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Abstract

This paper studies the equilibrium pricing of complex securities in segmented markets

by risk-averse expert investors who are subject to asset-specific risk. In our model, the

investment technology of investors with more expertise is subject to less asset-specific risk.

Expert demand lowers equilibrium required returns, reduces participation, and leads to

endogenously segmented markets. Amongst participants, portfolio decisions and realized

returns determine the joint distribution of financial expertise and financial wealth. This

distribution, along with participation, then determine market-level risk bearing capacity.

We show that more complex assets deliver higher equilibrium returns to expert partici-

pants. We characterize the stationary distribution as a function of the parameters that

describe the complexity of the asset class in a dynamic model of industry equilibrium.

We show that the stationary wealth distribution displays fatter tails in markets in which

complex assets display a steeper asset-specific risk vs. expertise relation.
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1 Introduction

Complex investment strategies, such as those employed by hedge funds and other sophisticated

investors, require expertise that is specific to an asset class and appear to generate persistent

excess returns despite free entry. Our paper aims to understand the role of expertise in de-

termining equilibrium asset prices of complex securities that are held by experts. To do so,

we develop an industry equilibrium model of risk-averse investors with heterogeneous expertise

who invest in an endogenously segmented market in which the risky asset earns positive excess

returns in equilibrium. We characterize how the returns to complex assets are determined by

the joint distribution of expertise and financial wealth. In equilibrium, the joint distribution

is in turn determined by the deep parameters which describe preferences, endowments, and

technologies in our model economies, and which proxy for asset complexity.

Our model economy is populated by a continuum of agents who choose to be either non-

experts who can invest only in the risk free asset or experts who can invest in both the risk free

and risky assets. Investors who choose to be experts make an initial investment in expertise,

which represents the investor’s personnel, data, hedging and risk management technologies,

back office operations and trade clearing processes, relationships with dealers, and relationships

with clients.

The acquisition and management of complex assets require a joint investment in the asset

and in a hedging technology which requires financial expertise. All expert investors in the

market earn a common equilibrium return that clears the market. However, their returns are

subject to asset-specific shocks. Expertise improves investors’ hedging technology and shrinks

the asset-specific volatility of the returns to the risky asset, implying that more expert investors

face a higher Sharpe ratio.1 Thus, expertise may be interpreted as the ability to hedge risks

either by developing a superior model or gathering superior information.

In our stationary model, the risk is asset-specific and idiosyncratic. This is, of course, a

useful assumption technically. However, we argue that it is also realistic, as argued in Merton

[1987]. There is a growing literature that documents the importance of idiosyncratic risk

in asset pricing, which we review below. In particular, there is a wealth of evidence that

documents downward sloping demand curves in stock markets (e.g., index reconstitutions),

bond markets (e.g., Treasury auctions), and other asset markets. Pontiff [2006] investigates the

role of idiosyncratic risk faced by arbitrageurs in a review of the literature and argues that “The

1See Sharpe [1966].
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literature demonstrates that idiosyncratic risk is the single largest cost faced by arbitrageurs”.

Idiosyncratic risk is likely to be particularly important in markets for complex assets. Com-

plex assets expose their owners to idiosyncratic risk through several channels. First, their

constituents tend to be significantly heterogeneous, so that no two investors hold exactly the

same asset. Second, the risk management of complex assets typically requires a hedging strat-

egy that will be subject to the individual technological constraints of the investor. Third, firms

which manage complex assets may be exposed to key person risk due to the importance of

specialized traders, risk managers, and marketers. Finally, complex assets may introduce or

amplify idiosyncratic risk on the liability side of the balance sheet, through the fact that they

are difficult for outside investors to understand, but tend to be funded with external finance.2

In our model, funds cannot be reallocated across individual risk-averse investors. Clearly,

since the risk in our economy is idiosyncratic, pooling this risk would eliminate the risk premium

that experts require to hold it. Complex assets tend to be held in managed accounts. For

incentive reasons, these managers cannot hedge their own exposure to their particular portfolio.

In fact, Panageas and Westerfield [2009] and Drechsler [2014] provide important results for the

portfolio choice of hedge fund managers who earn fees based on assets under management

and portfolio performance. In particular, they show that these managers behave like constant

relative risk aversion investors. This motivates why we endow expert investors in our model

with CRRA preferences.

We present two closely related models to highlight the economic mechanisms driving our

results. First, we discuss simple a static model, which we solve fully in closed form, taking

the joint distribution of wealth and expertise as given. In this model, the risk could be asset-

specific or common. We provide results for the effects of changes in this distribution, and the

other model parameters, on the market clearing excess return to the complex asset, individual

Sharpe ratios, and the equilibrium weighted average market Sharpe ratio. We emphasize the

heterogeneity in Sharpe ratios, and the difference between individual Sharpe ratios and the

market-wide risk return trade off. For example, we show that if fundamental volatility increases,

there is a cutoff level of expertise below which individual Sharpe ratios decrease, and above

which they increase. This result is interesting in the context of understanding changes in

participation following shocks to complex asset markets, and in understanding participation

patterns across asset classes.

2Broadly interpreted, these risks may come either from the asset side, or from the liability or fund flow side
through investments in a stable investor base. We abstract from the microfoundations of risks from the liability
side of funds’ balance sheets, and model risk on the asset side.
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Next, we present a dynamic model in continuous time. In this model, expertise varies in the

cross-section but it is fixed for each agent over time. We also solve this model, including the

joint stationary wealth and expertise distribution, in closed form, up to the equilibrium fixed

point for expected returns.3 In this model, the deep preference and technology parameters

determine the joint distribution of wealth and expertise.

The equilibrium stationary wealth distribution is Pareto conditional on each expertise level.

The decay parameter depends on investors’ portfolio choice and exposure to the risky com-

plex asset. In particular, because investors with higher expertise choose a higher exposure to

the risky asset, both the drift and the volatility of their wealth will be greater, leading to a

fatter tailed distribution at higher expertise levels. We use our results for how expertise-level

wealth distributions are determined, along with results describing expertise-level and aggregate

demand for the risky asset, to show how changes in the deep parameters of the model lead to

changes in equilibrium returns which are consistent with more complex assets having higher

expected returns. In our model, more complex assets pose more model risk, have higher costs

of maintaining expertise, and require expertise which is more scarce. We also show that more

complex assets which are characterized by a steeper expertise-risk relation lead to fatter tails

in the wealth distribution, especially for high levels of expertise. Finally, we develop results for

the risk-return tradeoff at the individual and market level by studying individual Sharpe ratios

and the equilibrium weighted average market Sharpe ratio.

Our paper contributes results related to the industrial organization of complex asset mar-

kets and to the equilibrium pricing therein. Our IO results are as follows: First, we show

how segmentation arises due to heterogenous expertise levels. Second, the wealth distribution

of participants yields the fund size distribution. Finally, the joint distribution of wealth and

expertise determines the market’s efficiency. Equilibrium risk bearing capacity given an aggre-

gate amount of wealth and expertise is determined by how much wealth is in the hands of high

expertise investors. In terms of asset pricing results, we provide an explicit characterization of

how equilibrium required returns are determined given asset complexity parameters. We also

show how the equilibrium weighted average Sharpe Ratio is determined, and how it differs from

investor specific Sharpe Ratios.

The paper proceeds as follows. In Section 2 we review the related literature. We present

and analyze our static model in Section 3. Section 4 contains the construction and analysis of

3We use a numerical solution for market clearing. However, the solution is straightforward given our analyt-
ical solution for policy functions and distribution over individual states.
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our dynamic model, and finally Section 5 concludes. Most proofs appear in the Appendix. In

separate work (Eisfeldt et al. [2015]), we study a discrete time dynamic model with stochastic

expertise, which we use to study the impact of unanticipated aggregate shocks and to develop

quantitative results. In particular, using intuition developed in this paper, we show that ex-

pertise can act as an excess capacity-like barrier to entry, leading to interesting dynamics for

market excess returns and volatility following shocks to investor wealth and to fundamental

asset volatility.

2 Literature

Our paper contributes to a large and growing literature on segmented markets and asset pric-

ing. Relative to the existing literature, we provide a model with endogenous entry, a contin-

uous distribution of heterogeneous expertise, and a rich distribution of expert wealth that is

determined in stationary equilibrium. Thus, we have segmented markets, but allow for a par-

ticipation choice. Our market has limited risk bearing capacity, determined in part by expert

wealth, but in addition to the amount of wealth, the efficiency of the wealth distribution also

matters for asset pricing.

We group the existing literature into three main categories, namely financial constraints and

limits to arbitrage, intermediary asset pricing, and segmented market models with alternative

microfoundations to agency theory. Although our model is not one of arbitrage per se, our study

shares the goal of understanding the returns to complex assets and strategies. Our model also

shares the features of segmented markets and trading frictions with the limits to arbitrage

literature. Gromb and Vayanos [2010b] provide a recent survey of the theoretical literature on

limits to arbitrage, starting with the early work by Brennan and Schwartz [1990] and Shleifer

and Vishny [1997].4 Shleifer and Vishny [1997] emphasize that arbitrage is conducted by a

fraction of investors with specialized knowledge, but similar to He and Krishnamurthy [2012],

they focus on the effects of the agency frictions between arbitrageurs and their capital providers.

Although we do not explicitly model risks to the liability side of investors’ balance sheets, one

can interpret the shocks agents in our model face to include idiosyncratic redemptions.5

4See also Aiyagari and Gertler [1999], Froot and O’Connell [1999], Basak and Croitoru [2000], Xiong [2001],
Gromb and Vayanos [2002], Yuan [2005], Gabaix, Krishnamurthy, and Vigneron [2007], Mitchell, Pedersen,
and Pulvino [2007], Acharya, Shin, and Yorulmazer [2009], Kondor [2009], Duffie [2010], Gromb and Vayanos
[2010a], Hombert and Thesmar [2011], Edmond and Weill [2012], Mitchell and Pulvino [2012], Pasquariello
[2013], and Kondor and Vayanos [2014].

5For other models of risks stemming from redemptions and fund outflows and the resulting asset pricing
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Recently, the broader asset pricing impact of financially constrained intermediaries has

been studied in the literature on intermediary asset pricing following He and Krishnamurthy

[2012] and He and Krishnamurthy [2013].6 This literature applies results from the literature

on asset pricing with heterogenous agents, following Dumas [1989], to segmented markets with

financial constraints.7 In doing so, the intermediary asset pricing literature both connects to

empirical applications, and to the asset price dynamics which are the focus of the limits to

arbitrage literature. Finally, several papers develop alternative microfoundations to agency

theory for segmented markets. Allen and Gale [2005] provide an overview of their theory of

asset pricing based on “cash-in-the-market”. Plantin [2009] develops a model of learning by

holding. Duffie and Strulovici [2012] develop a theory of capital mobility and asset pricing

using search foundations. Glode, Green, and Lowery [2012] study asset price dynamics in a

model of financial expertise as an arms race in the presence of adverse selection. Kurlat [2013]

studies an economy with adverse selection in which buyers vary in their ability to evaluate the

quality of assets on the market, and, like us, emphasizes the distribution of expertise on the

equilibrium price of the asset. Garleanu, Panageas, and Yu [2014] derive market segmentation

endogenously from differences in participation costs. Kacperczyk, Nosal, and Stevens [2014]

construct a model of consumer wealth inequality from differences in investor sophistication.

Our model is an example of an “industry equilibrium” model in the spirit of Hopenhayn

[1992a] and Hopenhayn [1992b]. These models study the important effects of firm dynamics,

entry and exit in the heterogeneous agent framework developed in Bewley [1986]. This liter-

ature focuses in large part on explaining firm growth, and moments describing the firm size

distribution. Recent progress in the firm dynamics literature using continuous time techniques

to solve for policy functions and stationary distributions include Miao [2005], Luttmer [2007],

Gourio and Roys [2014], Moll [Forthcoming], and Achdou, Han, Lasry, Lions, and Moll [2014].

We draw on results in these papers as well as discrete time models of firm dynamics, as in recent

work by Clementi and Palazzo [2014], which emphasizes the role of selection in explaining the

observed relationships between firm age, size, and productivity. We also draw on work in the

city size literature in Gabaix [1999] and the literature on the consumer wealth distribution with

idiosyncratic risk and fiscal policy in Benhabib et al. [2014].

implications, see Berk and Green [2004], and Liu and Mello [2011].
6See also, for example, Adrian and Boyarchenko [2013]. For empirical applications, see for example, Adrian,

Etula, and Muir [Forthcoming] and Muir [2014].
7For closely related work on asset pricing with heterogeneous risk aversion and segmented markets, see also

Basak and Cuoco [1998], Kogan and Uppal [2001], Chien, Cole, and Lustig [2011], and Chien, Cole, and Lustig
[forthcoming].
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We use the the hedge fund industry, and in particular the asset backed fixed income (ABFI)

segment, for some motivating empirical moments describing size and performance. As such,

we draw from the literature on hedge funds performance and compensation.8 In particular,

we motivate our use of ABFI funds as our main example of a complex strategy using the

evidence in Duarte, Longstaff, and Yu [2006]. They provide evidence that MBS strategies

are relatively complex and earn higher returns even in comparison to other sophisticated fixed

income arbitrage strategies. Several papers provide evidence for the importance of idiosyncratic

risk in the hedge fund returns, following the idea in Merton [1987] that idiosyncratic risk will

be priced when there are costs associated with learning about or hedging a specific asset.9

Relatedly, Fung and Hsieh [1997] find that hedge fund returns have low and sometimes negative

correlation with asset class returns. Our model features investors with constant relative risk

aversion (CRRA) preferences. While we do this for tractability and parsimony to retain our

focus on the effects of the joint wealth and expertise distribution, Panageas and Westerfield

[2009] show that hedge fund compensation contracts with long horizons lead to portfolio choice

which aligns perfectly with that of a CRRA investor. Drechsler [2014] extends these results

to include variation in managers’ outside options and shows the CRRA result holds as long as

such reservation values are neither too high nor too low. These results extend the analysis of

the impact of high-water marks in Goetzmann et al. [2003].

The majority of the assets under management in the ABFI sector are mortgage backed

securities (MBS). Cash flow risk in MBS securities typically comes primarily from prepayment

risk, since the largest part of the market consists of agency securities. Gabaix, Krishnamurthy,

and Vigneron [2007] provide convincing evidence that returns are driven in large part by limits

to arbitrage.10 Recent work by Boyarchenko, Fuster, and Lucca [2014] extends these ideas and

provides evidence that prepayment model risk explains the “smile” in MBS option adjusted

spreads (OAS) and confirms that time series variation in returns is closely related to the MBS

supply relative to the capital of MBS investors.11 That idiosyncratic risk is priced in MBS

8Fung, Hsieh, Naik, and Ramadorai [2008] is a well known paper describing performance. Jagannathan,
Malakhov, and Novikov [2010] carefully correct for selection bias and smoothed returns in a study of hedge fund
performance persistence. Carlson and Steinman [2007] consider the relationship between hedge fund survival
and market conditions. In a related spirit to our work, Getmansky [2012] empirically studies the effects of size
and competition on hedge fund returns.

9See Titman and Tiu [2011] and Lee and Kim [2014]. Jurek and Stafford [Forthcoming] emphasize that
scarce and specialized knowledge may drive both hedge fund returns and put pricing.

10Importantly, they show that although prepayment risk is partly common within a class of MBS securities,
the risk in MBS investing is negatively correlated with the aggregate risks born by a representative consumer.

11See also Dunn and McConnell [1981a], Dunn and McConnell [1981b], Schwartz and Torous [1992], Stanton
[1995], Boudoukh, Richardson, Stanton, and Whitelaw [1997], Longstaff [2005], Downing, Stanton, and Wallace
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is supported by prior empirical studies. It is also consistent with the fact that different in-

vestors have different pricing and hedging models, and invest in different parts of the mortgage

space. Some funds may benefit from early prepayment, while other funds may are suffer from

early prepayment. Different mortgage assets have different direct interest rate exposure, and

investors hedge their interest rate exposures to different extents. Finally, variation in lending

standards can have opposite effects on prepayment due to default and voluntary prepayment.

