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Abstract

We study optimal liquidity management, innovation, and production decisions

for a continuum of firms facing financing frictions and the threat of creative destruc-

tion. We show that while financing frictions prompt firms to decrease production,

they may also spur investment in innovation. We examine which types of firms

substitute production for innovation in response to negative operating shocks that

decrease cash availability. We embed our firm dynamics into a model of endoge-

nous growth and show that financing frictions have contrasting effects on economic

growth.
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1 Introduction

“Yes, I mean that. Less money raised leads to more success. That is the data I stare at

all the time.” (Fred Wilson, co-founder of Union Square Ventures)1

Innovation is pivotal to economic growth. The emergence of new products and im-

provements in existing goods shape the world in which we live and drive the dynamics

of the economy. Nonetheless, investment in innovation (or R&D) is costly and difficult

to finance. It requires a (possibly long) gestation period before becoming productive, it

is not pledgeable, and its outcome is highly uncertain. To safeguard financial flexibil-

ity, innovative firms respond to these financing frictions by hoarding cash (or liquidity).2

Cash availability then affects firms’ production and innovation decisions and factors into

economic growth.

The goal of this paper is to build a tractable framework to understand the links among

cash accumulation, innovation, and economic growth. To this end, we introduce financing

frictions and corporate cash hoarding into a model of endogenous growth. We study an

economy in which the innovations of constrained incumbents and entrants are the key

drivers of economic growth. Using the model, we first investigate how financing fric-

tions affect the production and innovation mix in relation to various firm characteristics.

We then embed the constrained firms’ maximization problem into a general equilibrium

setting and study the effects on economic growth.

We start by solving the optimization problem of a continuum of incumbent firms

facing the threat of creative destruction—that is, of losing their market positions when

new firms launch higher quality products. Firms are financially constrained in that they

have costly access to external financing. These financial constraints make firms effectively

risk-averse and generate an incentive to retain earnings in cash reserves, as highlighted by

previous contributions.3 Additionally, we allow firms to manage the risk-return trade-off

1http://avc.com/2013/09/maximizing-runway-can-minimize-success/
2Among others, Lyandres and Palazzo (2015), Ma, Mello, and Wu (2013), Falato, Kadyrzhanova, and

Sim (2013), Falato and Sim (2014), and Begenau and Palazzo (2015) suggests that investment in R&D
is a major determinant of corporate cash reserves.

3See, e.g., Décamps, Mariotti, Rochet, and Villeneuve (2011), Bolton, Chen, and Wang (2011, 2013),
and Hugonnier, Malamud, and Morellec (2015). In these models, as in ours, the marginal value of cash
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by adjusting production and investment in innovation in response to operating shocks

that change corporate cash availability.

We show that constrained firms scale down production and increase markups in re-

sponse to negative operating shocks. These shocks decrease a firm’s cash reserves and

weaken its financial strength. The firm then seeks to limit cash flow risk and operat-

ing costs to avert a costly refinancing. As a result, production is cyclical (and markups

countercyclical) to firm-specific shocks.

Despite the tendency to scale down production, we highlight that constrained firms

may increase their investment in innovation in the face of negative operating shocks. That

is, firms may substitute production for innovation when cash reserves decrease. Although

investment in innovation is inherently uncertain, it can be highly rewarding as it may

lead to technological breakthroughs. When firms attain such breakthroughs, they access

monopoly rents from the brand-new technology and can raise fresh funds in light of a

success (the achievement of technological improvements) rather than a failure (running

out of funds because of bad operating performance).

In our analysis of the relation between innovation and corporate cash, we discriminate

between target cash reserves and deviations from this target. Consistent with the available

evidence (see footnote 2), we show that innovation prompts firms to hoard cash reserves.

Moreover, we predict how firms will adjust their investment in innovation as their cash

reserves fall below the target level. We illustrate that firms with low operating margins,

volatile profits, or efficient innovation technologies (i.e., more path-breaking or requiring

a shorter gestation period) will increase investment in innovation as their cash reserves

decrease. In the real world, these characteristics are typical of small and young firms,

which substantially contribute to the advancement of the technological frontier despite

their financial constraints (see Akcigit and Kerr, 2015, or Acemoglu, Akcigit, Bloom, and

Kerr, 2013). As we quote at the beginning, “Less money [...] leads to more success.” Our

results can also rationalize the observation that investment in innovation did not decrease

uniformly during the recent financial crisis.4

decreases with the level of cash reserves and reaches one at the target level.
4For example, Archibugi, Filippetti, and Frenz (2013) report that some firms have actually increased
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In our model, production decisions affect cash flow volatility. In turn, cash flow

volatility affects the dynamics of stock prices. In contrast to previous dynamic models

with financing frictions (see, e.g., Décamps, Mariotti, Rochet, and Villeneuve, 2011), we

find that the relation between marginal value of cash and idiosyncratic stock volatility

can be positive or negative. While we observe the leverage effect (i.e., a decline in stock

price leads to an increase in stock return volatility) for relatively unconstrained firms,

the relation between changes in stock prices and volatility of stock returns can become

positive when liquidity constraints are tight.

We then embed our firms’ dynamics into the general equilibrium setting. We focus

on a “balanced growth path” equilibrium in which all aggregate quantities grow at an

endogenous, constant rate. In equilibrium, incumbents solve their maximization problem

by taking the market interest rate as given. In each industry, incumbent’s value and the

rate of creative destruction (equivalently, the entry rate) are jointly determined by the

free-entry condition. Incumbents’ and entrants’ innovations aggregate and determine the

rate of economic growth. In turn, the rate of economic growth feeds back into firms’

decisions through the market interest rate, which is pinned down by the representative

household’s Euler equation.

We find that financing frictions generate two opposite effects on economic growth.

First, financing frictions act as entry barriers and deter innovation by new firms. Sec-

ond, for this very reason, incumbents increase their investment in innovation in that

they expect profits to last longer before losing their market position due to fresh en-

try.5 As explained, financing frictions may also urge incumbents to put more emphasis

on innovation in response to negative operating performance. Overall, we find that fi-

nancing frictions decrease the entrants’ contribution to economic growth and increase

the incumbents’ contribution with respect to an identical, but unconstrained, economy.

This second (enhancing) effect can dominate in industries featuring large entry costs (for

example, those requiring expensive technologies). Interestingly, our analysis reveals that

financing frictions may be not welfare-decreasing.

their R&D investment despite the toughening constraints.
5This effect is similar to Aghion and Howitt (1992).

4



Related literature Our paper contributes to the literature that studies the determi-

nants of corporate cash reserves, which has been spurred by the increase in cash-to-asset

ratios of U.S. firms over the last few decades (see, e.g., Bates, Kahle, and Stulz, 2009).

