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Abstract

We investigate the role of option market makers in the determination of the variance

risk premium and the valuation of index options. A reduced-form analysis indicates that a

substantial part of the variance risk premium is driven by inventory risk and market maker

wealth. When market makers experience extreme wealth losses, a one standard deviation

change in inventory risk leads to a change in the variance risk premium of over 6%. Motivated

by these �ndings, we develop a structural model of a market maker with limited capital who

is exposed to market variance risk through his inventory. We derive the endogenous variance

risk premium and characterize its dependence on inventory risk and market maker wealth. We

estimate the model using index returns and options and �nd that it performs well, especially

during the �nancial crisis.
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1 Introduction

On average, net demand for index options by end users is positive (Bollen and Whaley, 2004;

Gârleanu, Pedersen, and Poteshman, 2009). Market makers in index options are therefore net

sellers and build up large negative inventories over time. Through this inventory, market makers

are exposed to market variance risk in addition to market return risk.1 While market makers can

e¤ectively hedge return risk using index futures contracts, frictions limit their ability to eliminate

this large exposure to market variance (Bates, 2003). Consequently, market makers carry large

variance risk exposures. This suggests that their risk bearing capacity may a¤ect supply, which will

in turn contribute to the determination of the variance risk premium and trading activity.

We con�rm that market makers�risk bearing capacity has a substantial impact on the variance

risk premium. We �rst present the results of a reduced form analysis, using �fteen years of market

maker activity for index options and more than one million quotes. We regress the variance risk

premium on two variables that are informative about market makers�risk bearing capacity. The

�rst variable captures the exposure of market makers�inventory to market variance risk, and we

refer to it as inventory risk. The second variable, market maker wealth, measures market makers�

aggregate trading revenues. We construct daily estimates of these variables using data on aggregate

CBOE market maker positions.

Our empirical analysis indicates that these risk capacity variables substantially impact on the

variance risk premium. When inventory risk varies by one standard deviation, it results in a 1.2%

change in the variance risk premium, which is more than twenty times the average daily change

in the variance risk premium. Moreover, this e¤ect is magni�ed when market makers experience

dramatic wealth losses. When market makers� loss is at its ninetieth percentile, a one standard

deviation change in inventory risk can cause up to 6% variation in the variance risk premium.

Motivated by these �ndings, we present a structural model of a continuous-time economy with

dynamic market variance and a risk-averse representative market maker with limited capital who

quotes index option prices. Because market variance �uctuates randomly over time, the market

maker is exposed to variance risk which we assume to be unhedgeable. We solve for the endogenous

variance risk premium that induces the market maker to clear the index option market. The model

provides a number of important new insights.

First, the variance risk premium co-moves with inventory risk to reward the market maker for

his risk exposure. When the market maker absorbs net buying pressure, his inventory becomes

more negative and so does his inventory risk. Because of risk aversion, the market maker then

1An extensive literature documents that the market variance is a source of aggregate risk and that security returns
that co-move with market variance contain a variance risk premium. For some seminal contributions to this literature
see Bakshi, and Kapadia (2003), Ang, Hodrick, Xing, and Zhang (2006), and Bollerslev, Tauchen, and Zhou (2010).
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requires higher compensation which, given his negative exposure, translates into a more negative

variance risk premium. Second, the model characterizes the substantial impact of market maker

wealth on the variance risk premium. When the market maker incurs losses, his marginal utility of

wealth goes up and his required compensation increases. Because the market maker bears negative

variance exposure, a higher compensation implies a more negative variance risk premium. By

deriving an explicit relation between market maker wealth, inventory risk and the variance risk

premium in a stochastic volatility model, these results complement those of Gârleanu, Pedersen,

and Poteshman (2009), who show that net option demand exerts pressure on option prices when

markets are incomplete.

While the structural model incorporates the optimal strategy of the market maker, it is relatively

parsimonious and it can easily be implemented for option valuation. We estimate the model using

index returns and a large panel of index put options, and compare its performance to the benchmark

Heston (1993) stochastic volatility model. The model performs well both in- and out-of-sample. It

performs particularly well during the �nancial crisis and for pricing out-of-the-money puts, which

are more challenging for the benchmark Heston model. Our estimates suggest that during turbulent

times, �uctuations in market maker wealth lead to daily changes in option prices of more than 2%.

Our �ndings contribute to the growing literature on the variance risk premium.2 In standard

stochastic volatility models, the variance risk premium is the product of a time-invariant parameter

and the latent spot variance (see, among others, Heston, 1993; Bates, 2000; Pan, 2002; Eglo¤,

Leippold, and Wu, 2010). This speci�cation attributes any discrepancy between the objective

distribution of index returns and the risk-neutral probability measure implied by option prices to

the marginal investor�s preferences over aggregate wealth. Our study departs from this literature

by modeling the in�uence of market makers�risk bearing capacity on the variance risk premium.

This model feature is related to the �ndings of Adrian, Etula, and Muir (2014), who show that

intermediaries�leverage ratio is important for explaining the cross-section of equity returns. It is

consistent with the lessons from the �nancial crisis, underlining the non-trivial in�uence of �nancial

intermediaries�positions and constraints on asset prices (see, for instance, Adrian and Shin, 2010).

Our �ndings are also closely related to several other strands of literature in option valuation and

asset pricing. Bollen and Whaley (2004) demonstrate that net buying pressure positively impacts

2See for instance Bakshi and Kapadia (2003), Driessen, Maenhout, and Vilkov (2009), Vilkov (2008), and Carr
and Wu (2009) on the structure of the variance risk premium. Eglo¤, Leippold, and Wu (2010) and Todorov (2010)
explain the variance risk premium dynamic using stochastic volatility models with jumps. Ang, Hodrick, Xing, and
Zhang (2006) and Cremers, Halling, and Weinbaum (2014) study the cross-section of stock returns, and Schürho¤
and Ziegler (2011) study expected option returns. Barras and Malkhozov (2014) compare the variance risk premium
from the cross-section of stock returns with the one implied by options. Aït-Sahalia, Karaman, and Mancini (2014),
and Dew-Becker, Giglio, Le, and Rodriguez (2015) study the price of variance risk embedded in the term structure
of variance swaps.
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option implied volatilities and thus prices, but they do not model the channels by which net demand

impacts option prices. Leippold and Su (2011) examine the impact of margin requirements on option

implied-volatilities in a constant volatility framework. Chen, Joslin, and Ni (2013) investigate the

jump premium embedded in index options and its predictive ability for stock market returns, using

a model with intermediaries who are constrained exogenously through time-varying risk-aversion.

In our model, market variance is stochastic and market maker wealth is endogenous, and we show

that both features are needed to explicitly characterize the impact of intermediaries�risk bearing

capacity on the variance risk premium.

Finally, with perfectly integrated �nancial markets, intermediaries� risk exposure and wealth

should not a¤ect equilibrium prices. Our �ndings are inconsistent with this hypothesis, and im-

ply some segmentation of the option market consistent with a limits to arbitrage argument. See

Shleifer and Vishny (1997), Gromb and Vayanos (2002), and Brunnermeier and Pedersen (2009) for

prominent examples of such theories.

The remainder of the paper is organized as follows. Sections 2 and 3 present a reduced form

regression analysis of the relation between the variance risk premium, inventory risk, and market

maker wealth. Section 4 introduces the structural model. Section 5 discusses model implications.

Section 6 implements and tests the model using return and option data. Section 7 concludes.

2 Inventory Risk, Market Maker Wealth and the Variance

Risk Premium: A Reduced-Form Analysis

In this section we present a reduced-form regression analysis of the role of market makers in the

determination of the variance risk premium. We �rst present the data. Subsequently we discuss the

construction of the main variables of interest used in the regression analysis. We then formulate

our hypotheses regarding the expected sign of the determinants of the variance risk premium in a

regression analysis. Finally we brie�y discuss additional control variables used in the regression.

2.1 Data

In our regression analysis, we focus on S&P 500 index options (SPX options), the most liquid

contracts providing direct exposure to market variance. SPX options trade exclusively on the

Chicago Board Option Exchange (CBOE). To construct the aggregate inventory of CBOE market

makers, we rely on the Market Data Express Open/Close database. We obtain daily end user (non

market maker) order �ow for SPX options between January 1, 1996 and December 30, 2011. This

data provides daily open/close buy and sell data for �rms and customers. On each day, we compute
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the di¤erence between the sum of the total buys and sells for these two groups combined for each

contract, which corresponds to end users�net demand for that contract on that day. Because SPX

options are European, the time series of market makers�inventory for each contract can be computed

by summing up the negative of daily end users�net demand over time, starting from the �rst day

the contract is quoted. We do not include LEAPS (options with more than one year to maturity)

and start the sample period on January 1, 1997 to avoid biases in inventory measurement.3

For SPX option prices, we rely on end-of-day data from OptionMetrics between January 1, 1997

and December 30, 2011. We de�ne the price of each contract to be the bid-ask midquote. We �lter

out contracts that have moneyness (spot price over strike price) less than 0:8 and larger than 1:2,

contracts with a midquote less than 3=8, contracts with implied volatility less than 5% and greater

than 150%, and contracts with less than ten days to maturity. We estimate maturity-speci�c interest

rates by linear interpolation using zero coupon Treasury yields. The dividend yield is obtained from

OptionMetrics.

We then merge the inventory data with the OptionMetrics database. The �nal sample contains

more than one million quotes for SPX puts and calls over the 1997-2011 period.

To construct the variance risk premium, we need daily estimates of realized variance. To this

end, we obtain high frequency data for S&P 500 index futures from Tickdata starting on January 1,

1997 and ending on September 30, 2012.4 We construct daily measures of average realized variance

following Zhang, Mykland, and Aït-Sahalia (2005).

We now discuss the variables that are our main focus in the regression analysis.

2.2 The Variance Risk Premium

The variance risk premium captures the di¤erence between the physical and risk-neutral market

variance. At time t the (annualized) variance risk premium with a T -day horizon is given by

V RPt;T � RVt;T �RNVt;T ; (2.1)

whereRVt;T � EPt [
1

T=365

R t+T=365
t

Vsds] denotes the expected integrated physical variance andRNVt;T �
EQt [

1
T=365

R t+T=365
t

Vsds] is the expected integrated risk-neutral variance. Suppose that we want to

obtain a model-free estimate of the one-month variance risk premium on day t, that is V RPt;30.

3Note that we do not include the 1996 data. To correctly measure inventory for a given option, the full time series
of end users�order �ows for that option must be observed. With a maximum maturity of one year in the sample, we
do not have all necessary data for some options quoted during 1996, which were issued in 1995.

4For some of the empirical tests, we need estimates of the realized variance up to September 30, 2012 to construct
a measure of the 9-month ex-post realized variance up to December 30, 2011.
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The �rst step is to compute RVt;30. As in Carr and Wu (2009) and Eglo¤, Leippold, and Wu (2010),

we proxy expected physical variance by ex-post realized variance

RVt;30 =
365

30
�
 

30X
i=1

RVt+i�1

!
: (2.2)

To measure the expected integrated risk-neutral variance, we follow Britten-Jones and Neuberger

(2000) and Bollerslev, Tauchen, and Zhou (2009). We compute RNVt;30 from a portfolio of SPX

call options as

RNVt;30 =
365

30
�
�
2 �
Z 1

0

C(t; 30; Ke�r�30=365)� C(t; 0; K)

K2
dK

�
; (2.3)

where C(t; T;K) is the price of a call option observed at time t with T days to maturity and strike

price K, and r is the risk-free rate. We evaluate (2.3) using the trapezoidal rule. The one-month

variance risk premium on day t is given by V RPt;30 = RVt;30 �RNVt;30.

Table 1 presents daily averages for implied volatility, vega, days to maturity, number of quotes,

and volume. We also report the yearly averages of the one-month variance risk premium. Market

implied volatility is 22:28% on average in our sample. Con�rming existing studies (see, among

others, Bakshi and Kapadia, 2003; Vilkov, 2008; Carr and Wu, 2009), the variance risk premium is

robustly negative for every year in the sample. On average in our sample, the risk-neutral variance

exceeds the realized variance by 2:13%.

Figure 1 plots the S&P 500 index in the top panel, and the one-month variance risk premium,

expressed in percentages, in the middle panel. As expected, the variance risk premium varies more

during periods of high uncertainty, such as the �nancial crisis. Prior to 2008, the variance risk

premium is mostly negative and relatively stable, and it is especially small and stable between 2003

and 2007. To investigate if the large �uctuations in the variance risk premium during the �nancial

crisis are induced by measurement errors, we plot the weekly averages of daily gains and losses of

delta-hedged near-the-money options in the bottom panel of Figure 1. This exercise is motivated

by Bakshi and Kapadia (2003), who show that the gains and losses from delta-hedged positions in

options are informative about the variance risk premium. For a given option f jt , the daily dollar

gains and losses from delta-hedging it from day t� 1 to t are given by

�Hedgejt � f jt �
�
�j
t�1St + (f

j
t�1 ��

j
t�1St�1) � (1 + r�t) + �

j
t�1St�1 � q�t

�
; (2.4)

where �j
t �

@fjt
@St

is option j0s delta, St denotes the value of the S&P 500, q is the dividend yield,

and the time-step �t is 1=365. Each week, we average the daily �Hedgejt for all options with
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0:98 6 St=K
j 6 1:02 to obtain the weekly average gain and loss. Interestingly, the large �uctuations

in V RPt;30 during the crisis period are also readily apparent from the time series of delta-hedged

gains and losses.

2.3 Inventory Risk and Market Maker Wealth

On average, approximately 273 SPX calls and puts with distinct moneyness and maturity are quoted

every day. To assess market makers�inventory across contracts, Table 2 reports the daily average of

implied volatility, inventory, and delta-hedged gains and losses for di¤erent moneyness and maturity

categories. Note that market makers� positions are consistently negative across moneyness and

maturity. Market makers are short approximately one hundred thousand contracts on a daily basis.

