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Abstract

What causes the daily reversals in a stock market index? Using exogenous temperature

variation in Manhattan in the summers of 1889-1902, I provide evidence that non-informational

trades by ‘outside investors’ (Grossman and Miller 1988) underlie short-term reversals in the

market index return, consistent with the model of Campbell, Grossman, and Wang (1993). An

increase in outside investors by 1% of the average daily trade volume is estimated to cause

a 1-2% standard deviation increase in aggregate liquidity imbalance, a 0.2 percentage point

increase the likelihood of a next-day market index return reversal, and a 0.018 decrease in the

daily index return autocorrelation.
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1 Introduction

Return reversal is a dominant feature of stock market indices’ short-horizon behavior. From 1926
to 2014, the Standard & Poor’s 500 (S&P 500) index has had an average daily return of 0.03% but
an average absolute value of the return of 0.72%, implying large reversals that cannot be plausibly
explained by daily information flow. What explains these reversals in the market index? Campbell,
Grossman, and Wang (1993) (CGW) provide a model in which non-informational trades cause a
price movement that subsequently reverses and predict that the magnitude of the reversal is larger
if there is a greater imbalance between the intensity of non-informational trades and the availability
of liquidity suppliers. This theory has been tested on individual stocks using exogenous shocks
to non-informational trades; for example, non-informational trades on individual stocks due to an
index redefinition are found to cause a price change that shortly reverses (Harris and Gurel 1986;
Greenwood 2005).1 Testing this theory as an explanation for daily movements in a market index,
however, has been difficult because a causal inference requires an exogenous shock affecting the
intensity of non-informational trades in all stocks.

Previous studies test this theory of market return reversal using aggregate trade volume as a
proxy for non-informational trades. For example, CGW show that when NYSE trade volume is
unusually high, S&P 500 returns indeed exhibit lower autocorrelation. Following this approach,
LeBaron (1992) reports similar evidence on the Dow Jones Index. Llorente et al. (2002), however,
raise the concern that a unusually high trading volume may reflect informed trading and show
that the volume-autocorrelation relation in individual stocks depends on the extent to which the
volume is caused by informed trading. Although informed trading is less likely to affect aggre-
gate trade volume, a public signal produces high trading volume if investors interpret the signal
differently (Kandel and Pearson 1995; Bamber, Barron, and Stober 1999). Furthermore, even if
non-informational trades were correctly measured, the estimated effect of non-informational trades
on index reversals may capture reverse causality, since unusual stock price movements are known
to trigger non-informational trades (Seasholes and Wu 2007; Barber and Odean 2008).

In this study I use exogenous variation in daily summer temperatures in 19th century Manhattan
to identify the effect of non-informational trades on New York Stock Exchange (NYSE) daily index
returns. Prior to the advancement in telecommunications and air conditioning, trading stocks in
the summer required substantial physical effort. This suggests that particularly hot weather in New
York City, where a large fraction of trades originated from, would have reduced the NYSE trading

1Further evidence of the liquidity effect exists on individual stocks. Reversal profitability is higher in illiquid
stocks (Pastor and Stambaugh 2003; Avramov, Chordia, and Goyal 2006a) and stocks with high trading activity, a
proxy for non-informational trades (Conrad, Hameed, and Niden 1994). Relatedly, studies have also predicted and
shown that uninformed trades create non-fundamental volatility over a short horizon (Hellwig 1980; Wang 1994;
Avramov, Chordia, and Goyal 2006b; Koudijs 2015).
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volume. Indeed, in the summers of 1889-1902, an unseasonal rise in daily Manhattan temperature
by 1 degree Celsius led to a 1.3% decline in NYSE trade volume on the same day. Using the broad
categorization of investors into ‘outside investors’ and ‘market makers’ as in Grossman and Miller
(1988), I attribute this decline in trade volume to a reduction in non-informational trades by outside
investors who did not have immediate access to telephones or automatic ticker machines, were
further away from Wall Street, and did not trade for a living. This allows me to use a unseasonal
rise in daily summer temperature as a proxy for the reduction in trades by outside investors.

Using the temperature variation, I find that outside investor trades harm aggregate market liq-
uidity and increase the likelihood of a daily reversal in the market index. Using unique data of
daily NYSE individual stock prices during 1889-1902, I show that an increase in outside investors
equivalent to 1% of the average daily trade volume leads to a 1−2% standard deviation increase
in the expected return from aggregate liquidity provision. This increase in reversal profitability
occurs through two channels: an increase in the number of stocks having a next-day reversal and
a decrease in the absolute value of returns on stocks having a next-day continuation (by allowing
more informed trades to occur undetected). Outside investors, on the other hand, do not seem to af-
fect the absolute returns on stocks having a next-day reversal; this quantity seems to be determined
not by liquidity demand factors but by liquidity supply factors such as market volatility. Looking
at market index reversals, the same 1% reduction in outside investor trades leads to a 1.2% fall in
the probability of a market return reversal on the following day and a 0.018 increase in the daily
market return autocorrelation.

The results support the findings of CGW and LeBaron (1992) that time-varying demand for liq-
uidity caused by outside investor trades is an important determinant of daily movements in a stock
market index.2 This effect of outside investor trades through liquidity demand is distinct from the
effect of liquidity supply conditions, although the two effects would interact. Nagel (2012) shows
that reversal profitability falls during high volatility periods, as liquidity suppliers become more
capital constrained. This supply side effect on aggregate market liquidity, however, moves slowly
and is likely to matter only during periods in which liquidity suppliers are constrained. Therefore,
day-to-day changes in the aggregate liquidity imbalance and in the valuation of market indices are
more likely to be governed by time-varying demand for liquidity due to non-informational trades.

One implication of this finding is that the demand curve for the aggregate market index slopes
down, just as it does for individual stocks (Shleifer 1986; Avramov, Chordia, and Goyal 2006a).
That is, even at the aggregate stock market level, where limited attention or idiosyncratic risk
would play a minimal role, arbitrageur capital does not immediate respond to counteract liquidity
traders. In addition, non-informational traders exert significant price pressure on the market index,

2The findings are also consistent with the evidence that stocks heavily bought by retail investors, the majority of
whom would be classified as outside investors, exhibit return reversal over a week (Barber, Odean, and Zhu 2009).
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providing empirical grounds for the important roles played by noise traders in various asset pricing
models (e.g., Verrecchia 1982; De Long et al. 1990; Shleifer and Summers 1990; Shleifer and
Vishny 1997).

This study is related to three other strands of literature. First, several studies document higher
stock returns on sunny days and explain this through investor psychology (Saunders 1993; Hirsh-
leifer and Shumway 2003; Kamstra, Kramer, and Levi 2003; Cao and Wei 2005; Bassi, Colacito,
and Fulghieri 2013).3 I find that weather prior to 1903 also affected the stock market by changing
the cost of carrying out a trade. This work is related to the observation that trade volume tends
to fall in the summer (Gallant, Rossi, and Tauchen 1992; Bouman and Jacobsen 2002; Hong and
Yu 2009). I find that this summer seasonality in volume has gradually disappeared, due in part to
the improvement in temperature control and communications technologies. Several studies outside
finance document negative effect of temperature on economic activities.4 My study complements
these findings by presenting a high frequency (daily) relationship between temperature and stock
trading activity. Besides these three lines of literature, this paper’s use of a natural experiment from
a historical stock market is similar to Koudijs (2015), who studies the effect of information on in-
dividual stock price volatility using variation in the arrival of news to the Amsterdam exchange
through sailing boats.

This paper proceeds as follows. In section 2, I present historical background, choose the test
sample period, and discuss the data and variables used. In section 3, I outline my empirical ap-
proach and discuss identification assumptions related to using unseasonal temperature as a proxy
for the presence of outside investors. I present the main empirical results in section 4. There, I
first estimate the daily effect of Manhattan temperature on NYSE trading volume during the test
sample period. Using unseasonal temperature as a proxy, I then study the effect of outside investor
trading on aggregate market liquidity and daily market return reversals. Section 5 concludes.

3Goetzmann and Zhu (2005), Jacobsen and Marquering (2008), and Jacobsen and Marquering (2009) provide
counter-evidence.

4The recent literature review by Dell, Jones, and Olken (2014) provides an overview of this growing literature.
To mention a few recent works, Dell, Jones, and Olken (2009), Jones and Olken (2010), and Dell, Jones, and Olken
(2012) use annual data to show that temperature has adverse effects on output, export, and income. Deschenes and
Greenstone (2007) find similar evidence from the agricultural sector. Relatedly, Bansal and Ochoa (2011, 2015) show
that temperature change poses long-run risk on equities through its effect on economic activity, and that this is already
taken into account by asset covariance (i.e., beta) and return. My findings suggest that temperature can also influence
stock returns through its effect on trade volume and investor composition, if technology does not adequately moderate
the effect of temperature on human activity.
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2 Historical Background, Data, and Measurement

2.1 Stock trading prior to 1903

This study relates Manhattan weather with NYSE stock trading volume and returns prior to 1903 at
a daily frequency. Hot summer weather was a plausible source of exogenous variation in the cost of
trading stocks prior to 1903 and presumably had the strongest negative impact on outside investors,
who had to make substantial physical effort to trade stocks.5 Telephones and automatic ticker
machines were rare, so a typical investor wishing to make two-way communications or receive
continuous updates on the market would have had to travel to a nearby telephone exchange or
visit the customer’s room at a brokerage house.6,7 Air conditioning was virtually nonexistent until
1903, when the world’s first large-scale air conditioner was installed in the new NYSE building
(Buchanan 2013). Thus, outside investors prior to 1903 experienced the full extent of the summer
heat, making them likely compliers to the temperature effect.8

Besides the outside investors who traded through brokers, there were important investors who
traded directly. ‘Capitalists’ had seats in the exchange and traded large shares of stocks without
having to pay commission to brokers.9 ‘Room traders’ made a living by betting on short-term
fluctuations. ‘Specialists’ worked as the auctioneer for brokers in addition to trading their own
similar to room traders.10 These traders together represent market makers and other informed
traders.11 As these individuals traded stocks for a living, they would have been less affected by hot
weather. In fact, their non-compliance is a key assumption for my identification; although it is not
essential that all outside investors comply to hot weather, it is quite important that neither market
makers nor informed traders responded to hot weather.