We implement the “model risk” inherent in funds’ prepayment models via the variation in

idiosyncratic risk faced by investors with varying amounts of expertise.12

3 Static Model

We present a static model to build intuition about the interaction between the size and expertise

distribution of investors and equilibrium returns.

Setup Investors have constant relative risk aversion preferences over date 1 consumption,

with coefficient of relative risk aversion γ. At date 0, they are endowed with financial wealth

W and expertise X. There is a riskless asset with gross return Rf , and a risky asset with gross

returns R, which are distributed log normally. We use lower case letters to denote logs.

We assume that the log return on the risky asset for any given investor, which we denote

by r, is distributed according to r ∼ N(µ − 1
2
σ2
υ

X
, σ

2
υ

X
), given the distribution of W and X. We

denote the variance of log returns on the fundamental asset, before expertise is applied, by σ2
υ,

and call this fundamental variance, and its square root fundamental volatility. The effective

variance and volatility of an investor’s return on the risky asset then decreases as expertise X

increases, while the innovation υ itself is independent from W and X. We provide an example

microfoundation for a closely related return process in the context of our dynamic model in the

Appendix.

Investing in the complex asset implies a joint investment in a common market clearing

return, as well as a specific risk from hedging or asset specificities. We assume the specified

functional form for log return volatility for simplicity, as it allows for straightforward calcula-

tions of all expectations, and minimal parameters. It is straightforward to show that our main

[2005] for models of MBS pricing, and Agarwal, Driscoll, and Laibson [2013] for a recent model of consumer
prepayment behavior solved in closed form.

12MBS have been described as the Swiss Army knife of asset classes, providing any risk exposure one desires.
Likewise, the market for mortgage backed derivatives has been described as analogous to the heterogeneous
detritus left over from butchering a pig after the desirable parts have satisfied the demands of long-only investors.
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conclusions for the static model are robust to a family of functions σ2
υ

k0+k1X+k2X2+...
, with all

coefficients k0, k1, k2.... being non-negative. In levels, expected returns µ are the same for all

investors, regardless of their individual expertise.

Solving the Portfolio Choice Problem Using the approximation described in Campbell

and Viceira [2002a], and the associated appendix Campbell and Viceira [2002b], which relates

log individual-asset returns to log portfolio returns over short time intervals, the investor’s

optimization problem becomes:

max
θ

{
θ (µ− rf )−

γ

2
θ2σ

2
υ

X

}
(1)

where rf represents the log return on the riskless asset. In this section, for emphasis, we use

bold notation to denote equilibrium returns.13 The solution for the optimal fraction of wealth

allocated to the risky asset is:

θ∗ =
(µ− rf )
γσ2

υ

X. (2)

Thus, portfolio choice in a lognormal model with power utility resembles that of a mean variance

investor. The allocation to the risky asset is increasing in the equilibrium average excess return,

decreasing in risk aversion, and decreasing in the fundamental shock variance. Moreover, the

fraction of wealth that an investor allocates to the risky asset strictly increases with expertise.

The relationship is linear under our functional form assumptions.14

Equilibrium We now describe how the equilibrium excess return depends on the parameters

for preferences, technology, and the joint distribution of wealth and expertise. We focus on

comparative statics over the equilibrium average excess return, market level Sharpe ratio, and

individual Sharpe ratios. We normalize the mass of investors to one, define the value of the

supply of the risky asset to be S, determine the market clearing log expected return µ, and

then back out the equilibrium expected level return and therefore α. We assume that W and

X are jointly log-normally distributed. We denote the joint pdf of the log variables f(w, x),

with means and variances µw, µx, σ
2
w, and σ2

x respectively, and covariance ρw,xσwσx. Thus, an

13Because an individual investor’s return volatility depends on their expertise, for the approximation to be
good given our specification for log return volatility, we have to impose a technical restriction that the majority
of distribution of expertise X is bounded away from zero. This assumption is unnecessary if one adopts the
general functional form for volatility discussed in footnote 3.

14Without restrictions on the distribution of X, θ can be larger than one, implying borrowing at the risk free
rate.
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economy ψ is described by ψ ≡ {rf , γ, I, συ, µw, σw, µx, σx, ρw,x}. The equilibrium log expected

return µ solves the market clearing condition:

Supply ≡ S = Demand =

∫ ∫
exp(w)θ∗ (exp(x)) f(w, x) dw dx =

µ− rf
γσ2

υ

X (3)

where θ∗ (exp(x)) is the portfolio choice given in Equation (21) and X is the wealth and popu-

lation weighted average of expertise:∫ ∫
exp(w + x)f(w, x) dw dx = exp

(
1

2

(
σ2
w + σ2

x + 2ρw,xσwσx + 2µw + 2µx
))

(4)

utilizing the result for the expectation of log normally distributed variables.

Rearranging, we have:

µ− rf =

(
σ2
υ

X

)
γS. (5)

The equilibrium log expected excess return is increasing in the amount of risk relative to the

risk bearing capacity of investors. We decompose the inputs into two components. The first

term is the effective risk in the market, namely the fundamental risk σ2
υ, scaled down by the

wealth and population weighted average of expertise. The second term is the risk aversion

scaled supply of the risky asset which must be cleared. The higher is investors’ coefficient of

relative risk aversion, and the larger is the supply of the asset, the higher is the required return.

Conversely, the wealth and population weighted average of expertise, X , scales µ down due to

the positive impact of expertise on investors’ allocation to the risky asset.

Using the equilibrium log expected return µ, we can rewrite agents’ optimal portfolio allo-

cations to the risky asset as:

θ∗ =
X

X
S. (6)

This expression captures the fact that, in equilibrium, the optimal portfolio allocations to the

risky asset by an agent with expertise X turns out to be a fraction of total supply equal to

their expertise relative to the wealth and population weighted average of expertise.

The equilibrium mean of the level of the gross risky return over the level of the gross risk

free rate, α, is a monotonic transformation of µ. In particular, we show in the Appendix that

the equilibrium α is then given by:

α = exp (µ)−Rf (7)
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which gives a one to one mapping from µ to α conditional on parameters. Note also that

writing θ∗ (Equation 21) as a function of either µ or α will always yield identical equilibrium

outcomes.

Lemma 3.1 Using Equation (7) describing the equilibrium market clearing α, the following

comparative statics can be directly calculated:

1. ∂α
∂σ2
υ

= exp (µ) γS
X > 0. α increases with fundamental risk.

2. ∂α
∂γ

= exp (µ) σ2
υ

X S > 0. α increases with the coefficient of relative risk aversion.

3. ∂α
∂S

= exp (µ) σ2
υ

X γ > 0. α increases with the risky asset supply investors must absorb.

4. ∂α
∂µw

= − exp (µ) σ2
υ

X γS < 0. α decreases as aggregate wealth increases.

5. ∂α
∂µx

= − exp (µ) σ2
υ

X γS < 0. α decreases as aggregate expertise increases.

6. ∂α
∂ρw,x

= − exp (µ) σ2
υ

X γSσwσx < 0. As ρw,x increases, there is a more efficient allocation

of expertise and α decreases.

7. ∂α
∂σw

= − exp (µ) σ2
υ

X γS (σw + ρw,xσx)

• > 0 if ρw,x < −σw
σx

, i.e. if wealth and expertise are strongly negatively correlated.

• < 0 if ρw,x > −σw
σx

, i.e. if wealth and expertise are positively or only weakly negatively

correlated.

8. ∂α
∂σx

= − exp (µ) σ2
υ

X γS (σx + ρw,xσw)

• > 0 if ρw,x < − σx
σw

, i.e. if wealth and expertise are strongly negatively correlated.

• < 0 if ρw,x > − σx
σw

, i.e. if wealth and expertise are positively or only weakly negatively

correlated.

Proof. By direct calculation.

All comparative statics are intuitive. An increase in the correlation of wealth and expertise

will reduce α, as investors with more expertise account for a larger share of the wealth dis-

tribution. The effect of an increase in ρw,x on the market clearing α will be larger the larger

is amount of fundamental risk, σ2
υ, the larger is the coefficient of relative risk aversion, γ, the
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larger is the supply of the risky asset, S, the smaller is the mean of log wealth, µw, and the

smaller is the mean of log expertise, µx.

We also derive results for the equilibrium market-level and investor-specific Sharpe ratios.

The market level Sharpe ratio requires a definition appropriate for our environment. Here,

we define the equilibrium market level Sharpe ratio to be the equal-weighted cross-sectional

average of excess returns divided by the equal-weighted cross-sectional standard deviation.

Thus this market Sharpe ratio can, for example, be interpreted as the expected Sharpe ratio

for an investor “behind the veil” drawing from the distribution of possible levels of expertise,

before the investment stage of the model. This Sharpe ratio would be relevant, for example,

in a model with entry in which an investor must decide whether to enter before drawing an

expertise level from the given distribution. We then refer to what is technically the equilibrium

equally weighted market Sharpe ratio as the “Sharpe ratio” for exposition purpose:

SR =
1−Rf exp (−µ)√
E
[
exp

(
σ2
υ

X

)]
− 1

=
1−Rf exp (−µ)√∑∞

k=1
1
k!
σ2k
υ exp(−kµx + 1

2
k2σ2

x)
≈ 1−Rf exp (−µ)

συ exp(−1
2
µx + 1

4
σ2
x)
, (8)

where E denotes the cross-sectional expectation. This ratio aggregates all investor decisions

and measures the market level risk return tradeoff.15 The market-level Sharpe ratio increases

as the average log expertise µx in this economy increases, but it decreases as the cross-sectional

standard deviation of log expertise σ2
x increases.

Lemma 3.2 Using Equation (8) describing the equilibrium market clearing equally weighted

Sharpe ratio, the following comparative statics can be directly calculated:

1. Let η denote any parameter η ∈ {γ, S, µw, σw, ρw,x}.
Then, Sign

(
∂(SR)
∂η

)
= Sign

(
∂α
∂η

)
.

2. The signs for comparative statics with respect to parameters η̂ ∈ {σ2
υ, µx, σx}, are indeter-

minate.

Proof. By direct calculation, see Appendix.

15See Appendix for derivation. We also compute and analyze the market value weighted Sharpe ratio in the
Appendix.
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Expected returns rise proportionally relative to the volatility of the risky asset return in

our static model, so that the Sharpe ratio improves with any parameter change that increases

α. Thus, we confirm that, at the market level, parameter changes which lead to an increase

in the equilibrium expected excess return in fact lead to better investment opportunities given

the market risk in equilibrium.

In our model, each investor confronts a different risk-return trade-off. Since the volatility

of log returns depends on individual investors’ expertise, an observed increase in the market

Sharpe ratio does not necessarily imply a higher Sharpe ratio for every investor in the market.

Moreover, even if the Sharpe ratio improves for each agent individually, the magnitude of

the improvement an individual investor faces will not, in general, coincide with the market

improvement. To see this, consider the investor-specific Sharpe ratio. For an investor with

wealth W and expertise X, we show in the Appendix that this investor’s Sharpe ratio is given

by:

SR (X) =
1−Rf exp (−µ)√

exp
(
σ2
υ

X

)
− 1

. (9)

Equation (9) clearly shows that the model can deliver considerable cross-sectional dispersion

in investor-specific Sharpe ratios. Investors with very low effective risk, σ2
υ

X
, face significantly

higher Sharpe ratios than their counterparts with low expertise. We can determine the signs

of the following comparative statics:

Lemma 3.3 Using Equation (9) describing the investor-specific Sharpe ratio, and Equation

(21) describing the portfolio allocation θ∗, the following comparative statics can be directly

calculated. Let η denote any parameter η ∈ {γ, S, µw, σw, ρw,x}.16

1. ∂SR(X)
∂X

> 0. Higher expertise generates lower effective risk, and a correspondingly higher

individual Sharpe ratio.

2. Sign
(
∂SR(X)
∂η

)
= Sign

(
∂α
∂η

)
= Sign

(
∂(SR)
∂η

)
. All investor-specific Sharpe ratios co-move

with the equilibrium excess return and the market level equilibrium Sharpe ratio.

3. Sign
(
∂V ar(SR(X))

∂η

)
= Sign

(
∂α
∂η

)
= Sign

(
∂(SR)
∂η

)
. Whenever a parameter change in-

16Derivatives with respect to µx and σx follow the same formulas as those that support parts 2 to 5 of lemma
3.3. However, the changes are not comparable to the market Sharpe ratio, as we can’t determine the signs in
lemma 3.2, part 2. Derivatives with respect to σ2

υ cannot be signed generally.
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creases the market level equilibrium Sharpe ratio, it leads to a larger cross-sectional dis-

persion in the investor-specific Sharpe ratio.

4. Sign
(
∂2SR(X)
∂η∂X

)
= Sign

(
∂SR(X)
∂η

)
= Sign

(
∂α
∂η

)
= Sign

(
∂(SR)
∂η

)
.

Whenever a parameter change increases the investor-specific Sharpe ratio, it leads to a

larger increase for high expertise investors relative to low expertise investors.

5. Sign
(
∂2θ∗(X)
∂η∂X

)
= Sign

(
∂SR(X)
∂η

)
= Sign

(
∂α
∂η

)
= Sign

(
∂(SR)
∂η

)
.17

Whenever a parameter change increases the investor-specific portfolio allocation, it leads

to a larger increase for high expertise investors relative to low expertise investors.

6. ∃X̄ > X > 0 such that ∀X > X̄, ∂SR(X)
∂σ2
υ

> 0, and ∀X < X, ∂SR(X)
∂σ2
υ

< 0. An increase in

the fundamental risk generates a higher Sharpe ratio for high expertise investors and a

lower Sharpe ratio for low expertise investors.

Proof. By direct calculation. See Appendix.

Lemma (3.3) has rich implications. First, we emphasize the co-movement between cross

sectional variation in investor-specific Sharpe ratios and the level of the market Sharpe ratio.

Any increase in the market-level Sharpe ratio will also increase the cross-sectional dispersion

in Sharpe ratios. Furthermore, because an increase in the market level Sharpe ratio improves

investment opportunities for high expertise investors by more than for low expertise investors,

such an increase accordingly increases their allocation to the risky asset θ∗ by more. Thus, an

improvement in the market-level risk return tradeoff in large part reflects the improved risk-

return trade-off faced by high expertise investors, and not by their low expertise counterparts.

Any parameter change which increases the market level Sharpe ratio increases the investor

specific Sharpe ratio for high expertise by more, and increases the influence of high expertise

investors’ Sharpe ratios on the market level risk return tradeoff. In our model, measured

improvements in the aggregate Sharpe ratio are a misleading indicator of improvements in

individual investors’ risk-return tradeoff, and can indeed more accurately reflect changes in the

Sharpe ratio of higher expertise investors. The converse is also true.

Furthermore, part 6 of Lemma (3.3) states that changes to fundamental risk can lead to

changes in individual Sharpe ratios that vary in sign. For example, if σ2
υ increases, all investors

face the same increase in the equilibrium excess return, but investors with high expertise face

17Except for γ, where ∂2θ∗(X)
∂γ∂X = 0.
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a considerably smaller increase in risk. Thus, more complex assets with higher σ2
υ can have

higher market level Sharpe ratios but lower demand from non-experts. We also emphasize that

because an increase in fundamental risk improves the investor-specific Sharpe ratio for some

investors but not others, in a dynamic model a shock to fundamental risk can lead potentially

lead to variation in investors’ participation decisions. In other words, an increase in risk which

improves the market level equally weighted Sharpe ratio may still lead low expertise investors

to exit, or not to enter.

4 Dynamic Model

4.1 Preferences, Endowments, & Technologies

We study a model with a continuum of investors of measure one, with CRRA utility functions

over consumption:

u (c) =
c1−γ

1− γ
.

Investment Technology Investors are endowed with a level of expertise which varies in the

cross section, but is fixed for each agent over time. Each individual investor is born with a

fixed expertise level, x, drawn from a distribution with pdf λ(x), and cdf Λ(x).