In our analysis, inventory risk captures the aggregate exposure of market makers�inventory of

index options to market volatility. At any time t, it is de�ned by

InvRiskt �
P
j

�MM;j
t � V egajt ; (2.5)

where �MM;j
t denotes market makers�inventory for option j, and V egajt �

@fjt
@
p
Vt
denotes the option

vega.5 The aggregate exposure of market makers to market variance is the sum across all contracts

of their inventory times vega. Inventory risk is highly informative about market makers�exposure,

because 1% � InvRisk is the response of inventory in dollar terms to a 1% increase in market

volatility. Equation (2.5) indicates that inventory risk is signed. Because vega is always positive,

it is the commonality in inventory across contracts that determines the sign of inventory risk. At

times when intermediaries act as net sellers and �MM;j
t < 0 for most j, we have InvRiskt < 0. In

contrast, inventory risk is positive when market makers hold long positions on average.

Figure 2 plots the VIX in the top panel, and the dynamic of inventory risk in the bottom panel.

No clear correlation is apparent between VIX and inventory. Consistent with Table 2, Figure 2

indicates that market makers�exposure to S&P 500 volatility is negative most of the time except

during the �nancial crisis and at the start of 2011. Through their inventory, option market makers

carry billions of dollars in risk exposure to market variance.

To measure the changes in market maker wealth over time, we �rst compute their daily pro�ts

5In our implementation we compute inventory risk on each day using Black-Scholes vega. See Carr and Wu (2007)
and Trolle and Schwartz (2009) for examples of other studies that use Black-Scholes vega as a proxy for option vega
in a stochastic volatility setup.
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and losses from carrying hedged inventory:

P&Lt �
P
j

�MM;j
t�1 ��Hedgejt : (2.6)

where �Hedgejt satis�es (2.4). At the end of each day, market makers�aggregate daily pro�t and

loss is the sum of lagged inventory times the delta-hedged gains and losses realized on that day

across all contracts. Bid-ask spreads are another source of revenue for market makers. We estimate

the daily bid-ask spread revenue earned by market makers as follows:

BAt �
P
j

min(BOjt ; SO
j
t ) �
�
BidAskjt � 0:36

�
; (2.7)

where BOjt denotes end users�buy orders for option j, SO
j
t denotes end users�sell orders, BidAsk

j
t

denotes the option bid-ask spread, and $0:36 is the transaction fee charged to dealers per contract

traded.6 In our empirical analysis, we de�ne changes in wealth as the sum of (2.6) and (2.7),

�Wt = P&Lt + BAt. Our de�nition of market makers�wealth is similar to the measure used in

Comerton-Forde, Hendershott, Jones, Moulton, and Seasholes (2010) to proxy NYSE specialists�

revenues. However, our measure di¤ers from theirs to account for delta-hedging of inventory, which

is adopted by most option intermediaries.

Figure 3 plots the daily pro�ts and losses from market makers�delta-hedged inventory in the

top panel, the bid-ask spread revenue in the middle panel, and the cumulative daily pro�ts and

losses in the bottom panel. Market makers face substantial risks. Their daily pro�ts and losses

�uctuate between 265 and �393 million dollars. Consistent with the idea that large positions in
options imply substantial risks, the distribution of the daily delta-hedged gains and losses is highly

leptokurtic with an excess kurtosis of 73, and asymmetric with a skewness coe¢ cient of �2:55. On
aggregate, market makers face a 5% risk of losing 21 million dollars or more on any given day.

Market makers on average earn a pro�t from delta-hedging their inventory, which generates a

positive trend in the bottom panel of Figure 3. In aggregate, market makers earn 9 million dollars

monthly from their delta-hedged positions.

Finally, comparing the top panel with the middle panel of Figure 3 reveals the substantial impact

market variance risk has on dealers�wealth. So�anos (1995) investigates NYSE specialists�revenues.

He �nds that stock market makers on average lose money on their inventories, and that their wealth

is almost entirely due to the bid-ask spread. This is in stark contrast with option intermediaries.

A large portion of changes in option market makers�wealth is driven by �uctuations in their delta-

6This fee includes $0:33 charged by the CBOE and $0:03 charged by the Options Clearing Corporation for clearing
costs.
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hedged inventory. In our sample, the absolute value of P&Lt is on average 1:5 times bigger than

BAt.

We have established that the representative SPX market maker faces substantial variance risks

from carrying large inventories. Option dealers often trade among themselves in order to manage

these risks. However, if end users have large net exposure to market variance, this will also be the

case for SPX market makers in the aggregate. Because of market makers�large exposure to market

variance, it is to be expected that part of their required compensation is embedded in the variance

risk premium.

2.4 Methodology and Testable Hypotheses

Our benchmark empirical analysis uses the log-variance risk premium from Carr and Wu (2009),

LogV RPt;T � ln (RVt;T=RNVt;T ). The distributions of the two variance measures are positively

skewed, and the log speci�cation alleviates the impact of extreme values.

Our methodology is adapted from Bollen and Whaley (2004). We regress daily changes in

the variance risk premium against the explanatory variables and lagged changes in the dependent

variable. For the log speci�cation this gives:

�LogV RPt;T = Intercept+ �Inv1 InvRiskt�1 + �Inv2 (�Wt � InvRiskt�1)
+�cControlt + �V RP�LogV RPt�1;T + "t;

(2.8)

where �LogV RPt;T � LogV RPt;T � LogV RPt�1;T .

If the variance risk premium captures part of dealers�required compensation, we expect a positive

relation between lagged inventory risk and changes in the variance risk premium. The more negative

(positive) the inventory risk, the more negative (positive) the variance risk premium, which implies

positive returns for dealers. Therefore, we predict that lagged inventory risk should positively

impact changes in the variance risk premium, or �Inv1 > 0.

As their wealth decreases, dealers will require a higher compensation, which will in turn a¤ect

the variance risk premium. Because the impact on the variance risk premium will depend on the

sign of the market maker�s exposure, one must control for inventory risk when analyzing the relation

between wealth and the variance risk premium. To capture how dealers dynamically in�uence the

variance risk premium as their wealth �uctuates, we interact contemporaneous changes in wealth

with lagged inventory risk to control for the lagged exposure. When market makers experience

losses and they are negatively exposed to market variance, �Wt � InvRiskt�1 is positive. Given the
sign of market makers�exposure, higher compensation is associated with a decrease in the variance

risk premium. Thus, the interaction of wealth with inventory risk should be negatively related to
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the variance risk premium. A similar argument also indicates a negative relation when inventory

risk is positive and market maker wealth decreases. We therefore predict �Inv2 < 0.

Motivated by existing studies, we also include a series of contemporaneous control variables in

the regression. We now brie�y discuss these control variables.

2.5 Additional Control Variables

Carr and Wu (2009) show that part of the variation in the variance risk premium is contempora-

neously related to market index returns. To control for this e¤ect we include the log return on the

S&P 500 index, denoted by S&P500LogRett, in the regression.

Eglo¤, Leippold, and Wu (2010), Todorov (2010), and Aït-Sahalia, Karaman, and Mancini

(2014), among others, study the impact of jumps on the variance risk premium. We follow Cre-

mers, Halling, and Weinbaum (2014) and construct an aggregate jump factor, JumpFactort.7 By

construction the jump factor has zero market delta, zero vega, and positive gamma, and thus

captures the large �uctuations in the S&P500 index.

Bollen andWhaley (2004) document the e¤ect of net buying pressure on option implied volatility.

Through its impact on implied volatility, net buying pressure may also impact the variance risk

premium. To disentangle the e¤ect of inventory risk and net buying pressure on the variance

risk premium, we also include Bollen and Whaley�s net buying pressure variable which we denote

NetByingPressuret.8

Buraschi, Trojani, and Vedolin (2014) establish that disagreement among investors a¤ects the

variance risk premium. Empirically, dispersion of analyst forecasts is often used to gauge investors�

disagreement, but this measure is not available at the daily frequency. We use unexpected changes

in S&P500 index trading volume as a proxy for disagreement. Every day we calculate the di¤erence

between S&P 500 index volume on that day and the average volume over the past 90 trading days.

We denote this variable Disagreementt.

7On each day, we calculate the returns on two zero-beta at-the-money SPX straddles with maturities T1 and
T2 with T1 < T2. We choose T1 to be between �fteen days and one month, and T2 between one and two months.
Denote the returns on these two straddles by rS1t and rS2t . These daily returns are then combined such that

JumpFactort � rS1t �
�
V egaS1t
V egaS2t

�
� rS2t where V egaS1t and V egaS2t denote the vegas of the two straddles.

8The net buying pressure variable is obtained by summing the delta-weighted order imbalances across all contracts.

It is calculated as
P

j

�
BOjt � SO

j
t

�
� abs(�

j
t)

V olumet
where V olumet is the aggregate volume of SPX options, and abs(:)

denotes the absolute value.
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3 Regression Results

This section presents the results from the regression analysis. We �rst discuss the benchmark

regression results. We emphasize how results during the �nancial crisis di¤er from results for the

entire sample period. Finally we highlight our results for the term structure of variance risk premia

and we present results from robustness exercises.

3.1 Explaining the Time Variation in the Variance Risk Premium

Table 3 presents the estimates based on equation (2.8), which regresses daily changes in the log-

variance risk premium on inventory risk and market maker wealth. We also include the control

variables discussed above. We report the results for the full sample in columns (1) and (2). In

columns (3) to (6), we also report results for two sub-samples of similar length, 1997-2004 and

2005-2011. This allows us to assess the impact of the �nancial crisis on the regression results. Note

that each variable is standardized to have unit variance in order to facilitate the interpretation of

the coe¢ cients. We report the Newey-West p-value with 8 lags to capture autocorrelation in the

residuals.

Columns (2), (4), and (6) in Table 3 establish the importance of inventory risk and market

maker wealth for explaining the variance risk premium. Both variables are statistically signi�cant

with the anticipated sign. In the two subsamples, including these variables increases the adjusted

R-square by 9% relative to the results in columns (3) and (5). Given an average adjusted R-square

of 42%, this corresponds to a 0:09=0:42 = 21% increase in explanatory power.

Interestingly, the impact of inventory risk is greater for the sample period that includes the

�nancial crisis. A one standard deviation decrease in inventory risk leads to a 1:20% decrease in the

variance risk premium. When inventory risk equals its 2005-2011 sample average, a one standard

deviation decrease in market maker wealth is associated with a 2:29% decrease in the variance risk

premium. The impact of inventory risk is magni�ed when market makers experience dramatic losses.

Conditioning on the 95th percentile of the distribution of market maker loss, which corresponds to

�Wt =-72; 898; 000 million dollars, a one standard deviation decrease in inventory risk results in a

6% decrease in the log-variance risk premium the next day.

The relation between S&P 500 log-returns and the variance risk premium is strongly signi�cant.

The variance risk premium tends to decrease when index returns decrease. In columns (1), (3),

and (5) in Table 3, S&P 500 log returns and lagged changes to the variance risk premium jointly

account for 80% of the explanatory power.9

9Bivariate regressions of changes in the log variance risk premium on log index returns and lagged changes produce
an adjusted R-square of 30% on average for the three sample periods (the full sample and two subsamples).
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Aggregate jumps are negatively related to changes in the variance risk premium. By construc-

tion, the returns to the jump factor are high when the S&P 500 drops sharply. The estimate

thus suggests that large negative jumps result in a more negative variance risk premium. This

is consistent with Todorov�s (2010) analysis of the impact of market jumps on the variance risk

premium.

Bollen and Whaley (2004) �nd that net buying pressure increases implied volatility. Through

its e¤ect on implied volatility, high buying pressure should therefore result in a lower variance risk

premium. Table 3 indicates that net buying pressure is indeed negatively related to the variance

risk premium, but the relation is signi�cant only for one of the subsamples in column (5).

Consistent with Buraschi, Trojani, and Vedolin (2014), the loadings estimated on disagreement

are consistently negative. When investors�disagreement increases, the di¤erence between realized

and implied volatility tends to become more negative.

3.2 The Term Structure of Variance Risk Premia

The term structure of variance risk premia is a topic of substantial recent interest. It has been

studied in Eglo¤, Leippold, and Wu (2010), Aït-Sahalia, Karaman, and Mancini (2014), and Dew-

Becker, Giglio, Le, and Rodriguez (2015) among others. To quantify the impact each variable has

on the term structure of variance risk premia, we construct measures of the variance risk premium

for various horizons. In addition to the one-month horizon, we analyze four additional horizons:

60, 90, 180, and 270 days.

Table 4 reports results obtained for the log variance risk premium using the full sample. Several

interesting �ndings emerge. The e¤ect of inventory risk and �uctuations in market maker wealth is

robust across horizons. Interestingly, the estimated coe¢ cients display a term structure e¤ect. For

most variables, the magnitude of their impact on the variance risk premium decreases as the horizon

increases. The e¤ect of inventory risk and market maker wealth is most prominent for short-term

variance risk premia. Aït-Sahalia, Karaman, and Mancini (2014) conclude that investors�fear of a

market crash is mostly captured in short-term variance risk premia. Consistent with Aït-Sahalia et

al., Dew-Becker, Giglio, Le, and Rodriguez (2015) also �nd that the price of variance risk is mostly

negative at short horizons. Because inventory risk and market maker wealth matter the most for

short-term variance risk premia, our results complement both of these studies.

Relative to the other variables, for horizons of sixty days or more, the impact of inventory risk

and market maker wealth exceeds that of aggregate jumps, but it is smaller than the impact of

index returns.

11



3.3 Robustness

So far, we have used future realized variance to proxy expected physical variance. We now inves-

tigate the robustness of our results when we instead use the forecast of a predictive model as an

estimate of the expected physical variance. We adopt a HAR-RV dynamic based on Corsi (2009)

to model realized variance. Using rolling windows of 252 observations, we estimate the model for

each maturity on each day. We then use the one-step-ahead model forecast as an estimate of RVt;T .

