, for example, b̄ refers to the dollar amount

on which the bank has bought protection (if b̄ is positive) or sold protection (if

b̄ is negative). Due to the exponential utility specification and the normality of

returns, the problem reduces to the following mean-variance optimization:

max
g,ḡ

[
g(µ− r)− ḡs− γi

2
(σg)2

]
.

All agents maximize an expected utility of this form. Agent B and E are assumed

to have the same risk aversion γB = γE = 1 and we denote agent A’s risk-aversion

by γ := γA > 1.

6See Duffie, Scheicher, and Vuillemey (2014) for further details.
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The constraints of the agents differ. We assume throughout that the amount

of wealth required to establish a position in the risky asset g is the same for long

and short positions and given by m|g|. The wealth requirement for establishing

a CDS position ḡ depends on whether it is long or short and is given by n+ḡ if g

is positive (buying protection) and n−|ḡ| if ḡ is negative (selling protection). We

now describe the constraints of the agents and state the main result describing

the equilibrium CDS premium.

The End User

We think of the agent as having to deposit the amount of cash in a margin account

where it earns the risk-free rate r. Hence, the maximum amount that the agent

can invest in the risky asset is
WE

0

m
, but this would rule out taking a position

in the CDS market. Any non-zero position in the CDS contract will reduce the

degree to which the agent can make a levered investment in the risky asset. Note

that the end-user will take only long positions in the risky asset. Further, since

we assume that the CDS never pays off to the protection buyer, the end-user will

only consider selling the CDS in order to earn the CDS premium s. Therefore,

the end-user’s margin constraint can be written as

me− n−ē ≤ WE
0 . (6)

The Bank

The only difference between the bank and the end user is that the bank has a

different margin constraint. Motivated by the Basel III requirements, we assume

that the bank has an interest rate swap with the safe reference entity of the CDS

outstanding. This position adds to the risk-weighted assets of the bank and it

reduces the bank’s ability to lever its risky asset or take positions in the CDS

market. As explained above, the contribution to risk-weighted assets depends in
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a complicated fashion on the expected exposure EE of the interest rate swap and

it corresponds to reducing the initial amount of wealth that can be invested in

the risky asset and the CDS by xEE, where x > 0 is a parameter that depends

on the historical volatility of the CDS premium. The bank can free up capital

by buying CDS, and buying a CDS with a notional equal to EE removes the

effect of the capital charge entirely. This removal may be worth paying a positive

CDS premium for, even without the possibility of a future payoff. The bank will

not gain any capital relief from buying protection on a larger notional than EE.

Rather than representing this as a kink in the margin constraint, we add to our

optimization problem the constraint b̄ ≤ EE.

In equilibrium, the bank must be long the risky asset. The bank must also

have a non-negative position in the CDS market, since the only other agent

involved in the CDS market is the end-user who will never want to buy protection

but sometimes may want to sell. The bank’s margin constraint can therefore be

written as

mb+ n+b̄ ≤ WB
0 − x(EE − b̄). (7)

The Risk-Averse Agent

We assume that the risk-averse agent’s wealth is high such that he does not face

any kind of funding constraint. His constraint is that he cannot invest in the CDS

contract which implies ā = 0. Solving his mean-variance optimization problem is

straightforward and gives

a =
µ− r
γσ2

. (8)

3.3 Equlibrium

We define an equilibrium in our model setup as follows.

Definition 1. In the market described above, equilibrium is defined such that
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(i) Agents are maximizing expected utility

max
g,ḡ

E[u(W i
1)]

W i
1 = W i

0(1 + r) + g(r̃ − r)− ḡs,

where the end user and the bank face the constraints (6) and (7), respec-

tively, and the risk averse agent is unconstrained.

(ii) The market for the risky asset and the CDS clear:

a+ b+ e = 1 (9)

b̄+ ē = 0. (10)

With this definition at hand we are now able to state the solution of the

model.

Theorem 1. Let

sb =
x− n+

m
γσ2

(
1− 1

m

(
WE

0 − n−EE
)
− 1 + γ

γ

1

m

(
WB

0 − n+EE
))

(11)

se =
n−

m
γσ2

(
1− 1 + γ

γ

1

m

(
WE

0 − n−EE
)
− 1

m

(
WB

0 − n+EE
))

. (12)

(i) If 0 < se < sb, then se is the unique strictly positive equilibrium CDS

premium. In equilibrium, the bank buys protection from the end user on its

entire expected exposure EE.

(ii) The excess return on the risky asset is given as

µ− r = γσ2

(
1− 1

m

(
WE

0 − n−EE
)
− 1

m

(
WB

0 − n+EE
))

. (13)

The proof of Theorem 1 can be found in Appendix B. We close this section

by showing that the equilibrium condition 0 < se < sb is fulfilled under mild pa-

rameter assumptions. Assume for simplicity that WE
0 = WB

0 and n := n+ = n−.
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Then comparing Equations (12) and (11) shows that the equilibrium condition

is satisfied if

x > 2n.

A conservative estimate for the initial margin posted in a safe-haven sovereign

CDS would be n = 5%. Therefore, x > 0.1 is a sufficient condition for the

equilibrium condition to be fulfilled. We provide CVA VaR sample calculations

in Section 4.1, showing that x > 0.1 is typically fulfilled throughout the sample

period.

Discussion of the Model Implications

To interpret our results in Theorem 1, we first note that the equilibrium CDS

premium can also be written in terms of the expected excess return:

se =
n−

m

(
(µ− r)− σ2

m

(
WE

0 − n−EE
))

. (14)

Keeping the expected excess return fixed, we can immediately draw the following

conclusions from Equation (14). First, an increasing expected exposure (EE)

on the bank’s swap position, which, in equilibrium, increases the demand for

CDS protection, increases the premium. Second, a higher margin requirement

for selling the CDS (i.e. a higher n−), increases the CDS premium. However, it is

important to keep in mind that the expression for the equilibrium CDS premium

only holds if se < sb. Therefore, if margin requirements become too high, this may

cause a decreasing demand for CDS protection by the bank and therefore a lower

CDS premium. Third, a higher initial wealth of the end user decreases the CDS

premium. This is intuitive because a higher initial wealth implies that the end-

user is less constrained and therefore more willing to supply CDS. Finally, a higher

excess return implies a higher CDS premium. Therefore, our theory provides an

alternative explanation for why stock returns are important in explaining changes

in CDS premia.
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Assuming that the expected excess return is fixed, Equation (14) implies that,

a higher volatility of the risky asset decreases the CDS premium. This is because

investments in the risky asset become less attractive as the volatility increases.

In equilibrium, however, the volatility of the risky asset directly affects expected

excess returns. Therefore, to better understand the effects of the other variables

we need to note that changes in the model parameters also affect the equilib-

rium expected excess return. Using Equation (12) we can draw the following

conclusions. First, higher risk aversion γ of the risk averse agent (who does not

participate in the market for CDS) increases the CDS premium. Similarly, a

higher volatility σ of the risky asset increases the CDS premium. These effects

come from the relationship between expected excess returns and the parameters

γ and σ. As is evident from Equation (13) these parameters increase the expected

excess return.