Investors can choose to be experts, and have access to the complex risky asset, or non-

experts, who can only invest in the risk free asset. Each investor’s complex risky asset delivers

a stochastic return which follows a geometric Brownian motion:

dP (t, s)

P (t, s)
= [rf + α (s)] ds+ σ (x) dB (t, s) (10)

where α (s) is the common excess return on the risky asset and B (t, s) is a standard Brownian

motion which is investor specific and i.i.d. in the cross section. The volatility of the risky

technology σ(x) decreases in the investor’s level of expertise x, i.e. ∂σ(x)
∂x

< 0. We require that

limx→∞ σ(x) = σ > 0. The lower bound on volatility, σ, represents complex asset risk that

cannot be eliminated even by the agents with the greatest expertise, and it guarantees that the

growth rate of wealth is finite.

In order to invest in the risky asset, an investor must also jointly invest in a technology with a

zero mean return and an idiosyncratic shock. This technology represents each investor’s specific

hedging and financing technologies, as well as the unique features of their particular asset.
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According to its general definition, α cannot be generated by bearing systematic risk. However,

capturing α is risky because it requires a model and execution, and each investor’s model and

execution technology is unique. For example, hedging portfolios tend to vary substantially

across different investors in the same asset class.18

To be an expert, an investor must pay the entry cost Fnx to set up their specific technology

for investing in the complex risky asset. Experts must also pay a maintenance cost, Fxx to

maintain continued access to the risky technology. We consider the simplest case in which both

the entry and maintenance costs are proportional to wealth:

Fnx = fnxw,

Fxx = fxxw,

which yields value functions which are homogeneous in wealth.

Optimization We first describe the Bellman equations for non-experts and experts respec-

tively, and characterize their value functions, as well as the associated optimal policy functions.

With the value functions of experts and non-experts in hand, we then characterize the entry

decision.

We begin with non-experts, who can only invest in the risk free asset. Let w (t, s) denote

the wealth of investors at time s with initial wealth Wt at time t. The riskless asset delivers a

fixed return of rf . All investors choose consumption, and an optimal stopping, or entry time

according to the Bellman Equation:

V n (w (t, s) , x) = max
cn(t,s),τ

E

[∫ τ

t

e−ρ(s−t)u (cn (t, s)) ds+ e−ρ(τ−t)V x (w (t, s)− Fnx, x)

]
(11)

s.t. dw (t, s) = (rfw (t, s)− cn (t, s)) ds (12)

where ρ is their subjective discount factor, c (t, s) is consumption at time s, Fnx is the entry

cost, and τ is the optimal entry date.

Under the assumptions of linear entry and maintenance costs, and expertise which is fixed

over time, the optimal entry date in a stationary equilibrium will be either immediately or never.

18In MBS, there is no agreed upon method to hedge mortgage duration risk, though most all active investors
do so. Some hedge according to empirical durations, using various estimation periods and rebalancing periods.
Others hedge according to the sensitivity of MBS prices yield curve shifts using their own (widely varying)
proprietary model of MBS prepayments and prices.
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Thus, assuming an initial stationary equilibrium, investors who choose an infinite stopping time

are then non-experts, and investors who choose a stopping time τ = t are experts.19

Experts allocate their wealth between current consumption, a risky asset, and a riskless

asset. They also choose an optimal stopping time to exit the market.

V x (w (t, s) , x) = max
cx(t,s),T,θ(x,t,s)

E
[∫ T

t

e−ρ(s−t)u (cx (t, s)) ds+ e−ρ(T−t)V n (w (t, s) , x)

]
(13)

s.t. dw (t, s) = [w (t, s) (rf + θ (x, t, s)α (t, s))− cx (t, s)− Fxx] ds (14)

+w (t, s) θ (x, t, s)σ (x) dB (t, s) ,

where α (s) is the equilibrium excess return on the risky asset, θ (x, t, s) is the portfolio allocation

to the risky asset by investors with expertise level x at time s, c (t, s) is consumption, Fxx is

the maintenance cost, and T is the optimal exit date.

We include exit for completeness. However, exit will not occur in this homogeneous model

with fixed expertise.

Proposition 4.1 Value and Policy Functions: The value functions are given by

V x (w (t, s) , x) = yx (x, t, s)
w (t, s)1−γ

1− γ
(15)

V n (w (t, s) , x) = yn (x, t, s)
w (t, s)1−γ

1− γ
(16)

where yx (x) and yn (x) are given by:

yx (x) =

[
(γ − 1) (rf − fxx) + ρ

γ
+

(γ − 1)α2

2γ2σ2 (x)

]−γ
and (17)

yn (x) =

[
(γ − 1) rf + ρ

γ

]−γ
. (18)

The optimal policy functions cx (x, t, s) , cn (t, s) , and θ (x) are given by:

cx (x, t, s) = [yx (x)]−
1
γ w (t, s) , (19)

cn (t, s) = [yn (x)]−
1
γ w (t, s) and (20)

θ (x, t, s) =
α(t, s)

γσ2 (x)
. (21)

19Outside of the stationary equilibrium, because α is not constant, both entry and exit are possible.
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Furthermore, the wealth of experts evolves according to the law of motion:

dw (t, s)

w (t, s)
=

(
rf − fxx − ρ

γ
+

(γ + 1)α2 (t, s)

2γ2σ2 (x)

)
dt+

α (t, s)

γσ (x)
dB (t, s) (22)

Finally, investors choose to be experts if the excess return earned per unit of wealth exceeds the

maintenance cost per unit of wealth:

α2 (t, s)

2σ2 (x) γ
≥ fxx. (23)

We prove this Proposition by guess and verify in the Appendix. Note that the law of

motion for wealth is a sort of weighted average of the return to the risky and riskless assets, as

determined by portfolio choice, net of consumption. The drift and volatility of investors’ wealth

are increasing in the allocation to the risky asset. This mechanism has important implications

for the wealth distribution in the stationary equilibrium of our model.

4.2 The Distribution(s) of Expert Wealth

The total amount of wealth allocated to the complex risky asset, as well as the distribution

of expert wealth across expertise levels, are key aggregate state variables for the the first and

second moments of the equilibrium returns to the complex risky asset. Once the entry decision

has been made, given that we do not clear the market for the riskless asset, the wealth of non-

experts is irrelevant for the returns to the complex risky asset. We solve for the cross-sectional

distribution of expert wealth in a stationary equilibrium of our model. Given that expertise is

fixed over time for each investor, constructing the wealth distribution at each expertise level is

sufficient to obtain the cross-sectional joint distribution of wealth and expertise.

First, we note that in order to construct a stationary equilibrium given that experts’ wealth

on average grows over time, it is convenient to study the ratio of individual wealth to the mean

wealth of agents with highest expertise, E [w|x̄ (t, s)].

z (t, s) =
w (t, s)

E [w|x̄ (t, s)]
.

Next, note that the law of motion for the mean wealth of agents with a given level of expertise

x is given by

dEw|x (t, s) ≡ [g (x)] dt.
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where g (x) will be determined in equilibrium. Define the average growth rate amongst agents

with the “highest” level of expertise as g(x̄) ≡ supx g(x). Then, the ratio z (t, s) follows a

geometric Brownian motion given by

dz (t, s)

z (t, s)
=

(
rf − fxx − ρ

γ
+

(γ + 1)α2 (t, s)

2γ2σ2 (x)
− g (x̄)

)
dt+

α (t, s)

γσ (x)
dB (t, s) , (24)

where
rf−fxx−ρ

γ
+ (γ+1)α2(t)

2γ2σ2(x)
− g (x̄) < 0 represents the negative drift, or growth rate.

Let the cross-sectional p.d.f. of expert investors’ wealth and expertise at time t be denoted

by φx (z, x, t) . Without additional assumptions, the relative wealth of lower expertise agents

will shrink to zero. Two methods are commonly used to generate a stationary distribution.

The first, for example used in Benhabib et al. [2014], is to employ a life cycle model, or Poisson

elimination of agents. The second, employed by Gabaix [1999], is to introduce a reflecting

barrier at a minimum wealth share, zmin.20 We adopt the assumption of a minimum wealth

share because it leads to a more elegant expression for the wealth distribution. Moreover, for

asset pricing, only the higher ends of the wealth distribution are quantitatively relevant, so this

elegance comes at a low cost. We will show that the stationary distribution of wealth at each

expertise level will be a Pareto distribution.21 Note that the reflecting barrier at zmin implies

that the growth rate of any individual agent, even those with the highest level of expertise, will

grow more slowly than the mean wealth of the highest expertise agents.

Since the reflecting boundary mainly affects low wealth investors, decisions near the bound-

ary matter little for equilibrium pricing. However, we adopt an interpretation of exit and entry

at zmin which ensures that policies are not distorted there. Then, since both time and state

variables are continuous in our model, if policies are not distorted at zmin, then they will not be

distorted elsewhere. The strategy we employ is to ensure that the value at zmin from adopting

the optimal policy functions under non-reflecting wealth share dynamics is equal to the value

of adopting those policies given that with some probability the investor will be punished by

being forced to exit, and with some probability the investor will be rewarded by being able to

20Gabaix [1999] constructs a model of the city size distribution, and thus his share variable represents relative
population shares. See also the Appendix of that paper for a related method of constructing a stationary
distribution using a Kesten [1973] process, which introduces a random shock with a positive mean to normalized
city size.

21Adopting the assumption of Poisson death with a fixed initial wealth, for example, would instead lead to a
double Pareto distribution, with a cutoff at the initial value of wealth. For example, see Benhabib et al. [2014]
for the wealth distribution under the alternative assumption of Poisson elimination in a closely related model.
This is also the assumption we adopt in our quantitative study in Eisfeldt et al. [2015]. On the other hand,
initializing agents according to the stationary distribution involves solving a challenging fixed point problem.
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infuse funds themselves, or by receiving new external funds. In the case of exit, we assume the

investor is replaced by a new entrant with wealth share zmin and the same level of expertise x

as the exiting agent.22

We derive the Kolmogorov forward equations describing the evolution of the wealth distri-

bution, taking α(t) as given, as follows:23

∂tφ
x (z, x, t) =− ∂z

((
z(rf + θ (x, t)α (t, s))− [yx (x)]−

1
γ − fxx − g (x̄)

)
φx (z, x, t)

)
(25)

+
1

2
∂zz
(
[zθ (x, t)σ(x)]2 φx (z, x, t)

)
= −∂z

[(
rf − fxx − ρ

γ
+

(γ + 1)α2 (t, s)

2γ2σ2 (x)
− g (x̄)

)
φx (z, x, t)

]
+

1

2
∂zz

[(
z
α (t, s)

γσ (x)

)2

φx (z, x, t)

]
.

We then study the stationary distribution of wealth shares, in which ∂tφ
x (z, x, t) = 0. We take

as given, for now, that α(t, s) will be constant, as in the stationary equilibrium we define in

the following section. This will be true given a stationary distribution over investors’ individ-

ual state variables. A stationary distribution of wealth shares φx (z, x) satisfies the following

equation:

0 = −∂z
[(

rf − fxx − ρ
γ

+
(γ + 1)α2

2γ2σ2 (x)
− g (x̄)

)
φx (z, x)

]
(26)

+
1

2
∂zz

[(
z

α

γσ (x)

)2

φx (z, x)

]
.

We use guess and verify to show that the stationary distribution of wealth shares at each

level of expertise is given by a Pareto distribution with an expertise specific tail parameter.

This tail parameter, which we denote by β, is determined by the drift and volatility of the

expertise specific law of motion for wealth shares. Intuitively, the larger the drift and volatility

of the expertise specific wealth process, the fatter the tail of the wealth distribution at that

level of expertise will be.

Proposition 4.2 The stationary distribution of wealth shares φx (z, x) has the following form:

φ(z, x) ∝ C(x)z−β(x)−1,

22We discuss the interpretation we adopt in detail in the Appendix.
23See Dixit and Pindyck [1994] for a heuristic derivation, or Karlin and Taylor [1981] for more detail.
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where

β(x) = C1
σ2 (x)

α2
− γ ≥ 1,

C1 = 2γ (fxx + ρ− rf + γg (x̄)) ,

C(x) =
1∫
z−βdz

=
C1

σ2(x)
α2 − γ

z
−C1

σ2(x)

α2
+γ

min

.

See the Appendix for the Proof, where we also show that, in the stationary distribution, β > 1,

which ensures a finite integral, and confirms that the distribution satisfies stationarity. The

following Corollary, which we also prove in the Appendix, gives the tail parameters for the

highest expertise agents, as well as all other investors.

Corollary 4.1 For the highest expertise agents, we have

β (x̄) =
1

1− zmin/z̄
= C1

σ2 (x̄)

α2
− γ

where z̄ is mean of normalized wealth of experts with highest expertise,

z̄ =

∫ ∞
zmin

zφ(z, x̄)dz = zmin

[
1 +

1

β (x̄)− 1

]
and

g (x̄) =
rf − fxx − ρ

γ
+

α2

2γσ2 (x̄)
+

α2

2γ2σ2 (x̄)

1

1− zmin/z̄

For all other expertise levels, we have

β (x) =

(
γ +

zmin/z̄

1− zmin/z̄

)
σ2 (x)

σ2 (x̄)
− γ > 1. (27)

The parameter β controls the tail of each expertise specific wealth distribution. The smaller

is β, the more slowly the distribution decays, and the fatter is the upper tail. Clearly, β is an

increasing function of risk aversion, γ, and an increasing function of expertise level volatility,

σ (x). The dependence of the tail parameter on expertise is given by σ2(x)
σ2(x̄)

. Since expertise-

specific effective volatility σ(x) is decreasing in x, the wealth distribution of experts with

a higher level of fixed expertise has a fatter tail. Investors with higher expertise allocate

more wealth to the risky asset, which increases the mean and volatility of their wealth growth

21



rate. Both a higher drift, and a wider distribution of shocks, lead to a fatter upper tail

for wealth. Moreover, equation (27) clearly shows that if the relation between expertise and

effective volatility is steeper, indicating a more complex asset, then the difference in the size of

the right tails of the wealth distribution across expertise levels increases. We can also measure

the degree of wealth inequality within each expertise level as 1
β(x)

. High expertise levels exhibit

greater size “inequality”, and again, if the relation between expertise and effective volatility is

steeper, indicating a more complex asset, then the difference in size inequality within expertise

levels increases.

It is intuitive that investing more in the risky asset leads to a fatter tailed wealth distribution.

However, perhaps surprisingly, as Lemma 4.1 illustrates, not every parameter which increases

difference in the fraction of wealth allocated to the risky asset leads to an increase in the

degree of fat tails of the expertise specific wealth distributions. We show in Lemma 4.1 that,

while differences in portfolio choice driven by differences in effective volatilities lead to greater

differences in decay parameters, this is not true for variation in portfolio choice driven by higher

excess returns or lower risk aversion. See the Appendix for the proof.

Lemma 4.1 Relation Between θ (x) and β (x)

Consider two level of expertise, xmin and xmax, we have

θ (xmax)− θ (xmin) =
α

γ

σ2 (xmin)− σ2 (xmax)

σ2 (xmax)σ2 (xmin)
,

and

β (xmax)− β (xmin) = 2γ2 (fxx + r − rf + γg (x̄))
σ2 (xmax)σ2 (xmin)

α3
[θ (xmin)− θ (xmax)] .

If a larger difference in portfolio choice is due to either a higher excess return or a lower risk

aversion, the dispersion in β is smaller. If it is due to an increase in the difference in effective

volatilities, then the difference in β’s is larger.

4.3 Aggregation and Stationary Equilibrium

In this section, we define a stationary equilibrium, and state the condition which determines

the market clearing α in a stationary equilibrium. Slightly abusing notation by suppressing

dependence on the distribution of wealth and expertise, we define aggregate investment in the
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complex risky asset to be I, given each sum of expertise level investment I(x) ∀x, where:

I =

∫
λ (x) I (x) dx. (28)

We first define a stationary equilibrium. In order to ensure that the supply of the complex

risky asset does not become negligible as investor wealth grows, we assume that the supply grows

proportionally to the mean wealth of the highest expertise investors. That is, we assume:

S (t) = Sg (x̄) t.