Appendix A provides further details.

Panel A of Table A.1 in the online Appendix presents the average of the daily parameter esti-

mates, the p-values, and the R-squares. The high p-values indicate that it is di¢ cult to precisely

estimate all parameters, but the high R-squares demonstrate the model�s ability to forecast future

market variance. Using the model prediction for RVt;T , we construct measures of the variance risk

premium for each horizon. Panel B of Table A.1 presents descriptive statistics on the variance risk

premium implied by the HAR-RV dynamic.

Based on these variance risk premia, we regress the changes in the log variance risk premium

on the explanatory variables for each horizon. Details on the regressions are provided in Table A.2

in the online Appendix. The impact of inventory risk and market maker wealth is robust to the

computation of expected physical variance. The adjusted R-squares range from 40% to 49%. In

Table 5, we present the average coe¢ cients, p-values, and adjusted R-squares across horizons. The

�rst column reports the results from Table 4 and the second column reports the averages based on

Table A.2. Results are clearly very similar.

In Table 6, we assess the robustness of our empirical analysis when the variance risk premium

is measured as RVt;T � RNVt;T , where RVt;T is once again proxied by future realized variances,

as in the results for the log variance risk premium in Table 4. The impact of inventory risk and

�uctuations in market maker wealth is once again robust. Univariate regressions of �LogV RPt;T
on �V RPt;T yield a factor loading of 10 on average across horizons. Multiplying the parameter

estimates in Table 6 by 10 indeed brings the results close to those of Table 4. For instance, the

estimates for the one-month horizon become 0:60 for inventory risk and �1:7 for the interaction
variable, similar to those in Table 4.

Recall that our computation of inventory delta-hedged pro�ts and losses relies on option midquotes.

Because market makers carry net short positions on average, intermediaries trade at the ask price

more often than they trade at the bid price. We now assess if this impacts the results. We use

end-of-day ask prices to calculate intermediaries�delta-hedged pro�ts and losses on each day. Based

on these daily estimates we compute the daily changes in market maker wealth. Table A.3 in the

online Appendix reports the regression results. On average across horizons, the coe¢ cient for the
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interaction of inventory risk with changes in wealth is -2:15. This is very close to the average

estimate of -2:13 obtained when using midquotes. We conclude that our results are robust to the

measurement of market maker wealth.

3.4 The Financial Crisis

The index option market functions as an insurance market for market risk. A clientele of insti-

tutional investors primarily buys SPX options, which causes market maker inventory risk to be

negative on average. On November 20, 2008, the VIX reached a high of 80:86%. Around the same

time, end users were heavily shorting SPX options. These large net sell orders resulted in a sig-

ni�cant increase in inventory risk during the month of November. On aggregate, market makers

accumulated more than 2:5 billion dollars positive net exposure to market volatility. By November

20, CBOE market makers carried more than 538 billion dollars in long option positions, accounting

for 18% of the total capitalization of SPX options at the time.10

To understand the risk and reward associated with the positive exposure to market volatility

during the �nancial crisis, Table 7 presents descriptive statistics for delta-hedged near-the-money

option returns. Because these options are close to the money, they are highly sensitive to market

variance. For comparison, we report statistics for the full sample as well as the �nancial crisis.

The delta-hedged positions are usually negative but earned 6:26% per month during the crisis

period. Thus, when market makers�exposure to market variance was positive, long positions in

near-the-money options were pro�table on average. Note that the risk exposure from these options

is very high. During the �nancial crisis, the volatility of daily returns peaked at 95%, and its excess

kurtosis was about 11. This further emphasizes that index option market makers take on substantial

risks, which allows end users to hedge against and speculate on market volatility.

In summary, the evidence presented thus far supports the notion that part of the variance risk

premium captures index option market makers� compensation for exposure to market variance.

Motivated by these �ndings, we now develop a structural theoretical model with dynamic variance

and a risk-averse representative market maker who endogenously quotes index options, which a¤ects

the variance risk premium.

10To obtain an estimate of the total market capitalization of SPX options, we multiply open interest by the
midquote for each option series, and sum across all series.
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4 A Model of Inventory, Market Maker Wealth, and the

Variance Risk Premium

We consider a continuous-time economy in which the underlying source of uncertainty is driven by

two independent Brownian motions ZS and ZV .11 Market participants have a �nite investment

horizon T , and can invest in the market index St, which evolves according to

dSt
St

= (�� q) dt+
p
Vt

�q
1� �2V dZ

S
t + �V dZ

V
t

�
; with S0 known, (4.1)

where � is the market premium, q is the dividend yield, and Vt is the market variance, which follows

the CEV dynamic

dVt = �(� � Vt)dt+ �V �
t dZ

V
t ; with V0 known, (4.2)

where � denotes the unconditional variance, � is the speed of mean reversion, � is the volatility of

volatility, and � determines the elasticity of variance.12 In (4.1), �V captures the correlation between

the innovations to the market return and market variance. In addition to the market index, market

participants can invest in a risk-free bond

dBt
Bt

= rdt; B0 = 1; (4.3)

with constant interest rate r. The economy is endowed with a stochastic discount factor (SDF)

which re�ects aggregate preferences. As in the portfolio literature (see Detemple, Garcia, and

Rindisbacher, 2003, 2005; Detemple and Rindisbacher, 2010; Elkamhi and Stefanova, 2011), the

form of the SDF is exogenously given. This SDF follows

d�t
�t
= �rdt� �St dZ

S
t � �Vt dZ

V
t ; �0 = 1; (4.4)

where �St and �
V
t are the market prices of risk. The (instantaneous) variance risk premium is the

product of the market price of variance risk and the quantity of variance risk, that is V RPt =

�Vt � (�V
�
t ). Therefore, the variance risk premium and the price of variance risk are substitutes as

�Vt can be replaced by V RPt=(�V
�
t ) in (4.4).

The variance risk premium is determined through trading activity in index options. We denote

11The information available to agents consists of the trajectories generated by the two Brownian motions (the
Brownian �ltration F). The underlying probability space is (
;F ; P ), where P is the physical probability measure.
12Equation (4.2) nests a large variety of stochastic volatility models studied in the existing literature. For instance,

Heston (1993) is obtained when � = 1=2, and Jones (2003) discusses the model with � > 1.

14



European index calls and puts by f jt where j identi�es a particular option. Two types of agents

interact in the option market. End users have an exogenous need to get exposure to index options.

We denote end users�net demand for option j by �EU;jt . To meet this demand, a representative

market maker provides liquidity for index options. Since the physical dynamics of the market index,

the market variance, and the SDF are all exogenous, in this framework the demand and supply for

index options only a¤ects �Vt and V RPt.

In the next proposition, we present the pricing rule used by the market maker to quote options.

Proposition 1 Given (4.1), (4.2), and (4.4), applying Ito�s lemma to f jt implies the following
dynamic for the price of option j under the P-measure

df jt = d�Repjt + #jt � dF Vt
= d�Repjt + #jt �

�
V RPtdt+ �V �

t dZ
V
t

�
; (4.5)

where �Repjt corresponds to the delta replication of f
j
t , #

j
t � V egajt=

�
2
p
Vt
�
is the sensitivity of

option j to the market variance risk factor F Vt , V RPt � 1
dt

�
EPt [Vt+dt]� EQt [Vt+dt]

�
= (�V �

t ) � �Vt is
the (instantaneous) variance risk premium, and �V �

t dZ
V
t is the aggregate variance risk.

Proof. See Appendix B.
Under the Black-Scholes (1973) assumptions, index options can be perfectly replicated by holding

the appropriate amount of the market index and the risk-free bond. When the market variance is

stochastic, perfect replication is no longer achievable through the trading of St and Bt only. As a

result, the price dynamic of index options can be decomposed into two components. As in Black and

Scholes (1973), the �rst component, denoted d�Repjt , corresponds to the delta replication of f
j
t . In

addition to d�Repjt , the entire cross-section of index options is a¤ected by the market variance risk

factor.

When �MM;j
t denotes the market maker�s inventory of option j, the market clearing condition

for index options is

�MM;j
t + �EU;jt = 0 for all j ) InvRiskt =

P
j

�MM;j
t V egajt = �

P
j

�EU;jt V egajt : (4.6)

When end users�exposure to market volatility,
P

j �
EU;j
t V egajt , does not cancel out across index

options, neither does the market maker�s inventory risk. Consequently, the representative market

maker will be non-trivially dynamically exposed to the market variance risk factor.

For tractability reasons, we do not endogenize end users� trading motives for index options.

Instead, building on the work of Amihud and Mendelson (1980) and Gârleanu, Pedersen, and
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Poteshman (2009), we model the �uctuations of inventory risk exogenously. As apparent in Figure

2, the time series of inventory risk shares several common features with volatility, such as clustering,

autocorrelation, and reversal. This observation is consistent with the market microstructure liter-

ature, which �nds that stock market makers�inventory mean reverts (see Madhavan and So�anos,

1998; Hansch, Naik, and Viswanathan, 1998; Naik and Yadav, 2003). To capture these statistical

properties, we de�ne the following mean-reverting dynamic for inventory risk

dInvRiskt = �(�� InvRiskt)dt+  Vtdt+ �InvRiskt

�q
1� �2InvdZ

S
t + �InvdZ

V
t

�
; (4.7)

where InvRiskt satis�es (4.6), � captures the speed of mean reversion, � captures the level of

inventory risk,  captures the sensitivity of inventory risk to market variance, �Inv measures its cor-

relation with market variance innovations, and � is the volatility parameter. Arguably, �uctuations

in market variance should a¤ect the aggregate net demand for index options and thus inventory

risk. To account for this, we allow the dynamic (4.7) to depend on Vt and dZVt .

We determine the variance risk premium through the maximization of the market maker�s ex-

pected utility of terminal wealth. For a given admissible investment strategy ~�t �
�
�Bt ; �

S
t ; f�

f;j
t g
�
,

the market maker�s self-�nancing wealth dynamic is

dWt

Wt

= �Bt �
dBt
Bt

+ �St �
�
dSt
St
+ qdt

�
+
P
j

�f;jt � df
j
t

f jt
; with W0 = w, (4.8)

where each � is expressed as a percentage of wealth, qdt accounts for the reinvestment of divi-

dends, and w denotes the initial endowment. When w is low, the market maker is more �nancially

constrained. The problem faced by the market maker can be written as

max
~�t

EP [U(WT )] subject to � (4.7)

� (4.8) with Wt > 0: t 2 [0; T ];
(4.9)

where U(:) is the market maker�s utility function. In this model, the representative market maker

determines his trading strategy given market prices. Our objective is to invert this mapping and

infer the variance risk premium in (4.5) that induces the market maker to clear the index option

market.
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5 Model Implications

We now discuss the most important model implications. First we discuss the structure of the

variance risk premium. Then we characterize the optimal wealth of the market maker, and �nally

we present the model�s risk-neutral dynamics.

5.1 The Structure of the Variance Risk Premium

The following proposition illustrates how the model variance risk premium depends on inventory

risk and market maker wealth.

Proposition 2 At time t 2 [0; T ], if the market maker is myopic with U(Wt) = ln(Wt), the variance

risk premium is given by

V RPt = �V �V
�
t (Sharpet) + 0:5(1� �2V )�

2V 2��0:5
t

�
InvRiskt

Wt

�
; (5.1)

where Sharpet � ��rp
Vt
is the market Sharpe ratio, InvRiskt = �

P
j �

EU;j
t V egajt captures the sensi-

tivity of the market maker�s inventory to the variance risk factor F Vt de�ned in Proposition 1, and

Wt is market maker wealth.

Proof. See Appendix C.

This proposition provides several insights. The decomposition in (5.1) splits up the variance

risk premium into two components. The �rst component is a function of the market Sharpe ratio.

Innovations in market variance are correlated with index returns. Consequently, the variance risk

premium inherits the properties of the market Sharpe ratio. The greater abs(�V ), the higher the

dependence of the variance risk premium on Sharpet. Equation (5.1) provides a potential expla-

nation for why we obtain statistically signi�cant estimates when regressing changes in the variance

risk premium on S&P 500 log returns.

When abs(�V ) < 1, index options cannot be perfectly hedged by trading St and Bt. Conse-

quently, the market is incomplete from the market maker�s perspective. The market maker then

requires compensation in addition to �V �V
�
t (Sharpet). This additional premium is proportional to

the ratio of inventory risk to wealth. Since (1 � �2V )�
2V 2��0:5
t > 0 and Wt > 0, the variance risk

premium is positively impacted by inventory risk. The more negative the exposure of the market

maker to market variance, the lower the variance risk premium. Consequently, the model can ex-

plain the positive estimate obtained by regressing changes in the variance risk premium on market

maker exposure to market variance.
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Several studies have shown that the premium for market variance risk is negative on average

(see, among others, Bakshi and Kapadia, 2003; Vilkov, 2008; Carr and Wu, 2009). Given (5.1), the

variance risk premium is negative when

InvRiskt
Wt

<
��V (Sharpet)

0:5(1� �2V )�V
��0:5
t

: (5.2)

For the empirically relevant case �V < 0 and Sharpet > 0, a su¢ cient condition for the variance

risk premium to be negative is negative inventory risk. Since index option market makers typically

have a negative exposure to market variance, the model provides a potential explanation for the

negative variance risk premium found in existing studies.

As is apparent from the middle and bottom panels of Figure 1, the variance risk premium is

occasionally positive. When inequality (5.2) is not satis�ed, �V < 0 and Sharpet > 0, a positive

inventory risk exposure results in a positive variance risk premium. Hence, the model can also

explain positive variance risk premiums when option market makers are positively exposed to market

variance.

Finally, note that positive inventory risk does not result in a positive variance risk premium as

long as (5.2) is satis�ed.