Finally, we have three more variables that affect the equilibrium CDS premium

through expected excess returns. These are changes in margin requirements for

buying the CDS (i.e. a higher n+), changes in the initial wealth of the bank,

and changes in the initial margin for the risky asset. Assuming that se < sb is

still fulfilled, an increase in the margin requirement for buying the CDS or a de-

crease in the bank’s wealth decrease his investment in the risky asset. Therefore,

equilibrium expected excess returns increase such that the demand for the risky

asset by the other agents increases and markets clear. In turn, a higher excess

return increases the CDS premium. Similarly, a higher margin requirement for

buying the risky asset implies that the constrained agents can invest less money

in the risky asset. Therefore, expected excess returns need to increase such that

the risk-averse agent demands more of the risky asset.
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3.4 Equilibrium with Credit Risk

In this section, we study how our model predictions change if the underlying

entity can default with positive probability pd and illustrate the results in a

numerical example. We assume that with probability 1−pd, the underlying does

not default and the protection buyer pays the CDS premium s to the protection

seller. Further, with probability pd the underlying sovereign defaults and the

protection buyer does not pay the CDS premium but receives an amount equal

to the Loss Given Default (LGD) from the protection seller. As before, our goal

is to characterize an addition to the CDS premium that comes from the demand

for freeing regulatory capital and from funding constraints for selling CDS. In the

following, we discuss two possible model specifications to incorporate credit risk.

In the first case, we assume that the agents are risk-neutral towards trading

CDS. The idea behind this assumption is that the default-risky part of the CDS

can be hedged at no cost and that pd corresponds to the risk-neutral default

probability. Under this assumption agent g ∈ {b, e} maximizes:

max
g,ḡ

[
g(µ− r − σ2/2e) + ḡ((1− pd)s− pdLGD)

]
,

subject to his respective constraints. The benefit of this specification is twofold.

First, without binding constraints the CDS premium is given as s = pdLGD,

the frictionless CDS premium. Second, the model can be solved similar to our

baseline model. Replacing s with (1 − pd)s + pdLGD in the proof of Theorem

1 and afterwards solving for s gives the equilibrium CDS premium se and the

upper boundary for the CDS premium up to which the bank demands CDS to

free all its regulatory capital:

se =
1

1− pd

(
n−

m
γσ2

(
1− 1 + γ

γ

1

m

(
WE

0 − n−EE
)
− 1

m

(
WB

0 − n+EE
)

+ pdLGD

))
sb =

1

1− pd

(
x− n+

m
γσ2

(
1− 1

m

(
WE

0 − n−EE
)
− 1 + γ

γm

(
WB

0 − n+EE
)

+ pdLGD

))
.

Analogue to the discussion in Section , if we assume n+ = n− and WB
0 = WE

0 ,
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the bank buys full protection if x > 2n. We provide sample calculations for 10

different sovereigns in Section 4.1.

In the second case we drop the assumption that agents are risk-neutral towards

trading the CDS. In this case agent g ∈ {b, e} is maximizing:

e−g(µ−r−σ
2/2g)(pde−ḡLGD + (1− pd)eḡs),

subject to his respective constraints. The problem with this set-up is that

s > pdLGD even if the end-user’s margin constraint does not bind. Phrased

differently, even without binding constraints the CDS premium is above the fric-

tionless CDS premium. Therefore, we would need to formally distinguish between

the risk-neutral default probability and the physical default probability. Further,

this utility function does not lead to analytical tractable results. Instead of for-

mally addressing these issues we present a numerical example and show that both

model specifications lead to qualitatively similar results.

Numerical Example

We illustrate the results making the following parameter choices. First, we assume

that agent A’s risk-aversion is γ = 5, which is five times higher that the risk-

aversion of the other two agents. The initial wealth of bank and end-use are set to

WB
0 = WE

0 = 0.2 to obtain binding margin constraints. Second, trading the risky

asset requires an initial margin of m = 0.5 and both buying and selling the CDS

requires an initial margin of n+ = n− = 0.05. The choice of margin requirement is

motivated by (Gârleanu and Pedersen 2011)), who assume a margin-requirement

of 5% for investment-grade CDS. The high value for m captures the fact that

trading the risky asset requires significant capital relative to trading the safe-

haven CDS. Third, the default probability of the sovereign is pd = 0.75% with

LGD = 0.6 which corresponds to a ’frictionless’ CDS premium of 45 basis points,

which is approximately the average German CDS premium in our sample period.

Fourth, the bank either faces an addition to its risk-weighted assets of xEE = 0.06
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with x = 0.15 and EE = 0.4 or buys CDS to free regulatory capital. Our choice

of x is justified in Section 4.1, where we perform sample CVA VaR calculations

for different sovereigns. EE is chosen as a large number relative to the bank’s

and end-user’s wealth for illustrative purposes. Finally, the standard deviation

of the risky asset is given as σ = 0.2, which is approximately the long-term mean

of the S&P 500 implied volatility index VIX. The expected excess return is set

to µ− r = 0.056, which is the equilibrium excess return if the bank buys b̄ = EE

CDS for capital relief.

In this numerical example, the bank faces an addition of 0.06 to its RWAs

due to its IRS position with the sovereign. Buying CDS to free this regulatory

capital requires an initial margin of 0.02 which means that the bank can free 0.04

margin capital by doing so. In the risk-neutral specification, the upper bound on

the CDS premium that the bank is willing to pay in order to free this capital is

sb = 129 basis points and the equilibrium CDS premium is se = 87 basis points.

We plot the supply −ē and demand b̄ for CDS as a function of the CDS

premium in Figure 3 for the two model specifications. Note first that, without

frictions, a CDS premium different from 45 basis points would be an arbitrage

opportunity. However, both buying and selling CDS requires an initial margin

and agents are constraint. Therefore, the equilibrium CDS premium differs from

the no-arbitrage CDS premium. The end-user only starts purchasing CDS for

s < 5 basis points and starts selling CDS for s > 86 basis points. The difference

between the risk-neutral and risk-averse specification is that the CDS supply by

the end user increases (decreases) at a lower rate as the CDS premium increases

(decreases). In the risk-neutral specification, the bank demands CDS to free all

its regulatory capital until s > sb while the upper boundary in the risk-averse

specification is slightly lower.

We highlight three different equilibria in Figure 3. First, at (i), supply and

demand of risk-neutral agents meet. Second, at (ii), supply and demand of risk-

averse agents meet. Note that the CDS premium in this equilibrium is higher
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than in the risk-neutral case. This is in line with concerns from the financial

industry that a lag of natural CDS sellers can increase the CDS premium. As

explained above, the risk-neutral specification can be viewed as a case where

agents are sophisticated and able to perfectly hedge the default risk while the

risk-averse case corresponds to the situation where the agents actually take on

the credit risk. Finally, (iii) marks the equilibrium in a specification without

credit risk.

4 Linking CDS volume to CVA Risk

In this section, we use stress test results from the European Banking Authority

(EBA) to document that a large share of the sovereign-CDS notional outstanding

plausibly can be attributed to CVA hedging. Further, we perform detailed CVA

VaR computations using Germany’s interest rate swap holdings and explain the

option-like feature embedded in the Expected Exposure. Our calculations also

support the realism of the important equilibrium condition se < sb of Theorem

1. Finally, we discuss the implementation of the new capital charge into regional

law and provide anecdotal evidence that derivatives dealers are already using

sovereign CDS to hedge CVA.

