
Good Jumps, Bad Jumps, and Conditional Equity
Premium∗

Hui Guo† Kent Wang‡ Hao Zhou§

First Draft: July 2013
This Version: February 2015

Abstract

We uncover significant effects of jump risk on conditional equity premium. Realized
volatility due to negative or “bad” (positive or “good”) jumps in stock market prices
predicts a rising (falling) near-term equity premium. The forecasting power of signed
jump risk measures remains statistically significant even when we control for variance
risk premium that Drechsler and Yaron (2011) attribute to jump risk. Our novel
empirical findings are broadly consistent with an extended Drechsler and Yaron model
that also allows stochastic volatility of volatility to affect variance risk premium and
conditional equity premium as in Bollerslev, Tauchen, and Zhou (2009).

JEL classification: G10, G12, G17.
Keywords: Realized Jump Risk, Good and Bad Jumps, Conditional Equity Premium,
Downside Economic Uncertainty, Variance Risk Premium.

∗We thank seminar participants at the University of Cincinnati and Peking University. Hui Guo acknowl-
edges financial support from Carl H. Lindner College of Business. Kent Wang thanks financial support from
NSFC Grant # 71101122 and computational support of China MOE Key Lab in Econometrics at WISE.
Suyan Zheng provided excellent research assistance. All remaining errors are our own.
†Carl H. Lindner College of Business, University of Cincinnati. E-mail: guohu@ucmail.edu.
‡Wangyanan Institute for Studies in Economics, Xiamen University. E-mail: kentwang@xmu.edu.cn.
§PBC School of Finance, Tsinghua University. Email: zhouh@pbcsf.tsinghua.edu.cn.



Good Jumps, Bad Jumps, and Conditional Equity
Premium

First Draft: July 2013
This Version: February 2015

Abstract

We uncover significant effects of jump risk on conditional equity premium. Realized

volatility due to negative or “bad” (positive or “good”) jumps in stock market prices predicts

a rising (falling) near-term equity premium. The forecasting power of signed jump risk

measures remains statistically significant even when we control for variance risk premium

that Drechsler and Yaron (2011) attribute to jump risk. Our novel empirical findings are

broadly consistent with an extended Drechsler and Yaron model that also allows stochastic

volatility of volatility to affect variance risk premium and conditional equity premium as in

Bollerslev, Tauchen, and Zhou (2009).

JEL classification: G10, G12, G17.

Keywords: Realized Jump Risk, Good and Bad Jumps, Conditional Equity Premium,

Downside Economic Uncertainty, Variance Risk Premium.



1 Introduction

This paper documents a novel and important empirical finding that physical jump risk

measures are a significant determinant of conditional equity premium even when we control

for commonly used stock market return predictors. To do this, we decompose realized

stock market return volatility into (1) a continuous diffusion risk part and (2) a discrete

jump risk part, and then decompose the latter, i.e., the total realized jump volatility, into

(1) a component for negative or “bad” jumps and (2) a component for positive or “good”

jumps. Over the January 1986 to December 2013 period, the two jump risk components

affect conditional equity premium with opposite signs and different significance. Specifically,

the volatility of negative jumps correlates positively and significantly with one-month-ahead

excess stock market returns, while the correlation is negative albeit insignificant for the

volatility of positive jumps. The difference between bad and good jump risks is also a

parsimonious signed jump risk measure that correlates positively and significantly with future

equity premium. By contrast, the predictive power is negligible for the total realized jump

volatility that allows for no asymmetric effects.

Our main empirical findings pass easily standard robustness checks for stock market

return predictability. First, despite drastic changes in market conditions over a relatively

short sample period, the signed jump risk measure has significant predictive power for excess

market returns in two half samples. Second, the signed jump risk measure outperforms the

benchmark model of constant conditional equity premium in the out of sample test, and the

difference is statistically significant at the 5% level. Last, we construct a simple switching

trading strategy of holding the market portfolio when the signed jump risk measure predicts

a positive equity premium and holding the risk-free T-bill otherwise. The Sharpe ratio of

our switching strategy is about 20% higher than that of a buy-and-hold strategy.

Drechsler and Yaron (2011) (DY thereafter) analyze effects of jump risk on asset prices,

and we show via simulation that their model provides a potential explanation for the observed

(asymmetric) effects of jump risk on conditional equity premium. Because jump intensity is

a linear function of conditional volatility, realized jump volatility correlates positively with
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conditional volatility. In addition, conditional equity premium is proportional to conditional

volatility. Hence, in the DY model, realized jump risk forecasts equity premium because of its

correlation with conditional volatility. Moreover, the correlation with conditional volatility

is much stronger for negative jumps than for positive jumps due to the assumed jump size

distributions. Therefore, the DY model may account for our two main findings: (1) Negative

jump risk has significant effects on conditional equity premium but positive jump risk does

not; and (2) the signed jump risk measure forecasts excess market returns.

In the DY model, jumps generate a positive variance risk premium (the difference between

options-implied stock variance and realized stock variance) which, like the signed jump risk

measure, predicts excess market returns because of its correlation with conditional volatility.

The DY model thus implies that variance risk premium and the signed jump risk measure

contain similar information about future equity premium. We confirm this point by showing

that in simulated data, the former often drives out the latter in the regression of forecasting

excess market returns. By contrast, in actual data, both variance risk premium and the

signed jump risk measure are significant predictors of equity premium in bivariate regressions.

The empirical finding indicates that jump risk is not the sole driver of variance risk premium:

Variance risk premium affects conditional equity premium through additional channels that

are independent of jump risk. To address this issue formally, we propose an extended DY

model allowing for stochastic volatility of volatility as an additional determinant of both

variance risk premium and conditional equity premium as in Bollerslev, Tauchen, and Zhou

(2009). Under reasonable parameterizations, the extended DY model implies that consistent

with our empirical evidence, variance risk premium and the signed jump risk measure contain

independent information about future equity premium.

There is an ongoing debate about whether excess stock market returns or equity premia

are predictable over time. Specifically, Goyal and Welch (2008) caution about data mining

and show using a long sample that the predictive variables proposed in the extant literature

have rather weak forecasting power for excess stock market returns, especially in the out-

of-sample context. To address this concern, recent studies investigate stock market return

predictability using theoretically motivated risk measures such as stock market variance (Guo
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and Whitelaw (2006)) and variance risk premium (Bollerslev, Tauchen, and Zhou (2009) and

Drechsler and Yaron (2011)). We contribute to this literature by showing empirically and

theoretically that jump risk is also an important determinant of conditional equity premium.

Our novel findings shed new light on economic drivers of time-varying equity premium.

Many authors, e.g., Rietz (1988), Longstaff and Piazzesi (2004), Liu, Pan, and Wang

(2005), Barro (2006), Bates (2008), Eraker and Shaliastovich (2008), Bansal and Shalias-

tovich (2011), Drechsler and Yaron (2011), Du (2011), Gabaix (2012), and Wachter (2013),

incorporate rare disaster or jump risk in consumption-based asset pricing models. They show

that investors require a substantial return premium for bearing the market-wide jump risk

that may potentially resolve the Mehra and Prescott (1988) equity premium puzzle. Using

options data and parametric models, extant empirical studies, e.g., Bates (1996), Bakshi,

Cao, and Chen (1997), Pan (2002), Eraker (2004), Broadie, Chernov, and Johannes (2007),

and Santa-Clara and Yan (2010), find that jump risk accounts for a sizable portion of the un-

conditional equity premium. We extend this literature by testing a more direct and stringent

implication that the physical measure of market-wide jump risk is an important determinant

of conditional equity premium.1 Indeed, we find that realized jump risk—especially negative

or bad jumps—correlates positively with future excess stock market returns. This novel

evidence offer new insight on how jump risk affects asset prices.

Kelly and Jiang (2014) report a positive relation between downside tail risk constructed

from daily cross-sectional stock returns and conditional equity premium. Bollerslev and

Todorov (2011) document time-series variation in jump-related equity premium estimated

using options data. Du and Kapadia (2012) uncover a positive relation between a risk-neutral

jump risk measure and future stock market returns by focusing on left tails. Similarly, there

is strong indication that jump risk premium implied by options, especially the negative

component, explains well future market returns (Bollerslev, Todorov, and Xu, 2014).2 Our

econometric identification of realized jumps follows Huang and Tauchen (2005) and Tauchen

1Options-implied or risk-neutral jump risk measure is potentially a biased proxy for physical jump risk
measure because it contains a risk premium component.