Notable contributions are, e.g., Riddick and Whited (2009), Décamps, Mariotti, Rochet,

and Villeneuve (2011), Bolton, Chen, and Wang (2011, 2013), and Hugonnier, Malamud,

and Morellec (2015). Within this strand, the papers that analyze the relation between

cash reserves and investment do so by considering neoclassical models of investment and

capital accumulation, either incremental (as in Bolton, Chen, and Wang 2011, 2013) or

lumpy (as in Hugonnier, Malamud and Morellec, 2015). To the best of our knowledge,

our paper is the first to study corporate cash management problem in a Schumpeterian

framework.6 This problem is economically important given the documented relations be-

tween cash reserves and R&D investment and between R&D and economic growth (see

e.g. Caballero and Jaffe, 1993, Akcigit and Kerr, 2015, or Kogan, Papanikolaou, Seru,

and Stoffman, 2014). Nonetheless, it is not trivial because it involves solving a problem

with an infinite number of (sequentially arriving) stochastic growth options.

The paper also contributes to the literature on the financing of innovation. Lyandres

and Palazzo (2015) and Ma, Mello, and Wu (2014) investigate and test the relation among

competition, R&D investment, and cash reserves. Falato, Kadyrzhanova, and Sim (2013)

study and test the relation between investment in intangible capital and cash holdings

in a neoclassical model with no growth. While we abstract from strategic competition

within industries, we contribute to this strand by studying the joint dynamics of cash,

production, and innovation, as well as their impact on economic growth. As mentioned,

our model studies the relation between R&D and target cash reserves and between R&D

and deviations from this target. While we acknowledge that R&D investment prompts

firms to hoard precautionary cash reserves, we characterize how firms will adjust their

investment in innovation when operating shortfalls erode cash reserves so that they fall

below the target level.

The link between R&D and corporate cash holdings is supported by vast empirical ev-

6The key difference in neoclassical capital accumulation models and Schumpeterian innovation models
is that, in the former models, investment implies an immediate increase in the output, whereas the payoff
from investment in R&D arrives at uncertain (Poisson) times.
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idence. Among others, Hall (2005) and Hall and Lerner (2010) document that innovation

is best financed through internal funds because it is subject to asymmetric information, it

is not pledgeable, and has highly uncertain returns. Brown, Fazzari, and Petersen (2009)

report that financing constraints greatly affect innovation at both the firm level and ag-

gregate level, and document that innovation decisions are related to the supply of internal

and external equity finance.7 Consistently, Hall (2005), Hall and Lerner (2010), Rajan

(2012), Brown, Martisson, and Petersen (2013), and Acharya and Xu (2015) emphasize

the relative importance of equity rather than debt for the financing of innovation, as we

do in our theoretical model.

Schumpeter (1942) emphasized the importance of innovation for economic growth

by introducing the concept of “creative destruction.” The work of Schumpeter has led

to the development of a subfield of macroeconomics known as “Schumpeterian models

of endogenous growth;” see Aghion, Akcigit, and Howitt (2014) for an overview. Our

model belongs to this literature. In particular, we build on the literature on endogenous

technological change (see also Romer, 1990, Grossman and Helpman, 1991, or Klette

and Kortum, 2004) and assume that both incumbent firms and a continuum of potential

entrants pursue investment in innovation, as in the recent contributions of Acemoglu and

Cao (2015), Akcigit and Kerr (2015), or Acemoglu, Akcigit, Bloom, and Kerr (2013).

Our paper also relates to the literature studying the effects of financial constraints on

economic growth; see Levine (2005) and Beck (2012) for two surveys. Thus far, however,

relatively little attention has been paid to the role of corporate liquidity in providing

flexibility to constrained firms. Our model seeks to fill this gap.

The paper is organized as follows. Section 2 describes the model. Section 3 solves the

model in a benchmark unconstrained economy, which serves as a counterfactual to single

out the effects of financing frictions on innovation and growth. Section 4 solves the model

in the economy featuring financing frictions. Section 5 provides a quantitative assessment

7Brown, Fazzari, and Petersen (2009) report that, in the US, young publicly traded firms in high-tech
industries finance R&D investment almost entirely with internal and external equity as debt financing
is difficult due to non-pledgeability. Citing from their paper, “While the large literature on finance and
economic growth has good reasons to focus on debt and credit constraints, our results suggest that more
attention should be given to equity finance [...] for models that emphasize innovation. [...] External
equity is the more relevant substitute for internal cash flow for young high-tech firms.”
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of the model’s predictions. Section 6 concludes. All proofs are in the Appendix.

2 The Model

Throughout the paper, time is continuous and uncertainty is modeled by a probability

space (Ω,F,P), equipped with a filtration (Ft)t≥0 that represents the information available

at time t. We study an economy in which the representative household maximizes constant

relative risk aversion (CRRA) preferences:

∫ ∞
0

e−ρt
C1−θ
t − 1

1− θ
dt , (1)

where Ct is consumption at time t, ρ is the discount rate, and θ is the inverse of elasticity

of intertemporal substitution. The household supplies labor inelastically and receives

labor wage denoted by Wt. Population is constant at L.

Final good sector. There is one multipurpose final good Yt serving as the numeraire

of the economy. The final good is produced competitively using labor and a continuum

of inputs (or intermediate goods) j ∈ [0, 1]. The production technology of the final good

is:

Yt =
1

1− β

∫ 1

0

Lβ X̄1−β
jt qβjt dj , β ∈ [0, 1]. (2)

In this equation, X̄jt is the quantity of the input j and qjt is its quality. Initial quality

is normalized to one; i.e., qj0 = 1 for any j ∈ [0, 1]. We assume that only the highest

quality version of each input j is used in the production function of the final good. As

detailed below, improvements in quality of inputs occur via two channels: innovation by

incumbent firms and creative destruction by entrants.

Intermediate goods sector. Each input j is produced by the latest innovator of the

industry j. Each innovator enforces a patent on the brand-new version of the input j

and becomes the incumbent monopolist of the industry j. The patent is assumed to
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last forever. Nonetheless, patents do not prevent firms from investing in innovation and

improving further the quality of inputs.