Focusing on the pre-1903 sample allows me to use temperature in Manhattan as the temperature
felt by a large fraction of NYSE investors. During this period, the underdevelopment of long-
distance communications impaired the competitiveness of trading from another city. Long-distance
automatic ticker service was unavailable until 1905, when such a service was first set up between
New York and Philadelphia. Before then, it took brokerage houses in other cities an additional 15

5Records suggest that they were important part of the daily stock market (Selden 1919).
6One in every 300 persons had a telephone in 1890 (U.S. Census Bureau 1975), and approximately 1000 automatic

ticker machines existed in bank and brokerage offices in New York as of 1880 (Donnan 2011).
7This description of stock trading in the late 19th century is a reconstruction based on Selden (1919) and Beckert

(2003).
8It took about 30 more years for important government buildings such as the White House and the House of

Representatives used air conditioning (“The History of Air Conditioning”, retrieved in September 2013 from http://air-
conditioners-and-heaters.com/air_conditioning_history.htm).

9The annual cost of membership was over $3,000 a year as of 1917, equivalent to $55,000 in 2013.
10The last three sentences including the cost of membership in the exchange are based on Selden (1919).
11In reality, a small number of professional traders may behave as outside investors, trading without information.

However, these traders are likely to have been driven out quickly by the market mechanism.
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minutes to receive market updates from New York, because the employees had to hand-copy the
stock quotations received by Morse on manifold sheets (Tilghman 1961). Furthermore, major cities
like Boston and Philadelphia had regional exchanges that local traders could use, also implying a
tight link between Manhattan temperature and NYSE trading volume.12 Indeed, in section 3, I
show that the temperature in Cambridge MA, despite its proximity to Manhattan, has no predictive
power on NYSE trading volume once Manhattan temperature has been controlled for.

The natural experiment I exploit here would not be valid in the 20th century. Once broker-
age houses started installing air conditioning, hot weather would have no longer discouraged the
customers from visiting their brokers. Telephones became commonplace, with the number of tele-
phones growing at an annual rate of approximately 20% from 1900 to 1910.13 Long-distance
telephone service became widespread, with a service between New York City and San Francisco
set up in 1915.14 Major cities began offering long-distance ticker services, allowing investors from
other cities to participate in an exchange. Transportations in New York City improved with the
advent of the subway system in the city in 1904 (DuTemple 2002). As shown later, the link be-
tween temperature and stock trading first weakens then disappears in the four latter sample periods
(1903-1930, 1931-1960, 1961-1990, and 1991-2014) as these changes take place.

2.2 Data and measurement

I use the NYSE individual stock price data collected from the Financial and Commercial Chroni-
cle, NYSE index returns based on the Dow Jones Industrial Average (DJIA) and S&P 500, NYSE
total trading volume, and temperature data collected at Manhattan’s Central Park by the National
Climatic Data Center (NCDC), all at the daily frequency. My robustness checks also use tempera-
tures collected in 2 other US cities and 3 foreign cities.

Unique data of pre-1903 NYSE individual stock daily returns

Individual stock returns data are required to construct returns from aggregate liquidity provision,
but are not available electronically prior to 1926. I therefore collect the daily minimum and max-
imum prices on all NYSE-listed common stocks in the summers (Jun 11-Sep 10) of 1889 to 1902
by digitizing the price information in the Financial and Commercial Chronicles.15 I compute in-
dividual stock returns as the percentage change in the midpoint price, excluding observations with

12It is also worth noting that banks and financial services have long had high concentration near NYSE on Wall
Street (Longcore and Rees 1996).

13The calculation is made based on numbers provided in U.S. Census Bureau (1975).
14"Phone to Pacific From the Atlantic". New York Times, January 26, 1915.
15Trading volume is available weekly, and I do not use this information in the paper. The hard copy of the Chronicle

is not available for June 1894, which is excluded from my analyses.
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no record of either a buy or a sell transaction. I also exclude days with a dividend payment because
the lack of information about the dividend amount prevents me from computing the gross-dividend
total returns. The digitized data initially contained a number of typos that resulted in extreme daily
returns. Although most typos have been detected and revised, to prevent extreme returns due to
any remaining errors from affecting my results, I exclude observations with an absolute value of
the daily return above 50%. The result is an unbalanced panel of 89,729 daily return observations
(by company and date).

NYSE index daily returns

The NYSE index return is measured daily by DJIA return for years 1889-1925 and S&P 500 return
for 1926-2014. I obtain DJIA returns over 5/26/1896-12/31/1925 from the Dow Jones website, and
the prior years’ cumulative-dividend returns are kindly provided by Schwert (1990).16 I obtain
S&P 500 returns since 1926 from the Center for Research in Security Prices (CRSP). A notable
difference between the two indices is that DJIA is price-weighted but S&P 500 is value-weighted,
although the difference would be small if larger stocks had higher prices.

NYSE daily trading volume

NYSE daily trading volume since 1888 is obtained from the NYSE website.17 I compute detrended
trading volume, Tradvolt , as the log deviation of trade volume per trading hour from its trailing
1-year moving average:

Tradvolt = ln
(

trading volumet
trading hourst

)
− 1

Nt

Nt

∑
s=1

ln
(

trading volumet−s

trading hourst−s

)
(1)

where Nt is the number of trading days in the previous 365 days. This measure of trading volume
is similar to those in CGW and Chen, Hong, and Stein (2001) except that it adjusts for the trading
hours to make weekday and Saturday trade volumes comparable (Saturday had shorter trading
hours) and that it uses trading volume instead of share turnover.18

The result is daily volume series from 1/2/1889 to 12/31/2014, plotted in Figure 1 for the
entire sample, the sample of 1889-1902, and the summer of 1895 (representing the middle of the

16The Dow Jones data was retrieved in November 2015 from http://www.djaverages.com/?go=industrial-index-
data&report=performance.

17The data was retrieved in October 2015 from https://www.nyse.com/data/transactions-statistics-data-library. The
data contains 4 instances in which two volume observations have the same date, and I average the two numbers in
such instances. None of the dates, however, are in the period of interest (1889-1902). Analysts from the NYSE kindly
went over and removed all other instances of duplicates.

18The number of total shares outstanding at NYSE is not available going back to the 19th century, but using trading
volume is equally valid in this study exploiting daily variations.
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test sample).19

[Figure 1 here]

The detrended process is still fairly persistent with the average daily autocorrelation of 0.73
in the 14 summers of 1889-1902. Although this is not considered near unit root, I do take the
possibility of a spurious regression bias seriously, conducting placebo tests with temperature and
trading volume data in post-1903 samples as well as with temperatures in other cities within the
pre-1903 sample.

Daily temperature and merged data

I obtain daily temperatures in Manhattan Central Park during 1879-2014 from the NCDC web-
site.20 For placebo tests, I also collect daily temperature of Cambridge MA, Jacksonville FL,
Birmingham in the United Kingdom, Sydney in Australia, and Edmonton in Canada during 1879-
2014 (except Cambridge MA which starts in 1885).21 The collected data contain maximum and
minimum temperatures measured in degrees Celsius (oC). I obtain the trading hour average temper-
ature T each day using the maximum and minimum temperatures on that day. To do so, I assume
that an intraday variation in temperature reaches the daily maximum at 15:00 and minimum at 5:00
(Lonnqvist 1962) and that the temperature change is linear in time.

Stock trade volume is known to be lower in the summer (Gallant, Rossi, and Tauchen 1992;
Bouman and Jacobsen 2002; and Hong and Yu 2009), which may be a combination of temperature
and seasonal effects. Table 1 shows that the summer seasonality in trading volume was strong in
earlier sample periods but has steadily declined over the century.

[Table 1 here]

To isolate the temperature effect from the seasonal effect on trading volume, I decompose T

into seasonal and unseasonal components, denoted T and T̃ respectively. Seasonal temperature
T is the average trading hour temperature on the same day for the previous 10 years, and unsea-

19The drop in the volatility of trade volume around 1950 roughly coincides with the end of Saturday trading. This
does not affect my analysis, which focuses on the 1889-1902.

20The data was retrieved in July 2013 from http://www.ncdc.noaa.gov/data-access/land-based-station-data.
21Although the NCDC interface does not allow me to choose five cities in a systematic manner, I tried to obtain the

longest time-series data from a variety of geographical locations.
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sonal temperature T̃ is the temperature deviation from the seasonal temperature.22 This results
in decomposed temperature series for years 1889-2014 (1890-2014 for Cambridge MA with T in
1890-1894 computed using all previous years).

I conduct my analyses using only the summer season, defined here as June 11th to September
10th, the hottest 90 days in a year when average temperature is computed in 10 days’ interval
(Figure 2).

[Figure 2 here]

Restricting my analyses to the summer not only serves an additional control for the effect of
seasonality, but also avoids the need to deal with the “inverse-U” effect of temperature on human
physiology. Sepannen, Fisk, and Lei (2006) show that task performance in office environment
peaks around 20-22oC and decreases as temperature increases or decreases from this point. Sum-
mer temperatures in Manhattan are almost always above 22oC, so a rise in temperature is expected
to have only an adverse effect on trading activity during the summer season.

Merging all data gives individual stock and index returns, detrended trade volume, and decom-
posed temperatures over the period 1/2/1889 to 12/31/2014. I divide this sample into 5 sample
periods (1889-1903, 1903-1930, 1931-1960, 1961-1990, and 1991-2014) and use the earliest pe-
riod as the test sample.

3 Estimation Framework

3.1 Challenges in estimating the effect of outside investors on aggregate liq-
uidity

This study aims to estimate the causal effect of outside investors on aggregate liquidity imbalance
and ultimately index return reversal (“Imbalance” for the purpose of exposition in this section).
The existing approach uses aggregate trading volume as a proxy variable for unobserved outside
investor trades to estimate the following regression model:

Imbalancet = φ0 +φ1Tradvolt +XL,tΦ+υt (2)

22Given this definition, T̃ corresponds not to unexpected temperature given the preceding few days’ data, but to
unexpected temperature as of the beginning of the year or the summer. This choice reflects the fact that the main
concern underlying the decomposition is the effect of seasonality. Being able to predict the temperature a few days
earlier does not violate the identification assumption that the ratio of individual investors in the daily stock market
falls on hotter days. To ensure that the remaining persistence of T̃ (0.57) does not produce spurious regression results,
I repeat all analyses with lagged unseasonal temperature as an additional control and obtain similar results.
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where XL,t represents the vector of control variables for return reversal and υt is an error term.
Two problems arise. First, trading volume may respond not only to innovations in outside investor
trades (Outsidet), but also to trades based on new information (In f ormedt). Second, innovations
in Imbalancet unobserved by the econometrician but observed by the investors at t may trigger
outside investor trades, creating reverse causality. I discuss these two problems and suggest using
temperature as an exogenous proxy for outside investor trades.