For convenience, we assume that the support of expertise is bounded above by x̄, although

most of our results only require that σ(x) satisfies limx→∞ σ(x) = σ > 0.

Definition 4.1 A stationary equilibrium consists of a market clearing α, policy functions for

all investors, and a stationary distribution over investor types i ∈ {x, n}, expertise levels x,

and wealth shares z, φ(i, z, x, t), such that given an initial wealth distribution, an expertise

distribution λ(x), and parameters {γ, ρ, S, rf , fnx, fxx, συ} the economy satisfies:

1. Investor optimality: Investors choose participation in the complex risky asset market ac-

cording to Equation (23), as well as optimal consumption and portfolio choices

{cn (t) , c (x, t) , θ (x, t)}∞t=0 according to Equations (19)-(21), such that their utilities are

maximized.

2. Market clearing: The equilibrium market clearing α is determined by equating supply and

demand:

S (t) =

∫
λ (x, t) θ (x, t) (W (x, t)− c (x, t)) dx.

In a stationary equilibrium, we have:

I ≡
∫
λ (x) I (x) dx = S, (29)

Define Z (x) to be the total expertise level wealth share,

Z (x) = zmin

(
1 +

1

β(x)− 1

)
.

Then, define I (x) to be the detrended total expertise level investment in the complex risky
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asset, namely,

I (x) =
α

γσ2 (x)

(
1− [yx (x)]−

1
γ

)
Z (x) ,

=
α

γσ2 (x)

[
− (γ − 1) (rf − fxx) + γ − ρ

γ
− (γ − 1)α2

2γ2σ2 (x)

]
Z (x) . (30)

3. The distribution over all individual state variables is stationary, i.e. ∂tφ (i, z, x, t) = 0.

4.4 Asset Pricing Results

With policy functions, stationary distributions, and the equilibrium definition in hand, we turn

to our asset pricing results. We begin by studying comparative statics over the equilibrium

market clearing α. Next, we analyze individual Sharpe ratios. Again, we emphasize hetero-

geneity across investors with different levels of expertise in changes in the risk return tradeoff

as fundamental volatility changes. Finally, we study market level Sharpe ratios, with a focus

on the effects of the intensive and extensive margins of participation by investors with hetero-

geneous expertise. We focus mainly on the effect of changes in fundamental volatility in our

analytical results.

Investor Demand, Aggregate Demand, and Equilibrium α We first describe the com-

parative statics for demand conditional on investors’ expertise levels in Lemma 4.2.

Lemma 4.2 Using equation 30 for investor demand conditional on expertise, x, we have fol-

lowing comparative statics. As long as the consumption share of the highest expertise agent is

not too high, for example assuming the sufficient condition

yx (x̄) <
1

2
,

we have that the following will hold ∀x:

1. ∂I(x)
∂d

> 0, where d = α2

σ2(x)

2. ∂I(x)
∂α

> 0

3. ∂I(x)
∂συ

< 0
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4. ∂I(x)
∂γ

< 0

If we have that yx (x̄) < 1
1+β(β−1)

, then we also have:

5. ∂I(x)
∂fxx

< 0

Demand for the risky asset at each level of expertise is increasing in the squared investor specific

Sharpe ratio, and it is increasing in α. Demand is decreasing in fundamental volatility, risk

aversion, and, as long as the consumption share of the highest expertise agent is not too high,

investor specific demand is decreasing in the maintenance cost. The reason that a restriction

on consumption of the highest expertise investors is sufficient is because such a condition rules

out the case in which wealth effects from improved investment opportunities are too strong for

the investors with the best investment opportunities.

With expertise level total demands in hand, we can construct comparative statics for ag-

gregate demand. We cannot express the equilibrium excess return in closed form. However,

the following Proposition shows that the equilibrium excess return, α, and aggregate demand,

I, form a bijection. This uniqueness result in turn ensures that α can be numerically solved for

as the unique fixed point to equation (29).

Proposition 4.3 Aggregate market demand for the complex risky asset is an increasing func-

tion of the excess return, α, and α and I form a bijection. Mathematically,

∂I

∂α
> 0,

as long as

yx (x̄) <
1

3
,

that is, if the consumption of even the highest expertise investors is less than a third of their

total wealth.

The condition in Proposition 4.3 is stronger than what is needed. The Appendix gives some

weaker conditions, along with a proof.

Proposition 4.4 provides comparative statics over the aggregate demand for the complex risky

asset, I. Using the result in Proposition 4.3, these comparative statics also hold for α. The

proof, as well as weaker conditions for the results (but with longer expressions), appear in the

Appendix.
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Proposition 4.4 Using the market clearing condition, we have following comparative statics

hold: As long as:

yx (x̄) <
1

2
,

we have that:

1. ∂I
∂συ

< 0, thus α is an increasing function of fundamental risk

2. ∂I
∂γ
< 0, thus α is an increasing function of risk aversion

If we have that yx (x̄) < 1
1+β(β−1)

, then we also have:

3. ∂I
∂fxx

< 0, thus α is an increasing function of the maintenance cost.

Thus, demand for the risky asset is decreasing in fundamental volatility, risk aversion, and

the maintenance cost. As a result, α is increasing in fundamental volatility, risk aversion, and

the maintenance cost. We argue that an increase in these parameters proxies for greater asset

complexity, and thus that our model predicts that α will be higher in more complex asset

markets.

We now turn to the effect of the efficiency of the joint distribution of wealth and expertise

on equilibrium pricing. In particular, we demonstrate that the equilibrium required excess

return on the complex risky asset is decreasing in the amount of wealth commanded by agents

with higher levels of expertise. The wealth distribution at each expertise level is a Pareto

distribution with an expertise specific tail parameter. By shifting the distribution of expertise

rightward, leading to a new distribution with a relatively larger fraction of higher expertise

investors, relatively more wealth will reside with agents with higher expertise. Thus, with any

rightward shift, the joint distribution of wealth and expertise becomes more efficient. Moreover,

because the wealth distribution at higher expertise levels exhibits fatter right tails, there is an

additional direct effect on overall wealth from a rightward shift in the distribution of expertise.

Accordingly, Proposition 4.5 shows that if the density of experts shifts to the right, then

demand for the complex risky asset will increase, and the required equilibrium excess return

will decrease. The equilibrium excess return is decreasing in the amount of wealth which resides

in the hands of agents with higher expertise. Note that this result can also be interpreted to

state that in asset markets in which higher levels of expertise are more widespread, or less rare,

equilibrium required returns will be lower. We argue that the scarcity of relevant expertise is

increasing with asset complexity, again implying a higher α in more complex markets. The

proof appears in the Appendix.
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Proposition 4.5 If ∂σ(x)
∂x

< 0, and Λ1 exhibits first-order stochastic dominance over Λ2, I (Λ1) ≥
I (Λ2) . As a result α(Λ1) < α(Λ2).

Investor Specific and Market Level Sharpe ratios With the analysis of equilibrium

excess returns in hand, we now turn to the equilibrium risk-return tradeoff at the investor

and market level as described by the investor-specific, and market level Sharpe ratios. As in

the static model, at the market level we define both the equally weighted and value weighted

Sharpe ratios, but focus on the equally weighted Sharpe ratio in our analysis. In addition to

offering cleaner comparative statics because it does not depend on investor portfolio choices

and market shares, the equally weighted Sharpe ratio represents the expected Sharpe ratio that

an investor who could pay a cost to draw from the expertise distribution above the entry cutoff

would earn. In that sense, it is the “expected Sharpe ratio”. Note that the Sharpe ratio for

non-experts is not defined.

Given the excess return on the risky asset, we define the investor-specific Sharpe Ratio as:

SR (x) =
α

σ (x)
.

We provide results for how investor-specific Sharpe ratios change as fundamental volatility

changes under the three possible cases for the elasticity of investor specific risk with respect to

fundamental volatility in Proposition 4.6. The sign of this elasticity is a key determinant of

our Sharpe ratio results.

Proposition 4.6 The comparative statics for the investor-specific Sharpe ratios with respect to

fundamental volatility depend on which of the three possible cases for the elasticity of investor-

specific risk with respect to fundamental volatility applies:

1. Case 1: If ∂ log σ(x)
∂ log συ

is a constant, that is

∂ ∂ log σ(x)
∂ log συ

∂x
= 0,

we must have that SR (x) is either an increasing or a decreasing function of fundamental

risk for all expertise levels.
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2. Case 2: If ∂ log σ(x)
∂ log συ

is a decreasing function of expertise, that is

∂ ∂ log σ(x)
∂ log συ

∂x
< 0,

then there is a cutoff level x∗, such that for all x < x∗, we have ∂SR(x)
∂συ

< 0; and for all

x > x∗, we have ∂SR(x)
∂συ

> 0.

3. Case 3: If ∂ log σ(x)
∂ log συ

is an increasing function of expertise, that is

∂ ∂ log σ(x)
∂ log συ

∂x
> 0,

there is a cutoff level x∗, such that for all x < x∗, we have ∂SR(x)
∂συ

> 0; and for all x > x∗,

we have ∂SR(x)
∂συ

< 0. Further, x∗ exists if for any small ε < 10−6

(0, ε) ⊆
{
∂ log σ (x)

∂ log συ
| for all x

}
⊆ [0,∞).

Proposition 4.6 demonstrates that the effect of an increase in fundamental volatility on

individual Sharpe ratios varies in the cross section, except in Case 1. The intuition is that

the change in investors’ Sharpe ratios depends on the percentage change in α relative to the

percentage change in effective volatility. The change in α is aggregate, the same for all investors.

So, the changes in individual Sharpe ratios with respect to changes in fundamental volatility

depend on the percentage changes in effective volatility relative to the percentage change in

fundamental volatility. If this elasticity is the same for all investors, then the percentage change

in α relative to the percentage change in effective volatility is the same for all investors. If this

elasticity is declining in expertise, so that higher expertise investors can weather an increase

in fundamental volatility better, then Sharpe ratios increase above a cutoff level of expertise

and decrease below. This case is interesting if more complex assets have higher fundamental

volatility because it can explain reduced participation despite relatively higher excess returns.

Note that the static model uses a functional form that satisfies Case 2, as shown in Lemma

3.3, part 6. Finally, if the elasticity of effective volatility with respect to fundamental volatility

is increasing in expertise, then Sharpe ratios increase below a cutoff level of expertise and

decrease above as fundamental volatility increases. This case is interesting if one interprets the

increase in fundamental volatility as coming from a change in the asset which hurts incumbent
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higher expertise agents worse than potential new entrants. Moreover, comparative statics over

fundamental volatility have large pricing effects in this case, since higher expertise agents tend

hold a large share of the asset.

We now turn to the market level Sharpe ratio. We define the equally weighted market

equilibrium Sharpe ratio as:

SRew = E

[
α

σ (x)
| α2

σ2 (x)
≥ 2γfxx

]
.

We show in the Appendix that the value weighted market equilibrium Sharpe ratio is given by:

SRvw = E

[
θ (z − c)

I

α

σ (x)
| α2

σ2 (x)
≥ 2γfxx

]
=

α

γI
E

[
1− [yx (x)]−

1
γ

σ3 (x)
Z (x) | α2

σ2 (x)
≥ 2γfxx

]
.

We focus on comparative statics for the equally weighted market equilibrium Sharpe ratio

for simplicity. We emphasize two inputs into the market level risk return tradeoff. First,

incumbents’ individual Sharpe ratios change. Second, as equilibrium α changes, participation

also changes. We begin by describing results for bounds on the elasticity of α with respect to

changes in fundamental volatility, and the implications of these bounds for participation. First,

we show that the percentage change in α has to be large enough to at least satisfy the investors

whose risk-return tradeoff deteriorates the least as fundamental volatility increases.

Lemma 4.3 In the equilibrium, we have

∂α/α

∂συ/συ
> lσυinf ,

where lσυinf is the lowest elasticity of the effective volatility with respect to fundamental volatility

lσυinf ≡ inf

{
∂ log σ (x)

∂ log συ
| α2

2σ2 (x) γ
≥ fxx

}
.

Next, we discuss comparative statics for the equally weighed market equilibrium Sharpe

ratio. Our results depend both on which case from Proposition 4.6 applies, and on whether

participation increases or decreases. We begin by showing that the equally weighted market

equilibrium Sharpe ratio is increasing with fundamental volatility in Case 1 of Proposition 4.6,
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in general. In Case 2, a sufficient condition for the market Sharpe ratio to increase with funda-

mental volatility is a constraint on the difference between the highest and lowest elasticities of

effective volatility with respect to fundamental volatility. In Proposition 4.8 we show that the

same condition implies that participation increases as fundamental volatility increases in Case

2 of Proposition 4.6. This condition is not necessary, however, if participation decreases. It is

also possible that participation declines and the market Sharpe Ratio increases as fundamental

volatility increases. We discuss decreased participation in Proposition 4.9. And, we show that

in our numerical example for Case 2, participation declines, and Sharpe ratios increase.

Proposition 4.7 The equally weighted market Sharpe Ratio is increasing with fundamental

risk in general equilibrium, i.e.,
∂SRew

∂συ
> 0,

if:

1.
∂
∂ log σ(x)
∂ log συ

∂x
= 0, (Proposition 4.6 Case 1) or

2.
∂
∂ log σ(x)
∂ log συ

∂x
< 0 (Proposition 4.6 Case 2) and lσυsup <

2β(x)
β(x)+1

lσυinf , where

lσυsup = sup

{
∂ log σ (x)

∂ log συ
| α2

2σ2 (x) γ
≥ fxx

}

We now show conditions under which participation increases, i.e. under which the cutoff

level of expertise for participation x declines, as fundamental volatility increases.

Proposition 4.8 Define the entry cutoff x,

x = σ−1

(
α√

2γfxx

)
,

where σ−1 (·) is the inverse function of σ (x) . We have that participation increases with funda-

mental volatility,
∂x

∂συ
< 0

if the following conditions hold

1.
∂
∂ log σ(x)
∂ log συ

∂x
≥ 0, (Proposition 4.6 Cases 1 or 3) or
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2.
∂
∂ log σ(x)
∂ log συ

∂x
< 0, (Proposition 4.6 Case 2) and lσυsup <

2β(x)
β(x)+1

lσυinf where

lσυsup = sup

{
∂ log σ (x)

∂ log συ
| α2

2σ2 (x) γ
≥ fxx

}
.

Proposition 4.8 shows that participation increases in Cases 1 and 3 as fundamental volatility

increases. The reason is that demand for the complex asset by incumbent experts declines, and

new wealth must be brought into the market to clear the fixed supply. However, in Case 2,

it is possible that because higher expertise agents’ risk-return tradeoff deteriorates by less as

fundamental volatility increases, that participation declines. This can be seen in the condition

for increased participation in Case 2, which requires a very small difference between the highest

and lowest elasticities, since β ≈ 1, and we confirm this formally in Proposition 4.9.

Corollary 4.2 If participation increases in Case 1 or Case 2, it must be that the Sharpe ratio

for all participating investors improves. Further, if all individual Sharpe ratios improve, the

equally weighed market Sharpe ratio also improves.

The proof for Corollary 4.2 follows directly from the condition defining x, along with the

definition of these two cases for the elasticity of effective volatility with respect to fundamental

volatility.

We show that participation can decline in Case 2 of Proposition 4.6. The equally weighted

market Sharpe ratio can then increase or decrease, because of selection effects. If participation

declines, the market includes only higher expertise investors. Intuitively, we conjecture that the

results for the market Sharpe ratio depend on the distribution of expertise x, and the elasticity

of effective volatility with respect to fundamental volatility. If effective expertise is sufficiently

scarce, then the Sharpe ratio should increase because the percentage change in α will need to

compensate lower expertise investors in order to clear the market for the complex risky asset.