2Bali and Hovakimian (2009), Yan (2011), Cremers, Halling, and Weinbaum (2011), and Jiang and Yao
(2013) find that jump risk estimated from option data forecasts the cross-section of stock returns.
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and Zhou (2011), and the method of decomposing jump risk into good and bad components

follows Zhang, Zhou, and Zhu (2009). Previous studies show that realized jump risk predicts

excess bond returns (Wright and Zhou, 2009) and credit spreads (Tauchen and Zhou, 2011).

Yet, there is no compelling evidence that realized jump risk predicts excess stock returns

unless, as we stress in this paper, it is decomposed into bad and good jump risks.3

Recent empirical evidence suggests that good and bad economic uncertainties or volatili-

ties have different forecasting power for asset prices and macroeconomic performance (Segal,

Shaliastovich, and Yaron, 2014). Likewise, good and bad market volatilities pertain distinct

information about future stock market returns (Feunou, Jahan-Parvar, and Tedongap, 2012);

and negative (positive) market jump risks lead to significantly higher (lower) future market

volatilities (Patton and Sheppard, 2013). We add to this literature by documenting novel

asymmetric effects of physical jump risk measures on conditional equity premium and future

economic fundamentals. Interestingly, Kilic and Shaliastovich (2015) report asymmetric ef-

fects of good and bad variance premium on expected excess market returns using a signing

method similar to ours.

The remainder of the paper is organized as follows. Section 2 explains the realized jump

risk measure and its decomposition into good and bad components. Section 3 investigates the

relationship between realized jump risk and future excess market returns. Section 4 explains

our main empirical findings using the DY and extended DY models. Section 5 concludes.

2 Econometric Estimation of Realized Jump Risk

We construct realized jump risk measures using high-frequency data. Andersen, Bollerslev,

Diebold, and Ebens (2001), Barndorff-Nielsen and Shephard (2002), and others, advocate

for using the sum of squared intra-day returns to estimate realized variance (RV). Barndorff-

Nielsen and Shephard (2004, 2006) (BNS thereafter) develop the bipower variation (BV) to

estimate the continuous variation, and show that asymptotically the difference between RV

and BV equals zero when there is no jump and is strictly positive when there is a jump. We

3Dungey, Mckenzie, and Smith (2009), Becker, Clement, and McClelland (2009), Jiang, Lo, and Verdelhan
(2011), and Lahaye, Laurent, and Neely (2011) have investigated realized jump risk in other financial markets.
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use this test to detect whether a jump occurs on a trading day and then construct realized

jump risk measures accordingly. Below we provide a brief discussion of our econometric

approach, which is similar to the one adopted by Tauchen and Zhou (2011).

We assume that the log of stock price st = log(St) follows a general jump diffusion model:

dst = µtdt+ σtdWt + Jtdqt, (1)

where µt is a drift, σt is diffusion volatility, Wt is a standard Brownian motion, dqt is a Poisson

jump process, and Jt is the jump size that follows a normal distribution with the mean µJ

and the standard deviation σJ . The i-th intra-day return of day t is rt,i = st,i·τ − st,(i−1)·τ ,

where τ is the sampling interval. The realized variance of day t is

RVt ≡
M∑
i=1

r2t,i, (2)

where M is the number of intra-day observations. The bipower variation of day t is

BVt ≡
π

2

M

M − 1

M∑
i=2

|rt,i||rt,i−1|. (3)

Similar to Huang and Tauchen (2005) and Andersen, Bollerslev, and Diebold (2007), we

choose the following jump test statistic

ZJt ≡
RVt−BVt
RVt√

(π
2

4
+ π − 5) 1

M
max(1, TPt

BV 2
t

)
, (4)

where TPt is the tripower quarticity that Barndorff-Nielsen and Shephard (2004) define as

TPt =
M

M − 2
· M

4[Γ(7/6)/Γ(1/2)]3
·
M∑
i=3

|rt,i|4/3|rt,i−1|4/3|rt,i−2|4/3. (5)

The test statistic has an asymptotic normal distribution under the null hypothesis of no

jump. If the test statistic of day t exceeds the 0.1% critical value of normal distribution, we

reject the null hypothesis. The dummy variable It,α equals 1 when a jump is detected at day

t and 0 otherwise, i.e., It,α = I(ZJt ≥ Φ−1α ), where Φ is the standard normal distribution

and α = 99.9% is the chosen significance level. Then the realized jump volatility (RJV) is

RJVt = It,α
√

[RVt −BVt]. (6)
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As we will show both empirically (Section 3) and theoretically (Section 4), positive and

negative jumps have different effects on conditional equity premium. To investigate this

issue, following Tauchen and Zhou (2011) and others, we use two assumptions to identify

the sign of a jump. First, there is at most one jump in a trading day. Second, a jump has a

dominant effect on the stock return for the day when it occurs. Under these two assumptions,

the sign of a jump is the same as the sign of the stock return for the day when the jump

occurs. Therefore, the risk due to a positive/good jump is

RJV Pt = I{rt ≥ 0}RJVt; (7)

and the risk due to a negative/bad jump is

RJV Nt = I{rt < 0}RJVt. (8)

As we will show in the next section, RJV N correlates positively with future stock market

returns, while the correlation is negative for RJV P. To incorporate such an asymmetric

effect of jump risk on conditional equity premium, we construct a composite signed jump

risk measure—the difference between RJV N and RJV P:

RJV SIGNEDt = RJV Nt −RJV Pt. (9)

3 Realized Jump Risk and Expected Stock Returns

This section provides new empirical evidence that negative or signed jump risk significantly

predicts a rising equity premium, although the forecasting power is negligible for the total

jump risk. The predictability is the strongest at the short 1- to 2-month horizon, survives

out-of-sample tests, produces significant market timing gains, and is robust with the control

of standard forecasting variables, including the powerful short-term predictor—variance risk

premium. In addition, consistent with a risk-based explanation, downside jump risk precedes

deterioration in economic fundamentals and is priced in the cross-section of stock returns.
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3.1 Data Summary

We detect daily jumps in the aggregate S&P 500 composite index using 5-minute high-

frequency data (excluding after-hour trading), spanning the sample period from January

1986 to December 2013. Trading days with less than 60 observations of 5-minute returns are

deleted from our sample. We construct daily realized jump risk measures and then aggregate

them across a month to obtain monthly observations. The monthly value-weighed stock

market return and risk-free rate are obtained from the Center for Research in Security Prices

(CRSP). The excess stock market return, ERET, is the difference between the stock market

return and the risk-free rate. We obtain commonly used stock market return predictors from

Amit Goyal’s website at the University of Lausanne. The monthly industrial output and

effective federal funds rate data are from the website of Federal Reserve Bank of St. Louis.

The upper panel of Figure 1 shows that realized jump volatility (RJV) appears to change

countercyclically over time. Specifically, RJV increases during business recessions (denoted

by shaded areas) and financial market turmoils and is relatively flat during other periods.

Figure 2 reveals a similar countercyclical pattern for it components—realized positive jump

volatility (RJV P, upper panel) and especially, realized negative jump volatility (RJV N,

lower panel). In Section 3.6, we will show formally that RJV N correlates negatively and

significantly with aggregate economic activity and the effective federal funds rate. Realized

signed jump volatility (RJV SIGNED)—the difference between RJV N and RJV P—varies

visibly differently from RJV over time (lower panel, Figure 1). Specifically, it shoots up

sharply just before or at the onset of the three business recessions in our sample. This

difference may explain why RJV SINGED has significant predictive power for both excess

market returns and economic fundamentals while RJV does not.

In Table 1, we report summary statistics of the excess market return (ERET) and realized

jump risk measures. Panel A presents univariate statistics. The sample mean of RJV N

is smaller than that of RJV P, and their difference, RJV SIGNED, thus has a negative

sample mean. The autocorrelation coefficient for RJV N (33%) is noticeably higher than that

of RJV P (15%), indicating that negative jumps are more persistent than positive jumps.