5.2 Market Maker Optimal Wealth

Most classical inventory models assume that dealers have access to unlimited capital (see, among

others, Ho and Stoll, 1981, 1983; Mildenstein and Schleef, 1983). Recently, Gromb and Vayanos

(2002) and Brunnermeier and Pedersen (2009) relax this assumption. In Brunnermeier and Pedersen

(2009), market makers�limited funding capacity determines how much liquidity they provide. When

market makers�margin requirements are close to the available capital, intermediaries provide less

liquidity, which in turn a¤ects price. Similar predictions are obtained by Gromb and Vayanos (2002).

In our model, the intermediary�s �nancial constraint also has important pricing implications.

In Proposition 2, inventory risk is normalized by the market maker�s wealth. Consequently,

inventory risk will matter most for the variance risk premium at low values of Wt. In contrast, the

e¤ect of inventory risk vanishes when the market maker is unconstrained, that is, when his wealth

goes to in�nity. This result explains the strongly signi�cant estimates in the regression analysis for

the interaction of inventory risk with changes in market makers�wealth.

In the model, the market maker�s wealth is endogenous and if U(Wt) = ln(Wt) we have

Wt = 1= (
�t) ; (5.3)
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where 
 is the shadow price of the market maker�s �nancial constraint W0 = EP [�TWT ]. Since

the market maker�s marginal utility is strictly increasing, 
 is uniquely de�ned by (5.3) and the

intermediary�s �nancial constraint. Together, these results imply 
 = 1=W0, which gives Wt =

W0=�t. Consequently, at a given point in time, the market maker�s wealth is proportional to the

ratio of his initial endowment to the SDF. Given (4.4), we can apply Ito�s lemma to Wt to obtain

the dynamics of the market maker�s optimal wealth

dWt =
�
r +

�
�St
�2
+
�
�Vt
�2�

Wtdt+ �StWtdZ
S
t + �Vt WtdZ

V
t . (5.4)

The market maker�s wealth dynamic is driven by the two aggregate shocks and their prices of risk.

We now characterize the risk-neutral distribution of the market return, which is a¤ected by market

maker wealth and inventory risk through their impact on the price of variance risk.

5.3 Risk-Neutral Dynamics

In our empirical analysis, we proceed by estimating the model based on option data. Option

valuation requires discounting the payo¤ at maturity under the risk-neutral measure using the

risk-free rate. Therefore, all underlying processes need to be risk-neutralized.

Given the SDF (4.4), we have dZSt = d ~ZSt � �St dt and dZVt = d ~ZVt � �Vt dt where ~ZSt and ~ZVt are
risk-neutral. Using this result in (4.1), (4.2), (4.7), and (5.4) characterizes the economy�s dynamics

under the pricing measure. We refer to Appendix D for a detailed discussion of the risk-neutral

processes. We now discuss the model�s implications for risk-neutral market variance and skewness.

Consider the market risk-neutral variance �rst, which follows the non-a¢ ne dynamic

dVt = �(� � Vt)dt� V RPtdt+ �V �
t d ~Z

V
t ; (5.5)

where V RPt satis�es Proposition 2. When end users�demand for index options increases, inventory

risk decreases. A decrease in inventory risk implies a more negative variance risk premium on

average. From (5.5), changes in the risk-neutral market variance are negatively impacted by the

variance risk premium. An increase in end users�demand will therefore result in a higher risk-

neutral variance. This model prediction is related to Bollen and Whaley (2004), who document

that changes in the implied volatility of OTM index puts are positively a¤ected by end users�net

buying pressure. However, our model suggests that only the variance exposure of market maker�s

total risk exposure should impact changes in risk-neutral volatility.

The nonlinearities in the dynamics of the risk-neutral variance, inventory risk, and market maker

wealth have interesting implications for risk-neutral market skewness. Under the pricing measure,
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the market maker�s wealth and inventory risk jointly satisfy

dWt = rWtdt+ �StWtd ~Z
S
t + �Vt Wtd ~Z

V
t (5.6)

dInvRiskt = �(�� InvRiskt)dt+  Vtdt� �InvRiskt

�q
1� �2Inv�

S
t + �Inv�

V
t

�
dt

+�InvRiskt

�q
1� �2Invd

~ZSt + �Invd ~Z
V
t

�
: (5.7)

When d ~ZVt > 0, variance risk is high and market returns are low for the empirically relevant case

�V < 0. If inventory risk and the variance risk premium are both negative, high variance risk reduces

market maker wealth since �Vt d ~Z
V
t < 0 in (5.6). Lower wealth in turn implies a more negative ratio

of inventory risk to wealth, which further decreases the variance risk premium. This feedback e¤ect

between the variance risk premium and the ratio of inventory risk to wealth ampli�es the increase

in risk-neutral variance in bad times. This mechanism also allows the model to generate substantial

negative skewness, which is appealing given the challenge standard stochastic volatility models face

in explaining the cross-section of out-of-the-money index puts.

Overall, the predictions delivered by the model are consistent with empirical stylized facts. In

the next section, we estimate the model and quantitatively assess the importance of inventory risk

and market maker wealth for the valuation of index options.

6 Model Estimation and Model Fit

In this section, we �rst describe our estimation methodology. Subsequently, we report on parameter

estimates and model �t. Finally we use the estimated parameters to assess the economic impact of

inventory risk and market maker wealth on index option prices. For ease of notation we henceforth

refer to the inventory risk and wealth model as the IRW model.

6.1 Estimation Methodology

Several approaches are available to estimate stochastic volatility models. Aït-Sahalia and Kimmel

(2007) and Jones (2003) use bivariate time series of returns and at-the-money implied volatility. Pan

(2002) uses GMM to estimate the objective and risk-neutral parameters using returns and option

prices. Christo¤ersen, Jacobs, and Mimouni (2010) adopt a particle �ltering approach to estimate

various alternatives to the Heston (1993) model based on returns and a large panel of option prices.

We adopt a two-step procedure to estimate the model. In a �rst step, we use index returns to

�lter the physical parameters of the market variance dynamic (4.2) along with the spot variance
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Vt. In a second step, we take the �ltered spot variances and the variance parameters under the

physical measure as given, and we estimate the dynamic of inventory risk and market maker wealth

using a large panel of SPX put prices. Both InvRiskt and Wt are latent variables in the model.

However, to avoid over�tting we constrain InvRiskt to equal its observed value (2.5). In addition,

we set market maker initial wealth to W0 = w at the beginning of every day. Based on these initial

values and the �ltered Vt, we use the results in Propositions 2 and Appendix D to simulate the

economy and infer the dynamics (5.7)-(5.6) that are consistent with observed index option prices.

For estimation purposes, we set the time-step �t to 1=365 and we set the expected return net of

the dividend yield �� q to its sample average 1
T�1

TP
t=2

(St � St�1) =St�1 � 365, where T denotes the
last day in the sample. We now describe the two steps in more detail.

Step 1: Filtering the Variance Dynamic Using S&P 500 Returns

We need to estimate the structural parameters �V � f�; �; �; �V ; �g in (4.2) along with the vector of
spot variances fVtgt=1;2;:::;T . To this end, we adopt the particle �ltering algorithm (PF henceforth).
The PF o¤ers a convenient approach for estimating stochastic volatility models. It was recently

used by Johannes, Polson, and Stroud (2009), Christo¤ersen, Jacobs, and Mimouni (2010), and

Malik and Pitt (2011), among others.

Let
�
V j
t

	N
j=1

denote the smooth resampled particles where N de�nes the number of particles

which is set to 10; 000. Using the algorithm described in Appendix E, each day we estimate the

likelihood of observing St+1 given V
j
t and St, and denote it ~P

j
t

�
V j
t ;�

V
�
. Based on the likelihood

of each particle calculated on each day, we use the MLIS criterion to estimate �V

�̂V = argmax
TX
t=1

Lt; (6.1)

where Lt � ln

 
1
N

NP
j=1

~P jt
�
V j
t ;�

V
�!

is the daily model log-likelihood. On day t, the �ltered spot

variance is obtained by averaging the smooth particles

V̂t =
1

N

NX
j=1

V j
t : (6.2)

Next, we discuss the estimation of inventory risk and market maker wealth based on SPX options.
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Step 2: Estimating Inventory Risk and Market Maker Wealth

The model does not allow for closed-form solution for option prices. Consequently, we rely on Monte-

Carlo methods for estimating the inventory risk and market maker wealth dynamics embedded in

SPX options. Taking �̂V and
n
V̂t; InvR̂iskt

o
t=1;2;:::;T

as given, where InvR̂iskt corresponds to (2.5),

we estimate �Inv � f�; �;  ; �; �Invg and w by minimizing the sum of implied volatility squared

errors (SIVSE)

n
�̂Inv; ŵ

o
= argmin

NJX
j;t

�
IVj;t � IV M

j;t

�
�Inv; w; �̂V ; V̂t; InvR̂iskt

��2
; (6.3)

where NJ is the total number of observations, IVj;t is option j�s implied volatility on day t, and IV M
j;t

denotes model-implied volatility. We use the Black-Scholes model to calculate implied volatilities

for both market and model prices. When calculating model prices, we use the algorithm described

in Appendix F, using 10; 000 Monte-Carlo paths.

6.2 Parameter Estimates

We �rst discuss the estimates of the parameters characterizing the variance dynamic, and then the

estimates associated with inventory risk and market maker wealth.

6.2.1 The Variance Dynamic

Panel A of Table 8 presents descriptive statistics based on daily S&P 500 returns. The average

market return net of dividend yield in the 1997-2011 sample period is 5:86%. This low average

return is partly due to the sharp drop in the S&P 500 index during the crisis period (see Figure 1).

The sample variance is 4:58% annually, which corresponds to a 21% average volatility.

Panel B of Table 8 reports the estimated parameters for the CEV dynamic (4.2). The sample

MLIS is 11; 746. The estimated � is close to the sample variance in Panel A. The estimate of �V
is large and negative. In the model, a large and negative �V is important to generate su¢ cient

negative skewness in the S&P 500 return distribution. Large �uctuations in the market variance

(i.e. high volatility of dVt) helps the model generate additional variability in the return process.

This is required to capture the kurtosis of the S&P 500 return distribution. Based on the parameter

estimates in Table 8, the variance of dVt is on average equal to d hV; V iV=� = ���dt = 0:06dt. Thus,

the high volatility of volatility � is required by the model to generate enough variation in the

variance given � = 0:90. Finally, note how the index data require a slow speed of mean reversion

in the variance. The 2:91 estimate corresponds to a daily variance persistence of 1� �=365 = 0:99.
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For comparison, Panel C of Table 8 reports the parameters obtained for the Heston model,

which imposes � = 1=2. The model MLIS is close to the likelihood obtained for the CEV dynamic.

However, the two models require di¤erent structural parameters to explain the data. For instance,

note the di¤erences in mean reversion speed and unconditional variance. The Heston dynamic

requires a higher speed of mean reversion but has a lower long-term variance. Moreover, the two

models also display di¤erent volatility of volatility. This is partly driven by the di¤erence in �

between the two models. Because
p
� =

p
0:0408 = 0:20 in the Heston model is substantially higher

than �� = 0:04580:90 = 0:06 in the CEV model, the Heston model requires a smaller volatility of

volatility parameter than the CEV model to �t the S&P 500 return distribution. For the Heston

model, on average d hV; V iV=� = �
p
�dt = 0:04dt, slightly lower than the CEV model.

Figure 4 plots the time series of �ltered spot volatilities
p
V̂t for both models, annualized and

expressed in percentages. As expected, these time series of physical spot volatilities share common

features with the VIX in Figure 2. Comparing the two models, the �ltered spot volatilities display

similar patterns most of the time. However, during the crisis the �ltered spot variances from

the CEV model are substantially higher than the ones from the Heston model. The most likely

explanation is the higher elasticity of the CEV model, which requires a higher level of spot volatility

to generate su¢ cient kurtosis during the crisis period.

6.2.2 The Inventory Risk and Market Maker Wealth Dynamics

We use the OptionMetrics volatility surface data for calibrating the inventory risk and market maker

wealth parameters. To speed up estimation, we restrict attention to put options observed on the

�rst Wednesday of each month with moneyness between 0:9 and 1:1, and with 2, 3, and 6 months

to maturity. The resulting option sample for the 1997-2011 period consists of 6; 292 put contracts.

Panel A of Table 9 reports the estimated coe¢ cients for �̂Inv obtained by minimizing the sum

of squared errors (6.3). The estimate of the mean reversion parameter is 10:73. A high speed of

mean reversion is necessary to explain the abrupt reversal in inventory risk observed during the

crisis period, as indicated in the bottom panel of Figure 2. The daily inventory persistence is

1 � �=365 = 0:97. This persistence implied by options is close to the persistence of 0:98 obtained

when �tting an AR(1) model on the spot inventory risk measures. The high persistence in the

variance risk exposure of index option market makers is in line with the evidence in Madhavan and

Smidt (1993), who show that the inventory of NYSE specialists can deviate from its long-run mean

for several weeks.

As apparent from the bottom Panel of Figure 2, inventory risk is negative most of the time. In

the structural model, this stylized fact is captured by �̂ which is large and negative. Note however
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that the unconditional expectation of inventory risk also depends on  ̂. Interestingly, the loading

of inventory risk on the lagged spot variance is positive. Inventory risk thus tends to increase

with market uncertainty. This result is consistent with time series regressions of daily changes in

inventory risk on the VIX, which also yields a positive factor loading.

The estimate of the inventory risk volatility parameter is 16:55%, which is of a similar order of

magnitude than the volatility of volatility parameter for the index. The instantaneous correlation

between inventory risk and market variance is nearly zero. While changes in inventory risk increase

conditionally with market variance through  , the estimate of �inv indicates that inventory risk is

contemporaneously nearly independent of market variance innovations.

The w parameter captures the dealer�s initial wealth. The estimated wealth level is approxi-

mately 440 million dollars. This estimate is comparable in magnitude to the daily delta-hedged

pro�ts and losses documented in Figure 3. Quantitatively, it represents approximately 4 years of

cumulative daily pro�ts and losses.