Each incumbent monopolist j produces one input j and at the same time invests

in innovation to further enhance its quality. We denote the innovation intensity (or

innovation rate) of the incumbent j by zjt. Innovation is costly, and its outcome is

uncertain. Specifically, we assume that an incumbent firm paying the flow cost

Φ(zjt, qjt) = ζ
z2
jt

2
qjt, ζ > 0,

increases the quality of its input at Poisson rate φzjt. These Poisson events represent

technological breakthroughs, whose likelihood increases with zjt. When an incumbent j

achieves a technological breakthrough, the quality of the input j jumps from qjt− to

qjt = λqjt− ,

where λ > 1 represents the incremental improvement in quality.8

The dynamics of incumbents’ cash flows dΠjt satisfy

dΠjt =
[
X̄jt(pjt − 1)− Φ(zjt, qjt)

]
dt + σX̄jtdZjt . (3)

For any industry j, X̄t is the production rate, pt is the selling price, and Zt is a standard

Brownian motion representing random operating shocks. Operating shocks are firm-

specific and independent across firms. To ease the notation, the marginal cost of produc-

tion is normalized to one. The quantities X̄jt and pjt are endogenously determined.

The cash flow process in equation (3) implies that incumbent firms can make operating

profits as well as losses. If access to outside financing was frictionless, losses could be

covered by raising funds whenever needed. We depart from this assumption and assume

8See also Acemoglu and Cao (2015) or Acemoglu et al. (2013). We do not allow incumbents to operate
multiple product lines (as instead Klette and Kortum, 2004): each firm innovates only in one product line.
As in Aghion, Howitt, and Mayer-Foulkes (2005), Acemoglu, Aghion, and Zilibotti (2006), Acemoglu and
Cao (2015), or Lucas and Nicolini (2015), we abstract from skilled labor in the intermediate-good sector.
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that firms face financing costs, as Bolton, Chen, and Wang (2011, 2013).9 Specifically,

incumbent firms can cover operating shortfalls incurring the cost ε > 0 for any dollar

raised (in the following, ”routine financing”). Incumbents can also raise funds once they

attain technological breakthroughs, by promising a surplus share to the financiers. In

particular, financiers can extract a fraction α of the surplus created S.10 Notably, the

way we model financing frictions seeks to capture features that are typical among R&D-

intensive firms (see, e.g., Lerner et al., 2012). These firms usually delay refinancing events

until they are in the extreme need of funds or they achieve technological breakthroughs.

In fact, it is easier to attract financiers when breakthroughs occur in that they act as a

positive signal (e.g., the first proof of product feasibility).

To maintain financial flexibility, incumbents can retain earnings in cash reserves. We

denote cash reserves at time t by C̄jt. Cash reserves earn a rate of interest δ, which is lower

than the market interest rate r. Thus, holding cash entails an opportunity cost. The cost

r − δ can be interpreted as an agency cost of free cash flows (as in Décamps, Mariotti,

Rochet, and Villeneuve, 2011) or as tax disadvantages (as in Riddick and Whited, 2009).

This opportunity cost may also arise when the supply of liquidity in the economy is scarce,

see Krishnamurthy and Vissing-Jorgensen (2012) (In Appendix A.5, we extend the model

and endogenize δ via this channel, by introducing the government as liquidity provider).

Nothwithstanding its microfoundation, the wedge between r and δ leads to a dynamic

trade-off between dividend payout and liquidity hoarding. The dynamics of cash reserves

are given by

dC̄jt =
[
δC̄jt + X̄jt(pjt − 1)− Φ(zjt, qjt)

]
dt+ σX̄jtdZjt − dD̄jt + dF̄jt + dF̄ I

jt. (4)

The terms in the square brackets represent the return on cash reserves plus expected cash

flows. dD̄jt ≥ 0 is the instantaneous flow of payouts, dF̄jt ≥ 0 is the net inflow from rou-

9As Bolton, Chen, and Wang (2011, 2013), financing costs are exogenous in the model. Financing costs
could be microfounded through limited enforcement (Albuquerque and Hopenhayn, 2002), asymmetric
information (Clementi and Hopenhayn, 2002), or limited pledgeability (Holmstrom and Tirole, 2011).

10Nash bargaining over surplus between the firm and financiers provides a microfoundation for our
assumption. Denoting the bargaining power of financiers by α ∈ [0, 1] and the surplus created by S, the

rents extracted by financiers are Γ∗ = arg maxΓ≥0 Γα [S − Γ]
1−α

= αS, whereas the firm retains (1−α)S.
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tine financing, and dF̄ I
t ≥ 0 is the net inflow from financing technological breakthroughs.

Each incumbent maximizes its value V (t, C̄j, qj) until creative destruction hits. Specif-

ically, it chooses production, innovation, financing, and payout policies to maximize the

present value of future dividends subject to the budget constraint (4) and the non-

negativity of cash reserves. When a new firm markets a higher quality version of the

input j (i.e., when creative destruction hits), the incumbent j loses its market position.

As is common in Schumpeterian models, obsolescence drives the liquidation value of the

exiting incumbent’s productive assets to zero. Thus, shareholders only recover the firm’s

cash reserves.

Entrants. We assume that there is a mass of entrepreneurs who develop blueprints

aimed at improving the quality of inputs. Creative destruction hits an industry j whenever

a new firm markets a higher quality version of the input j. Successful blueprints have the

potential to improve the quality of inputs by a factor Λ > 1, i.e. quality may jump from

qjt− to

qjt = Λqjt−

once the blueprint is implemented. We do not impose a priori restrictions on the relation

between λ and Λ.11

Entrepreneurs do not collaborate with incumbents due to frictions in the sale of ideas

(see also Kondo and Papanikolaou, 2013 and Silveira and Wright, 2010). To implement

blueprints, entrepreneurs need to set up a firm. Setting up a firm producing the input j

at quality level qjt requires a technological cost κT qjtL. To cover this cost, entrepreneurs

contact financiers and incur a financing cost κIqjtL. Thus, the total entry cost is

Kjt = (κT + κI)Lqjt = Λ(κT + κI)Lqjt−. (5)

11We allow for different sizes of quality jumps for incumbents and entrants; see Acemoglu and Cao
(2015) or Akcigit and Kerr (2015). These contributions assume that Λ > λ to model the difference
between “incremental” innovations by incumbents and “radical” innovations by entrants. The difference
between λ and Λ is not essential to our analysis. However, we set Λ > λ in the numerical analysis.
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The ratio κI
κT+κI

is thus a measure of financiers’ ability to extract rents from entrants.12

Balanced growth path. We focus on a balanced growth path equilibrium in which

all aggregate quantities grow at constant rate g, which is endogenously determined. For

any industry j, the entry rate (equivalently, the rate of creative destruction) is denoted

by xd and determined by the free-entry condition

V (t, C̄∗j ,Λqj)− C̄∗jt = Kjt. (6)

To preserve tractability, we assume that entrants receive initial financing equal to the

entry cost plus cash amounting to their target level of cash reserves.13 As we show below,

this target level always exists and can be characterized explicitly.

