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Abstract

Recent corporate finance studies show that hedging is a first-order driver of corpo-
rate decisions. I use firms’ hedging behavior to build a novel asset pricing model, the
Corporate CAPM. I propose a dynamic contracting framework in which collateral
constraints induce a tradeoff between hedging and immediate needs for funding.
Firms hedge by transferring resources to future states that are most important for
firm’s value. In the model, firms’ hedging behavior is informative of the share-
holders’ stochastic discount factor, which measures the value of each state. As a
consequence, discount rates can be inferred from firm’s observed investment, financ-
ing, and hedging policies. On the corporate finance side, a calibrated version of the
model is broadly consistent with observed corporate policies of US listed firms. On
the asset pricing side, the Corporate CAPM is successful in pricing different test
assets, also in comparison to leading asset pricing models.
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1. Introduction

Stochastic discount factors are the cornerstone of modern asset pricing. They allow to

compute asset prices as the expected discounted value of future cashflows. Asset pricing

theory ordinarily focuses on the demand of securities, and derives a stochastic discount

factor from the optimizing behavior of an investor who decides over consumption and

portfolio allocations. In this paper, I instead focus on the supply of securities. I build

upon corporate finance theory to identify a stochastic discount factor from firms’ policies.

This leads to a novel asset pricing model, the Corporate CAPM.

My approach mainly relates to the papers of Jermann (2010) and Belo (2010), who re-

cover a stochastic discount factor from firm’s real investment decisions on the production

side of the economy. Instead, I recover a stochastic discount factor from firms’ hedging

behavior. Hedging is not only a pivotal economic mechanism in corporate finance, but

also a fundamental channel through which firms transfer resources across states of the

world. As previous studies show, hedging is a quantitatively first-order corporate policy.

Hedging is practically implemented with combinations of traditional debt instruments

and other financial instruments like lines of credit and financial derivatives. In particu-

lar, credit lines appear to be a prominent implementation of hedging. Sufi (2009) reports

that credit lines constitute more than 80 percent of bank debt for public firms in the

US. Colla, Ippolito, and Li (2013) report that the drawn part of credit lines accounts for

22 percent of their total debt.1 A firm that hedges a state reveals information on the

importance of that state for its own value. The value of each state is also measured by

the owners’ stochastic discount factor. Therefore, the stochastic discount factor can be

identified through observed firms’ decisions, and used to price the assets in the economy.

The concept of hedging I entertain here draws on the close connection between collater-

alized financing and risk management recognized by Rampini and Viswanathan (2010),

and Rampini and Viswanathan (2013). Hedging and financing both involve promises to

pay from the firm to external lenders in some states of the world. Firms can contract

different payments across states, and implement hedging with state-contingent promises

1In addition, Rampini and Viswanathan (2010), Bolton, Chen, and Wang (2011), and Rampini and
Viswanathan (2013), highlight the importance of hedging to understand firm’s growth, investment, and
financing policies. Nikolov, Schmid, and Steri (2013), and Li and Whited (2013) document the quanti-
tative importance of hedging for firms’ policies.
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to pay that induce a distribution of preserved debt capacity. Collateral constraints arising

from limited enforcement restrict such promises, and hence the amount of resources firms

can effectively transfer across states.

The Corporate CAPM expresses the stochastic discount factor in terms of firms’

characteristics, and can be approximated as a linear two-factor model. The factors are

a ”hedging” factor, which equals the change in firms’ net worth2, and a ”profitability”

factor, which is associated to the change in firms’ productivity. The two factors have an

intuitive interpretation. They measure the amount of resources available to the firm in

a certain state. These resources (net worth) can be either actively transferred through

hedging, or originate from existing profitable investments. I implement asset pricing tests

with the Generalized Method of Moments (GMM) to assess the empirical performance of

the model. As the recent empirical literature recommends (Lewellen, Nagel, and Shanken

(2010), Daniel and Titman (2012)), I consider different test assets in empirical tests,

namely the Fama-French 25 portfolios sorted by size and book-to-market equity, the 30

Fama-French industry portfolios, and 25 portfolios sorted by market and HML beta as

in Yogo (2006). Overall, the Corporate CAPM finds support in the data. The model

prices the test assets well, and delivers low pricing errors even in comparison to leading

asset pricing models, as the CAPM, the Consumption CAPM, and the Fama and French

three-factor model. Historically, asset pricing models obtained from consumption-based

stochastic discount factors have not succeeded in accounting for the variation of expected

returns across stocks. One important reason for their empirical failure is the smoothness

of consumption data. This prevents expected returns to line up with covariances with

consumption aggregates, as these models predict. On the contrary, the Corporate CAPM

gets traction because it links the stochastic discount factor to firms’ characteristics, which

exhibit larger fluctuations.

My theoretical framework is a dynamic contracting model. Hedging is in fact an

inherently dynamic process. Firms engage in hedging to transfer resources from today to

future times and states when they are more valuable. For instance, a firm might hedge

specific future states to finance profitable investment opportunities, or to pay out more

dividends in bad times. In the model, firms have valuable investment opportunities that

2As standard in the dynamic contracting literature, net worth is the firm’s counterpart of household’s
wealth, and captures how constrained a company is with respect to funds to allocate to investment, and
distributions.
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arise stochastically over time. However, they have limited funds, and they sign contracts

with external lenders to aid external financing of profitable investments. Contracts have

limited enforcement. The entrepreneur has the option to renege the contract and divert

capital for their own private benefit. In equilibrium, this limited commitment problem

endogenously imposes a collateral constraint, and firms implicitly borrow constrained

against their equity value. In this context, value maximization provides a rationale to

hedge more valuable states, in a tradeoff with their funding needs for current investment

and distributions. Firms’ debt capacity is limited, and firms can preserve it for specific

future states by optimally contracting state-contingent repayments with the lender. A

firm can therefore hedge any future state by promising a low repayment in the case

that state occurs. Hence, firms can in effect transfer resources (net worth) across states.

In this setting, the stochastic discount factor reflects which state must have led a firm

to optimally make its observed decisions, and can be backed out from the firms’ state-

by-state first-order conditions with respect to debt repayments. Conditional on how

financially constrained they are, firms implement investment and financing policies to

transfer resources to most important states, where the stochastic discount factor is high.

On the corporate finance side, I solve the model numerically and I find that a cali-

brated version is quantitatively consistent with basic stylized facts about corporate in-

vestment and financing, and with key aggregated asset pricing moments. To solve the

model, and to determine the properties of the optimal contract, I formulate the con-

tracting problem recursively as an infinite-horizon dynamic programming problem. The

problem has a nonstandard topological structure because of the presence of the objec-

tive function, the firm’s equity value, in the borrowing constraint. I use Knaster-Tarski

(Tarski (1955)) fixed point theorem3 to prove the problem has a well-defined equilibrium.

In addition, the number of decision variables is high because of state-contingent hedging

decisions. To deal with this issue, I introduce an equivalent mixed-integer programming

representation of the dynamic programming problem. The equivalent problem is a nat-

ural extension of the extant linear programming methods for dynamic programming to

the specific topological structure of the model. These methods have been introduced in

finance by Trick and Zin (1993), and then extended to large state spaces by Nikolov,

Schmid, and Steri (2013). As in Nikolov, Schmid, and Steri (2013), I exploit a separation

3See Aliprantis and Border (2006), and Kamihigashi (2012).
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oracle, an auxiliary linear programming problem, to achieve computational efficiency.

This paper lies at the intersection of three lines of research. First, it relates to the

large literature that develops quantitative production models to investigate the cross-

section of equity returns. Recent contributions include Zhang (2005), Livdan, Sapriza,

and Zhang (2009), Gomes and Schmid (2010), Garlappi and Yan (2011), Obreja (2013),

and Bazdrech, Belo, and Lin (2013). With respect to these papers, my focus is to ob-

tain a stochastic discount factor, instead of rationalize observed spreads in returns with

respect to specific firms’ characteristics. Second, the paper builds upon the literature

on hedging and dynamic contracting in corporate finance, that refers to Rampini and

Viswanathan (2010), Rampini and Viswanathan (2013), Rampini, Sufi, and Viswanathan

(2013), and whose quantitative implications have been examined in Li and Whited (2013),

and Nikolov, Schmid, and Steri (2013). In this context, this paper analyzes the asset pric-

ing implications of contracting models of hedging. Finally, this work is closely related to

the literature that attempts to identify a stochastic discount factor in production models

from firms’ policies and data, Cochrane (1993), Jermann (2010), and Belo (2010). The

key difference with these works is the economic mechanism that allows to identify the

stochastic discount factor from firms’ decisions.4

This work has potential implications for future research. As Cochrane (2011) dis-

cusses, research in asset pricing ultimately aims at understanding how asset returns and

consumption are jointly determined in general equilibrium. In this perspective, the iden-

tification of a stochastic discount factor from the production side of the economy imposes

additional restrictions that may provide further guidance for modeling the consumption

side of the economy, rather than representing a competing approach. On the empirical

side, new testable hypotheses for cross-sectional differences in returns can be developed

from the present framework, especially from the observation that variables that describe

firms’ policies enter the stochastic discount factor directly.

The paper is organized as follows. Section 2 develops the key intuition of the pa-

per in a two-period example. Section 3 presents the dynamic contracting model, and

4Cochrane (1993) and Belo (2010) rely on a representation of production sets in which firms can
affect idiosyncratic productivity shocks, and Jermann (2010) investigates the equity premium by taking
advantage of state-contingent technologies. Here, the relevant state-contingent action that allows to
identify the stochastic discount factor is based on the corporate finance theory of hedging, in the context
of dynamic contracting.
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describes the numerical solution method. Section 4 introduces the key asset pricing re-

sult of the paper, the Corporate CAPM. Section 5 assesses the quantitative performance

of the calibrated model for providing a reasonable description of corporate investment

and financing decisions. Section 6 presents the empirical tests of the Corporate CAPM.

Section 7 concludes.

2. A Two-Period Example

The goal of this section is to convey the main idea of this work with a simple exam-

ple. Typical production models do not lead to an explicit expression for the stochastic

discount factor, but only to pricing equations for asset returns. Here I show that when

firms transfer resources across states of nature through risk management, the stochastic

discount factor can be instead backed out from firms’ optimization conditions. The argu-

ment proceeds as follows. I first illustrate in a two-period model why when firms cannot

implement risk management the stochastic discount factor cannot be obtained from the

firm’s problem. I then show why introducing hedging decisions allows to do so.

Consider a model with two periods: today, and tomorrow. Three states of nature,

rainy, foggy, and sunny, can possibly occur tomorrow, with probabilities πR, πF , and

πS respectively. Consider a firm with an initial wealth endowment w that has access

to a production technology. The production technology delivers a stochastic output

A(S)f(k) > 0 in the sunny state tomorrow, A(F )f(k) > 0 in the foggy state tomorrow,

and A(R)f(k) > 0 in the rainy state tomorrow, with A(S) > A(F ) > A(R). f(·) is

a production function, and k denotes investment in real capital. The economy ends

tomorrow: capital fully depreciates, and a liquidating dividends d(S), d(F ), and d(R)

are distributed in the sunny, foggy, and rainy states respectively. The firm can borrow

from a competitive, risk neutral, and deep-pocket lender at a constant rate R.5 The firm’s

problem is to decide over capital k and debt a repayment b to maximize the expected

5Section 3 discusses this assumption. Supplementary Appendix A reports the lender’s problem.
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discounted value of its profits, that is

U(w) = max
k,b

d+ πSM(S)d(S) + πFM(F )d(F ) + πRM(R)d(R) (1)

s.t.

w + b = d+ k (2)

d(s) = A(s)f(k)−Rb s ∈ {S, F,R} (3)

d ≥ 0 (4)

d(s) ≥ 0 s ∈ {S, F,R} (5)

M(S), M(F ), and M(R) are the realizations of the owners’ stochastic discount factor

in the sunny, foggy, and rainy states6, Equation (1) is the budget constraint today, and

simply equates sources and uses of funds, where d is today’s dividend. Equations (4),

and (5) rule out negative dividends. Equation (4) states that the firm has access to no

other external funds, while Equations (5) guarantee debt is actually riskfree and is repaid

tomorrow in all states.7 Equations (4) and (5) determine limits on the amount the firm

can borrow. b must therefore lie in the closed interval [k − w,A(R)f(k)]. Equations (5)

can be interpreted as collateral constraints, which states that the firm can borrow up to

the cash flow it obtains whatever tomorrow’s weather is.8

Denote by λ the Lagrange multiplier on constraint (4), and by πsλs the Lagrange

multipliers on constraints (5). The first-order conditions of this problem lead to the

usual pricing equations for the return on real capital and for the loan interest rate:

E[(M(s) + λs)R
k(s)] = 1 + λ (6)

E[(M(s) + λs)R] = 1 + λ (7)

where s ∈ {S, F,R} is an index for the state, and Rk(s) ≡ A(s)fk(k). Two points are

worth noting. First, the pricing equations contain additional terms related to the La-

grange multipliers on the constraints. This reflects the fact that the typical assumption

6This objective only requires that a stochastic discount factor exists. This is the case in the absence
of arbitrage opportunities. The objective therefore captures the idea that physical assets and riskfree
debt are priced consistently with other securities that investors can trade.