The first problem is that the omitted variable In f ormedt may be correlated with Tradvolt . To
see this, suppose that trading volume is determined by both outside investors and informed traders:

Tradvolt = θ0 +θ1Outsidet +θ2In f ormedt +XTV,tΘ+νt (3)

where θ1 > 0 and θ2 ≥ 0 and XTV,t represents the vector of control variables for trading volume.
Also, write the true model of liquidity imbalance as

Imbalancet = φ̃0 + φ̃1Outsidet +XL,tΦ̃+ υ̃t (4)

where φ̃1 > 0. This implies that the specification in (2) is equivalent to

Imbalancet = φ̃0− φ̃1θ0θ
−1
1︸ ︷︷ ︸

φ0

+ φ̃1θ
−1
1︸ ︷︷ ︸

φ1

Tradvolt + φ̃1θ
−1
1 XTV,tΘ+XL,tΦ̃

−φ̃1θ2θ
−1
1 In f ormedt− φ̃1θ

−1
1 νt + υ̃t︸ ︷︷ ︸

υt+1

(5)

Contrasting this to equation (2), we see that Tradvolt and the error term υt would be correlated.
This correlation is positive, so the positive effect of outside investors on index reversal would be
underestimated. One may also argue that informed trading improves liquidity imbalance so that
In f ormedt should enter the right-hand side of (4) with a negative coefficient. This would increase
the magnitude of the positive correlation between Tradvolt and the omitted variable In f ormedt in
the regression, producing a larger bias.

The second and perhaps more serious problem arises from reverse causality: a large price
movement associated with an increase in market liquidity imbalance orthogonal to the innova-
tion in outside investor trades (e.g., reduction in liquidity supply) can trigger outside investor
trades. This concern has empirical grounds. Studies find that retail investors—the majority of
whom would be outside investors—tend to trade on days with large stock price movements (e.g.,
Seasholes and Wu 2007; Barber and Odean 2008). This implies that the factors outside investor
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trades can be written as a function of liquidity imbalance:

Outsidet = ϕ0 +ϕ1Imbalancet +ωt (6)

where ϕ1 > 0. This means that even if outside investor trades can be perfectly observed, running
the regression in (4) results in a simulateneity bias. This bias would be negative, meaning that
a significantly positive coefficient obtained from estimating the model (4) may not imply outside
investors inducing aggregate liquidity imbalance and index return reversal.

3.2 Temperature as an exogenous proxy variable for outside investors

Using exogenous variation in temperature as a proxy for outside investor trades addresses both
concerns raised above. In the summers of 1889-1902, part of the innovation in NYSE outside
investor trades came from hot Manhattan weather, allowing us to rewrite (6) as

Outsidet = ϕ0 +ϕ1Imbalancet +ϕ2T̃t + ω̃t (7)

where T̃t is daily unseasonal Manhattan temperature, ϕ1 > 0, and ϕ2 < 0. Combining this with the
model of aggregate liquidity imbalance in (4) and solving for liquidity imbalance as a function of
control variables and innovation terms gives

Imbalancet =
φ̃0 + φ̃1ϕ0

1− φ̃1ϕ1
+ φ̃1

ϕ2

1− φ̃1ϕ1
T̃t +

1

1− φ̃1ϕ1
XL,tΦ̃+

φ̃1ω̃t + υ̃t

1− φ̃1ϕ1
(8)

The coefficient on T̃t is the combination of the direct negative effect temperature has on outside
investor trades and the multiplier effect of smaller liquidity imbalance associated with lower tem-
perature reducing outside investor trades (the multiplier 1/

(
1− φ̃1ϕ1

)
represents the infinite ge-

ometric sum and is positive unless the coefficients are such that the sum diverges to infinity).
Estimating this model and finding the coefficient on T̃t to be negative implies a positive φ̃1.

What happens if hot weather also discourages informed trading? If informed trading helps
reduce liquidity imbalance, this would lead to an underestimation of the coefficient on T̃t , so that
a statistically negative coefficient does imply a positive φ̃1.23 In other words, a negative effect of

23The notion that informed traders reduce liquidity imbalance does not contradict the notion that informed trading
harms liquidity (e.g., Kyle 1985). Liquidity in the sense of Kyle (1985) determines price reversals over a sequence of
executed trades and is proxied by the bid-ask spread. In contrast, liquidity imbalance here refers to the size of non-
informational trades relative to the size of market makers and informed traders in the daily market willing to absorb
the non-informational trades. It is can be proxied by returns from reversal strategies (e.g., Nagel 2012), is related to
the difference between the current stock price and its correct valuation (e.g., Brunnermeier and Pedersen 2009), and
is thought to determine return reversals over a few days. Informed trading is likely to reduce the gap between the
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temperature on informed trading would dampen the effectiveness of high temperature in reducing
liquidity imbalance through lower outside investor activities.

Although using temperature as an exogenous proxy for outside investor trades allows us to
identify the direction of the effect, the magnitude of the effect would be difficult to interpret. For
this reason, I also use temperature as an instrument for aggregate trading volume with outside
investor trades as the compliers of the local treatment effect and report the result along with results
from the proxy regression.

To see how this is done, note that if temperature affects outside investors but not informed
traders, combining equations (3), (4), and (7) implies the following expression for trading volume:

Tradvolt = 1
1−θ1ϕ1φ1

[θ0 +θ1 (ϕ0 +ϕ1φ0)+θ1ϕ2T̃t +θ2In f ormedt +θ3XTV,t +θ1ϕ1XL,tΦ

+θ1 (ϕ1υt + ω̃t)+νt ]
(9)

where XL,t is the vector of control variables in the liquidity imbalance regression. Again, the mul-
tiplier (1−θ1ϕ1φ1)

−1 arises from the reverse causality of liquidity imbalance on outside investor
trades and is positive under convergence of the geometric series (the multiplier is one if there is
no reverse causality, i.e. ϕ1 = 0). To the extent that temperature does not affect informed trading
In f ormedt , innovation in temperature T̃t would affect Tradvolt only through its effect on outside
investors. Using predicted trade volume from this first-stage regression, I run the second-stage
regression,

Imbalancet = β0 +β1 ̂Tradvolt +XtB+ εt (10)

which allows me to interpret β1 as the marginal effect of an increase in trading volume due to
outside investors on liquidity imbalance and on index return reversal.

3.3 Identification assumptions

In the previous subsection, I made explicit and implicit assumptions required to obtain correct
identification. An explicit assumption was that temperature affects outside investors but not in-
formed traders. This assumption was discussed in section 3.1, where I argued that hot weather is
unlikely to have discouraged informed traders and market makers from participating in the daily
market. An implicit assumption was that Manhattan temperature does not affect NYSE aggregate
market liquidity or the likelihood of NYSE index return reversal except through its negative effect
on outside investor trades. I first discuss this implicit assumption and make a brief comment about
using Manhattan temperature as an instrument for trading volume.

One source of violation in the implicit assumption is that Manhattan temperature conveys in-

prevailing market price and the “correct” price of a stock, and thus can improve this notion of liquidity imbalance.
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formation because hot weather can significantly reduce the productivity of firms traded on the
exchange. The weather effect on the agricultural industry, with its tiny representation in the ex-
change, is less of a concern. The railroad industry, however, was an important part of NYSE in the
pre-1903 sample and may have had reduced productivity on hotter days. Railroad development in
the late 19th century nonetheless focused on the recent settlements in the West and the transcon-
tinental connection between the Pacific Coast and the eastern states.24 Temperature in Manhattan
and nearby areas, with the railroad system already in place, would not affect the railroad stocks.
Consistent with this notion, a rise in unseasonal or seasonal temperature in the summers of 1889-
1902 has no effect on NYSE index returns.

This study’s instrumental variable approach may seem unusual, and this is because I use tem-
perature not as an instrument for outside investor trades, which is unobserved, but as an instrument
for the aggregate trading volume. One way to understand this approach is that hot summer weather
is an instrument for aggregate trading volume with outside investors as the compliers of the treat-
ment effect. In a typical study where identifying the population average effect is the objective,
employing an instrumental variable with only the local average treatment effect is a problem (An-
grist and Imbens 1995). In my case, however, the objective is precisely to identify the local effect
coming from the outside investors. In any case, my main approach is to use temperature as a proxy
variable, and the instrumental variable regressions can be understood as a way to obtain coeffi-
cients that measure marginal effects of an increase in outside investors’ trade volume and thus are
easier to interpret than the effects in units of temperature.

3.4 Model specifications

In section 4, I study the outside investors’ role in shaping the daily aggregate stock market using
various regressions. First, I estimate the trading volume model specified in (9) to see if a unseasonal
rise in summer temperature in Manhattan significantly reduces (economically and statistically)
NYSE trading volume, a necessary condition for my approach to be valid. Then, I estimate the
effect of outside investors on NYSE aggregate liquidity imbalance, using temperature to proxy for
outside investor presence. After confirming that outside investors indeed lower aggregate market
liquidity, I then study how they affect the behavior of NYSE index returns. As we will see, I use
similar control variables in all these regressions, as the possibility of reverse causality forces me to
include control variables for liquidity imbalance in the volume regression.

24“Railroads in the Late 19th Century” on the Library of Congress website
(http://www.loc.gov/teachers/classroommaterials/presentationsandactivities/presentations/timeline/riseind/railroad/),
retrieved on December 6, 2015.
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Rewriting the model of trading volume in (9) with simpler notation gives

Tradvolt = b0 +b1T̃t +XTV,tbTV +XL,tbL + εt (11)

where Tt is Manhattan temperature, XTV,t is a vector of control variables for aggregate volume, XL,t

is a vector of control variables for aggregate liquidity imbalance, and innovations in trade volume
due to information (In f ormedt) is included in the error term εt . For the vector of control variables
for volume, I use seasonal temperature (T ), day of the week dummies (Dt), and dummy variables
indicating the number of trading holidays until the next trading day (Gt =1 by 3 vector of dummy
variables representing 1 day’s gap, 2 day’s gap, and 3 or more days’ gap).

