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Abstract

This paper decomposes the risk premia of individual stocks into contributions from systematic

and idiosyncratic risks. I introduce an affine jump-diffusion model, which accounts for both the

factor structure of asset returns and that of the variance of idiosyncratic returns. The estimation

is performed on a time series of returns and option prices from 2006 to 2012. I find that investors

not only require compensation for the systematic movements in returns and variance, but also

for non hedgeable idiosyncratic risks. For the stocks of the Dow Jones, these risks account for

an average of 50% and 80% of the equity and variance risk premia, respectively. I provide a

categorization of sectors based on the risk profile of their Exchange Traded Funds and highlight

the high prices of idiosyncratic risks in the Energy, Financial and Consumer Discretionary sectors.

Other sectors are found to be appealing alternatives for investors who are not willing to be exposed

to non diversifiable risks.
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1 Introduction

It is well known that individual stocks carry a positive equity risk premium and a negative variance

risk premium. The former constitutes the compensation that investors require to accept bearing the

risk of asset price fluctuations. The latter represents the amount that they are willing to pay to

be hedged against fluctuations in price variance. In a perfect capital market, these premia should

only reflect the exposure of stocks to systematic risk. Standard asset pricing theories indeed predict

that idiosyncratic risks can be diversified, and should therefore not be priced. However, the recent

literature pointed to the possibility that these risks be in fact priced, which may come from violations

of the assumption of perfect capital market. Structural or behavioral constraints may indeed prevent

investors from holding a perfectly diversified portfolio.1

This paper re-examines the pricing of equity and variance risks using an integrated panel of large

stocks and option data. I estimate a parametric jump-diffusion model of stock dynamics, which

enables me to decompose equity and variance risk premia into systematic and idiosyncratic compo-

nents, each of which can be further decomposed into parts stemming from diffusion and jump risks.

Up to recently, the pricing of idiosyncratic risks had only been studied based on the sole analysis of

stock returns, hence without making use of the information content of options. As a consequence,

the resulting estimated measures of idiosyncratic risks were usually low frequency, typically monthly

or quarterly. Including options allows me to obtain a higher frequency measure of idiosyncratic

variance, but most importantly to use their information content on the aversion of investors towards

different types of risks and investment horizons, and on the pricing of these various risks. I have been

made aware of two papers which were written in parallel with this one, namely Boloorforoosh (2014)

and Bégin, Dorion, and Gauthier (2015). These papers find results which are consistent with mine.

1Reasons that may prevent investors from holding a well diversified portfolio include transaction costs, taxes, selling
restrictions on employee compensation plans, private information, behavioural biases in portfolio choice (Benartzi
(2001), Benartzi. and Thaler (2001), Huberman (2001)) as well as preferences on the moments of returns’ distribution
(Langlois (2013)). Studies highlight the lack of diversification in private investors’ portfolios, see, e.g., Barber and
Odean (2000), Polkovnichenko (2005), Goetzmann and Kumar (2008). Theories that assume under-diversification
predict that there be a positive relation between idiosyncratic risk and expected returns, see Levy (1978), Merton
(1987) and Malkiel and Xu (2001). Surprisingly, Ang, Hodrick, Xing, and Zhang (2006), Brockman and Yan (2008),
Ang, Hodrick, Xing, and Zhang (2009), Jiang, Xu, and Yao (2009) and Guo and Savickas (2010) find an anomalous
negative relation between past idiosyncratic variance and expected returns. Bali and Cakici (2008), Huang, Liu, Rhee,
and Zhang (2010) and Han and Lesmond (2011) however dispute the robustness of this relation. Fama and MacBeth
(1973), Bali, Cakici, Yan, and Zhang (2005) and Fink, Fink, and He (2012) find that idiosyncratic volatility is not
a priced risk factor. In contrast, Spiegel and Wang (2005) and Fu (2009) find a positive relation between expected
idiosyncratic variance and expected returns.
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However, they do not account for the factor structure of idiosyncratic variances, which is found to

be a crucial feature of the model. I further explore the link to sectors and market frictions, which

has, up to my knowledge, not been done so far.

Over the period from 2006 until 2012, and for the stocks of the Dow Jones Industrial Average Index,

I find that there is idiosyncratic risk priced in individual assets, with magnitude increasing in the

variance of idiosyncratic returns. The idiosyncratic component of the equity premium accounts for

50% of the total premium on average. Whereas the total equity risk premium has an upward sloping

term structure, which changes sign in times of high market volatility, its idiosyncratic component

is found to have a decreasing term structure on average, suggesting that idiosyncratic equity risk is

mainly priced in short-term investments. Interestingly, the contribution of tail risk to the idiosyn-

cratic equity risk premium amounts to 34% on average. The role of priced idiosyncratic risk is even

stronger in the variance risk premium, and represents on average 80% of the total premium. How-

ever, the idiosyncratic component of variance risk premia exhibits a term structure similar to that

of the total premia, and becomes more negative as the horizon increases. Idiosyncratic variance risk

is therefore persistently priced, over short- and long-term horizons. The idiosyncratic component

of the variance risk premium can be further decomposed into a part which is due to the common

movements in variance and another part due to the residual idiosyncratic variance. I find that the

first term carries a positive risk premium, with an upward sloping term structure. In contrast, the

second term carries a dominant negative risk premium, which decreases with the time-to-maturity of

the investment. I relate the results obtained to arguments based on demand pressure and constraints

borne by financial intermediaries.

These results are obtained using a parametric approach to model the different components impacting

the evolution of asset returns. I introduce an jump-diffusion model that is able to reproduce the

factor structure of returns. The model is an extension of those of Collin-Dufresne, Goldstein, and

Yang (2012) and Christoffersen, Fournier, and Jacobs (2013). My framework assumes that individual

stock returns’ dynamics consist of a systematic component which is function of the movements of

a market factor, and an idiosyncratic component that solely depends on the firm’s characteristics.

As risk premia strongly depend on higher order moments of the underlying returns, using jumps

in the returns and variance process accommodates for the rich stylized facts of the empirical and

risk-neutral distributions of the underlying stocks and market factor. Each stock can have a different
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exposure to the diffusive movements and jumps of the market factor. The model enables disentangling

and analyzing their respective impact. The variances of idiosyncratic components of returns are

referred to as idiosyncratic variances. I account for the results of Schürhoff and Ziegler (2011) and

Herskovic, Kelly, Lustig, and van Nieuwerburgh (2015), who surprisingly observe comovements of

idiosyncratic variances. This suggests a strong factor structure of idiosyncratic variances, which

Herskovic, Kelly, Lustig, and van Nieuwerburgh (2015) link to the risk faced by households. To

represent this phenomenon, I allow idiosyncratic variances to be linearly related to the market

variance. The remaining component, referred to as the residual idiosyncratic variance of an asset, is

specific to the firm and independent of the market variance. The model belongs to the affine class

of Duffie, Pan, and Singleton (2000). It is thus tractable and enables estimation to a cross-section

of stocks’ returns and option prices over a relatively long time-series of data.

Based on particle filtering techniques, the estimation reconciles the vast information present in the

data in order to quantify each component of the asset returns’ dynamics, and better understand

which risks are priced. High-frequency returns and deep out-of-the-money options with short times-

to-maturity permit identifying the jumps occurrences and the moments of their magnitude. Options

with longer maturities allow me to make inferences on the properties of the term structure of risk

premia. A two-step estimation allows for separating the impact of the market factor from the

idiosyncratic movements of stocks. The estimation procedure is based on the Auxiliary Particle

Filter of Pitt and Shephard (1999) which, combined with a Maximum Likelihood estimation, yields

time-consistent parameters as well as estimates of the distributions of unobservable processes and

their jumps over time. The estimation period is from 2006 to 2009. Because it covers the financial

crisis, it contains valuable information on jumps, as these typically do not occur frequently and are

hard to detect empirically. The subsequent period, from 2010 to 2012, is used to assess the model’s

out-of-sample performance.

I show that the model is able to capture stylized facts that have been non-parametrically highlighted

in the literature. In particular, estimation results confirm the relationship between the beta parame-

ters and the risk-neutral variance of returns. Furthermore, an analysis of pricing errors confirms that

the model reasonably fits option prices. I test the performance of the model to reproduce variance

swap rates. I synthesize swaps from available options and regress the resulting rates on model-implied

rates for all stocks considered. Cross-sectional (Fama-MacBeth) and panel regressions indicate that
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the model accurately represents the synthesized swaps. I further assess its reliability by evaluating

how well it forecasts future variance swap rates. I compare the predictions it delivers to martingale

predictions, whose best guess of the future rate is the current rate. Panel regressions reveal that the

model significantly outperforms the martingale predictions for all future times considered.

Once the reliability of the model is shown, I perform a thorough analysis of the different risk sources

in the variances of stock returns. Based on the estimated trajectories of the variance processes, I find

that the idiosyncratic variance amounts to 63% of the total variance on average. The total variance

is mainly governed by its idiosyncratic component in times of market calm. The market impact

becomes substantial during turmoil periods. Idiosyncratic variances exhibit a strong factor structure

that is similar to the one of the total variance, the first component of a Principal Component Analysis

accounting for 81% of the variation. This justifies the decomposition of the dynamics of idiosyncratic

variance into common movements and residual idiosyncratic movements.

Knowledge of idiosyncratic variance is important because it can guide portfolio allocation. I point

out that an investment over the period 2006-2012 in a dynamically rebalanced portfolio of stocks

which have an idiosyncratic variance level in the highest quartile yields a Sharpe ratio of 3.41, against

-2.00 when one buys the stocks whose idiosyncratic variance is in the lowest quartile. This result

is robust to different measures of idiosyncratic variance and confirms that idiosyncratic variance

contains information on future returns.

I perform the same analysis on a different test asset, considering sectors instead of single stocks.

An investigation of sector Exchange Traded Funds reveals that three sectors contain particularly

high levels of non hedgeable risk. The idiosyncratic component of the equity and variance risk

premia of the Financial, Energy and Consumer Discretionary sectors reaches 20 to 30% and includes

substantial tail risk. The jump part of the idiosyncratic equity risk premia represents 40% and

43%, respectively, of the total one-month equity risk premium for the Energy and Financial sectors.

The Industrials, Health Care and Materials sectors contain medium priced idiosyncratic equity and

variance risk (below 5% during calm times and 15% during the crisis). The Technology and Consumer

Staples sectors only contain negligible priced equity and variance risk (below 5% in calm times

and 10% during the crisis). A reason for this is that they have lower idiosyncratic variance than

these components, due to a diversification effect. Therefore, they provide an interesting investment

alternative for agents who are not willing to be exposed to non diversifiable return risk.
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Many of the papers investigating the equity and variance risk premia rely on non-parametric ap-

proaches. The main advantage of these methods is that their results are model independent. How-

ever they must overcome the fact that risk premia are not observable using approximations and

proxies. For example, the expectation of the future integrated variance under the empirical measure

is often approximated by the realized variance over the past days or weeks. The model I propose

aims to represent the stylized facts highlighted empirically, and enables estimating risk premia and

their components analytically.

The paper which is closest to mine is that of Schürhoff and Ziegler (2011), who estimate the systematic

and idiosyncratic variance risk premia of single stocks using a very innovative approach based on

synthesized variance swaps. They assume that the idiosyncratic variance risk premium is solely driven

by the common movements in the variance process. The main difference between their paper and mine

comes from the methodology. Whereas they use variance swaps with one-month time-to-maturity to

summarize the information contents of options, I use all the available options without transformation.

This provides me with more accurate information on the term structure of variance and on jumps

which, as I show, account for a substantial part of the variance risk premia. Furthermore, they

estimate quarterly premia, whereas my approach delivers daily estimates, and can therefore be used

for tasks which require being more responsive to swift changes in the market.

The remainder of this paper is structured as follows. Section 2 presents a preliminary data analysis.

The model description and its properties are given in Section 3. Section 4 details the estimation

procedure. Section 5 investigates the behaviour of idiosyncratic variance for individual stocks and

sectors. Finally, Section 6 examines the estimated equity and variance risk premia and presents

inferences made on the pricing of idiosyncratic risks.

2 Preliminary data analysis

2.1 Data

The single stocks examined in this paper are the components of the Dow Jones Industrial Average

index. Visa was excluded from the sample as it completed its initial public offering in March 2008. For

every stock in the sample, the dataset includes daily dividend-adjusted prices obtained from CSRP,
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five-minute trading prices from the TAQ database as well option prices from OptionMetrics. The

sampling period of high-frequency prices has been chosen to avoid adverse effects of microstructure

noise while keeping a frequency which is high enough to make inference on the properties of jumps. All

data span the time period from the 1st of March 2006 until the end of 2012. I eliminate options with

missing bid/ask prices or zero bid prices, as well as options which have a negative bid-ask spread.

I further remove options with zero open interest and those that violate the arbitrage conditions:

C(t, T,K) < St and C(t, T,K) > St − Ke−r(T−t), where C(t, T,K) is a price at time t of a call

option with maturity T and strike K, St is the price process of its underlying and r is the risk-

free interest-rate. To account for the American feature of options, I follow Broadie, Chernov, and

Johannes (2007) and calculate American volatilities implied from a binomial tree for all mid prices,

and then treat the options as European, with an implied volatility equal to the one found. The error

due to this adjustment is negligible for short-maturity options which have an early exercise premium

close to zero, and increases with the maturity of options. To avoid beginning- and end-of-week effects,

I follow standard practice and only keep Wednesday option prices. Table 1 summarizes the available

stocks, provide their acronyms and gives the minimum and maximum moneyness of options on each

stock. Maturities range from one week to one year.

The second set of test data I use consists of SPDR Exchange traded funds (ETF). They were

introduced in 1998 and track the performance of the Global Industry Classification Standard sectors

of the S&P 500. Every fund is a portfolio of the components of the index in the corresponding sector.

American options started trading on the funds and realized a fast-growing success. A summary of

the data available on sector ETFs is provided in Table 2. All options are of American type. The

dataset is treated similarly to the options on single stocks.

The S&P 500 combines the market capitalizations of the 500 largest US stocks, and therefore is

a natural proxy for the market factor in the US market. It is complemented by the VIX index,

which represents the market expectation of the future volatility of S&P 500 returns over the next

thirty days, and is often considered as a fear gauge of the markets. Options on both indices are

liquidly traded. Options on the S&P 500 have a maturity that ranges from four days to a year, and

a moneyness m = K/S between 0.39 and 1.37. Options on the VIX have a maturity between five

days and one year, and a moneyness between 0.23 and 5.46.
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2.2 Factor structure of implied volatilities

In addition to providing useful information on the individual stock returns’ distributions, I show in

this section that options also contain information on the factor structure of stocks.

I analyze the factor structure of implied volatility (IV) surfaces using Functional Principal Component

Analysis (FPCA). While standard PCA decomposes the covariance matrix of a set of time-series to

identify the main vectors of variation, FPCA performs a similar task with time-series of surfaces.2

The detailed procedure is described in Appendix A.