7Because d(S) ≥ d(F ) ≥ d(R), the constraints in Equation (5) for s ∈ {S, F} are never active.
8In the full model, the collateral constraint arises endogenously as an outcome of dynamic contracting.
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of free portfolio formation is violated (see Cochrane (2001), Chapter 4).9 Intuitively, the

firm trades real capital and loans.10 If, for example, the collateral constraint in the rainy

state in (5) is binding, the firm cannot freely tilt its portfolio of assets by increasing its

debt stock and leaving its capital stock unchanged. The presence of Lagrange multipli-

ers accounts exactly for this restriction. In fact, when the constraints are not binding,

Equations (6) and (7) reduce to E[M(s)Rk(s)] = 1 and E[M(s)R] = 1. Second, and

most important, the firm’s optimality conditions do not allow to get an expression for

the stochastic discount factor in each state. This happens because the firm cannot trans-

fer resources across the rainy, foggy, and sunny states, or equivalently from today to one

future state only. As Equations (3) show, by changing its capital and debt decisions in

the feasible set, the firm jointly increases its payoff in all three states. A unit more of

capital generates more output in both states in proportions determined by A(S), A(F ),

and A(R), and a unit more of debt reduces the payoff by R in both states. A simple

algebraic manipulation of Equation (3) indeed shows that the payout in the sunny state

can be rewritten as a fixed function of the payoffs in the foggy and rainy states as:

d(S) = d(R) +
A(S)− A(R)

A(F )− A(R)
(d(F )− d(R)) (8)

Panel A of Figure 1 makes this idea clear. The solid lines represent the possibility set

for the firm’s equity payoffs in the sunny and in the rainy state tomorrow for different

choices of capital and debt. For simplicity I keep the payoff in the foggy state fixed,

although this result holds for every other pair of states. It is immediate to notice that

the feasible sets for the payoffs have a kink. In the consumption side of the economy, the

condition that these Leontief-type payoffs must be tangent to an indifference curve form

the familiar relation p = E
[
β u′(c(s))

u′(c)
d(s)

]
= E[M(s)d(s)], where p is the price of the firm’s

equity, c is today’s consumption, u(·) is the investor’s utility function, and β is his time

discount factor. The indifference curves are related to the marginal rate of substitution

between today’s and tomorrow’s consumption, and their slope allows to identify M(s).

However, the dashed lines show that any point the firm is willing to choose is consistent

9This is very common in models with financial constraints, and the ”corrected” discount factor is
sometimes denoted as ”the firm’s discount factor”. See for example Mendoza (2000), and Rampini and
Viswanathan (2013).

10For simplicity assume these assets cannot be traded by the household directly.
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with many indifference curves.

[Insert Figure 1 Here]

Consider now the same problem in which the firm is allowed to hedge by setting

different debt repayments b(S), b(F ) and b(R) for the sunny, foggy, and rainy states. The

firm’s problem becomes:

U(w) = max
k,b

d+ πSM(S)d(S) + πFM(F )d(F ) + πRM(R)d(R) (9)

s.t.

w + b = d+ k (10)

d(s) = A(s)f(k)−Rb(s) s ∈ {S, F,R} (11)

d ≥ 0 (12)

d(s) ≥ 0 s ∈ {S, F,R} (13)

where the amount of debt financing raised today from the risk-neutral lender is b = E[b(s)].11

The first-order conditions with respect to k, b(s), s ∈ {S, F,R}, are:

E[(M(s) + λs)R
k(s)] = 1 + λ (14)

M(s) =
1 + λ− λsR

R
(15)

Equation (14) is the familiar pricing equation for capital, while Equation (15) provides

an expression for the stochastic discount factor that must have let to the observed firm’s

policy. Notice that the difference in the discount rates of lenders and borrowers does

not imply the presence of arbitrage opportunities. The stochastic discount factor in

fact adapts such that equity claims are priced consistently with the presence of a risk-

neutral lender that allows the firm to implement limited risk sharing. This is apparent

comparing the stochastic discount factor in Equation (15) with the one for the case

without collateral constraints, that is M(s) = 1
R
. In this case the firm guarantees full

insurance to the owners, their marginal utility across states is equalized, and equity claims

are prices as if the firm were risk neutral. Supplementary Appendix A discusses this case.

11As I discuss in Section 3.2, in the complete model lenders offer an elastic supply of credit at all future
times and dates at the riskfree rate.
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Because the stochastic discount factor is higher in most valuable states, the firm trades off

dividend distributions today (with a higher λ) in order to pay out in most important states

tomorrow (with a lower λs), even though the latter reduces the payout in other states or

makes it overall more volatile. With risk-averse investors, most important states are those

where aggregate consumption is low and firms are less productive, such as the rainy state

in this example. Contingent claims that pay out more in those states are therefore more

valuable for investors. In addition, because the solution of the firm’s problem depends

on its wealth w, two firms with different initial wealth in general implement different

policies. This does not mean that there is a stochastic discount factor for each firm.

Instead, the firm changes its investment and financing policy in a state-contingent way,

depending on whether the state is either sunny, foggy, or rainy. As a consequence, in

principle, both firms’ policies (and data) could be used as a reference point to back out

the stochastic discount factor and to price other assets. In Section 4, I refer to this result

as the relativity property.

Panel B of Figure 1 illustrates why the stochastic discount factor can be recovered

in the presence of hedging. Firms are able to set b(S) and b(R) and determine their

payout profile in both the rainy and the sunny states. Contingent claim hyperplanes are

therefore differentiable (linear), and indifference curves must be tangent to them at the

decision point.

3. The Dynamic Limited Enforcement Model

This section develops a discrete-time dynamic agency model in a neoclassical environ-

ment. Entrepreneurs make investment and financing decisions with an infinite time hori-

zon. This ensures they take into account the expected consequences of current actions

for the feasibility of future decisions. Dynamic financing is subject to limited enforce-

ment constraints.12 Firms borrow constrained against their equity value from competitive

lenders, and implement state contingent debt repayments up to their debt capacity. The

state contingent nature of the contract allows firms to transfer resources to states and

times where they are more valuable. In Subsections 3.1 and 3.2, I detail the technology

12Related contracting problems are proposed, for example, by Albuquerque and Hopenhayn (2004),
Rampini and Viswanathan (2010), Rampini and Viswanathan (2013), Li and Whited (2013), and Schmid
and Steri (2013).
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and the industry environment, and the financial contracting problem. Despite its concep-

tual simplicity, this problem has two nonstandard features. First, conventional dynamic

programming results do not apply because the equity value enters the enforcement con-

straint. Second, the presence of state contingent debt repayments as decision variables

makes the problem virtually intractable with conventional iterative numerical methods.

In Subsection 3.3 I address these two issues. Using a fixed point argument, I first show the

existence and uniqueness of the value function as the solution of a dynamic programming

problem with an appropriate initial condition. Then, I extend the linear programming

techniques in Trick and Zin (1993), Trick and Zin (1997), Nikolov, Schmid, and Steri

(2013), and Schmid and Steri (2013), and propose a computationally efficient solution

method based on mixed-integer programming. Finally, in Subsection 3.4, I characterize

the solution illustrate the qualitative firm optimal investment and financing policies.

3.1. Technology and Competitive Environment

A continuum of perfectly competitive firms operates in an industry. Each firm produces

a homogeneous product, whose price is normalized to one. In period t, a fraction ϕ of

new firms randomly enters the industry. Existing firms become unproductive and exit

with probability ϕ, so that the total mass of operating firms is unchanged over time.

An entrant i arrives with some initial capital stock ki,0. Entrants engage in a long-term

contract with lenders to obtain external financing. Firms have access to a production

technology that generates a stochastic stream of profits

Π(ki,t, si,t) ≡ A(si,t)k
α
i,t

where si,t is a shorthand for the state {xt, zi,t}, ki,t is the capital input of firm i at time t,

α ∈ (0, 1) is the curvature parameter of the production function, which exhibits decreasing

returns to scale, and A(si,t) is a stochastic process describing productivity. Here A(si,t) =

xtzi,t, where xt and zi,t are respectively aggregate and firm-specific technology shocks.

The idiosyncratic shock zi,t is the driving force of firm-level heterogeneity, and generates

a nontrivial cross-section of firms, while the aggregate shock xt describes the overall

technological level of the economy. zi,t and xt follow Markov processes with finite support

10



Z and X, and stationary transition functions Qz(zi,t+1|zi,t) and Qx(xt+1|xt) as follows:

log(zi,t+1) = ρz log(zi,t) + σzϵ
z
i,t+1 (16a)

log(xt+1) = (1− ρx)µx + ρx log(xt) + σxϵ
x
t+1 (16b)

where ϵzi,t and ϵzj,t are uncorrelated for every i ̸= j, and ϵxt is uncorrelated with ϵzi,t for

every i. ϵzi,t and ϵxt are truncated iid standard normal variables. The capital stock ki,t

obeys the law of motion

ki,t+1 = (1− δ)ki,t + ii,t+1

where δ is the depreciation rate and ii,t+1 denotes corporate investment.

3.2. The Contracting Framework

Upon arriving in the industry, the firm enters a long-term contractual relationship with

an outside lender. The contract not only provides initial funding, but also financing

over the firm’s lifecycle. Following several previous studies, lenders are risk neutral and

have ”deep pockets”, that is they offer an elastic supply of credit in all times and states.

The risk neutrality assumption is intended to capture the different exposure to risks of

lenders and risk-averse firms. Thus, both parties have motives to trade and implement,

albeit imperfect, risk sharing. This assumption can be interpreted as a reduced form for

lenders having a very large amount of funds to achieve a sufficient diversification and

being insensitive to risks arising from granting individual loans.13 The risk neutrality

assumption is also convenient because it allows not to put additional structure on the

lenders’ possible stochastic discount factor. This allows to avoid to explicitly model

lenders’ decisions and ownership structure, such as bankers’ decisions over portfolios of

loans and deposits.

Entrepreneurs are risk averse and discount future dividend payouts with a stochastic

13In expected utility theory, the risk neutrality assumption captures the evidence for which wealthy
individuals behave as if they were risk neutral with respect to small risks (Rabin (2000)). Indeed, in
models with large investors, the latter are typically modeled as risk neutral or as agents with CARA
utility.
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discount factor process {M(xt+τ )}∞τ=0.
14 Risk-neutral lenders’ discount factor is instead

Rt ≡ Et[M(xt+1)].

The timing of events over a firm’s lifecycle is as follows. As soon as a firm enters the

industry, it signs a long-term contract with the lender to obtain initial funding. Then, at

the beginning of each period, the firm first faces the exogenous exit shock, and the state

si,t realizes. There are no information asymmetries because si,t is publicly known. The

entrepreneur has limited liability, and the firm defaults if its value after observing the

shock goes to zero. Second, firm’s decisions and operations occur: inputs are purchased,

production takes place, revenues are collected, transfers to and from lenders are made,

and dividends are distributed. Third, the firm chooses either to renege the contract or to

continue operations. This limited enforcement problem is discussed in more detail below.

Panel A of Figure 2 summarizes the intra-period timing.15

As detailed in Supplementary Appendix B, the contracting problem can be formulated

recursively using net worth as a state variable, in line with Abreu, Pearce, and Stacchetti

(1990). Realized net worth in a future state si,t+1 determines the amount of resources that

are available to the firm in a certain state, net of liabilities. Intuitively, net worth is the

corporate counterpart of households wealth, and captures how constrained a company

is in terms of resources to allocate to investment, and distributions. The equivalent

contracting problem is the following:

14The effective discount factor accounts for the probability that the firm exits the industry, that is:

M(xt+τ ) = M̂(xt+τ )(1− ϕ)

15In this setup, the contract has one side commitment. While there is a limited commitment problem
on the firm’s side, the lender honors the long-term contract. This feature becomes apparent in the
recursive formulation in Supplementary Appendix B, where a lender’s promise-keeping constraint is part
of the problem.
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V (wi,t, si,t) = max
{di,t,ki,t+1,b(si,t+1)}

di,t + Et [M(xt+1)V (w(si,t+1), si,t+1)] (17)

s.t.

di,t ≥ 0 (18)

wi,t ≥ di,t + ki,t+1 − Et[b(si,t+1)] (19)

w(si,t+1) ≤ Π(ki,t+1, si,t+1) + (1− δ)ki,t+1 −Rt+1b(si,t+1) ∀si,t+1 (20)

θki,t+1 ≤ Et [M(xt+1)V (w(si,t+1), si,t+1)] (21)

bi,0 ≥ 0 (22)

The collateral constraint (21) arises from the limited enforcement problem. The lender

anticipates that the borrower has limited commitment and can renege the contract. Thus,

the lender is willing to lend up to the point the borrower’s diversion value θki,t+1 does not

exceed the borrower’s continuation value Et [M(xt+1)V (w(si,t+1), si,t+1)]. This imposes an

enforcement constraint on the firm’s side, and makes reneging the contract never optimal.