Seasonal temperature is used because even within each summer, I find trading volume to be
lower in hotter weeks. Day of the week dummies are used in Gallant, Rossi, and Tauchen (1992)
to control for the predicted patterns in trading volume within a week, and a variant of trading
days’ gap dummies are used in the same paper to control for the effect of variation in the number
of trading days between two consecutive trading days. While Gallant, Rossi, and Tauchen (1992)
construct dummy variables based on the number of trading holidays since the previous trading day,
I construct dummy variables based the number of trading holidays until the next trading day and
find that it has greater explanatory power. Using the alternative specification of Gt has little effect
on results.

In the vector of control variables for liquidity imbalance, I include return volatility (Volatilityt)
and an indicator for negative market (1(Rt < 0)). Return volatility is an important determinant
of liquidity imbalance because liquidity suppliers tend to be more capital-constrained in volatile
times (Nagel 2012). I estimate volatility using a generalized autoregressive heteroskedasticity
(GARCH) model with two moving average and two autoregressive terms25 I include the negative
return dummy because the volume-autocorrelation relation is known to be stronger for positive
returns (LeBaron 1992), which suggests that the relative size of outside investors (Outsidet) and
informed traders (In f ormedt) may differ in positive and negative markets.

In summary, I estimate the following model of daily trading volume:

Tradvolt = b0 +b1T̃t +b2T t +b3Vt +b41(Rt < 0)+Dtb5 +Gtb6 +b7,yyeart + εt (12)

where b1 is the coefficient of interest with b1 < 0 as the prediction and yeart indicates the year
fixed effect. I include year fixed effects to ensure that I only use temperature variation within each

25Specifically, it is the conditional volatility obtained from the simple autocorrelation regression Rm,t+1 = α +
(β0 +β11(Rm,t < 0)+Gtβ2)Rm,t + εt , where σ2

t = a0 +∑
2
s=1 asε

2
t−s +bσ2

t−1 and Gt is the vector of dummy variables
indicating the number of trading holidays until the next trading day. This control variable is motivated by findings that
trading volume represents a disagreement, which may widen during times of high volatility.
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summer.
Next, I specify the model of NYSE aggregate liquidity imbalance and daily index reversal.

Because theory suggests that short-run return reversals arise due to liquidity imbalances, I specify
both regressions using the model of aggregate liquidity specified in (8), which I rewrite as

Imbalancet = β0 +β1T̃t +XL,tBL + εt (13)

where XL,t is the vector of control variables. I specify XL,t using all control variables used in the
volume regression and add aggregate trading volume (Tradvolt) as an additional control. Trading
volume is included to capture innovations in outside investor trades or informed trades not cap-
tured by other variables. Day of the week dummies are included because they are reported to be
significant in the CGW specification of return autocorrelation regression. The trading days’ gap
dummies are included because the larger the gap until the next trading day, the less persistence
in market index returns we would expect. The justification for volatility and the negative return
indicator is the same as above.

In summary, I use the following specification to estimate the effect of outside investors on
aggregate liquidity imbalance and index return reversal:

LHSt = β0+β1T̃t +β2T t +β3Tradvolt +β4Vt +β51(Rt < 0)+Dtβ6+Gtβ7+β8,yyeart +εt (14)

where LHSt indicates the dependent variable of interest. As I do in the volume regression, I use
year fixed effects to ensure that variation in temperature across different years do not affect the
regression results. I would expect the estimated β1 to be positive.

4 Main Empirical Results

4.1 Effect of Manhattan temperature on NYSE trading volume

Lower trading activities in hotter summers

Although the causal link I need to establish is the daily temperature variation causing variation
in trading volume on the same day, I begin by presenting evidence that the temperature-volume
relationship existed at the yearly frequency. To study the effect, I compute NYSE summer trading
as the average daily NYSE trading volume (before detrending) over the summer divided by its
annual average, and regress it on average Manhattan summer temperature:

NY SE Summer Tradingt = b0 +b1ManhattanSummer Temperaturet + εt (15)
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where t indexes a year.
As shown in Table 2, in the earliest sample period, years with hotter summers had lower trading

activity in the summer (an effect statistically significant at 10%).

[Table 2 here]

A smaller yet significant effect exists in the 1903-1930 sample, but not in the latter sample
periods. During 1889-1902, a 1 degree Celsius increase in the summer temperature led to a large 11
percentage point drop in NYSE’s relative summer trading. This strengthens the evidence that hot
weather discouraged trading activity in the late 19th century. Figure 3 visualizes this temperature-
volume relationship in 5 sample periods.

[Figure 3 here]

When the regression for the first sample period is repeated with temperature in other cities, no
significant result is obtained. Table 3 shows that the effect is negative only in Cambridge MA,
although the effect is not significant at the 10% level, illustrating the importance of Manhattan
temperature to the participants of NYSE.

[Table 3 here]

Daily effect of Manhattan temperature on NYSE total trading volume

The hypothesized relationship between temperature and trade volume in pre-1903 NYSE is stronger
at a daily frequency. To estimate the daily temperature effect on volume, I regress log detrended
trading volume (Tradvolt) on unseasonal Manhattan temperature (T̃t) and other controls. As shown
earlier, summer temperature and average trading activity in the summer have a negative relation-
ship at a yearly frequency. Although this relationship is also likely to be capture the temperature
effect, I take the conservative approach of including year fixed effects to exploit only the within-
year variation in trading volume and temperature. I also report the result where I included lagged
unseasonal temperature (T̃t−1) in the regression but do not find a significant effect once T̃t has been
controlled for. The result is the following model of daily trade volume discussed in the previous
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section:

Tradvolt = b0 +b1T̃t +b2T t +b3Vt +b41(Rt < 0)+Dtb5 +Gtb6 +b7,yyeart + εt (16)

I estimate this model in each of the five sample periods using the summer season, and report
the estimated coefficients as well as Newey-West HAC standard errors with 20 lags in Table 4. The
coefficient on unseasonal temperature b̂1 is the correct measure of temperature effect on trading
volume, as the coefficient on seasonal temperature T likely contains both the temperature effect
and seasonal effects.

[Table 4 here]

The temperature effect is economically and statistically significant in the test sample, with a
rise in daily Manhattan summer temperature by 1 degree Celsius (1.8 degrees Fahrenheit) reducing
NYSE trading volume by 1.3% on average (dependent variable is in log). The effect is smaller but
significant in the second sample but disappears in the last three sample periods, suggesting that the
temperature effect on trading volume had gradually disappeared.26 Seasonal temperature is highly
significant in the most recent sample period, but given that unseasonal temperature has no effect,
it should be interpreted as hotter times in the summer having higher trading activity for seasonal
rather than temperature-related reasons. Trading volume significantly rises during volatile periods
in all samples. Trading volume during a negative market tends to be lower in 1931-60 and 1961-90
samples but higher in the most recent sample.

A placebo test using temperatures in other cities

To rule out the possibility that the impact of Manhattan temperature on trading volume is a result
of a spurious regression (e.g., Ferson, Sarkissian, and Simin 2003), I repeat the estimation in the
first sample period using temperatures in other cities (Table 5). The correlations in the temperature
(unseasonal and seasonal) of Manhattan and another city are reported at the bottom of the table.

[Table 5 here]

As expected, only the unseasonal temperature in Cambridge, MA has explanatory power, pre-
sumably due to its strong correlation with unseasonal temperature in Manhattan (0.75). Despite

26Although not reported here, I also find that trading volume falls on snowy days in the first sample period and that
low winter temperature does not affect trading volume.
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the low statistical significance, however, unseasonal temperatures in both U.S. cities have similar
economic magnitudes (-0.010) as Manhattan’s unseasonal temperature (-0.013).

The large magnitudes in the placebo tests disappear once I include Manhattan temperatures in
the regressions. In Table 6, I run a horse race between unseasonal temperature in Manhattan and
that in other cities by including Manhattan temperatures as additional explanatory variables in the
placebo regressions.

[Table 6 here]

In all regressions, only the unseasonal temperature in Manhattan retains explanatory power.
The magnitudes of other U.S. cities’ temperature effects are now smaller, confirming that the
previously large magnitudes came from their correlation with Manhattan temperature.

Historical evidence discussed in section 2 suggests that the temperature effect on trading vol-
ume prevented here can be interpreted as hot weather discouraging outside investors from par-
ticipating in the daily market. Thus, in the next three subsections, I use Manhattan unseasonal
temperature either as a proxy variable for outside investor trades or as an instrumental variable for
volume with outside investors as the compliers of the treatment effect.

4.2 Outside investor trades induce aggregate liquidity imbalance

How does the reduction in outside investors due to hot weather affect aggregate liquidity imbal-
ance? Using the shift in temperature that affects the participation of outside investors as a whole,
I explore whether a smaller presence of outside investors in the daily market leads to smaller liq-
uidity imbalance, measured by lower than average returns from aggregate liquidity provision.

Returns from aggregate liquidity provision is measured in four ways, one using index returns
and three using the cross-section of individual stock returns. In all of the four measures, the return
on liquidity provision is defined as the one-day return from a portfolio of individual stocks that
mimics the daily positions taken by market makers:

Ls
t =

N

∑
i=1

ω
s
i,tRi,t+1 (17)

where i = 1, ..,N indexes the individual stocks, s ∈ {0,1,2,3} indexes the four strategies, and ωs
i,t

is the time-t position on stock i taken by strategy s. I focus on returns over a day because, as stated
in Nagel (2012), the half-life of dealer inventory holding is estimated to be 1/2 to 2 days (Hansch,
Naik, and Viswanathan 1998; Hendershott and Menkveld 2013).
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For each measure of return on liquidity provision Ls
t , I study whether outside investors increase

the expected return, using unseasonal temperature as the proxy variable. Both here and in the return
reversal regressions in section 4.3, the control variables are the same as those used in volume
regressions except for the addition of Tradvolt (see section 3.4 for model specifications). The
regression specification is thus

Ls
t = β0 +β1T̃t +β2T t +β3Tradvolt +β4Vt +β51(Rt < 0)+Dtβ6 +Gtβ7 +β8,yyeart + εt (18)

where Vt measures volatility, Dt are the day of the week dummies, and Gt are the trading days’
gap forward dummies. Year fixed effects are used so that only the effects within each year are
identified; this is to ensure that low-frequency variation in temperature over years does not drive
the regression results.