4.1 CVA Sample Calculations

According to several industry research notes, a large fraction of the outstanding

volume of sovereign CDS contracts is likely to be a consequence of financial

regulation. For example, the fraction is estimated to be 25% in Carver (2011) and

up to 50% in ICMA (2011). The goal of this section is to verify these numbers and

to shed additional light on how CVA VaR affects banks’ equity capital. We first

use the results from a stress test, conducted by the European Banking Authority

(EBA) in 2013, to get a first overview of sovereign OTC derivatives outstanding
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and the consequences for banks equity capital. Afterwards, we perform detailed

sample calculations for the case of Germany.

Overview of Sovereign OTC Derivatives Outstanding

To get a first overview of sovereign OTC derivatives outstanding, we summarize

the results of a stress test, conducted by the European Banking Authority (EBA)

in 2013 for 10 different sovereigns. These stress tests report European banks’ total

OTC derivatives exposure towards sovereigns. Exposures of Non-European banks

are not reported. The numbers refer to all OTC derivatives that a sovereign or a

government-sponsored entity has with a derivatives dealing bank. We report the

total notional value and the fair value of all derivatives with positive fair value

for banks in columns 1 and 2 of Table 2. Additionally to that, we report the

net fair value, computed as the difference between the fair value of all derivatives

with positive value for banks and the fair value of all derivatives with negative

fair value for banks.

The fair value of all derivatives with positive value for banks can be seen as

a first-order approximation of the Expected Exposure. This number gives an

indication of how deep the derivatives are in-the-money, without accounting for

the option-like feature of Expected Exposure discussed below and without taking

netting possibilities into account. The net fair value can be seen as a lower bound-

ary for the Expected Exposure with the true expected exposure being above this

number for three reasons. First, in case of a default, the derivatives that have pos-

itive value for the banks would decrease in value but the banks are still required

to honour their liabilities towards the sovereign. Second, the EBA data only

includes exposures that European banks have towards these sovereigns and does

not account for exposures that non-European banks have. Third, the expected

exposure is above the fair value because of the option-like feature discussed above,

i.e. even an IRS which is currently at-the-money can have a positive expected
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exposure.

Since banks would need to buy CDS protection on a notional amount equal to

the expected exposure to hedge their OTC derivatives exposure towards sovereigns,

we can now check whether this is a significant portion of all sovereign CDS out-

standing. To that end, we report the amount of sovereign CDS outstanding for

the respective countries in column 4 of Table 2. Comparing these numbers with

the net fair value of derivatives with positive fair value for banks, we see that

the regulatory demand for CDS for Germany, Italy, and the United States, is

above 50% percent of the total net notional of sovereign CDS outstanding. For

the other sovereigns, the regulatory demand is lower than 50% but, as mentioned

before, the net fair value is a first-order approximation, likely to understate the

true Expected Exposure.

We next compare the CDS premium as of December 2012 for the 10 sovereigns

to worst case, which is computed using Equation (4) and the CDS volatility over

the past year. As we can see from the table, worst case ranges from approximately

30% of the CDS premium for the UK to almost 100% for Austria. The amount

of equity capital that a bank would need to allocate to the CVA risk is reported

in column 7 under Capital Requirement. We compute these numbers using the

fair value, reported in column 2, as a proxy for the Expected Exposure. We

explain how we compute these numbers in detail below, when we run sample

calculations for the case of Germany. We next put these capital requirements in

relation to the cost of hedging the CVA risk using CDS contracts. To that end,

we reported the required margin of a CDS contract with notional value equal to

the Expected Exposure in column 8 under CDS margin. We assume an initial

margin requirement of 5% for the CDS contract.

Finally, we report x(st), defined as the ratio between the CDS margin re-

quirement and the capital requirement, in the last column of Table 2. As we

can see the value ranges from lowest value of x(st) = 0.052 for the US to the

highest value of x(st) = 0.821 for Portugal. If the margin requirement for buying
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and selling CDS is 5% of the notional amount,7 the condition for existence of an

equilibrium with positive CDS rates in Theorem 1 is that x > 0.1, and hence this

condition is obviously fulfilled for 6 out of the 10 sovereigns in our sample. Note

that an initial margin requirement of 5% is a very conservative approximation

for safe sovereigns. Assume that the buyer of protection agrees to pay a CDS

premium of 50 basis points over the next 5 years. The worst possible scenario for

the protection seller would be that the CDS premium drops to zero and that the

protection buyer defaults. In this case, his foregone profit would have been five

time 50 basis points, which corresponds to 2.5%. Hence, it is conceivable that the

equilibrium condition is fulfilled for most of the other sovereigns too.

Sample Calculations for the Case of Germany

Interest-rate swaps are the by far largest market for OTC derivatives, and it is

therefore likely that the bulk of banks’ derivatives exposures to sovereigns are in

this market. For the case of Germany, we have data on swap-usage of the federal

government. This allows us to compute an estimate of the expected exposure

of banks to Germany that is related to the swap positions. In addition to the

previous section, we explain the option-like feature of the expected exposure and

explain every step in estimating the risk-weighted assets in detail.

The Bundesrepublik Deutschland Finanzagentur (Bund) is a government agency

in charge of organizing the borrowing and management of Germany’s debt. From

the Bund, we have obtained data detailing the notional amount of interest-rate

swaps in which the Bund is engaged. Table 3 contains the notional amount of the

holdings of both payer-and receiver swaps, that are classified as ’capital market

swaps’ by the Bund.8 We now use these figures to obtain an estimate of the total

7See Section 3.4 for a discussion of this number
8These are mainly Euribor swaps. The Bund is also engaged in Eonia swaps. The amounts

outstanding for these contracts are not as large as the ones for capital market swaps and we do

not report them in the Table.
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expected exposure of the dealer banks due to these swaps. Our estimate is based

on a relationship between the expected exposure and the value of a swaption,

i.e., the right to enter into a swap at a future date. This connection is used for

example in Sorensen and Bollier (1994), but it is useful to explain the basic idea

in detail here. We refer to Longstaff, Santa-Clara, and Schwartz (2001) for more

details on contract terms in swap and swaption contracts.

Let S(c, rt, t, T ) denote the value at date t of a swap contract for the party

receiving the fixed payment c per period until maturity T . rt is a state variable

which determines the term structure of interest rates at date t. In a short-rate

model, it would just be the instantaneous short rate, but it could be a multidi-

mensional state-variable as well. Let st denote the at-market swap rate at date

t, i.e., the rate satisfying S(st, rt, t, T ) = 0. The value at date t of an at-market

swap that was entered into at date 0 is then S(s0, rt, t, T ) and this value is pos-

itive precisely when st < s0, and we write the exposure of the fixed receiver at

date t as max(S(s0, rt, t, T ), 0). This is precisely the value at date t of the option

to enter into a swap as a fixed receiver at the rate s0. We therefore approximate

the expected exposure at t seen from time 0 using the value of a swaption.