The recursive formulation in terms of net worth not only improves the computational

efficiency of the numerical solution because of the smaller state-space, but is also conve-

nient to introduce the notion of hedging. As I discuss in more detail in Subsection 3.4,

the firm has a limited borrowing capacity because of the enforcement constraint. In this

formulation, the firm has the possibility to choose state-contingent promised utility (debt

repayments) b(si,t+1) for each state.16 The firm can therefore choose to hedge a specific

state s at time t + 1 by choosing a lower debt repayment b(s). Other conditions equal,

hedging a state has three effects. First, the firm saves debt capacity by relaxing the en-

forcement constraint. Second, as Equation (20) shows, the firm increases its net worth in

state s at time t+1, by lowering its required repayment. As a result, more resources are

available for investments and distributions in state s. Third, as Equation (19) illustrates,

a lower repayment in some future state implies a lower amount of external debt raised at

time t, and less net worth available for today’s investment and distributions. In sum, the

firm implements hedging by transferring net worth from today to specific future states

tomorrow. Because the firm’s debt capacity is limited by the borrowing constraint, the

16As Rampini and Viswanathan (2010), Rampini and Viswanathan (2013), and Nikolov, Schmid, and
Steri (2013) discuss, state-contingent debt can be implemented using credit lines, forward, and futures.
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company faces a tradeoff between raising funds today, and preserving them for specific

states that may occur tomorrow.

3.3. Model Solution

Because the objective function itself appears on the right-hand side of the enforcement

constraint, the dynamic programming problem in (17)-(22) is not a standard convex

optimization problem. In particular, verifying the discounting property of Blackwell’s

sufficient conditions would require the knowledge of the solution to be determined. The

solution of the functional equation may therefore not be unique. However, a different

approach based on Knaster-Tarski fixed-point theorem allows to establish two results.

First, the value function is the unique fixed point of the Bellman operator in a restricted

functional space. The lower boundary of this functional space is the zero function, while

the upper boundary is the solution to a planner’s problem in which the enforcement con-

straint is removed. Second, the sequence of functions obtained by iterating the Bellman

operator from the lower bound converges pointwise to such a fixed point. This leads to

the following lemma:

Lemma 1 (Fixed Point) Assume M(xt+1) = βM0(xt+1), with β < 1, and

lim
n↑∞

βnEt [M0(xt+1)V (w(si,t+1), si,t+1)] = 0 (23)

Let T be the Bellman operator associated with the problem (17)- (22), V UB(wi,t, si,t) the

solution of the same problem without constraint (21), and V LB(wi,t, si,t) a function over

the same domain of V (wi,t, si,t) such that V LB(wi,t, si,t) ≤ V (wi,t, si,t). Then:

i) The value function is the unique fixed point of T in the order interval [V LB(wi,t, si,t), V
UB(wi,t, si,t)].

ii) The sequence of functions {T nV LB(wi,t, si,t)}∞n=1 converges to V (wi,t, si,t) pointwise.

The previous lemma provides an operating procedure to solve for the equilibrium

contract. The solution can be obtained by value function iteration from the any initial

condition V LB(wi,t, si,t) ≤ V (wi,t, si,t), such as the null function. Assumption (23) is

guaranteed if the first-best solution V UB(wi,t, si,t) is bounded, and as long as the time-

discount factor β in M(xt+1) is less than one, and M0(xt+1) is finite. The last two

conditions are generally guaranteed in common specifications of the stochastic discount
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factor.

Unfortunately, because of the large number of control variables (capital, and one debt

variable for each future state), the previous iterative solution strategy is plagued by a

severe curse of dimensionality, and cannot be practically implemented.17 In particular,

the maximization step is critical. For each iteration, determining the combination of

control variables that maximizes the sum of distributions and the continuation value for

each state would imply to search over a grid of nk · nbnx·nz points, where nk, nb, nx, and
nz are respectively the number of grid points for capital, promised utility, the aggregate,

and idiosyncratic shocks. To deal with this computational issue, I start from the lin-

ear programming representation of dynamic programming problems with infinite horizon

(Ross (1983)). I then propose an equivalent mixed-linear programming representation of

the dynamic programming problem. On this representation, I find a numerical solution

by extending the constraint generation algorithm in Trick and Zin (1993).18 Specifically,

I take advantage of a separation oracle, an auxiliary linear programming problem, to

deal with large state spaces and achieve computational efficiency. In Appendix B, I de-

rive the key results on which the solution method is based, and I provide details on the

implementation of the computational procedure adopted.

3.4. Optimal Policies

In this section, I characterize the optimal policy of the firms in the model through their

first-order conditions.19 The optimality conditions show how investment, financing, hedg-

ing, and payout policies are intimately related, and illustrate the qualitative mechanisms

that drive firm’s decisions. Because the problem has no closed-form solution, the fol-

lowing analysis is based on the economic interpretation of the Lagrange multipliers as

shadow values.

Before introducing the optimality conditions, the numerical illustration in Figure 3

17As Rust (1996) discusses, a possible alternative to new computational methods for the solution of
large-scale dynamic programming problems is massively parallel policy iteration. However, hardware
requirements for massive parallel computation are enormous.

18As Denardo (1970) discusses, when discounting is present, Howard (1960) policy iteration corresponds
exactly to block pivoting in the full equivalent linear program. Constraint generation considers sequences
of smaller problems to obtain the solution.

19In a similar framework, Thomas and Worrall (1994) prove that the value function is differentiable.
Their result extends to this model.
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summarizes a few key properties of the firm’s value and policy functions.20 In Figure 3

the model is solved numerically under the baseline parametrization in Table 1. All poli-

cies, unless otherwise specified, refer to the middle state for both the aggregate and the

idiosyncratic shocks. Panel A depicts firm’s value as a function of current net worth. The

value function is increasing and weakly concave in net worth. In particular, it is strictly

concave up to a cutoff value wC , then it becomes linear. As typical in the contracting lit-

erature, wC defines two regions. For wi,t ≥ wC , an additional unit of net worth translates

into a one-for-one increase in equity because the total real value of the contract is not

affected. If wi,t < wC , instead, additional net worth alters the entrepreneur incentives,

and the equity value increases with a slope greater than one. Panel B shows the payout

policy of the firm. The firm pays no dividends up to wC , then the payout function is lin-

ear in net worth. Notice that the value function is strictly concave precisely in the region

where no dividends are paid. Panels C and D present the investment policy ki,t+1 and the

amount of debt raised Et[b(si,t+1)]. From the threshold wC onwards, the firm is reaching

a ”first-best” optimal level of capital. Instead, for wi,t < wC , the firm is constrained in its

investment, because the sum of its net worth and the raised debt finance does not suffice

to achieve the ”first-best” capital stock. Finally, Panels E and F depict the hedging policy

of the firm with respect to aggregate and idiosyncratic states. The solid lines represent

the repayments the equilibrium contract specifies for the middle state, the dashed red

lines refer to one state down, and the dash-dotted green lines to one state up. In general,

which states the firm hedges depend on the parameter values in the model, and especially

on the persistence of the autoregressive processes in Equations (16b) and (16a). Under

the baseline parametrization, Panel E shows that the firm is implementing a lower repay-

ment in the lower state, where the stochastic discount factor is high. On the contrary,

Panel F shows that firms have an incentive to hedge more profitable idiosyncratic states,

because of the persistence of investment opportunities over time. When aggregate states

are concerned, this effect is instead dominated by the one on discount rates.

[Insert Figure 3 Here]

I now define µi,t, νi,t, and λi,t as the Lagrange multipliers on the dividend non-

negativity constraint (18), on the budget constraint at time t (19), and on the borrowing

20Some properties can be established also analytically, and are rather standard in the hedging literature.
I omit them, and refer the reader to Rampini and Viswanathan (2013) for the details.
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constraint (21). Denote by ν(si,t+1) the marginal value of net worth in the state si,t+1 at

time t+ 1, that is ν(si,t+1) ≡ Vw(w(si,t+1), si,t+1). Notice that by the envelope condition,

the marginal value of net worth at time t equals Vw(wi,t, si,t).

The first-order condition with respect to dividends di,t is:

Marginal Benefit of Payouts︷︸︸︷
νi,t =

Marginal Cost of Payouts︷ ︸︸ ︷
1 + µi,t (24)

The payout policy of the firm balances the cost and the benefits of allocating an additional

unit of current net worth to dividend distributions. The investment policy ki,t+1 can be

illustrated with the corresponding first-order condition:

Marginal Benefit of Investment︷ ︸︸ ︷
Et[M(xt+1)ν(si,t+1)(Πk(ki,t+1,si,t+1) + (1− δ))] =

Marginal Cost of Investment︷ ︸︸ ︷
νi,t + θλi,t

1 + λi,t

(25)

The left-hand side of Equation (25) represents the marginal benefit of an additional unit

of capital. Investing one unit more increases realized net worth in every future state

by the return on physical capital Πk(ki,t+1,si,t+1) + (1 − δ). The marginal benefit of

investment is the expectation of these returns, accounting for the different importance

of future states. Here, the effective discount factor for cash flows from invested capital

is M(xt+1)ν(si,t+1). The first component M(xt+1) is the stochastic discount factor of

the owners, while the second component ν(si,t+1) relates to the concavity of the value

function. The latter term is familiar in models of financial constraints. Specifically, it

accounts for the different marginal value of firm’s net worth across future states, and

effectively renders the firm more risk averse. The right-hand side is instead the effective

marginal cost of increasing the capital stock by one unit. In addition to the shadow

cost ν(si,t+1) of reducing net worth at time t, there are two correction terms, θλi,t and

1 + λi,t, that reflect the presence of the borrowing constraint. Increasing investment has

an effect on both sides of the enforcement constraint (21). First, it makes it more tight

by increasing the diversion value of capital on the left-hand side, with a shadow value of

θλi,t for the firm. Second, it increases future net worth and, because the value function

is increasing in it, also the continuation value on the right-hand side of (21) raises. This

lowers the shadow value of investing for the firm, as the term 1+ λi,t at the denominator
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of (25) captures.

Finally, the first-order conditions with respect to state-contingent debt b(si,t+1) in the

contract describes the firm financing and hedging policies:

Marginal Benefit of Hedging︷ ︸︸ ︷
Rtν(si,t+1)M(xt+1) =

Marginal Cost of Hedging︷ ︸︸ ︷
νi,t

1 + λi,t

(26)

Equation (26) illustrates the key tradeoff between raising less external resources today

and hedging a specific future state si,t+1 by contracting, and implementing, a lower state-

contingent repayment b(si,t+1). For this reason, Equation (26) highlights how financing

and hedging policies are profoundly related. Specifically, the left-hand side represents

the marginal benefit of hedging a specific state si,t+1 by reducing the corresponding

repayment b(si,t+1), where Rt is the interest rate charged by the risk-neutral lender. As

in Equation (25), the effective value of the state for the firm is M(xt+1)ν(si,t+1). The

right-hand side instead measures the cost of reduced current net worth. The shadow

value of the lower amount of resources available for investment and financing is measured

by νi,t. The term 1+λi,t reflects a less tight borrowing constraint because of the increased

continuation value, as a consequence of hedging the state si,t+1. In fact, a lower repayment

b(si,t+1) increases net worth w(si,t+1), and in turn relaxes the borrowing constraint.

4. The Corporate CAPM

This section introduces the key asset pricing results of this paper. I first derive the

stochastic discount factor in terms of firm’s policies and characteristics. This leads to

an asset pricing model, which I refer to as the Corporate CAPM. Finally, I discuss the

aggregation properties of the asset pricing model and, in particular, a property I dub as

the relativity property. The latter is an irrelevance results which states that any subset of

firms in the economy can be used to back out the stochastic discount factor. Operatively,

this property allows to choose different benchmark sets with respect to which stock prices

and returns can be computed.

Proposition 1 (The Corporate CAPM) i) The stochastic discount factor can be backed
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out from the firm’s optimality conditions as follows:

M(xt+1) =
1

Rt

1

1 + λi,t

Vw(wi,t, xt, zi,t)

Vw(w(si,t+1), xt+1, zi,t+1)
(27)

ii) The stochastic discount factor can be approximated as a linear function of observable

firm-level variables, and quantities that are predetermined at time t, that is:

logM(xt+1) ≈ µM
i,t − ai,t(w(si,t+1)− wi,t)− bi,t

(
ρi,t+1

ρAt+1

− ρi,t
ρAt

)
− ci,t

(
ρAt+1 − ρAt

)
(28)

where ρi,t and ρAi,t relate to idiosyncratic and aggregate productivity respectively:

ρi,t ≡ zi,t =
Π(ki,t, si,t)

kα
i,t

ρAi,t ≡ xi,t =
ΠA(ki,t, si,t)(

kA
i,t

)α
and µM

i,t ≡ log 1
Rt

+ log 1
1+λi,t

, ai,t, bi,t, and ci,t are predetermined variables at time t, with

µM
i,t ≡ log

1

Rt

+ log
1

1 + λi,t

(29)

ai,t ≡ Vww(wi,t, si,t)

Vw(wi,t, si,t)
(30)

bi,t ≡ Vwz(wi,t, si,t)

Vw(wi,t, si,t)
(31)

ci,t ≡ Vwx(wi,t, si,t)

Vw(wi,t, si,t)
(32)

The first part of the proposition obtains a stochastic discount factor from firms’ de-

cisions. Equation (27) is the counterpart of Equation (15) in the two-period example of

Section 2. This result reflects the key intuition of the paper, which I develop in Section 2,

and that Panel B of Figure 1 illustrates. The possibility to negotiate state-contingent

debt repayments with the lenders allows firms to transfer resources across states. Firms

have a rationale for hedging because of the endogenous collateral constraint, and have

a motive to transfer net worth to most important states, where the stochastic discount

factor is high. It is important to notice that in the absence of state-contingent debt, the

stochastic discount factor cannot be recovered. This is the case in Panel A of Figure 1, in
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which firms cannot implement state-contingent decisions. The resulting first-order con-

dition would not deliver a stochastic discount factor for each state, but only one equation

containing an expectation over all future states, along the lines of (7).