7



RJV also has moderate persistence, with an autocorrelation coefficient of 31%. In contrast,

the intertemporal dependence is rather weak for RJV SIGNED, with an autocorrelation

coefficient of 5%. Panel B reports the cross-correlation. RJV N correlates negatively with

ERET, while the correlation is positive for RJV P. As a result, RJV SIGNED, which is the

difference between RJV N and RJV P, correlates negatively with ERET. Results reported in

panel B also suggest that on average negative jumps have a larger contemporaneous impact

on the stock market price index than do positive jumps—the correlations of ERET with

RJV N and RJV P are -13% and 1%, respectively. The correlation with ERET is negative

for RJV, which is the sum of RJV N and RJV P, but the magnitude is moderate (-8%).

Moreover, consistent with Figure 2 that RJV N and RJV P appear to move together to each

other over business cycles, there is a positive correlation between these two variables (31%).

3.2 Signed Jump Volatility and Expected Stock Market Returns

Table 2 presents ordinary least squares (OLS) estimation results of forecasting one-month-

ahead excess market returns using realized jump risk measures. Contrary to the conventional

wisdom that jump risk has pervasive effects on asset prices (Merton, 1976), row 1 shows that

the predictive power is negligible for the total realized jump volatility, RJV. However, when

decomposing jump risk into positive and negative components, we are able to uncover its

economically large and statistically significant effects on conditional equity premium.

Row 2 of Table 2 shows that RJV N, the risk due to negative or bad jumps, correlates

positively and significantly with future excess market returns at the 5% level. In contrast, the

correlation is negative albeit insignificant for RJV P, the risk due to positive or good jumps

(row 3). In row 4, we include both RJV N and RJV P in the bivariate forecasting regression.

Interestingly, the estimated coefficient on RJV P increases substantially in magnitude to -

1.05 from -0.70 in row 3; and more importantly, it becomes statistically significant at the

5% level. Similarly, the estimated coefficient on RJV N increases sharply to 1.11 from 0.76

in row 2 and is now statistically significant at the 1% level. In addition, the adjusted R2 of

3.1% in row 4 (where both RJV N and RJV P are included together) is noticeably higher

than 1.1% in row 2 or 0.8% in row 3 (where RJV N or RJV P is included separately).
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Because RJV N and RJV P positively correlate with each other (Table 1) but have op-

posite effects on conditional equity premium, the difference between the bivariate regression

results in row 4 of Table 2 and the univariate regression results in rows 2 and 3 reflects an

omitted variables problem, which attenuates the explanatory power of RJV N and RJV P

in univariate regressions. These results highlight the asymmetric effects of negative and

positive jumps on conditional equity premium.

In row 4 of Table 2, the coefficients on RJV N (1.06) and RJV P (-1.05) have similar

magnitudes, and the Wald test fails to reject the null hypothesis that their absolute values

are the same at the conventional significance level. Based on this empirical finding, we

propose RJV SIGNED, the difference between RJV N and RJV P, as a composite signed

jump risk measure. Row 5 shows that RJV SIGNED correlates positively and significantly

with one-month-ahead excess market returns at the 1% level, with an adjusted R2 of 3.4%.

Consistent with the Wald test result, the estimated coefficient on RJV SIGNED is 1.06,

which is almost identical in magnitude to those on RJV N and RJV P reported in row 4.

Figure 2 shows that both RJV P and RJV N increase drastically during the 2001 stock

market crash and the 2008 financial market crisis. One might suspect that our main find-

ings reflect these unusual episodes in the second half sample. To address the concern, we

investigate the relation between realized signed jump risk measures and future excess market

returns using two subsamples of the January 1986 to December 1999 period and the Jan-

uary 2000 to December 2013 period, and find that results are qualitatively similar to those

obtained using the full sample (untabulated). For example, RJV SIGNED correlates posi-

tively and significantly with future equity premium in both half samples, with an estimated

coefficient of 1.01 and 1.15 for the first and second subsamples, respectively. Therefore,

the relation between realized signed jump risk measures and conditional equity premium is

quite stable over time, and our results are not driven by any particular episode or outlier.

Similarly, in the next subsection, we will show that realized signed jump risk measures have

significant out-of-sample predictive power for excess market returns.

As a robustness check, we consider an alternative scheme for signing jumps following

Andersen, Bollerslev, and Diebold (2007). When we detect a jump in a trading day, its
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sign is the same as that of the 5-minute interval return with the largest magnitude in that

day. We also use an alternative jump detection method proposed by Lee and Mykland

(2008) that allows for multiple jumps in a trading day. These alternative approaches result

in qualitatively similar conclusion that realized negative or bad jump volatility correlates

positively and significantly with future excess stock market returns. To converse space, we

do not report these results but they are available upon request.

3.3 Out-of-Sample Forecasts

To address the potential data mining concern by Goyal and Welch (2008), in Table 3, we

compare the out-of-sample performance of our proposed forecasting models with that of a

benchmark model that uses the average historical equity premium as the forecast for the

one-month-ahead equity premium. Over the January 1986 to December 2013 period, we

use the observations from the first half sample period (January 1986 to December 1999) for

the initial in-sample estimation, and then make recursive one-month-ahead out-of-sample

forecasts for the remaining observations with an expanding sample. We use two statistics

to gauge the out-of-sample forecast power. First, MSEa/MSEb is the ratio of the mean

squared-forecasting-error of the forecasting model to that of the benchmark model. Second,

ENC-NEW is the encompassing test proposed by Clark and McCraken (2001). It tests the

null hypothesis that the benchmark model incorporates all the information about the next

period’s excess stock market return against the alternative hypothesis that realized jump

risk measures provide additional information. As in Lettau and Ludvigson (2001), we use

bootstrapped critical values obtained from 10,000 simulations for inferences.

In row 1 of Table 3, we use RJV SIGNED as a predictor in the forecasting model. We find

that RJV SIGNED has significant out-of-sample predictive power. It has a smaller mean

squared-forecasting-error than does the benchmark model, and the ENC-NEW test indicates

that the difference in out-of-sample forecast performance is statistically significant at the 5%

level. As a robustness check, we include both RJV N and RJV P as predictors in row 2 and

find qualitatively similar results. To summarize, realized signed jump risk measures have

significant out-of-sample forecasting power for excess market returns.
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In addition, a simple trading strategy shows that the predictive power of signed jump

risk measures is economically important. Specifically, we use the first half sample period

(January 1986 to December 1999) for the initial in-sample estimation, and then make one-

month-ahead out-of-sample forecasts for the remaining observations with an expanding sam-

ple. We consider a switching strategy of holding a market index for the next month if the

predicted excess market return is positive, and hold the short-term Treasury bill otherwise.

For comparison, we use the buy-and-hold of the market index as a benchmark strategy.

Table 4 shows that the excess return on the switching strategy based on RJV SIGNED is

0.474% per month, noticeably higher than 0.456% for the buy-and-hold strategy. In addition,

the standard deviation of returns on the switching strategy is 4.2%, which is lower than 4.8%

for the buy-and-hold strategy. Overall, the Sharpe ratio of the switching strategy (11.3%)

is about 20% higher than that of the buy-and-hold strategy (9.5%). Figure 3 illustrates

visually the difference in performances of the two investment strategies. With an $100 initial

investment, the value of the switching portfolio is higher than that of the buy-and-hold

portfolio for most of the testing period. Similarly, the switching strategy based on RJV N

and RJV P has a higher mean return (0.498%), a lower return volatility (4.3%), and an even

higher Sharpe ratio (11.8%) than does the buy-and-hold strategy.

3.4 Control for Common Stock Market Return Predictors

Bollerslev, Tauchen, and Zhou (2009) and Drechsler and Yaron (2011) show that variance

risk premium (VRP) has a positive unconditional mean and predicts a rising excess stock

market return. That is, stock market volatility is a priced risk factor that has significant

effects on both variance risk premium and conditional equity premium. These authors offer

two competing economic explanations for these important empirical findings. Bollerslev,

Tauchen, and Zhou (2009) suggest that VRP reflects stochastic volatility of consumption

volatility, while in the DY model it comes from jumps in conditional mean and volatility of

consumption growth. As we will show in the next section, in the DY model, the realized

signed jump volatility and variance risk premium have similar predictive power for excess

market returns. Specifically, the latter always drives out the former in bivariate regressions
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of forecasting near-term equity premium in simulated data from the calibrated DY model.