To solve the model, we first derive incumbents’ optimal policies by taking the market

interest rate, growth rate, and entry rate as given. We then aggregate in equilibrium and

endogenize these quantities. An equilibrium is an allocation such that: (i) Incumbents

set production, innovation, payout, and financing decisions to maximize the expected

present value of net dividends; (ii) New firms enter at a rate that makes the free-entry

condition binding; (iii) The final good producer maximizes profits; (iv) The representative

household maximizes utility from consumption; (v) All markets clear.

3 Benchmark unconstrained economy

We first solve the model in a benchmark economy with no financing frictions (ε = α =

κI = 0).14 In this setting, operating shortfalls can be covered by raising external funds

immediately and costlessly. Firms have thus no incentive to keep cash.

12Due to the free-entry condition (6), this is the fraction of firm value (net of cash) that financiers
extract from entrants. Since information asymmetries reduce entrants’ bargaining power relative to that
of incumbents, we assume that κI

κT +κI
> α.

13Consistently, Begenau and Palazzo (2015) document that R&D-intensive firms have entered with
more and more initial cash reserves over the last decades. One may argue that financiers may be reluctant
to provide the target cash amount due to adverse selection problems. We solved a version of the model
in which new firms enter with heterogeneous cash endowments. Our main results hold unchanged.

14In this unconstrained setting, our model is similar to Acemoglu and Cao (2015).
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We start by solving the optimization problem of the final good sector,

max
X̄j

1

1− β

∫ 1

0

Lβ X̄1−β
jt qβjtdj −

∫ 1

0

pjtX̄jtdj , (7)

which delivers the demand curve for the highest quality version of each input j ∈ [0, 1]:

X̄jt = L

(
qβjt
pjt

) 1
β

. (8)

Taking the demand schedule of the final good sector as given, incumbent firms in the

intermediate goods sector maximize profits and set the monopoly price15

pjt =
1

1− β
≡ p∗. (9)

This price implies a constant markup β
1−β above the marginal cost and is associated with

the production rate X̄∗jt = qjtLX
∗. In this equation,

X∗ = (1− β)
1
β (10)

denotes the time-invariant production rate scaled by quality. In the following, we will

often refer to scaled quantities in order to ease the model solution. Substituting (9) and

(10) into (2), we obtain the aggregate output

Y∗t = L(1− β)
1
β
−2

∫ 1

0

qjtdj , (11)

and labor wage

W ∗
t = Lβ(1− β)

1
β
−2

∫ 1

0

qjtdj . (12)

15As in other contributions, we rule out the case of limit pricing to keep the analysis tractable. For
instance, Aghion and Howitt (1992) assume that innovations are always drastic so that a monopolist is
unconstrained by potential competition from the previous patents. Akcigit and Kerr (2015) assume that
the current incumbent and the former incumbents in a given product line enter a two-stage price-bidding
game whereby each firm pays a fee to announce its price. Under this assumption, only the new leader
pays the fee and announces its price. We adopt similar assumptions in our setup.
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We turn to study incumbents’ optimal policies (henceforth, the subscript j will be

suppressed when it causes no confusion). We denote incumbents’ value in the benchmark

economy by V (t, q). Notice that the value function is independent of cash reserves in this

unconstrained environment. Following standard arguments, V (t, q) satisfies the Hamilton-

Jacobi-Bellman (HJB) equation:

r∗V (t, q)− Vt(t, q) = max
z∗

{
βLq (1− β)

1
β
−1 − (z∗)2

2
ζq + φz∗ [V (t, λq)− V (t, q)]− x∗dV (t, q)

}
.

(13)

In this equation, we denote by r∗ and x∗d the market interest rate and the rate of creative

destruction, which are endogenously determined later in the analysis. The terms on the

left-hand side represent the return required by investors and the change in firm value as

time elapses, respectively. The first two terms on the right-hand side represent operating

cash flows net of production and innovation costs. The third term is the probability-

weighted change in value when the incumbent markets a technological breakthrough. The

fourth term is the value discount due to creative destruction. To solve the maximization

problem, we conjecture firm value to be linear in qt,

V (t, q) = V (qt) = qtLv
∗ , (14)

for some function v∗ > 0. In the following, we will refer to v∗ as scaled firm value.

Substituting (14) into (13), we obtain

max
z∗

{
µ∗ − (z∗)2

2

ζ

L
+ φz∗(λv∗ − v∗)− xd v∗

}
= rv∗, (15)

where the auxiliary quantity

µ∗ ≡ β (1− β)
1
β
−1 (16)

represents scaled net profits. The maximization of (15) delivers the optimal innovation

decision:

z∗ = φ
L

ζ
(λ− 1)v∗ . (17)

The optimal z∗ increases with scaled firm value v∗, with the size of quality improvements
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λ, and with the Poisson coefficient φ. By substituting (17) into (15), we derive the

closed-form expression for v∗ reported in Proposition 1. We plug this expression into the

free-entry condition,

v∗(x∗d) = κT , (18)

which allows us to derive the entry rate x∗d (or rate of creative destruction).

The expected increase in quality of an input j is given, per time interval dt, by

Et−[dqjt] = qjt− [(λ− 1)φz∗ + (Λ− 1)x∗d] dt.

The first (respectively, second) term in square brackets is the incumbent’s (entrant’s)

contribution to the quality improvement of the input j. Such improvements occur at

independent Poisson times in different industries j ∈ [0, 1]. By the law of large numbers,

the rate of economic growth satisfies∫ 1

0

qt(j)dj = eg
∗t, (19)

where

g∗ = (λ− 1)φz∗ + (Λ− 1)x∗d . (20)

Finally, the maximization problem of the representative household delivers the standard

Euler equation. Since aggregate output and consumption grow at rate g∗, the equilibrium

interest rate satisfies

r∗ = ρ+ θg∗. (21)

We summarize our findings in Proposition 1.

Proposition 1 In the unconstrained economy, scaled firm value is given by:

v∗ =
2µ∗

(x∗d + r∗) +
√

(x∗d + r∗)2 − 2µ∗φ2L
ζ
(λ− 1)2

.

The equilibrium rate of creative destruction x∗d, the growth rate g∗, and the interest rate
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r∗ satisfy

x∗d =
1

1 + θ (Λ− 1)

[
µ∗

κT
− ρ+ κT φ

2 L

ζ
(λ− 1)2

(
1

2
− θ
)]

,

g∗ =
1

1 + θ (Λ− 1)

(
[Λ− 1)

(
µ∗

κT
− ρ
)

+ κT
Λ + 1

2
φ2 L

ζ
(λ− 1)2

]
,

r∗ =
1

1 + θ (Λ− 1)

[
ρ+ θ (Λ− 1)

µ∗

κT
+ κT θ

Λ + 1

2
φ2 L

ζ
(λ− 1)2

]
.