Using returns from a simple reversal strategy on the market index

The first specification of returns from aggregate liquidity provision uses the market index return
itself. The strategy goes long 1 dollar of S&P 500 ETF if the market went down today and short
1 dollar of S&P 500 ETF if the market went up today. Thus, this reversal strategy return mimics
the one-day return earned by an investor who takes on the same dollar-exposure to a market index
each day but in the direction opposite to the market movement on that day. The position on each
individual stock taken by this first strategy is

ω
0
i,t =−ω

m
i,t1(Rm,t > 0) (19)

Although a more accurate replication of positions taken by market makers requires the cross-
section of individual stock returns, this measure of market liquidity has the advantage that it can be
calculated in periods when individual stock price data are unavailable (1903-1925). Furthermore,
because larger stocks have greater influence on returns from this strategy, analyzing this first rever-
sal strategy addresses the concern that the three cross-sectional strategies implicitly assume equal
sizes of all stocks and thus may not accurately describe market maker’s positions in this regard.

Table 7 reports the regression results in 5 different sample periods based on the proxy variable
approach as well as the instrumental variable regression in the test sample.

[Table 7 here]

Column (1) shows that in the first sample period, an increase in unseasonal temperature decreases

19



the return from this reversal strategy. Interpreting a rise in unseasonal temperature as a proxy for
the reduction in outside investors, this implies that a smaller presence of outside investors in the
market lowers the market maker’s required return on accommodating non-informational trades.
The instrumental-variable regression allows for an interpretation in units of volume. Column (2)
shows that an increase in outside investors equivalent to 1% of the average daily trade volume leads
to a 1.8 basis point increase in the return from the reversal strategy. The 1.8 basis point increase in
the return represents a 1.8% standard deviation increase in the return, as the standard deviation of
this strategy return is 1.02% in the summers of 1889-1902.

Volatility increases the return from liquidity provision in the first sample, consistent with the
notion that higher volatility leads to a lower supply of liquidity so that each liquidity provider needs
to be compensated at a higher rate. The sign of the volatility effect, however, flips in later periods.
This is similar to the finding of CGW that once volume has been controlled for, volatility some-
times has a negative impact on return reversal. The statistically significant effect of temperature
during 1961-1990 is puzzling. Interestingly, the effect is stronger during the period of heightened
energy prices (1971-1985) but insignificant in other years of the sample period. This suggests that
the differential temperature effect on outside investors and market makers at the NYSE may have
existed during the energy crisis, although further examination is required to validate this conjec-
ture. A similar effect shows up in the study of the likelihood of index return reversal and index
return autocorrelation. For now, I continue to use the pre-1903 sample as the test sample.

Using returns from aggregate liquidity provision based on cross-section of daily returns

The previous measure of market maker position does not use the rich information contained in the
cross-section of individual stock prices. Accordingly, I repeat the previous analysis using three
measures of return on aggregate liquidity provision based on individual stock price data. The three
cross-sectional reversal strategies (s = 1,2,3) are used in Nagel (2012) and take the following
positions on each individual stock:

ω
1
i,t =−

Ri,t−1−REW
m,t−1

1
2 ∑

N
i=1

∣∣∣Ri,t−1−REW
m,t−1

∣∣∣ (20)

ω
2
i,t =−

Ri,t−1−REW
m,t−1

N
(21)

ω
3
i,t =−

Ri,t−1−REW
m,t−1

∑
N
i=1

(
Ri,t−1−REW

m,t−1

)2 (22)
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where REW
m,t−1 = N−1

∑
N
i=1 Ri,t−1 is the equal-weighted market index return between t−1 and t.27

The three strategies use the same relative allocation of funds to the cross-section of stocks but
use different rules to allocate funds across time. The three strategies’ identical numerators indicate
that the relative allocation of funds across stocks depends only on the deviation of individual
stock return from the market return—the lower the individual stock return compared to the market
return, the higher the strategy’s long exposure to the stock, and vice versa. Differences come from
the denominator. In the first strategy (Lehman 1990), a dollar of either long or short position is
assumed to require the same 50 cents, implying a constant margin of 1/2 across time and across
all stocks (Nagel 2012). This implies that the market maker’s asset position in the strategy is also
constant over time, unaffected by time-varying volatility. The second strategy (Lo and MacKinlay
1990) assumes a more speculative market maker. Because the denominator is constant, the market
maket’s position in the entire strategy increases with the cross-sectional dispersion of stock returns.
As one will see, this speculative nature of the strategy makes its expected return increase with
market volatility. The third strategy assumes a market maker faced with a form of time-varying
margin requirement (margin requirement falls with volatility). Because each exposure of Ri,t−1−
REW

m,t−1 requires its squared value to be expended by the market maker, the strategy is less dependent
on extreme deviations in individual stock return from the average return.

Nagel (2012) shows that the three strategies also exhibit different levels of sensitivity to the
informativeness that the liquidity imbalance has about the asset value as well as the sensitivity to
the change in volatility of public information. He finds that the second strategy is insensitive to
the change in volatility of public information, whereas the third strategy is less sensitive to the
variation in the liquidity imbalance’s informativeness; the first strategy strikes a balance between
the two sensitivities.

Regress each of the three strategy returns on unseasonal temperature and other controls, I find
that a rise in unseasonal temperature lowers the expected returns from liquidity provision (Table
8).

[Table 8 here]

Based on the first strategy, a reduction in outside investors associated with an unseasonal rise in
Manhattan temperature by 1 degree Celsius decreases the expected return from aggregate liquidity
provision by 4.9 basis points, or 2.0% of the standard deviation.28 This suggests that a smaller
presence of outside investors reduces liquidity imbalance. Columns (2), (4), and (6) report results

27To equalize the scales, ω2
i,t is multiplied by 100, and ω3

i,t is divided by 10 before forming portfolio returns.
28The standard deviation of this return over the first sample is 2.36%.
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from the regression that uses unseasonal temperature as an instrumental variable for trading volume
with outside investors as the compliers. Column (2) shows that an increase in outside investor
trades by 1% of the average daily trading volume increases the expected return from liquidity
provision by 2.9 basis points, or 1.2% of the standard deviation.

The effect of seasonal temperature (T ) on returns from liquidity provision tends to be small or
has a sign opposite to that in unseasonal temperature, suggesting that its seasonal effect may be
offsetting any of its temperature effect. A high trade volume is associated with smaller liquidity
imbalance, and this remains true (i.e. the coefficient stays negative) even when temperature vari-
ables are excluded, consistent with the observation that reversal profitability based on large NYSE
and AMEX stocks falls with trading activity (Cooper 1999). This reflects that trading based on pri-
vate information (Wang 1994) or public information (Kandel and Pearson 1995; Bamber, Barron,
and Stober 1999) mitigates the price pressure created by non-informational trades. Volatility tends
to decrease liquidity, consistent with the finding that the supply of liquidity falls during volatile
periods (Nagel 2012). The volatility effect is largest in strategy 2 and smallest in strategy 3, con-
sistent with the earlier discussion that strategies 2 and 3 represent the strategies of aggressive and
conservative market makers, respectively.

Do outside investors affect revesal profitability through the number of stocks with a return
reversal or the magnitude of returns?

The baseline regression reported in column (1) of Table 8 can be examined further. It shows that
unseasonal temperature reduces reversal profitability, but through which channel does this occur?
That is, do outside investors increase reversal profitability by (a) increasing the number of stocks
having a reversal, (b) increasing the absolute return on stocks that reverse, or (c) decreasing the
absolute return on stocks that continue? If outside investors flock into all stocks in general, the
first and third would be true. If outside investors tend to chase after a few stocks having large
price changes, the second would be true. Similarly, does trade volume reduce reversal profitability
by reducing the number of stocks with a reversal on the next day, reducing the absolute return on
stocks that reverse, or increasing that on stocks that continue?

To answer these questions, in Table 9, I regress the following three measures of reversal patterns
in NYSE individual stocks on unseasonal temperature, trading volume, and other controls: fraction
of stocks with a return reversal next day (Panel A); mean absolute return on stocks with a return
reversal next day (Panel B); and mean absolute return on stocks with a return continuation next
day (Panel C).

[Table 9 here]
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The effect of unseasonal temperature is negative and significant, suggesting that a reduction in
outside investors lowers the fraction of stocks having a reversal on the next day. The instrumental-
variable regression suggests that when outside investor trades increase by 1% of the daily trading
volume, the fraction of stocks reversing the next day falls by 0.2 percentage points. Neither volume
nor volatility, however, has a significant effect on this fraction. The effect of volatility here can be
linked to the effect of liquidity supply. As discussed in Nagel (2012), high volatility reduces the
market makers’ capacity to provide liquidity. That a higher volatility does not significantly reduce
the number of stocks having a reversal is consistent with the intuition that liquidity suppliers do
not determine whether the stock is subject to non-informational price pressure.

How do unseasonal temperature, volume, and volatility affect the equal-weighted average ab-
solute return on stocks whose returns reverse on the next day (Panel B of Table 9)? The re-
sults contrast those in the previous regression explaining the fraction having reversals. Outside
investors, proxied by unseasonal temperature, do not significantly increase the magnitude of re-
versals, although the negative sign indicates a weak positive effect (unseasonal temperature and
outside investor trades are negatively related). Both trade volume and volatility, on the other hand,
significantly increase the absolute returns on reversing stocks. If trading volume increases the
absolute returns on stocks that reverse, why does it appear to reduce reversal profitability?

The answer lies in the effect of volume on absolute returns on stocks that continue the previous
day’s return. In Panel C of Table 9, the average absolute return on stocks that continue the pre-
vious day’s returns is regressed on unseasonal temperature and other controls. Interestingly, the
reduction in outside investors associated with a rise in unseasonal temperature increases the mean
absolute returns on continuation stocks. This suggests that in the absence of outside investors, pri-
vate information traders may find it difficult to trade without releasing information through their
price pressure, leading them to conduct more trades and create higher price pressure in the same di-
rection on the next day. This is consistent with the theory that price reflects information and having
a large number of noise traders in the market helps informed investors trade without leaking much
information (Glosten and Milgrom 1985; Kyle 1985). Furthermore, trading volume has a larger
coefficient than in Panel B, suggesting that the negative coefficient found in Table 8 is caused by
a higher trading volume increasing the continuation stocks’ absolute returns more than reversing
stocks’. As will be seen later, a higher trading volume has a positive effect on index reversal. This
suggests that a higher trading volume does increase the absolute return on reversing stocks more
than that of continuation stocks but that its affect on reversing stocks may be more concentrated in
large stocks.