However, if we include stochastic volatility of volatility as an additional determinant of

variance risk premium and conditional equity premium in an extended DY model, the realized

signed jump volatility and variance risk premium contain independent information about

future market returns. Therefore, our novel empirical findings allow us to shed light on

economic forces underlying variance risk premium.

In Table 5, we compare the predictive power of variance risk premium with that of the

realized signed jump volatility over the January 1990 to December 2013 period, during which

we have data for both variables. We first replicate our main findings that RJV SIGNED has

significant forecasting power for one-month-ahead equity premium (row 1) but RJV does

not (row 2) in this sample. Row 3 reproduces the Bollerslev, Tauchen, and Zhou (2009) and

Drechsler and Yaron (2011) finding that VRP correlates positively and significantly with

future equity premium. To test whether or not RJV SIGNED and VRP have similar pre-

dictive power, in row 4 of Table 5, we include them together in the forecasting regression.

As in univariate regressions, both RJV SIGNED and VRP have significantly positive effects

on conditional equity premium. This result should not be a surprise because VRP corre-

lates only moderately with realized jump risk measures; for example, the coefficient of its

correlation with RJV SIGNED is only 7% (untabulated). Our results indicates that jump

risk is not the sole driver of variance risk premium. In the next section, we will propose

an extended DY model that can replicate the finding in row 4 by allowing both stochastic

volatility of volatility and jump risk to affect variance risk premium and conditional equity

premium.

As an additional robustness check, in Table 5, we include commonly used market return

predictors to the forecast regressions with (row 5) or without (row 6) the control for VRP.

DP is the dividend yield; DEF is the difference in yields between BAA- and AAA-rated

corporate bonds; TERM is the difference in yields between long-term and short-term Trea-

sury bonds; and RREL is the stochastically detrended risk-free rate. Again, the positive

correlation of RJV SIGNED with future excess market returns remains significantly positive

at least at the 5% level. These results suggest that in contrast with Goyal and Welch (2008),
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we find significant out-of-sample market return predictability because realized jump risk

measures provide additional information about future excess market returns beyond that of

the predictors examined by previous studies.

3.5 Longer Forecasting Horizons

In Table 6, we investigate the predictive power of signed realized jump risk measures over

longer forecasting horizons. The effect of RJV SIGNED on conditional equity premium is

significantly positive at the 1% level for the 2-month horizon and at the 5% level for the

3-month horizon. It becomes marginally significant at the 10% level for the 6- and 12-month

horizons. Similarly, the upper panel of Figure 4 shows that adjusted R2 of RJV SIGNED

peaks at the 2-month horizon and then declines sharply with forecasting horizons. This

pattern is somewhat different from the hump-shape R2 pattern (peaking at the 4-month

horizon and then declining gradually) for variance risk premium, as we show in the lower

panel of Figure 4. We find qualitatively similar results when using RJV N and RJV P as

forecasting variables. Jump risk measures have relatively short forecasting horizons because

as we show in Table 1, they are not very persistent.

3.6 Downside Jump Risk and Aggregate Economic Activity

Risk-based asset pricing models imply a countercyclical conditional equity premium. If

realized jump risk measures forecast excess market returns because they are a proxy of

systematic risk, we expect that they correlate negatively with aggregate economic activity.

Consistent with this conjecture, Figure 2 shows that RJV P and especially, RJV N, tend to

increase substantially during business recessions. In Table 7, we address this issue formally

by investigating the relation between signed realized jump risk measures and two important

aggregate economic indicators—industrial production and the effective federal funds rate.4

Industrial production is a direct measure of aggregate economic activity, and we expect a

negative relation between realized jump risk measures and the future growth rate of industrial

production. The Fed adopts a countercyclical monetary policy, i.e., eases the money when

4We find qualitatively similar results using the Chicago Fed National Activity Index.
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the economy is weak and tights the money when the expected inflation rises. Hence the

Fed is likely to lower the Federal funds rate when it senses that escalated jump risks pose

a threat to economic growth. The Fed abandoned the federal funds rate as a monetary

policy instrument when the effective policy rate reached its zero lower bound on December

16, 2008. Therefore, we investigate the relation between the effect federal funds rate and

realized jump risk measures using the data up to December 2008.

Panel A of Table 7 shows that RJV N correlates negatively with 1-, 2-, and 3-month ahead

growth rates of industrial production at the 1% significance level even when we control for

the lagged dependent variable. In contrast, the relation is much weaker and statistically

insignificant for RJV P. These results suggest that only bad/negative jumps have an adverse

effect on aggregate economic growth. Similarly, Panel B shows that the Fed tends to lower the

effective federal funds rate in response to increases in realized downside jump risk measures,

and such a monetary policy reaction is statistically significant at the 1% level. In contrast,

the Fed does not react to variations in realized good jump volatility. Similarly, the signed

jump risk measure (RJV SIGNED) has a negative effect on aggregate economic activity,

and the effect is often statistically significant. Segal, Shaliastovich, and Yaron (2014) also

find that downside macroeconomic uncertainty correlates negatively with future economic

fundamentals; and they interpret this result by a long-run risk model with a feedback effect.

An increase in RJV SIGNED represents a deterioration of investment opportunities. If a

stock’s return correlates positively with the contemporaneous change in RJV SIGNED, the

stock provides hedge for the jump risk and thus investors require a low risk premium for

holding it. That is, we expect a negative correlation between loadings on RJV SIGNED and

the cross-section of future stock returns. To investigate this conjecture, we sort stocks equally

into 10 portfolios by their loadings on RJV SIGNED and find that, as hypothesized, stocks

with high loadings have significantly lower future returns than stocks with low loadings even

when we control for standard risk factors. Our results suggest that the realized signed jump

risk measure is a pervasive risk factor that affects the cross section of expected stock returns.

For brevity, we do not report these results here but they are available upon request.
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4 Jump Risk in an Extended DY Model

Drechsler and Yaron (2011) characterize effects of jump risk on asset prices using a variant of

the Bansal and Yaron (2004) long run risk model allowing for jumps in conditional mean and

volatility of consumption growth. In the DY model, the realized signed jump risk measure

and variance risk premium have similar predictive power for excess market returns. In

contrast with this implication, as we show in Table 5, these two variables contain independent

information about future equity premium in actual data, suggesting that jumps are not the

only determinant of variance risk premium. To illustrate this point formally, we extend the

DY model by including stochastic volatility of volatility as an additional determinant of both

variance risk premium and conditional equity premium as in Bollerslev, Tauchen, and Zhou

(2009). Under reasonable parameterizations, we show that the extended DY model accounts

for the short-run joint predictability evidence of the realized signed jump risk measure and

variance risk premium. Like the DY model, the extended DY model also implies asymmetric

effects of jumps on conditional equity premium.

4.1 Model

In this subsection, we develop an extended DY model that embeds the DY model as a special

case. Because our model is similar to the DY model, we provide only a brief explanation of its

main features here and offer more details in Appendix A. The basic setup is a consumption-

based asset pricing model with both stochastic volatility of volatility and jumps, and an

representative agent has an Epstein and Zin (1989) recursive preference. The log pricing

kernel at time t+ 1 is

mt+1 = θ ln δ − θ

Ψ
∆ct+1 + (θ − 1)rc,t+1, (10)

where ct+1 is log aggregate consumption, rc,t+1 is the log return on the aggregate consumption

claim, 0 < δ < 1 reflects the agent’s time preference, θ = 1−γ
1− 1

Ψ

, γ is the coefficient of relative

risk aversion, and Ψ is the elasticity of intertemporal substitution.

As in Drechsler and Yaron (2011), the vector of state variables Yt ∈ Rn follows a VAR(1)
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process, which is driven by both Gaussian and compound Poisson jump shocks as follows:

Yt+1 = µ+ FYt +Gtzt+1 + Jt+1. (11)

The state vector and the first order dynamics are

Yt+1 =



∆ct+1

xt+1

σ2
t+1

σ2
t+1

qt+1

∆dt+1


F =



0 1 0 0 0 0

0 ρx 0 0 0 0

0 0 ρσ 0 0 0

0 0 (1− ρσ) ρσ 0 0

0 0 0 0 ρq 0

0 φ 0 0 0 0


. (12)

zt+1 =
(
zc,t+1,zx,t+1,zσ,t+1, zσ,t+1, zq,t+1, zd,t+1

)′

∼ N(0, I) is a vector of Gaussian shocks.