Specifically, the stochastic discount factor relates to the firm’s policy through the

Lagrange multiplier λi,t on the borrowing constraint, and the growth rate of the marginal

value of net worth. The left-hand side is the stochastic discount factor, which essentially

measures the value of an aggregate state for equity pricing. The right-hand side instead

illustrates how the optimal decisions of heterogeneous firms adapt to the aggregate state

to maximize the value for their shareholders. Backing out the stochastic discount factor

therefore amounts to investigate what state must have led a firm to optimally make its

observed investment and financing decisions. In the absence of state-contingent financing,

realized net worth in individual future states could not instead be influenced by firm’s

decisions, but would vary across states only because of exogenous shocks. Firms’ decisions

would not therefore be informative of the stochastic discount factor.

The economic mechanism driving the result in Equation (27) relates to firms’ hedging

behavior. Firms have a motive to transfer resources (net worth) to states that are most

important for their shareholder value. This policy would lower the marginal value of

net worth in those states. However, investors’ risk aversion implies that most important

states are ”bad times”, in which marginal utility of consumption in high, and consump-

tion is low. The term 1
1+λi,t

accounts for firms being financially constrained. The more

financially constrained they are, the higher the shadow value λi,t of extra borrowing,

the less their effective ability to transfer resources to most important states, in spite of

their hedging motives. This is consistent with the models of Rampini and Viswanathan

(2010), and Rampini and Viswanathan (2013), and the evidence in Rampini, Sufi, and

Viswanathan (2013) and Nikolov, Schmid, and Steri (2013), according to which more

constrained firms hedge less.

It is important to notice that all the state variables of the problem determine the

policies of firms, and in turn affect their hedging abilities and the needs. From an empirical

viewpoint, this result implies that firms’ characteristics enter the stochastic discount

factor directly. This mechanism is similar to the way, on the consumption side of the

economy, the state variables of the representative household’s problem enter the stochastic

discount factor in the intertemporal CAPM of Merton (1973). The second part of the
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proposition provides an approximated linear representation of the Corporate CAPM, in

terms of observable variables and quantities that are pre-determined at time t. Such an

approximation delivers the following result:

Proposition 2 (Expected Return-Beta Representation) The expected excess return

on a security Et[Ri,t+1 −Rf
t ] is given by the following expression:

Et[Ri,t+1 −Rf
t ] ≈ λ̃T

j,tβi,t (33)

where Rf
t is the riskfree return (or a riskfree equivalent), and the parameters λ̃T

j,t and βi,t

are given by

λ̃j,t =
[
aj,t bj,t cj,t

]
σj,t

βi,t = σ−1
j,t


Covt(w(sj,t+1)− wj,t, Ri,t+1 −Rf

t )

Covt

(
ρj,t+1

ρAt+1
− ρj,t

ρAt
, Rj,t+1 −Rf

t

)
Covt(ρ

A
t+1 − ρAt , Ri,t+1 −Rf

t )


and σj,t is the covariance matrix of

[
w(sj,t+1)− wj,t

ρj,t+1

ρAt+1
− ρj,t

ρAt
ρAt+1 − ρAt

]T

.

Proposition 2 is an equivalent expected return/beta representation of the Corporate

CAPM. This formulation emphasizes how expected excess equity returns are determined

by the covariance with three factors: the ”hedging” factor w(sj,t+1)−wj,t, and ”idiosyn-

cratic profitability” factor
ρj,t+1

ρAt+1
− ρj,t

ρAt
, and the ”aggregate profitability” factor ρAt+1 − ρAt .

As usual, βi,t can be interpreted as price of risk, and λ̃j,t as quantity of risk. In the

proposition, the index j refers to a benchmark firm with respect to which the factors are

computed. The presence of two profitability factors denotes that in some states the j-th

firm may be able to generate more resources either because all firms are more profitable

(high aggregate productivity), or because it is more profitable with respect to the average

(high idiosyncratic productivity). In both cases, firm’s realized net worth increases in the

state, and this affects the firm’s hedging policy. Despite this result, in empirical tests

it is convenient to aggregate firms to avoid the measurement problems that arise from

separating idiosyncratic and aggregate productivity. The next proposition shows how

firms can be conveniently aggregated to implement empirical tests of the model.
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Proposition 3 (Aggregation) Consider an arbitrary subset Ω of N firms in the cross-

section.

i) The expression of the stochastic discount factor in Equation (28) and its covariance

representation can be restated in terms of averages across firms in Ω as follows:

logM(xt+1) ≈ 1
N

∑
j∈Ω

[
log µM

j,t − aj,t(w(sj,t+1)− wj,t)− bj,t

(
ρj,t+1

ρAt+1
− ρj,t

ρAt

)
− cj,t(ρ

A
t+1 − ρAt )

]
(34)

and

Et[Ri,t+1 −Rf
t ] ≈ λ̃T

j,tβj,t (35)

with

λ̃j,t = −σΩt

βi,t = σ−1
Ωt



Covt

(
1
N

∑
j∈Ω

−aj,t(w(sj,t+1)− wj,t), Ri,t+1 −Rf
t

)

Covt

(
1
N

∑
j∈Ω

−bj,t

(
ρj,t+1

ρAt+1
− ρj,t

ρAt

)
, Ri,t+1 −Rf

t

)

Covt

(
1
N

∑
j∈Ω

−cj,t
(
ρAt+1 − ρAt

)
, Ri,t+1 −Rf

t

)


and σΩt is the covariance matrix of

[
1
N

∑
j∈Ω

aj,t(w(sj,t+1)−wj,t)
1
N

∑
j∈Ω

bj,t

(
ρj,t+1

ρAt+1

−
ρj,t

ρAt

)
1
N

∑
j∈Ω

cj,t(ρAt+1−ρAt )
]T

ii) If N → ∞, then:

logM(xt+1) ≈ 1
N

∑
j∈Ω

[
log µM

j,t − aj,t(w(sj,t+1)− wj,t)− cj,t(ρ
A
t+1 − ρAt )

]
(36)

with the following expected return/beta representation

βi,t = σ−1
Ωt


Covt

(
1
N

∑
j∈Ω

−aj,t(w(sj,t+1)− wj,t), Ri,t+1 −Rf
t

)

Covt

(
1
N

∑
j∈Ω

−cj,t
(
ρAt+1 − ρAt

)
, Ri,t+1 −Rf

t

)


and σΩt is the covariance matrix of
[

1
N

∑
j∈Ω

aj,t(w(sj,t+1)−wj,t)
1
N

∑
j∈Ω

cj,t(ρAt+1−ρAt )
]T

22



The first part of the proposition provides a theoretical irrelevance result, to which I

refer as the relativity property. This can be illustrated as follows. In the model, all firms

maximize the value for the owner, in that they use the same the stochastic discount factor

to discount expected future profits. In the model, the left-hand side of Equation (34) is

therefore constant, and the stochastic discount factor can be backed out by averaging out

the right-hand side for any subset of firms Ω in the economy (e.g. an industry).21 The

property essentially states that the reference set of firms with respect to which expected

returns are evaluated can be arbitrarily chosen. This differs from macro models with a

representative agent, that dictate that factors must necessarily be aggregated quantities.

The second part of the proposition provides an aggregation result when the number

of firms used to construct the stochastic discount factor is large enough. In this case,

the idiosyncratic productivity factor zeros out because of averaging out a large number

of firms in the cross-section. This result is useful in implementing empirical tests of

the model. Using individual firms to back out the stochastic discount factor can be

problematic for two main reasons. First, as in any economic model, there are omitted

forces that can affect individual firms much more than sample averages, such as product

market competition, labor market frictions, or investment adjustment costs. Second,

testing the model in a small sample of firms would pose the challenge of measuring

and disentangling aggregate and idiosyncratic productivities. Such a task would lead to

technical difficulties, and is subject to misspecification errors, as discussed for example

in Burnside, Eichenbaum, and Rebelo (1996) and Ábrahám and White (2006).

5. Quantitative Analysis

I resort to calibration to evaluate the quantitative ability of the model to rationalize firm’s

observed policies. Calibration restricts some structural parameter values to replicate

some key quantities in the data. Ideally, a one-to-one mapping between parameters and

moments provides a sufficient condition for identification. Such a close mapping is hard

to accomplish in any economic model, because firm’s investment and financing decisions

are intertwined, and the model parameters affect all the data moments.

To identify the key parameters in the model, I break them down into three groups. The

21In case Ω is a weighted portfolio of firms, all the sample averages are replaced by weighted averages.
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first group includes parameters whose value can be restricted from existing quantitative

works or mapped directly into data moments. The second group refers to parameters that

can be identified using some aggregate asset pricing moments. The third group includes

parameters that I set to obtain a match between the simulated data moments from the

model, and the actual data moments. Panel C of Table 1 reports parameter values,

while Panel A and B respectively show simulated and actual moments that pertain to

corporate policies, and to aggregate asset pricing quantities. All data are described in

Supplementary Appendix D.

[Insert Table 1 Here]

In the numerical solution of the model, I follow the recent literature on cross-sectional

asset pricing and specify an exogenous process for the stochastic discount factor (Berk,

Green, and Naik (1999), Zhang (2005), Gomes and Schmid (2010)). Since the goal of

this section is to provide evidence that the model is quantitatively successful on the

corporate side for a sensible choice of a pricing kernel, this strategy seems reasonable. All

calibrations are based on annual data, consistent with the quantitative corporate finance

literature. I follow Zhang (2005) and I specify the pricing kernel as follows:

logM(xt+1) = log β + [(γ0 + γ1(xt − µx)](xt+1 − xt) (37)

where β, γ0 > 0, and γ1 < 0 are constant parameters.22

The parameters that pertain to the first group are the depreciation rate δ, the per-

sistence ρx and the volatility σx of the aggregate shock process, and the exit rate ϕ. The

depreciation rate is set to 0.15, to approximately match the depreciation rate for US

listed firms in my sample. This value is the same used in Hennessy and Whited (2007),

and DeAngelo, DeAngelo, and Whited (2011). ρx and σx are set to 0.954 and 0.007 · 4 to

correspond, on an annual frequency and with the autoregressive specification in (16b), to

the quarterly values of 0.95 and 0.007 in Cooley and Prescott (1995). As in Gomes and

Schmid (2010), I set the fraction of incumbents ϕ to 0.02, in line with the study of Covas

and Den Haan (2012).

22For an in-depth discussion of this assumption and of the properties of the pricing kernel see Berk,
Green, and Naik (1999) and Zhang (2005).
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The second set of parameters consists of those in the stochastic discount factor, β,

γ0, and γ1. I pin down their value, using the strategy in Zhang (2005), to match three

aggregate moments: the mean and volatility of the real interest rate, and the average

Sharpe ratio. The parametrization in Equation (37) for the pricing kernel is convenient

in that the real interest rate Rf
t and the maximum Sharpe ratio St are:

Rf
t = β−1e−(µm+ 1

2
σ2
m) (38)

St =

√
eσ2

m(eσ2
m − 1)

e
σ2
m
2

(39)

with

µm = [(γ0 + γ1(xt − µx)](xt − µx)(1− ρx) (40)

σm = [(γ0 + γ1(xt − µx)]σx (41)

This strategy yields β = 0.94, γ0 = 12.5, and γ1 = −120, and gives a real interest rate

of 2.99% per year, an annual interest rate volatility of 3.75%, and a Sharpe ratio of 0.35.

These values are close to the corresponding data moments of 2.2%, 4.35%, and 0.41.

Finally, I pick 13 moments to match the remaining 5 parameters in the third group. I

roughly categorize these moments as representing firm’s investment, financing, and equity

returns. On the investment side, I choose moments that relate to operating income,

investment, and Tobin’s Q. On the financing side, I consider the mean, variance, and

serial correlation of leverage. On the asset pricing side, I pick the mean and the average of

market excess return, and the average volatility of individual stock returns. The resulting

parameter values appear to be reasonable. The curvature α is 0.76, in the range of values

reported by Hennessy and Whited (2005), Hennessy and Whited (2007), and DeAngelo,

DeAngelo, and Whited (2011) on annual data. The persistence and volatility ρz and

σz of idiosyncratic productivity shocks are within one standard error of the estimates

in Hennessy and Whited (2007), in which there are no capital adjustment costs as in

the present framework. The parameter µx is a scale parameter, that determines the

scale of the simulated economy and the steady-state capital stock. Finally, there is little

guidance for the value of θ, which represents the fraction of capital that the entrepreneur

effectively diverts in the case of liquidation. I set θ = 0.3, which is in line with values of
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related quantities in existing models, such as DeAngelo, DeAngelo, and Whited (2011)

and Nikolov, Schmid, and Steri (2013).

Panels A and B of Table 1 show that the model is broadly successful in matching

both aggregate asset pricing moments, and moments that relate to corporate investment

and financing. The model performance may further improve by adding other frictions

and considering additional moments. However, the absence of these frictions like capital

adjustment costs and fixed operating costs considerably simplifies the analysis. Because

the focus of this work is to derive a stochastic discount factor from an optimal contracting

framework, I privilege model parsimony over an improvement of the quantitative fit of

the model.