I construct for every Wednesday in the sample a smooth estimator of the implied volatility surface

IVt(m, τ) over a grid of moneynesses m ∈ [mmin,mmax] and times-to-maturity τ ∈ [τmin, τmax] using

available data, and a non-parametric Nadaraya-Watson estimator as detailed in Härdle (1992) and

Aı̈t-Sahalia and Lo (1998). The outputs of the FPCA are a set of eigenmodes that represent the

main directions of variation of the surface, and principal component processes that are the projection

of the surface at every point in time onto the eigenmodes.

The eigenmodes and principal component processes that result from the FPCA of the S&P 500

index are represented in Appendix A, in Figures 13 and 14. The first eigenmode represents the

variation coming from the level of the IV surface, i.e. the upwards and downwards shifts of the entire

surface. This mode is not completely flat, there is a slight upward tilt towards short maturities and

smaller moneynesses and a slight downward tilt towards longer maturities and larger moneynesses.

Furthermore, the mode is slightly decreasing as maturity and moneyness increase. This reflects the

fact that deep out-of-the-money (OTM) put IVs tend to move more and deep OTM call IVs less

than other IVs. The second mode is a skew mode. OTM put IVs move in opposite directions from

OTM call IVs. The mode changes sign at the ATM level. Overall magnitudes tend to decrease as the

time-to-maturity increases. The third mode is a term structure mode. Short-term IVs move in the

opposite direction from long-term IVs. The magnitude tends to decrease as the moneyness increases.

Finally, the fourth mode is a convexity mode. Deep OTM put and call IVs tend to fluctuate more

than ATM option IVs. These findings are consistent with those of Cont and da Fonsecca (2002).

2Similar analyses have been applied to indices by Skiadopoulos, Hodges, and Clewlow (2000), Cont and da Fonsecca
(2002), Cont, da Fonsecca, and Durrleman (2002), Daglish, Hull, and Suo (2007). Furthermore, Christoffersen, Fournier,
and Jacobs (2013) decompose the IV surface of single stocks into an affine function of moneyness and time-to-maturity.
Standard PCA is then applied to the time-series of loadings. This procedure is a sub-case of the one I apply, in which
the first direction of variation of the IV is affine in the moneyness and the second is proportional to the time-to-maturity.
I allow eigenmodes to be polynomial functions of both moneyness and maturity.
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They find that the third mode is the convexity mode, instead of the term structure mode. But this

is likely due to the fact that they use a shorter time-series of data.

The same analysis is conducted on IV surfaces of single stocks. The resulting modes as well as

the percentages of variance they explain are described in Table 3. The first three eigenmodes are

usually the same as those found for the S&P 500. In some cases the term structure mode explains

more variation than the skewness mode. Overall, the first mode explains a large percentage of the

variation of the surfaces, on average 97.5%. The corresponding principal component process is highly

correlated with the one of the S&P 500 surface decomposition, with a correlation of 91.6% on average.

The second and third eigenmodes are also significantly correlated with the corresponding eigenmodes

of the S&P 500 decomposition, with respective average coefficients of 51.6% and 42.6%.

Functional PCAs therefore indicate a strong factor structure of the main driver of IV surfaces,

i.e., the level of the surface. The other drivers, which roughly represent the skewness and term

structure of the surfaces, also exhibit a large positive correlation with the corresponding market

principal components. However, I interpret the fact that this correlation is always substantially

lower than 1 as an indication of firm specific variation in IV. These results are consistent with those

of Christoffersen, Fournier, and Jacobs (2013).

2.3 Factor structure of high-frequency returns

High-frequency data contain valuable information on the fine structure of data. In particular, diverse

measures of variation of log-price increments have been introduced that enable disentangling the

contribution of the diffusive and jump components of the dynamics of returns.3 In this section, I use

high-frequency data to analyze the potential factor structure of some of these measures.4

For each stock I calculate the daily Realized Variance (RV), which captures the total variation of

high-frequency returns over a day, and can be decomposed into the Continuous Variation (CV), which

represents the variation due to continuous movements of the returns, and the Jump Variation (JV)

which captures discontinuous movements of returns. For definitions and convergence properties, see,

3See for example Andersen, Bollerslev, Diebold, and Labys (2003), Barndorff-Nielsen and Shephard (2004) and
Barndorff-Nielsen and Shephard (2006)

4Luciani and Veredas (2012) and Barigozzi, Brownlees, Gallo, and Veredas (2014) introduce a dynamic factor model
for realized volatilities.
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e.g., Bollerslev, Todorov, and Li (2013). I apply a PCA to these measures.5 The same analysis is

performed after taking their n-day moving averages, with n ∈ [3 180].

The percentage of variance explained by the first principal component as a function of n is displayed

in Figure 1. Using a larger n leads to the first component explaining a larger percentage of the

variance of all measures, with that percentage being very close to 100% when the 6-month moving

average is considered, except for the jump variation measure. Along the same line, a smaller number

of factors are needed to explain the total amount of variation when n increases. I interpret this

result as an indication that the factor structure explains the overall tendencies of variation measures,

whereas the daily fluctations are mainly caused by firm-specific events. The much smaller percentage

of variation of the jump measure explained by the first components indicates that most jumps are

idiosyncratic, and that the factor structure of the diffusive movements is much stronger than the

one of jumps. These results are in line with Bollerslev, Todorov, and Li (2013), who find that the

number of filtered idiosyncratic jumps in stocks that belong to the S&P 500 exceeds the number of

systematic jumps for all the stocks contained in their sample.

I propose to represent the factor structure of asset returns using a parametric modeling approach.

Most studies using high-frequency data or option prices use non-parametric or semi-parametric ap-

proaches, which present more flexibility in analyzing the data and do not face the challenge of

estimation. However, with such approaches it is only possible to draw inferences, e.g., they cannot

be used for out-of-sample exercises, which are important parts of this paper.

3 Model

3.1 Model setup

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space satisfying the usual assumptions, where P de-

notes the empirical measure. I denote by M = (Mt)t≥0 the value process of the market factor. Its

dynamics under P follow an extension of the Heston model with jumps. They are specified as follows:

5A log-transformation is applied to the RV.
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dMt

Mt−
= (rt − λM (vMt− ,mt)EP[eZ

M
t − 1] + γMt (vMt− ,mt))dt+

√
vM
t−dW

M(P)
t + (eZ

M
t − 1)dN

M(P)
t . (1)

The risk-free rate rt is assumed to be a deterministic function of time. The function γMt (vMt− ,mt)

represents the market equity risk premium (ERP). It represents the instantaneous return that the

investor receives in addition to the risk-free rate for bearing the risk in the market factor. It depends

on the specification of the pricing kernel. Price returns are driven by a Brownian motion W
M(P)
t

and a Poisson process N
M(P)
t . The variance of the diffusive component of returns is driven by two

factors:

dvMt = κM(P)
v

(
κMv

κ
M(P)
v

mt − vmt−

)
dt+ σMv

√
vM
t−dB

M(P)
t + y

M(P)
t dN

M(P)
t (2)

dmt = κM(P)
m (θM(P) −mt)dt+ σMm

√
mtdB̄

M(P)
t . (3)

The first variance process (vMt )t≥0 mean-reverts towards a stochastic central tendency (mt)t≥0, up to

a scaling factor. Its mean-reversion speed is controlled by κ
M(P)
v . The parameter κMv corresponds to

the speed of mean-reversion of the variance under an equivalent martingale measure Q. The stochastic

central tendency mean-reverts itself towards a fixed long-run mean θM(P), with speed κ
M(P)
m . Jumps

in the returns process occur simulateneously with jumps in the first variance factor vMt , with an

intensity that is affine in the two variance processes: λM (vMt− ,mt) = λM0 +λM1 vMt−+λM2 mt.
6 The sizes

of jumps in the returns are assumed to be independent and identically distributed following a normal

distribution. Jumps in the variance are assumed to be exponentially distributed.7 This implies that

the variance can only jump upwards and prevents it from becoming negative. The leverage effect

that impacts the market factor is represented by the correlation coefficient ρM defined such that

d〈WM(P), BM(P)〉t = ρMdt.

The model for individual stocks is a continuous-time extension of the CAPM.8 I separate the impact of

6Based on a non-parametric study, Bollerslev and Todorov (2011) argue in favor of time-varying jump intensities
and a tendency for fatter tails in period of high overall volatility.

7Amengual and Xiu (2014) show that it is more realistic to also include negative jumps in the variance. The
assumption of exponential jumps aims to ensure that the variance remains positive.

8The model is related to that of Collin-Dufresne, Goldstein, and Yang (2012), but additionally features idiosyncratic
jumps and stochastic volatility. The framework which is closest to mine is the one of Christoffersen, Fournier, and Jacobs
(2013), who calibrate a diffusive model to a cross-section of stock returns and option prices. There are some major
differences however between their work and mine. First, they assume that the idiosyncratic variance is independent from
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the market factor into two contributions. On one side the diffusive random variation of single stocks’

returns is dependent on the Brownian motion that drives market returns through the coefficient βjdiff .

On the other side discontinuous movements in the market returns can also translate into jumps in

single stocks’ returns, though the coefficient βjjump. A jump of size ZMt in the market log level triggers

a jump of βjumpZ
M
t in the individual log stock price.9 This allows disentangling the effects of both

market drivers on single stocks’ returns. Under P, the dynamics of firm j’s dividend-adjusted stock

prices Sjt are given by:

dSjt

Sj
t−

= (rt + γjt (v
j
t− , v

M
t− ,mt))dt+ dRsyst + dRidiot , (4)

where the function γjt (v
j
t− , v

M
t− ,mt) represents stock’s k equity risk premium. It is the instantaneous

return that the investor receives in addition to the risk-free rate in exchange for bearing the risk

in the stock. dRsyst denotes the increment of the systematic martingale return, and dRidiot is the

increment of the idiosyncratic martingale return:

dRsyst =

Systematic diffusive returns︷ ︸︸ ︷
βjdiff

√
vM
t−dW

M(P)
t +

Systematic discontinuous returns︷ ︸︸ ︷
(eβ

j
jumpZ

M
t − 1)dN

M(P)
t − λM (vMt− ,mt)EP[eβ

j
jumpZ

M
t − 1]dt, (5)

dRidiot =

Idiosyncratic diffusive returns︷ ︸︸ ︷√
vj
t−dW

j(P)
t +

Idiosyncratic discontinuous returns︷ ︸︸ ︷
(eZ

j
t − 1)dN

j(P)
t − λj(vj

t−)EP[eZ
j
t − 1]dt . (6)

The variance of the idiosyncratic diffusive returns, later referred to as idiosyncratic variance, has the

the market variance. An examination of the idiosyncratic variances of stocks suggests that a richer factor structure
would be needed, as further advocated by Serban, Lehoczky, and Seppi (2008), Schürhoff and Ziegler (2011) and
Herskovic, Kelly, Lustig, and van Nieuwerburgh (2015). My model accounts for this and decomposes idiosyncratic
variance movements into a common and a residual idiosyncratic component. Second, they assume that idiosyncratic
variance risk is not priced. In other words, the variance risk premium of single stocks is assumed to be zero. Although
it has been shown to be smaller in magnitude than the variance risk premium of the index, there is empirical evidence
for a non-zero variance risk premium in individual stocks. Third, they estimate the trajectory of the unobservable
spot variance of the index and of single stocks using a least-square algorithm, i.e., its dynamics are not ensured to be
consistent with the specified model. The use of Bayesian methods allows me to have an estimation which guarantees
that the filtered trajectory of the spot variance is consistent with the model specification. Last, their model does not
include jumps, which have been shown to be important, especially during the financial crisis, to fit option prices, see,
e.g., Bakshi, Cao, and Zhong (2012).

9Based on a model selection exercise, Bakshi, Cao, and Zhong (2012) propose to use a model with jumps in the
returns and in the volatility of individual stocks.
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following dynamics:

dvjt = βjvdv
M
t︸ ︷︷ ︸

Common idiosyncratic variance movements

+κj(P)
v

(
κjv

κ
j(P)
v

θj − vj
t−

)
dt+ σjv

√
vj
t−dB

j(P)
t + yjt dN

j(P)
t︸ ︷︷ ︸

Residual idiosyncratic variance movements

.

(7)

The leverage effect for individual stocks is accounted for: d〈W j(P), Bj(P)〉t = ρjdt. In line with the

preliminary data analysis, I assume that idiosyncratic returns and variance can jump. As for the

market factor, jumps occur in both processes simultaneously. They are driven by the Poisson process

N j
t , whose intensity is affine in the idiosyncratic variance: λj(vj

t−) = λj0 + λj1v
j
t− . The sizes of jumps

in the returns are assumed to be normally distributed with mean µj(P) and variance (σj(P))2. Jumps

in the variance follow an exponential distribution with mean νj(P).

The model allows for two new features. On the one hand, it disentangles the respective impacts of

the diffusive and jump components of the market factor on individual stocks. Such differentiation is

justified by the notion of crash aversion introduced by Bates (2008), who argues that the investors

treat jump and volatility risks differently. For example, an investor may want to hedge tail risk, in

which case he will find stocks with a larger βjjump more attractive. Both volatility and jump risks

are priced in the cross-section of returns, as has been shown by Cremers, Halling, and Weinbaum

(2013).

On the other hand, my model allows the idiosyncratic variance of individual stocks to be corre-

lated with the market variance. Schürhoff and Ziegler (2011) and Herskovic, Kelly, Lustig, and van

Nieuwerburgh (2015) show that the idiosyncratic variance of individual stocks can be decomposed

into a residual idiosyncratic component that is firm-specific and a common idiosyncratic component,

which Herskovic, Kelly, Lustig, and van Nieuwerburgh (2015) identify as being linked to household

income risk. To represent this factor structure of idiosyncratic variance, I divide their change over

an infinitesimal period of time into two parts. The first one, βjvdvMt , measures the correlation of a

common factor, which is chosen to be the market variance, with the idiosyncratic variance. The co-

efficient βjv serves as scaling factor, and quantifies the exposure of stock j’s idiosyncratic variance to

the market variance. The residual component of the idioyncratic variance is driven by a firm-specific

Brownian motion B
j(P)
t and a Poisson process N

j(P)
t . Its drivers are assumed to be independent from

the drivers of the market variance. Such representation preserves the affine structure of the model.

13



The model can be easily extended to multiple factors driving underlying stocks’ returns. Several

factors have been proposed in the asset pricing literature. The size and value factors of the pop-

ular Fama-French three-factor model account for the extra risk present in small companies’ stocks

and value stocks. However, adding factors in the proposed setup requires additional parametric

assumptions on their dynamics, and involves further model and estimation error. Finally, traded

derivatives’ prices would be needed to estimate the risk premia of these factors. Such generalization

would therefore be challenging to apply in practice.