Jt+1 =
(

0, Jx,t+1, 0, Jσ,t+1, 0, 0
)′

is a vector of jump shocks, and the jump intensity is

λx,t = l1,xσ
2
t and λσ,t = l1,σσ

2
t . The variance-covariance matrix of Gaussian shocks is GtG

′
t =

h+Hσσ
2
t +Hqqt. The constant term is µ = (I − F )E(Yt).

State variables of the model economy include (1) consumption growth rate ∆ct, (2)

expected consumption growth rate xt, (3) long-run mean of consumption volatility σ2
t , (4)

time-varying consumption volatility σ2
t , (5) stochastic volatility of consumption volatility

qt, and (6) dividend growth rate ∆dt. The state variable qt is similar to that in Bollerslev,

Tauchen, and Zhou (2009) and Bollerslev, Xu, and Zhou (2013), and the other state variables

are the same as those in Drechsler and Yaron (2011). That is, we extend the DY model by

incorporating stochastic volatility of volatility qt as an additional state variable.

The log conditional equity premium is:

lnEt(Rm,t+1)− rf,t = Br’hΛ +Br’HσΛσ2
t +Br’HqΛqt

+ λ
′

t(ψ(Br)− 1)− λ′

t(ψ(Br − Λ)− ψ(−Λ)),
(13)

where the market price of risk vector Λ and risk factor loading vector Br are specified in

Appendix A. ψ(u) is a vector with k’th component ψk(uk), and ψk is the moment-generating

function (mgf) of the jump size ζk. As in Drechsler and Yaron (2011), the jump size has a

demeaned Gamma distribution for Jx,t+1 and a Gamma distribution for Jσ,t+1.

Equation (13) shows that conditional equity premium has three time-varying components.

The first component, Br’HσΛσ2
t , represents the classic positive risk-return tradeoff that
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conditional equity premium increases with conditional variance. The second component,

Br’HqΛqt, is the premium for bearing volatility of volatility risk that depends positively on

qt. The third component, λ
′
t(ψ(Br)−1)−λ′

t(ψ(Br−Λ)−ψ(−Λ)), measures the contribution

from compound Poisson jump shocks. Because the jump intensity λt is a linear function of

σ2
t , this component also increases with conditional volatility. Overall, the log conditional

equity premium is a linear function of σ2
t and qt. In contrast, because Drechsler and Yaron

(2011) do not consider stochastic volatility of volatility, the log conditional equity premium

is a linear function of only σ2
t in their model.

Following Drechsler and Yaron (2011), we define variance risk premium as:

vpt,t+1 ≡ EQ
t [varQt (rm,t+2)]− EP

t [varPt (rm,t+2)]

= Br
′
HσBr[E

Q
t (σ2

t )− EP
t (σ2

t )] +Br
′
HqBr[E

Q
t (qt)− EP

t (qt)]

+Br2
′
diag(ψ(2)(−Λ))EQ

t (λt)−Br2
′
diag(ψ(2)(0))EP

t (λt).

(14)

Like conditional equity premium, time-series variations in variance risk premium come from

three sources: Consumption risk term related to σ2
t ; volatility uncertainty term related qt;

and jump risk term related to λt. Again, because the jump intensity is a linear function

of conditional volatility, variance risk premium depends on σ2
t and qt in the extended DY

model and depends on σ2
t only in the DY model.

In the DY model, because the jump intensity is proportional to σ2
t , realized jump risk

volatility correlates positively with σ2
t and thus forecasts excess market returns. In a similar

vein, variance risk premium predicts equity premium because of its correlation with σ2
t .

Therefore, realized jump risk volatility and variance risk premium contain similar information

about conditional excess market returns in the DY model. By contrast, in the extended DY

model, while realized jump risk volatility moves closely to σ2
t , both variance risk premium

and conditional equity premium depend on σ2
t and qt. Therefore, realized jump risk premium

and variance risk premium have independent information about future excess market returns,

as we document in data (Table 5). We will illustrate these points using simulated data from

both the DY model and the extended DY model.
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4.2 Calibration

We calibrate the extended DY model to match three sets of economic and financial variables:

(1) growth rates of consumption and dividends; (2) the equity premium and risk-free rate;

and (3) variance risk premium. We use annual consumption and dividend data from 1930

to 2013. Per-capita consumption of nondurables and services are from NIPA. We construct

per-share dividend series of the market index using CRSP data: The adjustment of dividends

for share repurchase follows Bansal, Dittmar, and Lundblad (2005). We use CRSP value-

weighted aggregate returns as the stock market return and 30-day T-bill returns as the

risk-free rate; both are from CRSP over the 1930 to 2013 period. We construct monthly

variance risk premium following Bollerslev, Tauchen, and Zhou (2009) for the January 1990

to December 2013 period. We generate 1000 sets of simulated data with the same sample

size as that of actual data, and report the 5%, 50%, and 95% percentiles for each moment.

Table 8 presents parameter values adopted in our calibrated model, which are in line with

those used in Bollerslev, Tauchen, and Zhou (2009) and Drechsler and Yaron (2011). Table

9 shows a close match in selected moments between actual data and simulated data.

4.3 Asymmetric Effects of Jumps on Conditional Equity Premium

In the extended DY model, the realized market return rm,t+1 is:

rm,t+1 = r0 + (Br′F − A′m)Yt +Br
′
Gtzt+1 +Br′Jt+1. (15)

Stock market return jumps Br′Jt+1 are due to jumps in xt and σ2
t . In simulated data, we

define a good (bad) jump as the jump that causes a positive (negative) stock market return.

Realized good (bad) jump volatility is the sum of absolute values of stock market returns

due to good (bad) jumps. The realized signed jump risk measure is the difference between

realized bad jump volatility and realized good jump volatility.

Using simulated data, we estimate regressions of forecasting excess market returns with

signed jump risk measures. For direct comparison with actual data, the sample size of

simulated data is equivalent to that in Table 5, which spans the January 1990 to December

2013 period. Table 10 reports the median values of 1,000 sets of simulation. It shows that
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the extended DY model accounts for asymmetric effects of jump risk on conditional equity

premium. RJV N always correlates positively and significantly with future excess market

returns, while the correlation is always statistically insignificant for RJV P.5 Moreover, as

we will show in the next subsection, RJV SIGNED, the difference between RJV N and

RJV P, correlates positively and significantly with conditional equity premium. Interestingly,

consistent with our empirical findings reported in Table 6, the predictive power of signed

jump risk measures concentrates at near terms, with R2 peaking around the 6-month horizon

in the extended DY model. This result reflects the fact that RJV N and RJV SIGNED are

not persistent, with the median autocorrelation coefficient of 13% and 9%, respectively,

in simulated data (untabulated). For comparison, we calibrate the DY model using the

exactly same parameterizations adopted in Drechsler and Yaron (2011). Table 10 shows

that the results are qualitatively similar for the DY model except that the predictive power

is statistically insignificant for RJV N at the 1-month horizon.

The asymmetry is due to jump size distributions in both models. Jumps in consumption

volatility are always positive because they have a Gamma distribution. In calibrations, an

increase in consumption volatility leads to an immediate fall in stock market prices; there-

fore, jumps in consumption volatility are bad jumps. Jumps in the expected consumption

growth rate have a demeaned Gamma distribution and hence can take either a positive or a

negative value. In addition, stock market prices depend positively on jumps in the expected

consumption growth rate; therefore, these jumps can generate either a good or a bad jump.

Overall, we observe more bad jumps than good jumps in simulated data; as a result, RJV N

has a closer correlation with conditional volatility than does RJV P in finite samples. As

we discuss above, realized jump risk volatility forecasts excess market returns due to its

correlation with conditional volatility in both the DY model and the extended DY model.6

Therefore, RJV N has stronger predictive power for equity premium than does RJV P.

5We find qualitatively similar results in univariate regressions. For brevity, they are not reported here
but are available upon request.

