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We analyze conditions under which fund managers herd to acquire

information and trade on the same stock. This happens when fund

managers have highly complementary signals, that is each man-

ager has very imprecise information but taken together they have

perfect information. However, the number of managers herding

on the same stock cannot exceed three due to competition. When

information sharing in a social network is introduced among man-

agers, herding can occur for arbitrary number of managers and

the set of parameters under which herding occurs is strictly larger.

The benefit of social network increases with the social network size

for highly complementary information. The optimal social net-

work size decreases with the precision of managers’ signals. With

social network, fund managers can act in unison and maximize

their combined profits. We then allow information sharing to be

noisy and show that noisy communication of signals can be op-

timal and further expanding the set of parameters for herding to

be optimal. We extend our model to multi-period and continuous

time trading and show that our main results still go through in

dynamic trading although the opportunity set that favors herding

will be smaller due to more intensive competition. In addition,

in continuous time trading, investors will not herd unless there is

a social network to share information. However, they will never

share their information to all in the network due to the resulting

rat race among the managers.
1
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Human beings are influenced by what their friends do, especially in their fi-

nancial activities. For example, fund managers prefer to be close to financial

centers, partly because they would like to know what other fund managers are

investing. There are many venues with which fund managers can share ideas,

including industry conferences, Internet clubs and private communications. In

the hedge fund industry, top investors share ideas and learn from each other in

conferences such as the Value Investing Congress, the Hedge Fund Activism and

Shareholder Value Summit. With the spread of mobile communications, informa-

tion exchanges through on line communities become very convenient. For exam-

ple, Sumzero.com is an invitation only internet community open to hedge fund

managers. Valueinvestorsclub.com provides another platform for top investors to

share their best ideas. On xueqiu.com, investors dislcose their trading positions

to each other.

Observation of each other’s activities and private communication in a social

network can result in herding, which is prevalent in financial activities. Some

stocks are hot while others attract no attention even when the stocks have similar

distributions in terms of fundamental value. When Warren Buffet buys stocks in

China, other managers take notice. In the fund industry, a large literature has

shown that herding among fund managers are prevalent. Lakonishock, Shleifer,

and Vishny (1992) find evidence that pension funds engage in herding with a

stronger effect in smaller stocks. Grinblatt, Titman and Wermers (1995) find

a tendency for funds to buy and sell stocks at the same time in which a large

number of funds are active. Kodres and Pritsker (1997) report herding in daily

trading by large futures market institutional investors.

People not only watch what other people do, they also communicate with each

other, although conversation can be noisy. With the current explosive develop-

ment of social networks on the Internet, a huge amount of information gets passed
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from one person to another through multimedia. Shiller and Pound (1989) argue

that conversations among investors are very important in investment decisions.

Shiller (2000) argues that: “This flow of conversation serves to exchange a wide

variety of information, and also to reinforce memories of pieces of information

to be held uncommon by the group.” Hong, Kubik and Stein (2005) show that

mutual fund managers in a given city tend to have trading behavior that covaries

more strongly with other managers in the same city, as opposed to with man-

agers in different cities. Feng and Seasholes (2004) find similar behavior in the

Chinese stock market for geographically closed investors. Cohen, Frazznini and

Malloy (2007) find that mutual fund managers who went to college together have

similar trades. Ivkovic and Weisbenner (2007) find individual investors who live

close by trade similar stocks. Pool, Stoffman and Yonker (2014) find that socially

connected fund managers have more similar holdings and trades. Many fund man-

agers place an identical trade at the same time. For example, in October 2008,

multiple hedge funds trading in the Porsche/Volkswagen lost money when the

deal went through. In August 2007, many hedge funds experience losses caused

by one or more sizable hedge funds liquidating (Khadani and Lo (2007)). Using

an account level dataset of all trades on the Istanbul Stock Exchange in 2005,

Ozsoylev et. al. (2014) identify traders with similar trading behavior as linked in

an empirical investor network (EIN). Consistent with the theory of information

networks, they find that central investors earn higher returns and trade earlier

than peripheral investors with respect to information events.

In this paper, we propose a theory of herding on information acquisition and

trading on the same stock due to information complementarity. There is a public

announcement that provides a noisy signal for the asset value. We assume that

managers have different information about the noises in the public signal. Hence,

when the managers combine their information, they have perfect information

about the asset value.1 We show that when the noise in managers’ signals is

1Perfect information is not important but it makes the analysis more tractable.
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sufficiently large, they would prefer to acquire information and trade on the same

stock, provided the total number of fund managers in the stock is less than or

equal to three. In this case, herding on the same stock occurs because of implicit

collusion when they trade together. Fund managers make more profits as their

combined information is much more informative than their individual signals.

However, the incentive to herd is hindered by competition, and herding occurs

only when the number of managers is less than or equal three.

The implicit collusion through trading raises the possibility that managers may

have incentives to interact with each other through social networks and share

information among themselves directly. We derive conditions under which man-

agers are better off sharing their information with each other. We show that with

very noisy signals, managers’ gains from information sharing increases with the

size of social network. Intuitively, direct information sharing helps managers to

have stronger information advantage over the market. As a result, information

sharing increases the opportunity set with which herding on information acquisi-

tion and informed trading occurs. We show that in the presence of social network

and information sharing, herding can occur when the number of fund managers

is arbitrarily large.

Interestingly, for any social network size, there exist parameters such that man-

agers trade in aggregate like a monopolist. In this case collusion is perfect in terms

of expected profits. First of all, information sharing makes managers more infor-

mative. Secondly, competition is also minimized when the sufficient statistic of

each fund manager are independent from each other in a social network. Fund

manager’s expected profits are non-monotonic with respect to the informative-

ness of the fund manager’s signal under optimal social network size. Start with

the case in which fund managers have very noisy signals such that the optimal

social network is to include all managers. As the informativeness of manager’s

signal increases, it reaches a point in which all managers collude which maximize

their expected profits. At this point, when managers’ signals becomes more in-
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formative, they start to trade more competitively and their expected profits will

decrease. As the manger’s signal’s precision further increases, there will be a

point such that the optimal network size drops by one. At this point, manager’s

expected profits will again increases with the informativeness of their signal and

this zigzag will repeat itself until information sharing is no longer optimal.

Information sharing is a double edged sword. On one hand, it helps fund man-

agers to have more precise information. On the other hand it also intensifies

competition. Thus there exist an optimal size of social network among the fund

managers. We show that the optimal size of social network decreases as managers

have more precise information. Only when each fund manager’s signal is suffi-

ciently noisy, would their expected profits increase with the size of social network.