Two remarks are worth a mention. First, the growth rate g∗ is non-monotonic in the

entry cost. On the one hand, a low κT allows more entry. On the other hand, greater

entry renders incumbents subject to exit due to creative destruction and decreases their

innovation rate. Second, it may appear surprising that the innovation rate z∗ does not

depend on monopoly rents, whose magnitude is determined by the parameter β. The

extant literature has placed a strong accent on the link between the incentives to innovate

and the monopolistic rents a firm can extract (among others, see the seminal contributions

of Arrow, 1962, Romer, 1990, or Aghion and Howitt, 1992). The reason is that this link

is offset by the free entry condition: an increase in monopoly rents stimulates entry and

increases creative destruction, thereby countervailing the positive effect of β on z∗. We

discuss this link further in Section 4.2, i.e. for the constrained economy.

By the household budget constraint, consumption (denoted by C∗t in the unconstrained

economy) is the sum of labor wage (W ∗
t ) and dividends (d∗t ) net of financing to the

corporate sector (f ∗t ):

C∗t = W ∗
t + d∗t − f ∗t ,

where

d∗t =

∫ 1

0

(
µ∗Lqjt −

(z∗)2

2
ζqjt

)
dj =

(
µ∗ − (z∗)2

2

ζ

L

)
Leg

∗t , (22)

f ∗t =

∫ 1

0

x∗dKjtdj = x∗d ΛκTLe
g∗t. (23)
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Consumption grows at rate g∗; that is C∗t = C∗0eg
∗t where

C∗0 = W ∗
0 + µ∗L− (z∗)2

2
ζ − x∗dΛLκT .

Since labor wage also grows at rate g∗, the relation W ∗
t = W ∗

0 e
g∗t holds, where

W ∗
0 = Lβ(1− β)

1
β
−2

by (12). We analyze in detail the properties of these aggregate quantities in Section 4.4

and Section 5.2, where we compare the constrained and unconstrained economies.

4 The constrained economy

We now analyze the constrained economy, in which firms have incentives to retain earn-

ings in precautionary cash reserves. We first study the optimal production, innovation,

financing, and dividend decisions of incumbent firms. We then derive the stationary cross-

sectional distribution of liquidity in the economy. Using the distribution, we aggregate

our firm-level analysis in general equilibrium.

4.1 Deriving the value of incumbent firms

Recall that V (t, C̄, q) represents the time-t value of an incumbent firm producing an

input at quality level q and with cash reserves C̄.16 The precautionary benefit from

an additional dollar saved is decreasing in cash reserves, whereas the marginal cost is

constant. We conjecture the existence of a target cash level C̄∗(q) at which the marginal

cost and the marginal benefit are equalized. Above this target, it is optimal to pay out

excess cash to shareholders.

By assumption, incumbent firms can raise external funds by incurring the proportional

cost ε. Raising the amount dF̄ > 0 changes firm value from V (t, C̄, q) to V (t, C̄+dF̄ , q)−
16As for the unconstrained economy, we drop the index j within our partial equilibrium analysis (when

it causes no confusion).
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(1 + ε)dF̄ . This financing option is exercised only if its marginal gain Vc(t, C̄ + dF̄ , q) is

larger than the marginal cost 1 + ε. Incumbents find it optimal to delay these refinanc-

ing events (and thus incurring the corresponding cost) until the cash buffer is depleted.

Marginal gain from external financing equals the marginal cost when the firm is out of

cash; that is, the condition Vc(t, 0, q) = 1 + ε holds.

Incumbent firms can also raise funds when marketing a higher quality product (i.e.,

after a technological breakthrough). While this financing channel is not subject to the

cost ε, financiers extract a fraction α of the surplus created. In this case, it is optimal

for the firm to raise an amount that restores the cash reserves at the target level C̄∗(λq).

Thus, the total surplus generated by this transaction is S(t, C̄, q) = V (t, C̄∗(λq), λq) −

(C̄∗(λq)− C̄)− V (t, C̄, q) and firm value increases by (1− α)S(t, C̄, q).17

As in the unconstrained economy, incumbents take the demand schedule of the final

good sector as given and choose their value-maximizing production rate. Differently, the

optimal production X̄t and innovation zt decisions depend on the level of cash reserves.

Consider first the region in which it is optimal to retain earnings c ∈ [0, C∗]. Using

standard arguments, firm value satisfies the following HJB equation:

rV (t, C̄, q)− Vt(t, C̄, q) = max
z,X̄

{σ2

2
X̄2Vcc(t, C̄, q) +

[
δC̄ + (p− 1)X̄ − z2

2
qζ

]
Vc(t, C̄, q)

+ φz(1− α)
(
V (t, C̄∗(λq), λq)− (C̄∗(λq)− C̄)− V (t, C̄, q)

)
+ xd (C̄ − V (t, C̄, q))

}
.

(24)

The left-hand side admits an interpretation analogous to (13). The right-hand side is the

expected change in firm value per time interval. The first and the second terms capture

the effect of cash flow volatility and cash accumulation. The third term captures the

17If an incumbent firm does not accept the financiers’ surplus sharing offer, its value jumps from
V (t, C̄, q) to V (t, C̄, λq) after a breakthrough. Since firm value is concave, marginal value of cash satisfies
Vc(t, C̄, λq) < Vc(t, 0, λq) = 1 + ε. Thus, raising external funds through the “routine” procedure is never
optimal, whereas moving from V (t, C̄, λq) to V (t, C̄∗(λq), λq) − (C̄∗(λq) − C̄) is optimal, because the
marginal value of cash is above one. Hence, it is always optimal for the firm to take the financiers’
offer to share the surplus S̃(t, C̄, q) = V (t, C̄∗(λq), λq)− (C̄∗(λq)− C̄)− V (t, C̄, λq), independent of the
fraction of the surplus they would like to extract. Note that in our model we assume that financiers
are extracting the fraction α of S = S̃ + (V (t, C̄, λq) − V (t, C̄, q)). While this assumption is made for
analytical tractability, one can interpret the term α(V (t, C̄, λq)−V (t, C̄, q)) either as an additional fixed
cost of intermediation or as the cost of marketing the technological breakthrough.
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change in value upon a technological breakthrough. Finally, the fourth term represents

exit due to creative destruction. Exiting shareholders recover the firm’s cash reserves.

We conjecture and verify that firm value scales with qt

V (t, C̄, q) = qtLv

(
C̄t
qtL

)
≡ Qt v(c) , Qt = qtL (25)

for some function v(c). The function v(c) represents scaled firm value, whereas c repre-

sents scaled cash reserves

c ≡ C̄t/Qt.