6We verify this point using simulated data from both the DY model and the extended DY model.
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4.4 Jump Risk and Variance Risk Premium

In this subsection, we investigate whether the extended DY model accounts for our empir-

ical finding that the signed jump risk measure forecasts excess stock market returns even

when we control for variance risk premium as an additional predictor. Again, we generate

1,000 sets of simulated data and report their median values in Table 11. Consistent with

asymmetric effects of bad and good jump risks on conditional equity premium reported in

Table 10, RJV SIGNED—the difference between RJV N and RJV P, correlates positively

and significantly with 1-month-ahead equity premium (row 2). We also replicate Drechsler

and Yaron (2011) results that VRP is a significant market return predictor in row 1. Interest-

ingly, both variables remain significantly positive in the bivariate regression (row 3). Results

are qualitatively similar for the 3-month and 6-month forecasting horizons. In contrast, for

the DY model, RJV SIGNED has insignificant predictive power at the 5% level for short

(1-month and 3-month) forecast horizons when we include VRP as a control variable.

The improvement of our extended DY model is consistent with our intuition that adding

stochastic volatility of consumption volatility to the DY model can help characterize the

short-run predictability pattern of both variance risk premium and jump risk. In particular,

the signed jump risk measure as a risk factor impacts conditional equity premium through

an independent, or a non-overlapping channel of that of variance risk premium. By design,

the DY model intends to interpret variance risk premium and its predictability for equity

premium as mainly driven by the joint jump dynamics in return and volatility. Therefore, it

is not surprising that adding stochastic volatility-of-volatility breaks the near colinearity of

variance risk premium and jump risk in forecasting stock market returns, especially at short

forecasting horizons.7

7At the 6-month horizon, controlling for VRP weakens but does not eliminate the predictive power of
RJV SIGNED in the DY model. This is because neither VRP nor RJV SIGNED has a perfect correlation
with conditional volatility, the driver of conditional equity premium in the DY model.
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4.5 Discussion

Tables 10 and 11 show that our main empirical results are broadly consistent with the ex-

tended DY model. The model, however, fails to account for the finding that RJV P correlates

negatively and significantly with future equity premium when in conjunction with RJV N

(row 4, Table 2). In particular, the median of estimated coefficients on RJV P is always pos-

itive albeit statistically insignificant in Table 10. There are two possible explanations. First,

the documented negative relation between RJV P and conditional equity premium is due to

small samples. We do observe the negative relation in some sets of simulated data. In actual

data, the significant negative relation exists only in the second half sample (January 2000

to December 2013) but not the first half sample (January 1986 to December 1999). In con-

trast, the positive correlation of RJV N or RJV SIGNED with conditional equity premium

is robust in both half samples.

Second, RJV P indeed correlates negatively with conditional equity premium. We are

unable to explain this potentially interesting relation using the DY model or the extended DY

model, and recent studies have explored some tentative explanations. Segal, Shaliastovich,

and Yaron (2014) point out that bad and good uncertainties have asymmetric effects on

economic fundamentals. This view is consistent with the results reported in Table 7. Alter-

natively, Kilic and Shaliastovich (2015) assume asymmetric dependence of jump intensity on

conditional volatility for good and bad jumps. While models built on these assumptions have

some success in explaining data, a systematic investigation is warranted. Specifically, the

relation between positive jump risk and conditional equity premium seems to be a promising

topic for future research.

5 Concluding remarks

We document a novel empirical finding that realized jump risk, especially that associated

with bad or negative jumps, is a significant determinant of conditional equity premium.

In addition, information contents of realized jump risk about future equity premium are

independent of those captured by variance risk premium that Drechsler and Yaron (2011)
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attribute to jump risk. Our results suggest that jump risk is not the sole determinant of

variance risk premium. We illustrate this point by proposing an extended DY model allowing

stochastic volatility of volatility to be an additional driver of both variance risk premium

and conditional equity premium. Simulated data show that our main empirical findings are

broadly consistent with the extended DY model.
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Appendix

A Model solution

A.1 Model Specification

The jump intensity λt = l1,σσ
2
t has an affine structure in which the intensity is proportional

to the consumption volatility. The size of the jump in σ2
t follows a Gamma distribution,

i.e. ζσ ∼ Γ
(
νσ,

µσ
υσ

)
, and the size of jump in xt follows the negative of the demeaned

Gamma distribution, i.e. ζx ∼ −Γ
(
υx,

µx
νx

)
+ µx. Following Drechsler and Yaron (2011), we

subtract the conditional mean of jump size from its realized value to obtain the true “jump

innovations”.

The VAR constant term µ equals (I − F )E (Yt). Without loss of generality, we adopt

the normalization condition that E [σ2
t ] = E [σ2

t ] = 1. We set the expectation of qt to be 10

and the magnitude of qt/σ
2
t ratio is thus similar to that in Bollerslev, Tauchen, and Zhou

(2009).

Finally, we parameterize the variance-covariance matrix of the Gaussian shocks by spec-

ifying h,Hσ and Hq as following:

h =



hc 0 0 0 0 hcd

0 hx 0 0 0 0

0 0 hσ 0 0 0

0 0 0 hσ 0 0

0 0 0 0 hq 0

hcd 0 0 0 0 hd


(A.1)

where hj = ϕ2
j(1− ωj), j ∈ {c, x, σ, σ, q, d} and hcd = ϕcϕd

√
1− ωc

√
1− ωdΩcd

Hσ =



ϕ2
cωc 0 0 0 0 ϕcϕd

√
ωc
√
ωdΩcd

0 ϕ2
xωx 0 0 0 0

0 0 ϕ2
σωσ 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

ϕcϕd
√
ωc
√
ωdΩcd 0 0 0 0 ϕ2

dωd


(A.2)

27



Hq =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 ϕ2
σωσ 0 0

0 0 0 0 ϕ2
qωq 0

0 0 0 0 0 0


(A.3)

We keep the shock structure in Bansal and Yaron (2004) and Drechsler and Yaron (2011)

by setting ωx = 1, ωσ = 1 and ωσ = 0. We also assume qt follows a square-root or CIR

process and set ωq = 1. Ωcd captures the correlation between the consumption growth and

dividend.

A.2 Model Solution

Using the log-linearization method (Campbell and Shiller, 1988), we get the linearized rc,t+1

around the unconditional mean of vt :

rc,t+1 ≈ K0 +K1vt+1 − vt + ∆ct+1 (A.4)

where K1 = eE(v)

1+eE(v) and K0 = ln(1 + eE(v))−K1E(v)

Following the approach taken by Bansal and Yaron (2004), Eraker and Shaliastovich

(2008) and Drechsler and Yaron (2011), we conjuncture that the no-bubbles solution for the

log wealth-consumption ratio is affine in the state vector:

υt = A0 + A
′
Yt (A.5)

where A = (Ac, Ax, Aσ, Aσ, Aq, Ad)
′

is a vector of pricing coefficients, A0 is a constant, and

Ac = Ad = 0. For the simplification of system equations, we define the same f(u) and g(u)

functions as those in Drechsler and Yaron (2011):

For u ∈ Rn :

f(u) = µ
′
u+

1

2
u

′
hu (A.6)

g(u) = F
′
u+

1

2
u

′
Hσu+

1

2
u

′
Hqu+ l

′

1(ψ(u)− 1) (A.7)

Then we get the following system of n+ 1 equations in A0 and A:

0 = θ ln δ + θk0 + θ(k1 − 1)A0 + f(θ(1− 1

Ψ
)ec + θk1A) (A.8)

0 = g(θ(1− 1

Ψ
)ec + θk1A)− Aθ (A.9)

A and A0 can be solved for jointly with K0 and K1 by adding equations to the system in

Equations (12) and (13).
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By substituting vt into the Euler equation, we get the equilibrium solutions for the

volatility-of-volatility pricing coefficient Aq, which is expressed as

Aq =
(1− ρqK1)θ +

√
θ2(1−ρqK1)2−(θK1)4ϕ2

qωqϕ
2
σωσA

2
σ

(θK1)2ϕ2
qωq

(A.10)

To study the variance premium, equity risk premium, and their relationship, we also need

to solve for the market return. Similarly, we log-linearize the return on the market, rm,t+1,

around the unconditional mean of vm,t+1 :

rm,t+1 ≈ K0,m +K1,mvm,t+1 − vm,t + ∆dt+1 (A.11)

Then, we conjecture the log price-dividend ratio:

υm,t = A0.m + A
′

mYt (A.12)

where Am = (Ac,m, Ax,m, Aσ,m,Aσ,m, Aq,m, Ad,m)
′
is the vector of pricing coefficients for the

market. It is also the case that Ac,m = Ad,m = 0. To get the A0,m and Am, we solve the

following system of equations:

0 = θ ln δ−(1−θ)(K1−1)A0−(1−θ)K0+K0,m+(K1,m−1)A0,m+f(ed+K1,mAm−Λ) (A.13)

0 = g(ed +K1,mAm − Λ) + (1− θ)A− Am (A.14)

where Λ = (γ,K1Ax(1− θ), K1Aσ(1− θ), K1Aσ(1− θ), K1Aq(1− θ), 0)
′

can be interpreted

as the price of risk for Gaussian shocks.