We provide a numerical illustration below.

Proposition 4.9 Define the entry cutoff x as in Proposition 4.8. We have

∂x

∂συ
> 0

if the following conditions hold:
∂
∂ log σ(x)
∂ log συ

∂x
< 0, (Case 2) and lσυsup >

β(x)+1
2

E
[
∂ log σ(x)
∂ log συ

|x ≥ x
]
,
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where

lσυsup = sup

{
∂ log σ (x)

∂ log συ
| α2

2σ2 (x) γ
≥ fxx

}
.

Note that the conditions in Proposition 4.8 and Proposition 4.9 are not overlapping, because

β (x) + 1

2
>
β (x) + 1

2
≥ 2β (x)

β (x) + 1
.

4.5 Numerical Examples

This section presents complementary numerical results and comparative statics for the three

cases for the elasticity of effective volatility with respect to fundamental volatility from Proposi-

tion 4.6. The model generates closed form policy functions and wealth distributions conditional

on expertise levels. To provide intuition for the effects of equilibrium pricing, we provide the

comparative statics in both partial equilibrium and general equilibrium. In partial equilibrium,

the excess return is given exogenously, and held fixed, while aggregate demand (and hence

implicitly supply) varies. In general equilibrium, the excess return is computed endogenously

given a fixed supply of the risky asset. Because α and I form a bijection (Proposition 4.3 pro-

vides conditions for which they are one to one and onto), for any given supply of the complex

risky asset, we can solve for the market equilibrium α in the following steps:

1. Choose an upper and a lower bound for α, namely α1 and α2, (α1 > α2).

2. Let α = α1+α2

2
, and compute the total demand for the risky asset∫

λ (x) I (x) dx

3. If S−
∫
λ (x) I (x) dx < −10−4, let α1 = α and back to step 1; if S−

∫
λ (x) I (x) dx > 10−4,

let α2 = α and back to step 1; otherwise, STOP.

We provide results under specific parametric assumptions. The following are examples of

the three cases for the elasticity of investor specific risk with respect to fundamental volatility

in Proposition 4.6.

Case 1: ∂ log σ(x)
∂ log συ

is a constant, σ (x) =
(
a+ x−b

)
σ2
υ

Case 2:
∂
∂ log σ(x)
∂ log συ

∂x
< 0, σ (x) = a+ x−bσ2

υ
24

24x−b can be replaced by any function f (x) as long as ∂f(x)
∂x < 0.
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Case 3:
∂
∂ log σ(x)
∂ log συ

∂x
> 0, σ (x) = aσ2

υ + x−b.

Our baseline parameters are summarized in Table 1. The time interval is one quarter.

The risk-free rate is 1%. The discount factor is 1%. The maintenance cost is also 1%. The

coefficient of relative risk-aversion is 5. The log-normal distribution of expertise has a mean

of 0 and volatility of 5. The minimum wealth share is set to 0.4. The fundamental standard

deviation of the risky asset return is 20%. We set a = 0.28 and b = 2 in Cases 1 and 3. This

implies that the highest expertise investors, with effective variance aσ2
υ, can eliminate 47% of

fundamental risk, and face an effective standard deviation of 10.5%. We then choose a = 0.0112

and b = 2 in Case 2, so that we have the same effective volatility for the highest expertise agents

as in Cases 1 and 3. The model generates a stationary equilibrium in all cases.

Case 1 We begin with the constant elasticity case, Case 1. The entry cutoff is x = 1.45,

which implies that the total measure of experts is 47%. The average wealth of experts is 0.33.

In aggregate, experts invest 88.2% of their total wealth in the complex risky asset.

Figures 1 - 5 show the model comparative statics in both general equilibrium and partial

equilibrium. All blue lines represent model results in partial equilibrium with a fixed excess

return and a perfectly elastic supply of the risky asset. All red lines represent model results in

general equilibrium with a fixed supply of the risky asset and the market clearing equilibrium

value for the excess return. Figure 1 plots model statistics with different values for the main-

tenance cost. A higher maintenance cost represents a higher cost of being an expert. There

are fewer experts in both partial equilibrium and general equilibrium at higher maintenance

costs. Demand for the risky asset is smaller in partial equilibrium as a result, resulting in

a higher excess return in general equilibrium to clear the market. Also, the market equally

weighted Sharpe ratio increases as the maintenance cost becomes larger. This is both because

α must increase to clear the market with lower participation, and because selection lowers

effective volatilities. The higher maintenance cost represents an entry barrier for lower exper-

tise investors, and we argue that this cost proxies for asset complexity. More complex assets

require larger investments in expertise. Experts earn a higher excess return, and the overall

market represents a better risk-return tradeoff, for more complex strategies in which the higher

investment costs deter lower-expertise entrants.

Figure 2 displays the model statistics as a function of risk aversion. In partial equilibrium, if

investors are more risk averse, they invest less in the risk asset. Also, there are fewer experts in
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the market. Market risk is lower because of the selection effect of only “better” experts operating

in the market. These results change somewhat in general equilibrium, since α increases in

general equilibrium. The positive effects on entry because of the increase in α dominate the

negative effects from increased γ. Thus, there are more experts in the market, and the worse

selection of experts implies higher market-level effective risk. However, the market Sharpe

ratio increases in both general equilibrium and partial equilibrium as a result of increased risk

aversion because the effect of the higher α dominates.

Figure 3 plots the model statistics with different fundamental risk levels. The comparative

statics for fundamental risk share some similar patterns with the effects of risk aversion. The

results differ, however, for the market-level risk and Sharpe ratio in partial equilibrium. With

increasing fundamental risk, there are fewer experts in partial equilibrium and more experts

in general equilibrium, parallel to the results for an increase in γ. However, the market risk is

higher in both partial and general equilibrium because the increased value of fundamental risk

dominates the selection effects on entry. However, in general equilibrium the effect of higher

risk on α still dominates and the Sharpe ratio improves.

Figure 4 and Figure 5 show the model results with different value of b. The expertise

parameter b has two effects in our model. First, b represents the difference in investor-specific

risk between high and low expertise investors. A higher b means a larger difference. Second, b

controls the entry cutoff for experts. Because a higher b increases the effect of expertise at all

expertise levels, a higher b results in a lower entry cutoff. Thus, this parameter has somewhat

opposing effects. To see this, Figure 4 considers both effects, while Figure 5 eliminates the

second effect. In Figure 4, with a higher value of b, we have a lower entry cutoff in partial

equilibrium. The effects of lowered risk because of higher b dominate the negative selection

effects on market risk. The standard deviation of market risk decreases as the value of b

increases in both partial and general equilibrium. The decreased risk and increased fraction

of experts results in a lower market excess return. α decreases faster than market risk in

general equilibrium. Thus we see a higher Sharpe ratio in general equilibrium. In Figure 5, we

counterbalance the selection effects of b on entry with by appropriately scaling the value of a

to ensure that the entry cutoff does not change with varies value of b in partial equilibrium.

In this way, we can focus on the comparative statics from variation in the complexity of the

asset strategy, as proxied for by b. With a higher value of b, a has to be higher to keep the

entry cutoff constant. Figure 5 displays several different implications for comparative statics

over b. First, the standard deviation of overall market risk is an increasing function of b. More
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complex strategies, in which there is a bigger difference in the risk faced by high expertise

investors vs. low expertise investors, display more market risk. Second, the market demand for

the risky asset is a decreasing function of b because of this higher market risk. And, the general

equilibrium excess return is an increasing function of b to compensate the higher risk. Third,

the increased variance dominates the increased market return, so that the market Sharpe Ratio

is a decreasing function of b in both partial and general equilibrium.

Case 2 Figures 5 to 8 show comparative statics for the model under Case 2 for the mainte-

nance cost, risk aversion parameter, and fundamental volatility respectively. Figure 5 shows

that as the maintenance cost increases, participation declines in both partial and general equi-

librium, and the equilibrium α must increase to compensate this decline in demand. Selection

implies that market-level risk declines, and the Sharpe ratio improves from both the numerator

and denominator effects. Figure 7 shows the effects of changes in risk aversion. Figure 8 studies

the effects of changes in fundamental volatility. Importantly, these comparative statics show

that, in this Case 2 example, participation declines (unlike in Case 1) despite the fact that the

equilibrium equally weighted market level Sharpe Ratio increases.

Case 3 Figures 5 to 8 show comparative statics for the model under Case 3. Note that as

conjectured, Figure 8 shows that in Case 3 changes in effective volatility have large effects on

equilibrium α since such changes heavily impact high expertise investors with large market

shares.

5 Conclusion

We study the equilibrium returns to complex risky assets in segmented markets with exper-

tise. We show that required returns increase with asset complexity, as proxied for by higher

fundamental volatility, higher costs of maintaining expertise, and by exertise being scarce in

the population. We emphasize heterogeneity in the risk-return tradeoff faced by investors with

different levels of expertise. Accordingly, we show that, under certain conditions, improvements

in market level Sharpe ratios can be accompanied by lower market participation. Finally, we

describe the implications of our model for the industrial organization of markets for complex

risky assets. We show that the stationary wealth distribution displays fatter tails in markets

in which assets are more complex, meaning that they display a steeper asset-specific risk vs.

expertise relation.
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Figure 1: Case 1 Model comparative statics: maintenance cost
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Figure 2: Case 1 Model comparative statics: risk aversion
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Figure 3: Case 1 Model comparative statics: fundamental risk
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Figure 4: Case 1 Model comparative statics: b with fixed a
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Figure 5: Case 1 Model comparative statics: b with flexible a
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Figure 6: Case 2 Model comparative statics: maintenance cost
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Figure 7: Case 2 Model comparative statics: risk aversion
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Figure 8: Case 2 Model comparative statics: fundamental risk
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Figure 9: Case 3 Model comparative statics: maintenance cost

49



4 4.5 5 5.5 6
0

0.2

0.4

γD
em

an
d 

fo
r 

R
is

ky
 A

ss
et

4 4.5 5 5.5 6
0.04

0.06

0.08

γ

E
xc

es
s 

R
et

ur
n

4 4.5 5 5.5 6
0.11

0.115

0.12

γ

S
ta

nd
ar

d 
D

ev
ia

tio
n

 

 
PE
GE

4 4.5 5 5.5 6
0

0.5

1

γ

S
ha

rp
e 

R
at

io

 

 
PE
GE

4 4.5 5 5.5 6
0.5

1

1.5

γ

R
is

ky
 A

ss
et

 In
ve

st
m

en
t R

at
e

 

 
PE
GE

4 4.5 5 5.5 6
0.5

0.6

0.7

γM
ea

n 
W

ea
lth

 o
f E

xp
er

t

 

 
PE
GE

4 4.5 5 5.5 6
1.5

2

2.5

γ

E
nt

ry
 C

ut
of

f

 

 
PE
GE

4 4.5 5 5.5 6
0.32

0.34

0.36

γ

F
ra

ct
io

n 
of

 E
xp

er
ts

 

 
PE
GE

Figure 10: Case 3 Model comparative statics: risk aversion
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Figure 11: Case 3 Model comparative statics: fundamental risk
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Table 1: Parameter Values: Numerical Example for Market Clearing in the Dynamic Model:

Parameter Symbol Value Target
Discount factor ρ 0.01 Annual interest rate
Risk-free rate rf 0.01 Annual interest rate
Risk aversion γ 5 Data/mean portfolio choice
Entry cost fnx 0.03
Maintenance cost fxx 0.01
Risky asset supply S 0.14 α = 5.5%
Volatility of risky asset return συ 20%
Mean of expertise process µx 0
Volatility of expertise process σx 5
Constant in σ2

x a 0.28
Slope of σ2

x b 2
Minimum wealth share zmin 0.4
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Appendix A: Static Model

This section contains proofs and additional results for the static model.

Optimal Portfolio Choice

This section describes how to solve the optimal portfolio allocation problem in the static model.
We also use upper case letters for level variables, and lower case letters for log variables. Under
the assumptions in the main text, the optimization problem for an investor with wealth W and
expertise X, can be written as:

v(W,X) = max
θ

E

[
(WRp)

1−γ

1− γ

]

subject to

Rp = θR + (1− θ)Rf ,

r| (W,X) ∼ N

(
µ− 1

2

σ2
υ

X
,
σ2
υ

X

)
.

Campbell and Viceira [2002a] and Campbell and Viceira [2002b] show that the log portfolio
return rp over a short time horizon with bounded variance, can be approximated by:

rp ≈ rf + θ (r − rf ) +
1

2
θ (1− θ) σ

2
υ

X
.

As a result,

rp| (W,X) ∼ N

(
rf + θ (µ− rf )−

1

2
θ2σ

2
υ

X
, θ2σ

2
υ

X

)
.

Then the value function equals:

v(W,X) = max
θ

W 1−γ

1− γ
exp

(
(1− γ) rf + (1− γ) θ (µ− rf )−

1

2
γ (1− γ) θ2σ

2
υ

X

)
.

Hence, The investor’s optimization problem becomes:

max
θ

{
θ (µ− rf )−

γ

2
θ2σ

2
υ

X

}
.

53



Equilibrium Market Excess Return

This section describes how to derive the equilibrium market excess return, α, from the log
expected return, µ, given all parameters. Because

r| (W,X) ∼ N

(
µ− 1

2

σ2
υ

X
,
σ2
υ

X

)
,

Then
E (R|W,X) = exp (µ) .

In addition,
E [R] = E [E (R|W,X)] .

Hence,
E [R] = exp (µ) .

Finally,
α = exp (µ)−Rf .
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Equilibrium Equally Weighted Market Sharpe ratio

This section describes how to derive the equilibrium equally weighted market Sharpe ratio, SR,
from the log expected return, µ, given all parameters. Because

r| (W,X) ∼ N

(
µ− 1

2

σ2
υ

X
,
σ2
υ

X

)
,

Then

V ar (R|W,X) = exp (2µ)

(
exp

(
σ2
υ

X

)
− 1

)
.

In addition, we have proven that

E (R|W,X) = E [R] = exp (µ) .

Therefore, the equally weighted variance of the risky asset, is given by:

V ar [R] = E (V ar (R|W,X)) = exp (2µ)

(
E
[
exp

(
σ2
υ

X

)]
− 1

)
.

Hence, the equally weighted market Sharpe ratio, can be written as:

SR =
1−Rf exp (−µ)√
E
[
exp

(
σ2
υ

X

)]
− 1

,

where E
[
exp

(
σ2
υ

X

)]
=
∑∞

k=0
1
k!
σ2k
υ E[exp(−kx)], using a Taylor expansion of exp(σ2

υX
−1) =

1 + σ2
υX
−1 + 1

2!
σ4
υX
−2 + 1

3!
σ6
υX
−3 + . . ., which is equivalent to:

E
[
exp

(
σ2
υ

X

)]
=
∞∑
k=0

1

k!
σ2k
υ [exp(−kµx +

1

2
k2σ2

x)],

where we have used the moment-generating function of the normal distribution. Hence, the
equally weighted market Sharpe ratio, can be written as:

SR =
1−Rf exp (−µ)√∑∞

k=0
1
k!
σ2k
υ exp(−kµx + 1

2
k2σ2

x)− 1
,

Provided that σ4
υ is small enough, this SR is approximately equal to the following expression:

SR ≈ 1−Rf exp (−µ)

συ exp(−1
2
µx + 1

4
σ2
x)
.
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Equilibrium Investor-Specific Sharpe ratio

This section describes how to derive the equilibrium investor-specific Sharpe ratio, SR (X), from
log expected return, µ, given all parameters. For an investor with wealth W and expertise X,
Because

r| (W,X) ∼ N

(
µ− 1

2

σ2
υ

X
,
σ2
υ

X

)
,

Then
E (R|W,X) = exp (µ) ,

And

V ar (R|W,X) = exp (2µ)

(
exp

(
σ2
υ

X

)
− 1

)
.