Using four specifications of market make’s expected returns, I showed that lower demand for
liquidity associated with higher temperature improves aggregate market liquidity. I also presented
evidence that smaller presence of outside investors associated with higher temperature affects the
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reversal profitability through two channels: a reduction in the number of stocks having a reversal
on the next day and an increase in the absolute return on stocks having a return continuation on
the next day. Also, the negative overall effect of trade volume on reversal profitability results
from higher trade volume increasing the absolute return on continuation stocks more than that of
reversal stocks. Next, I examine how such an improvement in liquidity affects the daily behavior
of market index returns.

4.3 Outside investor trades induce market index return reversals

I study the short-horizon reversal phenomenon in market index returns in two ways. First, I study
the likelihood of a next-day return reversal in the market index. Despite the information loss asso-
ciated with discretizing the market return behavior into a binary event of reversal and non-reversal,
this approach has the advantage that it is less subject to the influence of outlier returns. Next, I
study the daily autocorrelation in the market index as in CGW. Here, I winsorize all daily returns
at the 5% level to prevent outliers from dominating the regression outcome (e.g., Pinegar 2002).
Before analyzing the two measures of reversal using the temperature proxy, I discuss their gen-
eral patterns during the test sample and during the period in which S&P 500 returns are available
(1926-2014).

Market return reversals and autocorrelations in 1889-1902 and 1926-2014

The probability of daily return reversal in the market index was 48% in 1889-1902 and 46% in
1926-2014, suggesting that continuation was slightly more common than reversal in the market
index return over two consecutive trading days (Table 10).

[Table 10 here]

This is also reflected in the positive autocorrelation in the market index in the two sample
periods. These positive daily autocorrelations in the market index are consistent with the ob-
servation that, despite the predominantly negative daily autocorrelation in individual stocks, the
cross-autocorrelation among individual stocks bring the overall market autocorrelation to a pos-
itive value. Froot and Perold (1995), however, document that this autocorrelation in the market
index has fallen since the 1970s, with the better dissemination of market-wide information and the
use of futures contracts.

How does the market index behave differently during more volatile times? Table 10 reports
the same statistics during above-median volatility times in each sample period. Both the prob-
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ability of reversal and return autocorrelation indicate that the market index return is more likely
to reverse in more volatile times. This may be due to a combination of higher trading activity of
outside investors (i.e. higher demand for liquidity) and market makers requiring higher return on
liquidity provision (i.e. lower supply of liquidity). I now study how the probability of index return
reversal and index return autocorrelation are affected by aggregate liquidity demand, proxied by
the exogenous variation in Manhattan’s unseasonal temperatures.

Likelihood of a next-day return reversal in the market index

To study the outside investors’ affect on reversal probability, I define Reversalt ≡ 1 [Rm,tRm,t+1 < 0]
as the indicator of return reversal so that Reveraslt = 1 indicates a return reversal and Reversalt = 0
indicates no return reversal on the next trading day, where Rm,t denotes the daily market index
return. I then estimate the following logit model of the index reversal event:

ln
(

Pr[revt=1]
Pr[revt=0]

)
= β0 +β1T̃t +β2T t +β3Tradvolt +β4Vt +β51(Rt < 0)+Dtβ6 +Gtβ7

+β8,yyeart + εt
(23)

The explanatory variables are unseasonal Manhattan temperature and other control variables used
when studying liquidity imbalance, and I refer the reader to the discussions in 4.1 and 4.2 for the
choice of controls. To interpret the effect of outside investors in units of trading volume, I also use
unseasonal temperature as an instrument for trading volume and estimate the impact of predicted
volume on reversal likelihood using a linear probability model. As pointed out in Wooldridge
(2002), this is an acceptable approach in estimating a discrete response model with an endogenous
explantory variable and avoids making strong assumptions required to estimate a probit model
with an endogenous explanatory variable.

Columns 1 through 3 of Table 11 report the determinants of the likelihood of a NYSE index
return reversal during 1889-1902.

[Table 11 here]

The first two columns are estimated using the logit model, whereas the third column uses
the two-stage least squares method that assumes the linear probability model. A reduction in
outside investors associated with a 1 degree Celsius increase in Manhattan temperature reduced the
probability of reversal by 1.6 percentage points (column 1). In units of trade volumn, a reduction
in outside investors by 1% of the NYSE trading volume increased the probability of a reversal by
1.1 percentage points (column 3).
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The temperature effect on reversal probability does not exist in later periods except in 1961-
1990, when the effect was significantly negative at the 10% level. Although positive in all periods,
the effect of trading volume on the likelihood of a reversal is not consistently significant and is
not significant in the test sample period. When the proxy for outside investors is excluded, an
increase in trade volume is estimated to have a larger effect on the likelihood of a reversal (column
2). Volatility does not have a consistent direction of effect, as previously noted in CGW. In all
sample periods, reversal likelihood is much higher during negative markets, which may reflect the
short-term overreaction to negative news and underreaction to positive news (e.g., Braun, Nelson,
and Sunier 1995; Veronesi 1999; Avramov, Chordia, and Goyal 2006b).

That non-informational trades by outside investors increase the likelihood of a market return
reversal is consistent with the theoretical prediction and empirical findings of CGW. Similar evi-
dence is found in autocorrelations.

Daily return autocorrelation in market index returns

To study how outside investors affect the persistence of market index returns, I regress the next
trading day’s index return on unseasonal temperature and control variables interacted with today’s
return:

Rm,t+1 = α0 +
(

β0 +β1T̃t +β2T t +β3Tradvolt +β4Vt +β51(Rt < 0)+Dtβ6 +Gtβ7 +β8,yyeart

)
×Rm,t + εt

(24)
This is the approach used in CGW and allows the explanatory variables to affect the daily autocor-
relation coefficient. I report the regression results based on market returns winsorized at 5% level
(Table 12).

[Table 12 here]

Column (1) shows that a rise in unseasonal temperature increases the persistence of daily index
returns. The effect is large, with an increase in unseasonal temperature by 1 degree Celsius lower-
ing the autocorrelation coefficient by 0.019 on average. Column (3) quantifies this effect in terms
of outside investors’ trading volume by instrumenting the term TradVolt×Rt through T̃t×Rt .29 It
suggests that an increase in outside investors equivalent to 1% of the average daily trading volume
decreases the autocorrelation coefficient by 0.018. This quantity can be compared to the effect

29Although this implies that the moment condition will involve the term R2
t T̃ , the approach is still valid if temper-

ature does not affect squared return—or volatility—in a systemic way.

26



found in CGW, who finds that the same 1% rise in trading volume lowers the autocorrelation of
S&P 500 daily returns by 0.004 over the sample period 7/3/62-9/30/87 (Table II of CGW). This
suggests that information-driven aggregate trading volume may have a positive effect on daily au-
tocorrelation of market index returns, counteracting non-informational trading volume’s negative
effect on the autocorrelation. A similar conclusion holds when column (3) is compared to column
(2), which repeats CGW’s autocorrelation regression in the test sample.

Looking at other sample periods, I find that unseasonal temperature has a large and significant
effect on autocorrelation in 1961-1990, a pattern observed in the study of the simple reversal
strategy on the NYSE index and in the study of the reversal probability. Trading volume has a
negative effect and volatility has mixed effects on autocorrelation, consistent with CGW. Finally,
autocorrelation falls significantly during a negative market.

To summarize, a reduction in outside investors affects the behavior of daily market index re-
turns by lowering the likelihood of a market index return reversal and increasing the daily auto-
correlation coefficient. The effect is economically and statistically significant, as shown in the
interpretation through predicted trading volumes. Together with section 4.2, this establishes that
outside investors’ demand for liquidity is an important cause of short-run reversals in the daily
market returns.

5 Conclusion

In this paper, I suggest a natural experiment in the late 19th century in which hot daily weather
removed a sizable quantity of outside investors from the daily stock market. This experiment helps
establish a causal link between outside investors’ non-informational trades and short-horizon rever-
sals in stock market indices through the channel of aggregate liquidity imbalance. The experiment
also provides an insight on how noise trading and informed trading interact.

The paper’s focus on the sample period 1889-1902 allows for a causal inference, but it comes
at the cost of having to take extra care in drawing implications on today’s market, which I briefly
discuss. Perhaps the most important change from the test sample period is that the supply of
liquidity is likely to be more flexible in today’s market.30 Hence, the same fluctuation in liquidity
demand due to non-informational trades may lead to a smaller change in the aggregate liquidity
imbalance or market return reversal today than what the estimated coefficients imply. In fact, this
may explain why we now observe less short-horizon reversals in the market index than before (e.g.,
Froot and Perold 1995; also see Table 10).

30This may be due to a combination of factors such as the information revolution, automated market making, and
more integrated asset markets.
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The suggested natural experiment in the 19th century can be used to explore other topics in
asset pricing. For example, combining the individual stock price data based on daily high and low
prices with the temperature proxy for outside investors, one can test theories of bid-ask spreads or
volatilities. This would be possible using the range-based measures of bid-ask spreads (Corwin
and Schultz 2012) and volatility (Alizadeh, Brandt, and Diebold 2002).
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A Tables and Figures

Table 1: Seasonality in NYSE Trading Volume and Manhattan Temperature

NYSE trading activity and Manhattan temperature are computed in each season of the four seasons, for

five different sample periods. Trading activity is computed as the average trading volume over the season

divided by its annual average. The four seasons used here are spring (Mar-May), summer (Jun-Aug), fall

(Sep-Nov), and winter (Dec-Feb).

(1) (2) (3) (4) (5)
1889-1902 1903-1930 1931-1960 1961-1990 1991-2014

NYSE trading activity

Mar-May 1.05 1.01 0.97 0.99 1.00
Jun-Aug 0.81 0.86 0.91 0.95 0.96
Sep-Nov 1.07 1.12 1.04 1.02 1.03
Dec-Feb 1.07 1.02 1.08 1.04 1.01

Average Manhattan temperature (degrees Celsius)

Mar-May 11.3 12.1 12.9 13.7 13.9
Jun-Aug 24.9 24.7 25.8 26.0 25.9
Sep-Nov 14.8 15.4 16.4 16.3 16.2
Dec-Feb 1.7 1.7 2.9 2.8 3.7
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Table 2: Regression of NYSE Summer Trade Volume on Manhattan Summer Temperature

This table reports the OLS regression results for five distinct sample periods. Dependent variable is summer

relative volume, computed as the average NYSE total trading volume over Jun 11-Sep 10 divided by its

annual average. Independent variable is the summer average temperature, computed as the average trading

hour temperature in Manhattan over Jun 11-Sep 10. Standard errors corrected for heteroskedasticity are

reported in parentheses. *, **, and ***, indicates significance at 10, 5, and 1 percent, respectively.