We note that this is only a ’back-of-the-envelope’ approximation for three

reasons. First, the swaption value is a discounted value under a risk-neutral

measure, and this may make it smaller than the expected undiscounted exposure

under the physical measure. Second, we approximate the value of the receiver

(and the payer option) using one half of the value of a swaption stadlle, i.e., the

combination of an option to enter as a fixed receiver and the option to enter

as a fixed payer at date t struck at the forward swap rate at date 0, which is

the strike rate at which these two options have the same value. One half of the

straddle therefore gives us the value of a receiver swap (or a payer swap) struck

at the forward swap rate, but of course the swap entered into at date 0 is struck

at the at-market rate which might differ from the forward swap rate. Third,

we assume the expected exposure as viewed from date t to be constant over
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(future) revaluation dates and determined by the value at date t, of a 5-into-5

year swaption,i.e., an option which can be exercised in 5 years and which give

the right to enter into a 5-year receiver swap.9

In sum, we approximate the expected exposure viewed from date t as:

EEt = IRS Outstandingt × SwaptionV aluet. (15)

The quotes in Table 3 refer to at-the-money swaption straddles based on Euribor

rates and are obtained from the Bloomberg system. The price of the receiver

swaption is half the value of the swaption straddle as explained above. We

describe these quotes in more detail in the appendix. The resulting expected

exposure is reported in column 6 (under EE) of Table 3.10

Next, we use the figures for Germany to compute the amount of equity capital

that is required for maintaining the swap positions if no hedging is used. This

requires computing the CVA and CVA VaR, and for that we make the following

simplifying assumption. We assume a constant LGD of 0.6, a flat CDS term

structure based on the premium s of the 5-year contract for Germany, and a

constant expected exposure computed using the swaption argument above. We

plug these assumptions into Equation 3 to approximate CS01. Note that CS01

captures the sensitivity of the value of the protection leg of a CDS contract to

a parallel shift in the term structure of CDS premia. The notional amount is

EE and the change is measured per basis point. We next compute historical

volatilities of German 5-year CDS premia which allows us to compute both the

9This is arguably an overestimation because the expected exposure on a 10-year swap con-

tract typically peaks at 5 years. An alternative would be to use the average of swaptions with

1-9 years to maturity to enter into an IRS with 9-1 years to maturity. We did that as well and

found that using this average would reduce the swaption value by 60-120 basis points.
10We assume no netting between payer and receiver swaps in this calculation which might

result in an overestimation of the expected exposure. However, it is likely that sovereigns do

not allow for netting of their IRS positions between different banks to avoid additional exposure

to the counterparty.
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CVA Var and the stressed CVA Var following Equation (2). The results for CVA,

CVA VaR, and stressed CVA VaR are reported in Table 3.

We first observe that the CVA VaR and stressed CVA VaR are typically more

than 3 times higher than the CVA itself. The reason for this higher CVA VaR is

that additionally to the CDS premium, the historical volatility is also an input

parameter. That explains why, despite a lower CDS premium in 2012 relative to

2010, the CVA VaR in 2012 is higher than in 2010. Also, recall that to compute

the stressed CVA VaR, we replace the year-end annualized CDS volatility with

the maximum volatility over the last three years in Formula (2). As we can see in

the column under stressed VaR in Table 3, stressed CVA VaR could be as much

as three times higher than the actual VaR.

Given CVA VaR and stressed CVA VaR, the contribution to the banks’ RWA

is computed using Equation (5). Banks have to maintain a certain percentage

of the RWA as equity capital. The exact percentage depends on several factors.

There is a general common equity requirement of 7% of RWA, but for system-

ically important banks this is increased by between 1 and 2.5%. In addition, a

countercyclical buffer between 0 and 2.5% may be imposed. We assume in our

calculations a required buffer of 10%, and with this assumption the banks’ re-

quired equity capital is reported under Equity Capital in Table 3. Putting the

required equity capital in relation to the expected exposure, gives us a proxy for

x. As Table 3 shows, the lowest value for x was 0.093 at the end of 2010. In 2011

it went as high as 0.14 and converged to 0.11 in 2013 and 2014. Hence, if we

again assume an initial margin requirement of 5% for both, buying and selling

CDS, the equilibrium condition in Theorem 1 is fulfilled for most of the sample

calculations.
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4.2 CVA Hedging is Done in Practice

The new CVA capital charge is subject to an extensive and still ongoing debate.

The CVA capital charge was first announced in October 2010 in the first proposal

of the new Basel capital requirements (Basel III) and has given raise to many

discussions since. For example, among the most frequently asked questions about

Basel III is the question: ’can you confirm inclusion of sovereigns in the CVA

charge and ability to use sovereign CDS as hedge’, which was answered as follows

by the committee in November 2011: ’The Committee confirms that sovereigns

are included in the CVA charge, and sovereign CDS is recognized as an eligible

hedge.’11 Hence, the new CVA capital charge applies to sovereigns too. This is

an important clarification because other regulatory requirements treat sovereign

bonds different from corporate bonds. It is worth noting, that while interest-

rate swaps are in general moving towards central clearing, sovereigns have been

exempt from this requirement. A recent article in the Financial Times12 explains

that, moving forward, there can also be a tendency for central clearing of OTC

derivatives with sovereign counterparties.

Another part of the debate is whether the new CVA capital charge can cause

pro cyclical effects. In particular, basing CVA VaR calculations on CDS volatility

together with requiring CDS contracts as hedge has caused criticism from the

financial industry. For instance, Risk magazine (Carver (2011)) and FT alphaville

(Murphy (2012)) commented on this issue, arguing that this combination can

create a ’doom loop’. The argument is that a higher CDS volatility causes more

demand for CDS contracts which, in turn, fuels the volatility of the CDS contract.

In the language of our model, a higher CDS volatility increases x, which in turn

increases sb and can therefore increase the demand for safe-haven CDS. This

11See document ’Basel III counterparty credit risk and exposures to central counterparties -

Frequently asked questions’.
12’Germany’s debt office set for derivatives clearing’ – June 4, 2015. See:

http://www.ft.com/intl/cms/s/0/c84577c0-0acd-11e5-9df4-00144feabdc0.html.
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higher demand further increases the CDS premium. Carver (2011) and Murphy

(2012) further explain that the main problem is that there are no natural sellers of

sovereign CDS to absorb this demand. Therefore, a small change in the demand

for sovereign CDS can have a significant impact on prices. The problem that there

are no natural sellers of sovereign CDS has also been discussed by the US treasury

borrowing and advisory committee in a report from May 2010.13 Further, as

discussed before, another indicator of the lack of natural sellers of sovereign CDS

is the fact that derivatives dealers are in fact net buyers of sovereign CDS (Figure

6). This lack of supply combined with the demand for sovereign CDS introduced

by regulation can cause distortions in the sovereign CDS market. Carver (2011)

conjectures that a disconnect between CDS premia and yield spreads for France

in 2011 can be attributed to CVA VaR hedging. As a reason for this she quotes an

official of the French debt management office: ’On the demand side [for sovereign

CDS] we see mostly two types of players: hedge funds and CVA desks, as they

move into line with Basel III. It’s possible that some of the dislocation with the

cash market is due to legitimate CVA hedging’. This conjecture is exactly in line

with our theory. We study the disconnect between bond yields and CDS premia

in more detail in Section 5.2.