6.3 Model Fit

We �rst discuss option �t for the sample used to estimate the models. Subsequently we address

model �t in a larger sample, as well as the model�s performance in a more stringent exercise that

requires forecasting of the state variables.

6.3.1 In-Sample Fit

For the OptionMetrics volatility surface data used in estimation, which consist of 6; 292 put contracts

for 1997-2011, the sum of squared pricing errors for the IRW model using the optimized parameters

in Panel A of Table 9 is 6:68. To benchmark this performance, we �t the Heston (1993) model on

option prices using a similar methodology but imposing V RPt = h � Vt, where h is a constant to be
estimated. This speci�cation for the variance risk premium is consistent with most of the existing

literature, including Heston (1993), Bates (2000), and Pan (2002).

Panel B of Table 9 indicates that the variance risk premium parameter for the Heston model is

�1:08. The �t obtained using the Heston model is not quite as good as the �t of the IRW model.

The Heston sum of squared implied volatility errors is approximately 20% higher than that of the

IRW model.

6.3.2 Out-of-Sample Fit

Because option prices are not available analytically, model estimation is rather time-intensive, and

we choose the option sample to make estimation feasible. Now we compare the performance of the
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IRW model with that of the Heston model using a much larger sample. We use all put options

available in OptionMetrics for 1997-2011 with moneyness between 0:9 and 1:1, and with 2, 3, and

6 months to maturity. The resulting sample consists of 131; 838 observations, considerably larger

than the sample used in estimation.13 Note that this exercise is also bene�cial because it is out-of-

sample. Less parsimonious models often obtain better in-sample �t at the cost of poor out-of-sample

performance.

To evaluate model performance, we compute the percentage implied volatility RMSE (IVRMSE)

de�ned as

IV RMSE �

vuut 1

NJ

NJX
j;t

�
IVj;t � IV M

j;t

�2 � 100; (6.4)

where IV M
j;t is the implied volatility based on the model price.

Table 10 presents the results for the IRW and Heston models. We report the IVRMSE for all

contracts averaged by year in Panel A, by moneyness in Panel B, and by maturity in Panel C. The

average yearly IVRMSE for the IRW model is 3:14%, which is satisfactory, especially because the

sample includes the �nancial crisis.

The �t provided by the two models is not very di¤erent, but the IRW model dominates the

Heston model, especially in the second part of the sample. The Heston model performs relatively

well in 1997-1999, outperforming the IRWmodel by 0:43%. In contrast, the IRW does relatively well

in 2009-2011, outperforming the Heston model by 1%. Since 2003, the IRWmodel has outperformed

the Heston by more than 0:91%.

Panel B of Table 10 indicates that the inventory model achieves a better �t for ATM puts relative

to the Heston model. ATM options are most sensitive to changes in the variance risk premium. This

suggests that the Heston model, which uses the speci�cation V RPt = h �Vt, is unable to adequately
capture variations in the variance risk premium. We further investigate this by regressing the daily

implied volatility root mean squared errors against the empirical proxy of the one-month variance

risk premium and the daily log-likelihood Lt of the physical returns. For the IRW model, we obtain

IV RMSEt = 3:14
(0:00)

+ 0:02
(0:90)

� V RPt;30 � 0:27
(0:01)

� Lt + "t; (6.5)

where the regressors are standardized, and the Newey-West p-values reported in parentheses are

calculated with 8 lags. The adjusted R-square of the regression is 1:77%. Mispricing in the IRW

model seems largely unrelated to the realization of the variance risk premium. For the Heston

13Approximately 12 put observations are available for each maturity on each day. Given the 3776 days of the
sample period, and given that we consider three distinct maturities, it yields to a total of 131; 838 put observations.
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model, we get

IV RMSEt = 3:56
(0:00)

� 0:81
(0:00)

� V RPt;30 � 0:02
(0:75)

� Lt + "t; (6.6)

with an adjusted R-square of 17:89%. This result is striking. In contrast to the IRW model, a

large part of the pricing error associated with the Heston model can be attributed to its inability

to capture the �uctuations in the variance risk premium.

Panel B of Table 10 also indicates that the IRW model �ts OTM puts better than the Heston

model. This result is partly due to the feedback e¤ects between the variance risk premium and the

ratio of inventory risk to wealth. When the variance risk premium is negative, the ratio of inventory

risk to wealth tends to decrease when volatility increases. This further reduces the variance risk

premium and increases the level of the risk-neutral variance during bad times. Because a high risk-

neutral volatility during market declines results in negative skewness of the index return distribution,

this feedback e¤ect improves the pricing of OTM puts.

Panel C of Table 10 also indicates that the IRWmodel achieves better pricing performance across

maturities. The term structure of risk-neutral volatility is directly a¤ected by the term structure

of variance risk premia. This �nding is consistent with the results in Table 4. Because inventory

risk and market maker wealth matter for the term structure of variance risk premia, they are also

important for the term structure of risk-neutral volatility.

Figure 5 plots the daily one-month variance risk premium and IVRMSE for both models. Panel

A suggests that the IRW model can deliver a wide range of variance risk premia. In contrast, the

one-month variance risk premium implied by the Heston model is always negative. This ability

of the IRW model to generate substantial variation in variance risk premia is key to its improved

performance.

Overall, these results strongly suggest that the IRW outperforms the Heston model in our sample

period. We now turn to a more stringent out-of-sample exercise that uses one-day ahead forecasts

of the latent state variables. For the IRW model, each day we forecast spot inventory and spot

variance based on the dynamics (4.2)-(4.7). For the Heston model, each day we forecast the spot

variance. We assess model �t based on these forecasts and the parameter estimates. Table 11

presents the results. The IRW continues to outperform the Heston model.

These empirical results suggest that accounting for inventory risk and market maker wealth is

critical to understand and model variation in the variance risk premium and explain index option

prices. Next we quantify the impact of changes in inventory risk and market maker wealth on SPX

option prices.
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6.4 Pricing Impact

Little is known in the existing literature about how market makers adjust option midquotes when

they absorb large buy orders, which causes their exposure to market variance to become more

negative and their inventory risk to decrease. Related to this, the magnitude of the impact of

market makers�losses and gains on index option prices is also an open question.

Figure 6 addresses the impact of inventory risk and market maker wealth on quotes and prices.

We plot the model-implied dollar sensitivity of SPX put options to a decrease in the state variables.

We compute the model sensitivities @Pt=@InvRiskt and @Pt=@Wt using the estimated parameters

�̂V , �̂Inv, and ŵ, and set r = 4%, q = 0, St = 1183 , and Vt = �̂: Inventory risk is set to InvRiskt =

�9:03E + 09, and market maker wealth is initialized to Wt = ŵ. Based on the resulting model

sensitivities, we then compute the dollar response of each option as �InvRiskt �@Pt=@InvRiskt and
�Wt � @Pt=@Wt, and we plot the results across moneyness. The circles in Figure 6 depict the dollar

response to an average decrease in the state variables. The diamonds depict the dollar response to

a 90th percentile decrease in each latent variable.

Figure 6 provides several insights. First, a decrease in inventory risk results in an increase in

index option prices. This is consistent with the theoretical prediction in Proposition 2. When

market makers�risk exposure decreases, they require a more negative variance risk premium, which

translates into an increase in index option prices. Similarly, market makers� losses result in an

increase in the price of index options. Interestingly, market maker wealth has the biggest impact

on option prices.

Note also that the e¤ect of inventory risk and market maker wealth on SPX options across strike

prices is nonlinear, and is most prominent for at-the-money options. This is consistent with Table

2, which indicates that these options also make up most of market makers�inventory.

When all variables are set equal to their average values, the average decrease in inventory risk

and the average wealth loss increases prices by between 10 and 50 dollars. Given an average option

price of 6; 500 dollars, this corresponds to a 0:15%-0:77% daily increase in price.

During turbulent times, when market makers�aggregate loss is at its 90th percentile, it causes

a 150 dollar increase in price, which corresponds to a 2:31% daily increase. These results further

highlight the non-trivial role of market maker wealth in the determination of index option prices

through their e¤ect on the variance risk premium.
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7 Summary and Conclusions

We investigate how inventory risk and market maker wealth jointly determine the value of index

options through their e¤ects on the variance risk premium. We �rst conduct an exploratory regres-

sion analysis using daily data on aggregate market makers�index option positions at the CBOE.

We regress the variance risk premium on measures of inventory risk and market maker wealth, and

�nd that inventory exposure to market variance and changes in market makers�wealth explain the

variance risk premium. A one standard deviation decrease in inventory risk causes a 1:2% decrease

in the variance risk premium.

Motivated by these �ndings, we develop a structural model in which market variance is sto-

chastic and a representative market maker with limited capital accumulates inventory over time by

absorbing end users�net demand for index options. Starting from the market maker�s optimal trad-

ing strategy, we derive an explicit formula linking the variance risk premium to inventory risk and

market maker wealth. The model provides interesting insights on the structure and the composition

of the variance risk premium.

Finally, we estimate the structural model using S&P 500 returns and option data. Overall,

the model performs well, particularly during the �nancial crisis, and our �ndings suggest that

accounting for inventory risk and market maker wealth may lead to more accurate pricing of index

options. The estimation results con�rm that changes in market maker wealth and inventory risk

have a non-negligible impact on index option prices.

Several issues are left for future research. First, it would be interesting to develop and test the

implications of alternative inventory risk dynamics for option valuation. Second, existing �ndings

in the option literature suggest that extending the dynamics of the model, for instance by allowing

for jumps in the prices, may result in a better model. Third, the model can be used to predict

future option prices given estimates of the market maker�s wealth. Finally, an investigation of the

pricing implications of inventory risk and market maker wealth for other derivative markets would

also be of signi�cant interest.

Appendix

This appendix starts by presenting the strategy used to forecast for integrated physical variance.

It then collects the proofs of the propositions and discusses the algorithms used for estimating the

model.
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A. Forecasting Expected Physical Variance

Suppose we want to estimate the T -days expected integrated physical variance on date t0 that is

RVt0;T . Using a rolling-window of 252 days with t 2 ft0 � 252; :::; t0 � 1g, we run the following
HAR-RV model in the spirit of Corsi (2009)

ln(RVt;T ) = a0 + a1 ln(RVt�1;1) + a2 ln(RVt�6;6) +

a3 ln(RVt�30;30) + a4 ln(RVt�60;60) + a5 ln(RVt�90;90)

+a6 ln(RVt�120;120) + "t;T ; (7.1)

where RVt;T is the T -days realized variance at time t. We can write the model in matrix form. We

have ln(RVt;T ) = Xt�1 �A+ "t;T where Xt�1 contains the explanatory variables known on day t� 1
and A is the matrix of parameters. Using the OLS estimate for Â and setting the regressors to their

values on the day t0, the model prediction for RVt0;T on that day is exp(Xt0 � Â +
�̂2"
2
) where �̂2" is

the variance of the residuals. We repeat this procedure on each day and for each horizon.

B. Proof of Proposition 1

For ease of notation, we de�ne aPt � EPt [
dVt
dt
] and aQt � EQt [

dVt
dt
] the physical and risk-neutral market

variance drifts respectively. Applying Ito�s lemma to f j implies the following dynamic of index

options under the P-measure

df jt =
�
@fjt
@t
+

@fjt
@St
St (�� q) +

@fjt
@Vt
aPt +

@2fjt
@St@Vt

�V �StV
�+0:5
t + 1

2

�
@2fjt
(@St)

2VtS
2
t +

@2fjt
(@Vt)

2 (�V
�
t )

2
��

dt

+
@fjt
@St
St
p
Vt

�p
1� �2V dZ

S
t + �V dZ

V
t

�
+

@fjt
@Vt
�V �

t dZ
V
t :

(7.2)

We also know that given the dynamics (4.1) to (4.4), the price of any derivative f j must satisfy the

PDE

rf jt =
@f jt
@t
+
@f jt
@St

St (r � q)+
@f jt
@Vt

aQt +
@2f jt
@St@Vt

�V �StV
�+0:5
t +

1

2

 
@2f jt

(@St)
2VtS

2
t +

@2f jt

(@Vt)
2 (�V

�
t )

2

!
: (7.3)

Combining (7.2) with (7.3), we obtain

df jt =

 
rf jt +

@f jt
@St

St(�� r � q) +
@f jt
@Vt

�
aPt � aQt

�!
dt+

@f jt
@St

St
p
Vt

�q
1� �2V dZ

S
t + �V dZ

V
t

�
+
@f jt
@Vt

�V �
t dZ

V
t : (7.4)
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Since the delta replication of f j satis�es �Repjt = �Bt � Bt + �St � St where �B and �S denote the
units of bond and market index to hold. For an investment horizon dt, we have �St � St =

@fjt
@St
St and

�Bt �Bt = f jt �
@fjt
@St
St. Consequently, the replication portfolio when dividends are reinvested evolves

as

d�Repjt = �Bt � dBt + �St � (dSt + qStdt)

=

 
f jt �

@f jt
@St

St

!
� dBt
Bt

+

 
@f jt
@St

St

!
�
�
dSt
St
+ qdt

�
; (7.5)

with �Repjt = f jt . Combining (7.4) and (7.5), we get

df jt = d�Repjt + #jt �
�
V RPtdt+ �V �

t dZ
V
t

�
= d�Repjt + #jt � dF Vt ; (7.6)

where V RPt � aPt � aQt =
1
dt

�
EPt [Vt+dt]� EQt [Vt+dt]

�
= �V �

t � �Vt ; #
j
t �

@fjt
@Vt
, and dF Vt = V RPtdt +

�V �
t dZ

V
t is the market variance risk factor. We can now express #

j
t in terms of sensitivity to volatility

#jt =
@f jt
@Vt

=
@f jt
@
p
Vt
� @
p
Vt

@Vt
= V egajt �

1

2
p
Vt
; (7.7)

which completes the proof.