We conjecture that the target cash level satisfies

C̄∗(qt) = QtC
∗

for some constant C∗ > 0 (independent of quality). Solving for v(c) rather than for

V (t, C̄, q) eases the model solution. In fact, optimal policies are determined by solving

the HJB equation for v(c)

max
z,X

{σ2

2
X2v′′(c) + v′(c)

[
δc + X1−β −X − z2

2

ζ

L

]
+ (1− α)φz [λ(v(C∗)− C∗)− (v(c)− c)] + xd(c− v(c)) − rv(c)

}
= 0 ,

(26)

where X(c) ≡ X̄t/Qt represents scaled production.

We define the curvature (i.e., the effective “risk aversion”) of the value function as

γ(c) = −σ2v
′′(c)

v′(c)
(27)

and we let F (γ) be the unique solution to the following auxiliary equation

(1− β)F−β = 1 + γF (28)

(see Appendix A.1 for further details). We conjecture and verify that the marginal value
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of cash v′(c) is monotone decreasing in c (that is, v′′(c) ≤ 0). Thus, the maximization

problem (26) has an interior solution for any c. Specifically, the optimal production X(c)

and innovation z(c) decisions respectively satisfy

X(c) = F (γ(c)), (29)

z(c) = φ (1− α)
L

ζ

(λw∗ − v(c) + c)

v′(c)
, (30)

where

w∗ ≡ w∗(C∗) = v(C∗)− C∗

represents the scaled firm value at the target cash level, net of cash reserves. Substituting

(29)-(30) into the HJB equation (26), we obtain:

− σ2

2
X(c)2 v′′(c) + v′(c)βX(c)1−β + v′(c)c δ

+
ϕ2

2

(λw∗ − v(c) + c)2

v′(c)
+ xd (c− v(c)) − rv(c) = 0 ,

(31)

where the auxiliary quantity

ϕ2 ≡ φ2 (1− α)2

(
L

ζ

)
(32)

represents the effective rate at which the incumbent improves its input.

To pin down firm value, we solve (31) subject to the following boundary conditions:

v′(0) = 1 + ε , (33)

v′(C∗) = 1, (34)

v′′(C∗) = 0 . (35)

Equation (33) means that when cash reserves are depleted, the marginal value of cash

equals the marginal cost of raising funds (i.e., 1 + ε). Equation (34) means that the

marginal value of one dollar at C∗ equals its value if paid out to shareholders. As c ap-

proaches the target C∗, the firm’s effective risk-aversion γ goes to zero and precautionary
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concerns are gradually relaxed. Above C∗, excess cash is paid out to shareholders and

firm value is linear:

v(c) = v(C∗) + c − C∗ for c > C∗.

Equation (35) is the super-contact condition at C∗, which guarantees that the dividend

threshold C∗ maximizes firm value.

By substituting (34) and (35) into (31), we can derive the scaled incumbent value at

the target cash level. By straightforward calculations, we obtain

w(C∗) = v(C∗)− C∗ =
2 [µ∗ − (r − δ)C∗]

xd + r + [(xd + r)2 − 2ϕ2(λ− 1)2(µ∗ − (r − δ)C∗)]1/2
, (36)

where µ∗ is defined in (16). We summarize our findings in the next proposition.18

Proposition 2 Suppose that ε is sufficiently small. Then, the value of an incumbent

firm is given by (25), where v(c) is the unique concave solution to (31) satisfying the

boundary conditions (33)-(35). The value of an incumbent firm holding its target level

of cash reserves is given by w(C∗) + C∗ as from (36). By the free-entry condition, the

following equality holds:

w∗(C∗) = κT + κI . (37)

Using these results, we better characterize optimal corporate policies in the next

section.

4.2 Characterizing corporate policies

Firm value and liquidity hoarding. We start by investigating firm value as a func-

tion of cash reserves. The concavity of the value function and the free-entry condition

(37) together imply that the inequality v(c) ≤ c + w∗(C∗) = c + κT + κI holds. To gain

a deeper understanding of the impact of liquidity frictions on firm value, we compute a

Taylor approximation for v(c) in a neighborhood of C∗ in the next Proposition.

18While our analytical proof holds for small ε, numerical results indicate that firm value exists and is
concave for all reasonable values of ε.
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Proposition 3 Suppose that ε is sufficiently small. For any c in a left neighborhood of

C∗, the value of an incumbent firm can be approximated as follows:

v(c) ≈ v(C∗)− (C∗ − c)− 1

6
v3(C∗ − c)3 +

1

24
v4(C∗)(c− C∗)4

where

v3 =
2 (r − δ)
σ2X2

0

,

v4(C∗) = − v3

X0

[
4
r − δ
β

+
2 β

σ2(1− β)
+

1

σ2X0

(
2δC∗ − ϕ2(λ− 1)2(κT + κI)

2
)]
.

In these expressions, X0 = X∗ = (1 − β)1/β represents the firm’s production rate at C∗,

which equals that of the unconstrained economy (10).

Proposition 3 illustrates that the opportunity cost of cash r− δ has an unambiguous,

negative effect on firm value. Indeed, it increases the cost of the firm’s precautionary

hedge. Conversely, firm value is non-monotonic in σ conditional on a value of C∗. This ef-

fect raises the question of the dependence of C∗ on σ. The following proposition addresses

this question by investigating the determinants of C∗.

Proposition 4 Suppose that ε is sufficiently small. The target cash level C∗ is given by

C∗ ≈ C∗1
√
ε+ C∗2ε

C∗1 =

(
2

v3

) 1
2

, C∗2 =
v4(0)

3 v2
3

The first crucial observation is that, to the highest order, the target level C∗ is propor-

tional to the square root of the refinancing cost, ε1/2. Thus, a small financing friction ε can

have a large effect on firm value and corporate decisions, as we show in the following. To

the highest order, the target level of cash reserves is proportional to the quotient σX0(β)

(r−δ)1/2 .

Hence, it is largely driven by cash flow volatility and the opportunity cost of cash, in line

with previous cash holdings models. The target level also depends on the elasticity β. A

larger β means that a firm sets a higher markup and produces less. Proposition 4 then
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suggests that firms with larger monopolistic rents should hold less cash.

The next Corollary follows by substituting v4(0) from Proposition 3 into the approx-

imation for C∗ in Proposition 4.

Corollary 5 Suppose that ε is sufficiently small. The target cash level C∗ is increasing

in λ and φ and decreasing in ζ.