Hence, the investor-specific Sharpe ratio is given by:

SR (X) =
1−Rf exp (−µ)√

exp
(
σ2
υ

X

)
− 1

E [SR (X)] = E

1−Rf exp (−µ)√
exp

(
σ2
υ

X

)
− 1


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Proof of Lemma 3.2 and 3.3

This section describes how to prove lemma 3.2 and 3.3. From equations (21), (7), (8) and (9),
we can derive that, if η denotes any parameter η ∈ {γ, S, µw, σw, ρw,x}:

1. ∂α
∂η

= exp (µ) ∂µ
∂η

;

2. ∂(SR)
∂η

=
Rf exp(−µ)√

E
(

exp

(
σ2υ
X

))
−1

∂µ
∂η

;

3. ∂SR(X)
∂η

=
Rf exp(−µ)√
exp

(
σ2υ
X

)
−1

∂µ
∂η

;

4. ∂V ar(SR(X))
∂η

= 2 (1−Rf exp (−µ))Rf exp (−µ)V ar

 1√
exp

(
σ2υ
X

)
−1

 ∂µ
∂η

;

5. ∂2SR(X)
∂η∂X

=

∂

 Rf exp(−µ)√√√√exp

(
σ2υ
X

)
−1


∂

(
σ2υ
X

) ∂

(
σ2υ
X

)
∂X

∂µ
∂η

;

6. ∂2θ∗(X)
∂η∂X

= 1
γσ2
υ

∂µ
∂η
,∀η 6= γ, and ∂θ∗(X)

∂γ
= 0

7. ∂SR(X)
∂σ2
υ

=

Rf exp(−µ)
µ−rf
σ2υ
− 1

2(1−Rf exp(−µ))
exp

(
σ2υ
X

)
1
X

exp

(
σ2υ
X

)
−1√

exp

(
σ2υ
X

)
−1

.

Hence, Sign
(
∂µ
∂η

)
= Sign

(
∂α
∂η

)
= Sign

(
∂(SR)
∂η

)
= Sign

(
∂SR(X)
∂η

)
= Sign

(
∂V ar(SR(X))

∂η

)
= Sign

(
∂2SR(X)
∂η∂X

)
= Sign

(
∂2θ∗(X)
∂η∂X

)
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In addition, we have:

1. Because
exp

(
σ2υ
X

)
1
X

exp

(
σ2υ
X

)
−1

> 1
X

, ∀X,

then ∂SR(X)
∂σ2
υ

<
Rf exp(−µ)

µ−rf
σ2υ
− 1

2(1−Rf exp(−µ)) 1
X√

exp

(
σ2υ
X

)
−1

< 0, ∀X < X,

where X =
1
2(1−Rf exp(−µ))
Rf exp(−µ)

µ−rf
σ2υ

> 0;

2. 0 = 1
σ2
υ

(
1 + σ2

υ

X

)
− 1

X
− 1

σ2
υ
< 1

σ2
υ

exp
(
σ2
υ

X

)
− 1

X
− 1

σ2
υ

=
(

exp
(
σ2
υ

X

)
− 1
)(

1
X

+ 1
σ2
υ

)
−

exp
(
σ2
υ

X

)
1
X
,

then
exp

(
σ2υ
X

)
1
X

exp

(
σ2υ
X

)
−1

< 1
X

+ 1
σ2
υ
,

and ∂SR(X)
∂σ2
υ

>
Rf exp(−µ)

µ−rf
σ2υ
− 1

2(1−Rf exp(−µ))
(

1
X

+ 1

σ2υ

)
√

exp

(
σ2υ
X

)
−1

, ∀X.

Hence, if X̄ = 1

Rf exp(−µ)
µ−rf
σ2υ

1
2(1−Rf exp(−µ))

− 1

σ2υ

> 0, then ∀X > X̄,∂SR(X)
∂σ2
υ

> 0.

X̄ > 0 if and only if F (µ− rf ) ≡ exp (− (µ− rf ))
(
µ− rf + 1

2

)
− 1

2
> 0.

We can prove F (µ− rf ) > 0 if and only if 0 < µ − rf < 1.2564, but µ − rf = 1.2564
corresponds to an α around 250%. Then we can conclude X̄ > 0 for all reasonable
parameters.

3. we can prove by direct computation that X̄ > X whenever X̄ > 0.

In sum, for all reasonable parameters, ∃X̄ > X > 0 such that ∀X > X̄, ∂SR(X)
∂σ2
υ

> 0, and

∀X < X, ∂SR(X)
∂σ2
υ

< 0. The general functional form for effective risk yields similar results.
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Equilibrium Value-Weighted Market Sharpe ratio

This section shows that our main conclusions still hold with respect to the value-weighted
equilibrium market Sharpe ratio. Because

r| (W,X) ∼ N

(
µ− 1

2

σ2
υ

X
,
σ2
υ

X

)
,

Then
E (R|W,X) = exp (µ) .

Then the value-weighted market expected return also equals to:

exp (µ) ,

In addition,

V ar (R|W,X) = exp (2µ)

(
exp

(
σ2
υ

X

)
− 1

)
.

Therefore, the value-weighted variance of the risky asset, is given by:∫ ∫
V ar (R|W,X)

exp(w)θ∗ (exp(x)) f(w, x)∫ ∫
exp(w)θ∗ (exp(x)) f(w, x) dw de

dw de,

Which equals to

exp (2µ)
E
[(

exp
(
σ2
υ

X

)
− 1
)

exp(w + x)
]

X
Hence, the value-weighted market Sharpe ratio, can be written as:

1−Rfe
−µ√

E
[(

exp

(
σ2υ
X

)
−1

)
exp(w+x)

]
X

.

where E
[
exp

(
σ2
υ

X
+ w + x

)]
, using a Taylor expansion of exp(σ2

υX
−1+w+x) = 1+σ2

υX
−1+

w + x+ 1
2!

(σ2
υX
−1 + w + x)2 + 1

3!
(σ2

υX
−1 + w + x)3 + . . ., which is equivalent to:

E
[
exp

(
σ2
υ

X
+ w + x

)]
=
∞∑
k=0

1

k!
(σ2

υX
−1 + w + x)k)],

This will be approximately equal to

E[exp(σ2
υX
−1 + w + x)] ≈ 1 + E[σ2

υX
−1] + E[w] + E[x],

+
1

2
E[σ4

υX
−2 + w2 + x2 + 2wxσ4

υX
−2 + 2w2xσ2

υX
−1 + 2wx2σ2

υX
−1]
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The moment-generating function is given by:

M(t1, t2) = E[exp(t1w) exp(t2x)] = exp
(
t1µx + t2µw + (1/2)(t1σ

2
x + t2σ

2
w + 2t1t2wxρw,xσxσw)

)
∂M(t1, t2)
Then, if η denotes any parameter η ∈ {γ, S} ,

δ (SR)

δη
=

Rfe
−µ√

E
[(

exp

(
σ2υ
X

)
−1

)
exp(w+x)

]
X

δµ

δη
,

However, unlike in the case of the equally weighted market equilibrium Sharpe ratio, for the
value weighted Sharpe ratio, the derivatives needed to sign the comparative statics in lemma
3.2 and 3.3 for η ∈ {µw, σw, ρw,x} are indeterminate.
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Wealth effect of Expertise

This section shows that while savings rates can theoretically be slightly decreasing in exper-
tise, due to the wealth effect from higher expertise and the associated larger present value of
investment opportunities, this effect tends to be dominated by the portfolio choice effect.

The static model with a consumption savings decision can be written as:

v(W,X) = max
(I,θ)

(W − I)1−γ

1− γ
+ βI1−γE

[
R1−γ
p

1− γ

]
subject to:

Rp = θR + (1− θ)Rf ,

r| (W,X) ∼ N

(
µ− 1

2

σ2
υ

X
,
σ2
υ

X

)
.

Clearly, the portfolio choice problem is independent from the consumption savings decision,
and the solution to the portfolio choice problem coincides with that of the static model without
the consumption saving decision. For any choice of investment I, the optimal portfolio alloca-
tion always solves the same problem, maximizing the expected utility derived from the chosen
investment level, given the return process for the riskless and risky assets. Therefore, we can
plug the optimal portfolio choice back into the value function, and then derive the optimal
investment. Finally we get:

I∗ = W

(
βE
[
R1−γ
p

]) 1
γ

1 +
(
βE
[
R1−γ
p

]) 1
γ

where

E
[
R1−γ
p

]
= exp

(
(1− γ) rf +

1

2

(1− γ)

γ

(µ− rf )2

σ2
υ

X

)
.

Then, we can show that:

∂I∗

∂X
= W

(
βE
[
R1−γ
p

]) 1
γ(

1 +
(
βE
[
R1−γ
p

]) 1
γ

)2

1

2

(γ − 1)

γ2

(µ− rf )2(
σ2
υ

X

)2

∂
(
σ2
υ

X

)
∂X

.

Observe that the saving rate decreases with the expertise if and only if γ > 1.
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However, for the investment in the risky asset, I∗θ∗, we have:

I∗θ∗ = W

(
βE
[
R1−γ
p

]) 1
γ

1 +
(
βE
[
R1−γ
p

]) 1
γ

(µ− rf )
γ σ

2
υ

X

.

Then,

∂ (I∗θ∗)

∂X
= W

(
βE
[
R1−γ
p

]) 1
γ

1 +
(
βE
[
R1−γ
p

]) 1
γ

(µ− rf )

γ
(
σ2
υ

X

)2

1

2

(γ − 1)

γ2

(µ− rf )2

σ2
υ

X

1

1 +
(
βE
[
R1−γ
p

]) 1
γ

− 1

 ∂
(
σ2
υ

X

)
∂X

There are two cases, depending on the coefficient of relative risk aversion:

1. If γ < 1, the saving rate does not fall with the expertise, neither does the investment in
the risky asset.

We have 1
2

(γ−1)
γ2

(µ−rf)
2

σ2υ
X

1

1+(βE[R1−γ
p ])

1
γ
− 1 < 0.

Therefore, ∂(I∗θ∗)
∂X

> 0,∀X.

2. If γ > 1, the saving rate falls with the expertise, while the investment in the risky asset
doesn’t, as long as the expertise level is not too high.

We have 1
2

(γ−1)
γ2

(µ−rf)
2

σ2υ
X

1

1+(βE[R1−γ
p ])

1
γ
− 1 < 1

2
(γ−1)
γ2

(µ−rf)
2

σ2υ
X

− 1, ∀X.

Then 1
2

(γ−1)
γ2

(µ−rf)
2

σ2υ
X

1

1+(βE[R1−γ
p ])

1
γ
− 1 < 0, ∀X < X̄, where X̄ = 2γ2

(γ−1)
σ2
υ

(µ−rf)
2 .

Therefore, ∂(I∗θ∗)
∂X

> 0,∀X < X̄. The signs for comparative statics for ∀X > X̄ are
indeterminate.

In sum, investment in the risky asset increases with expertise, as long as the expertise level
is not too high. The general functional form for effective risk yields similar results.
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Appendix B: Dynamic Model

Proof. Proposition 4.1. We prove this Proposition by guess and verify. First, we write the
HJB equations of our model

max
cx(t,s),θ(x,t,s)

0 = u (cx (t, s)) + V x
w [w (t, s) (rf + θ (x, t, s)α (t, s))− cx (t, s)− fxxw (t, s)]

θ2 (x)σ2 (x)w (t, s)2

2
V x
ww − ρV x

max
cn(t,s)

0 = un (c (t, s)) + V n
w (rfw (t, s)− cn (t, s))− ρV n

The first order conditions are

u′ (c (t, s)) = V x
w ,

u′ (c (t, s)) = V n
w ,

V x
wα (t, s) + θ (x, t, s)σ2 (x)w (t, s)V x

ww = 0.

Next, we guess that

V x (w (t, s) , x) = yx (x, t, s)
w (t, s)1−γ

1− γ
,

V n (w (t, s) , x) = yn (x, t, s)
w (t, s)1−γ

1− γ
.

Thus

cx = [yx (x, t, s)]−
1
γ w (t, s) ,

cn = [yn (x, t, s)]−
1
γ w (t, s) ,

and portfolio choice is given by

θ (x, t, s) =
α (t, s)

γσ2 (x)
.

Plugging these choices into the HJB equations, we get

0 = [yx (x, t, s)]−
1−γ
γ + yx (x, t, s)

(
rf +

α2 (t, s)

γσ2 (x)
− [yx (x, t, s)]−

1
γ − fxx

)
(1− γ)

− α
2 (t, s)

2γσ2 (x)
yx (x, t, s) (1− γ)− ρyx (x, t, s)

= γ [yx (x, t, s)]−
1−γ
γ + yx (x, t, s)

(
rf +

α2 (t, s)

2γσ2 (x)
− fxx

)
(1− γ)− ρyx (x, t, s) ,

0 = γ [yn (x, t, s)]−
1−γ
γ + yn (x, t, s) (1− γ) rf − ρyn (x, t, s) .
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Rearranging the equations, we solve for yx (x, t, s) and yn (x, t, s) ,

yx (x, t, s) =

[
(γ − 1) (rf − fxx) + ρ

γ
+

(γ − 1)α2 (t, s)

2γ2σ2 (x)

]−γ
,

yn (x, t, s) =

[
(γ − 1) rf + ρ

γ

]−γ
.

Given all policy functions, we get the experts’ wealth growth rates:

dw (t, s)

w (t, s)
=

(
rf − fxx − ρ

γ
+

(γ + 1)α2 (t, s)

2γ2σ2 (x)

)
dt+

α (t, s)

γσ (x)
dB (t, s)

Finally, given homogeneity of the value functions in wealth, the participation cutoff is con-
structed by direct comparison between yx (x, t, s) and yn (x, t, s) .

Proof of equivalence of policy functions under the reflecting barrier zmin

Interpretation of zmin: We assume that one of two things can happen to an investor at zmin.
With probability q, the investor is eliminated from the market, and replaced with a new agent
with wealth share zmin and the same expertise as the exiting agent. Note that elimination
in isolation would cause the incumbent agent to be conservative, to avoid zmin. With proba-
bility 1 − q, the agent is rewarded by being able to infuse funds themselves, or by receiving
new external funds, and the wealth share reflects. Note that this reward in isolation would
cause the agent to risk shift, to take advantage of limited liability at zmin. We require that
E[V x(z, x)true] = qE[V x(z, x)die] + (1− q)E[V x(z, x)reflect], conditional on the optimal policies
under the true wealth share dynamics. Since the value under the true, non-reflecting, dynamics
lies between the punishment value of dying and the reward value of reflection, we conjecture
that there exists some probability, conditional on parameters, that this is the case. For sim-
plicity, we assume that V x(z, x)die = 0. It seems quite realistic that investors face uncertainty
about what will happen to them as their assets fall below a threshold level. Will they be
liquidated, or rescued? Note that our proof offers a technical contribution, since in Gabaix
[1999] cities do not choose size, unlike the case for our investors, who choose their savings and
portfolio allocations.

We show that the optimal policies in the model with reflecting barrier zmin are equivalent to
those in the original model under our assumptions of a zero value at death, which is traded off
with the positive value of reflection. Our proof assumes an optimal exit date. This is without
loss of generality in a stationary equilibrium with no entry or exit. Model 1:
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V x (w (t, s) , x) = max
cx(t,s),T,θ(x,t,s)

E
[∫ T

t

e−ρ(s−t)u (cx (t, s)) ds+ e−ρ(T−t)V n (w (t, s) , x)

]
s.t. dw (t, s) = [w (t, s) (rf + θ (x, t, s)α (t, s))− cx (t, s)− Fxx] ds

+w (t, s) θ (x, t, s)σ (x) dB (t, s) ,

Model 2:

V y (w (t, s) , y) = max
cy(t,s),T,θ(y,t,s)

max

{
V x (w (t, s) , y) ,E

[ ∫ s′
t
e−ρ(s−t)u (cy (t, s)) ds

+ (1− q) e−ρ(s′−t)V y (wmin, y)

]}
s.t. dw (t, s) = [w (t, s) (rf + θ (y, t, s)α (t, s))− cy (t, s)− Fyy] ds

+w (t, s) θ (y, t, s)σ (y) dB (t, s)

Assume Fxx = Fyy. They are both linear in wealth. By definition, we have

V y (w (t, s) , x) = (1− q)V y (wmin, x) , for w (t, s) ≤ wmin.