C. Proof of Proposition 2

We adopt the following strategy. First, we solve the market maker�s (unconstrained) portfolio

allocation when the market clearing condition is not imposed. Based on the investment strategy

obtained, we then require it to satisfy the market clearing condition and infer the structure of the

variance risk premium.

The static maximization

max
~�t

EP [ln(WT )] subject to � W0 > EP [�TWT ]

� Wt > 0;
(7.8)

is the dual problem of the unconstrained utility maximization (4.9) (see, among others, Karatzas,
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Lehoczky, and Shreve, 1987, and Cox, and Huang, 1989). To solve this, we form the lagrangian

L(
) = EP [ln(WT )] + 
(W0 � EP [�TWT ])

= EP [ln(WT )� 
�TWT ] + 
W0; (7.9)

where 
 is the lagrangian coe¢ cient of the static budget constraint W0 = EP [�TWT ]. A point wise

maximization of (7.9) implies the following FOC condition

1

Wt

= 
�t: (7.10)

Since the previous equation is valid for any t and �0 = 1, the lagrangian coe¢ cient satis�es 
 =

1=W0. Thus, optimally we have Wt =
W0

�t
. Given the de�nition of �f;jt , we also have �

f;j
t Wt =

�MM;j
t f jt () �f;jt = �MM;j

t f jt =Wt. Using this with (7.5) and (7.6) in Appendix B, we can write the

market maker�s aggregate position in index options as

P
j

�f;jt � df
j
t

f jt

=
P
j

�MM;j
t

Wt

� df jt (7.11)

=
dBt
Bt

�
P
j

�MM;j
t

Wt

�
 
f jt �

@f jt
@St

St

!
+

�
dSt
St
+ qdt

�
�
P
j

�MM;j
t

Wt

�
 
@f jt
@St

St

!
+
dF Vt
2
p
Vt
� InvRiskt

Wt

;

where we use the de�nition (2.5) to uncover the market maker�s inventory risk. We can now use

previous result to express the wealth process (4.8) as

dWt

Wt

= �Bt �
dBt
Bt

+ �St �
�
dSt
St
+ qdt

�
+
P
j

�f;jt � df
j
t

f jt

= ��Bt �
dBt
Bt

+ ��St �
�
dSt
St
+ qdt

�
+
InvRiskt

Wt

� dF
V
t

2
p
Vt
; (7.12)

where ��Bt = �Bt +
P

j
�MM;j
t

Wt

�
f jt �

@fjt
@St
St

�
and ��St = �St +

P
j
�MM;j
t

Wt

�
@fjt
@St
St

�
represent market maker�s

total investment in the bond and in the index respectively.

In this economy, the discounted wealth process satis�es

d (�tWt)

�tWt

=
dWt

Wt

+
d�t
�t
+
d h�;W it
�tWt

; (7.13)
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where d h:; :it is the covariance operator. Applying the previous equation on the SDF dynamic (4.4)
and the wealth process (7.12), we obtain

d (�tWt)

�tWt

=

�
��St
p
Vt

q
1� �2V � �St

�
dZSt +

�
��St
p
Vt�V + 0:5�V

��0:5
t

InvRiskt
Wt

� �Vt

�
dZVt ; (7.14)

for which we have imposed the martingale conditions �tSt +
R t
0
q�uSudu = EPt [�TST +

R T
0
q�uSudu]

and �tf
j
t = EPt [�Tf

j
T ]. We can now integrate (7.14) to express �TWT in its integral form

�TWT = W0+
TR
0

�tWt

��
��St
p
Vt

q
1� �2V � �St

�
dZSt +

�
��St
p
Vt�V + 0:5�V

��0:5
t

InvRiskt
Wt

� �Vt

�
dZVt

�
:

(7.15)

By application of the Clark-Ocone formula to �tWt, we also have the following expression for �TWT

in terms of its Malliavin derivatives

�TWT = EP0 [�TWT ] +
TR
0

EPt [D
S
t (�TWT )]dZ

S
t +

TR
0

EPt [D
V
t (�TWT )]dZ

V
t

= W0 +
TR
0

EPt [D
S
t (�TWT )]dZ

S
t +

TR
0

EPt [D
V
t (�TWT )]dZ

V
t ; (7.16)

where Di
t (X) is the time tMalliavin derivative of X with respect to Zi for i 2 fS; V g.14 This repre-

sentation of �TWT can be combined with (7.15) to obtain explicit formulas for ��S and InvRiskt=Wt.

Because both (7.16) and (7.15) uniquely de�ned �TWT the integrands in both equations must be

equal. This implies

��St
p
Vt

q
1� �2V � �St = EPt [D

S
t (�TWT )] (7.17)

��St
p
Vt�V + 0:5�V

��0:5
t

�
InvRiskt

Wt

�
� �Vt = EPt [D

V
t (�TWT )]: (7.18)

Together, the two previous equations de�ne the market maker�s optimal investment strategy. We

can now impose the market clearing condition to (7.17) and (7.18). The market clearing condition

imposes �MM;j
t = ��EU;jt for all j and thus InvRiskt = �

P
j �

EU;j
t V egajt in aggregate. Solving for

��S in (7.17) and using the result in (7.18), we get

�
EPt [D

S
t (�TWT )] + �Vt

�
�m

�
EPt [D

V
t (�TWT )] + �St

�
= 0:5�V ��0:5

t

�
InvRiskt

Wt

�
; (7.19)

14Malliavin derivatives have also been used to obtain explicit formulas for optimal investment strategies in De-
temple, Garcia, and Rinsdisbacher (2003) and Detemple and Rinsdisbacher (2010) among others. We refer to the
Appendix D in Detemple, Garcia, and Rindisbacher (2003) for an introduction to Malliavin calculus and a presenta-
tion of the Clarck-Ocone formula. We refer to Di Nunno, Økskendal, and Proske (2009) for an extensive treatment
of Malliavin Calculus applied to Finance.
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where m � �V =
p
1� �2V .

15 By the properties of Malliavin derivatives, we have for i 2 fS; V g

Di
t(�T �WT ) = Di

t(�T �
W0

�T
) = Di

t(W0) = 0; (7.20)

where we used the optimality conditionWT = W0=�T , and the fact that the Malliavin derivative of an

adapted process is 0 (i.e. Dt(Xs) = 0 when s < t). Therefore, EPt [D
S
t (�TWT )] = EPt [D

V
t (�TWT )] =

0. Using this into (7.19), we see that

�Vt �m�St = 0:5�V
��0:5
t

�
InvRiskt

Wt

�
: (7.21)

relates market maker�s optimal inventory risk to the two prices of risks. The market index no-

arbitrage imposes

�tSt +

Z t

0

q�uSudu = EPt [�TST +

Z T

0

q�uSudu],
�� rp
Vt

=
q
1� �2V � �St + �V � �Vt : (7.22)

We can use previous equation in order to express the market price of risks �S in terms of the market

premium and �V

�St =
�� rp
Vt(1� �2V )

�m � �Vt : (7.23)

Combining (7.21) and (7.23), we can express the market price of variance risk as

�Vt = �V

�
�� rp
Vt

�
+ 0:5(1� �2V )�V

��0:5
t

�
InvRiskt

Wt

�
: (7.24)

Given that the variance risk premium satis�es V RPt = (�V
�
t ) � �Vt , we �nally get

V RPt = �V �V
�
t (Sharpet) + 0:5(1� �2V )�

2V 2��0:5
t

�
InvRiskt

Wt

�
; (7.25)

where Sharpet =
�
��rp
Vt

�
, and InvRiskt = �

P
j �

EU;j
t V egajt .

D. Risk-Neutral Dynamics

When the SDF follows (4.4), the Girsanov theorem implies that dZSt = d ~ZSt � �St dt and dZ
V
t =

d ~ZVt � �Vt dt. Using this result in (4.1), (4.2), (4.7), and (5.4) yields the risk-neutral processes.

15Note that m is well-de�ned whenever abs(�V ) 6= 1.
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dSt = (r � q)Stdt+
p
VtSt

�q
1� �2V d

~ZSt + �V d ~Z
V
t

�
dVt = �(� � Vt)dt� V RPtdt+ �V �

t d ~Z
V
t

dInvRiskt = �(�� InvRiskt)dt+  Vtdt� �InvRiskt

�q
1� �2Inv�

S
t + �Inv�

V
t

�
dt

+�InvRiskt

�q
1� �2Invd

~ZSt + �Invd ~Z
V
t

�
dWt = rWtdt+ �StWtd ~Z

S
t + �Vt Wtd ~Z

V
t ;

where ~ZSt and ~Z
V
t are independent Brownian motions under the risk-neutral measure, �

S
t = Sharpet=

p
1� �2V�

�V �
V
t =
p
1� �2V is obtained by imposing the no-arbitrage condition (7.22), �

V
t = V RPt= (�V

�
t ), and

V RPt satis�es Proposition 2.

E. Particle Filter Estimation

The following algorithm describes the way we evaluate the likelihood ~P jt
�
V j
t ;�

V
�
of observing

St+1 given the smooth resampled particles V
j
t , and the structural parameters �

V . For estimation

purposes, we set the number of particles denoted N to 10; 000.

Using the Euler discretization for dln(St) and (4.2), one can simulate the state of the N raw

particles
n
~V j
t

oN
j=1

forward given
�
V j
t�1
	N
j=1

according to

ZV;jt =

0@ ln
�

St
St�1

�
�
�
�� q � V jt

2

�
�tq

V j
t

�
q
1� �2VZ

S;j
t

1A =�V (7.26)

~V j
t = V j

t�1 + �(� � V j
t�1)�t+ �

�
V j
t�1
��
ZV;jt ; (7.27)

where ZS;jt is N(0;
p
�t), and � is �xed to the sample average. Using the set of raw particles, the

likelihood of observing St+1 given ~V
j
t and St is

~P jt

�
~V j
t ;�

V
�
=

1q
2� ~V j

t

exp

0B@�
�
ln
�
St+1
St

�
�
�
�� q � ~V jt

2

�
�t
�2

2 ~V j
t

1CA : (7.28)

34



Based on the set of normalized weights

�P jt

�
~V j
t ;�

V
�
=

~P jt

�
~V j
t ;�

V
�

P
j

~P jt

�
~V j
t ;�

V
� ; (7.29)

and the raw ~V j
t , the method of Pitt (2002) can be applied to resample the smoothed particles�

V j
t

	N
j=1

and evaluate their corresponding weights ~P jt
�
V j
t ;�

V
�
.16

F. Risk-Neutral Pricing

Suppose that we want to price an index put option on day t with T days to maturity and strike

price K based on N = 10; 000 simulations. For each simulation n, we initiate the state variables

St, Vt, and InvRiskt to their respective values on the day of the pricing. Moreover, we initialize

the market maker wealth to w. For a given path n, the forward state of the discretized processes

in Appendix D given the information on day t is

ln(Snt+1) = ln(S
n
t ) + (r � q � V n

t =2)�t+
p
V n
t

�q
1� �2V

~ZS;nt+1 + �V ~Z
V;n
t+1

�
(7.30)

V n
t+1 = V n

t + �(� � V n
t )�t� V RP nt �t+ � (V n

t )
� ~ZV;nt+1 (7.31)

InvRisknt+1 = InvRisknt + �(�� InvRisknt )�t+  V n
t �t+ �InvRisknt

�q
1� �2Inv

~ZS;nt+1 + �Inv ~Z
V;n
t+1

�
��InvRisknt

�q
1� �2Inv�

S;n
t + �Inv�

V;n
t

�
�t (7.32)

ln(W n
t+1) = ln(W

n
t ) +

�
r �

��
�S;nt

�2
+
�
�V;nt

�2�
=2

�
�t+ �S;nt ~ZS;nt+1 + �V;nt ~ZV;nt+1; (7.33)

where ~ZS;nt+1 and ~Z
V;n
t+1 are independent N(0;

p
�t). In the previous system, we set

V RP nt = �V � (V
n
t )

� Sharpent + 0:5(1� �2V )�
2 (V n

t )
2��0:5

�
InvRisknt

W n
t

�
; (7.34)

16The method proposed in Pitt (2002) involves smoothing the �P jt to a continuous CDF from which the set of
smooth particle V jt can be resampled.
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where Sharpent =
�

��rp
V nt

�
. Moreover, the prices of risks are calculated according to

�S;nt = Sharpent =
q
1� �2V � �V �

V;n
t =

q
1� �2V and �V;nt = V RP nt = (� (V

n
t )

�) : (7.35)

Simulating the system forward from day t to T , the price of the index put option on day t is equal

to

P
�
�Inv; w;�V ; Vt; InvRiskt

�
=

NX
n=1

max (K � SnT ; 0) � exp(�r � (T � t) =365)

N
; (7.36)

where�V and�Inv are the structural parameters of the market variance and inventory risk processes

respectively, and w is the market maker�s wealth parameter.
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Figure 1: The S&P 500 Index, theVariance Risk Premium, and Delta-Hedged Gains and Losses
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Notes to Figure: The top panel plots the time series of the S&P 500 index. The middle panel

plots the one-month variance risk premium expressed in percentages and measured as the di¤erence

between the one-month ex-post realized variance and the one-month expected risk-neutral variance.