[Insert Table 1 Here]

6. The Corporate CAPM: Empirical Evaluation

In this section, I test the implications of the Corporate CAPM in the data. Because the

focus of this work is on differences in risk premia across assets, I examine the implications

of the model for cross-sectional expected excess returns. To do so, I test the following

restrictions on the pricing errors of a vector of excess returns Re
t+1:

Et[M(xt+1R
e
t+1)] = 0 (42)

where M(xt+1) is defined in Equation (36). The model with excess returns does not

identify the intercept µM
i,t of the stochastic discount factor in Proposition 3. The intercept

is in fact predetermined at time t, and can be normalized in empirical tests (Cochrane

(2001), Yogo (2006), Belo (2010)). I implement empirical tests by GMM using yearly data

from 1965 to 2010. Estimation is by two-step GMM, with the initial weighting matrix

attaching equal weights to all assets. Supplementary Appendix E provides details on the

estimation procedure, and replicates the empirical tests with an alternative measure of

the productivity factor based on Fernald (2009). The latter analysis controls for possible

misspecifications in measuring aggregate productivity ρAt as a Solow residual, as discussed

by Burnside, Eichenbaum, and Rebelo (1996). All data are described in Supplementary

Appendix D.
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The test assets are: (i) the 25 Fama-French portfolios sorted by size and book-to-

market equity, (ii) the 30 Fama-French industry portfolios, (iii) 25 portfolios sorted by

market and HML beta, and (iv) all the previous portfolios together. The 25 Fama-

French portfolios are chosen because they capture the value and the size premia, which

have received considerable attention in the literature. As in Lewellen, Nagel, and Shanken

(2010), I include the 30 Fama-French industry portfolios to relax the tight factor structure

of the 25 Fama-French portfolio. At Lewellen, Nagel, and Shanken (2010) document, the

30 industry portfolios represent a challenging test for all leading asset pricing models.

Following Yogo (2006), I also include the beta-sorted portfolios, in order to address the

critique in Daniel and Titman (2012).

As Equation (36) shows, if the number of firms with respect to which the factors

are computed is large enough, the Corporate CAPM reduces to a two-factor conditional

model. In other words, the coefficients ai,t and ci,t are time varying and depend on firms’

characteristics. In the next two subsections, I therefore implement both unconditional and

conditional tests. Unconditional tests treat ai,t and ci,t as constant parameters. Uncon-

ditional tests are reported for comparability with previous studies. In conditional tests, I

instead use a model-based identification strategy. More precisely, I use the quantitative

policy function of the model from Section 5 to find a parsimonious functional form for the

time-varying coefficients in terms of constant parameters and observable variables. As

aggregation properties in Proposition 3 illustrate, in order to implement empirical tests a

level of aggregation must be specified. For comparability with previous studies that use

aggregate data, in both Subsections 6.1 and 6.2 I aggregate data at the market level. In

Subsection 6.4 I instead carry out empirical tests using the five Fama-French industries

(consumer goods, manufacturing, hi-tech, healthcare, other) as references.

6.1. Unconditional Tests

If ai,t and ci,t are constant terms, Proposition 3 leads to a two factor model where the

net worth and profitability factors are averaged across all firms. Table 2 presents the

estimation results. Coefficient estimates for the two factors and the corresponding HAC

standard errors are reported. The table also reports the following goodness-of-fit mea-

sures based on first-stage inference: the mean absolute pricing error (MAE), and the

cross-sectional R2 of a regression of realized average excess returns on predicted aver-
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age excess returns, computed as in Campbell and Vuolteenaho (2004). As a measure

of model mis-specification I report the Hansen-Jagannathan (HJ) distance (Hansen and

Jagannathan (1997)). The HJ-distance can be interpreted as the minimum distance be-

tween the proposed stochastic discount factor and the set of correct stochastic discount

factors for a given set of test assets. Finally, the table includes two formal tests of the

model: the J-test of overidentifying restrictions (Hansen and Singleton (1982)), and a test

of the null hypothesis of zero HJ-distance (Jagannathan and Wang (1996)). Although

several studies23 document the statistical power of both tests is low in the context of asset

pricing tests, and their small-sample properties vary to a great extent with the sample

size and the test assets, I report them for comparability with previous studies.

Unconditional tests suggest that the Corporate CAPM finds support in the data.

The first two rows of Table 2 report GMM estimates of the coefficients on the net worth

and profitability factor for all the test assets. Although conditional tests are a more

appropriate setting to discuss the sign restrictions on the coefficients, the unconditional

estimates are overall in line with the predicted signs for ai,t and ci,t from the model.

Column 4 shows that when all test assets are considered, the coefficients on net worth

and profitability factors have a negative and a positive sign respectively, as the model

predicts. As Columns 1-3 show, the coefficient on the profitability factor is positive even

for all test assets individually. In addition, while the 25 portfolios sorted by size and

book-to-market and the risk-sorted portfolios do not individually lead to statistically

significant estimates of the coefficients for the net worth factor, the estimates for the

30 industry portfolios clearly identify a negative coefficient. Such a negative coefficient

remains significant when all portfolios are considered together, with a point estimate of -

6.334, more than four standard errors from zero. This result supports the recommendation

in Lewellen, Nagel, and Shanken (2010) to include the Fama-French industry portfolios

in tests of asset pricing models.

The Corporate CAPM appears to capture most of the variation in expected returns

across the test assets. Mean absolute pricing errors range from 0.676% to 0.838% per

annum. Cross-sectional R2 are also high, ranging from 0.771 for the industry portfolios,

to 0.923 for the 25 size/book-to-market portfolios. Remarkably, the model is successful

23See, for example, Ferson and Foerster (1994), Ahn and Gadarowski (2004), and Lewellen, Nagel, and
Shanken (2010).
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in pricing the Fama-French 30 Industry portfolios. In fact, as Lewellen, Nagel, and

Shanken (2010) document, these test assets represent a challenge for all leading asset

pricing models. Finally, although the results of formal tests should be interpreted with

extreme caution for the reasons above, both the tests based on the HJ distance and the

J statistic cannot statistically reject the model.24

[Insert Table 2 Here]

Figure 4 provides a visual summary of the performance of the model. Panels A

through D report predicted versus realized average returns for the four sets of test assets.

If priced correctly, the portfolio should lie along the 45-degree line. The figure clearly

shows that the pricing performance of the Corporate CAPM is more than satisfactory.

[Insert Figure 4 Here]

6.2. Conditional Tests

In this section I implement conditional tests of the Corporate CAPM. Because the change

in aggregate profitability does not vary across firms, Equation (36) leads to the following

specification for the stochastic discount factor:

logM(xt+1) ≈ µM − 1
N

∑
j∈Ω

[aj,t(w(sj,t+1)− wj,t)]− ct(ρ
A
t+1 − ρAt ) (43)

where ct ≡ 1
N

∑
j∈Ω

cj,t.

As the theoretical argument in Hansen and Richard (1987) remarks, testing condi-

tional models is conceptually difficult because they inherently depend on the information

structure of the agents in the economy. In empirical work, the most common testing

strategy is to specify the conditional parts of the model as linear functions of some set

of observable variables, such as the default and term spreads, the consumption-to-wealth

ratio, and the aggregate dividend yield. Other approaches make use of higher frequency

data, such as the MIDAS techniques in Ghysels, Santa-Clara, and Valkanov (2004).

24The values of the HJ distance for the case of all portfolios together is not reported because, as
Cochrane (1996) discusses, the cross-moment matrix of returns is nearly singular when the number of
test assets is large.
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In the implementation of conditional tests, I use the policy function of the model to

specify a parsimonious functional form for aj,t and ct. I adopt a model-based identifi-

cation strategy for three reasons. First, the annual data frequency of my sample is not

well-suited to implement methods that take advantage of high frequency data. Second,

the coefficients aj,t and ct depend on the state variables of the model, rather than on

the observable variables usually considered in conditional tests based on macroeconomic

factors. Third, as Brandt and Chapman (2006) discuss, a linear approximation for the

functional forms of the coefficients in the model may result in large misspecifications.

Admittedly, the information set investors access in the real world is larger than the state

variables of the contracting model. However, as Hansen and Richard (1987) show, by the

law of iterated expectations a conditional model can be tested by ”conditioning down”

finer information sets to coarser ones.25

Panels C and F of Figure 5 plot the building blocks for the conditional tests in this

section, namely the coefficients ai,t and ci,t for the firm i. The coefficient ai,t is negative

and increasing in current net worth, and its graph is highly nonlinear, especially for firms

with low net worth. The negative sign of ai,t follows directly from the shape of the value

function. Panels A and B depict respectively the denominator and the numerator of ai,t,

as defined in Proposition 1. The graph in Panel A is the marginal value of net worth,

which is positive because the value function is increasing in net worth. The graph in

Panel B is its derivative with respect to net worth, which is negative because of the

concavity of the value function. Analogously, the coefficient ci,t is approximately linear

and decreasing in the current aggregate shock xt which, as Proposition 1 shows, can be

measured in the data as the Solow residual ρAt . Panels D and E depict the denominator

and the numerator of ci,t under the baseline calibration in Table 1.

[Insert Figure 5 Here]

To carry on conditional tests, I look for an approximation of ai,t and ct in terms

of observable variables. To do so, I run regressions on the model solution to identify a

functional form for ai,t and ct in terms of net worth wi,t and ρAt . While both coefficients in

principle depend on all the state variables of the model, my goal is to find a parsimonious

25As Cochrane (2001) points out, all the moments computed with respect to the coarser information
set must exist.
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functional form for them, which possibly involves only a subset of the state variables.

Table 3 reports the estimates for a nonlinear regression of ai,t on the function a0
1

1+a1wi,t
,

where a0 and a1 are constant parameters, and the estimates for a linear regression of ct

on ρAt . The nonlinear regression is implemented with the algorithm in Levenberg (1944)

and Marquardt (1963), as described in the caption of the table. While the model as no

closed-form solution, the approximations for both coefficient delivers a good fit, with R2

statistics of 0.969 and 0.999 respectively. The regressions produce estimates of -35.424,

7.489, 4.142, and -17.623 for a0, a1, the intercept c0, and the slope c1. Given the limited

number of observations on an annual frequency, to avoid overfitting and noisy estimates

in the GMM tests of the model, I only estimate a0 and c0, while I set a1 and c1 to the

values reported above.

[Insert Table 3 Here]

Table 4 reports the results for the estimation. The results are consistent with those

of the unconditional tests in Table 2. The estimates of a0 and c0 have the expected sign

when all test assets are considered in Column 4. The estimates in Columns 1-3 confirm

that, as in unconditional tests, the Fama-French 30 industry portfolios play an important

role in the inference. Finally, the Corporate CAPM appears to have a good pricing

performance, with mean absolute pricing errors below 0.8% per year, and R2 statistics

well above 0.8.

[Insert Table 4 Here]

6.3. Comparison Among Models

Table 5 compares the pricing performance of the Corporate CAPM and that of the most

popular existing asset pricing models. I consider three other models: the CAPM (Column

1), the Fama and French three-factor model (Column 2), and the Consumption CAPM

(Column 3). Columns 4 and 5 report the results for both unconditional and conditional

tests of the Corporate CAPM. In terms of test assets, Panel A refers to the Fama-French

25 portfolios, Panel B to the 25 portfolios sorted by HML and market beta, Panel C to

the 30 Fama-French industry portfolios, and Panel D to all portfolios together.

[Insert Table 5 Here]
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As in previous studies, the CAPM and the Consumption CAPM are not successful in

pricing the tests assets. The MAE is high, ranging from 1.362% per annum to 1.911%

per annum, and the R2 is consistently low across all test assets. The Fama-French model

instead performs rather well, with mean absolute pricing errors ranging from 0.673% to

1.095% per year, and R2 between 0.630 for the 30 Fama-French portfolios and 0.915 for the

portfolios sorted by size and book-to-market. With respect to these two indicators, the

Corporate CAPM outperforms all models on all test assets, both in its unconditional and

conditional specification. Not surprisingly, and consistent with the findings in Ahn and

Gadarowski (2004), Burnside (2010), Lewellen, Nagel, and Shanken (2010), and Daniel

and Titman (2012), the formal tests based on HJ and J statistics are uninformative,

and are unable to reject any model. Although these findings should be interpreted with

caution due to the well-known issues with the testing framework, the Corporate CAPM

seems to have a satisfactory pricing performance.

[Insert Figure 6 Here]

Figure 6 summarizes the previous comparison among models, in line with Figure 4.

Panels A through D depict predicted versus realized average excess returns for the CAPM,

the Fama-French model, the Consumption CAPM, and the Corporate CAPM. The figure

refers to all the test assets together. Panels A and C show that the points are far from

the 45-degree line for the CAPM and the Consumption CAPM, while they line up fairly

well for the Fama and French’s model (Panel B), and especially for the Corporate CAPM

(Panel D).

6.4. Industry Breakdowns

As I discuss in Section 4, Proposition 3 provides an irrelevance result that I dub as the

relativity property. In the model, as long as the number of firms used in the aggregation

process is large, any choice of the set of benchmark firms for the computation of the

factors allows to back out the same approximate stochastic discount factor.

Table 6 reports unconditional (Panel A) and conditional (Panel B) tests of the Cor-

porate CAPM with respect to five large reference industry, namely the Fama-French

industries (consumer goods, manufacturing, hi-tech, healthcare, other). The test assets

are all the previous portfolios together. The results appear to be consistent with the
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relativity property. Regardless of the reference industry, mean absolute pricing errors

are rather low, with R2 statistics between 0.720 to 0.854. In addition, the estimates for

the coefficients on the net worth and profitability factors are respectively negative and

positive as predicted by the model.