In this case it is optimal for the social network to cover all managers.

Communication in a social network may not be complete and precise. Conver-

sational learning can be noisy and information can be distorted during communi-

cation. With large social networks, fund managers may not be willing to share all

of their signals in the social network. We analyze how noisy information sharing

affects trading. We show that when social network size is sufficiently large, man-

agers would like to add noises to the information shared in the network. Adding

noises could reduce competition caused by information sharing and expand the

set of parameters with which herding and information sharing are beneficial to

managers.

In earlier literature, it has been shown that when informed investors trade

dynamically, they compete more aggressively which erodes their profits. Conse-

quently, it is important to examine how dynamic trading affects the incentive to

share information. We extend our model to multi-period setting and continuous

time trading. The incentive to share information still persists in dynamic trading.

However, the opportunity set in which managers herd reduces and are willing to

share information increases with trading frequency. In particular, herding will not

occur without social network in the continuous time trading setting. Moreover,
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managers will never share all of their information in continuous time trading due

to a rat race in continuous time trading with homogeneous information.

Our paper is related to two strands of literature in finance. The first is herding.

An extensive literature have shown that people herd because of reputation, social

learning or relative compensation. Herding in our paper is different as it occurs

due to complementarity in their information as without other managers in the

market, each manager will end up with very noisy information and limited gains

from it. Moreover, herding occurs due to collusion to reap higher profits and the

potential to share information in a social network.

The second line of related research is on social network in financial markets.

Social networks theory has been used to analyze contagion. Stein (2008) shows

that when players have to bounce ideas off each other in order to come up with

a new product, they are willing to exchange ideas when the discount rate is close

to one and competition is not too high. In his model, players receive signals

sequentially and alternate with each other. On the contrary, in our model fund

managers act simultaneously and price formation is endogenous. Moreover, we

study herding in the fund industry while Stein’s focus is on venture capital. Colla

and Mele (2009) also study the role of social network in a strategic setting. They

focus on trade correlations among informed investors and show that informed

investors have more correlated trades when they are close to each other in the

network. Ozsoylev and Walden (2011) study general forms of network structure

and provide conditions for existence of linear rational expectations equilibria.

The remainder of the paper is organized as follows. Section I introduces the

model in the absence of social network. Section II analyzes the effects of social

network on herding and profits to fund managers. Section III allows for noisy

signals in personal communication. Section IV extends the model to multi-period

trading and continuous time trading. Section V Concludes. Proofs are presented

in the appendix.
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I. The Model

We consider an economy with N risk neutral fund managers who invest in a

stock based on the classic model of Kyle (1985). In our model, there are two

dates, time 0 and time 1. And in the financial market there exist one risk-free

asset and one risky stock that the fund managers can invest in. The risk-free rate

is taken to be zero.

Each fund manager receives a mean-zero signal si at time 0. We assume the

signals and the liquidation value of the stock have a nondegenerate joint normal

distribution that is symmetric in the signals.2 Let v denote the expectation of the

liquidation value conditional on the combined information of the fund managers.

By normality, v is an affine function of si’s. By rescaling the si if necessary, we

can assume without loss of generality that

(1) v = v̄ +
N∑
i=1

si,

for a constant v̄. This is a normalization adopted by Foster and Viswanathan

(1996) and Back, Cao and Willard (2000). For simplicity, we assume v̄ = 0.

REMARK 1: Notice that our information structure allows for the signals to have

negative correlation. To understand how this could happen in the economy, con-

sider the following setting. At time zero, there is a public signal y about the stock

value:

(2) y = v −
N∑
i=1

si.

And fund manager i observes the noise in the public signal, si. We assume that

the stock value v, the public signal y and the fund managers’ private signals {si}Ni=1

have zero means and a nondegenerate joint normal distribution that is symmetric

2Symmetry means that the joint distribution of stock value v and private signals {si}Ni=1 is invariant
to a permutation of the indices 1, . . . , N .
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in the private signals. The variance of v is σ2
v and the variance of si is the same

across i and is denoted σ2
s . Prior to observing the signal y, correlation coefficient

of si with sj for i 6= j is ρ0 and we assume that si are positively correlated,

0 ≤ ρ0 ≤ 1. The private signal si is assumed to be uncorrelated with the stock

value v, Cov[v, si] = 0, i = 1, . . . , N . In such a setting, although knowing private

signal si alone doesn’t help predicting the stock value, each fund manager has

information advantage over the market as she knows how to interpret the public

signal better.

Given the public signal, we can rewrite the stock value as

(3) v = y +
N∑
i=1

si.

Therefore given the public signal, the stock value is a sum of the signals of the

fund managers. This provides an explanation for equation (1).

The conditional correlation between signals si and sj given the public signal y

is

(4) ρs|y =
ρ0σ

2
v − (1− ρ0)(1 + (N − 1)ρ0)σ2

s

σ2
v + (N − 1)(1− ρ0)(1 + (N − 1)ρ0)σ2

s

The conditional correlation coefficient ρs|y decreases in the variance of the pri-

vate signal, σ2
s . When σ2

s goes to infinity, ρs|y goes to − 1
N−1 . When σ2

s goes to 0,

ρs|y goes to ρ0. Although the unconditional correlation between private signals are

always positive, the conditional correlation between them could be negative given

the variance of the private signal is big enough.3

Let φ denote the “R-squared” of running a regression of v on Nsi,

(5) φ =
Var[v]

Var[Nsi]
.

3In Colla and Mele (2010), there are scenarios that the initial correlation between private signals is
assumed to be negative. In our setting, the private signals are assumed to be positively correlated but
the conditional correlation between them turns negative after observing the public signal.
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It is the percentage of variance in v that is explained by the fund manager’s

information. This is a measure of the quality of each fund manager’s information.

If φ = 1, then either N = 1 or the si’s are perfectly correlated. In either case,

each fund manager has perfect information about the stock value v. Letting ρ

denote the correlation coefficient of si with sj for i 6= j, one can compute φ for

N > 1 as

(6) φ =
1

N
+
N − 1

N
ρ

Notice that due to symmetry, there is no i subscript on φ. It is easy to show that

φ’s range is (0,1] and that φ increases with ρ.

Definition We say that fund managers have complementary signals when φ < 1
N ,

independent signals when φ = 1
N and substitutive signals when φ > 1

N .