The bottom panel graphs the weekly average of daily delta-hedged gains and losses for all options

with moneyness (S=K) between 0:98 and 1:02.
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Figure 2: The VIX Index and Market Maker Inventory Risk
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Notes to Figure: The top panel plots the CBOE VIX index, which represents the implied volatility

of an at-the-money option with exactly 30 days to maturity expressed in percentages. The bottom

panel plots CBOE market makers�inventory risk dynamic, measured as the vega-weighted sum of

inventories across all contracts expressed in millions of dollars.
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Figure 3: Market Makers�Daily and Cumulative Pro�ts and Losses, and

Market Makers�Bid-Ask Spread Revenue
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Notes to Figure: The top panel plots the daily pro�ts and losses from market makers�delta-hedged

inventory expressed in millions of dollars. The middle panel graphs the cumulative pro�ts and losses

from market makers�delta-hedged inventory in millions of dollars. The bottom panel plots the SPX

market makers�bid-ask spread revenue expressed in millions of dollars.
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Figure 4: Filtered Spot Volatilities Estimated Using Daily S&P 500 Returns
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Notes to Figure: The �gure plots the daily spot volatilities �ltered from S&P 500 daily returns

using particle �ltering. In the top panel, we plot the spot volatilities estimated using the CEV

dynamic. In the bottom panel, we graph the �ltered spot volatilities estimated using the Heston

(1993) model. For both panels, the daily volatilities are annualized and expressed in percentages.
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Figure 5: Model-Implied Variance Risk Premiums, IVRMSEs, and Implied Volatility Smiles
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Notes to Figure: Panels A-D plot the daily one-month variance risk premium (VRP) and IVRMSE,

expressed in percentages, for the IRW and Heston models. To obtain the models�one-month VRP

on each day, we simulate 10,000 paths, calculate the 30 days integrated VRP for each path, and

take the average. For the IRW model, the VRP is calculated using estimated parameters and latent

variables. For the Heston model, the instantaneous VRP is set to h � Vt where h = �1:08. Panels
E and F plot the market-implied (solid) and model-implied (dashed) volatility smile.
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Figure 6: The Impact of Inventory Risk and Market Maker Wealth on Option Prices
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Notes to Figure: We plot the dollar response of SPX puts with 90 days to maturity to a decrease in

inventory risk (top panel) and to a decrease in market maker wealth (bottom panel). To calculate

the model sensitivies @P
@InvRisk

and @P
@W
, we use the estimated parameters �̂V , �̂Inv, and ŵ, and

set r = 4%, q = 0, St = 1183 , and Vt = �̂: Inventory risk and market maker wealth are set to

InvRiskt = �9:03E + 09 and Wt = ŵ. Based on these sensitivities, we then calculate the dollar

response of each option as �InvRiskt � @P
@InvRisk

and �Wt � @P@W , and plot the result across moneyness.
The circles plot the dollar response to an average decrease in the state variables. The diamonds plot

the dollar response to a decrease in the state variables equal to the 90th percentile of the sample

distribution of decreases.

47



 Implied
 Volatility Days to VRPt,30

Year  (%) Vega Maturity Quotes Volume  (%)
1997 22.18 133 102 214 303 -1.95
1998 25.14 164 101 181 324 -2.35
1999 24.96 217 110 178 290 -2.60
2000 22.95 223 111 138 273 -0.93
2001 23.93 186 116 159 316 -2.64
2002 25.20 149 109 157 399 -2.45
2003 21.64 140 109 153 503 -2.71
2004 16.44 156 109 186 525 -1.17
2005 14.23 148 95 171 799 -0.63
2006 14.57 151 85 217 1,109 -0.68
2007 18.69 203 101 343 1,073 -1.17
2008 29.39 181 101 457 826 -1.29
2009 29.51 136 98 474 709 -5.61
2010 22.30 160 106 516 708 -2.63
2011 23.04 170 95 545 713 -3.08

Average 22.28 168 103 273 591 -2.13

Table 1: Descriptive Statistics for SPX Options

Notes to Table: For each year, we report the average of implied volatility, vega, days to maturity, number 
of quotes, and volume for SPX puts and calls combined. We also report the average of the one-month 
variance risk premium measured as the difference between the one-month ex-post realized variance and 
the one-month expected risk-neutral variance. Option implied volatility and vega are computed using the 
Black-Scholes model.



IV (%) 43.80 21.27 21.00 29.06 38.48

Inventory -1,419 -2,010 -15,100 -1,856 -3,616 -24,000

14.27 5.68 -8.16 -10.29 -5.87

IV (%) 27.81 17.71 20.73 26.47 31.36

Inventory -1,226 -4,309 -12,574 -7,897 -777 -26,784

14.59 2.22 -9.08 -10.92 -11.26

IV (%) 21.99 17.60 20.83 25.60 29.10

Inventory -499 -1,376 -6,567 -8,672 -946 -18,061

11.25 2.67 -5.08 -7.39 -13.54

IV (%) 20.10 18.85 22.33 26.65 29.93

Inventory -332 -1,288 -6,752 -9,241 -2,324 -19,937

11.18 2.89 -5.24 -7.05 -19.65

IV (%) 17.52 18.63 21.32 24.22 26.21

Inventory 464 1,628 -1,615 -8,900 -2,159 -10,581

7.14 -0.53 -3.48 -4.65 -14.57

-99,363

by Moneyness and Maturity for SPX Options

Moneyness (S/K)

D
ay

s t
o 

M
at

ur
ity

Notes to Table: For each SPX option moneyness and maturity category, we compute the average of the implied 
volatility (IV)  and market makers' inventory. We compute averages for each category on each day and then average 
across days. We also report ΔHedge, which denotes the sample average of the daily delta-hedged gains and losses 
across all options in each moneyness and maturity category. The top right column reports the sum of inventory for 
each maturity category and the bottom row reports the sum of inventory by moneyness category.

-3,012 -7,354 -42,608 -36,566 -9,823
Sum of 

Inventory by 
Moneyness

Sum of 
Inventory 

by Days-to-
Maturity

ΔHedge ($)

ΔHedge ($)

Table 2: Implied Volatility, Market Maker Inventory, and Delta-Hedged Gains and Losses

Total 
Inventory

0.80 to 0.85 0.85 to 0.95 0.95 to 1.05 1.05 to 1.15 1.15 to 1.20

10
 to

 3
0

31
 to

 6
0

61
 to

 9
0

91
 to

 1
20

12
1 

to
 3

65

ΔHedge ($)

ΔHedge ($)

ΔHedge ($)



Intercept -0.26 -0.06 -0.43 -0.23 -0.10 -0.01
( 0.17 ) ( 0.80 ) ( 0.11 ) ( 0.55 ) ( 0.70 ) ( 0.98 )

InvRisk(t-1 ) 0.96 *** 0.85 *** 1.20 ***
( 0.00 ) ( 0.00 ) ( 0.00 )

ΔW(t ) × InvRisk(t-1 ) -3.39 *** -5.82 *** -5.11 ***
( 0.00 ) ( 0.00 ) ( 0.00 )

S&P500LogRet(t ) 7.53 *** 7.46 *** 7.32 *** 6.84 *** 7.97 *** 7.91 ***
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

JumpFactor(t ) -4.89 *** -4.06 *** -4.12 *** -2.28 *** -5.74 *** -4.06 ***
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

NetBuyingPressure(t ) -0.22 -0.14 -0.03 -0.16 -0.62 ** -0.31
( 0.26 ) ( 0.45 ) ( 0.92 ) ( 0.53 ) ( 0.02 ) ( 0.17 )

Disagreement(t ) -0.46 *** -0.61 *** 0.01 -0.26 -0.44 -0.74 **
( 0.07 ) ( 0.01 ) ( 0.98 ) ( 0.50 ) ( 0.19 ) ( 0.03 )

ΔLogVRPt-1,30 -3.25 *** -2.97 *** -5.02 *** -3.94 *** -0.99 *** -0.39
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.01 ) ( 0.22 )

Adj. R² (%) 39 43 34 43 49 57

N 3774 3774 2011 2011 1763 1763

Notes to Table: We present the full sample and subsample results from regressing daily changes in the one-
month log-variance risk premium, denoted ΔLogVRPt,30,  on lagged inventory risk, the interaction of changes in 
market maker wealth with lagged inventory risk, and the control variables: S&P 500 log-return, S&P500 jump, 
net buying pressure for index options, and investors' disagreement. On each day, we estimate inventory risk by 
summing vega-weighted inventories across options. Changes in market maker wealth are measured as the sum of 
delta-hedged inventory profits and losses (2.6) and bid-ask spread revenue (2.7). All regressors are standardized 
to have unit variance. The p -values are in parentheses and are computed using Newey-West with 8 lags.

(3) (4) (5) (6)(1) (2)

Table 3: Explaining Time Variation in the One-Month Log Variance Risk Premium
  

1997-2004 2005-20111997-2011

Dependent Variable: ΔLogVRPt,30   × 100



Intercept -0.06 -0.09 -0.16 -0.03 0.01
( 0.80 ) ( 0.57 ) ( 0.21 ) ( 0.72 ) ( 0.94 )

InvRisk(t-1 ) 0.96 *** 0.64 *** 0.39 *** 0.41 *** 0.25 ***
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

ΔW(t ) × InvRisk(t-1 ) -3.39 *** -2.51 *** -2.03 *** -1.46 *** -1.28 ***
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

S&P500LogRet(t ) 7.46 *** 6.39 *** 5.58 *** 4.08 *** 3.52 ***
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

JumpFactor(t ) -4.06 *** -2.37 *** -1.85 *** -1.10 *** -0.79 ***
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

NetBuyingPressure(t ) -0.14 -0.17 -0.15 -0.07 0.06
( 0.45 ) ( 0.21 ) ( 0.17 ) ( 0.34 ) ( 0.62 )

Disagreement(t ) -0.61 *** -0.45 ** -0.53 *** -0.33 *** -0.41 ***
( 0.01 ) ( 0.03 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

ΔLogVRPt-1,T -2.97 *** -1.48 *** -1.20 *** -0.53 *** -0.16
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.23 )

Adj. R² (%) 43 47 49 53 20

N 3774 3774 3774 3774 3774

Notes to Table: The table presents results from regressing daily changes in the log variance risk 
premium, denoted ΔLogVRPt,T,  on the explanatory variables. We consider the variance risk 
premium for five different horizons T . All regressors are standardized to have unit variance. The p -
values are in parentheses and are computed using Newey-West with 8 lags. The sample period is 
1997-2011.

(4) (5)(2) (3)(1)

Table 4: Explaining Time Variation in the Log Variance Risk Premium. Various Maturities

T=90T=60T=30 T=180 T=270

Dependent Variable: ΔLogVRPt,T   × 100



Intercept -0.07 -0.10 0.03
( 0.65 ) ( 0.53 )

InvRisk(t-1 ) 0.53 *** 0.55 *** -0.02
( 0.00 ) ( 0.00 )

ΔW(t ) × InvRisk(t-1 ) -2.13 *** -2.28 *** 0.15
( 0.00 ) ( 0.00 )

S&P500LogRet(t ) 5.41 *** 5.45 *** -0.04
( 0.00 ) ( 0.00 )

JumpFactor(t ) -2.03 *** -1.93 *** -0.10
( 0.00 ) ( 0.00 )

NetBuyingPressure(t ) -0.10 -0.32 0.22
( 0.36 ) ( 0.16 )

Disagreement(t ) -0.47 *** 0.18 -0.65
( 0.01 ) ( 0.35 )

ΔLogVRPt-1,T -1.27 ** -2.16 * 0.89
( 0.05 ) ( 0.01 )

Adj. R² (%) 42 44

Table 5:  Explaining Time Variation in the One-Month Log Variance Risk Premium.
Various Definitions of the Risk Premium

Variances Forecast Difference

RV t,T  proxied by

Dependent Variable: ΔLogVRPt,T   × 100

RV t,T  proxied by

(1) (2) (1) - (2)

Notes to Table: We report parameter estimates and p -values from regressing daily changes in 
the log-variance risk premium on the explanatory variables.The first column reports the average 
parameter estimates and p -values from Table 4, across horizons T.  In the second column, we 
present the average parameter estimates and p -values obtained when the log-variance risk 
premia are constructed based on the HAR-RV model prediction for RVt,T . Detailed results for 
each horizon are provided in Table A.2 in the Online Appendix. All regressors are standardized 
to have unit variance and the p -values are computed using Newey-West with 8 lags. The sample 
period is 1997-2011.

Future Realized HAR-RV Model Parameter



Intercept 0.00 0.00 0.00 0.00 0.02
( 0.86 ) ( 0.81 ) ( 0.74 ) ( 1.00 ) ( 0.38 )

InvRisk(t-1 ) 0.06 *** 0.04 *** 0.02 * 0.02 *** 0.02 ***
( 0.00 ) ( 0.01 ) ( 0.07 ) ( 0.01 ) ( 0.01 )

ΔW(t ) × InvRisk(t-1 ) -0.17 *** -0.11 *** -0.09 *** -0.06 *** -0.06 ***
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

S&P500LogRet(t ) 0.83 *** 0.66 *** 0.54 *** 0.36 *** 0.30 ***
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

JumpFactor(t ) -0.19 *** -0.09 *** -0.06 *** -0.03 ** -0.01
( 0.00 ) ( 0.00 ) ( 0.01 ) ( 0.02 ) ( 0.32 )

NetBuyingPressure(t ) -0.01 -0.02 -0.02 * -0.01 0.02
( 0.44 ) ( 0.13 ) ( 0.08 ) ( 0.19 ) ( 0.48 )

Disagreement(t ) -0.06 ** -0.05 * -0.04 ** -0.03 *** -0.04 **
( 0.05 ) ( 0.06 ) ( 0.03 ) ( 0.01 ) ( 0.05 )

ΔVRPt-1,T -0.31 *** -0.15 *** -0.10 *** -0.05 *** 0.00
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.37 )

Adj. R² (%) 44 50 53 57 4

N 3774 3774 3774 3774 3774

Notes to Table: We present the results from regressing daily changes in the variance risk premium, 
denoted ΔVRPt,T,  on the explanatory variables. As in Table 4, we consider five horizons T  to 
investigate the term structure of variance risk premia. All regressors are standardized to have unit 
variance. The p -values are in parentheses and are computed using Newey-West with 8 lags.