These results represent a starting point to understand common procedures that focus

on ”comparable” firms, and that practitioners ordinarily use for company valuation, such

as relative valuation based on multiples or bottom-up betas (Damodaran (2008)). In

fact, unlike classical macro-based asset pricing models, the present framework allows to

formally introduce the concept of benchmark set of firms. Future research may extend

the present model to analyze the conditions under which the irrelevance result breaks,

and attempt to rationalize such commonly used practices.

[Insert Table 6 Here]

7. Conclusions

Recent corporate finance studies document that hedging motives represent a key deter-

minant of corporate decisions. In a dynamic contracting model, I recover a stochastic

discount factor from firm’s investment and financing policies. This leads to a novel asset

pricing model, the Corporate CAPM. In the model, firms hedge by transferring resources

to future states where they are more valuable. Firms have limited funds because of collat-

eral constraints that endogenously arise from agency conflicts between firms and lenders.

The amount of resources firms can devote to hedging is therefore limited. In this context,

the shareholders’ stochastic discount factor measures the importance of each state for

firm’s value. Value maximization provides a motive for firms to hedge most important

states, in a tradeoff with their funding needs for current investment and distributions.

On the corporate finance side, a calibrated version of the model is quantitatively con-

sistent with investment, financing, and payout policies of US listed firms. On the asset

pricing side, the Corporate CAPM finds support in the data. The model performs well in

pricing different test assets, also in comparison to popular asset pricing models, namely

the CAPM, the Consumption CAPM, and the Fama and French three-factor model.

This work has implications for future research not only for production-based asset

pricing, but also for consumption-based models, and for empirical work on the cross-
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section of expected returns. The present framework may represent a complementary tool

to advance the understanding of the consumption side of the economy. As Cochrane

(2011) points out, the ultimate goal of asset pricing theory should be to provide a general

equilibrium explanation of how asset returns and consumption are jointly determined. In

general equilibrium, the stochastic discount factor obtained from both the production and

consumption side of the economy must have consistent properties. These additional re-

strictions may provide guidance in modeling the household side on the economy. Another

implication of this paper is that the state variables of the firm’s optimization problem,

in other words the determinants of firms’ decisions, enter the stochastic discount factor

directly. For empirical work, this observation may provide insights for the development

of new testable hypotheses for cross-sectional differences in returns.
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Figure 1. Collateral-Based Asset Pricing: Illustration
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Panel B: Hedging
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The figure illustrates the set of possible payoffs of a firm with and without hedging in the context
of the example in Section 2. Panel A depicts the case of no hedging, while Panel B introduces
hedging. In Panel A, the thick solid lines represent the firm’s payoff in the sunny (d(S)) and rainy
(d(R)) states for a given payout d(F ) in the foggy state. k in capital investment, and b is the
debt stock. Blue and red dashed lines represent two possible sets of indifference curves for the
representative investor. The equilibrium marginal rate of substitution, and hence the stochastic
discount factor, cannot be backed out because the kinks at any decision point are consistent with
more than one indifference curve. In Panel B, the firm can transfer resources across states by
arranging state-contingent debt repayments b(S), b(F ), and b(R) in the sunny, foggy, and rainy
states, in the presence of collateral constraints. The payout set is linear, and in equilibrium its
slope must be equal to the slope of indifference curves.
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Figure 2. The Dynamic Limited Enforcement Problem

Panel A: Intraperiod Timing

Panel B: Extensive Form Game

The figure depicts the timing of events in the dynamic limited enforcement problem, as described
in the text. Panel A represents the sequence of events that occur each period after the long-term
contract between the lender and the borrower is signed. Panel B shows the extensive form of the
game from which enforcement constraints arise as an equilibrium outcome. In Panel B, red lines
and blue lines represent optimal strategies and payoffs for the firm and the lender respectively. The
possible strategies for the borrower are either to renege the contract (R), or to continue running
the firm (R). If the borrower decides to renege the contract, The possible strategies for the lender
are either to liquidate the firm (L), or to not liquidate the firm (L). At time t and for firm i,
M(xt) denotes the stochastic discount factor, Rt is the risk-neutral lender’s discount rate, di,t the
dividend payment, τi,t the repayment to the lender, ki,t the firm’s capital stock, O(ki,t+1, si,t) the
value of the outside opportunity for the entrepreneur, and 1− θ the fraction of capital the lender
can expropriate upon liquidation. si,t in the state of the economy, and consists of an aggregate
shock xt, and of a firm-specific shock zi,t.
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Figure 3. Firm’s policy: Illustration
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The figure illustrates the investment, payout, financing, and hedging policy of the firm as a function
of current net worth wi,t. The model is solved under the baseline calibration in Table 1. Panels
A through F show: firm’s equity value V (w(si,t), si,t), dividend payouts di,t the new capital stock
ki,t+1, the observed debt stock E[b(si,t+1)], the debt repayment in three different aggregate states
b(xt+1), and the debt repayment in three different idiosyncratic states b(zi,t+1). In all Panels, wC

denotes the net worth cutoff that delimits the region in which the firm is paying dividends. In
Panel A, the dashed blue line represents the 45-degree slope of the value function in the region
where dividends are paid. In Panels E and F, the solid line refer to the repayment in the middle
state, the dashed red line to the one-state-down repayment, and the dash-dotted green line to the
one-state-up repayment.

42



Figure 4. Predicted vs Realized Excess Returns: Corporate CAPM.
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The figure illustrates annual predicted and realized excess returns for the first-stage GMM estima-
tion of the Corporate CAPM as in Table 2. Panels A through D refer to the following test assets:
the 25 Fama and French’s portfolios sorted on size and book-to-market equity, 25 risk-sorted port-
folios on pre-ranking market and HML betas as in Yogo (2006), the 30 Fama-French industry
portfolios, and all the previous portfolios. In Panel A, the first digit of the label corresponds to the
size quintile, and the second digit to the book-to-market equity quintile. In Panel B, the first digit
of the label corresponds to the pre-ranking HML beta quintile, and the second digit to the market
beta within each HML beta group. In Panel C, the labels are mnemonics for Fama and French
30-Industry classification as on Kenneth French’s website. Accounting data for the construction
of the Corporate CAPM factors are from Compustat Annual. The sample period is from 1965 to
2010.
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Figure 5. Coefficients on the Hedging and Profitability Factors
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Panels A through C depict the marginal value of net worth Vw(wi,t, si,t), its derivative with respect

to current net worth Vww(wi,t, si,t), and the coefficient ai,t ≡ Vww(wi,t,si,t)
Vw(wi,t,si,t)

, all as a function of

current net worth wi,t. The pictures refer to the steady state for both aggregate and idiosyncratic
shocks. Panels D through F depict the marginal value of net worth Vw(wi,t, si,t), its derivative

with respect to current net worth Vww(wi,t, si,t), and the coefficient ci,t ≡ Vwx(wi,t,si,t)
Vw(wi,t,si,t)

, all as a

function of the current aggregate shock xt. The pictures refer to the steady state for both net worth
and aggregate shocks. The coefficients ai,t and ci,t on the net worth and aggregate profitability
factors are aggregated for conditional tests and lead to the specification of the Corporate CAPM
in Equation (43).
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Figure 6. Predicted vs Realized Excess Returns: Comparison Among Models.
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The figure illustrates predicted and realized excess returns for the first-stage GMM estimation of
different asset pricing models. All returns are annual and in excess of the riskfree rate. The test
assets are the 25 Fama and French’s portfolios sorted on size and book-to-market equity, 25 risk-
sorted portfolios on pre-ranking market and HML betas as in Yogo (2006), and the 30 Fama-French
industry portfolios, all together. Panels A through D refer to the asset pricing models estimated
in Table 5: the CAPM, the three factor model of Fama and French, the Consumption CAPM,
and the Corporate CAPM (unconditional estimation). Accounting data for the construction of the
Corporate CAPM factors are from Compustat Annual. The sample period is from 1965 to 2010.
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Table 1. Model Calibration.

The table reports actual and simulated moments, together with the corresponding choice of structural
parameters. Panel A reports a set of moments that refers to corporate policies, and the corresponding
data values. Calculations of data moments in Panel A are based on a sample of nonfinancial, unregulated
firms from the annual 2012 Compustat Industrial database. The sample period is from 1988 to 2001.
Operating income is defined as (xt+1zt+1k

α
t )/kt, investment as it = kt+1 − (1 − δ)kt, leverage as

E[b(st+1)]/(E[b(st+1)] + V (wt, st)), distributions as dt/kt and Tobin’s Q as (V (wt, st) + E[b(st+1)])/kt.
Panel B reports a set of simulated aggregate asset pricing moments, whose data counterparts are from
previous studies. Panel C reports the chosen values for structural parameters. Parameters in Group
I are those whose value can be restricted from previous works or maps directly into data moments.
Parameters in Group II pertain to the pricing kernel and are set to match the average real riskfree rate,
the real riskfree rate volatility, and the average Sharpe ratio. Parameters in Group III are set to match
simulated moments to data moments. α is the curvature of the production function, θ is the fraction of
diverted capital in case of liquidation, δ is the depreciation rate, β, γ0, and γ1 are the parameters in the
stochastic discount factor, µx, ρx, σx are the parameters driving the dynamics of the aggregate shock,
ρz, and σz are the parameters driving the dynamics of the idiosyncratic shock, and ϕ is the fraction of
incumbents per period.

Panel A: Corporate Policy Moments
Simulated Moments Data Moments

Mean of operating income 0.2115 0.1387
Variance of operating income 0.0077 0.0068
Serial correlation of operating income 0.6706 0.7920
Mean of investment 0.1609 0.2018
Variance of investment 0.0568 0.0516
Mean of leverage 0.3931 0.2820
Variance of leverage 0.0427 0.0546
Serial correlation of leverage 0.6493 0.7723
Average distributions 0.0486 0.0310
Mean Tobin’s Q 1.6522 1.5594

Panel B: Aggregate Moments
Simulated Moments Data Moments

Mean of riskfree rate 0.0219 0.0290
Volatility of riskfree rate 0.0375 0.0300
Mean of Sharpe Ratio 0.3499 0.4100
Average excess returns 0.0627 0.0790
Variance of aggregate returns 0.0228 0.0317
Mean of firm-level return variances 0.0804 0.1149

Panel C: Calibrated Parameters
Group I Group II Group III

δ ρx σx ϕ β γ0 γ1 α θ µx ρz σz

0.1500 0.8145 0.0280 0.0200 0.9400 12.5 -120 0.7600 0.3000 -2.0 0.8700 0.0750
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Table 2. Unconditional Tests of the Corporate CAPM.

The table reports the estimated factor loading on the net worth, and profitability factors for the Corporate
CAPM. The test assets are the 25 Fama and French’s portfolios sorted on size and book-to-market equity,
25 risk-sorted portfolios sorted on pre-ranking market and HML betas as in Yogo (2006), the 30 Fama-
French industry portfolios, and all the previous portfolios. All returns are annual and in excess of the
riskfree rate. In this specification, the model is estimated unconditionally, and the curvature parameter
α is set to the calibrated value of 0.76. Estimation is by two-step GMM. HAC standard errors are in
parentheses. The kernel is Newey-West with a lag length of 1 year. MAE denotes the percent mean
absolute pricing error, and the R2 is computed as in Campbell and Vuolteenaho (2004). The latter two
statistics are based on first-stage estimates. HJ denotes the Hansen-Jagannathan distance, computed
as in Jagannathan and Wang (1996). p(HJ) is the p-value for the HJ test corrected for degrees of
freedom as in Ferson and Foerster (1994). J and p(J) denote the test statistic and the p-value for a test
of overidentifying restrictions. Accounting data for the construction of the Corporate CAPM factors are
from Compustat Annual. The sample period is from 1965 to 2010.

Test Assets

Estimate 25 S/BM FF 30 Ind Risk-Sorted All

Net Worth 2.853 -8.392 0.879 -6.344
(1.623) (0.978) (1.574) (1.367)

Profitability 23.145 26.927 50.785 27.621
(1.285) (1.572) (5.826) (5.831)

MAE (%) 0.764 0.790 0.676 0.838

R2 0.923 0.771 0.872 0.846

HJ Distance 0.773 0.828 0.669 -
p(HJ) (0.768) (0.982) (0.913) -

J 22.333 22.405 17.730 22.487
p(J) (0.500) (0.762) (0.772) (1.000)
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Table 3. Conditional Tests: Nonlinear Regression for ai,t and ct.

The table reports estimated coefficients and the R2 for a nonlinear regression of the time-varying
coefficient ai,t, and of a linear regression of ct, for the conditional specification of empirical tests of the
Corporate CAPM. The values of ai,t are regressed from the numerical solution of the model on the
endogenous state variable wi,t, with the functional form:

a0
1

1 + a1wi,t

Estimation is based the algorithm in Levenberg (1944) and Marquardt (1963). The values of

ct ≡ 1
N

N∑
j=1

cj,t are regressed from the numerical solution of the model on the state variable xt, with the

functional form:

c0 + c1ρ
A
t

Standard errors are in parentheses. The R2 is from a cross-sectional regression of fitted on actual values.