One limitation of my model is that the beta coefficients are assumed to be constant in order to

preserve the affine structure of the setup. This assumption is, however, justified by the time-series of

data considered. Adrian and Franzoni (2009) show that the beta in its traditional sense varies over

time when looking at a long time-series of data, typically including several decades. The advantage

of such exercise is to dispose of a sufficient amount of data points. However, various issues such

as the non-stationarity of the data may arise in this case. As I work with options, the amount of

available data is already very large and is sufficient to draw inferences for the recent years covering

the financial crisis, while keeping the betas constant over this time horizon.

3.2 Risk premia specification

Due to incompleteness of the market, the risk-neutral measure is not unique. Following standard

practice, I parameterize the pricing kernel Lt defined in equation (8), which is then calibrated to the

market. The corresponding risk-neutral measure is denoted by Q. Lt can be decomposed into two

components which respectively contain the market prices of risk of the diffusive and jump processes

that play a role in the dynamics of assets returns:

Lt = e−rt
dQ
dP

∣∣∣∣
Ft

= e−rtLdifft Ljumpt . (8)

The diffusive component of the pricing kernel is equal to

Ldifft = exp

(∫ t

0
Λ′sdWs −

1

2

∫ t

0
Λ′sΛsds

)

where Wt is the vector of diffusive random processes that drive asset returns at time t and Λt is

14



the vector of premia attached to every element of Wt, assumed to be proportional to the volatility

levels:

W′
t =

(
W

M(P)
t , B

M(P)
t , B̄

M(P)
t , W

j(P)
t , B

j(P)
t

)
Λ′t =

(
ηM
√
vMt ,

κMv −κ
M(P)
v

σMv

√
vMt ,

κMm−κ
M(P)
m

σMm

√
mM
t , ηj

√
vjt ,

κjv−κ
j(P)
v

σjv

√
vjt

)
. (9)

The parameters without superscript (P) in equation (9) either correspond to the Q-counterpart of

the P-parameters, or are invariant under both measures. This specification allows for non-zero equity

and variance risk premia in the market factor and in individual stock returns. The affine structure

of the model is preserved under Q, so that options can be efficiently priced using Fourier methods.

The jump component Ljumpt accounts for different mean and variance of jumps under P and Q. For

the sake of identification, the intensity of jumps is assumed to be equal under both measures.10

I make the assumption that the leverage and the beta coefficients are the same under the risk-

neutral and objective measures. The latter assumption is consistent with Serban, Lehoczky, and

Seppi (2008), who find estimates which are statistically close under both measures.

Under this specification of the pricing kernel, the market equity risk premium (ERP) function

γMt (vMt− ,mt) present in equation (1) is equal to the sum of a diffusive contribution that is pro-

portional to the market variance level, and a jump contribution that reflects the different jump size

distributions under the measures P and Q:

γMt (vMt− ,mt) = ηMvMt− + λM (vMt− ,mt)
(
EP[eZ

M
t − 1]− EQ[eZ

M
t − 1]

)
.

10The jump component of the pricing kernel is defined as:

Ljumpt =

N
M(P)
t∏
n=1

φM(Q)(ZMn )

φM(P)(ZMn )
exp

(∫ t

0

{∫
R
λM (vMs ,ms)

(
φM(P)(z)− φM(Q)(z)

)
dz

}
ds

)
∏

j∈{1,...,J}

N
j(P)
t∏
n=1

φj(Q)(Zjn)

φj(P)(Zjn)
exp

(∫ t

0

{∫
R
λj(vjs)

(
φj(P)(z)− φj(Q)(z)

)
dz

}
ds

)

where J is the number of individual stocks considered. The functions φM (ZMn ) and φj(Zjn) refer to the normal
density function, with parameters equal to the mean and variance of jump sizes in the market factor and single stock
j, under the specified measure.
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Similarly, the single stock’s ERP function γjt (v
j
t− , v

M
t− ,mt), which is present in equation (4), can

be decomposed into a diffusive and a jump contribution. Each of them is itself the sum of an

idiosyncratic component and a market component, whose impacts are quantified by βjdiff and βjjump:

γjt (v
j
t− , v

M
t− ,mt) =ηjvj

t− + βjdiffη
MvMt−

+ λj(vj
t−)
(
EP[eZ

j
t − 1]− EQ[eZ

j
t − 1]

)
+ λM (vMt− ,mt)

(
EP[eβjumpZ

M
t − 1]− EQ[eβjumpZ

M
t − 1]

)
.

Under this specification of the change of measure, the dynamics of the market factor and individual

returns are given in Appendix C.

3.3 Properties of the model

Due to the affine structure of the model, option prices are available in closed-form and involve the

characteristic functions of returns, which are known up to the resolution of Ordinary Differential

Equations (ODEs). Assuming the existence of derivatives on the market factor, the characteristic

function of market returns is given in Bardgett, Gourier, and Leippold (2014). The one of single

stocks’ returns can be derived similarly.

Proposition 3.1. The Laplace transform of the single stocks’ log returns S̃jt = logSjt is exponential

affine in the factor processes:

ΨS̃T
(t, s̃t, v

j
t , v

M
t ,mt;ω) := EQ

[
eωS̃T |Ft

]
= eα(T−t)·S̃t+β(T−t)·vjt+γ(T−t)·vMt +χ(T−t)·mt+η(T−t)

where the coefficients α, β, γ, χ and η are functions defined on [0, T ] by ODEs presented in Appendix

D and ω ∈ C is chosen so that the conditional expectations are well defined.

The availability and tractability of the Laplace transforms are desirable features, as they allow using

Fourier methods to calculate option prices in a fast and efficient manner.

Another important property of the model is that risk premia are available in closed-form. The
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integrated ERP (IERP) is defined as follows11:

IERP j(t, T ) =
1

T − t

(
EP
t

[
log

SjT
Sjt

]
− EQ

t

[
log

SjT
Sjt

])
. (10)

It represents the difference between the expected return made by an investor who buys stock j at

time t and keeps it until time T , under the empirical and risk-neutral measures. It is composed of

two parts. On the one hand, the diffusive part depends on the market price of idiosyncratic risk ηj

and on the price of risk of the market factor, ηM . On the other hand, the jump component depends

on premia attached to the mean and variance of the jump sizes.

The integrated variance risk premium (IVRP) reflects the amount that an investor would be willing

to pay to be hedged against the fluctuations in an asset’s variance. It is defined as follows:

IV RP j(t, T ) =
1

T − t

(
EP
t

[
QV j

[t,T ]

]
− EQ

t

[
QV j

[t,T ]

])
(11)

where QV[t,T ] denotes the quadratic variation of the log price process, i.e., the sum of the integrated

variance of returns and the squared jumps in the time interval [t, T ].

As a result of the affine property of the model, the IERP and IVRP are available in closed-form and

can be expressed as linear functions of the latent variance processes. Details on the calculation of

the IERP and IVRP are available in Appendix E.

Finally, the model is consistent with empirical facts highlighted in the literature on the relationship

between the beta and risk-neutral moments of the conditional distribution of log-returns. Duan and

Wei (2009) find that firms with higher betas tend to have a high level of risk-neutral variance. In my

model, the risk-neutral variance rate can be decomposed into a diffusion part vj
t− + (βjdiff )2vMt− that

increases with βjdiff , and a jump part
[
(σj)2 + (µj)2

]
λj(vj

t−)+(βjjump)
2
[
(σM )2 + (µM )2

]
λM (vMt− ,mt)

that increases with βjjump. Appendix F shows that the total risk-neutral variance of stock j over

[t, T ] also increases in both betas.

11This definition is equivalent to the usual definition IERP j(t, T ) = 1
T−t

(
EP
t

[
S
j
T
−Sj

t

S
j
t

]
− EQ

t

[
S
j
T
−Sj

t

S
j
t

])
up to the

convexity adjustment O

(
EP
t

[(
S
j
T
−Sj

t

S
j
t

)2
]
− EQ

t

[(
S
j
T
−Sj

t

S
j
t

)2
])

. In the following, the notation Et[.] is used in place of

E[.|Ft].
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Furthermore, Dennis and Mayhew (2002) and Duan and Wei (2009) find that higher beta firms have

more negatively skewed risk-neutral distributions. In my model and as detailed in Appendix F, the

skewness rate can be decomposed into a market effect and an idiosyncratic component. The market

component increases in absolute value proportionally to (βdiff )3, and is negative. The idiosyncratic

component is closer to zero. Therefore my model reflects the findings of Dennis and Mayhew (2002)

and Duan and Wei (2009).

4 Estimation

I estimate the model using the data described in Section 2.1. The estimation period ranges from 2006

until to 2009, and therefore covers the financial crisis. This period is subsequently referred to as the

in-sample period. The model performance is examined on the subsequent time period (out-of-sample

period) spanning 2010 up to the end of 2012. Table 4 reports the amount of options included in the

in- and out-of-sample periods for every stock. As the number of traded options tends to increase over

time, for many stocks it is higher in the out-of-sample period than in the in-sample period, which is

a challenge for the model.

4.1 Estimation method

I estimate the model in two steps. The first step consists in estimating the parameters of the

market equations (1) - (3). I reconcile the dynamics of the S&P 500 and VIX indices following the

estimation procedure outlined in Bardgett, Gourier, and Leippold (2014). The affine characteristics

of the model allows me to use the Fourier Cosine method introduced by Fang and Oosterlee (2008)

to calculate the prices of VIX options. My procedure is based on the Auxiliary Particle Filter of Pitt

and Shephard (1999) which, combined with a Maximum Likelihood estimation, yields time-consistent

parameters as well as estimates of the distributions of unobservable processes over time and their

jumps.12 Given the parameters and latent processes driving the market factor 13, the second step uses

a similar algorithm to estimate the parameters and filter the processes that drive every individual

12This procedure allows obtaining at each point in time an estimate for the density of the latent factors, consistent
with the specified stochastic differential equation (SDE). In that sense it provides a significant improvement over the
typically used least-square estimation, see e.g, Christoffersen, Fournier, and Jacobs (2013), where the estimation treats
the unobservable factors as parameters.

13At every time t, I use the empirical mean of the filtered density of these factors as point estimate.
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stock. In this second step, all estimations can be run in parallel, making the procedure particularly

efficient. I cast the problem in a state-space form, which consists of a transition equation and three

measurement equations. The transition equation is an Euler discretization of the SDEs satisfied by

the variance process of the individual stock prices under P, on a uniform time grid of M + 1 points

t ∈ {t0 = 0, t1 = ∆t, ..., tM = M∆t},M ∈ N? so that M∆t corresponds to the end of the period

considered. For t ∈ {0, ...,M − 1}:

∆vjt = βjv∆v
M
t + κj(P)

v

(
κjv

κ
j(P)
v

θj − vjt

)
∆t+ σjv

√
vjt∆B

j(P)
t + y

j(P)
t ∆N

j(P)
t .

The measurements consist of log-returns, option prices and daily values of the RV. The first mea-

surement equation is obtained using the Euler discretization of the dynamics of log-returns. The

second matches model-implied option prices to market data. The error is defined as the relative

difference between both. The measurement equation is a vector equation, whose dimension is equal

to the number of options that are traded at time t. The error term is assumed to follow a normal

distribution centered at 0, with a heteroskedastic variance that is exponential affine in the bid-ask

spread, the log-moneyness of the option and its time-to-maturity. The last measurement equation

expresses the logarithm of the variance rate as an affine function of the logarithm of the realized

variance, following Wu (2011). The innovations are assumed to be normally distributed centered at

zero, with variance proportional to vjt to account for the fact that the error made when estimating

the variance tends to increase with the variance level.

The parameters driving the jump distribution under the empirical measure were found hard to

estimate precisely. Therefore, they were estimated in a preliminary investigation of high-frequency

returns and fixed throughout the particle filtering exercise. The algorithm used to estimate them is

outlined in Appendix B. Estimated intra-day jumps were aggregated on a daily basis, so that the

empirical mean and standard deviation of daily jumps could be calculated.

The outputs of the estimation are the parameters for which the likelihood of the measurements

reaches a global maximum, and the filtered trajectories of the latent processes: the idiosyncratic

variances, daily probability of jump occurence and the jump size.
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4.2 Estimation results

The estimation performance is evaluated by examining root mean-square errors (RMSEs) and relative

errors, as well as the evolution of sequential likelihoods in- and out-of-sample. RMSEs are reported

in Table 5. For the sake of conciseness, the other performance measures are not reported but are

available upon request. There is a slight loss of quality in the estimation of deep OTM options. This

is not surprising as the tails of the risk-neutral distribution are typically hard to estimate. However,

given the large amount of prices to fit, the model performs well.

Parameter estimates as well as their standard errors are displayed in Table 6. The mean size of return

jumps under P is very close to zero, which is in line with Yan (2011). Under the risk-neutral measure,

it tends to be more negative, consistent with a positive jump equity risk premium. Furthermore,

the risk-neutral speed of mean reversion of the variance process is always significantly lower than its

empirical counterpart, which pulls the variance risk premium towards negative values.

The beta coefficients are reported in Table 7. Stocks are grouped by industry. The diffusive beta βjdiff

varies between 0.450 for Procter & Gamble and 1.221 for Goldman Sachs. Companies specialized in

financial services have the highest values of βjdiff . As those firms were at the core of the financial

crisis, this result was expected. Companies specialized in consumer staples, such as The Coca-Cola

Company (KO), tend to have a relatively low exposure to diffusive market movements.

The exposure of a stock to the market is directly linked to its risk-neutral variance, as Figure 2

illustrates. As a benchmark measure of the risk-neutral variance, I use the two-month at-the-money

(ATM) IV.14 Its evolution is displayed for three stocks on the left panel of the figure, over the time

period March 2006 - December 2012. The estimated diffusive betas of these stocks are respectively:

0.497 for JNJ, 0.670 for IBM and 1.221 for GS. The graph clearly indicates that the overall level of

IV increases with βjdiff . In the absence of jumps, my model specification implies that the risk-neutral

variance is proportional to the square of βjdiff . The right graph of Figure 2 represents the median

of the two-month ATM IV versus the estimated value of βjdiff squared across stocks. As expected,

the graph indicates a monotonic relationship between the two quantities. I do not find any evidence

that the risk-neutral variance is increasing in the jump exposure coefficient βjjump, which is justified

by the fact that the variance is mainly driven by its continuous part.

14The ATM IV has been interpolated on the basis of available market data, using the biharmonic spline interpolation
method of T.Sandwell (1987).
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The coefficients βjv and βjjump are found more difficult to estimate and have larger standard errors.

βjv is between 0.2 and 0.3 for most stocks, which confirms the factor structure of variance. The

estimation of βjjump does not provide convincing evidence in favor of a strong factor structure of

jumps, which is in line with the data analysis conducted in Section 2.