As φ represents fraction of variance explained by each of the fund manager’s

signal, when φ < 1/N , it means each manager standing alone, knows about

less than 1/N of the variation of v. However, when managers can combine their

information, they have perfect information. Therefore, managers have incentive to

exchange signals and the stock payoff variance explained by the combined signals

is more than a simple addition of explained variance with individual signals. On

the contrary, when φ > 1/N , each fund manager alone knows more than 1/N

of the variation of v. Although managers know the stock value v perfectly if

they combine their information, they might not benefit from exchanging signals

because competition could become so fierce and trading profits are reduced by

information sharing.

As in the usual Kyle (1985) setup, there is also a group of liquidity traders

with order u which is normally distributed with mean zero and variance σ2
u. u is

independent with the liquidation value v and private signals {si}Ni=1. There is a

competitive market maker who sets the price at the conditional expected payoff

given the aggregate order flow. All market participants are assumed to be risk
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neutral. We first analyze the incentive to herd on information acquisition in a

static setting and thereafter consider the role of social networks.

A. Fund Managers’ Profits in the Absence of Social Network

In this subsection, we derive the manager’s expected profits of trading as a

monopolist and trading together with other fund managers on the same stock.

The case in which a fund manager trading alone in the absence of other fund

managers is similar to that in Kyle (1985). Without loss of generality, we assume

fund manager i is the only manager who trades on the stock. The fund manager

behaves as a monopolist, at time 0, he submits an order of xi = βsi, keeping in

mind of the price impact of his order. The market maker observes the total order

flow z = u+xi and set the stock price to be the expectation of v given total order

z:

(7) p0 = λz

As all random variables are normally distributed, one can compute λ as

(8) λ =
βCov[v, si]

σ2
u + β2Var[si]

The fund manager’s expected profit at time 0 when submitting an order xi is

E[xi(v − (λ(u+ xi)))|si] = xi(E[v|si]− λxi),

So the optimal order is

xi =
1

2λ
E[v|si] =

Cov[v, si]

2λVar[si]
si.
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Hence,

(9) β =
Cov[v, si]

2λVar[si]
.

Combining equation (8) and equation (9), one expresses β explicitly as

(10) β =

√
σ2
u

Var[si]
.

Specifically, let σ2
v denote the variance of v, then we have following proposition,

PROPOSITION 1: Let πM denote the expected profits of a manager trading

alone on a stock. Then

(11) πM =

√
φσvσu

2

Similarly as in Kyle (1985), the fund manager’s profit is proportional to the

standard deviation of the explained part of the stock value by his signal, and

the standard deviation of the liquidity order. In Kyle (1985), the fund manager

knows the stock value v perfectly and hence φ = 1.

When there are more than one fund manager trade together with other informed

fund managers, the case is similar to the static model in Cao (1995) and Foster

and Viswananthan (1996). Fund manager i submits an order of xi = βsi, the

market maker observes a total order flow:

z = u+
N∑
i=1

xi = u+ βv.

and sets the stock price at the conditional expectation of v given the aggregate

order flow,

p0 = E[v|z] = λz,

with λ = βVar[v]
σ2
u+β2Var[v]

.
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Fund manager i’s expected profits while he submits an order of xi are

E

xi
v −

λ(xi +
∑
j 6=i

βsj)

 |si
 = xi

[(
(1− λβ)

Cov[si, v]

Var[si]
+ λβ

)
si − λxi

]

So the optimal order xi is

xi =
1

2λ

(
(1− λβ)

Cov[si, v]

Var[si]
+ λβ

)
si = βsi.

One can solve β explicitly as

β =

√
σ2
uCov[si, v]

Var[v]Var[si]
=

√
σ2
u

NVar[si]

Each fund manager’s expected profits are given below:

PROPOSITION 2: Let πC denote the expected profits of each fund manager trad-

ing together on a stock. Then

(12) πC =

√
φσvσu√

N(1 +Nφ)
.

Interestingly, fund managers trade in unison like a monopolist when φ = 1/N .

In the case that a monopolist knows the stock value v perfectly, she places an

order σu
σv
v and earns expected profits of 1

2σuσv. When there are multiple fund

managers and φ = 1/N , they collectively place orders β
∑N

i=1 si = βv, with

β =
√

σ2
uCov[si,v]

Var[v]Var[si]
= σu

σv
, and earn expected profits of N ×

√
φσuσv√

N(1+Nφ)
= 1

2σuσv.

When the expected profits of a fund manager is higher when he trades together

with other fund managers, this implies that the fund manager would prefer to

herd together and trade on stocks in which other fund managers are already

active. Comparing the expected profits with and without competition, we can

derive conditions in which herding is optimal. For that purpose we assume that

there is another stock with independent payoff v′, private signals s′i, i = 1, ..., N .
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In addition, the variance covariance matrix of v′, s′i, i = 1, ..., N is identical to

that of v, si, i = 1, ..., N . Before trading starts, fund managers have to decide on

which stock to acquire information. We analyze conditions under which all fund

managers would decide to acquire information and trade on the same stock.

PROPOSITION 3: When N = 2, 3, and

φ < φ∗ ≡ 1

N

(√
4

N
− 1

)
,

there exists a herding equilibrium in which all fund managers will herd to acquire

information on the same stock. When N ≥ 4, there does not exist such a herding

equilibrium.

Intuitively, one would thought that fund managers prefer to analyze stocks that

no other fund manager has been trading actively. Indeed, notice that φ∗ ≤ 1/N

and thus when managers have substitutive signals, that is φ > 1/N , herding will

not occur. However, when φ < 1/N , each fund manager has information that

tells him less than 1/N of the variation in the stock payoff. This implies that

combining fund managers signals together, each fund manager knows more about

the variation in stock payoff than the simple addition of the explained variances

using individual signals. However, the gains of cooperation and herding is also

hindered by competition. When the number of fund managers is large, i.e., N ≥ 4,

fund managers will never herd on the same one stock. However, it’s possible that

there exists partial herding, in which a group of less than four managers herd on

a stock and other groups herd on other stocks.4

When investors have complementary signals, investors herd as they would like

4When a group of three fund managers herd on a stock, then each manager makes more profits than
what he gains from forming a two member group with another manager and trading on anther stock.