Dependent Variable: ai,t
Functional Form a0 a1 R2

a0 · 1
1+a1wi,t

-35.424 7.489 0.969

(0.295) (0.271)

Dependent Variable: ct
Functional Form c0 c1 R2

c0 + c1ρ
A
t 4.142 -17.623 0.999

(0.072) (0.529)
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Table 4. Conditional Tests of the Corporate CAPM

The table reports the estimated factor loading on the net worth, and profitability factors for the Corporate
CAPM. The test assets are the 25 Fama and French’s portfolios sorted on size and book-to-market equity,
25 risk-sorted portfolios sorted on pre-ranking market and HML betas as in Yogo (2006), the 30 Fama-
French industry portfolios, and all the previous portfolios. All returns are annual and in excess of the
riskfree rate. In this specification, the model is estimated conditionally with the stochastic discount factor
in Equation (43), in which the coefficient ai,t for ”net worth” factor is time varying, and as in Table 3,
is parametrized as:

a0
1

1 + a1wi,t

and the estimated coefficient for the ”profitability factor” is parametrized as:

c0 + c1ρ
A
t

The table reports the estimates for a0 and c0, while a1 is set to 7.489, and c1 is set to -17.623 as estimated
in Table 3. The curvature parameter α is set to the calibrated value of 0.76. Estimation is by two-step
GMM. Standard errors are in parentheses, and are computed with HAC standard error. The kernel is
Newey West with a lag length of 1 year. MAE denotes the percent mean absolute pricing error, and
the R2 is computed as in Campbell and Vuolteenaho (2004). The latter two statistics are based on first-
stage estimates. HJ denotes the Hansen-Jagannathan distance, computed as in Jagannathan and Wang
(1996). p(HJ) is the p-value for the HJ test corrected for degrees of freedom as in Ferson and Foerster
(1994). J and p(J) denote the test statistic and the p-value for a test of overidentifying restrictions.
Accounting data for the construction of the Corporate CAPM factors are from Compustat Annual. The
sample period is from 1965 to 2010.

Test Assets

Estimate 25 S/BM FF 30 Ind Risk-Sorted All

Net Worth 19.536 -97.200 7.272 -21.700
(38.975) (14.240) (40.198) (5.009)

Profitability 34.361 27.007 40.231 28.097
(2.788) (0.934) (3.613) (4.160)

MAE (%) 0.634 0.784 0.557 0.722

R2 0.944 0.820 0.911 0.888

HJ Distance 0.876 0.810 0.783 -
p(HJ) (0.711) (0.981) (0.901) -

J 22.714 22.863 18.997 22.254
p(J) (0.478) (0.740) (0.701) (1.000)
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Table 5. Comparison Among Models.

Columns 1 through 5 report performance measures for the CAPM, the three factor model of Fama and
French, the consumption CAPM, and the Corporate CAPM. For the Corporate CAPM, the results for
unconditional estimates are in Column 5, and those for conditional estimates are in Column 6. Panels
A through D refer to the following test assets: the 25 Fama and French’s portfolios sorted on size and
book-to-market equity, 25 risk-sorted portfolios on pre-ranking market and HML betas as in Yogo (2006),
the 30 Fama-French industry portfolios, and all the previous portfolios. All returns are annual and in
excess of the riskfree rate. Estimation is by two-step GMM. HAC standard error are in parentheses. The
kernel is Newey-West with a lag length of 1 year. MAE denotes the percent mean absolute pricing error,
and the R2 is computed as in Campbell and Vuolteenaho (2004). The latter two statistics are based
on first-stage estimates. HJ denotes the Hansen-Jagannathan distance, computed as in Jagannathan
and Wang (1996). p(HJ) is the p-value for the HJ test corrected for degrees of freedom as in Ferson
and Foerster (1994). J and p(J) denote the test statistic and the p-value for a test of overidentifying
restrictions. Accounting data for the construction of the Corporate CAPM factors are from Compustat
Annual. The sample period is from 1965 to 2010.

Corporate Corporate
CAPM Fama-French CCAPM CAPM CAPM

(Unconditional) (Conditional)

Panel A. 25 Fama-French Portfolios

MAE (%) 1.764 0.673 1.414 0.752 0.634
R2 0.510 0.915 0.586 0.923 0.944
HJ 0.871 0.863 0.869 0.804 0.876

p(HJ) (0.736) (0.293) (0.885) (0.735) (0.711)
J 19.508 21.459 20.913 21.968 22.714

p(J) (0.724) (0.493) (0.644) (0.522) (0.478)

Panel B. 25 Risk-Sorted Portfolios

MAE (%) 1.857 0.815 1.911 0.758 0.557
R2 0.217 0.837 0.196 0.852 0.911
HJ 0.761 0.761 0.773 0.693 0.713

p(HJ) (0.912) (0.683) (0.942) (0.894) (0.901)
J 19.897 19.886 21.809 20.354 18.997

p(J) (0.703) (0.590) (0.591) (0.620) (0.701)

Panel C. 30 Fama-French Industry Portfolios

MAE (%) 1.362 1.095 1.629 0.935 1.015
R2 0.264 0.630 0.159 0.743 0.784
HJ 0.846 0.848 0.877 0.822 0.820

p(HJ) (0.988) (0.906) (0.993) (0.982) (0.981)
J 20.232 20.838 22.306 22.112 22.863

p(J) (0.886) (0.794) (0.807) (0.776) (0.740)

Panel D. All 80 Portfolios

MAE (%) 1.703 0.990 1.829 0.838 0.722
R2 0.378 0.791 0.349 0.846 0.888
J 22.349 22.358 22.475 22.487 22.254

p(J) (1.000) (1.000) (1.000) (1.000) (1.000)
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Table 6. The Corporate CAPM: Industry Breakdowns.

The table reports the estimated factor loading on the net worth, and profitability factors for the Corporate
CAPM. The test assets are the 25 Fama and French’s portfolios sorted on size and book-to-market equity,
25 risk-sorted portfolios on pre-ranking market and HML betas as in Yogo (2006), and the 30 Fama-
French industry portfolios, all together. All returns are annual and in excess of the riskfree rate. The
first row reports the reference set of firms with respect to the Corporate CAPM factors are computed,
and corresponds to Fama and French’s five-industry classification. Panel A refers to unconditional tests,
implemented as in Table 2. Panel B refers to conditional tests, implemented as in Table 4. Estimation
is by two-step GMM. HAC standard errors are in parentheses. The kernel is Newey-West with a lag
length of 1 year. MAE denotes the percent mean absolute pricing error, and the R2 is computed as in
Campbell and Vuolteenaho (2004). The latter two statistics are based on first-stage estimates. J and
p(J) denote the test statistic and the p-value for a test of overidentifying restrictions. Accounting data
for the construction of the Corporate CAPM factors are from Compustat Annual. The sample period is
from 1965 to 2010.

Panel A: Unconditional Tests
Reference Industry

Estimate Cnsmr Manuf HiTec Hlth Other

Net Worth -8.567 -2.148 -2.359 -3.795 -5.224
(1.976) (0.480) (0.508) (0.821) (1.105)

Profitability 34.680 15.858 11.321 19.065 20.690
(7.337) (3.346) (2.392) (4.025) (4.379)

MAE (%) 0.930 0.959 0.898 1.214 0.895

R2 0.822 0.854 0.841 0.830 0.823

J 22.487 22.481 22.465 22.470 22.432
p(J) (1.000) (1.000) (1.000) (1.000) (1.000)

Panel B: Conditional Tests
Reference Industry

Estimate Cnsmr Manuf HiTec Hlth Other

Net Worth -17.700 -27.000 -20.300 -18.900 -47.500
(7.239) (5.861) (4.772) (4.462) (10.343)

Profitability 12.975 4.902 6.526 10.107 7.189
(2.751) (1.034) (1.384) (2.132) (1.529)

MAE (%) 1.212 1.297 0.856 0.951 0.864

R2 0.720 0.728 0.847 0.835 0.822

J 22.485 22.480 22.487 22.475 22.457
p(J) (1.000) (1.000) (1.000) (1.000) (1.000)
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Appendix A. Proofs of Propositions

Proof of Lemma 1. Denote by Y the set of the possible values for the state variables wi,t and si,t,

by Γ(y) the set of possible actions ki,t+1 and b(si,t+1) for each y ∈ Y . Let V be the set of functions from

Y to (−∞,∞). In the remainder of the proof, I use the shorthands V LB for V LB(wi,t, si,t), V
UB for

V UB(wi,t, si,t), and V ∗ for V (wi,t, si,t). Denote by ≤ be partial order operator for the functions on V ,

and by T the Bellman operator defined by

(Tv)(y) = sup
a∈Γ(y)

(d(y, a) + Et [βM0(xt+1)v(y
′)] , y, y′ ∈ Y, v ∈ V (A.1)

In this setting, the number of states is assumed to be finite, and by no arbitrage we have M0(·) > 0.

Therefore, from the definition of T , it follows that T is monotone. Furthermore, T (V UB) ≤ V UB ,

and T (V LB) ≥ V LB . Under these conditions, the Knaster-Tarski fixed-point theorem (Aliprantis and

Border (2006), Theorem 1.10) guarantees that the Bellman operator has at least one fixed point V FP in

[V LB , V UB ]. Define the sequence V LB
n , with n = 0, 1, 2, ... such that V LB

0 = V LB , and V LB
n+1 = TV LB

n .

Since any fixed point of T in [V LB , V UB ] is bounded above by V UB , the increasing sequence V LB
n must

converge to a fixed point V̂ LB in [V LB , V UB ]. By definition of fixed point, V FP = TV FP , and, by

construction, V LB
n ≤ V FP , for all n. Thus, V̂ LB ≤ V FP . By (23), and since the number of states is

finite, the conclusion of Theorem 4.3 in Stokey and Lucas (1989) goes through. Therefore V ∗ = V FP .

Finally, the assumptions for Lemma 4.3 in Kamihigashi (2012) are satisfied, and this guarantees that

V ∗ ≤ V̂ LB . As a consequence, the following chain of inequalities holds:

V ∗ ≤ V̂ LB ≤ V FP = V ∗ (A.2)

This establishes that the uniqueness result in part (i), and the convergence results in part (ii). �

Proof of Proposition 1. Part (i). As Equation (26) states, the first-order conditions of problem

(17)-(22) with respect to b(si,t+1) are:

Rtν(si,t+1)M(xt+1) =
νi,t

1 + λi,t
(A.3)

Solving the previous equation for M(xt+1), the stochastic discount factor can be obtained as:

M(xt+1) =
νi,t

RtVw(w(si,t+1), xt+1, zi,t+1)(1 + λi,t)
(A.4)

The envelope condition (17)-(22) with respect to the state variable wi,t is:

νi,t = Vw(wi,t, xt, zi,t) (A.5)
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Plugging the expression of the multiplier νi,t from Equation (A.5) into (A.4) yields:

M(xt+1) =
Vw(wi,t, xt, zi,t)

RtVw(w(si,t+1), xt+1, zi,t+1)(1 + λi,t)
= (A.6)

= µM
i,t

Vw(wi,t, xt, zi,t)

Vw(w(si,t+1), xt+1, zi,t+1)

Part (ii). Taking the log of both sides of (27) yields

logM(xt+1) = µM
i,t + log

Vw(wi,t, xt, zi,t)

Vw(w(si,t+1), xt+1, zi,t+1)
(A.7)

Define f(w(si,t+1, si,t+1) ≡ log
Vw(w(si,t+1),xt+1,zi,t+1)

Vw(wi,t,xt,zi,t)
. A first-order Taylor expansion of f(w(si,t+1, si,t+1)

around the previous period realization (wi,t, si,t) leads to:

f(w(si,t+1, si,t+1) ≃ f(wi,t, si,t) + fw(wi,t, si,t)(w(si,t+1)− wi,t) + fz(wi,t, si,t)(zi,t+1 − zi,t)(A.8)

+ fx(wi,t, si,t)(xi,t+1 − xi,t)

Since

f(wi,t, si,t) = 1 (A.9)

fw(wi,t, si,t) =
Vww(wi,t, si,t)

Vw(wi,t, si,t)
(A.10)

fz(wi,t, si,t) =
Vwz(wi,t, si,t)

Vw(wi,t, si,t)
(A.11)

fx(wi,t, si,t) =
Vwx(wi,t, si,t)

Vw(wi,t, si,t)
(A.12)

and because, expressing xt as a Solow residual and recovering zi,t as a function of it, I obtain:

xt = ρAt (A.13)

zi,t =
ρi,t
ρAt

(A.14)

Then Equation (A.8) simplifies as

log
Vw(w(si,t+1), xt+1, zi,t+1)

Vw(wi,t, xt, zi,t)
= ai,t(w(si,t+1)− wi,t) + bi,t

(
ρi,t+1

ρAt+1

− ρi,t
ρAt

)
+ ci,t

(
ρAt+1 − ρAt

)
(A.15)

Plugging (A.15) into (A.7) yields the result. �

Proof of Proposition 2. The stochastic discount factor can be log-linearized at the first-order as

M(xt+1)

Et[M(xt+1)]
≈ 1 + logM(xt+1)− Et[logM(xt+1)] (A.16)
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that, using equation (28), can be written as:

M(xt+1)

Et[M(xt+1)]
≈ µM

j,t − aj,t(w(sj,t+1)− wj,t)− bj,t

(
ρj,t+1

ρAt+1

− ρj,t
ρAt

)
− cj,t

(
ρAt+1 − ρAt

)
(A.17)

The SDF can therefore be approximated with a two-factor linear representation, that is

M(xt+1)

Et[M(xt+1)]
≈ µM

j,t − aj,tf
1
j,t+1 − bj,tf

2
j,t+1 − cj,tf

3
j,t+1 (A.18)

with

f1
j,t+1 ≡ w(si,t+1)− wi,t (A.19)

f2
j,t+1 ≡ ρj,t+1

ρAt+1

− ρj,t
ρAt

(A.20)

f3
j,t+1 ≡ ρAt+1 − ρAt (A.21)

M(xt+1) is a valid stochastic discount factor for equity returns Ri,t+1, and for the riskfree return Rf
t .