A problem in studying the effect of the new regulatory requirement on CDS

premia is that the new CVA capital charge has not yet been implemented in all

regional laws. While Switzerland has implemented it as of 2013, the final rules for

the US are still not finished. Further, the European Banking Authority (EBA)

decided to grant an exemption from the CVA capital charge for sovereigns. Ac-

cording to Risk magazine (’Europe goes its own way on CVA’), this exemption

came as a positive surprise for European banks. For instance, Royal Bank of

Scotland stopped reporting the CVA charge for sovereigns which lead to an in-

crease in their equity capital, indicating that they were already incorporating the

13See http://www.treasury.gov/resource-center/data-chart-center/quarterly-

refunding/Documents/dc-2010-q2.pdf
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CVA charge in their capital requirements. However, the exemption is heavily

debated (see for instance ft.com ’JP Morgan under pressure in Basel spat’, or

Risk magazine: ’The CVA helter skelter: European supervisors could quash ex-

emptions’) and more recently the EBA has announced to review the exemption

(see Risk magazine ’CVA switchback will hit bank capital ratios, EBA says’ and

EBA document ’Opinion of the European Banking Authority on Credit Valuation

Adjustment (CVA)’).

Although European banks are exempt from the rule and US banks are not

obliged to implement the rules yet, there is strong anecdotal evidence that sev-

eral major dealers already hedge the new CVA captial charge. Most prominently,

Deutsche Bank reported in the first half of 2013 that it ’cut the risk-weighted as-

sets (RWAs) generated by Basel III’s capital charge for derivatives counterparty

risk – or credit valuation adjustment (CVA) – from e 28 billion to e 14 billion’.14

Another example is bank of America who states in its 2012 and 2013 annual

reports that ’The Corporation often hedges the counterparty spread risk in CVA

with CDS.’ Further, Credit Suisse reports in its 2013 annual report an ’advanced

CVA [that] covers the risk of mark-to-market losses on the expected counterparty

risk arising from changes in a counterparty’s credit spreads.’ Overall, these ex-

amples show that major derivatives dealers already use sovereign CDS to obtain

capital relief from the new CVA capital charge.

5 Empirical Evidence

In this Section we first do a regression analysis of the relationship between CDS

premia and yield spreads for 10 sovereigns, exploring the questions raised by Fig-

ure 1. If CDS premia were a clean measure of credit risk, we would expect that

an increase of one basis point in the CDS premium increases the corresponding

bond yield by one basis point. A breakdown of this relationship supports our

14See Risk magazine: ’Capital or P&L’.
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theory, by showing that CDS premia are not a pure measure of credit risk. Af-

terwards we test whether regulatory proxies are capable of explaining sovereign

CDS premia after controlling for credit risk.

5.1 The Data

We study the relationship between CDS premia and bond yield spreads for 10

different sovereigns, using 5-year data based on weekly observations sampled ev-

ery Wednesday. We study the period from January 2010 to December 2014 and

restrict our considerations to sovereigns that have one of the four major curren-

cies, US Dollar, Euro, Japanese Yen, and British Pound.15 We further restrict

our considerations to the 7 Eurozone countries with the most frequent quotes for

both CDS premium and yield spread. The reason for starting our analysis in

2010 is that the new regulatory requirements were first announced in 2010. The

5-year sovereign CDS data are obtained from Markit. The CDS premium for the

United States is denominated in Euro, all other CDS premia are denominated

in US Dollar. We use the Bloomberg system to obtain 5-year bond yields and

corresponding risk-free rate proxies. Bloomberg uses the most recent issue of the

5-year benchmark bond to compute the yield. If there is no benchmark bond with

matching maturity available, no yields are reported. As a proxy for the risk-free

rate, we use 5-year swap rates based on overnight lending. In these contracts

one party pays a periodic floating rate based on the overnight lending rate and

in return receives a fixed rate which is denoted the swap rate. We describe these

rates (as well as all other data in this article) in more detail in the data appendix.

15We chose to focus on the four major safe-haven currencies for practical reasons. For in-

stance, CDS contracts on Switzerland and Singapore are not among the top 1,000 DTCC most

actively traded contracts and quotes exist only infrequently.
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5.2 Credit Risk in Bond Yields

To test whether the credit risk in government bonds is reflected by CDS premia

we run a regression of the following type:

∆Y ieldt = α + βCDS∆CDSt + βrf∆rft + εt, (16)

where Y ieldt denotes the bond yield, CDSt the corresponding CDS premium,

and rft the corresponding risk-free rate proxy. Using this specification instead

of directly comparing yield spreads and CDS premia has the advantage that we

can also check whether our proxy for the risk-free rate is reasonable and reflected

in the bond yield. As explained above, in a frictionless world a one-basis-point

change in the CDS premium or the risk-free rate should increase the bond yield

by one basis point.

To get an overview of the results, we first sort the 10 sovereigns by their

estimate for βCDS from small to large. We then plot the parameter estimates

and the 95% confidence interval for the estimates (corresponding to two stan-

dard deviations) in Figure 5. Panel (a) shows the estimates for βCDS for the

10 sovereigns. As can seen from the figure, the sorting according to βCDS also

corresponds to our intuitive sorting. The relationship between bond yields and

CDS premia for the safe-haven sovereigns Japan, US, Germany, and UK is lowest.

In particular, none of the parameter estimates is significantly different from zero

at a 5% confidence level. Then, βCDS for Finland, France, and Austria, which

we refer to as ’low-risk’ sovereigns, is significantly different from zero but still

well below one and below the estimate for the risky sovereigns, Italy, Spain, and

Portugal. On the other hand, the estimates for βrf , reported in panel (b), are

all significantly different from zero (at a 5% confidence level) and are close to

one. Notably, with the exception of Japan, Germany, and Finland, none of the

estimates is significantly different from one at the 95% confidence level.
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The Convenience Yield of Safe Havens

An alternative explanation for why the CDS premium is an insignificant variable

for safe-haven bonds is that the CDS premium could be an accurate measure of

credit risk but there are omitted variables like other financial frictions which we

did not account for in Equation (16). What qualifies an asset as safe haven is

its safety and liquidity. Hence, illiquidity of the bond is not a relevant friction

in this context. On the contrary, safe-haven bonds typically carry a ’convenience

yield’ or ’liquidity premium’, meaning that investors are willing to accept a lower

yield for the convenience of holding a safe and liquid asset.

We start by discussing the convenience yield argument for the case of German

government bonds. Due to implicit and explicit guarantees for German banks

during the financial crisis and due to its responsibilities in the Eurozone it is

reasonable to argue that German government bonds are not entirely free of credit

risk. At the same time German government bonds are arguably the safest and

most liquid Euro-denominated assets. Therefore, it is also reasonable to argue

that German government bonds carry a convenience yield. As indicated by Figure

1, the CDS premium reaches a level of approximately 100 basis points at the end

of 2011, while the yield spread decreases to approximately -40 basis points at

the same time. If it was true that CDS are an accurate measure for credit risk,

while bond yields are pushed down by the convenience yield, the convenience

yield must have reached a level of approximately 140 basis points at the end of

2011. Formally disentangling the convenience yield of a government bond from

its credit risk is a challenging task.16 We approximate the convenience yield of

16In a different study, Krishnamurthy and Vissing-Jorgensen (2012) determine the size of the

convenience yield of US treasury bonds as, on average, 72 basis points. The difference between

their study and our study is that we compare the bond yield to a proxy for the risk-free rate

while they compare it to investments in similar safe and liquid bonds. Since even the safest

corporate bonds are not considered as risk-free the convenience yield we are interested in is

smaller.
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German government bonds as the difference between the 3-month Eonia swap

rate and 3-month bond yield. Our reason for using this proxy is that credit

risk for a bond issuer with high credit quality is smaller for shorter maturities

than for longer maturities. Hence, the 3-month German benchmark bond can

be considered as almost credit risk free and the difference to the 3-month Eonia

swap rate can be attributed to the convenience yield. We compare the proxy

for the convenience yield with the CDS premium in Figure 2 and find that the

convenience yield of German government bonds never exceeds the CDS premium

in our sample. Hence, it is not conceivable to argue that CDS premia are simply

dwarfed by the convenience yield.