When forming a two-manager group, the variance of the liquidation value becomes σ̂2
v = 4φ

3φ+1
σ2
v and

φ becomes φ̂ = φ2

3φ+1
. The ratio of expected profits that the manager earns when staying in a three-

manager group and forming a new a two-manager group is 18φ2+3φ+1√
54φ(1+3φ)

, which is larger than 1 when

φ < 1
3

(√
4
3
− 1
)

.
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to analyze the same stock and trade together to reap more profits. An interesting

question is whether investors would share their information directly. We next

analyze the effect of social network and information sharing on the incentive to

herd.

II. Social Network and Herding

In this section, we assume that fund managers are seated on a circle and each

fund manager can observe the signals of up to G − 1 managers clockwise to his

seat, 1 ≤ G ≤ N .5 We call G the size of social network. When G = 1, there is no

social network and each fund manager can see only his own private signal. When

G = N , each fund manager observes all private signals {si}Ni=1.

Since fund manager i can observe the signals of fund manager i+ 1, . . . , i+G−

1−Nb(i+G−1)/Nc, his information can be summarized by a sufficient statistic

ŝi(G)

(13) ŝi(G) ≡ 1

G

iG∑
j=i

sj ,

here, iG ≡ i+G− 1−Nb(i+G− 1)/Nc, where b·c is the largest smaller integer

function. The stock value can still be expressed as the sum of signals ŝi(G).

(14) v =
N∑
i=1

ŝi(G).

The symmetric information structure is maintained although the correlation struc-

ture is different. The traders that are seated close by will have more highly

correlated signals. For example, the correlation between ŝi(G) and ŝi+1(G) is

Corr[ŝi(G), ŝi+1(G)] = ρ0 +
(G− 1)(1− ρ0)(1 +Gρ0)

G(1 + (G− 1)ρ0)

5In Colla and Mele (2010), fund manager i can observe the signals of manager i ± 1, . . . , i ± G0. In
their setting, a manager observes 2G0 + 1 (which is always an odd number) signals. However, in our
setting a manager can observe G signals, here G could be an arbitrary positive integer.
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which is larger than ρ0, the initial correlation coefficient between private signals,

when G > 1 and ρ0 < 1.6 Similarly, the proportion of variance explained by ŝi(G)

is

φ(G) ≡ Var[v]

Var[Nŝi(G)]
=

(N − 1)Gφ

N(G− 1)φ+N −G
.7

Clearly, as fund managers share more information with each other, each man-

ager knows more about the stock value. Therefore φ(G) is an increasing function

of G.8 When G = 1, i.e., there is no social networking and φ(G) = φ. When

G = N , each fund manager observes all private signals and hence knows the stock

value v perfectly, φ(G) = 1.

LEMMA II.1: When φ(G) < 1
N2φ

, fund managers are better off in a social net-

work sharing information.

In Section I, we have shown that when fund managers trade in unison like a

monopolist and their expected profits are maximized when φ = 1/N . With social

network, we have following result.

PROPOSITION 4: For every N > 2 and G > 1, there exist

(16) φ̂ =
N −G

N [G(N − 2) + 1]
<

1

N

such that φ(G) = 1/N and fund managers trade in unison like a monopolist.

6One can show that Corr[ŝi(G), ŝi+j+1(G)] = Corr[ŝi(G), ŝi+j(G)]− 1−ρ0
G(1+(G−1)ρ0)

, which is smaller

than Corr[ŝi(G), ŝi+j(G)] given ρ0 < 1 and manager (i+ j + 1)G doesn’t see si.
7

φ(G) =
Gσ2

v

N2(1 + (G− 1)ρ0)Var[si]

=
Gφ

1 + (G− 1)ρ0

(
By φ =

σ2
v

N2Var[si]

)
=

(N − 1)Gφ

N(G− 1)φ+ (N −G)

(
By ρ0 =

Nφ− 1

N − 1

)

8Rewriting φ(G) =
(

1 + 1−φ
(N−1)φ

(
N
G
− 1
))−1

, which is a increasing function in G given φ > 0 and

1 ≤ G ≤ N .
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Fund managers know more about the stock value as they share more information

with each other. With social network, the fund managers can have maximum

profits with even noisier information. The precision of their private signals could

reduce further as the size of social network increases, i.e., φ̂ decreases in G.

Above we have analyzed the precision of private signals (given G) for fund

managers to have maximum profits. We next determine the size of social network

for the fund managers to have maximum profits given the precision of private

signal φ. 9

PROPOSITION 5: Let

(17) Ĝ ≡
⌊

N(1− φ)

1 +N(N − 2)φ

⌋

The optimal network size is

(18) G∗(φ) =


Ĝ if φ(Ĝ)φ(Ĝ+ 1) > 1

N2

Ĝ, Ĝ+ 1 if φ(Ĝ)φ(Ĝ+ 1) = 1
N2

Ĝ+ 1 if φ(Ĝ)φ(Ĝ+ 1) < 1
N2

.

In Figure 1A, we plot the optimal size of social network as a function of the

precision of each manager’s signal φ. Interestingly, when φ ≥ 1/N ,10 it is optimal

for fund managers not to share any information. Notice that the smaller φ, the

larger is the optimal network size. We have G∗ = N if φ < 1
N(N(N−1)2−(N−2))

. So

when fund managers have very noisy signals, they would like to share their infor-

mation to all other managers. Only in this case, managers’ gains from information

sharing increases with the size of social network. As φ(G) remains smaller than

1/N but gets closer to 1/N as G increases, the fund managers expected profits

9We can also have managers endogenously chose how many neighbors to share information on his right
hand side to endogenies the size of the network. In this case the network size can arise as an equilibrium
outcome. We decided not to pursue this further as there could be mixed strategies with asymmetric
network sizes which can make the problem complicated without generating much new insight.

10Actually, G∗ = 1 when φ >
1+
√

1+8(N−1)(N−2)

4N(N−1)
which is smaller than 1/N .



VOL. NO. 17

increases in the size of social network.

In Figure 1B, we plot each fund manager’s expected profits as a function of the

precision of each manager’s signal φ with optimal size of social network. Fund

manager’s expected profits are non-monotonic with respect to the informativeness

of the fund manager’s signal under optimal social network size. Start with the

case in which fund managers have very noisy signals such that the optimal social

network is to include all managers. As the informativeness of manager’s signal

increases, it reaches a point in which all managers collude which maximize their

expected profits. At this point, when managers’ signals become more informative,

they start to trade more competitively and their expected profits will decrease.