Define

q (w (t, s) , wmin) = 1−
[
w (t, s)

wmin

]1−γ

, for w (t, s) ≤ wmin.

Therefore, we have

V x (w (t, s) , x) = (1− q)V x (wmin, x) , for w (t, s) ≤ wmin.

It suffices to show that

V y (w (t, s) , x) = V x (w (t, s) , x) , for all x and w (t, s) ,

when agent’s wealth hits wmin before he/she exits the market. That is

V y (w (t, s) , y) = max
cy(t,s),θ(y,t,s)

E

[∫ s′

t

e−ρ(s−t)u (cy (t, s)) ds+ (1− q) e−ρ(s′−t)V y (wmin, y)

]
s.t. dw (t, s) = [w (t, s) (rf + θ (y, t, s)α (t, s))− cy (t, s)− Fyy] ds

+w (t, s) θ (y, t, s)σ (y) dB (t, s)

First,

V y (wmin, x) = E

[∫ s′

t

e−ρ(s−t)u (cy (t, s)) ds+ (1− q) e−ρ(s′−t)V y (wmin, x)

]

≥ E

[∫ s′

t

e−ρ(s−t)u (cx (t, s)) ds+ (1− q) e−ρ(s′−t)V y (wmin, x)

]
,
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that is,

E

∫ s′

t

e−ρ(s−t)u (cx (t, s)) ds

≤ E

∫ s′

t

e−ρ(s−t)u (cy (t, s)) ds

=
1

1− E [(1− q) e−ρ(s′−t)]
V y (wmin, x) .

Second,

V x (wmin, x) = E

[∫ s′

t

e−ρ(s−t)u (cx (t, s)) ds+ e−ρ(s′−t)V x (w (t, s′) , x)

]

= E

[∫ s′

t

e−ρ(s−t)u (cx (t, s)) ds+ (1− q) e−ρ(s′−t)V x (wmin, x)

]

≥ E

[∫ s′

t

e−ρ(s−t)u (cy (t, s)) ds+ (1− q) e−ρ(s′−t)V x (wmin, x)

]
,

that is,

E

∫ s′

t

e−ρ(s−t)u (cy (t, s)) ds

≤ E

∫ s′

t

e−ρ(s−t)u (cx (t, s)) ds

=
1

1− E [(1− q) e−ρ(s′−t)]
V x (wmin, x) .

Therefore, we must have

E

∫ s′

t

e−ρ(s−t)u (cy (t, s)) ds = E

∫ s′

t

e−ρ(s−t)u (cx (t, s)) ds,

and
V y (wmin, x) = V x (wmin, x) .
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Next,

V y (w (t, s) , x) = E

[∫ s′

t

e−ρ(s−t)u (cy (t, s)) ds+ (1− q) e−ρ(s′−t)V y (wmin, x)

]

≥ E

[∫ s′

t

e−ρ(s−t)u (cx (t, s)) ds+ (1− q) e−ρ(s′−t)V x (wmin, x)

]

= E

[∫ s′

t

e−ρ(s−t)u (cx (t, s)) ds+ e−ρ(s′−t)V x (w (t, s′) , x)

]
= V x (w (t, s) , x) , for all w (t, s)

with equality iff cx (t, s) = cy (t, s) and θx (x, t, s) = θy (x, t, s) .
Lastly,

V x (w (t, s) , x) = E

[∫ s′

t

e−ρ(s−t)u (cx (t, s)) ds+ e−ρ(s′−t)V x (w (t, s′) , x)

]

≥ E

[∫ s′

t

e−ρ(s−t)u (cy (t, s)) ds+ (1− q) e−ρ(s′−t)V y (wmin, x)

]
= V y (w (t, s) , x) , for all w (t, s)

with equality iff cx (t, s) = cy (t, s) and θx (x, t, s) = θy (x, t, s) .
Therefore,

V y (w (t, s) , x) = V x (w (t, s) , x) , for all x and w (t, s) .

cx (t, s) = cy (t, s) ,

θx (x, t, s) = θy (x, t, s) .
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Proof. Proposition 4.2 We prove this Proposition by guess and verify. We guess that:

φ(z, x) = Cz−β−1,

Then, we have

0 =− ∂z
(
z−β

(
rf − fxx − ρ

γ
+

(γ + 1)α2

2γ2σ2 (x)
− g (x̄)

))
+

1

2
∂zz

(
z1−β α2

γ2σ2 (x)

)
= β

(
rf − fxx − ρ

γ
+

(γ + 1)α2

2γ2σ2 (x)
− g (x̄)

)
− 1

2
β (1− β)

[
α

γσ (x)

]2

= β

[
rf − fxx − ρ

γ
+
α2 (γ + β)

2γ2σ2 (x)
− g (x̄)

]
Thus

β = C1
σ2 (x)

α2
− γ ≥ 1,

C1 = 2γ (fxx + ρ− rf + γg (x̄)) ,

C =
1∫

z−β−1dz
=
C1

σ2(x)
α2 − γ

z
−C1

σ2(x)

α2
+γ

min

.

Note there are two roots of equation

0 = β

[
rf − fxx − ρ

γ
+
α2 (γ + β)

2γ2σ2 (x)
− g (x̄)

]
.

We only take the root that is larger than 1 to ensure the mean wealth has a finite mean.

Proof. Corollary 4.1. For the highest expertise agents, we have

z̄ =

∫ ∞
zmin

zφ(z, x̄)dz =

∫ ∞
zmin

Cz−β(x̄)dz = zmin

[
1 +

1

β (x̄)− 1

]
.

This gives us another expression of β (x̄) ,

β (x̄) =
1

1− zmin/z̄
.
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Also, we know

β (x̄) = 2γ (fxx + ρ− rf + γg (x̄))
σ2 (x̄)

α2
− γ

Therefore, we have

2γ (fxx + ρ− rf + γg (x̄))
σ2 (x̄)

α2
− γ =

1

1− zmin/z̄
,

Rearrange the above equation, we get

g (x̄) =
rf − fxx − ρ

γ
+

α2

2γσ2 (x̄)
+

α2

2γ2σ2 (x̄)

1

1− zmin/z̄
.

Plug g (x̄) into β (x) , we derive

β (x) =

(
γ +

zmin/z̄

1− zmin/z̄

)
σ2 (x)

σ2 (x̄)
− γ.

Proof. Lemma 4.1

Recall that:θ (x) =
α

γσ2 (x)

β (x) = 2γ (fxx + r − rf + γg (x̄))
σ2 (e)

α2
− γ

Consider two levels of expertise, xmin and xmax, we have

θ (xmax)− θ (xmin) =
α

γ

[
1

σ2 (xmax)
− 1

σ2 (xmin)

]
=

α

γ

σ2 (xmin)− σ2 (xmax)

σ2 (xmax)σ2 (xmin)
,

and

β (xmax)− β (xmin) = 2γ (fxx + r − rf + γg (x̄))
1

α2

[
σ2 (xmax)− σ2 (xmin)

]
= 2γ2 (fxx + r − rf + γg (x̄))

σ2 (xmax)σ2 (xmin)

α3
[θ (xmin)− θ (xmax)] .

If a larger dispersion of portfolio choice is due to either a higher excess return or a lower
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risk aversion, the dispersion in β is smaller, since:

∂ [β (xmax)− β (xmin)]

∂α
< 0, and

∂ [θ (xmin)− θ (xmax)]

∂α
> 0

∂ [β (xmax)− β (xmin)]

∂γ
> 0, and

∂ [θ (xmin)− θ (xmax)]

∂γ
< 0

Consider the case where σ2 (emax)σ2 (emin) is a constant, then

∂ [β (emax)− β (emin)]

∂ [θ (emin)− θ (emax)]
= 2γ2 (fxx + r − rf + γg (ē))

σ2 (emax)σ2 (emin)

α3
.

A larger dispersion in portfolio choice, resulting from a larger difference between effective volatil-
ity, implies a larger dispersion of tail distribution. The condition on the product of the effective
variances is not necessary, however, as can be seen by simple algebra.

Proof. Proof of Lemma 4.2 Direct calculation. We use 1 to denote a positive sign.
We have

sign

(
∂I (x)

∂d

)
= −sign

(
∂I (x)

∂σ2 (x)

)

= −sign


α

γσ4(x)

[
−
(

1− (γ−1)(rf−fxx)+ρ

γ

)
+ (γ−1)α2

γ2σ2(x)

]
Z (x)

+ α
γσ2(x)

[
1− (γ−1)(rf−fxx)+ρ

γ
− (γ−1)α2

2γ2σ2(x)

]
zmin

−1[
C1

σ2(x)

α2
−γ−1

]2 C1

α2


≥ −sign

[
−
(

1− (γ − 1) (rf − fxx) + ρ

γ

)
+

(γ − 1)α2

γ2σ2 (x)

]
= 1
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Second, for each level of expertise, we have

sign

(
∂I (x)

α

)
= sign

 1
γσ2(x)

−(γ−1)(rf−fxx)+γ−ρ
γ

Z (x)− 1
γσ2(x)

3(γ−1)α2

2γ2σ2(x)
Z (x)

+ α
γσ2(x)

[
−(γ−1)(rf−fxx)+γ−ρ

γ
− (γ−1)α2

2γ2σ2(x)

]
zmin

2C1
σ2(x)

α3[
C1

σ2(x)

α2
−γ−1

]2



= sign

 1− (γ−1)(rf−fxx)+ρ

γ
− 3(γ−1)α2

2γ2σ2(x)

+

[
−(γ−1)(rf−fxx)+γ−ρ

γ
− (γ−1)α2

2γ2σ2(x)

]
zmin

Z(x)

2C1
σ2(x)

α2[
C1

σ2(x)

α2
−γ−1

]2


≥ sign

[
1− (γ − 1) (rf − fxx) + ρ

γ
− 3 (γ − 1)α2

2γ2σ2 (x)

]
≥ sign

[
1− (γ − 1) (rf − fxx) + ρ

γ
− 3 (γ − 1)

2γ2

α2

σ2 (x̄)

]
= 1,

Third, for each level of expertise, we have

sign

(
∂I (x)

∂συ

)
= sign

(
∂I (x)

∂σ2 (x)

∂σ2 (x)

∂συ

)
= sign

(
∂I (x)

∂σ2 (x)

)
sign

(
∂σ2 (x)

∂συ

)
= −1.

Fourth, for each level of expertise:

sign

(
∂I (x)

∂γ

)
= sign


− 1
γ2

[
1− (γ−1)(rf−fxx)+ρ

γ
− (γ−1)α2

2γ2σ2(x)

]
Z (x)

+ 1
γ

[
− rf−fxx

γ2
+ ρ

γ2
− −γ+2

2γ3
α2

σ2(x)

]
Z (x)

− 1
γ

[
1− (γ−1)(rf−fxx)+ρ

γ
− (γ−1)

2γ2
α2

σ2(x)

]
zmin

1
[β−1]2

β
γ



= sign

 −
[
1− (γ−2)(rf−fxx)

γ
− 2ρ

γ
+ −2γ+3

2γ2
α2

σ2(x)

]
−
[
1− (γ−1)(rf−fxx)+ρ

γ
− (γ−1)

2γ2
α2

σ2(x)

]
1

β−1


≤ sign

[
−
(

1− (γ − 2) (rf − fxx) + 2ρ

γ
− 2γ − 3

2γ2

α2

σ2 (x)

)]
≤ sign

[
−1 +

2 (γ − 1) (rf − fxx) + 2ρ

γ
+

2γ − 2

2γ2

α2

σ2 (x)

]
= −1
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Lastly, for each level of expertise:

sign

(
∂I (x)

∂fxx

)
= sign

 α
γσ2(x)

(γ−1)
γ
Z (x)

− α
γσ2(x)

[
1− (γ−1)(rf−fxx)+ρ

γ
− (γ−1)α2

2γ2σ2(x)

]
zmin

2γ

[β−1]2
σ2(x)
α2


= sign

 (γ−1)
2γ

α2

σ2(x)

−
[
1− (γ−1)(rf−fxx)+ρ

γ
− (γ−1)α2

2γ2σ2(x)

]
1

β(β−1)


= −sign

[
1− (γ − 1) (rf − fxx) + ρ

γ
− (γ − 1)α2

2γ2σ2 (x)
(1 + β (β − 1))

]
= −1 if yx (x̄) <

1

1 + β (β − 1)

Weaker conditions for Proposition 4.3 Some weaker conditions are:

1− (γ − 1) ρf + ρ

γ︸ ︷︷ ︸
investment of non-expert

+
(γ − 1) fxx

γ︸ ︷︷ ︸
cost of being expert

− 3 (γ − 1)

2γ2

α2

σ2 (x̄)︸ ︷︷ ︸
benefit of being expert

> 0,

or yx (x̄) < 1− (γ − 1)

γ2

α2

σ2 (x̄)

or yx (x̄) <
1

3

[
1 +

2 (γ − 1) (rf − fxx) + 2ρ

γ

]
or

α2

σ2 (x̄)
<

2γ2

3 (γ − 1)

[
1− (γ − 1) (ρf − fxx) + ρ

γ

]
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Proof. Proof of Proposition 4.3 For each level of expertise, we have

sign

(
∂I (x)

α

)
= sign

 1
γσ2(x)

−(γ−1)(rf−fxx)+γ−ρ
γ

Z (x)− 1
γσ2(x)

3(γ−1)α2

2γ2σ2(x)
Z (x)

+ α
γσ2(x)

[
−(γ−1)(rf−fxx)+γ−ρ

γ
− (γ−1)α2

2γ2σ2(x)

]
zmin

2C1
σ2(x)

α3[
C1

σ2(x)

α2
−γ−1

]2



= sign

 1− (γ−1)(rf−fxx)+ρ

γ
− 3(γ−1)α2

2γ2σ2(x)

+

[
−(γ−1)(rf−fxx)+γ−ρ

γ
− (γ−1)α2

2γ2σ2(x)

]
zmin

Z(x)

2C1
σ2(x)

α2[
C1

σ2(x)

α2
−γ−1

]2


≥ sign

[
1− (γ − 1) (rf − fxx) + ρ

γ
− 3 (γ − 1)α2

2γ2σ2 (x)

]
≥ sign

[
1− (γ − 1) (rf − fxx) + ρ

γ
− 3 (γ − 1)

2γ2

α2

σ2 (x̄)

]
= 1, for all x such that

α2

2σ2 (x) γ
≥ fxx

And when α is higher, more experts enter. Thus

∂I

∂α
> 0.

Weaker conditions for Proposition 4.4 Some weaker conditions are:

1− (γ − 1) (rf − fxx) + ρ

γ
− (γ − 1)α2

γ2σ2 (x)
> 0,

or yx (x̄) < 1− (γ − 1)

2γ2

α2

σ2 (x̄)

or yx (x̄) <
1

2

[
1 +

(γ − 1) (rf − fxx) + ρ

γ

]
or

α2

σ2 (x̄)
<

γ2

γ − 1

[
1− (γ − 1) (r − fxx) + ρ

γ

]
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Proof. Proof of Proposition 4.4 Direct calculation. We use 1 to denote a positive sign.

sign

(
∂I (x)

∂συ

)
= sign

(
∂I (x)

∂σ2 (x)

∂σ2 (x)

∂συ

)
= sign

(
∂I (x)

∂σ2 (x)

)
sign

(
∂σ2 (x)

∂συ

)
.