(1) (2) (3) (4) (5)
1889-1902 1903-1930 1931-1960 1961-1990 1991-2014

Summer Temperature -0.11∗ -0.04∗ 0.02 -0.01 0.01
(0.06) (0.02) (0.05) (0.02) (0.01)

Observations 14 28 30 30 24
R2 0.144 0.057 0.005 0.008 0.014

An intercept included but not reported here.
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Table 3: Regression of NYSE Summer Trade Volume on Summer Temperature (1889-1902)
A Placebo Test Using Temperature in Other Cities

This table reports the OLS regression results using temperatures in five different cities during pre-1903

sample. Dependent variable is summer relative volume, computed as the average NYSE total trading volume

over Jun 11-Sep 10 divided by its annual average. Independent variable is the summer average temperature,

computed as the average trading hour temperature in each city over Jun 11-Sep 10. Standard errors corrected

for heteroskedasticity are reported in parentheses. *, **, and ***, indicates significance at 10, 5, and 1

percent, respectively.

(1) (2) (3) (4) (5)
Cambridge Jacksonville FL Birmingham UK Sydney AU Edmonton CD

Summer Temp. -0.04 0.29 0.00 0.25 0.13
(0.05) (0.19) (0.06) (0.17) (0.08)

Observations 14 14 14 14 14

An intercept included but not reported here.
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Table 4: Determinants of Daily NYSE Total Trade Volume

Dependent variable is daily detrended NYSE total trading volume, computed as the deviation of log total

trading volume per hour from its 1-year moving average. T̃t and T t are unseasonal and seasonal temperatures

in Manhattan on day t, respectively. 1(R < 0) is an indicator variable for a negative NYSE index return.

OLS regression results for pre-1903 sample are reported in columns (1) and (2), while the results for the

four other sample periods are reported columns (3)-(6). Newey-West HAC standard errors with 20 lags are

reported in parentheses. *, **, and ***, indicates significance at 10, 5, and 1 percent, respectively.

(1) (2) (3) (4) (5) (6)
1889-1902 1903-1930 1931-1960 1961-1990 1991-2014

T̃ -0.013∗∗ -0.015∗∗∗ -0.009∗∗ 0.002 -0.000 0.002
(0.006) (0.005) (0.004) (0.003) (0.002) (0.002)

T̃ (t−1) 0.002
(0.004)

T -0.085∗∗∗ -0.085∗∗∗ -0.022∗ 0.005 0.002 0.013∗∗∗

(0.017) (0.017) (0.012) (0.012) (0.005) (0.004)

Volatility 0.716∗∗∗ 0.714∗∗∗ 1.990∗∗∗ 0.494∗∗∗ 1.671∗∗∗ 0.604∗∗∗

(0.224) (0.222) (0.300) (0.158) (0.223) (0.095)

1(R < 0) -0.037 -0.038 0.015 -0.042∗∗ -0.052∗∗∗ 0.018∗∗

(0.024) (0.024) (0.018) (0.018) (0.011) (0.008)

Year FE Yes Yes Yes Yes Yes Yes
Observations 1,056 1,051 2,080 2,083 1,895 1,529

An intercept and dummy variables for day of the week and trading days’ gap are included but not reported.
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Table 5: Determinants of Daily NYSE Total Trade Volume (1889-1902)
A Placebo Test Using Temperatures in Other Cities

This table reports the OLS regression results using temperatures in other cities during pre-1903 sample.

Dependent variable is daily detrended NYSE total trading volume, computed as the deviation of log total

trading volume per hour from its 1-year moving average. T̃t and T t are unseasonal and seasonal temperatures

in the specified city on day t, respectively. 1(R < 0) is an indicator variable for a negative NYSE index

return. Newey-West HAC standard errors with 20 lags are reported in parentheses. *, **, and ***, indicates

significance at 10, 5, and 1 percent, respectively.

(1) (2) (3) (4) (5)
Cambridge MA Jacksonville FL Birmingham UK Sydney AU Edmonton CD

T̃ -0.010∗ -0.010 -0.005 0.004 0.006
(0.005) (0.011) (0.010) (0.008) (0.006)

T -0.079∗∗∗ -0.142∗∗∗ -0.083∗∗∗ 0.086∗∗∗ -0.047∗∗∗

(0.016) (0.028) (0.029) (0.022) (0.011)

Volatility 0.701∗∗∗ 0.738∗∗∗ 0.691∗∗∗ 0.731∗∗∗ 0.714∗∗∗

(0.236) (0.226) (0.237) (0.226) (0.222)

1(R < 0) -0.031 -0.050∗∗ -0.042∗ -0.031 -0.040∗

(0.024) (0.024) (0.024) (0.024) (0.024)

Year FE Yes Yes Yes Yes Yes
ρ(T̃ , T̃ NY ) .75 .08 .04 .02 -.14
ρ(T ,T NY ) .85 .54 .61 -.06 .59
Observations 905 1,056 1,056 1,056 1,056

An intercept and dummy variables for day of the week and trading days’ gap are included but not reported.
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Table 6: Determinants of Daily NYSE Total Trade Volume (1889-1902)
A Horse Race Between Temperature in Manhattan and Temperature in Other Cities

This table reports the OLS regression results using temperatures in other cities during pre-1903 sample.

Dependent variable is daily detrended NYSE total trading volume, computed as the deviation of log total

trading volume per hour from its 1-year moving average. “NY T̃t” and “NY T t” are unseasonal and seasonal

temperatures in Manhattan on day t, respectively. T̃t and T t are unseasonal and seasonal temperatures

in the specified city on day t, respectively. 1(R < 0) is an indicator variable for a negative NYSE index

return. Newey-West HAC standard errors with 20 lags are reported in parentheses. *, **, and ***, indicates

significance at 10, 5, and 1 percent, respectively.

(1) (2) (3) (4) (5)
Cambridge MA Jacksonville FL Birmingham UK Sydney AU Edmonton CD

NY T̃ -0.017∗∗ -0.011∗ -0.013∗∗ -0.012∗∗ -0.011∗∗

(0.008) (0.006) (0.006) (0.006) (0.006)

NY T -0.070∗∗∗ -0.050∗∗∗ -0.076∗∗∗ -0.056∗∗∗ -0.070∗∗∗

(0.023) (0.016) (0.015) (0.019) (0.017)

T̃ 0.004 -0.005 -0.000 -0.000 0.008
(0.007) (0.012) (0.010) (0.008) (0.006)

T -0.027 -0.093∗∗∗ -0.037 0.053∗∗ -0.022∗

(0.022) (0.029) (0.026) (0.024) (0.012)

Volatility 0.695∗∗∗ 0.737∗∗∗ 0.715∗∗∗ 0.733∗∗∗ 0.720∗∗∗

(0.233) (0.227) (0.231) (0.226) (0.220)

1(R < 0) -0.029 -0.044∗ -0.037 -0.031 -0.037
(0.024) (0.024) (0.024) (0.024) (0.024)

Year FE Yes Yes Yes Yes Yes
ρ(T̃ , T̃ NY ) .75 .08 .04 .02 -.14
ρ(T ,T NY ) .85 .54 .61 -.06 .59
Observations 905 1,056 1,056 1,056 1,056

An intercept and dummy variables for day of the week and trading days’ gap are included but not reported.
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Table 7: Manhattan Temperature and Returns from A Simple Reversal Strategy on NYSE
Index (1889-1902)

Dependent variable L0
t measures aggregate market liquidity using expected return from the simple reversal

strategy of going long (short) one dollar of NYSE index if today’s index has a negative (positive) return.

T̃t and T t are unseasonal and seasonal temperatures in Manhattan on day t, respectively. 1(R < 0) is an

indicator variable for a negative NYSE index return. NYSE market index uses the DJIA during 1889-1925

and S&P 500 during 1926-2014. OLS regression results for five distinct sample periods are reported in (1)

and (3)-(6), while 2SLS regression result using the pre-1903 sample is reported in column (2). Manhattan

unseasonal temperature T̃t is used as a proxy for the decrease in outside investor trades in (1) and as an

instrumental variable for trading volume with outside investors as the compliers in (2). The return has been

multiplied by 100. Newey-West HAC standard errors with 20 lags are reported in parentheses. *, **, and

***, indicates significance at 10, 5, and 1 percent, respectively.

(1) (2) (3) (4) (5) (6)
1889-1902 1903-30 1931-60 1961-90 1991-2014

T̃ -0.024∗∗∗ -0.007 -0.006 -0.012∗∗ 0.002
(0.009) (0.008) (0.008) (0.006) (0.008)

T -0.012 0.144∗ -0.017 -0.010 0.004 -0.005
(0.028) (0.082) (0.015) (0.015) (0.011) (0.016)

Tradvol 0.071 0.121∗∗ 0.018 0.136 0.597∗∗∗

(0.077) (0.049) (0.094) (0.123) (0.225)

̂Tradvol 1.834∗

(0.996)

Volatility 0.907∗∗∗ -0.342 -1.671 -0.591∗∗∗ -2.187∗∗∗ -1.627∗∗∗

(0.276) (0.814) (1.901) (0.219) (0.815) (0.465)

1(R < 0) 0.072 0.135 0.049 0.097 0.022 0.035
(0.070) (0.087) (0.054) (0.068) (0.043) (0.051)

Year FE Yes Yes Yes Yes Yes Yes
IV Tradvol Yes
Observations 1,056 1,056 2,080 2,083 1,895 1,529

An intercept and dummy variables for day of the week and trading days’ gap included but not reported.
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Table 8: Manhattan Temperature and Returns from Three Reversal Strategies Based on the
Cross-Section of Individual Stock Returns (1889-1902)

Each of the three different dependent variables (denoted L1
t , L2

t , and L3
t ) measures aggregate market liquidity

using market maker’s expected returns from aggregate liquidity provision. The three measures are calculated

using individual stock price data, as discussed in section 4.2. T̃t and T t are unseasonal and seasonal tem-

peratures in Manhattan on day t, respectively. 1(R < 0) is an indicator variable for a negative NYSE index

return. OLS regression results for five distinct sample periods are reported in (1) and (3)-(6), while 2SLS

regression result using the pre-1903 sample is reported in column (2). Manhattan unseasonal temperature

T̃t is used as a proxy for the decrease in outside investor trades in (1) and as an instrumental variable for

trading volume with outside investors as the compliers in (2). The return has been multiplied by 100 to be

interpreted in percentage unit. Newey-West HAC standard errors with 20 lags are reported in parentheses.