4.3 Out-of-sample performance: test on variance swaps

As a consequence of the affine structure of the model, variance swap (VS) rates are available in closed

form. The rate with term τ for company j is given by:

VSj,model
t,τ = EQ

t

[∫ t+τ

t
VarRatej(u)du

]
(12)

where the variance rate is given by:

VarRatej(t) =vj
t− + (βjdiff )2vMt−

+
[
(σj)2 + (µj)2

]
λj(vj

t−) + (βjjump)
2
[
(σM )2 + (µM )2

]
λM (vMt− ,mt). (13)

4.3.1 Out-of-sample pricing

To evaluate the out-of-sample performance of the model, I compare synthesized VS rates with ma-

turity one month to model-implied rates. Every week I synthesize VS using a portfolio of OTM

options as described in Carr and Wu (2009). The resulting VS rates are denoted by VSj,data. The

replication procedure assumes that the underlying stock does not jump. If this assumption is not

satisfied, the error is dependent on the third moment of jumps. I perform a linear regression with

the synthesized one-month VS rate on the left hand-side and its model-implied counterpart on the

right hand-side. The error term includes different potential sources of discrepancies between the two

quantities. First, the replication involves interpolation and extrapolation procedures that take as

input a finite number of options with different maturities and moneynesses. The amount of available

options varies from week to week, and yields as output the implied volatilities of options defined

on a grid of moneynesses, with maturity one month. The quality of the replication depends on the

number of options with maturity close to one month that are available on a specific date, and on
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the range of their moneynesses. Second, there is inherent noise in the data due, for example, to

the bid-ask spread, that is further reflected in the error term. Finally, the model is calibrated to a

large amount of datapoints, and the estimation is clearly subject to model specification error as well

as estimation error. The intercept should be zero if there is no systematic bias in the estimation.

The slope parameter reflects the ability of the model to capture the amplitude of the movements of

VS rates, it should be one if the model perfectly replicates the magnitude of the data on average.

Non-systematic errors will be reflected in the error term.

I consider two types of regressions in Table 8: repeated cross-sectional regressions (Fama-MacBeth)

and a pooled panel regression. For the cross-sectional regressions, I report the time-series mean

of the coefficient estimates and the R2. The standard errors are calculated using the Newey-West

procedure to account for autocorrelation, with eight lags. Cluster-robust standard errors are used in

the panel regression following the method of Cameron, Gelbach, and Miller (2011), to account for

cross-sectional correlation and time-series auto- and cross-correlations.

Both cross-sectional and panel regressions yield estimates of the intercept that are close to zero,

which indicates that the model does not present a bias in its representation of one-month VS rates.

Estimates of the slope parameter are both slightly smaller than 1. Therefore the model tends to

underestimate the magnitude of VS rates. The hypothesis that the model correctly prices VS, i.e.,

that the intercept is zero and the slope coefficient one, has a p-value of 96% when the regression

is run every week, and 87% when it is run for the whole panel at once. The average R2 from the

cross-sectional regressions is 82%, it goes down to 70% in the panel regression. In summary, the

model fits suynthesized VS rates remarkably well.

4.3.2 Forecasting

I further evaluate the out-of-sample performance of the model in forecasting VS rates. The model-

implied conditional expectation of a time-u VS rate is EP
t [VSu]. I regress the ex ante VS rate at time

u on this expectation, using cross-sectional and panel regressions. I further challenge the model by

comparing the predictions it delivers to a prediction based on the current VS rate at time t. The

latter method is referred to a as martingale prediction, it assumes that the VS rates follow a random

walk, in which case the best guess of future rate that it gives is the rate of today. Given the high

persistence in VS rates dynamics, the martingale prediction is a rather challenging benchmark. If
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the forecast is accurate, the intercept of the regressions should be zero and the slope parameter one.

I test this hypothesis and compare the p-values delivered by both prediction methods, for different

future times u.

Table 9 reports the results of the regressions for three values of u− t: one week, one month and one

month and a half. The R2 of the regression using the model prediction is comparable to the one

using the martingale prediction, for all values of u − t. As expected, the R2 decreases with u − t

and is higher for the cross-sectional regressions than for the panel regressions. The p-value of the

null hypothesis is close to 1 for u− t equal to one week with the model prediction. The martingale

prediction, in turn, yields a p-value of only 0.10 in the panel regression. For u−t equal to a month and

six weeks. the p-values of the cross-sectional regressions remain high, around 0.8, for both the model

and the martingale prediction. The panel regressions, in turn, highlight the better performance of

the model predictions, with a p-value of 0.19 against 0.05 for u − t equal to one month and of 0.24

against 0.03 for u− t equal to six weeks. To summarize, the model accurately predicts VS rates and

outperforms a martingale model.

5 Idiosyncratic variance

5.1 Decomposition of the variance rate

A major advantage of using a parametric approach for the variance of returns is that daily estimates

of it components are filtered as part of the model estimation. In particular, the trajectory of the

idiosyncratic variance is estimated on a daily basis, in contrast to most of the asset pricing literature

which relies on quarterly estimates. These estimates are usually calculated as the standard deviations

of the innovations of a factor model.

The total variance swap rate at time t, given by equation (13), decomposes into a diffusive part vj
t−+

(βjdiff )2vMt , which is measure-independent, and a jump part [(σj)2+(µj)2]λj(vj
t−)+(βjjump)

2[(σM )2+

(µM )2]λM (vMt− ,mt), which is different under P and Q because of the jump risk premia. Under P, the

diffusive variance represents on average 86% of the total variance rate, and 85% under Q.

Figure 3 displays the decomposition of the diffusive and jump parts of the variance rate into an

idiosyncratic component and a component that comes from the effect of the market factor. Every
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quantity is displayed on average over the stocks of the Dow Jones. The idiosyncratic variance

accounts for 63% of the total variance on average. The impact of the market factor is negligible

until the beginning of 2008, because the market volatility is very low. The variance rate is then

almost solely driven by the idiosyncratic variance of the firm, which is typically much higher than

the market variance due to the averaging effect in the market portfolio. In 2008, the market variance

peaks and causes a strong increase in the total variance. The magnitude of that increase is scaled by

the βjdiff parameter. For a typical stock, the influence of the market factor is of the same order of

magnitude as the idiosyncratic variance during the market variance peak, causing the total variance

of the stock to be multiplied by a factor of approximately 2. The ratio of idiosyncratic variance over

total variance then reverts back up, to reach a level around 80%, before dropping again at the end

of 2011, to reach a level below 40%. The decomposition of the jump part of variance rates follows a

similar pattern.

The preliminary data analysis highlighted a strong common component in single stocks’ variances.

This phenomenon is also apparent for their idiosyncratic components. Applying PCA to the total

instantaneous variance rate and its idiosyncratic component, I find that the first principal component

explains more than 92% of the variation of the total variance rate, and the first three components

more than 97%. The numbers are only slightly lower for the idiosyncratic variance, as the first

component explains 81% of its variation and the three first components more than 92%. These

results are generally in line with Herskovic, Kelly, Lustig, and van Nieuwerburgh (2015)15.

The analysis of Herskovic, Kelly, Lustig, and van Nieuwerburgh (2015) further suggests that idiosyn-

cratic variance varies with the size of the company and the industry it belongs to.16 To analyze

the influence of the company’s size on its idiosyncratic variance, I sort the considered firms by their

market capitalization as of the end of 2012 and divide them into five buckets. Into each of these

buckets, I calculate the average total diffusive and jump variance rates across time. Taking the

variance rate of the bucket of firms with the smallest market capitalizations as a reference process, I

regress the time-series of the average variance rates in the other buckets on the reference time-series.

Table 10 summarizes the results of the regressions. They indicate that firms with the largest market

15Herskovic, Kelly, Lustig, and van Nieuwerburgh (2015) use a completely different methodology to obtain these
results. They calibrate a factor model to returns and compute the idiosyncratic variance as the variance of the
residuals.

16Berrada and Hugonnier (2013) suggest that idiosyncratic volatility is generated by aggregated forecast error, in an
incomplete information setting. It seems intuitive that forecast error be larger for companies of smaller size.
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capitalization have a smaller variance rate on average. Exceptions are companies that suffered more

from the financial crisis, such as GE, which presents higher variance rates than the other companies

in the bucket.

I conduct the same analysis on the idiosyncratic variances and find the same pattern, as shown in

Table 11. As parameter estimates do not seem to indicate that companies of smaller size tend to

have a larger exposure to the market factor, I conclude that the idiosyncratic variance is responsible

for the fact that the total variance rate decreases when the size of the company increases. This

ordering does not hold anymore for the residual idiosyncratic variance, which pinpoints the common

movements in idiosyncratic variances as the determinant of this phenomenon.

To examine the extent to which the idiosyncratic variance of a stock depends on the industry it

belongs to, I repeat the estimation exercise using data which are industry related, based on data

on sector ETFs. The model defined in equations (4)-(7) is fitted to ETF returns and option prices,

using the estimation methodology described in Section 4.1.

Figure 4 represents the evolution of the idiosyncratic variance vj , as estimated by the particle filter,

for four sectors and the stocks of the Dow Jones that belong to them.17 The variance levels are

compared to the trajectory of the market factor. Until the end of 2007, most sectors have idiosyncratic

variances which are comparable to that of the market factor, between 0 and 3%, and lower than

those of the considered stocks. The variance of a portfolio is composed of a weighted average of the

individual variances, where the weights are equal to the square of the weights that form the portfolio,

and a term that corresponds to the covariances. If the correlation between the stocks in the portfolio

is low, the covariance term is close to zero. Then it is common that the portfolio’s variance be

smaller than the individual variances, thus exhibiting diversification benefits. The Energy sector

distinguishes itself from others because it has a higher idiosyncratic variance, oscillating around 6%.

Because the variance tends to increase when the market capitalization of the stock decreases, it

is reasonable to assume that most stocks of the S&P 500 that have not been represented because

they do not belong to the Dow Jones, have larger levels of idiosyncratic variance than the stocks

considered which are in the same sector. The two stocks considered in the Energy sector, Exxon

Mobil Corp (XOM) and Chevron Corp (CVX), represent around 30% of the holdings of the ETF.

Therefore, the large idiosyncratic variance of the Energy sector in 2006 and 2007 may be explained

17Only four sectors are displayed, but all of them were studied. The remaining graphs are available upon request.
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by a larger variance of the smaller stocks in the portfolios. Until August 2007, the variance of the

Financial sector overlaps with the market variance. However, when the crisis of the quant-strategy

hedge funds starts, the Financial market becomes more volatile than the market, which will remain

the case during the rest of the period considered. In March 2008, the acquisition of Bear Sterns by

JPMorgan triggers an increase in the variance of the Financial sector, which reaches 15%. Such an

early increase is specific to that sector and does not occur in any other sector. During the market

variance peak, all sectors exhibit increases in idiosyncratic variance. However, the Consumer Staples,

Industrials and Health Care sectors are only marginally affected. They reach a level of 10 to 15%.

The idiosyncratic variance of the Materials and Consumer Discretionary sectors peaks to 25-30%.

For the Energy and Technology sectors, the maximum is 35 to 40%. The Financial sector stands out

with a maximum idiosyncratic variance that is close to the highest variance of the market factor,

around 60% shortly after the bankrupty of Lehman Brothers and the failure of the TARP to pass

Congress. The variance of the Financial sector then goes down, simultaneously with the market

variance, to around 25% (at this point the market variance is about 15%). A striking peculiarity

of this sector is that it goes up again early in 2009 and reaches a peak of almost 50% following the

distress of Bank of America. This second peak is much more pronounced than the one of the market

and specific to the Financial sector. Not surprisingly, stocks such as General Electric (GE), which

belongs to the Industrials sector, have a variance which is similar to that of the Financial sector.

Indeed, GE used to have a consumer lending division, and was therefore particularly exposed to the

risks specific to the financial industry.

Figure 5 illustrates the decomposition of the evolution of idiosyncratic variance into residual idiosyn-

cratic increments and market-induced increments, on average over stocks of the Dow Jones. The

idiosyncratic movements control the evolution of the variance in the beginning of the time-series,

and more generally in times of low volatility periods. The ratio of residual idiosyncratic volatility

over total idiosyncratic volatility is indeed close to 1. In contrast, this ratio drops in high volatility

times. On average, it drops to less than 50% during the peak at the end of 2008, then reverts back

to a level close to 1 in 2010, and drops again to close to a low level at the end of 2011. For some

stocks in the financial sector, whose volatility peak does not replicate that of the market, the residual

idiosyncratic variance remains in control of the total idiosyncratic variance. This is the case for GE

(General Electric), JPMorgan Chase and Goldman Sachs. For these stocks, the volatility peak lasts

longer than the one of the market, and therefore the idiosyncratic variance takes over the entire peak.
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5.2 Relation to returns

According to standard asset pricing theory, idiosyncratic volatility should not be priced in the cross-

section of returns, as investors should be able to diversify this risk away. However, in the last decade

many papers have found a relation between idiosyncratic volatility and expected returns. There

has been a long debate on the sign of this relation. Explanations have been proposed to explain

why investors may hold under-diversified porfolio, resulting in idiosyncratic risk being priced in the

cross-section of returns. Fink, Fink, and He (2012) review the different methods for calculating

idiosyncratic volatility, and argue that measures of idiosyncratic variance which are calculated from

the information set available at time t do not have any predictive power.

All the studies previously mentioned calculate the idiosyncratic variance by estimating a Fama-

French factor model (sometimes with additional factors) and taking the standard deviation of the

innovations. My approach is fundamentally different in two ways. From a technical standpoint,

calculating the standard deviation of residuals requires setting windows of time over which the

empirical moment is calculated, typically a month. The resulting measure of idiosyncratic variance

is constrained to low frequency, and heavily depends on the chosen window. In contrast, my estimate

of idiosyncratic variance is daily, and is therefore more responsive to economic changes, which is

important during the crisis period. From a contents perspective, the information contained in my

estimate differs from the one contained in the traditional measure, because it is estimated using

option prices. As a result, the resulting idiosyncratic variance contains forward-looking information

that reflects the perception of market participants. This fact is particularly important, as recent

papers document the predictive power of some option-derived variables on future returns, e.g., Bali

and Hovakimian (2009), Cremers and Weinbaum (2010), Xing, Zhang, and Zhao (2010), An, Ang,

Bali, and Cakici (2014). To visualize the effect of the difference in construction of the idiosyncratic

variance, I estimate a three-Factor Fama French model using the daily values of the factors available

on the website of Kenneth R. French, and calculate the idiosyncratic variance using monthly windows.

The resulting time-series are referred to as FF idiosyncratic variance. I regress the trajectory filtered

from the estimation of my model on the FF idiosyncratic variance for each stock of the Dow Jones.

To make the time-series comparable, I only keep the last value of filtered idiosyncratic variance

each month. I obtain, on average, an intercept of 0.03, a slope coefficient of 0.84 and an R2 value of

0.51. When I average the filtered values of the idiosyncratic variance over each month instead of only

27



keeping the last value, the R2 slightly increases and equals 0.53. Therefore the filtered variance tends

to be larger than the FF idiosyncratic variance. This is consistent with the use of options, which

typically imply a larger variance than the one effectively observed in returns, see, e.g., Johannes,

Polson, and Stroud (2009).