To formalize this consideration, we construct the same proxy for the other

three safe hafens and rerun regression (16) The results of this analysis are ex-

hibited in Table 4. The convenience-yield proxy is only significant for Germany.

For Great Britain the inclusion of the convenience yield reduces the significance

of the CDS premium. Most notably, adding the convenience yield proxy does

not increase the significance of the CDS premium for any of the four safe havens.

Further, the R2 values for Germany, the UK, and the US are all above 0.8 which

mitigates omitted variable concerns.

5.3 Regulatory Frictions as Drivers of CDS Premia

After having established that the relationship between CDS premium and bond

yield spread becomes weaker for safer sovereigns, we now test our hypothesis that

regulatory frictions affect CDS premia. To that end, we choose proxies for x, EE,

and WB
0 and run the following regression:

∆CDSt = α + β1∆Y St + β2∆Swaptiont + β3∆CDSvolt + β4∆Dealert + εt.

(17)

Y St is the yield spread of the government bond discussed above. We include this

variable as a proxy for credit risk. The remaining three variables are independent
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of the sovereign’s credit risk and we refer to them as regulatory proxies in the

following. Swaptiont is the price of a 5-year/5-year swaption straddle and, as

discussed in Section 4.1, can be used as a proxy for EE. CDSvolt is the historical

volatility of the CDS premium over the past year. We use this variable as a

proxy for x since it is the main ingredient in the computation of x (see Section

2.1). Finally, Dealert is a proxy for the wealth of derivatives-dealing banks WB
0 .

To construct this variable, we use the average of the Moody’s KMV one-year

Expected Default Frequency (EDF) for the 16 largest derivatives-dealing banks

(G16 banks).17 EDFs are a proxy for a firms’ default risk which is computed by

Moody’s using information on the firms’ asset and liability values. Since there

is a strong connection between sovereign credit risk and bank credit risk,18 for

each of the 10 sovereigns, we regress the EDF average on the yield spread of

the respective sovereign and use the residual of this regression as Dealert.
19 As

explained in Section 4.2, there are no natural sellers of sovereign CDS. Therefore,

we do not include any proxy for the end-user’s wealth in our analysis. Table 5

reports the results of the regression specified in Equation (17), where we group

the sovereigns according to their βCDS from Section 5.2.

Examining the results for the fours safe-haven sovereigns in our sample, we

find that the regulatory proxies are both statistically and economically significant.

The R2 of the regression ranges from 5% for the US to 38% for Germany. To

17These 16 banks are: Morgan Stanley, JP Morgan, Bank of America, Wells Fargo, Citigroup,

Goldman Sachs, Deutsche Bank, Nomura, Societe Generale, Barclays, HSBC, Credit Agricole,

BNP Paribas, Credit Suisse, Royal Bank of Scottland, and UBS.
18See, for instance, Kallestrup, Lando, and Murgoci (2013).
19Using the average EDF instead of the residual gives almost identical results. Further, we

have experimented with another alternative specification that gave almost identical results.

For each of the 10 sovereigns we have dropped the banks which are located in the respective

country from the average. For instance, if we ran a regression for Germany we computed the

the average EDF without using Deutsche Bank. Again, the results are almost identical to this

modification.
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confirm that the explanatory power comes from the regulatory proxies we run

a separate regression of the CDS premium on the bond yield spread and report

the ratio of the R2 from this regression over the R2 of the entire regression under

’Credit Ratio’. The credit ratio is zero fro Japan, US, and Germany, indicating

that the entire explanatory power comes from the CDS premium. Turning to

the statistical significance, we can see that for Germany and Japan all three

regulatory proxies are statistically significant. For the UK, Dealert is highly

significant, while the other proxies are not. Further, the yield spread is significant

at a 5% level and the credit ratio is 0.15. As mentioned before, the UK started

posting collateral in their OTC derivatives transactions in late 2012. The posting

of collateral mitigates counterparty-credit risk and, therefore, lowers the CVA

capital charge and the dealer banks’ incentive to buy CDS protection. Therefore,

it is in line with our theory that regulatory proxies are less significant for the UK.

For the US, the only significant explanatory variable is Dealert. One possible

explanation for this finding is that the notional amount of CDS contracts on the

US outstanding is relatively low, especially compared to the overall size of the US

economy (see Table 1). This suggests that dealers are not active in using these

contracts in large numbers for hedging purposes.

Turning to the results for the other three low-risk sovereigns in our sample

we find that our regulatory proxies also have strong economic and statistical

significance. With the exception of Swaptiont for Austria, all regulatory proxies

are statistically significant. The difference between this group and the group

of safe-haven sovereigns is that bond yield spreads are statistically significant

at a 1% level and contribute to the explanatory power of our regression with a

Credit Ratio ranging from 0.07 for Finland to 0.5 for Austria. Overall, the results

for low-risk sovereigns confirm our model implications for credit-rsiky sovereigns

from Section 3.4 that both, credit risk and regulatory proxies, help explaining

the variation in CDS premia. The finding is also in line with the anecdotal

evidence provided in Section 4.2. An increased demand for sovereign CDS due to
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regulatory frictions, combined with a lack of natural sellers for these contracts can

cause the CDS premium to increase, even if the fundamental credit risk remains

constant.

Finally, turning to the three risky sovereigns in our sample, Italy, Portugal,

and Spain, we first observe that yield spreads on bonds are clearly the major

driver for CDS premia. The parameter estimate for the yield spread is statistically

significant at a 1% level and the credit ratio ranges from 0.7 for Italy to 0.91 for

Spain. The relatively low credit ratio for Italy can be explained by the fact that

Italy has a large portfolio of interest rate swaps20 and is arguably the least risky

of the three risky sovereigns. Therefore, it supports our theory that regulatory

proxies help explaining the variation in Italian CDS premia.

6 Conclusion

Financial regulation requires derivatives dealers to account for counterparty credit

risk in their derivatives transactions with sovereigns. This counterparty risk either

adds to dealer’s risk-weighted assets or can be hedged using CDS contracts. We

show theoretically and empirically that this friction is a major driver of safe-haven

CDS premia. We provide a theory where the demand for CDS on safe havens is

driven by these regulatory requirements. In our model, safe-haven CDS premia

are not driven by credit risk but by the protection seller’s funding liquidity, the

demand to free regulatory capital, and expected excess returns. In order to obtain

capital relief, derivatives dealers keep buying CDS even with an increased CDS

premium.

Additionally to our results for safe-haven sovereigns, we find that the CVA

hedging effect that we describe also affects CDS premia of low-risk sovereigns.