As the mangers’ signals’ precision further increases, there will be a point such

that the optimal network size drops by one. At this point, manager’s expected

profits will again increases with the informativeness of their signal and this zigzag

will repeat itself until social network is no longer optimal.
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10

G
*
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0.05 0.10 0.15
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0.0495

0.0500

ΠC

B

Figure 1. Figure 1A: The optimal size of social network as a function of the
precision of each manager’s signal φ. Figure 1B: Each fund manager’s expected
profits as a function of the precision of each manager’s signal φ. The number of
fund managers N = 10.

In Section I, we show that fund managers would like to herd to acquire infor-

mation and trade on the same stock, given the number of fund managers is less

than four. Fund managers know more about the stock value as they share more
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information with each other. So, with social network, fund managers with very

imprecise private signals share information with each other and come up with

better information about the stock value and it’s possible for them to make more

profits than what they gain while trading alone in which case there is no a social

network to share information. We can show that under certain conditions herd-

ing to acquire information and trading on the same stock is optimal for arbitrary

number of fund managers. Specifically, we have following proposition.

PROPOSITION 6: For any N > 1, there exist G and φ such that all fund

managers will herd to acquire information and trade on the same stock.

III. Noisy Communication in a Social Network

In last section we have shown that there could be gains in sharing information.

However, information sharing can also hurt managers if they share too much

information. Therefore it is interesting to see information sharing and herding

are affected when a fund manager can choose to share how much of his information

to other managers sitting close to him.

Now, fund manager i can send a noisy version of his private signal to managers

up to G− 1 seats away from him clockwise, and at the same time he observes a

noisy version of private signals of his G− 1 neighbors. Each fund manager adds

a noise to his own private signal when sharing information with his neighbors.

An alternative one to interpret this is that each informed investor have multiple

pieces of information and they choose to share only a partial set of his information

to people in his network. Specifically, fund manager i adds a noise ηi to his private

signal si to form a noisy version of signal s′i = si+ηi that he shares with his G−1

neighbors. At the same time, he observes

s′j = sj + ηj , j = i+ 1, . . . , iG.

Here, {ηj}Nj=1 are normally distributed with mean zero and variance σ2
η, they are
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mutually independent and are independent with other random variables in the

economy. The precision of the noise ηi measures how much of noise a fund man-

ager adds into his private signal. The larger the σ2
η, the noisier is the information

that the fund managers share with each other. When σ2
η = 0, the fund managers

don’t add any noise into their signals and it goes back the perfect information

sharing case we analyze in Section II. At the other extreme case, σ2
η =∞ and the

information that the fund managers share with each other is useless and this case

corresponds to that in Section II without information sharing or G = 1.

Now, fund manager i’s information set contains: private signal si, the noise

that he adds to his shared signal, ηi, and information that up to G− 1 managers

sitting away from him clockwise share to him, {s′i+1, . . . , s
′
iG
}. Due to the sym-

metry of information structure, the sufficient statistics for {si, ηi, s′i+1, . . . , s
′
iG
} is

{si, ηi,
∑iG

j=i+1 s
′
j}. Define

(19) εi ≡
1

G− 1

iG∑
j=i+1

s′j ,

and

(20) ω ≡
N∑
i=1

ηi.

Then fund manager i’s information set at time 0 is Si = {si, ηi, εi}.

LEMMA III.1: The conditional expectations of v and ω under fund manager i’s

information set are

E[v|Si] = αvssi + αvηηi + αvε εi,(21)

E[ω|Si] = αωs si + αωη ηi + αωε εi,(22)

with
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(23)


αvs

αvη

αvε

 =


(1+(N−1)ρ0)(σ2

η+(1−ρ0)σ2
s)

σ2
η+(1−ρ0)(1+(G−1)ρ0)σ2

s

0

(1+(N−1)ρ0)(G−1)(1−ρ0)σ2
s

σ2
η+(1−ρ0)(1+(G−1)ρ0)σ2

s

 ,

αωs

αωη

αωε

 =


−(G−1)ρ0σ2

η

σ2
η+(1−ρ0)(1+(G−1)ρ0)σ2

s

1
(G−1)σ2

η

σ2
η+(1−ρ0)(1+(G−1)ρ0)σ2

s

 .

Because the noise ηi that fund manager i adds to his private signal doesn’t help

predict the stock value v and ηi is independent of si and εi, we have αvη = 0. More-

over, ω =
∑N

i=1 ηi and ηi doesn’t have any power in predicting ηj (j 6= i), so we

have αωη = 1. Each fund manager use the information εi that other managers share

to him to help predicting the stock value, the improvement of predicting v from ob-

serving εi deceases as the fund managers add more noise to their signals. This can

be seen clearly from that Var[v|si]−Var[v|Si] = φσ2
v(G−1)(1−ρ0)2

σ2
η+(1−ρ0)(1+(G−1)ρ0)σ2

s
decreases

with σ2
η. In the extreme case σ2

η = ∞, εi doesn’t help to predict v and hence

we have αvη = ∞. On the other hand, it goes back to the perfectly information

sharing case in Section II when αvη = 0 and we have E[v|Si] = 1+(N−1)ρ0
1+(G−1)ρ0

∑jG
j=i sj .

Similarly, fund manager i uses εi to predict v−ηi and at the same uses si to hedge

the information about sj contained in εi. One can see this clearly when σ2
η =∞

and E[ω|Si] = ηi +
∑iG

j=i+1(sj + ηj)− (G− 1)ρ0si =
∑iG

j=i ηj +
∑iG

j=i+1(sj − ρ0si).

Fund manager i submits an order of

(24) xi = βssi + βηηi + βεεi

and the market maker observes a total order of

z = u+

N∑
i=1

xi

= u+
N∑
i=1

(βssi + βηηi + βεεi)

= u+ (βs + βε)v + (βη + βε)ω(25)
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and sets the time 0 stock price to be

p0 = E[v|z] = λz

with

(26) λ =
(βs + βε)σ

2
v

σ2
u + (βs + βε)2σ2

v + (βη + βε)2σ2
ω

.

In this case, each fund manager’s expected profits are given below:

PROPOSITION 7: Let πnC denote the expected profits of each fund manager trad-

ing together on a stock. Then

(27) πnC = λ[βs, βη, βε]Var[Si][βs, βη, βε]
′,

When the size of social network is sufficiently large, fund managers would be

sharing too much information with each other when φ > φ̂ at which φ(G) = 1/N .