To analyze the relationship between idiosyncratic volatility and returns, I form four weekly-rebalanced

portfolios, rebalanced every week according to the stocks’ filtered idiosyncratic variances. The values

of idiosyncratic variances are sorted, and each portfolio contains the stocks in one quartile. Portfolio

1 contains the seven stocks which have the smallest idiosyncratic variance level, portfolio 4 contains

those that have the largest variance levels. Stocks are given equal weights. Figure 6 illustrates the

evolution of the wealth for the four portfolios. I assume an initial level of wealth of 100. Table 12

reports the main statistics of the portfolios. An investor who buys a portfolio of stocks with a higher

idiosyncratic variance tends to receive higher returns, and a larger Sharpe ratio. The portfolio that

contains the first quartile of stocks has a negative weekly Sharpe ratio of -2.00 whereas the portfolio

that contains the last quartile of stocks has a Sharpe ratio of 3.41. The results remain unchanged

if one sorts portfolios according to the idiosyncratic variance rate (which also includes the idiosyn-

cratic jumps in returns), the ratio of idiosyncratic variance over total variance or the level of residual

idiosyncratic variance. They are also robust to a different weighting mechanism, where the position

in each stock is proportional to the level of its variance. These results suggest that idiosyncratic

variance and, in particular its residual idiosyncratic component, may contain useful information on

future returns.

6 Pricing of idiosyncratic risks

This section examines whether idiosyncratic risk is priced in the cross-section of assets by evaluating

the contribution of idiosyncratic equity and variance risks to the equity and variance risk premia.

The risk premia are calculated following equations (10) and (11). They are available in closed-form

at every time t conditionally on the values of the latent variance factors. These values are estimated

following the procedure outlined in Section 4.1.
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6.1 Equity Risk Premium

The typical behaviour of the Integrated Equity Risk Premium (IERP) is illustrated in Figure 7. It

is positive for all stocks and of smaller magnitude than the risk premium of the market. Its term

structure is similar to the one of the index and behaves pro-cyclically, in line with the findings of Van

Binsbergen, Koijen, Hueskes, and Vrugt (2013). Its magnitude increases when the term increases

during market calm, indicating that investors require a larger compensation when they invest on a

longer-term horizon. In contrast, during market turmoil, the IERP becomes larger for smaller terms,

as investors are unsure of how markets will behave in the near future and require compensation

for that. The decomposition into an idiosyncratic and market component for a short-term horizon

investment varies from stock to stock. For some stocks such as Boeing, idiosyncratic risk is not

priced in the IERP, which suggests that investors think this risk can be diversified away. For other

stocks, the idiosyncratic component of the IERP constitutes an important part of the total IERP.

On average, the idiosyncratic IERP represents 50% of the total IERP of single stocks. Figure 7 also

compares the term structure of the total IERP with the one of its idiosyncratic component (Panels

A and C). The difference between the average value of the six-month IERP and the one of the

instantaneous IERP is displayed, on average over the stocks of the Dow Jones. Whereas the slope

of the term structure of the total IERP is positive in times of market calm, disregarding whether

the stock has a small or a large variance, in the case of the idiosyncratic IERP, the slope is always

negative. It is more negative for stocks with larger idiosyncratic variance. The sign of the difference

between the IERP of a short-term versus long-term investment remains the same throughout the

time series. The term structure of the idiosyncratic IERP is therefore not found to be pro-cyclical.

Looking at tail risk provides an explanation for this finding. Indeed, the part of the idiosyncratic

IERP due to jumps account to 34% of the idiosyncratic IERP on average. Therefore, idiosyncratic

tail risk is an important priced risk, which mainly affects short-term risk premia.

Figure 8 represents the one-month IERPs of four sectors and compares them to the IERP of the

Dow Jones components which belong to them. The sector IERP is usually smaller than the single

stocks’ IERPs, except in the Financial sector. The idiosyncratic IERP represents between 13 and

58% of the total IERP for all sectors except the Financial sector. The latter sector is characterized

by a particularly large portion of idiosyncratic variance, which represents 75% of the total variance.

The Consumer Discretionary (XLY) and Energy (XLE) sectors also exhibit sizable IERPs, 58%
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and 54% of which is idiosyncratic. Going one step further and separating the jump and diffusion

contributions of the idiosyncratic IERP reveals that jumps only play a non negligible role for the

Energy and Financial sectors, where they represent 40% and 43% of the total IERP.

Investing in ETFs on the Technology, Consumer Staples or Health Care sectors is a way for investors

to be exposed to less diversifiable risk than what they would otherwise have to bear if investing

in single stocks. Speculators who, in turn, would like to be exposed to idiosyncratic risk, and

particularly to tail risk, can invest in the Energy or Financials ETFs. Kelly and Lustig (2011) show

that government guarantees removed part of the tail risk of the financial sector. My results show

that there is still substantial tail risk that remains priced.

6.2 Variance Risk Premium

The typical behavior of the Integrated Variance Risk Premium (IVRP) is represented in Figure 9.

It is negative for all stocks, which means that investors are willing to pay to get protection against

the variance fluctuations in most stocks. The amplitude of the IVRP varies very much from stock

to stock. The pattern is similar across stocks, i.e., the IVRP is small in absolute value in times

of market calm, and peaks downward during market turmoil. The term structure is similar to the

one of the market factor, i.e., the VRP becomes more negative when the term increases. This

indicates that investors are willing to pay larger amounts to be covered against fluctuations in stock

volatility, when they invest for longer terms. Such term structure can be benefited from in a trading

strategy, as detailed in Filipović, Gourier, and Mancini (2013). Furthermore, the term structure of

the idiosyncratic IVRP is very similar to the term structure of the total IVRP. Note that my results

do not contradict those of Driessen, Maenhout, and Vilkov (2009) who find no evidence of a negative

risk premium on individual variance risk. Indeed, they are considering relatively short terms, from

14 to 60 days, and have option data from 1996 until 2003, i.e., prior to the volatility peak.

A substantial part of the IVRP consists of its idiosyncratic component, for both short and long

terms. The idiosyncratic IVRP represents 80% of the total IVRP on average, this number varying

from 13% to 96% depending on the stock. Therefore, the compensation that investors require to

bear systematic risk only explains 20% of the total IVRP, on average.

Han and Zhou (2013) construct the variance risk premium from implied volatilities and high fre-
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quency data, and show that stocks’ expected returns increase with the premium. Using portfolio

sorts similarly to what was done in part 5.2, I investigate whether the idiosyncratic IVRP contains

information on future returns. Figure 12 displays the evolution of the wealth trajectory of four port-

folios that are weekly rebalanced. The first portfolio contains the stocks which have the idiosyncratic

IVRP that is in the first quartile (closest to zero). The last portfolio contain the stocks with the

most negative idiosyncratic IVRP. The six-month IVRP is used on Panel A, the one-month IVRP on

Panel B. Table 13 reports the main statistics of the two portfolios. Portfolio 4 has a Sharpe ratio of

4.06, against 0.90 for portfolio 1. The results suggest that the idiosyncratic component of the IVRP

contains information on the future returns. They remain qualitatively unchanged when one chooses

to weigh the stocks differently, or to use different terms of IVRP.

Figure 10 represents the six-month IVRPs of sectors and compares them to the IVRP of the Dow

Jones components which belong to them. Because the magnitude of the IVRP increases with the

term, the six-month term is chosen for illustration purposes. Results are qualitatively similar for

other terms. The analysis of the graphs suggests that sectors belong to one of three groups. The

Financial sector is the only component of the first group, as its IVRP is by far the one that has

the largest magnitude. Its minimum level goes below -20% during the variance peak. No other

sector has an IVRP that goes beyond -15%. The IVRP of the Financial sector crosses this threshold

when Lehman Brothers collapses in September 2008, and remains below until mid-2009. The second

group includes the Energy, Materials and Consumer Discretionary sectors. The total IVRP of these

three sectors decreases almost linearly with time from mid 2007 until September 2008, when they are

around -6%. The variance peak pulls them down to about -12%, but they quickly recover and get

back to a level oscillating around 5%. Finally, the last group includes the remaining sectors, which

do not have substantial priced variance risk.

The part of the total IVRP that corresponds to idiosyncratic risk is very high: between 59 and

95%. In particular, in the two riskiest categories of sectors, it ranges from 83 to 95%. Therefore, in

those sectors, only 5 to 17% of the IVRP represents compensation for systematic market risk. The

three categories of sectors exhibit different behaviours. The IVRP of the Financial sector reaches a

minimum value which goes down to -21%. Long-term investments contain much more priced risk

than short-term investments, with a minimum IVRP of around -10% for a one-month term. For

the sectors in the second group, the minimum IVRP stabilizes around 12% towards the four-month
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term. The sectors in the third group have a minimum IVRP between 0 and 6% for all terms. The

jump component does not play a large role in the variance risk premia, it represents 5 to 18% of the

total premium.

If I go one step further and decompose the continuous part of the idiosyncratic IVRP into a com-

ponent that is due to the common idiosyncratic variance, controlled by βjv, and another due to the

residual idiosyncratic variance, I obtain the results displayed on Figure 11. Interestingly, the common

idiosyncratic variance carries a risk premium that tends to be close to zero in times of market calm,

and significantly positive during market turmoil. This result is in line with the results of Schürhoff

and Ziegler (2011). They justify the sign of the part of the idiosyncratic IVRP due to common

movements in idiosyncratic variances by the compensation required by financial intermediaries for

bearing the risk of variance co-movements.

However, I find that a large part of the continuous idiosyncratic IVRP is unexplained by the common

movements of idiosyncratic variance. This part is negative, due to the risk premium carried by the

residual idiosyncratic variance.

6.3 Discussion

To explain the large amount of priced idiosyncratic risk in the Financial, Energy and Consumer

Discretionary sectors, I borrow from the literature on financial intermediation. Garleanu, Pedersen,

and Poteshman (2009) investigate the effect of demand pressure on option prices and introduce a

demand-based option pricing model. An increase of public demand for options forces dealers to be

able to increase their supply, thereby exposing them to more inventory risk. This is especially the case

for OTM put options, which are difficult to hedge. Such a phenomenon would imply that demand be

positively correlated with option prices and the magnitude of risk premia. Bollen and Whaley (2004)

indeed show that net buying pressures are positively related to changes in implied volatilities. When

market makers cannot fully hedge their positions, they require higher compensation which increases

the magnitude of the VRP. In a related paper, Pan and Poteshman (2006) show that option trading

volume contains information on future stock returns. I examine the relationship between demand

and VRP by regressing the idiosyncratic VRP on the total Open Interest (OI) for sectors. I obtain a

significantly negative slope coefficient, which indicates that the magnitude of the idiosyncratic VRP

is positively correlated with OI, see Table 14. This finding holds in both cross-sectional and panel
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regressions. The R2 is respectively 41% and 31%. The slope coefficient becomes more negative when

considering the OI of deep OTM puts, with moneyness smaller than 0.75. This suggests that there is

a link between priced idiosyncratic risk and demand for options, in particular for deep OTM options.

In the sector of Energy, the priced risk may be due to inelastic demand and limits to arbitrage.

During calm market times, contractors invest in long-term projects, i.e., building an oil platform.

If a crash occurs, catching market participants by surprise, these investments lead to an excess of

supply leading to inventory risk. In the context of electricity markets, Bessembinder and Lemmon

(2002) show that in the absence of storage, hedging demand affects both spot and futures prices.

Acharya, Lochstoer, and Ramadorai (2013) look at oil and gas markets and show that this is still

the case, even when storage is possible, when speculators are capital constrained and producers are

hedging constrained. Such limits to arbitrage would likely have a stronger effect during financial

distress, and distort the resulting risk premia. They may therefore provide an explanation for the

priced idiosyncratic risk found. In the sector of Consumer Discretionaries, the substantial priced

risk during market turmoil can be explained by the pro-cyclicality of demand. Indeed, this sector

contains, among others, luxuries and media companies. Aı̈t-Sahalia, Parker, and Yogo (2004) use the

demand for luxuries as a measure of consumption. In times of expansion, people invest in luxuries

and in media products (television sets for example). In contrast, in times of recession, these are the

products that they will cut from their spendings. The link with the Financial sector is trivial, as

this sector absorbes all the shocks borne by financial intermediaries.

The link between OI and VRP must however be interpreted with caution, keeping in mind that

OI measures the option transactions among all market participants, including transactions that do

not involve financial intermediaries. These results should therefore be complemented by a study of

data on the parties involved in each transaction, in order to investigate the link with demand and

the risk-bearing capacities of financial intermediaries. The relation between inventory risk, market

dealers’ wealth and the VRP of the S&P 500 is further analyzed by Fournier (2014).

Chen, Joslin, and Ni (2014) study the relationship between public demand and the expensiveness of

deep OTM put options on the S&P 500 and find a significant negative relationship. In turn, they find

empirical evidence in favor of an alternative theory, which predicts that a shock in intermediation

introduces more constraints on financial intermediaries, pushing the prices of options up and the

demand down. Along the same line, Barras and Malkhozov (2014) find that option-implied VRP
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not only reflect investors’ risk attitude, but also include information on the risk-bearing capacity of

financial intermediaries.

This line of reasoning could provide an explanation for the large priced idiosyncratic risk of the

Financial, Energy and Consumer Discretionary sectors. A thorough investigation of the link between

the risk-bearing capacity of financial intermediaries and risk premia for single stocks and sectors is

left for further research.

7 Conclusion

This paper revisits the question: does idiosyncratic risk matter? It introduces a flexible parametric

framework for the study of the risks embedded in individual stocks, which allows me to disentangle

the contributions of the different sources of risk. Equity risk is thus decomposed into two components:

the first one reflects the impact of a market factor on single stocks’ returns and the second one is

idiosyncratic. Similarly, the variances of idiosyncratic returns are shown to also follow a factor

structure. They are therefore decomposed into a systematic and an idiosyncratic component. Both

types of shocks contain a diffusive and a jump part, to reflect the fact that investors may exhibit

different levels of risk aversion towards small and large price movements. The estimation approach

combines the information that underlying levels and options contain on the distributions of returns

and on the pricing kernel. The resulting analysis of the price of risk of each component reveals that

idiosyncratic equity and variance risks matter. They are indeed found to be substantial parts of the

equity and variance risk premia. Furthermore, I find that the idiosyncratic component of the equity

risk premium contains non negligible tail risk.