We also have

−sign
(
∂I (x)

∂d

)
= sign

(
∂I (x)

∂σ2 (x)

)

= sign


α

γσ4(x)

[
−
(

1− (γ−1)(rf−fxx)+ρ

γ

)
+ (γ−1)α2

γ2σ2(x)

]
Z (x)

+ α
γσ2(x)

[
1− (γ−1)(rf−fxx)+ρ

γ
− (γ−1)α2

2γ2σ2(x)

]
zmin

−1[
C1

σ2(x)

α2
−γ−1

]2 C1

α2


≤ sign

[
−
(

1− (γ − 1) (rf − fxx) + ρ

γ

)
+

(γ − 1)α2

γ2σ2 (x)

]
= −1

Thus for each level of expertise, when fundamental risk is higher, the demand for the complex
risky asset is smaller. And when συ is higher, fewer experts enter the complex risky asset
market. Thus

∂I

∂συ
< 0.
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Next, for each level of expertise:

sign

(
∂I (x)

∂γ

)
= sign


− 1
γ2

[
1− (γ−1)(rf−fxx)+ρ

γ
− (γ−1)α2

2γ2σ2(x)

]
Z (x)

+ 1
γ

[
− rf−fxx

γ2
+ ρ

γ2
− −γ+2

2γ3
α2

σ2(x)

]
Z (x)

− 1
γ

[
1− (γ−1)(rf−fxx)+ρ

γ
− (γ−1)

2γ2
α2

σ2(x)

]
zmin

1
[β−1]2

β
γ



= sign

 −
[
1− (γ−2)(rf−fxx)

γ
− 2ρ

γ
+ −2γ+3

2γ2
α2

σ2(x)

]
−
[
1− (γ−1)(rf−fxx)+ρ

γ
− (γ−1)

2γ2
α2

σ2(x)

]
1

β−1


≤ sign

[
−
(

1− (γ − 2) (rf − fxx) + 2ρ

γ
− 2γ − 3

2γ2

α2

σ2 (x)

)]
≤ sign

[
−1 +

2 (γ − 1) (rf − fxx) + 2ρ

γ
+

2γ − 2

2γ2

α2

σ2 (x)

]
= −1

Lastly, for each level of expertise:

sign

(
∂I (x)

∂fxx

)
= sign

 α
γσ2(x)

(γ−1)
γ
Z (x)

− α
γσ2(x)

[
1− (γ−1)(rf−fxx)+ρ

γ
− (γ−1)α2

2γ2σ2(x)

]
zmin

2γ

[β−1]2
σ2(x)
α2


= sign

 (γ−1)
2γ

α2

σ2(x)

−
[
1− (γ−1)(rf−fxx)+ρ

γ
− (γ−1)α2

2γ2σ2(x)

]
1

β(β−1)


= −sign

[
1− (γ − 1) (rf − fxx) + ρ

γ
− (γ − 1)α2

2γ2σ2 (x)
(1 + β (β − 1))

]
= −1 if yx (x̄) <

1

1 + β (β − 1)

Therefore:
∂I

∂γ
< 0 and

∂I

∂fxx
< 0

Proof. Proof of Proposition 4.5 We have

sign

(
∂I (x)

∂x

)
= sign

(
∂I (x)

∂d

∂d

∂x

)
= sign

(
−∂I (x)

∂d

∂σ (x)

∂x

)
= 1
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And

I (Λ1)− I (Λ2) =

∫
[λ1 (x)− λ2 (x)] I (x) dx

= −I (x) [Λ1 (x)− Λ2 (x)]−
∫
∂I(x)

∂x
[Λ1 (x)− Λ2 (x)] dx

> 0

Proof. Proof of Proposition 4.6. Given

∂SR (x)

∂συ
=

∂α
∂συ

σ (x)− α∂σ(x)
∂συ

σ2 (x)

we have
∂SR (x)

∂συ
> 0 iff

∂ log σ (x)

∂ log συ
<

∂ logα

∂ log συ
.

If ∂ log σ(x)
∂ log συ

is a constant, we must have either ∂ logα
∂ log συ

> ∂ log σ(x)
∂ log συ

for all x or ∂ logα
∂ log συ

< ∂ log σ(x)
∂ log συ

for
all x.

If
∂
∂ log σ(x)
∂ log συ

∂x
< 0, and assume there is a cutoff x∗ such that

∂ log σ (x∗)

∂ log συ
=

∂ logα

∂ log συ
,

then for all x < x∗, we have ∂SR(x)
∂συ

< 0; and for all x > x∗, we have ∂SR(x)
∂συ

> 0.

If
∂
∂ log σ(x)
∂ log συ

∂x
> 0, and assume there is a cutoff x∗ such that

∂ log σ (x∗)

∂ log συ
=

∂ logα

∂ log συ
,

then for all x < x∗, we have ∂SR(x)
∂συ

> 0; and for all x > x∗, we have ∂SR(x)
∂συ

< 0.
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Value Weighted Equilibrium Sharpe ratio The market value weighted Sharpe ratio can
be written as

SRvw = E

[
θ (z − c)

I

α

σ (x)
| α2

σ2 (x)
≥ 2γfxx

]

= E

θz
(

1− [yx (x)]−
1
γ

)
I

α

σ (x)
| α2

σ2 (x)
≥ 2γfxx


= E

[
α

γσ2 (x)

1

I

α

σ (x)
εx
(
Z (x) | α2

σ2 (x)
≥ 2γfxx

)]
=

α

γI
E

[
1− [yx (x)]−

1
γ

σ3 (x)
Z (x) | α2

σ2 (x)
≥ 2γfxx

]

Proof. Proof of Lemma 4.3 Proof by contradiction. Suppose συ is increased by 1%, but the
equilibrium α is increased by less than lσυinf , that is

∂α/α

∂συ/συ
≤ lσυinf

We have

1. Less participation: because α2

2σ2(x)γ
= fxx and ∂α/α

∂συ/συ
< lσυinf , x is higher.

2. Less investment in the complex risky asset:

∂ log I (x)

∂συ
< 0, for all x.

Therefore, in the new equilibrium, the total demand for risky asset is less than the total
supply. Contradiction. It must be that

∂α/α

∂συ/συ
> inf

{
∂ log σ (x)

∂ log συ
| α2

2σ2 (x) γ
≥ fxx

}
.

Proof. Proof of Proposition 4.7 The first part follows directly from the proof of Proposition
4.3 since all elasticities are constant in x in Case 1. For the second part, first we prove that
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∂SRew

∂συ
> 0 if ∂α/α

∂συ/συ
> lσυsup. We have

∂SRew

∂συ

= E

[
1

σ (x)

∂α

∂συ
− α

σ2 (x)

∂σ (x)

∂συ
| α2

σ2 (x)
≥ 2γfxx

]
− α

σ (x)
|
σ2(x)= α2

2γfxx

∂x

∂συ

=
α

συ
E

[
1

σ (x)

(
∂α/α

∂συ/συ
− ∂σ (x) /σ (x)

∂συ/συ

)
| α2

σ2 (x)
≥ 2γfxx

]
− α

σ (x)
|
σ2(x)= α2

2γfxx

∂x

∂συ

>
α

συ
E

[
1

σ (x)

(
∂α/α

∂συ/συ
− ∂σ (x) /σ (x)

∂συ/συ

)
| α2

σ2 (x)
≥ 2γfxx

]
>

α

συ
E

[
1

σ (x)

(
∂α/α

∂συ/συ
− ∂σ (x) /σ (x)

∂συ/συ

)
| α2

σ2 (x)
≥ 2γfxx

]
> 0.

Next, we show that if
∂
∂ log σ(x)
∂ log συ

∂x
< 0, and lσυsup <

2β(x)
β(x)+1

lσυinf , we have

∂α/α

∂συ/συ
> lσυsup.

If
∂
∂ log σ(x)
∂ log συ

∂x
< 0, assume ∂α/α

∂συ/συ
≤ lσυsup <

2β(x)
β(x)+1

lσυinf , We have

• Less participation: because α2

2σ2(x)γ
= fxx and ∂α/α

∂συ/συ
≤ lσυsup, x is higher.

• Less investment in the complex risky asset:

∂ log I (x)

∂συ

= −∂σ (x) /σ (x)

∂συ

+
1

συ

[
1 +

2 (β (x) + γ)

(β (x)− 1)2 −
1

1− yx (x)

(γ − 1)

2γ2

2α2

σ2 (x)

] [
−∂σ (x) /σ (x)

∂συ/συ
+

∂α/α

∂συ/συ

]
1) For x such that ∂α/α

∂συ/συ
< ∂σ(x)/σ(x)

∂συ/συ
,

∂ log I (x)

∂συ
< 0.
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2) For x such that ∂σ(x)/σ(x)
∂συ/συ

< ∂α/α
∂συ/συ

< lσυsup <
2β(x)
β(x)+1

lσυinf ,

∂ log I (x)

∂συ

< −∂σ (x) /σ (x)

∂συ
+

1

συ

[
1 +

2

β (x)− 1
− 2yx (x)

1− yx (x)

] [
−∂σ (x) /σ (x)

∂συ/συ
+

∂α/α

∂συ/συ

]
< −∂σ (x) /σ (x)

∂συ
+

1

συ

β (x) + 1

β (x)− 1

[
−∂σ (x) /σ (x)

∂συ/συ
+

∂α/α

∂συ/συ

]
<

1

συ

[
−∂σ (x) /σ (x)

∂συ
+
β (x) + 1

β (x)− 1

(
lσυsup −

∂σ (x) /σ (x)

∂συ

)]
Next

∂I

∂συ
≤

∫ ∞
x

∂I (x)

∂συ
dΛ (x)

≤ I (x)

∫ ∞
x

∂ log I (x)

∂συ
dΛ (x)

<
I (x)

συ

∫ ∞
x

{
−lσυ(x)

2β (x)

β (x)− 1
+
β (x) + 1

β (x)− 1
lσυsup

}
dΛ (x)

=
I (x) (1− Λ (x))

συ

β (x) + 1

β (x)− 1

{
− 2β (x)

β (x) + 1
E [lσυ |x ≥ x] + lσυsup

}
< 0.

Therefore, in the new equilibrium, the total demand for the complex risky asset is less than
the total supply. Contradiction. Therefore, it must be that

∂α/α

∂συ/συ
> lσυsup =

∂σ (x) /σ (x)

∂συ/συ
.

Proof. Proof of Proposition 4.8 First,

∂x

∂συ
< 0 iff

∂ log α2

σ2(x)

∂ log συ
> 0.

We have
∂ log α2

σ2(x)

∂ log συ
= 2

(
∂α/α

∂συ/συ
− ∂σ (x) /σ (x)

∂συ/συ

)
Therefore

∂ log α2

σ2(x)

∂ log συ
> 0 iff

∂α/α

∂συ/συ
>
∂σ (x) /σ (x)

∂συ/συ
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If
∂
∂ log σ(x)
∂ log συ

∂x
≥ 0, from Proposition 4.3 we have

∂α/α

∂συ/συ
> lσυinf =

∂σ (x) /σ (x)

∂συ/συ
.

If
∂
∂ log σ(x)
∂ log συ

∂x
< 0, assume ∂α/α

∂συ/συ
≤ lσυsup <

2β(x)
β(x)+1

lσυinf , We have

• Less participation: because α2

2σ2(x)γ
= fxx and ∂α/α

∂συ/συ
< lσυsup, x is higher.

• Less investment in the complex risky asset:

∂ log I (x)

∂συ

= −∂σ (x) /σ (x)

∂συ

+
1

συ

[
1 +

2 (β (x) + γ)

(β (x)− 1)2 −
1

1− yx (x)

(γ − 1)

2γ2

2α2

σ2 (x)

] [
−∂σ (x) /σ (x)

∂συ/συ
+

∂α/α

∂συ/συ

]
1) For x such that ∂α/α

∂συ/συ
< ∂σ(x)/σ(x)

∂συ/συ
,

∂ log I (x)

∂συ
< 0.

2) For x such that ∂σ(x)/σ(x)
∂συ/συ

< ∂α/α
∂συ/συ

< lσυsup <
2β(x)
β(x)+1

lσυinf ,

∂ log I (x)

∂συ

< −∂σ (x) /σ (x)

∂συ
+

1

συ

[
1 +

2

β (x)− 1
− 2yx (x)

1− yx (x)

] [
−∂σ (x) /σ (x)

∂συ/συ
+

∂α/α

∂συ/συ

]
< −∂σ (x) /σ (x)

∂συ
+

1

συ

β (x) + 1

β (x)− 1

[
−∂σ (x) /σ (x)

∂συ/συ
+

∂α/α

∂συ/συ

]
<

1

συ

[
−∂σ (x) /σ (x)

∂συ
+
β (x) + 1

β (x)− 1

(
lσυsup −

∂σ (x) /σ (x)

∂συ

)]
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Next

∂I

∂συ
≤

∫ ∞
x

∂I (x)

∂συ
dΛ (x)

≤ I (x)

∫ ∞
x

∂ log I (x)

∂συ
dG (x)

<
I (x)

συ

∫ ∞
x

{
−lσυ(x)

2β (x)

β (x)− 1
+
β (x) + 1

β (x)− 1
lσυsup

}
dΛ (x)

=
I (x) (1− Λ (x))

συ

β (x) + 1

β (x)− 1

{
− 2β (x)

β (x) + 1
E [lσυ |x ≥ x] + lσυsup

}
< 0.

Therefore, in the new equilibrium, the total demand for the complex risky asset is less than
the total supply. Contradiction. Therefore, it must be that

∂α/α

∂συ/συ
> lσυsup =

∂σ (x) /σ (x)

∂συ/συ
.

Proof. Proof of Proposition 4.9 First,

∂x

∂συ
> 0 iff

∂ log α2

σ2(x)

∂ log συ
< 0.

We have
∂ log α2

σ2(x)

∂ log συ
= 2

(
∂α/α

∂συ/συ
− ∂σ (x) /σ (x)

∂συ/συ

)
Therefore

∂ log α2

σ2(x)

∂ log συ
< 0 iff

∂α/α

∂συ/συ
< lσυsup =

∂σ (x) /σ (x)

∂συ/συ

If ∂α/α
∂συ/συ

> lσυsup = ∂σ(x)/σ(x)
∂συ/συ

, we have

• More participation: because α2

2σ2(x)γ
= fxx and ∂α/α

∂συ/συ
> eσυsup, x is lower.
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• More investment in the complex risky asset:

∂ log I (x)

∂συ

= −∂σ (x) /σ (x)

∂συ

+
1

συ

[
1 +

2 (β (x) + γ)

(β (x)− 1)2 −
1

1− yx (x)

(γ − 1)

2γ2

2α2

σ2 (x)

] [
−∂σ (x) /σ (x)

∂συ/συ
+

∂α/α

∂συ/συ

]
>

1

συ

{
−∂σ (x) /σ (x)

∂συ/συ
+

[
1 +

2

β (x)− 1
− 2yx (x)

1− yx (x)

] [
−∂σ (x) /σ (x)

∂συ/συ
+

∂α/α

∂συ/συ

]}
>

1

συ

{
−∂σ (x) /σ (x)

∂συ/συ
+

2

β (x)− 1

[
−∂σ (x) /σ (x)

∂συ/συ
+

∂α/α

∂συ/συ

]}
>

1

συ

{
−∂σ (x) /σ (x)

∂συ/συ
+

2

β (x)− 1

[
−∂σ (x) /σ (x)

∂συ/συ
+

∂α/α

∂συ/συ

]}
Next

∂I

∂συ
≥

∫ ∞
x

∂I (x)

∂συ
dΛ (x)

≥ I (x)

∫ ∞
x

∂ log I (x)

∂συ
dG (x)

>
I (x)

συ

∫ ∞
x

{
−lσυ(x)

β (x) + 1

β (x)− 1
+

2

β (x)− 1
lσυsup

}
dΛ (x)

=
I (x)

συ

2 (1− Λ (x))

β (x)− 1

{
−β (x) + 1

2
E

[
∂ log σ (x)

∂ log συ
|x ≥ x

]
+ lσυsup

}
> 0.

Therefore, in the new equilibrium, the total demand for risky asset is more than total supply.
Contradiction. Therefore, it must be that

∂α/α

∂συ/συ
< lσυsup =

∂σ (x) /σ (x)

∂συ/συ
.
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