In this case, managers would like to add noises to the information shared in the

network. With perfect information sharing, the fund managers will not herd on

information acquisition and trading anymore if φ > φ̂. However, if they can

add noise to their shared information, it would be still optimal to herd when φ

is slightly larger than φ̂. We can see this clearly from figure 2A, in which we

plot the boundary value of φh as a function of N with G = N . When φ < φh,

herding on information acquisition and stock trading occurs. Notice that noisy

communication can expand the set of parameters with which herding occurs.

Similarly, in figure 2B, we plot the boundary value φs under which information

sharing in a network is optimal and we notice that noisy communication increases

φ(s) for all N .
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Figure 2. Figure 2A: The boundary value of φh as a function of number of fund
managers N , herding on information acquisition and stock trading occurs when
φ < φ(h). Figure 2B: The boundary value of φ(s) as a function of number of
fund managers N , information sharing in a network is optimal when φ < φ(s).
The size of social network G = N . The dashed line is for the case with perfect
communication and the solid line is for the case with noisy communication.

IV. Dynamic Trading

Cao (1995), Foster and Viswananthan (1996), and Back, Cao and Willard

(2000) show that dynamic trading can affect informed investors’ trading strat-

egy dramatically. In particular, when investors have the same information, their

profits will be driven down to zero as trading approaches continuous time. It

is interesting to examine how multi-period trading and continuous time trading

affects the incentive to herd on information acquisition and to share information.

For the ease of exposition, we leave the detailed presentation of pricing equations

and informed investors’ profits in the appendix and discuss the results belwo.

Intuitively, dynamic trading will intensify competition among informed in-

vestors and thus reduce the incentive to share information or herd on the same

stock. In figure 3A, we plot the boundary value of φh as a function of number

of trading periods with the size of social network G = 2 and the number of fund

managers N = 6. When φ < φh, herding on information acquisition and stock

trading occurs. Notice that dynamic trading can narrow the set of parameters
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Figure 3. Figure 3A: The boundary value of φh as a function of number of
trading periods, herding on information acquisition and stock trading occurs when
φ < φh. Figure 3B: The boundary value of φs as a function of number of trading
periods, information sharing in a network is optimal when φ < φs. The number
of fund managers N = 6 and the size of social network G = 2.

in which herding occurs. φh decreases with the number of trading periods and

reaches 0 when the number of trading periods goes to infinity. Dynamic trading

intensifies competition and in particular, an informed trader will always avoid

herding in continuous time trading. On the contrary, in figure 3B, we plot the

boundary value φs under which information sharing in a network is optimal and

we notice that dynamic trading increases φs. This is because with limited infor-

mation sharing, learning from each other is more beneficial with dynamic trading

as the gains from learning outweighs competition. However, when the network

size is large such that G = N , both φh and φs will decrease with the number of

trading periods. When the number of trading periods goes to infinity, the model

approaches to continuous-time trading. When G = N , all managers possess iden-

tical information about the stock value, and it will be revealled right away at the

beginning of the trading period and the expected profits of each fund manager

are driven down to 0. Consequently, it’s never optimal to share information to

all managers.
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PROPOSITION 8: In continuous time trading, investors will never herd in the

absence of social network. In addition, investors will never share their signals

with all managers. However, it is still optimal to share information and herd on

information acquisition for G < N when φ is sufficiently small.

While dynamic trading makes competition more intensive, herding in the pres-

ence of information sharing in a partial social network can still be optimal.

V. Conclusion

Social networks are becoming increasingly important in daily life. It affects all

areas of social life including investment activities. We analyze the role of social

network on the incentives of fund managers to herd on information acquisition

and trading. We show that when fund managers have noisy and complementary

signals, they would like to herd. The formation of social network expands the set

of economies in which herding will occur. The optimal size of the social network

will be larger when investors have noisier signals.

Dynamic and around the clock trading can intensify competition among fund

managers. As a result, the set of economies for herding to be optimal is smaller

in the setting of continuous time trading. Nevertheless, information sharing and

herding remains optimal for very noisy signals.

For simplicity, we have considered only trading on a single stock. It would

be interesting to see when investors have multiple signals on many stocks, what

information they would like to share. For example, they may want to share

information on one stock but not the other, depending on the correlation structure

of signals.

We have also limited our attention to settings in which a manager releases the

same signal to others in his social network. As there are more channels for private

communications in the age of Internet, it would be interesting to see how private

communications with different versions of garbled signals would affect our results.
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Appendix

Proof of Proposition 1.

Due to the symmetry of the information structure, we have

φ =
Var[v]

Var[si]

(
Cov[si, v]

Var[v]

)2

=
Cov[si, v]2

Var[v]Var[si]
(28)

The fund manager’s expected profits before observing his private signal are:

πM = E[E[βsi(v − λ(u+ βsi))|si]]

= E

[
βCov[v, si]

2Var[si]
s2
i

]
=

1

2
βCov[v, si]

=
1

2

√
σ2
u

Var[si]
Cov[v, si]

=
1

2

√
φσuσv

The second equation comes from equation (8), the fourth equation from equa-

tion (9), and the last equation from equation (28). Q.E.D.

Proof of Proposition 2.

Fund manager i’s unconditional expected profits are

πC = E[E[βsi(v − λ(u+ βv))|si]]

= E

[
β(1− λβ)

Cov[si, v]

Var[si]
s2
i

]
= β(1− λβ)Cov[si, v]

=
1

1 + σ2
v/(NVar[si])

√
σ2
u

NVar[si]

σ2
v

N

=

√
φσuσv√

N(1 +Nφ)
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The second equation holds because E[v|si] = Cov[si,v]
Var[si]

si, plugging the expressions

of β and λ into the third equation gives the fourth equation, and the last equation

comes from the definition of φ. Q.E.D.

Proof of Proposition 3. The fund managers will herd to acquire information

and trade on the same stock if and only if πM < πC , which means
√
N(1+Nφ) <

2, i.e., φ < 1
N

(√
4
N − 1

)
. Because the range of φ is (0, 1], we must have N < 4.

If N ≥ 4, the fund managers will not herd to acquire information and trade on

the same stock. Q.E.D.

Proof of Proposition 4. Given N > 2 and G > 1, it’s straightforward to verify

that we have φ(G) = 1/N when φ equals to

φ̂ =
N −G

N [G(N − 2) + 1]
=

N −G
N [(N −G) + (N − 1)(G− 1)]

< 1/N

So if the fund managers possess complementary private information and there

exists a social network with size G, it’s possible that they behave in unison like a

monopolist. Q.E.D.