(1) (2) (3) (4) (5)

Table 6: Time Variation in the Term Structure of Variance Risk Premia

Dependent Variable: ΔVRPt,T  × 100

T=30 T=60 T=90 T=180 T=270



Average Daily
per Period Annualized

Min Max Return × 30 Volatility Excess
Frequency (%) (%) (%) (%) Skewness Kurtosis

Daily -12.19 35.46 -8.11 71.11 2.33 10.72
Weekly -3.92 9.02 -8.37 32.65 1.27 3.42
Monthly -2.08 4.84 -8.21 17.27 1.44 5.21

Daily -10.43 35.46 6.26 95.68 2.55 11.47
Weekly -3.92 7.94 3.31 42.07 1.34 2.93
Monthly -1.38 4.84 3.48 28.38 1.95 3.58

Notes to Table: We report the minimum, maximum, average, volatility, skewness, and excess kurtosis for the 
return distribution of delta-hedged near-the-money options. Every day, we delta-hedge one long position in each 
option with moneyness between 0.98 and 1.02, assuming daily rebalancing. We then average the daily returns 
over all the options on that day to obtain a single return for that day. To obtain weekly and monthly return 
measures, we average the daily returns over each week and month respectively. We report the statistics for the 
return distribution calculated using the full sample, as well as for a sample period corresponding to the financial 
crisis. For the financial crisis, the sample starts on August 9th, 2007, when BNP Paribas froze three of their funds 
due to valuation issues, and ends on April 2nd, 2009, when the G20 agreed on a global stimulus package worth 
five trillion dollars.

Table 7: The Return Distribution of Delta-Hedged Near-the-Money Options

Full Sample

Sample: August 9, 2007 - April 2, 2009



κ θ δ η
2.91 4.56% 98.35% -0.60 0.90

(0.002) (0.000) (0.012) (0.000) (0.000)
0.922 0.009 0.394 0.129 0.061

κ θ δ η
5.32 4.08% 18.82% -0.47 0.50

(0.000) (0.000) (0.014) (0.002)
0.701 0.003 0.077 0.152

Panel A: Annualized Statistics for Daily S&P 500 Returns

Panel B: The CEV Model

Panel C: The Heston Model

Table 8: Return Statistics and Parameter Estimates for the CEV and Heston Volatility Models

11,746.29 4.433% 142.728%

Mean Variance

Filtered Spot VariancesMLIS Objective 
Value

Variance

4.583%5.860%

Mean

Parameter Estimates, p -values, and Standard Errors

Notes to Table:  Panel A presents the descriptive statistics for the sample of daily S&P 500 returns. Panel B 
presents results for the physical variance dynamic in equation (4.2). Panel C presents results for the Heston 
(1993) model with the physical variance dynamic in equation (4.2) with η  = 1/2. For Panels B and C, the 
structural parameters and daily spot variances are obtained by maximum likelihood importance sampling 
(MLIS) on S&P 500 daily returns. We set the difference μ-q  equal to the sample average of 5.86%. All 
parameters and statistics are in annual units. The p -values in parentheses are based on standard errors computed 
using the outer product of the gradient evaluated at the optimal parameter values.

11,722.79 4.084% 52.913%

Mean Variance

MLIS Objective 
Value Filtered Spot VariancesParameter Estimates, p -values, and Standard Errors

𝜌𝜌𝑉𝑉

𝜌𝜌𝑉𝑉



λ α ψ σ w
($ Millions)

10.73 -1.00E+10 2.28E+11 16.55% -5.14E-04 440.92

Panel A: Parameter Estimates and Model Fit for the IRW Model

Table 9: Parameter Estimates and Model Fit for the IRW and Heston Models

Squared Errors
Implied Volatility

Sum of
Inventory Risk and Wealth Parameters

Notes to Table: Panel A presents the estimates for the inventory risk dynamic (4.7) and the market maker 
initial wealth parameter when the wealth dynamic evolves according to (4.8). To estimate both dynamics, 
the variance risk premium is determined according to Proposition 2, and the state variables evolve 
according to processes derived in Appendix D. Panel B reports the results for the Heston (1993) model 
where the variance risk premium is defined as the product of a constant h  and the spot variance. For each 
model, we also report the sum of the implied volatility squared errors based on 6,292 SPX put 
observations. All parameters are in annual units. For some of the parameters, we use the scientific notation 
E+/-n  to denote the power of 10.

Panel B: Parameter Estimates and Model Fit for the Heston (1993) Model

Implied Volatility
Squared Errors

h

6.68

Sum of

7.99

Price of Variance Risk

-1.08

𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼



Heston
Model Model Difference

1997-1999 4.317 3.890 0.427
2000-2002 2.613 2.411 0.202
2003-2005 2.545 3.358 -0.813
2006-2008 3.115 4.027 -0.912
2009-2011 3.114 4.120 -1.006
Average 3.141 3.561 -0.420

Heston
Model Model Difference

S/K≤0.95 3.666 3.542 0.124
0.95<S/K≤1.05 3.424 3.675 -0.251

S/K>1.05 4.128 4.292 -0.164
Average 3.739 3.836 -0.097

Months to Heston
Maturity Model Model Difference
2 months 3.829 3.912 -0.082
3 months 3.452 3.800 -0.348
6 months 3.417 4.004 -0.586
Average 3.566 3.905 -0.339

Panel A: Subsample IVRMSE

Table 10: Model Fit

Year

Moneyness

Notes to Table: We present the fit of the IRW and Heston models 
based on a sample of 131,638 put option prices. For each model, the 
structural parametes are set to their optimal values. Model fit is 
evaluated based on the percentage IVRMSE. In Panel A, we present 
the IVRMSE for several subsamples. Panel B reports the performance 
of each model by moneyness. In Panel C, we present the models' 
IVRMSE by maturity.

IRW

Panel C: IVRMSE by Maturity
IRW

IRW

Panel B: IVRMSE by Moneyness



Heston
Model Model Difference

1997-1999 4.209 3.736 0.473
2000-2002 2.642 2.468 0.174
2003-2005 2.572 3.390 -0.819
2006-2008 2.928 3.775 -0.847
2009-2011 3.110 3.967 -0.856
Average 3.092 3.467 -0.375

Heston
Model Model Difference

S/K≤0.95 3.275 3.452 -0.176
0.95<S/K≤1.05 3.338 3.614 -0.277

S/K>1.05 3.791 3.979 -0.188
Average 3.468 3.682 -0.214

Months to Heston
Maturity Model Model Difference
2 months 3.531 3.694 -0.163
3 months 3.301 3.642 -0.341
6 months 3.327 3.898 -0.571
Average 3.386 3.745 -0.358

Panel C: IVRMSE by Maturity
IRW

Notes to Table: We present the out-of-sample fit for the IRW and 
Heston models based on a sample of 131,638 put option prices. For 
each model, the structural parameters are set to their optimal values. 
For the IRW model, we set the spot variance and inventory risk on any 
given day to their one-day-ahead forecast, given their values on the 
previous day. Similarly, the spot variance used for the Heston model 
on any given day is set to the one-day-ahead predicted value, taking 
the spot variance on the previous day as given. We compute the model 
IVRSME based on these predicted values. In Panel A, we present the 
IVRMSE for several subsamples. Panel B reports the performance of 
each model by moneyness. In Panel C, we present the models' 
IVRMSE by maturity.

Table 11: Out-of-Sample Fit

Panel A: Subsample IVRMSE
IRW

Panel B: IVRMSE by Moneyness
IRW

Year

Moneyness



Intercept -4.10 ** -5.12 ** -5.29 ** -4.11 * -3.75 **
( 0.03 ) ( 0.02 ) ( 0.03 ) ( 0.01 ) ( 0.02 )

ln( RVt-1,1  ) 0.11 0.06 0.04 0.00 0.01
( 0.13 ) ( 0.28 ) ( 0.36 ) ( 0.48 ) ( 0.46 )

ln( RVt-6,6  ) 0.18 0.10 0.06 0.00 0.00
( 0.26 ) ( 0.43 ) ( 0.46 ) ( 0.48 ) ( 0.46 )

ln( RVt-30,30  ) -0.02 0.08 0.02 0.02 -0.01
( 0.35 ) ( 0.36 ) ( 0.33 ) ( 0.29 ) ( 0.27 )

ln( RVt-60,60  ) 0.28 0.08 0.08 -0.13 -0.04
( 0.26 ) ( 0.29 ) ( 0.29 ) ( 0.26 ) ( 0.24 )

ln( RVt-90,90  ) -0.23 -0.07 -0.15 0.08 0.06
( 0.24 ) ( 0.27 ) ( 0.28 ) ( 0.23 ) ( 0.25 )

ln( RVt-120,120  ) -0.37 -0.58 -0.45 * -0.10 * -0.06 *
( 0.20 ) ( 0.11 ) ( 0.10 ) ( 0.09 ) ( 0.08 )

Adj. R² (%) 51 56 60 71 73

Min -35.48 -30.06 -22.01 -14.72 -18.22
Max 12.16 6.08 16.27 50.02 17.63

Average -2.38 -2.46 -2.38 -2.14 -2.08

Panel B: Min, Max, and Average of Variance Risk Premia Implied by the HAR-RV model

T=60 T=90 T=180 T=270T=30

Panel A: Parameter Estimates and Fit for the HAR-RV Model

Table A.1: Estimation Results for the HAR-RV Model and Variance Risk Premia

Notes to Table: Panel A reports the average of the parameter estimates, p -values, and adjusted R-
squares from estimating the HAR-RV model on every day in the sample. The p -values in parentheses 
are computed using Newey-West with 8 lags. We estimate the model daily using a rolling window of 
252 observations and forecast future realized variance for different forecast horizons. Based on the 
model prediction and the expected risk-neutral variance inferred from option prices, we construct 
measures of the variance risk premium. Panel B reports summary statistics for the variance risk premia. 
See Appendix A for additional information on the estimation methodology. The sample period is 1997-
2011.

 Dependent Variable: ln( RVt,T  )

VRPt,T  × 100

T=30 T=60 T=90 T=180 T=270

(1) (2) (3) (4) (5)



Intercept -0.14 -0.07 -0.07 -0.12 -0.10
( 0.60 ) ( 0.73 ) ( 0.72 ) ( 0.34 ) ( 0.24 )

InvRisk(t-1 ) 0.92 *** 0.70 *** 0.59 *** 0.31 *** 0.23 ***
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.01 ) ( 0.01 )

ΔW(t ) × InvRisk(t-1 ) -3.78 *** -2.71 *** -2.31 *** -1.48 *** -1.13 ***
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

S&P500LogRet(t ) 7.79 *** 6.39 *** 5.40 *** 4.19 *** 3.47 ***
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

JumpFactor(t ) -3.78 *** -2.24 *** -1.74 *** -1.05 *** -0.84 ***
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

NetBuyingPressure(t ) -0.59 *** -0.50 *** -0.38 *** -0.09 -0.04
( 0.01 ) ( 0.00 ) ( 0.01 ) ( 0.27 ) ( 0.49 )

Disagreement(t ) 0.67 ** 0.34 * 0.05 0.04 -0.18 *
( 0.03 ) ( 0.09 ) ( 0.83 ) ( 0.76 ) ( 0.06 )

ΔLogVRPt-1,T -5.06 *** -2.75 *** -2.06 *** -0.65 *** -0.27 **
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.03 )

Adj. R² (%) 40 42 42 46 49

N 3774 3774 3774 3774 3774

Notes to Table: We present the results from regressing daily changes in the log-variance risk 
premium, denoted ΔLogVRPt,T , on the explanatory variables. To measure expected physical 
variance, we fit the HAR-RV model on each day in the sample, as described in Appendix A, and 
we use it to forecast future physical variance. Based on the model forecast, we construct measures 
of the log-variance risk premium. We consider five horizons T to capture the term structure of 
variance risk premia. All regressors are standardized to have unit variance. The p -values are in 
parentheses and are computed using Newey-West with 8 lags. The sample period is 1997-2011.

(1) (2) (3) (4) (5)

Table A.2: Time Variation in the Term Structure of Log-Variance Risk Premia
 Implied by the HAR-RV Model

T=30 T=60 T=90 T=180 T=270

Dependent Variable: ΔLogVRPt,T   × 100



Intercept -0.23 -0.16 -0.13 -0.10 0.03
( 0.24 ) ( 0.21 ) ( 0.23 ) ( 0.16 ) ( 0.84 )

InvRisk(t-1 ) 0.94 *** 0.64 *** 0.39 *** 0.40 *** 0.25 ***
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

ΔW(t ) × InvRisk(t-1 ) -3.40 *** -2.53 *** -2.06 *** -1.46 *** -1.29 ***
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

S&P500LogRet(t ) 7.43 *** 6.37 *** 5.56 *** 4.06 *** 3.50 ***
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

JumpFactor(t ) -4.02 *** -2.34 *** -1.83 *** -1.09 *** -0.77 ***
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

NetBuyingPressure(t ) -0.15 -0.17 -0.15 -0.07 0.06
( 0.45 ) ( 0.21 ) ( 0.17 ) ( 0.34 ) ( 0.62 )

Disagreement(t ) -0.59 *** -0.44 ** -0.52 *** -0.32 *** -0.41 ***
( 0.02 ) ( 0.03 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

ΔLogVRPt-1,T -2.95 *** -1.47 *** -1.19 *** -0.52 *** -0.15
( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.23 )

Adj. R² (%) 43 47 49 53 20

N 3774 3774 3774 3774 3774

Notes to Table: We present the results from regressing daily changes in the log-variance risk 
premium, denoted ΔLogVRPt,T , on the explanatory variables. Each day, market makers' delta-
hedged inventory profits and losses are calculated using option ask prices. We consider five 
horizons T  to capture the term structure of variance risk premia. All regressors are standardized to 
have unit variance. The p -values are in parentheses and are computed using Newey-West with 8 
lags. The sample period is 1997-2011.

(1) (2) (3) (4) (5)

Table A.3: Time Variation in the Term Structure of Log-Variance Risk Premia.
Delta-Hedged Inventory Gains and Losses Calculated Using Ask Prices

T=30 T=60 T=90 T=180 T=270

Dependent Variable: ΔLogVRPt,T   × 100
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