Therefore:

Et[M(xt+1)Ri,t+1] = Et[M(xt+1)R
f
t ] = 1 (A.22)

The previous equation can be rewritten as

Et

[
M(xt+1)(Ri,t+1 −Rf

t )
]
= 0 (A.23)

The constant in the SDF is measurable with respect to the time-t information set. Thus, I obtain

Et

[
M(xt+1)

Et[M(xt+1)]
(Ri,t+1 −Rf

t )

]
= 0 (A.24)

that is

Covt

[
M(xt+1)

Et[M(xt+1)]
, Ri,t+1 −Rf

t

]
+ Et

[
M(xt+1)

Et[M(xt+1)]

]
Et[Ri,t+1 −Rf

t ] = 0 (A.25)

Substituting the approximated expression for the SDF in equation (A.18):

Et[Ri,t+1 −Rf
t ] ≈ −Covt

[
µM
j,t − aj,tf

1
j,t+1 − bj,tf

2
j,t+1 − cj,tf

3
j,t+1, Ri,t+1 −Rf

t

]
= (A.26)

= −Covt

[
−aj,tf

1
j,t+1 − bj,tf

2
j,t+1 − cj,tf

3
j,t+1, Ri,t+1 −Rf

t

]
Consider the column vector fj,t+1 obtained by stacking f1

j,t+1, f
2
j,t+1, and f3

j,t+1. The variance-covariance
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matrix of the factors is

V art [fj,t+1] ≡ V art


f1
j,t+1

f2
j,t+1

f3
j,t+1

 =


V art(f

1
j,t+1) Covt(f

1
j,t+1, f

2
j,t+1) Covt(f

1
j,t+1, f

3
j,t+1)

Covt(f
2
j,t+1, f

1
j,t+1) V art(f

2
j.t+1) Covt(f

2
j,t+1, f

3
j,t+1)

Covt(f
3
j,t+1, f

1
j,t+1) Covt(f

3
j,t+1, f

2
j,t+1) V art(f

3
j.t+1)


(A.27)

and the vector b̃j,t as

b̃j,t ≡


−aj,t

−bj,t

−cj,t


Then, it follows that:

Et[Ri,t+1 −Rf
t ] ≈ −b̃Tj,tCovt

[
fj,t+1, Ri,t+1 −Rf

t

]
= (A.28)

= −b̃Tj,tV art [fj,t+1]V art [fj,t+1]
−1

Covt

[
fj,t+1, Ri,t+1 −Rf

t

]
=

= λ̃T
j,tβi,t

where

λ̃T
j,t ≡ −b̃Tj,tV art [fj,t+1] (A.29)

βj,t ≡ V art [fj,t+1]
−1

Covt

[
fj,t+1, Ri,t+1 −Rf

t

]
(A.30)

Substituting back the explicit expressions for f1
j,t+1, f

2
j,t+1, and f3

j,t+1 completes the proof. �

Proof of Proposition 3. Part (i). The current aggregate state imposes a restriction of firms’

investment, and financing policy such that the left-hand side of equation (28) is equalized across firms.

Therefore:

1

N

∑
j∈Ω

logM(xt+1) = logM(xt+1) ≈ (A.31)

≈ 1

N

∑
j∈Ω

[
µM
j,t − aj,t(w(sj,t+1)− wj,t)− bj,t

(
ρj,t+1

ρAt+1

− ρj,t
ρAt

)
− cj,t

(
ρAt+1 − ρAt

)]

The proof of the covariance representation in Equation (35) follows as in the previous proof by replacing
f1
j,t+1

f2
j,t+1

f3
j,t+1

 with


1
N

∑
j∈Ω

aj,tf
1
j,t+1

1
N

∑
j∈Ω

bj,tf
2
j,t+1

1
N

∑
j∈Ω

cj,tf
3
j,t+1

.

Part (ii). Because
ρj,t+1

ρA
t+1

− ρj,t

ρA
t

= zj,t+1 − zj,t has zero mean, the process for zj,t has a finite support,

and zj,t and zi,t are independent for each i ̸= j, the assumptions in Pruitt (1966) and Rohatgi (1971)
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hold and, for N → ∞:
1

N

∑
j∈Ω

bj,t(zj,t+1 − zj,t) → 0 (A.32)

by the strong law of large numbers. �

Appendix B. Solution by Mixed-Integer Programming

In this section, I discuss the numerical solution method of the model. I introduce the

main results on which the solution algorithm is based, and I provide details on its im-

plementation. Proofs are relegated to Supplementary Appendix F. I start considering

the perfect enforcement problem without the borrowing constraint (21), and I show the

equivalence between the dynamic program and the linear program, along the lines of Ross

(1983).

Lemma 2 (Perfect Enforcement Problem as a Linear Program) The solution of

problem (17) subject to (18), (19), (20), and (22) on a discrete grid is equivalent to the

solution of the following linear programming problem:

min
vw,s

nw∑
w=1

nx·nz∑
s=1

vw,s (B.1)

s.t.

vw,s ≥ dw,s,a +
nx·nz∑
s′=1

π(s′|s)M(s′)va,s′ ∀w, s, a (B.2)

where nw, nx, and nz are the number of grid points on the grids for wi,t, xt, and zi,t

respectively, vw,s is the value function on the grid point indexed by w and s, a is an index

for an action on the grid for both capital and state-contingent debt repayments, and dw,s,a

denotes the payout corresponding to the action a starting from the state indexed by w and

s.

The previous lemma shows that the linear programming solution method does not

require the Bellman operator be a contraction mapping. I now incorporate the borrowing

constraint (21) into the linear programming representation above. Because the dynamic

programming problem with perfect enforcement has a unique solution, there is only one

binding constraint (i.e. one optimal action a on the grid) for each state (w, s) in the
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equivalent linear programming representation. The enforcement constraint (21) dictates

that the optimal action a∗w,s for each state (w, s) satisfies

θk(a∗w,s) ≤
nx·nz∑
s′=1

π(s′|s)M(s′)va∗w,s,s
′ ∀w, s (B.3)

where k(a∗w,s) denotes the point on the capital grid corresponding to the action a∗w,s. In

the following lemma, I show that the linear programming representation augmented with

constraints (B.3) can be solved as a mixed-integer programming problem.

Lemma 3 (Equivalent Mixed-Integer Programming Representation) The prob-

lem in (B.1)-(B.2) with the borrowing constraints in (B.3) is equivalent to:

min
vw,s

nw∑
w=1

nx·nz∑
s=1

vw,s +
nw∑
w=1

nx·nz∑
s=1

∑
a∈Γ(w,s)

ϵ ·Dw,s,a (B.4)

s.t.

dw,s,a +
nx·nz∑
s′=1

π(s′|s)M(s′)va,s′ ≤ vw,s ∀w, s, a (B.5)

−vw,s + dw,s,a +
nx·nz∑
s′=1

π(s′|s)M(s′)va,s′ +NDw,s,a ≥ 0 ∀w, s, a (B.6)

nx·nz∑
s′=1

π(s′|s)M(s′)va,s′ +NDw,s,a ≥ θk(a) ∀w, s, a (B.7)

where Dw,s,a are binary variables, ϵ → 0 is a positive small number, N → ∞ is a positive

large number, and Γ(w, s) is the set of feasible actions if the current state is (w, s).

It is important to remark that the mixed-integer problem in the previous lemma

is in general less constrained than the ”first-best” problem with perfect enforcement.

In fact, some actions that are feasible in the ”first-best” problem do not satisfy the

borrowing constraints, and are excluded from Γ(w, s). Consistent with this observation,

the minimized objective in the problem with limited enforcement is better and, as I show

below, results in a lower optimal equity value for each state.

As Trick and Zin (1993) discuss, solving the full mixed-integer program (as well as

the full linear problem) would require to store a huge matrix, because the number of
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constraints in the problem is very large. This would be impractical, in that hardware,

memory, and computational requirements would be enormous. For this reason, I resort

to constraint generation, which is a standard technique in operation research to solve

problems with a large number of constraints. Specifically, constraint generation begins

with the solution a relaxed problem with the same objective and only a subset of the

constraints. Then, the procedure identifies the remaining constraints in the full problem

that are violated. A subset of the violated constraints is then added to the relaxed

problem according to a selection rule. The procedure is iterated until all constraints

are satisfied. The next lemma proposes a constraint generation algorithm, and shows it

converges to the unique fixed point in Lemma 1.

Lemma 4 (Constraint Generation) The sequence of functions {vn(w, s)}∞n=1 gener-

ated by the following algorithm converges to the fixed point V (w, s) specified in Lemma 1:

1. solve the problem in Lemma 3 with only the constraints corresponding to zero capital

and zero debt for each state (w, s);

2. if all constraints a ∈ Γn(w, s), for all (w, s), are satisfied, terminate the algorithm

(where Γn(w, s) is the set of feasible actions at iteration n);

3. for each state (w, s) add the constraint a ∈ Γn(w, s) that generates the highest violation

in (B.5) with respect to the current solution vn(w, s);

4. solve the problem with the current set of constraints;

5. go back to step 2.

The constraint generation algorithm above extends the procedure in Trick and Zin

(1993), and Trick and Zin (1997). The procedure starts from a solution which is feasible

in that it does not violate the enforcement constraint. Then, at iteration n and for each

state (w, s), constraints are added using the same rule which is used in value function

iteration, namely maximizing the sum of distributions and the expected continuation

value given the current maximized value vn(w, s). In the mixed-integer programming

representation, this rule corresponds to selecting the most violated constraint for each

state in the feasible set Γn(w, s). As Trick and Zin (1993) document and the results

in Pucci de Farias and Van Roy (2003) suggest, constraint generation allow to achieve

significance speed gains. Most important, it avoids to solve the full problem, which would

be computationally too demanding.
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However, to make the method implementable, one last critical issue must be addressed.

The selection of the most violated constraint in the third step of the constraint generation

procedure requires searching over a huge vector of grid points for all the choice variables.

The computational and memory requirement would still be excessive for a problem with

many controls variables. In this setting, this issue is exacerbated by the presence of state-

contingent actions. To make the constraint generation operational, I use a separation

oracle, that is an auxiliary linear programming problem that identifies the most violated

constraint. Separation oracles are standard tools in operation research (Nemhauser and

Wolsey (1988), Schrijver (1998), Cook, Cunningham, Pulleyblank, and Schrijver (2011)),

and have been recently used in corporate finance by Nikolov, Schmid, and Steri (2013).

I detail and describe the separation oracle for this problem at the end of this appendix.

Operatively, the problem is solved using the algorithm in Lemma 4, and the separa-

tion oracle. Codes are implemented with Matlab R⃝, and the solver for the mixed-integer

programming problems is CPLEX R⃝. Matlab R⃝ and CPLEX R⃝ are interfaced through the

CPLEX Class API R⃝. The workstation has with a CPU with 8 cores and 32GB of RAM.

The model is solved with three grid points for the aggregate shock, seven grid points

for the idiosyncratic shock, 500 grid points for capital and each state-contingent debt

variable, and 27 grid points for net worth. Following McGrattan (1997), the grid for net

worth is not evenly spaced, but more points are collocated in the low net worth region,

where the curvature of value function is more relevant. Simulated data from the model

are based on panels of 5000 firms and 2000 time periods.
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Separation Oracle

max
a={k′,b(s′)}

dw,s,a +
nx·nz∑
s′=1

π(s′|s)M(s′)va,s′ − vw,s (B.8)

s.t.

k ≤ k′ ≤ k (B.9)

b ≤ b(s′) ≤ b ∀s′ (B.10)
nx·nz∑
s′=1

π(s′|s)M(s′)vw(s′),s′ ≥ θk′ (B.11)

0 ≤ p(ik) ≤ 1 ∀ik = 1, ..., nk (B.12)
nk∑

ik=1

p(ik) = 1 (B.13)

k′ =

nk∑
ik=1

p(ik)k
G(ik) (B.14)

dw,s,a = w − k′ +
nx·nz∑
s′=1

π(s′|s)M(s′)b(s′) (B.15)

dw,s,a ≥ 0 (B.16)

f(k′) =

nk∑
ik=1

p(ik)(k
G(ik))

α (B.17)

w(s′) = A(s′)f(k′) + k′(1− δ)−Rtb(s
′) ∀s′ = 1...nx · nz (B.18)

Equations (B.9) and (B.10) define the bounds for capital and debt, Equation (B.11)

is the enforcement constraint and allows to select feasible actions from Γn(w, s), Equa-

tions (B.12) and (B.13) define the variables p(ik) that have the role to select a grid point

for capital on the grid kG(ik) and linearize the term k′α in the production function, Equa-

tion (B.14) picks the grid point for the chosen capital stock from kG(ik), Equations (B.15)

and (B.16) define dividends and impose their positivity, Equation (B.17) computes the

nonlinear term in capital in the production function, and Equation (B.18) defines future

net worth in each state s′. The solution of the separation oracle for state-contingent debt

is a continuous variable and is interpolated to the nearest point on the corresponding

grid.
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