I compare the risk present in individual stocks to the one of the sectors they belong to. This analysis

is based on the information contained in sector ETFs and derivatives on them. I show that most

sector ETFs provide an interesting investment alternative for agents who are not willing to be exposed

to non diversifiable risks, as their idiosyncratic risk premia are close to zero. The three exceptions

are the Financial, Energy and Consumer Discretionary sectors, which provide significant exposure

to idiosyncratic equity and variance risks, and include substantial tail risk. I propose explanations

for this result which are based on demand arguments and linked to the risk-bearing capacities of

financial intermediaries. Increased demand, intermediation shocks or trading constraints may lead

34



to inventory risk, thereby increasing the exposure of financial intermediaries to unhedgeable risks,

which may impact option prices and the associated risk premia. A thorough study of these effects

on the risk premia of single stocks and sectors is left for future research.
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Figures and Tables

Figure 1: Panel A: These graphs report the variance explained by the first principal component in
the PCA of high-frequency measures of returns’ variation of individual stocks’. The stocks considered
are the elements of the Dow Jones, except Visa. The measures considered are the Realized Variance
(RV), the Bipower Variation (BV) and the Continuous Variation (CV) on Panel A, and the Jump
Variation on Panel B. They are computed based on 5-minute tick data from March 3, 2006 until
December 26, 2012.
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Figure 2: Left panel: This graph represents the evolution of the two-month at-the-money (ATM)
level of the implied volatility (IV) of single stock options from January 4, 2006 until December 26,
2012. Right panel: This graph represents the median level of interpolated two-month ATM IV from
March 3, 2006 until December 26, 2012, versus the point estimate of the parameter (βjdiff )2, which
measures the impact of diffusive market movements on the returns of stock j.
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Figure 3: This figure represents the decomposition of the variance rate, where each quantity is
calculated on average over the stocks of the Dow Jones. Panel A represents the decomposition of
the evolution of the diffusive component of the variance rate (Total var. rate) into an idiosyncratic
component (Idio. part) and a component that results from the impact of the market factor (Market
part). Panel B represents the ratio of total diffusive variance that is composed of idiosyncratic
variance. Panel C represents the decomposition of the evolution of the jump component of the
variance rate (Total var. rate) into an idiosyncratic component (Idio. part) and a component
that results from the impact of the market factor (Market part). Finally, Panel D represents the
ratio of total discontinuous variance that is composed of idiosyncratic variance. The estimation
was performed on the period from March 3, 2006 until end of 2009. The grey area represents the
out-of-sample period, from January 2010 until December 26, 2012.
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Figure 4: These graphs represent the total idiosyncratic variance of four sectors (Energy: βjv = 0.59,
Consumer Staples: βjv = 0.25, Industrials: βjv = 0.10 and Financials: βjv = 0.40) versus the variance
of the Dow Jones stocks that are part of these sectors, from March 3, 2006 until end of 2012.

2007 2008 2009 2010 2011 2012
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Energy

 

 
Market
XLE
XOM
CVX

2007 2008 2009 2010 2011 2012
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Consumer Staples

 

 
Market
XLP
PG
KO
WMT

2007 2008 2009 2010 2011 2012
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Industrials

 

 
Market
XLI
GE
UTX
MMM
BA
CAT

2007 2008 2009 2010 2011 2012
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Financials

 

 
Market
XLF
JPM
AXP
GS
TRV

Figure 5: Panel A represents the decomposition of the evolution of the idiosyncratic variance, cal-
culated on average over the stocks of the Dow Jones, into residual idiosyncratic movements and
common movements. Panel B represents the ratio of total idiosyncratic variance that common id-
iosyncratic variance movements account for. The estimation was performed on the period from
March 3, 2006 until end of 2009. The grey area represents the out-of-sample period, from January
2010 until December 26, 2012.
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Figure 6: These graphs represent the evolution of the wealth process of four portfolios that are weekly
rebalanced depending on the level of idiosyncratic variance (Panel A) and of residual idiosyncratic
variance (Panel B) of each stock. Portfolio 1 contains every week a combination of the 7 stocks with
the smallest idiosyncratic variance. Portfolio 4 contains the 7 stocks with the largest idiosyncratic
variance. Stocks are equally weighted. The initial wealth level is 100. The time period covers from
March 3, 2006 until the end of 2012.
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Figure 7: These graphs represent the term structure and decomposition of the IERP, calculated on
average over the stocks of the Dow Jones, from March 3, 2006 until December 26, 2012. Panel A
displays the instantaneous (∆t) versus the six-month (6m) IERP. Panel B displays the decompo-
sition of the 1-month IERP into systematic and idiosyncratic components. Panel C displays the
instantaneous versus the 6-month idiosyncratic component of the IERP. Finally, Panel D displays
the decomposition of the idiosyncratic IERP into jump and diffusive components.
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Figure 8: These graphs represent the one-month total IERP of four sectors (Energy, Consumer
Staples and Financials) versus the IERP of the components of the Dow Jones that are part of these
sectors. The time period covers from March 3, 2006 until the end of 2012.
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Figure 9: These graphs represent the term structure and decomposition of the IVRP, calculated on
average over the stocks of the Dow Jones, from March 3, 2006 until December 26, 2012. Panel A
displays the instantaneous (∆t) versus the six-month (6m) IVRP. Panel B displays the decompo-
sition of the 1-month IVRP into systematic and idiosyncratic components. Panel C displays the
instantaneous versus the 6-month idiosyncratic component of the IVRP. Finally, Panel D displays
the decomposition of the idiosyncratic IVRP into jump and diffusive components.
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Figure 10: These graphs represent the six-month total IVRP of four sectors (Energy, Consumer
Staples, Industrials and Financials) versus the IVRP the components of the Dow Jones that are part
of these sectors. The time period covers from March 3, 2006 until the end of 2012.
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Figure 11: These graphs represent the part of the six-month idiosyncratic IVRP of four sectors
(Energy, Consumer Staples, Industrials and Financials) due to common movements in idiosyncratic
variances, versus the same quantity for the components of the Dow Jones which are part of these
sectors. The time period covers from March 3, 2006 until the end of 2012.
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Figure 12: These graphs represent the evolution of the wealth process of four portfolios that are
weekly rebalanced depending on the level of 6-month (Panel A) and 1-month (Panel B) idiosyncratic
variance risk premium of each stock. Portfolio 1 contains every week a combination of the 7 stocks
with the smallest idiosyncratic IVRP in absolute value. Portfolio 4 contains the 7 stocks with the
largest idiosyncratic variance in absolute value. Stocks are equally weighted. The initial wealth level
is 100. The time period covers from March 3, 2006 until the end of 2012.
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Table 1: This table lists the stocks used in the paper and gives their acronyms. For each stock,
the two last colums provide the minimum and maximum moneynesses of the available options over
the period March 2006 - December 2012. The moneyness at time t of an option with strike K and
underlying price St is defined as mt = K/St.

Company Acronym minmt maxmt

American Express Co AXP 0.378 3.260
Boeing Co BA 0.349 2.839
Caterpillar Inc CAT 0.338 3.516
JPMorgan Chase and Co JPM 0.372 3.328
Chevron Corp CVX 0.305 1.965
AT&T Inc T 0.380 2.395
Cisco Systems Inc CSCO 0.630 0.843
The Coca-Cola Co KO 0.316 1.687
Walt Disney Co DIS 0.325 2.623
E I du Pont de Nemours and Co DD 0.343 2.725
Exxon Mobil Corp XOM 0.334 2.162
General Electric Co GE 0.350 3.704
Goldman Sachs Group Inc GS 0.363 4.024
Home Depot Inc HD 0.349 3.030
Intel Corp INTC 0.345 3.394
International Business Machines Corp IBM 0.314 1.922
Johnson & Johnson JNJ 0.319 1.688
McDonald’s Corp MCD 0.314 1.618
Merck & Co Inc MRK 0.335 2.358
Microsoft Corp MSFT 0.337 2.947
3M Co MMM 0.355 2.121
Nike Inc NKE 0.349 2.300
Pfizer Inc PFE 0.351 2.676
Procter & Gamble Co PG 0.319 1.803
Travelers Companies Inc TRV 0.386 2.459
United Technologies Corp UTX 0.323 1.927
Verizon Communications Inc VZ 0.335 2.004
Wal-Mart Stores Inc WMT 0.322 2.154
UnitedHealth Group Inc UNH 0.344 2.877
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Table 3: This table reports the results of the Functional Principal Analysis (FPCA) of the IV
surfaces of single stocks. The stocks considered are the constituents of the Dow Jones. The second
column describes what the top three eigenmodes (EM) of the decomposition represent. The next
three columns provide the percentage of variance explained by each of them. The last three columns
give the correlation between each principal component (PC) process of the stocks’ FPCA and the
corresponding principal component process of the S&P 500 FPCA. All numbers are in percentages.

Top 3 eigenmodes
Var. explained by EM no. k Correl. of PC no. j with PC of S&P 500 IV
k = 1 k = 2 k = 3 j = 1 j = 2 j = 3

AXP level, skewness, TS 99.6 0.2 0.2 91.6 49.8 40.3
BA level, TS, skewness 98.8 0.6 0.5 95.4 65.6 43.6
CAT level, skewness, convexity 91.8 6.3 1.0 92.0 24.7 5.1
CVX level, skewness, TS 96.8 2.5 0.4 94.5 72.0 56.5
DD level, skewness, TS 98.8 0.7 0.5 97.3 60.9 43.7
DIS level, skewness, TS 98.7 0.6 0.5 96.7 44.9 32.9
GE level, TS, skewness 99.7 0.2 0.1 89.6 46.1 32.3
GS level, skewness, TS 99.1 0.5 0.3 88.2 34.2 33.8
JPM level, TS, skewness 99.6 0.2 0.1 91.4 37.1 40.5
KO level, skewness, TS 98.8 0.7 0.4 95.3 53.7 57.8
T level, skewness, TS 94.8 3.5 1.1 87.0 57.8 52.9
XOM level, skewness, TS 86.8 9.4 2.3 85.1 45.2 24.2
HD level, skewness, TS 98.6 0.9 0.4 88.6 55.6 47.8
INTC level, skewness, TS 97.6 1.5 0.6 88.0 56.0 33.6
IBM level, skewness, TS 98.0 1.1 0.7 94.0 59.7 39.7
JNJ level, skewness, TS 97.7 1.6 0.5 95.4 52.2 42.5
MCD level, skewness, TS 96.0 2.7 0.8 81.2 55.1 26.4
MRK level, skewness, TS 98.1 1.0 0.6 87.7 60.8 44.7
MSFT level, TS, skewness 98.9 0.7 0.3 94.1 48.3 59.1
MMM level, skewness, TS 97.7 1.4 0.6 97.1 63.3 46.2
NKE level, TS, skewness 98.5 0.7 0.6 95.4 55.0 57.0
PFE level, skewness, TS 98.7 0.6 0.5 93.8 44.8 54.3
PG level, skewness, TS 97.7 1.4 0.7 94.7 51.0 51.5
TRV level, TS, skewness 99.6 0.2 0.1 90.2 47.8 41.2
UTX level, skewness, TS 98.4 0.9 0.5 97.8 63.2 53.0
VZ level, TS, skewness 97.2 1.9 0.6 85.7 29.6 47.7
WMT level, skewness, TS 97.5 1.7 0.5 85.3 58.5 48.4
CSCO level, TS, skewness 96.5 2.1 1.0 92.3 29.8 46.3
UNH level, skewness, TS 99.1 0.6 0.1 85.8 51.5 27.1
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Table 6: This table reports the point estimates of the parameters which govern single stock returns’
dynamics. Below each estimate, the corresponding standard error is given in italic. The parameter

θj(P) satisfies θj(P)κ
j(P)
v = θjκjv. The moments of returns’ jumps are estimated from high-frequency

data. The estimation period starts in March 2006, until the end of 2009.

κ
j(P)
v θj(P) yj(P) µj(P) σj(P) κj

v θj yj µj σj λ
j
0 λ

j
1 σj

v ρj ηj

AXP 5.900 0.001 0.040 0.001 0.017 2.900 0.002 0.080 -0.010 0.110 0.080 4.700 0.300 -0.550 0.850
1.491 0.067 1.183 0.016 0.042 0.049 0.063 0.042 2.194 0.113 0.105 0.208

BA 7.000 0.008 0.030 0.000 0.012 2.900 0.020 0.120 -0.040 0.090 0.120 6.300 0.300 -0.600 0.000
1.666 0.078 1.390 0.027 0.064 0.048 0.060 0.064 1.804 0.103 0.062 0.341

CAT 3.700 0.028 0.070 0.000 0.013 4.500 0.023 0.040 -0.060 0.130 0.040 5.500 0.200 -0.550 0.250
2.280 0.042 1.328 0.024 0.052 0.036 0.102 0.052 1.767 0.091 0.092 0.162

CVX 4.600 0.006 0.050 0.000 0.011 2.500 0.011 0.040 -0.020 0.130 0.040 5.200 0.200 -0.600 0.250
1.840 0.060 1.543 0.023 0.033 0.039 0.037 0.033 2.427 0.115 0.050 0.189

DD 5.700 0.002 0.150 -0.001 0.012 5.500 0.002 0.060 -0.070 0.060 0.060 6.700 0.250 -0.600 0.585
1.214 0.060 1.630 0.014 0.018 0.017 0.048 0.018 1.721 0.055 0.029 0.159

DIS 6.100 0.002 0.040 0.000 0.014 1.200 0.008 0.060 -0.040 0.090 0.060 5.900 0.450 -0.450 0.750
1.460 0.066 1.561 0.030 0.028 0.058 0.058 0.028 1.677 0.186 0.126 0.348

GE 8.500 0.001 0.030 0.001 0.013 3.500 0.003 0.020 -0.020 0.150 0.020 7.600 0.500 -0.500 0.401
2.837 0.065 1.186 0.016 0.029 0.021 0.051 0.029 1.806 0.194 0.137 0.255

GS 7.900 0.001 0.070 0.001 0.018 2.400 0.003 0.050 -0.030 0.150 0.050 5.400 0.390 -0.540 0.100
1.922 0.024 1.504 0.022 0.010 0.013 0.017 0.010 1.876 0.057 0.020 0.152

JPM 4.600 0.001 0.110 0.001 0.016 2.400 0.002 0.040 -0.010 0.090 0.040 9.500 0.300 -0.600 0.536
1.572 0.063 1.314 0.016 0.026 0.037 0.058 0.026 2.840 0.075 0.047 0.213

KO 7.389 0.001 0.027 0.000 0.009 1.649 0.005 0.030 -0.020 0.100 0.030 7.389 0.202 -0.589 0.300
1.696 0.013 1.124 0.011 0.015 0.042 0.053 0.015 1.877 0.105 0.116 0.164

T 6.300 0.002 0.090 0.001 0.011 2.600 0.006 0.040 -0.020 0.110 0.040 9.300 0.330 -0.600 0.390
1.194 0.047 1.626 0.014 0.028 0.037 0.063 0.028 3.443 0.061 0.059 0.176

XOM 6.360 0.003 0.074 0.000 0.010 2.460 0.007 0.033 -0.060 0.080 0.033 6.050 0.273 -0.666 0.789
1.243 0.027 1.939 0.017 0.034 0.033 0.040 0.034 1.749 0.070 0.062 0.168

HD 5.474 0.002 0.067 0.000 0.013 2.460 0.004 0.055 -0.050 0.060 0.055 9.400 0.273 -0.589 0.850
1.129 0.028 1.410 0.022 0.019 0.017 0.023 0.019 2.650 0.070 0.022 0.133

INTC 6.500 0.011 0.100 0.000 0.017 2.400 0.029 0.060 -0.060 0.190 0.060 4.900 0.300 -0.550 -0.050
1.825 0.033 0.840 0.028 0.029 0.051 0.060 0.029 2.407 0.118 0.096 0.243