To safeguard financial flexibility, firms with more efficient innovation technologies (i.e.,

technological breakthroughs occur more often or are more path-breaking) set a larger

target cash level. This is consistent with the study of Falato, Kadyrzhanova, and Sim

(2013) or Falato and Sim (2014), among others. Moreover, the model is able to capture

the upward trend in cash reserves driven by innovative firms documented by Begenau

and Palazzo (2015). In the model, qt increases over time and drives the increase of the

target (non-scaled) level of cash reserves, C̄∗(qt).

Production and markups. We next analyze optimal production decisions. Equation

(29) highlights that the dynamics of X(c) are fully determined by firm’s effective risk

aversion γ(c) (see equation (27)) and by the function F (which solves equation (28)).

Since F (γ) is monotone decreasing in γ, so is X(c). The intuition is the following. When

liquidity constraints tighten (cash reserves decrease), effective risk aversion increases and

the firm becomes reluctant to take on idiosyncratic risk. To limit operating volatility, the

firm scales down production. Since effective risk aversion becomes negligible at the target

cash level as v′′(C∗) = 0, production at C∗ equals the optimal (constant) production rate

(10) of the benchmark economy. As a result, X(c) < X0 for all c < C∗.

Recall that each incumbent firm j acts as the monopolist of the industry j. Given the

demand schedule of the final good sector, selecting X(c) is equivalent to setting the price

p(c) = X(c)−β ≥ X−β0 =
1

1− β
.

Liquidity frictions then lead incumbents to deviate from the constant price p∗ associ-

ated with the benchmark economy. In the constrained economy, the incumbent sets a
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markup equal to p(c) − 1, which exceeds the markup set by an identical firm operating

in the benchmark economy. Following negative shocks (which deplete the cash reserves),

the constrained incumbent decreases production and increases markups. Thus, liquidity

constraints cause markups to be countercyclical to idiosyncratic shocks.

The next proposition better investigates the effects of liquidity frictions on production

decisions by computing a Taylor approximation of X(c).

Proposition 6 Suppose that ε is sufficiently small. The optimal production policy can

be approximated by

X(c) ≈ X0 + X1(c− C∗) +
X2

2
(c− C∗)2 ,

where X0 is defined in Proposition 3, X1 = 2(r−δ)
β

and

X2 =
X1

X0

[
X1(β + 5) +

2β

σ2(1− β)
+

1

σ2X0

(
2δC∗ − ϕ2(λ− 1)2(κT + κI)

2
)]

.

This approximation implies that (1) A larger β leads to a lower sensitivity of markups

to liquidity shocks; (2) Firms facing a lower rate of creative destruction (smaller xd) or

having more efficient innovation technologies (larger φ or larger λ) produce less (lower

X(c)) and set higher markups.

Proposition 6 suggests that liquidity frictions create a link between production de-

cisions and firm characteristics that is absent in the unconstrained economy. Ceteris

paribus, firms with more efficient innovation technologies—e.g. whose technological

breakthroughs occur more often (larger φ) or are more path-breaking (larger λ)— should

invest more in innovation. Thus, such firms deplete cash reserves faster, have a higher

effective risk-aversion, and scale down production by a larger rate when constrained.

Extant models of endogenous growth have stressed that monopoly rents generate

firms’ incentives to invest in innovation.19 Proposition 6 warns that liquidity constraints

19See, e.g., Aghion and Howitt (1992) and Aghion, Akcigit, and Howitt (2014). Similarly, in Romer’s
(1990) variety model, lower rents for innovators lead to lower R&D incentives. Note, however, that
Arrow (1962) argues that the incentive to invest in innovations is lower under monopolistic than under
competitive conditions, due to “organizational inertia.”
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may generate a different, reverse relation. Firms with more efficient innovation technolo-

gies are more R&D-intensive, which makes them more financially constrained and leads

them to charge higher markups. Notably, the positive effect of innovation on markups is

empirically supported by Cassiman and Vanormelingen (2013).

Investment in innovation We now analyze optimal innovation decisions. Proposition

7 follows from (30) and a Taylor expansion of z(c) around C∗.

Proposition 7 Suppose that ε is sufficiently small. The optimal innovation rate can be

approximated by

z(c) ≈ z̃(c) ≡ z0 +
1

2
(C∗ − c)2 z2 −

1

6
(C∗ − c)3z3. (38)

In this expression, we have defined z0 = φ (1− α) L
ζ
(λ−1)(κT+κI), z2 = −φ (1− α) L

ζ
v3 (λ−

1)(κT + κI), and z3 = −φ (1− α) L
ζ

(
v3 + v4(λ− 1)(κT + κI)

)
. v3 and v4 are defined as

in Proposition 3.

The next corollary relies on Proposition 7 and on the monotonicity properties of the

following auxiliary quantity

Z ≡ 2 (λ− 1)(κT + κI)

1 − 1
X0

[
4 r−δ

β
+ 2 β

σ2(1−β)
+ 1

σ2X0
(2δC∗ − ϕ2(λ− 1)2(κT + κI)2)

]
(λ− 1)(κT + κI)

,

which we use to characterize the optimal innovation rate z(c).

Corollary 8 Suppose that Z > 0. Then,

• if Z > C∗, z̃(c) is monotone increasing;

• if Z < C∗, z̃(c) is decreasing for c < C∗−Z. This pattern is more likely to arise for

firms with: (1) larger cash flow volatility σ, (2) more severe financing constraints ε,

(3) more frequent technological breakthroughs, i.e. larger φ, (4) smaller opportunity

cost of cash r − δ,
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Corollary 8 illustrates that z(c) might increase when cash reserves decrease. That

is, given two firms with the same fundamental characteristics but different cash reserves,

the firm with the smaller cash reserves may invest more in innovation. In so doing, this

firm seeks to increase the probability of attaining a technological breakthrough. When a

breakthrough occurs, the firm earns monopoly rents related to the brand-new technology

and can raise outside funds in light of a “success” rather than a “failure” (i.e., running

out of funds due to operating losses). This pattern reminds a “gambling for resurrection”

type of behavior and is largely driven by financial constraints.

The reason why firms may put more emphasis on innovation when cash reserves de-

crease is as follows. By (30), the optimal innovation policy z(c) is a constant multiple

of the quotient (λw∗−v(c)+c)
v′(c)

. The numerator represents the change in firm value when a

technological breakthrough occurs. The denominator is the marginal “cost” of using one

dollar to finance innovation. Both the numerator and the denominator are monotone

decreasing in c. The numerator is decreasing because v′(c) ≥ 1. The denominator is

decreasing in c because firm value is concave in c. Thus, z(c) is decreasing if and only if

the numerator decreases at a higher rate than the denominator. By direct calculation,

this is equivalent to
v′(c)− 1

λw∗ − v(c) + c
≥ σ−2γ(c).