Incorporating credit risk in our model shows that regulatory frictions add to the

20See, for instance http://www.bloomberg.com/news/articles/2015-04-23/italy-is-euro-area-

s-biggest-swap-loser-after-deals-backfired.
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frictionless CDS premium that comes from credit risk. In line with this theoretical

result, our empirical findings show that for low-risk sovereigns both, credit risk

and regulatory frictions, have a significant effect on the CDS premium.
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A Variable Descriptions

This appendix provides additional details about the data used for our analysis.

1. Sovereign CDS Premia. We obtain CDS premia with 5 year maturity

on 10 sovereigns from Markit, who provides daily mid-market quotes. We

use weekly mid-market quotes in our analysis sampled every Wednesday.

In line with previous research (e.g. Fontana and Scheicher (2014)), we use

the CDS premium of contracts with ’CR’ as restructuring clause.

2. Sovereign Bond Yields. Sovereign bond yields for 5-year bonds are

obtained from the Bloomberg system. Bloomberg uses the latest 5-year

benchmark bond to compute the yield. Yields are computed for bonds

with semi-annual (Italy, Great Britain, Japan, and the United States) and

annual (Spain, Austria, Finland, France, and Germany) coupon payments.

The day count convention is Actual/Actual.
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3. Risk-Free Rate Proxy. We use swap rates based on overnight lending

rates with the same 5-year maturity and the same currency as the bond

yield. For European sovereigns, we use Eonia swap rates, for Great Britain

we use Sonia swap rates, for Japan we use Tibor swap rates, and for the

United States we use OIS swap rates. The day count convention for these

swap rates is 360/Actual but we do not correct for this difference in day-

count conventions when computing yield spreads. All rates are obtained

from the Bloomberg system.

4. CDS Amounts Outstanding. Data on amounts of CDS outstanding

are obtained from the Depository Trust Clearing Corporation (DTCC)

who collects information about CDS amounts outstanding from dealers and

buy-side institutions. For our study, we use the dealer and end-user gross

sovereign CDS notional outstanding. Note that this variable is only avail-

able on an aggregated basis across all sovereigns and not on a counterparty

level.

5. Swaption Data. The swaption quotes are basis point prices of swaption

straddles. A swaption straddle is a portfolio of a long position in a receiver

swaption, which gives its owner the right but not the obligation to enter

a swap contract as fixed receiver, and a long position in a payer swaption,

which gives its owner the right but not the obligation to enter a swap

contract as fixed payer. Because at-the money swaptions refer to swap

contracts with zero value, an application of the put-call parity shows that

payer and receiver swaption have the same price. The data are obtained

from the Bloomberg system.

6. CDS Volatility We use the same formula as in the new Basel capital re-

quirements to compute this variable. More precisely, at date t, we compute

the standard deviation of the changes in the CDS premium over the past
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252 trading days.

7. G 16 EDF We obtain 1-year expected default frequencies (EDFs) for the

16 largest derivatives dealing banks, commonly referred to as G 16 banks,

from Moody’s Analytics. We then take the average of the 16 EDFs and

orthogonalize the resulting time series on the respective yield spread of the

sovereign we analyze.

B Proofs

Proof of Theorem 1

We start by deriving the agents’ optimal portfolio holdings. The Lagrange func-

tion for the end user’s optimization problem is given as:

L(e, ē, ψ) =
(
e(µ− r)− sē− 1/2(σe)2

)
− ψ

(
me− n−ē−WE

0

)
. (18)

Taking derivatives of the Lagrangian in Equation (18) with respect to e and ē

implies the following first-order conditions (FOCs):

∂

∂e
L = µ− r − σ2e− ψm = 0 (19)

∂

∂ē
L = −s+ ψn− = 0. (20)

From these FOCs (plugging the solution ψ = s/n− from (20) into (19)) we obtain

end-user’s risky asset holdings:

e =
µ− r − (s/n−)m

σ2
. (21)

Next, distinguish two cases. First, if the agent’s margin constraint binds the FOC

with respect to ψ holds with equality, i.e.,

me− n−ē = WE
0 , (22)

which implies that the end user chooses to use the wealth remaining after investing

in the risky asset to supply CDS contracts:

ē =
me−WE

0

n− . (23)
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Second, if the end-user’s margin constraint does not bind, we must have s = 0.

This follows mathematically from (20) and the fact that the Lagrange multiplier

then must be ψ = 0. Intuitively, if the CDS premium s were strictly positive, the

agent would always choose to sell CDS until his margin constraint binds, earning

the CDS premium in addition to the riskless rate instead of merely earning the

risk-free rate. With s = 0, the end user is indifferent between selling CDS or

putting his remaining capital in the bank account. In this case he is indifferent

between all feasible positions in the CDS contract

ē ∈
[
0,
me−WE

0

n−

]
. (24)

We follow the same procedure writing up the Lagrangian for the bank’s opti-

mization problem:

L(b, b̄, ψ1, ψ2) =
(
b(µ− r)− sb̄− 1/2(σb)2

)
−

− ψ1

(
mb+ n+b̄+ x(EE − b̄)−WB

0

)
− ψ2

(
b̄− EE

)
Taking derivatives with respect to b, b̄, and ψ1 gives three equations in four un-

knowns:

∂

∂b
L = µ− r − σ2b− ψ1m = 0 (25)

∂

∂b̄
L = −s− ψ1(n+ − x)− ψ2 = 0 (26)

∂

∂ψ1

L = mb+ n+b̄+ x(EE − b̄)−WB
0 = 0. (27)

The solution is simple algebra and we find:

b =
µ− r − ψ1m

σ2
=

1

m

(
W b

0 − x(EE − b̄)− n+b̄
)

ψ1 =
µ− r
m
− σ2

m2

(
WB

0 − x(EE − b̄)− n+b̄
)

ψ2 =
x− n+

m

(
(µ− r)− σ2

m

(
WB

0 − x(EE − b̄)− n+b̄
))
− s.

A Lagrange multiplier ψ2 > 0 implies that the bank is buying CDS to free all its

regulatory capital and therefore b̄ = EE. This is the case if the CDS premium
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satisfies:

s < sb :=
x− n+

m

(
(µ− r)− σ2

m

(
WB

0 − n+EE
))

. (28)

If the CDS premium increases over sb, the bank reduces its position in the CDS

contract and we obtain b̄ < EE. Further, if the CDS premium increases above

x− n+

m

(
(µ− r)− σ2

m

(
WB

0 − xEE
))

,

the bank does not use any CDS for capital relief and b̄ = 0.

To compute equilibrium we focus on the case where s < sb and proceed in

two steps. First, we determine the equilibrium CDS premium (as a function of

the excess return) such that the end user meets the bank’s demand to insure

a notional amount equal to EE, i.e., (10) is satisfied with b̄ = EE. Second, we

apply the market clearing condition in the risky asset (9) to determine the excess

return µ− r.

Insisting that the end user supplies the CDS protection demanded by the

bank leads to

EE =
WE

0 −me
n− . (29)

Plugging in the end-user’s optimal risky asset holdings e, which depends on the

CDS premium, gives the equilibrium CDS premium:

se =
n−

m

(
(µ− r)− σ2

m

(
WE

0 − n−EE
))

. (30)

Note that this is only an equilibrium if se is smaller than sb.