IBM 4.700 0.001 0.150 0.001 0.011 2.300 0.003 0.100 -0.010 0.070 0.100 7.500 0.300 -0.500 0.578
1.163 0.054 2.097 0.027 0.045 0.031 0.055 0.045 4.369 0.106 0.041 0.249

JNJ 8.200 0.000 0.110 0.000 0.007 2.300 0.000 0.020 -0.020 0.130 0.020 5.500 0.350 -0.650 0.650
2.341 0.048 1.211 0.013 0.038 0.043 0.036 0.038 2.473 0.127 0.097 0.117

MCD 6.700 0.011 0.070 0.000 0.010 4.500 0.017 0.040 -0.020 0.080 0.040 6.500 0.400 -0.600 0.600
0.964 0.032 1.622 0.016 0.055 0.037 0.100 0.055 1.682 0.131 0.059 0.154

MRK 6.686 0.002 0.037 -0.001 0.013 1.649 0.006 0.033 -0.040 0.130 0.033 9.974 0.223 -0.589 0.199
1.163 0.054 2.097 0.027 0.045 0.031 0.055 0.045 4.369 0.106 0.041 0.249

MSFT 6.100 0.008 0.070 0.001 0.014 3.500 0.014 0.020 -0.030 0.090 0.020 8.100 0.200 -0.500 0.900
1.351 0.043 1.147 0.016 0.047 0.030 0.087 0.047 2.204 0.108 0.101 0.136

MMM 8.200 0.000 0.050 0.001 0.011 1.900 0.002 0.080 -0.020 0.090 0.080 4.400 0.300 -0.550 0.511
1.679 0.021 0.456 0.022 0.037 0.027 0.026 0.037 2.371 0.061 0.039 0.123

NKE 7.029 0.002 0.052 0.000 0.012 2.117 0.006 0.041 -0.060 0.050 0.041 5.474 0.273 -0.547 0.500
5.285 2.979 1.446 5.059 3.132 0.034 2.138 3.132 3.499 1.812 2.682 0.163

PFE 6.680 0.001 0.030 0.001 0.016 1.640 0.005 0.070 -0.080 0.150 0.070 9.770 0.310 -0.590 -0.100
4.934 2.978 0.995 5.072 3.172 0.036 2.119 3.172 7.787 1.824 2.732 0.225

PG 9.000 0.004 0.100 0.000 0.009 3.300 0.011 0.040 -0.020 0.090 0.040 7.900 0.400 -0.550 0.900
2.757 0.030 0.595 0.010 0.040 0.045 0.049 0.040 2.112 0.118 0.051 0.101

TRV 9.000 0.001 0.030 0.000 0.016 4.000 0.002 0.160 -0.010 0.090 0.160 3.500 0.250 -0.550 0.150
0.900 0.015 0.128 0.017 0.030 0.040 0.030 0.030 0.782 0.105 0.049 0.108

UTX 5.200 0.010 0.100 0.001 0.011 3.200 0.017 0.040 0.000 0.100 0.040 6.500 0.350 -0.500 0.600
1.481 0.045 0.997 0.017 0.053 0.044 0.106 0.053 2.131 0.106 0.100 0.184

VZ 5.700 0.010 0.100 0.000 0.010 3.200 0.017 0.040 0.020 0.120 0.040 6.500 0.350 -0.500 0.400
1.267 0.049 0.792 0.012 0.036 0.028 0.122 0.036 1.631 0.100 0.124 0.255

WMT 5.700 0.006 0.100 -0.020 0.190 3.600 0.010 0.040 0.020 0.070 0.040 6.500 0.350 -0.500 0.400
1.540 0.040 1.170 0.022 0.038 0.081 0.081 0.038 1.955 0.121 0.130 0.219

CSCO 7.600 0.013 0.130 -0.010 0.050 4.900 0.020 0.060 -0.060 0.150 0.060 3.700 0.250 -0.550 0.900
1.858 0.035 1.999 0.032 0.024 0.027 0.056 0.024 2.530 0.100 0.052 0.318

UNH 4.700 0.015 0.140 0.010 0.110 2.400 0.030 0.020 -0.100 0.130 0.020 4.600 0.250 -0.550 0.200
1.912 0.039 1.428 0.021 0.053 0.054 0.036 0.053 3.698 0.078 0.077 0.122
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Table 7: This table reports the point estimates and standard errors (in italic) of the beta coefficients.
The estimation period starts in March 2006, until the end of 2009.

β
j
diff

β
j
jump βj

v

Est. Std. err. Est. Std. err. Est. Std. err.

Consumer Staples
KO 0.607 0.130 0.607 0.129 0.150 0.375
PG 0.450 0.189 9.000 0.408 0.300 0.209

WMT 0.560 0.144 0.650 0.283 0.300 0.412

Health Care

JNJ 0.410 0.094 8.200 0.229 0.200 0.486
MRK 0.607 0.110 6.686 0.164 0.301 0.446
UNH 0.810 0.258 1.250 0.228 0.000 0.618
PFE 0.600 0.878 6.680 2.264 0.490 0.000

Energy
CVX 0.660 0.086 1.100 0.221 0.200 0.520
XOM 0.607 0.119 1.105 0.192 0.259 0.438

Technology

IBM 0.530 0.110 4.700 0.446 0.150 0.164
MSFT 0.800 0.149 6.100 0.545 0.250 0.246

VZ 0.500 0.215 5.700 0.411 0.150 0.216
T 0.580 0.143 0.950 0.093 0.250 0.093

CSCO 1.140 0.268 1.000 0.001 0.000 0.463
INTC 0.750 0.103 6.500 0.215 0.250 0.628

Industrials

MMM 0.600 0.162 8.200 0.480 0.200 0.222
UTX 0.650 0.209 0.002 0.382 0.150 0.250
GE 0.920 0.163 0.400 0.593 0.000 0.310
BA 0.890 0.163 1.450 0.738 0.150 0.283

CAT 0.990 0.150 0.650 0.407 0.450 0.278

Materials DD 0.770 0.080 0.300 0.225 0.550 0.690

Consumer Discretionary

MCD 0.540 0.210 0.600 0.232 0.150 0.409
HD 0.779 0.073 5.474 0.109 0.273 0.349

NKE 0.790 1.053 7.029 1.942 0.157 1.314
DIS 0.900 0.216 1.100 0.244 0.100 0.234

Financials

AXP 1.120 0.384 0.550 0.301 0.050 0.171
JPM 0.840 0.219 0.950 0.228 0.250 0.439
TRV 1.200 0.160 0.950 0.000 0.150 0.113
GS 1.180 0.199 0.600 0.107 0.200 0.404

Table 8: This table reports the results of a regression comparing synthesized VS rates following the
procedure described in Carr and Wu (2009) with model-implied VS rates, following equation (12).
The sampling frequency is weekly. The first column is based on repeated cross-sectional regressions
(Fama-MacBeth). The reported coefficients are averages of the weekly coefficient estimates. Standard
errors are calculated using the method of Newey-West with 8 lags. The standard errors of the
intercept coefficients are multiplied by 100. The second column reports the results of a pooled panel
regression. The last line reports the p-value when testing a hypothesis test with null H0: the model
perfectly represents VS rates, i.e., the intercept is zero and the slope is one.

Cross-sectional Panel

Intercept ×100 0.98 -0.27
(0.20) (0.27)

Slope 0.88 0.96
(0.02) (0.03)

R2 0.82 0.70
N 357 9639

H0 p-value [%] 0.82 0.79
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Table 9: This table reports the results of a regression comparing ex ante synthesized VS rates
at time t + τ , where VS rates are computed following the procedure described in Carr and Wu
(2009), with model-implied predictions at time t, given by EP[VSt+τ ]. The model predictions are
compared to predictions given by the martingale method, whose prediction of future VS rate is the
current VS rate. Cross-sectional regressions (Fama-MacBeth) as well as pooled panel regressions
are conducted, for three values of τ : one week (1w), one month (1m) and 6 weeks (5w). For
cross-sectional regressions, the reported coefficients are averages of the weekly coefficient estimates.
Standard errors are calculated using the method of Newey-West with 8 lags. The standard errors
of the intercept coefficients are multiplied by 100. The last line reports the p-value when testing a
hypothesis test with null H0: the prediction perfectly matches future VS rates, i.e., the intercept is
zero and the slope is one.

τ = 1w τ = 1m τ = 6w
Model Martingale Model Martingale Model Martingale

Cr. sec. Panel Cr. sec. Panel Cr. sec. Panel Cr. sec. Panel Cr. sec. Panel Cr. sec. Panel

Intercept ×100 1.03 0.34 0.58 2.38 1.59 -1.21 1.27 3.06 2.04 -0.23 1.51 3.50
(0.21) (0.32) (0.16) (1.27) (0.30) (0.57) (0.28) (1.19) (0.39) (0.74) (0.35) (1.13)

Slope 0.86 0.99 0.95 0.71 0.94 1.44 0.87 0.63 0.99 1.42 0.85 0.58
(0.02) (0.05) (0.01) (0.15) (0.06) (0.10) (0.03) (0.14) (0.08) (0.15) (0.05) (0.13)

R2 0.78 0.63 0.85 0.51 0.68 0.42 0.67 0.40 0.63 0.26 0.62 0.34
N 356 10324 356 10324 353 10237 353 10237 351 10179 351 10179

H0 p-value [%] 0.93 0.96 0.97 0.10 0.84 0.19 0.84 0.05 0.80 0.24 0.79 0.03

Table 10: This table reports the results of a regression comparing the average total diffusive variance
rate of the bucket of firms with the smallest market capitalizations at the end of 2012 with the
average variance rates in other size buckets. The notation ’k/1’ is used to refer to the regression
of the average diffusive variance rate in bucket k on the rate in bucket 1. Bucket 1 contains the
firms with the smallest market capitalizations, bucket 5 those with the largest. In the last column,
the variance of GE was removed from the calculation of the average. Standard errors are given in
parentheses and are in percentages.

2/1 3/1 4/1 5/1 5/1 (w/o GE)

Intercept×100 0.30 0.34 -0.94 0.05 0.25
(0.09) (0.09) (0.11) (0.08) (0.09)

Slope 0.87 0.78 0.59 0.66 0.55
(0.56) (0.60) (0.65) (0.50) (0.56)

R2 0.98 0.98 0.97 0.98 0.97
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Table 11: This table reports the results of a regression comparing the average idiosyncratic diffusive
variance rate of the bucket of firms with the smallest market capitalizations at the end of 2012 with
the average variance rates in other size buckets. The notation ’k/1’ is used to refer to the regression
of the average diffusive variance rate in bucket k on the rate in bucket 1. Bucket 1 contains the
firms with the smallest market capitalizations, bucket 5 those with the largest. In the last column,
the variance of GE was removed from the calculation of the average. Standard errors are given in
parentheses and are in percentages.

2/1 3/1 4/1 5/1 5/1 (w/o GE)

Intercept×100 0.34 0.18 -0.66 0.09 0.24
(0.11) (0.11) (0.14) (0.09) (0.10)

Slope 0.93 0.86 0.57 0.74 0.59
(1.35) (1.32) (1.49) (1.14) (1.25)

R2 0.93 0.92 0.85 0.98 0.86

Table 12: This table reports the statistics of the returns of four portfolios that are weekly rebalanced
depending on the level of idiosyncratic variance (Panel A) and residual idiosyncratic variance (Panel
B) of each stock, from the beginning of March 2006 until the end of December 2012. Portfolio 1
contains every week a combination of the 7 stocks with the smallest idiosyncratic variance. Portfolio
4 contains the 7 stocks with the largest idiosyncratic variance. The initial wealth level is 100. The
average return, its standard deviation (Std. dev.) and its Sharpe ratio are multiplied by 100. All
quantities are quoted on a weekly basis.

Average return Std. dev. Sharpe ratio Skewness Kurtosis

Panel A: Sort by idiosyncratic variance
1 -0.00 1.99 -2.00 -1.31 12.23
2 0.05 2.42 0.85 -0.68 6.29
3 0.18 2.70 5.51 -0.92 8.21
4 0.17 3.79 3.41 -0.57 8.29

Panel B: Sort by residual idiosyncratic variance
1 -0.00 1.93 -2.01 -0.94 9.70
2 0.10 2.40 2.85 -0.48 5.95
3 0.14 2.78 4.00 -0.93 10.48
4 0.15 3.83 3.06 -0.69 8.06

58



Table 13: This table reports the statistics of the returns of four portfolios that are weekly rebalanced
depending on the level of idiosyncratic 6-month (Panel A) and 1-month (Panel B) integrated variance
risk premium (IVRP) of each stock, from the beginning of March 2006 until the end of December
2012. Portfolio 1 contains every week a combination of the 7 stocks with the smallest (i.e., closest
to zero) idiosyncratic IVRP. Portfolio 4 contains the 7 stocks with the largest idiosyncratic IVRP.
The initial wealth level is 100. The average return, its standard deviation (Std. dev.) and its Sharpe
ratio are multiplied by 100. All quantities are quoted on a weekly basis.

Average return Std. dev. Sharpe ratio Skewness Kurtosis

Panel A: Sort by 6-month idiosyncratic IVRP
1 0.06 3.45 0.90 -0.53 7.54
2 0.06 2.84 0.92 -0.59 9.65
3 0.15 2.44 4.70 -1.14 9.77
4 0.13 2.39 4.06 -0.74 6.99

Panel B: Sort by 1-month idiosyncratic IVRP
1 0.03 9.44 0.89 -0.45 7.28
2 0.04 2.84 0.92 -1.11 10.25
3 0.19 2.62 4.70 -0.55 7.31
4 0.14 2.20 4.06 -1.00 8.53

Table 14: This table reports the results of a regression comparing the idiosyncratic IVRP of sectors
with total Open Interest (OI) and OI of OTM puts (moneyness ≤ 0.75). OI values are scaled by 106.
The sampling frequency is weekly. The first column is based on repeated cross-sectional regressions
(Fama-MacBeth). The reported coefficients are averages of the weekly coefficient estimates. Standard
errors are calculated using the method of Newey-West with 8 lags. The coefficients and standard
errors are multiplied by 100. The second column reports the results of a pooled panel regression.

Total OI OI of OTM puts
Cross-sectional Panel Cross-sectional Panel

Intercept -1.78 -0.00 -2.05 -0.00
(0.02) (0.00) (0.03) (0.00)

Slope -1.67 -1.88 -26.14 -2.29
(0.06) (0.42) (2.38) (0.46)

R2 0.41 0.31 0.37 0.16
N 355 2840
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Technical Appendix

A Functional Principal Component Analysis

A.1 Procedure

I first construct for every Wednesday in my sample a smooth estimator of the implied volatility surface

IVt(m, τ) over a grid of moneynesses m ∈ [mmin,mmax] and times-to-maturity τ ∈ [τmin, τmax], using

a non-parametric Nadaraya-Watson estimator as detailed in Härdle (1992) and Aı̈t-Sahalia and Lo

(1998). The boundaries of the grid are chosen such that enough data points are available over time

to accurately intrapolate the IV surface. Following Cont and da Fonsecca (2002), I calculate the

weekly variations ∆Xt(m, τ) = ln IVt(m, τ)− ln IVt−1(m, τ) of the logarithm of the implied volatility

at every grid point and consider the random field Ut(m, τ) = ∆Xt(m, τ). I assume stationarity and

apply a Karhunen-Loève (K-L) decomposition to Ut(m, τ), which is a generalization of the classic

PCA to higher dimensional random fields. Intuitively, the K-L expansion provides a second-moment

characterization of random surface in terms of orthogonal functions fk and uncorrelated random

variables Uk as follows:

U(m, τ) =

NKL∑
k=1

Ukfk(m, τ).