We also get the equilibrium solutions for Aq,m :

Aq,m =
−b+

√
b2 − 4ac

2a
(A.15)

where a = 0.5ϕ2
qωqK

2
1m; b =

[
(1− ρq)K1m − (1− θ)K1AqK1mϕ

2
qωq
]

;

c = 0.5ϕ2
qωq(1− θ)2K2

1A
2
q − (1− ρq)(1− θ)K1Aq + 0.5 [K1mAσ,m − (1− θ)K1Aσ]2 ϕ2

σωσ

As discussed in Bollerslev, Tauchen and Zhou (2009), the specific roots must imply

ϕ2
qωqAqAq,m → 0 for ϕq → 0, which guarantees that the premium disappears when qt is

constant. In our numerical solution, we try the four pairs of solution (Aq, Aq,m). Only one

pair used in our paper satisfies the convergence condition.

The model implied log equity premium can thus be written as:

lnEt(Rm,t+1)−rf,t = Br’hΛ+Br’HσΛσ2
t +Br’HqΛqt+λ

′

t(ψ(Br)−1)−λ′

t(ψ(Br−Λ)−ψ(−Λ))

(A.16)

whereBr = (0, K1mAx,m, K1mAσ,m, K1mAσ,m, K1mAq,m, 1) ; and ψ(u) is the vector with kth

component ψk(uk), ψk is the moment-generating function (mgf) of the jump size ζk.
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Table 1: Summary Statistics

ERET RJV RJV N RJV P RJV SIGNED
Panel A: Univariate Statistics

Mean 0.646 1.062 0.461 0.600 -0.139
SD 4.564 1.135 0.722 0.680 0.824
AR(1) 0.090 0.410 0.348 0.216 0.050

Panel B: Cross-Correlation
ERET 1.000
RJV -0.078 1.000
RJV N -0.135 0.822 1.000
RJV P 0.014 0.796 0.310 1.000
RJV SIGNED -0.130 0.064 0.621 -0.553 1.000

Note: The table presents summary statistics of selected variables. ERET is the excess stock
market return. RJV is the realized volatility due to jumps. RJV N is the realized volatility due
to negative jumps. RJV P is the realized volatility due to positive jumps. RJV SIGNED is the
difference between RJV N and RJV P. The sample spans the January 1986 to December 2013
period.
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Table 2: Forecasting Monthly Excess Returns Using Realized Jump Volatility

RJV RJV N RJV P RJV SIGNED Wald-Test R2

(p-value)
1 0.056 -0.281

(0.282)
2 0.757** 1.140

(0.346)
3 -0.702 0.794

(0.506)
4 1.064*** -1.053** 0.000 3.072

(0.388) (0.508) (0.983)
5 1.059*** 3.363

(0.372)

Note: This table presents the OLS estimation results for forecasting one-month-ahead excess mar-
ket returns using realized jump risk measures. RJV is the realized volatility due to jumps. RJV N
is the realized volatility due to negative jumps. RJV P is the realized volatility due to positive
jumps. RJV SIGNED is the difference between RJV N and RJV P. We also report the adjusted-
R2s. Newey-West standard errors are in parentheses. *, **, and *** denote significance at the 10%,
5%, and 1% levels, respectively. The sample spans the January 1986 to December 2013 period.
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Table 3: Out-of-Sample Forecast Tests

Models MSEa/MSEb ENC-NEW
Statistic 10% C.V. 5% C.V.

1 C+RJV SIGNED v.s. C 0.975 8.040 1.016 1.628
2 C+RJV N+RJV P v.s. C 0.986 7.592 1.592 2.386

Note: The table compares the out-of-sample performance of our proposed forecasting models
(C+RJV SIGNED and C+RJV N+RJV P) with that of a benchmark model that uses the aver-
age equity premium in historical data as the forecast for the one-month-ahead equity premium (C).
Over the January 1986 to December 2013 period, we use the observations from the first half sample
period (January 1986 to December 1999) for the initial in-sample estimation, and then make re-
cursive one-month-ahead out-of-sample forecasts for the remaining observations with an expanding
sample. We use two statistics to gauge the out-of-sample forecast power. First, MSEa/MSEb is
the ratio of the mean squared-forecasting-error of the forecasting model to that of the benchmark
model. Second, ENC-NEW is the encompassing test proposed by Clark and McCracken (2001).
We use bootstrapped critical values (C.V.) obtained from 10,000 simulations for inferences.
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Table 4: Economic Performance of Switching Strategy

Mean Excess Return Standard Deviation Sharpe Ratio
Buy-and-Hold 0.456% 0.048 0.095
RJV SIGNED 0.474% 0.042 0.113
RJV N+RJV P 0.498% 0.042 0.118

Note: This table report performance of the switching strategy using RJV SIGNED or
RJV N+RJV P as market timing indicators. We hold a market index for the next month if
the predicted excess market return is positive and hold the short-term Treasury bill otherwise.
We use the first half sample (January 1986 to December 1999 for the initial in-sample forecast
regression, and make out-of-sample forecasts recursively for the second half sample (January 2000
to December 2013). For comparison, we also report the performance of the buying-and-holding
market index strategy.
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Table 5: Control for Variance Risk Premium and Other Commonly Used Predictors

RJV SIGNED RJV VRP DP DEF TERM RREL R2

1 0.916** 2.899
(0.388)

2 -0.238 -0.183
(0.662)

3 0.051*** 5.159
(0.011)

4 0.835** 0.049*** 7.520
(0.397) (0.011)

5 0.840** 0.053*** 0.018* -0.569 0.070 7.400** 9.034
(0.423) (0.011) (0.010) (0.946) (0.223) (3.353)

6 1.085*** 0.015** -0.664 -0.015 2.368 3.544
(0.392) (0.007) (1.256) (0.197) (3.755)

Note: The table reports the OLS estimation results of forecasting one-month-ahead excess market
returns. RJV SIGNED is the difference between realized volatilities due to negative and positive
jumps. VRP is variance risk premium. DP is the dividend yield. DEF is the default risk premium
computed as the difference in yields between BAA- and AAA-rated corporate bonds. TERM is the
difference in yields between long-term and short-term Treasury bonds. RREL is the stochastically
detrended risk-free rate. The monthly data span the January 1990 to December 2013 period for
which we have variance risk premium data. Newey-West standard errors are in parentheses. *, **,
and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table 6: Forecasting Excess Returns over Longer Horizons

RJV SIGNED RJV RJV N RJV P J-Test R2

(p-value)
Panel A: 2 Months

1 1.602*** 3.557
(0.584)

2 -0.144 -0.220
(0.497)

3 1.268** -1.882** 0.408 3.454
(0.658) (0.780) (0.523)

Panel B: 3 Months
4 1.373** 2.591

(0.618)
5 -0.430 0.676

(0.436)
6 1.030 -1.783** 0.624 1.562

(0.731) (0.856) (0.429)
Panel C: 6 Months

7 1.545* 0.909
(0.852)

8 -0.173 0.035
(0.223)

9 1.111 -2.065* 0.403 0.823
(1.077) (1.183) (0.526)

Panel D: 12 Months
10 1.911* 0.638

(1.015)
11 0.034 -0.281

(0.153)
12 2.548* -1.143 0.317 0.567

(1.543) (1.637) (0.573)

Note: The table reports the OLS estimation results of forecasting excess market returns at dif-
ference forecast horizons. RJV N is the realized volatility due to negative jumps. RJV P is the
realized volatility due to positive jumps. RJV SIGNED is the difference between RJV N and
RJV P. The monthly data span the January 1986 to December 2013 period. Newey-West standard
errors are in parentheses except p-value for the J-test. *, **, and *** denote significance at the
10%, 5%, and 1% levels, respectively.
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Table 7: Realized Jump Risks and Future Economic Activity