Proof of Equation (17). Differentiating πC with respect to φ(G) gives

∂πC
∂φ(G)

∝ N(1/N − φ(G))

2(1 +Nφ(G))
√
φ(G)


> 0, if φ(G) < 1/N

= 0, if φ(G) = 1/N

< 0, if φ(G) > 1/N

The fund manager’s expected profit is a concave function in φ(G). It increases

in φ(G) when φ(G) < 1/N , reaches its maximum at φ(G) = 1/N , and decreases

as φ(G) > 1/N .

When φ(G) = 1/N , we have G = N(1−φ)
1+N(N−2)φ . However, G has to be a natural
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number. We have to compare which is larger, πC(φ(Ĝ)) and πC(φ(Ĝ+ 1)).

πC(φ(Ĝ+ 1))− πC(φ(Ĝ))

∝ φ(Ĝ+ 1)

(1 +Nφ(Ĝ+ 1))
− φ(Ĝ)

(1 +Nφ(Ĝ))

∝ (φ(Ĝ+ 1)− φ(Ĝ))(1−N2φ(Ĝ)φ(Ĝ+ 1))


< 0, if φ(Ĝ)φ(Ĝ+ 1) > 1

N2 ,

= 0, if φ(Ĝ)φ(Ĝ+ 1) = 1
N2 ,

> 0, if φ(Ĝ)φ(Ĝ+ 1) < 1
N2 .

Q.E.D.

Proof of Proposition 6. Here, we need to find conditions under which πM < πC ,

which is equivalent to

√
φσuσv

2
<

√
φ(G)σuσv√

N(1 +Nφ(G))

⇔ 1−
√

1−N2φ√
N3φ

<
√
φ(G) =

√
(N − 1)Gφ

N(G− 1)φ+N −G
<

1 +
√

1−N2φ√
N3φ

.

(29)

Solutions of the above set of inequalities are the intersection of 0 < φ < 1/N2

and solutions of the inequality f(φ) < 0,

f(φ) ≡ N2(NG−1)2φ2−2[(N2+2N−2)G2−(N3+3N−2)G+N2]φ+

(
5− 4

N

)
(N−G)

(
N2

5N − 4
−G

)
.

When φ = 1/N2,

f

(
1

N2

)
=

(
(N − 1)G

N
− G− 1

N
− (N −G)

)2

> 0,
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and

f(0) =

(
5− 4

N

)
(N −G)

(
N2

5N − 4
−G

)≤ 0, if N ≥ G > N2

5N−4 ,

≥ 0, if 1 ≤ G ≤ N2

5N−4 .

Considering the polynomial in G, h(G) = (N2+2N−2)G2−(N3+3N−2)G+N2,

which is a convex function of G and has

h(1) = −N(N − 1)2 <= 0, and

h

(
N2

5N − 4

)
∝ −N2(4N + 5)(N − 3)− (7N2 + 18N + 24) < 0,

so we must have h(G) ≤ 0 over
[

N2

5N−4 , 1
]

when N < 4 or
[
1, N2

5N−4

]
when N ≥ 4,

which means f(φ) is increasing in φ when φ goes from 0 to 1/N2. That is there

is no solutions to the set of inequalities (29) when G ≤ N2

5N−4 .

By the Intermediate Value Theorem, there must be a φ ∈ (0, 1/N2) such that

f(φ) = 0 if G >
⌊

N2

5N−4

⌋
. So, the conditions under which inequalities (29) hold

is,

N ≥ G >

⌊
N2

5N − 4

⌋
0 < φ < φ̄.

with φ̄ =
[(N2+2N−2)G2−(N3+3N−2)G+N2]+

√
[(N2+2N−2)G2−(N3+3N−2)G+N2]2−N(NG−1)2(N−G)(N2−(5N−4)G)

N2(NG−1)2
.

Proof of Lemma III.1.

All random variables are jointly normally distributed, so we have

E[v|Si] = Cov[v, Si]Var[Si]
−1Si

= αvssi + αvηηi + αvε εi
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with 
αvs

αvη

αvε

 =


σ2
v/N

0

σ2
v/N



σ2
s 0 ρ0σ

2
s

0 σ2
η 0

ρ0σ
2
s 0

(1+(G−2)ρ0)σ2
s+σ2

η

G−1


−1

=


(1+(N−1)ρ0)(σ2

η+(1−ρ0)σ2
s)

σ2
η+(1−ρ0)(1+(G−1)ρ0)σ2

s

0

(1+(N−1)ρ0)(G−1)(1−ρ0)σ2
s

σ2
η+(1−ρ0)(1+(G−1)ρ0)σ2

s



The proof of equation (22) can proceed in the same way. Q.E.D.

Proof of Proposition 7. Fund manager i’s expected profits when he submits

an order of xi given other fund managers apply the trading strategy as in equa-

tion (24),

E[xi(v − λ(u+ (βs + βε)v + (βη + βε)ω + xi − (βssi + βηηi + βεεi)))|Si]

= xi[(1− λ(βs + βε))E[v|Si]− λ(βη + βε)E[ω|Si] + λ(βssi + βηηi + βεεi)− λxi]

So the optimal xi is

xi =
1

2λ
[((1− λ(βs + βε))α

v
s + λβs − λ(βη + βε)α

ω
s )si + ((1− λ(βs + βε))α

v
η + λβη − λ(βη + βε)α

ω
η )ηi

+ ((1− λ(βs + βε))α
v
ε + λβε − λ(βη + βε)α

ω
ε )εi]

which means

βs =
(1− λ(βs + βε))α

v
s + λβs − λ(βη + βε)α

ω
s

2λ
(30a)

βη =
(1− λ(βs + βε))α

v
η + λβη − λ(βη + βε)α

ω
η

2λ
(30b)

βε =
(1− λ(βs + βε))α

v
ε + λβε − λ(βη + βε)α

ω
ε

2λ
(30c)
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From equation (30), one can compute λ(βs + βε) and λ(βη + βε) as

λ(βs + βε) =
(αvs + αvε )(1 + αωη + αωε )− (αvη + αvε )(α

ω
s + αωε )

(1 + αvs + αvε )(1 + αωη + αωε )− (αvη + αvε )(α
ω
s + αωε )

(31a)

λ(βη + βε) =
αvη + αvε

(1 + αvs + αvε )(1 + αωη + αωε )− (αvη + αvε )(α
ω
s + αωε )

(31b)

Plugging equation (31) into equation (26) gives

λ =
1

σu

√
λ(βs + βε)σ2

v − (λ2(βs + βε)2σ2
v + λ2(βη + βε)2σ2

η)

and β’s can be computed from equation (30).