*, **, and ***, indicates significance at 10, 5, and 1 percent, respectively.

(1) (2) (3) (4) (5) (6)
Liquidity 1 Liquidity 2 Liquidity 3

T̃ -0.047∗∗ -0.055∗ -0.051∗

(0.022) (0.030) (0.027)

T -0.002 0.276∗ 0.008 0.334∗ 0.003 0.302
(0.042) (0.152) (0.039) (0.202) (0.060) (0.192)

Tradvol -0.287∗ -0.340∗∗ -0.296
(0.152) (0.140) (0.210)

̂Tradvol 2.917 3.415 3.151
(1.778) (2.278) (2.172)

Volatility 0.023∗∗∗ -0.000 0.036∗∗∗ 0.009 0.017∗∗∗ -0.008
(0.003) (0.013) (0.004) (0.017) (0.003) (0.016)

1(R < 0) 0.164 0.262 0.187 0.302 0.232 0.338
(0.174) (0.192) (0.187) (0.232) (0.219) (0.226)

Year FE Yes Yes Yes Yes Yes Yes
IV Tradvol Yes Yes Yes
Observations 1,018 1,018 1,018 1,018 1,018 1,018

An intercept and dummy variables for day of the week and trading days’ gap are included but not reported.

41



Table 9: Manhattan Temperature and the Daily Reversal Pattern of NYSE Individual Stocks
(1889-1902)

Dependent variables are the following: fraction of NYSE individual stocks that experience a return reversal

on the next trading day (Panel A); average absolute return on NYSE individual stocks that experience a

return reversal on the next trading day (Panel B); and average absolute return on NYSE individual stocks

that experience a return continuation on the next trading day (Panel C). T̃t and T t are unseasonal and seasonal

temperatures in Manhattan on day t, respectively. 1(R < 0) is an indicator variable for a negative NYSE

index return. OLS regression result is reported in odd nunmbered rows, while 2SLS regression results is

reported in even numbered rows. Manhattan unseasonal temperature T̃t is used as a proxy for the decrease

in outside investor trades in odd numbered rows and as an instrumental variable for trading volume with

outside investors as the compliers in even numbered rows. Standard errors corrected for heteroskedasticity

are reported in parentheses. *, **, and ***, indicates significance at 10, 5, and 1 percent, respectively.

T̃ T Tradvol ̂Tradvol Volatility 1(R < 0)
Year
FE IV

Panel A: Fraction of stocks with a return reversal next day

(1)
−0.003∗∗

(0.001)
−0.004
(0.004)

−0.017
(0.012)

0.024
(0.038)

0.018∗

(0.010)
Yes

(2)
0.015
(0.009)

0.193∗

(0.113)
−0.129
(0.094)

0.024∗∗

(0.012)
Yes Yes

Panel B: Mean absolute return on stocks with a return reversal next day

(3)
−0.007
(0.007)

−0.003
(0.025)

0.252∗∗∗

(0.077)
0.870∗∗∗

(0.168)
−0.026
(0.043)

Yes

(4)
0.037
(0.039)

−0.204
(0.475)

1.200∗∗∗

(0.393)
−0.040
(0.048)

Yes Yes

Panel C: Mean absolute return on stocks with a return continuation next day

(5)
0.014∗∗

(0.006)
0.011
(0.018)

0.324∗∗∗

(0.058)
0.356∗∗∗

(0.153)
−0.047
(0.038)

Yes

(6)
−0.073
(0.044)

−0.644
(0.582)

1.057∗∗∗

(0.427)
−0.076∗

(0.046)
Yes Yes

An intercept and dummy variables for day of the week and trading days’ gap are included but not reported. N = 1,018
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Table 10: NYSE Market Index Return Reversal and Autocorrelation over 1889-1902 and
1926-2014

This is a summary table of probability of market index daily return reversal and return autocorrelation during

the summers of 1889-1902 and 1926-2014. Volatile sample is defined as the dates with above-median

volatility within each sample period.

Probability of daily return reversal in the market index

1889-1902
All sample 47.8%
Volatile sample 50.0%

1926-2014
All sample 46.0%
Volatile sample 48.0%

Daily return autocorrelation in the market index

1889-1902
All sample 0.037
Volatile sample 0.013

1926-2014
All sample 0.059
Volatile sample 0.041
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Table 11: Manhattan Temperature and the Likelihood of NYSE Index Return Reversal

Dependent variable is the binary variable indicating the event that the NYSE index return switches the sign

on the next trading day (1=Reversal, 0=No Reversal). T̃t and T t are unseasonal and seasonal temperatures

in Manhattan on day t, respectively. 1(R < 0) is an indicator variable for a negative NYSE index return.

NYSE market index uses the DJIA during 1889-1925 and S&P 500 during 1926-2014. Marginal effects

from logit regressions for five distinct sample periods are reported in columns (1), (2), and (4)-(7), and 2SLS

regression result based on LPM and the pre-1903 sample is reported in column (3). Manhattan unseasonal

temperature T̃t is used as a proxy for the decrease in outside investor trades in (1) and as an instrumental

variable for trading volume with outside investors as the compliers in (3). Standard errors corrected for

heteroskedasticity are reported in parentheses. *, **, and ***, indicates significance at 10, 5, and 1 percent,

respectively.

(1) (2) (3) (4) (5) (6) (7)
1889-1902 1903-30 1931-60 1961-90 1991-2014

T̃ -0.016∗∗∗ -0.002 -0.005 -0.006∗ -0.000
(0.005) (0.003) (0.003) (0.004) (0.004)

T 0.007 0.106∗∗∗ -0.001 0.005 -0.002 0.006
(0.013) (0.040) (0.008) (0.007) (0.008) (0.009)

Tradvol 0.015 0.017 0.050∗ 0.008 0.041 0.174∗∗

(0.038) (0.036) (0.027) (0.028) (0.063) (0.077)

̂Tradvol 1.149∗∗

(0.472)

Volatility 0.200 0.182 -0.630∗ 0.210 0.001 -0.406 -0.255
(0.129) (0.121) (0.369) (0.189) (0.047) (0.404) (0.178)

1(R < 0) 0.085∗∗∗ 0.078∗∗ 0.122∗∗∗ 0.103∗∗∗ 0.081∗∗∗ 0.044∗ 0.078∗∗∗

(0.032) (0.032) (0.046) (0.023) (0.023) (0.024) (0.026)

Year FE Yes Yes Yes Yes Yes Yes Yes
Model Logit Logit LPM Logit Logit Logit Logit
IV Tradvol Yes
Observations 1,056 1,056 1,056 2,080 2,083 1,895 1,529

An intercept and dummy variables for day of the week and trading days’ gap are included but not reported.
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Table 12: Manhattan Temperature and the Daily Autocorrelation in NYSE Index Returns

Dependent variable is NYSE market index return on the next trading day, and independent variables are

variables interacted with today’s market index return. T̃t and T t are unseasonal and seasonal temperatures in

Manhattan on day t, respectively. 1(R < 0) is an indicator variable for a negative NYSE index return. NYSE

market index uses the DJIA during 1889-1925 and S&P 500 during 1926-2014. OLS regression results for

five distinct sample periods are reported in (1), (2), and (4)-(7), while 2SLS regression result using pre-1903

sample is reported in column (3). All returns are winsorized at 5%. Manhattan unseasonal temperature T̃t is

used as a proxy for the decrease in outside investor trades in (1) and as an instrumental variable for trading

volume with outside investors as the compliers in (3). Newey-West HAC standard errors with 20 lags are

reported in parentheses. *, **, and ***, indicates significance at 10, 5, and 1 percent, respectively.

(1) (2) (3) (4) (5) (6) (7)
1889-1902 1903-30 1931-60 1961-90 1991-2014

T̃ ×R 0.019∗∗ 0.007 0.003 0.018∗∗∗ -0.001
(0.009) (0.006) (0.007) (0.007) (0.008)

T ×R 0.004 -0.059 0.000 0.026∗ 0.012 0.013
(0.021) (0.086) (0.012) (0.014) (0.014) (0.018)

Tradvol×R -0.116∗∗ -0.125∗∗ -0.062 -0.036 -0.219∗ -0.400∗∗∗

(0.058) (0.057) (0.052) (0.042) (0.118) (0.139)

̂(Tradvol×R) -1.759
(1.445)

Volatility×R -0.188∗∗ -0.173∗ 0.376 -0.335 0.001 0.687∗ 0.655∗∗∗

(0.096) (0.102) (0.524) (0.224) (0.074) (0.350) (0.246)

1(R < 0)×R -0.238∗ -0.244∗∗ -0.391∗ -0.226∗∗∗ -0.152∗∗ -0.037 -0.151∗

(0.123) (0.123) (0.231) (0.078) (0.073) (0.076) (0.086)

Year FE Yes Yes Yes Yes Yes Yes Yes
IV Tradvol×R Yes
Observations 1,056 1,056 1,056 2,080 2,083 1,895 1,529

An intercept, return, and return interacted dummies for day of the week and trading days’ gap not reported.
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Figure 1: Detrended NYSE Trade Volume
1889-2014 (top), 1889-1902 (middle), and the summer of 1895 (bottom)

These graphs show, for three different time horizons, daily detrended NYSE total trading volume,

computed as the deviation of log total trading volume per hour from its 1-year moving average.
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Figure 2: Manhattan Temperature by 10-Days’ Interval (1889-1902)

The summer period used in the paper (Jun 11-Sep 10) is highlighted in dark gray. I obtain the trading
hour average temperature T each day using the maximum and minimum temperatures on that day.
To do so, I assume that an intraday variation in temperature reaches the daily maximum at 15:00
and minimum at 5:00 (Lonnqvist 1962) and that the temperature change is linear in time.
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Figure 3: Summer NYSE Trade Volume and Summer Manhattan Temperature

Summer relative volume is the average NYSE total trading volume over Jun 11-Sep 10 divided by its annual

average. Summer average temperature is the average trading hour temperature over Jun 11-Sep 10.
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