RJV SIGNED RJV N RJV P LAG R2

Panel A: Forecasting Industrial Production (1986-2013)
1 Month

-0.112* 0.224** 6.278
(0.059) (0.099)

-1.606*** 0.052 0.203** 6.894
(0.060) (0.071) (0.098)

2 Months
-0.205** 0.545*** 13.986
(0.097) (0.144)

-0.292*** 0.097 0.507*** 14.927
(0.100) (0.118) (0.144)

3 Months
-0.209 0.873*** 17.632
(0.101) (0.211)

-0.346*** -0.039 0.814*** 18.991
(0.117) (0.120) (0.211)

Panel B: Forecasting Federal Funds Rate(1986-2008)
1 Month

-1.529 0.526*** 27.038
(1.074) (0.076)

-3.280*** -1.213 0.509*** 28.095
(1.459) (1.488) (0.077)

2 Months
-4.956*** 0.899*** 26.464
(2.382) (0.170)

-8.141*** -0.031 0.868*** 27.637
(2.382) (3.291) (0.171)

3 Months
-8.468*** 1.258*** 27.384
(2.988) (0.241)

-11.814*** 3.230 1.226*** 27.943
(3.742) (4.516) (0.241)

Note: The table reports the OLS estimation results of forecasting changes in aggregate economic
activity using realized jump risk measures. RJV N is the realized volatility due to negative jumps.
RJV P is the realized volatility due to positive jumps. The monthly data span the January 1986
to December 2013 period in Panel A and the January 1986 to December 2008 period in Panel B.
Newey-West standard errors are in parentheses. *, **, and *** denote significance at the 10%, 5%,
and 1% levels, respectively.
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Table 8: Calibration-Model Parameters

Preferences δ γ Ψ
0.9983 10 2.95

4ct+1 E[4c] ϕc ωc ωcd
0.0016 0.0058 0.5 0.2

xt+1 E[x] ρx ϕx ωx l1,σ(x) µx νx
0 0.976 0.032×ϕc 1 0.4/12 3.188×ϕx 1

σ2
t+1 E[σ2] ρσ ϕσ ωσ

1 0.985 0.05 0
σ2
t+1 E[σ2] ρσ ϕσ ωσ l1,σ(σ) µσ νσ

1 0.87 0.12 1 0.4/12 5.015 1
qt+1 E[q] ρq ϕq ωq

10 0.13 1 1
4dt+1 E[4d] φ ϕd ωd

0.0016 2.5 5.7×ϕc 0.125

Note: The table presents the parameters used in calibration. We consider an extended version
of the Drechsler and Yaron (2011) model with (1) jumps in both return and volatility and (2)
stochastic volatility-of-volatility as in Bollerslev et al. (2009). See Section 4.1. for details.
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Table 9: Calibration Results

Statistic Data Model
Est. 5% 50% 95%

Cash Flow Dynamics
E[4c] 1.80 1.16 1.92 2.70
σ[4c] 2.20 1.75 2.16 2.83
AC1(4c) 0.50 0.21 0.42 0.60
E[4d] 0.90 -0.55 2.04 4.83
σ[4d] 13.2 8.68 9.99 11.70
AC1(4d) 0.11 0.10 0.28 0.45
corr(4c,4d) 0.55 0.10 0.31 0.52
Returns
E[rm] 7.57 4.40 6.89 9.66
E[rf ] 0.68 0.62 1.30 1.72
σ(rm) 19.7 12.97 16.60 24.34
σ(rf ) 1.89 0.85 1.81 3.64
Variance Premium
σ(vart(rm)) 37.46 8.02 28.11 92.50
AC1(vart(rm)) 0.74 0.60 0.75 0.90
AC2(vart(rm)) 0.59 0.34 0.56 0.81
E[V P ] 18.46 18.38 30.63 70.33
σ[V P ] 20.34 12.00 42.06 138.39
skew(V P ) 3.74 1.97 3.78 5.87
kurt(V P ) 26.78 8.49 20.38 44.19

Note: The table presents moments of consumption, dividend, asset-pricing and variance premium
from data and models. Consumption, dividend, and asset price data are real, sampled at the
annual frequency, and cover the 1930 to 2013 period. Variance risk premium data are sampled at
the monthly frequency and cover the January 1990 to December 2013 period. We report percentiles
of these statistics based on 1,000 sets of simulated data, with each statistic calculated using a sample
size equals to its data counterpart.
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Table 10: Calibration Based Forecasting with RJV P and RJV N

DY Model Extended DY Model
RJV P RJV N RJV P RJV N

One Month
1 β 3.02 2.53 4.77 3.16

t-stat 0.64 1.56 0.74 2.50
R2 0.02 0.04

Three Month
2 β 2.49 2.24 4.06 2.55

t-stat 0.87 2.40 1.04 3.70
R2 0.04 0.07

Six Month
3 β 1.88 1.87 3.12 1.99

t-stat 1.05 2.78 1.23 4.25
R2 0.05 0.10

Twelve Month
4 β 1.20 1.25 2.08 1.29

t-stat 1.01 2.92 1.21 4.69
R2 0.05 0.09

Note: The table presents the OLS estimation for the slope β, R2, and the t-statistics from the
predictive regression of equity premium on RJV P and RJV N using simulated data. The left
panel is the DY model, and the right panel is the extended DY model. Simulated data are sampled
at the monthly frequency and the sample size is equivalent to the January 1990 to December 2013
period as in Table 5. For brevity, We report only the 50 percentile of estimation results obtained
from 1,000 sets of simulated data.
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Table 11: Calibration Based Forecasting for Equity Premium

DY Model Extended DY Model
VRP RJV SIGNED VRP RJV SIGNED

One Month
1 β 0.65 0.25

t-stat 2.48 3.26
R2 0.02 0.04

2 β 2.28 3.05
t-stat 1.45 2.44
R2 0.01 0.03

3 β 0.61 1.65 0.23 2.65
t-stat 2.10 0.97 2.75 2.01
R2 0.04 0.07

Three-Month
4 β 0.56 0.21

t-stat 2.68 3.79
R2 0.05 0.09

5 β 2.03 2.49
t-stat 2.21 3.60
R2 0.02 0.06

6 β 0.50 1.45 0.19 2.02
t-stat 2.39 1.71 3.37 3.05
R2 0.07 0.13

Six-Month
7 β 0.45 0.16

t-stat 2.86 4.11
R2 0.07 0.11

8 β 1.67 1.93
t-stat 2.68 4.24
R2 0.03 0.08

9 β 0.40 1.22 0.14 1.52
t-stat 2.59 2.23 3.79 3.94
R2 0.09 0.17

Note: The table presents the OLS estimation for the slope β, R2, and the t-statistics from the
predictive regression of equity premium on variance premium (VRP) and the signed jump risk
measure (RJV SIGNED) using simulated data. The left panel is the DY model, and the right
panel is extended DY model. Simulated data are sampled at the monthly frequency, and the
sample size is equivalent to the January 1990 to December 2013 period as in Table 5. For each
forecasting horizon, we report results for (1) univariate regressions that include only one predictor
and (2) bivariate regressions that include both variables. For brevity, We report only the 50
percentile of estimation results obtained from 1,000 sets of simulated data.
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Figure 1: Realized Jump Volatility and Realized Signed Jump Volatility

RJV is the realized jump volatility and RJV SIGNED is the realized signed jump volatility. The monthly

data spans the January 1986 to December 2013 period. Shaded areas indicate business recessions dated by

the National Bureau of Economic Research.
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Figure 2: Realized Negative and Positive Jump Volatilities

RJV P is the realized jump volatility due to positive jumps and RJV N is the realized jump volatility due to

negative jumps. The monthly data spans the January 1986 to December 2013 period. Shaded areas indicate

business recessions dated by the National Bureau of Economic Research.
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Figure 3: Performance of Switching Strategy

This figure compares performance of an investment with the initial value of 100 dollar of two strategies: (1)

The switching strategy using the realized signed jump volatility (RJV SIGNED) as the timing indicator and

(2) the buying-and-holding market index strategy.
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Figure 4: Multi-Month R2 of Forecasting Returns

This figure reports the R2 of the return forecasting regressions over different horizons for the realized signed

jump volatility (RJV SIGNED) and variance risk premium (VRP).
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