Using the equilibrium condition from Equation (9) and plugging in the values

for a, b, and e gives:

µ− r
γσ2

+
µ− r − s m

n−

σ2
+
WB

0 − n+EE

m
= 1.

Inserting the equilibrium rate s leaves us with an expression for µ− r:

µ− r = γσ2

(
1− 1

m

(
WE

0 − n−EE
)
− 1

m

(
WB

0 − n+EE
))

. (31)
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Finally, we then also have the CDS premium in terms of the model parameters

given as

se =
n−

m
γσ2

(
1− 1 + γ

γ

1

m

(
WE

0 − n−EE
)
− 1

m

(
WB

0 − n+EE
))

. (32)

Plugging in the value for µ− r into Equation(28) completes the proof. �
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C Figures and Tables

Figure 1: The Relationship Between Credit Default Swap Spreads and Bond Yield Spreads

Panel A: Comparison of the time series of the five-year bond yield spreads and the five-year
CDS premia for Germany. Yield spreads are computed as the difference between bond yields
and the five-year Eonia swap rate. Both spreads are in basis points
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Panel B: Scatter plot of bond yield spreads and CDS premia for France, Germany, and Italy.
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Figure 2: Comparison of the CDS premium for Germany with a proxy for the Convenience
Yield in German Bonds
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Notes: The Figure shows the time series of the 5-year CDS premium and a proxy for the
convenience yield in the German government bonds. The convenience yield is approximated as
the difference between the 3-month Euribor rate and the 3-month German government bond
yield. This proxy assumes that the 3-month government bond close to credit-risk free.
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Figure 3: Illustration of the Equilibrium with Credit Risk
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Figure 4: The Figure illustrates equilibrium in the market for CDS under two different model
specifications. Black lines indicate supply of CDS by the end user and the blue lines indicate
the demand for CDS by the bank. Solid lines refer to the model specification where agents
are risk-averse towards trading CDS while dashed lines correspond to the model specification
where agents are risk-neutral towards trading CDS. The equilibrium CDS premium under the
risk-neutral specification is illustrated by the solid dot (i). The equilibrium CDS premium
under the risk-neutral specification is illustrated by the solid dot (ii). The equilibrium CDS
premium for the benchmark case with no default risk is illustrated by the solid dot (iii).

48



Figure 5: Explaining Bond Yields with Risk-Free Rates and Credit Risk

∆Y ieldt = α+ βCDS∆CDSt + βrf∆rft + εt

(a) Parameter estimates for βCDS

(b) Parameter estimates for βrf

Notes: The figure illustrates the parameter estimates and standard errors for βCDS and βrf

for 10 different sovereigns. The middle bar is the parameter estimate, the upper and lower bar
correspond to the 95% confidence interval, or to two standard deviations. The 10 countries are
sorted by βCDS from lowest to highest. All variables are for 5-year contracts. Y ieldt denotes
the bond yield, rft denotes the risk-free rate proxy measured by swap rates based on overnight
lending rates, and CDSt is the CDS premium. In order to construct confidence intervals, we
used Newey-West heteroskedasticity robust standard errors.

49



Figure 6: Net amount of CDS contracts on sovereigns bought by derivatives dealers
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Notes: The Figure shows the difference between CDS contracts on sovereigns bought by deriva-
tives dealers and the amount sold.
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Table 1: CDS and Debt Amounts Outstanding for the 10 Sovereigns in our Sample.

Net Debt Pct of
Rank Entity Notional Outst* Debt

1 Italy 16.92 1,989.43 0.85%
3 Germany 13.12 2,160.19 0.61%
4 France 11.74 1,833.81 0.64%
5 Spain 9.26 884.65 1.05%
6 Japan 9.19 9,759.64 0.09%

12 GB 5.84 1,700.54 0.34%
16 Austria 4.22 227.17 1.86%
19 Portugal 3.68 204.84 1.80%
24 USA 3.39 12,975.07 0.03%
47 Finland 2.19 103.15 2.12%

Notes: All amounts are given in billion USD equivalent. The ranks refer to the whole single-
name CDS market (including banks and corporates). Source: DTCC, September 2013 and
CountryEconomy.com (*data are from 2012)
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Table 4: Explaining Bond Yields with Risk-Free Rates, Credit Risk, and Convenience Yield

∆Y ieldt = α+ βrf∆rft + βCDS∆CDSt + βCY ∆CYt + εt

Rate CDS CY R2

Japan 0.8*** (0.07) -0.01 (0.02) 0.07 (0.11) 0.69
US 1.02*** (0.02) 0.02 (0.07) 0.05 (0.11) 0.95

Germany 1.14*** (0.05) 0.08 (0.09) 0.16** (0.07) 0.81
UK 0.98*** (0.03) 0.13 (0.14) -0.2 (0.15) 0.84

Notes: All variables are for 5-year contracts. Y ieldt denotes the bond yield, rft denotes the
risk-free rate proxy measured by overnight swaps, CDSt is the CDS premium, and CYt is
the proxy for the bond’s convenience yield, measured as the difference between the according
3-month overnight rate and 3-month bond yield. Standard errors in parenthesis are Newey-
West heteroscedasticity robust. *Significant at 10%, ** Significant at 5% level, *** Significant
at 1% level.

54



Table 5: Parameter estimates and t-statistics from the regression of changes in sovereign credit
default swap premia on credit risk and regulatory proxies.

Yield CDS G 16 Adj. Credit
Spread Swaption vol EDF R2 Ratio # Obs.

Japan 0.01 0.04* 18.19*** 13.32* 0.21 0.00 256
(0.04) (1.88) (3.46) (1.72)

US 0.02 0 0.15 5.08*** 0.05 0.00 256
(0.18) (0.18) (0.23) (5.03)

Germany 0.02 0.04*** 16.31*** 17.1*** 0.38 0.00 256
(0.38) (2.67) (4.52) (5.29)

UK 0.15** 0.01 6.6 11.19*** 0.2 0.15 256
(2.56) (0.66) (0.97) (5.09)

Finland 0.12*** 0.02** 16.94*** 13.39*** 0.54 0.07 241
(4.01) (2.18) (11.12) (6.93)

France 0.57*** 0.05* 17.86*** 37.88*** 0.59 0.44 256
(8.80) (1.80) (6.21) (8.21)

Austria 0.42*** 0.03 14.2*** 26.07*** 0.46 0.50 256
(5.24) (1.08) (3.27) (4.96)

Italy 0.62*** 0.1 15.1** 72.43*** 0.63 0.70 256
(11.02) (1.55) (2.09) (6.08)

Spain 0.78*** 0.06 10.29 37.57*** 0.64 0.91 256
(14.96) (0.87) (1.37) (3.75)

Portugal 0.58*** 0.12 8.34 111.02*** 0.63 0.86 255
(11.27) (0.69) (1.19) (4.14)

Notes: The table reports parameter estimates and Newey-West heteroskedasticity robust t-
statistics for the indicated explanatory variables. Credit ratio denotes the ratio of the R2 from
which only the convenience yield is included to the R2 from the regression in which all of the
variables are included. The sample period is January 2010 to December 2014, using weekly
observations sampled each Wednesday. *Significant at 10% level. **Significant at 5% level.
***Significant ant 1% level.
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