The fk are the eigenfunctions of the covariance function K(m, τ,m′, τ ′) for (m, τ) and (m′, τ ′) ∈ A =

[mmin,mmax]× [τmin, τmax], defined as follows:

K(m, τ,m′, τ ′) = cov(U(m, τ), U(m′, τ ′)).

The covariance function is numerically computed from the time-series of smooth implied volatility

surfaces. Its eigenfunctions result from a spectral decomposition of the function, done by solving the

homogeneous Fredholm integral equation of the second kind:

∫
A
K(x1, x2)fk(x1)dx1 = λkfk(x2),
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where the λk are the eigenvalues of the covariance function, x1 and x2 ∈ A. A difficulty of solving

the Fredholm equation lies in the availability of eigenfunctions. To reduce the dimensionality of

the problem I use as in Cont and da Fonsecca (2002) a Garlekin procedure18, which expresses the

eigenfunctions as a linear combination of basis functions hj :

fk(m, τ) =
∑
j

aijhj(m, τ) + ε. (14)

The coefficients aij define a matrix A. Let scalar product of two surfaces u and v : A→ R is defined

as:

〈u, v〉 =

∫
A
u(x)v(x)dx.

The error term ε is set to be orthogonal to each basis function hj so that one ultimately has to solve

for a finite number of equations. The symmetric matrices B and C are defined as:

Bij = 〈hi, hj〉,

Cij =

∫
A
dmdτ

∫
A
dm′dτ ′hi(m, τ)K(m, τ,m′, τ ′)hj(m

′, τ ′)

In practice, each coefficient is calculated numerically using Simpson’s rule of integration. The final

problem is summarized in the following matrix eigenvalue problem, where one has to solve for D

and A, D being a diagonal matrix with the eigenvalues of the covariance function λk on its main

diagonal: CA = DBA.

The eigenfunctions are recovered from equation (14) and the principal components processes xk(t)

obtained by projecting the random surface Ut on the eigenfunctions fk:

xk(t) = 〈Xt −X0, fk〉.

18Alternative methods involving, e.g., wavelets have been proposed to deal with potentially non-smooth surfaces and
processes that exhibit non-stationarity or autocorrelation. See for example Phoon, Huang, and Quek (2002)
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A.2 Results for the S&P 500

Figure 13: Eigenmodes resulting from the FPCA of weekly S&P 500 options’ implied volatilities
from March 1st, 2006 until December 31, 2012. The first eigenmode explains 98%, and the sum of
the first four eigenmode explain 99.88% of the variation of the IV surface over time.
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Figure 14: Principal component processes resulting from the FPCA of weekly S&P 500 options’
implied volatilities from March 1st, 2006 until December 31, 2012.
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B High-frequency data analysis

For each stock I denote by ∆n
i p = p i

n
− p i−1

n
the variation of log-price increments over time grid[

i−1
n , in

]
every day t = 1, ..., T . The following measures of variation of log price returns are calculated

based on 5-minute tick data. These measures have been introduced for generic semimartingale

processes, see Andersen, Bollerslev, Diebold, and Labys (2003), Bollerslev, Todorov, and Li (2013),

Mancini (2009), and used extensively since.

The realized variance RVt is defined as the sum of intra-day squared returns, it converges in

probability towards the quadratic variation of the underlying return process:

RVt =

tn+n∑
i=tn+1

|∆n
i p|2→PQV[t,t+1],

The realized variance can be decomposed into the continuous variation CVt that captures the

”small” movements of the returns, which are likely to be generated by a continuous process, and the

jump variation JVt, which captures the larger movements, better represented by a jump process:

CVt =

tn+n∑
i=tn+1

|∆n
i p|21{|∆n

i p|≤αin−ω̄}.

JVt = RVt − CVt→P
∫ t+1

t

∫
R
x2µ(ds, dx).

µ(., .) refers to the jump measure of the underlying returns. The threshold αi is set following Boller-

slev and Todorov (2011) and Bollerslev, Todorov, and Li (2013). The estimated mean and standard

deviation of jump sizes under the empirical measure are set to the empirical moments of aggregated

intra-day returns that exceed the level αi.
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C Change of measure

The market dynamics are as follows under a risk-neutral measure Q, where the parameters without

superscript are either Q-parameters or parameters that are invariant under both measures:

dMt

Mt−
= (r − λM (vMt− ,mt)EQ[eZ

M
t − 1])dt+

√
vM
t−dW

M
t + (eZ

M
t − 1)dNM

t

dvMt = κMv (mt − vMt−)dt+ σMv

√
vM
t−dB

M
t + yMt dN

M
t

dmt = κMm (θM −mt)dt+ σMm
√
mtdB̄

M
t

with EQ[eZ
M
t − 1] = eµ

M+ 1
2

(σM )2 − 1 and

dW
M(P)
t = dW

M(Q)
t − ηM

√
vM
t−dt

dB
M(P)
t = dB

M(Q)
t +

√
vM
t−
κ
M(P)
v − κM(Q)

v

σMv
dt

dB̄
M(P)
t = dB̄

M(Q)
t +

√
mt

κ
M(P)
m − κM(Q)

m

σMm
dt

θM(P) =
κ
M(Q)
m θM(Q)

κ
M(P)
m

Individual stocks have the following dynamics:

dSjt

Sj
t−

=rdt+ βjdiff

√
vM
t−dW

M
t +

√
vj
t−dW

j
t + (eZ

j
t − 1)dN j

t − λj(v
j
t−)EQ[eZ

j
t − 1]dt

+ (eβ
j
jumpZ

M
t − 1)dNM

t − λM (vMt− ,mt)EQ[eβ
j
jumpZ

M
t − 1]dt

dvjt =βjv dv
M
t + κjv(θ

j − vj
t−)dt+ σjv

√
vj
t−dB

j
t + yjt dN

j
t .

with EQ[eZ
j
t − 1] = eµ

j+ 1
2

(σj)2 − 1 and

dW
j(P)
t = dW j

t − ηj
√
vj
t−dt

dB
j(P)
t = dBj

t +

√
vj
t−
κ
j(P)
v − κjv
σjv

dt.
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D Option pricing

Assume that the characteristic functions of the process S̃ takes the following exponential form:

ΨS̃T
(t, s̃t, v

j
t , v

M
t ,mt;ω) := EQ

[
eωS̃T |Ft

]
= eα(T−t)·S̃t+β(T−t)·vjt+γ(T−t)·vMt +χ(T−t)·mt+η(T−t),

. with ω ∈ C. Let us define the joint Laplace transforms of jumps in returns and variances:

θZ(φj , φM ) = EQ[eφ
jZj+φMZM ] = eφ

jµj+ 1
2

(φjσj)2
eφ

MµM+ 1
2

(φMσM )2

θy(ψ
j , ψM ) = EQ[eψ

jyj+ψMyM ] =

(
1

1− ψjyj

)(
1

1− ψMyM

)
.

Coefficients are functions of the time-to-maturity and satisfy a system of ODEs, ∀t ∈ (0, T ]. The

first equation reduces to α(T − t) = α(0) = ω. The remaining ODEs are as follows:

β′(T − t) = ω

[
−λj1(θZ(1, 0)− 1)− 1

2

]
− β(T − t)κjv +

1

2
ω2 +

1

2

(
β(T − t)σjv

)2
+ ωβ(T − t)σjvρj+

λj1 [θZ(ω, 0)θy(β(T − t), 0)− 1]

γ′(T − t) = ω

[
−λM1 (θZ(0, βjjump)− 1)− 1

2
(βjdiff )2

]
− β(T − t)βjvκMv − γ(T − t)κMv +

1

2

(
ωβjdiff

)2
+

1

2

(
β(T − t)βjvσMv

)2
+

1

2

(
γ(T − t)σMv

)2
+ ωβ(T − t)βjdiffβ

j
vσ

M
v ρ

M + ωγ(T − t)βjdiffσ
M
v ρ

M+

β(T − t)γ(T − t)βjv(σMv )2 + λM1

[
θZ(0, ωβjjump)θy(0, β(T − t)βjv + γ(T − t))− 1

]
χ′(T − t) = − ωλM2

[
θZ(0, βjjump)− 1

]
+ κMv

[
β(T − t)βjv + γ(T − t)

]
− χ(T − t)κm +

1

2
(χ(T − t)σm)2 +

λM2

[
θZ(0, ωβjjump)θy(0, β(T − t)βjv + γ(T − t))− 1

]
η′(T − t) = ω

[
r − λj0(θZ(1, 0)− 1)− λM0 (θZ(0, βjjump)− 1)

]
+ β(T − t)κjvθj + χ(T − t)κmθM+

λj0 [θZ(ω, 0)θy(β(T − t), 0)− 1] + λM0

[
θZ(0, ωβjjump)θy(0, β(T − t)βjv + γ(T − t))− 1

]
.

Boundary conditions are given by α(0) = ω, β(0) = γ(0) = χ(0) = η(0) = 0.
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E Integrated Risk Premia

Under the definition given in equation (10), the IERP can be decomposed into an idiosyncratic

component IERP Idio(t, T ) and a market component IERPMarket(t, T ), with:

IERP Idio(t, T ) =ηjEP
t

[∫ T

t
vjsds

]
− EQ[eZ

j − 1]

(
EP
[∫ T

t
λj(vjs)ds

]
− EQ

[∫ T

t
λj(vjs)ds

])
− 1

2

(
EP
[∫ T

t
vjsds

]
− EQ

[∫ T

t
vjsds

])
+ µj(P)EP

[∫ T

t
λj(vjs)ds

]
− µjEQ

[∫ T

t
λj(vjs)ds

]
.

IERPMarket(t, T ) =βjdiffη
MEP

t

[∫ T

t
vMs ds

]
− EQ[eβ

j
jumpZ

M

− 1]

(
EP
[∫ T

t
λM (vMs ,ms)ds

]
− EQ

[∫ T

t
λM (vMs ,ms)ds

])
− 1

2
(βjdiff )2

(
EP
[∫ T

t
vMs ds

]
− EQ

[∫ T

t
vMs ds

])
+ βjjump

(
µM(P)EP

[∫ T

t
λM (vMs ,ms)ds

]
− µMEQ

[∫ T

t
λM (vjs,ms)ds

])
.

The calculation of the IERP therefore amounts to computing the expectation of the integrated

variances under the empirical and risk-neutral measures. Due to the affine property of the model,

these expectations can be written as linear functions of vjt , v
M
t and mt. Coefficients are derived by

solving the ODE satisfied by f(t, T ) = E[vT ], under P and Q, for vT = vjT and vT = vMT . The ODE

is obtained directly from the stochastic differential equation satisfied by the variance processes. For

conciseness, coefficients are not provided but available upon request.

Similarly, the IVRP can be decomposed into an idiosyncratic component IV RP Idio(t, T ) and a

market component IV RPMarket(t, T ), such that
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IV RP Idio(t, T ) =
1

T − t

(
EP
t

[∫ T

t
vjsds

]
− EQ

t

[∫ T

t
vjsds

])

+
1

T − t

EP
t

 Nj
T∑

n=Nj
t +1

(Zjn)2

− EQ
t

 Nj
T∑

n=Nj
t +1

(Zjn)2




and

IV RPMarket(t, T ) =
(βjdiff )2

T − t

(
EP
t

[∫ T

t
vMs ds

]
− EQ

t

[∫ T

t
vMs ds

])

+
(βjjump)

2

T − t

EP
t

 Nj
T∑

n=Nj
t +1

(ZMn )2

− EQ
t

 Nj
T∑

n=Nj
t +1

(ZMn )2


 .

The expectation of the squared jumps is obtained using the independence between the jump sizes

and the Poisson process driving their occurrence time. For example in the case of the individual

stock:

Et

 Nj
T∑

n=Nj
t +1

(Zjn)2

 = [(µj)2 + (σj)2]

∫ T

t
E[λj(vjs)]ds.

F Model properties

In this section I examine the relationship between the betas and the risk-neutral moments of the

returns. Let t = t0 < t1 < ... < tn = T be a uniform time grid over a given time period [0, T ], with

∆t = ti − ti−1, i > 0. The total risk-neutral variance of stock j over [t, T ] is given by19:

TotalVarj(t, T ) = Et

[(∫ T

t
d logSju − Et[d logSju]

)2
]

=

∫ T

t
VarRatej(u)du+ o

(∫ T

t
VarRatej(u)du

)

where VarRate is the instantaneous variance rate defined in equation (13) and the rest is a function

of the characteristics of the jump distributions. As the variance swap rate, the total variance is

19All expectations are taken under Q.
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therefore increasing in the betas.

I define the risk-neutral skewness rate of stock j as follows:

SkewRatej(t) = lim
∆t→0

1

∆t1/2

Et
[(

∆ logSjt − Et[∆ logSjt ]
)3
]

Et
[(

∆ logSjt − Et[∆ logSjt ]
)2
]3/2

= SkewRateM (t)(βjjump)
3

(
VarRateM (t)

VarRatej(t)

)3/2

+ SkewRateIdio(t)
(

VarRateIdio(t)

VarRatej(t)

)3/2

where VarRateM (t) and SkewRateM (t) are the spot variance and skewness of the market factor,

and VarRateIdio(t) and SkewRateIdio(t) are those of stock j obtained by setting βjjump = βjdiff = 0.

As µM is typically negative, the market skewness is negative, and pulls the total skewness towards

negative values. The idiosyncratic skewness is for typical parameter values close to zero. Note that

the instantaneous skewness rate is only non zero because of the jump term. In a diffusion setup,

as the third moment of Brownian motion increments is zero, there is no instantaneous skewness.

Following Christoffersen, Fournier, and Jacobs (2013), the total skewness of stock j over the time

interval [t, T ] is defined as:

TotalSkewj(t) =

Et
[(∫ T

t d logSju − Et[d logSju]
)3
]

Et
[(∫ T

t d logSju − Et[d logSju]
)2
]3/2

The total skew can be decomposed similarly to the instantaneous skew rate into an idiosyncratic

skew and a market skew, whose diffusive and jump parts are respectively proportional to (βdiff )3

and (βjump)
3. A larger (βdiff )3 pushes the skew to be more negative. The impact of (βjump)

3 is,

however, not as clear as for the spot skew, because of an additional cross-term that is close to zero

for small idiosyncratic jumps.
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