The expected profits that fund manager i earns at the equilibrium is

πnC = E[(βssi + βηηi + βεεi)E[v − λ(u+ (βs + βε)v + (βη + βε)ω)|Si]]

= E[(βssi + βηηi + βεεi)(((1− λ(βs + βε))α
v
s − λ(βη + βε)α

ω
s )si

+ ((1− λ(βs + βε))α
v
η − λ(βη + βε)α

ω
η )ηi + ((1− λ(βs + βε))α

v
ε − λ(βη + βε)α

ω
ε )εi)]

= λE[(βssi + βηηi + βεεi)
2]

= λ[βs, βη, βε]Var[Si][βs, βη, βε]
′.

The second equation comes from Lemma III.1 and the third equation from equa-

tion (30). Q.E.D.

Proof of Proposition 8. In a dynamic trading setting, all is similar to our

static setting except that N informed traders could buy and sell the stock over

M periods. At time 0 before any trading takes place, the informed trader i receives

a signal si0, i = 1, . . . , N . The variance of si0 is Λ0, the covariance between any

two signals si0 and sj0 is Ω0 and hence we have σ2
v ≡ Σ0 = N(Λ0 + (N − 1)Ω0).

In addition to the informed traders, there are liquidity traders, whose trade in

period m is um, the realization of a normally distributed random variable with

mean zero and variance σ2
u. There is also a risk-neutral and competitive market

maker who observes the total order flow and sets the price equal to the conditional
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expected value of the stock, based on the public information he received up to

and including that period. Denote by xim the informed trader i’s order at time

m, the market maker observes the total order flow, ym =
∑N

i=1 xim +um and sets

the price at time m so that:

pm = E[v|y1, . . . , ym].

Afterm periods of trading, the market maker has observed order flows (y1, . . . , ym)

and updates his estimate of the stock, v, to

pm = E[

N∑
i=1

si0|y1, . . . , ym] =

N∑
i=1

E[si0|y1, . . . , ym] =

N∑
i=1

tim.

Given the model structure described above, we are interested in linear Markov

equilibria, where the demands of the informed traders, market maker learning

about the signal vector, and market maker learning about the true value of the

asset take the form:

xim = βmsim,(32)

tim = tim−1 + ζmym,(33)

pm = pm−1 + λmym.(34)

For each informed trader, starting with ŝij0 = sj0, we recursively define:

ŷim =

N∑
j=1

βmŝ
i
jm−1 + um, p̂

i
n =

m∑
k=1

λkŷ
i
k

t̂ijn =

m∑
k=1

ξkŷ
i
k, ŝ

i
jn = sj0 −

m∑
k=1

ξkŷ
i
k

where ŷim is the order flow that would have occurred in the mth round of trading

if trader i had followed the equilibrium strategy in the first m periods of trading.
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Similarly, after m rounds of trading, p̂in is the price that prevails in the nth round

of trading, t̂ijn is the market maker’s conditional expected value of information

trader i’s information, and ŝijn is the information that informed trader j has

that is not known to the market maker, if trader i had followed the equilibrium

strategy (βŝii0, . . . , βŝ
i
in−1) in the first n periods of trading.

We now conjecture the optimal strategy of a trader who has played an arbitrary,

suboptimal strategy xi1, . . . , xin−1. Given his past suboptimal play, the future

strategy will not be the conjectured optimal strategy in equation (32).However,

his conjectured optimal strategy from trading period m and beyond is of the form:

xik = βkŝ
i
k−1 + γk(p̂

i
k−1 − pk−1), for k = m to M .

Thus the optimal strategy from this period and beyond is the same as the optimal

strategy that would have occurred given past optimal play, plus a second term

that depends on the difference between the price that would have occurred in this

period had trader i followed the optimal strategy in the past and the actual price

this period. The value function of trader i after stage m− 1 is conjectured to be:

Vi(ŝ
i
im−1, p̂

i
m−1 − pm−1) = αm−1(ŝiim−1)2 + ψm−1ŝ

i
im−1(p̂im−1 − pm−1)(35)

+ µm−1(p̂im−1 − pm−1)2 + δm−1.(36)

Given past optimal play by trader i, we have p̂im−1 = pm−1, so that only the first

and fourth terms on the right hand of the value function remain. All parameters

defined above could be solved from the difference equation system in the propo-

sition 1 of Foster and Viswanathan (1996). Taking expectation of equation (35)

at m = 1 gives the expected trading profits of trader i.

When the number of trading periods goes to infinity, the dynamic trading model

of Foster and Viswanathan (1996) approaches the continuous-time trading model

of Back, Cao, and Willard (2000). Similarly, we assume N ≥ 1 risk-neutral

informed traders continuously trade the stock over the time period [0, 1). An
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announcement is made at time 1 that reveals the liquidation value of the asset.

At each time t prior to time 1, the asset price P (t) is set through competition

by risk-neutral market makers. Market makers observe the sum of the orders of

the informed traders and liquidity traders. The cumulative order process of the

liquidity traders is assumed to be a Wiener process U .

We are interested in only the linear equilibria, meaning that there are functions

α, β, and λ such that the rate of trade of each informed trader i at each time t is

α(t)P (t) + β(t)si

and the price changes according to

dP (t) = λ(t)

{
dU(t) +

N∑
i=1

[α(t)P (t) + β(t)si]dt

}
.

Parameters such as α, β, and λ could be solved from Theorem 1 of Back, Cao,

and Willard (2000). In equilibrium, the expected profit of each informed trader

is
1

N

(
σ2
v

κ

)1/2 ∫ ∞
1

x−2/Ne−x(1−φ)/Nφdx

with

κ =

∫ ∞
1

x2(N−2)/Ne−2x(1−φ)/Nφdx.

Clearly, if the fund managers share all his information to all managers, they

have identical information that will be revealed right away at the beginning of

trading and their expected profits will be pulled to 0. So it will never be optimal

to share all information with others. In Proposition 13 of Cao, Ma, and Ye (2015),

they prove that the expected profits a fund manager earns while trading alone are

always larger than what he’s able to earn while trading with other fund managers,

which means fund managers will never herd in the absence of social networking.

Figure 3A shows that there exists sufficiently small φ such that it’s optimal

for informed traders to share information and herd on information acquisition for



36

G < N . We next prove this result rigorously.