Given the boundary condition (33), z(c) is decreasing for small values of c if and only

if ε
λw∗−v(0)

≥ σ−2γ(0). The effective risk aversion of the firm scales with the coefficient

of cash flow volatility (γ ∼ σ2) and hence the right-hand side is not very sensitive to

volatility. At the same time, the gain λw∗ − v(0) from replenishing cash reserves is

modest when volatility is higher, which explains why z(c) tends to be decreasing for

firms with volatile cash flows. A similar logic applies to the opportunity cost r − δ :

Since v is increasing in δ, the gain λw∗ − v(0) = λ(κT + κI) − v(0) is decreasing in

δ. Corollary 8 also predicts that firms with more efficient R&D technologies should

substitute production for innovation when constrained, to increase the likelihood of a

breakthrough while limiting operating volatility. Furthermore, financing frictions make

the optimal innovation rate z(c) dependent on β (recall from (17) that z∗ does not depend
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on this parameter). Specifically, a constrained firm is relatively more likely to substitute

production for innovation when β is small. In this case, the markup set by the firm

is smaller and, hence, the firm has greater incentives to decrease production and favor

innovation. Overall, our analysis suggests that the decreasing pattern of z(c) in c should

be particularly relevant for small, constrained firms with low cash flows and high operating

risk.

In our model, we study the relation between innovation and target cash reserves and

between innovation and deviations from this target. That is, we distinguish between

ex-ante heterogeneity (firms may differ in the parameters φ, λ, ζ and thus have different

C∗) and ex-post heterogeneity (whereby ex-ante identical firms choosing the same C∗

hold different levels of cash reserves). Our model predicts that innovation is a prime

determinant of corporate cash reserves, as follows from Corollary 5 and the discussion

therein. This is consistent with the evidence that R&D-intensive firms tend to old more

cash in comparison to “old economy” firms (for example Falato and Sim, 2013, or Begenau

and Palazzo, 2015). In addition, we characterize how identical firms should adjust their

investment in innovation when operating shortfalls erode the reserves below the target

C∗. In particular, we find that small firms might increase their innovation rate in the

face of negative operating shocks and decreasing cash reserves.

Idiosyncratic volatility of cash flows and returns. In our model, production de-

cisions affect the volatility of cash flows, which is equal to σX(c). Since production

increases with the level of cash reserves, so does cash flow volatility. That is, a firm scales

down operating risk when liquidity constraints tighten (i.e., when cash reserves decrease).

This result has interesting implications for the relation between cash flow volatility and

cash reserves (e.g., Bates, Khale, and Stulz, 2009). As previous contributions do, our

model suggests that cash flow volatility affects (namely, increases) the target level of cash

reserves. In addition, our model prompts that the level of cash reserves determines cash

flow volatility via optimal production decisions. After positive (respectively, negative)

operating shocks, cash reserves increase (decrease), the curvature of the value function

decreases (increases), and the firm is willing to take on more (less) risk. The optimal
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production rate rises (decreases) and so does cash flow volatility.

We relate endogenous cash flow volatility to the idiosyncratic volatility of stock re-

turns. By (4), volatility of stock returns dR(c) = dv(c)
v(c)

is given by

σR(c) = σX(c)
v′(c)

v(c)
.

All cash flow shocks are idiosyncratic in our model, which implies that σR(c) coincides

with the idiosyncratic return volatility. A direct calculation implies that σR(c) is locally

monotone increasing in c if and only if

X ′(c)

X(c)

v′(c)

v(c)
> − d

dc

v′(c)

v(c)
.

Since v(c) is increasing and concave in c, the ratio v′(c)/v(c) is decreasing. Thus, if the

rate of change in production is higher than the rate of change in firm value, idiosyncratic

volatility is locally increasing.

The monotonicity of σR(c) is closely related to the leverage effect identified by Black

(1976), according to which the volatility of stock returns increases after negative shocks to

stock prices. In this context, the cash management model of Décamps, Mariotti, Rochet,

and Villeneuve (2011) shows that liquidity frictions may generate the leverage effect. In

their model, idiosyncratic volatility of returns is monotone decreasing in c, whereas the

stock price is increasing. Nonetheless, the evidence on the co-movement between stock

returns and idiosyncratic volatility appears ambiguous. Early studies report a positive

relation (e.g. Duffee, 1995, or Malkiel and Xu, 2002), whereas more recent works (Ang,

Hodrick, Xing, and Zhang, 2006, 2009) report a negative relation. Our model is capable

of capturing both the positive and the negative relation. In fact, the instantaneous

covariation of returns and idiosyncratic volatility is given by

〈v(c)−1dv(c), dσR(c)〉 = v(c)−1σC(c)2v′(c)σ′R(c)dt ,

so the hump-shaped pattern for σR(c) leads to a negative (respectively, positive) co-

movement for firms with high (low) cash reserves.
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4.3 The stationary cross-sectional distribution of liquidity

We next derive the stationary cross-sectional distribution of liquidity in the economy,

which we denote by η(c). The dynamics of scaled cash reserves of each incumbent satisfy

dCt = µ(Ct)dt+ σ(Ct)dZt + dFt + dF I
t − dDt + (λC∗ − Ct)dNt. (39)

In this equation,

µ(c) = δc+X1−β(c)−X(c)− z2(c)

2

ζ

L
, and σ(c) = σX(c) ,

follow from Section 4.1, and Nt is a Cox process with stochastic intensity φz(Ct) rep-

resenting quality improvements (technological breakthroughs) in the incumbent’s input.

Since liquidity shocks are independent and identically distributed (i.i.d.) across firms,

the cross-sectional distribution of liquidity satisfies the following Kolmogorov forward

equation20

1

2

(
σ2(c)η(c))

)′′ − (µ(c)η(c))′ − xdη(c) − z(c)φη(c) = 0 .

We solve for the distribution by imposing the following boundary conditions:

0.5(σ2η)′(0)− (µ(0)η(0)) = 0

0.5(σ2η)′(C∗)− (µ(C∗)η(C∗)) =

∫ C∗

0

φz(c)η(c)dc + xd.
(40)

For any level of cash reserves c, the quantity 0.5(σ2η)′(c) − (µ(c)η(c)) represents the

infinitesimal change in the mass of firms due to cash accumulation (as captured by the

drift µ(c)) and due to idiosyncratic cash flow shocks (as captured by the volatility σ(c)).

The first equation in (40) is the “mass conservation” condition at zero. It guarantees that

there is no loss of mass for firms that run out of liquidity and use external financing to

remain solvent. The second equation is the “mass conservation” at C∗. It ensures that

loss of mass is offset by the inflow of successful innovators. In the next section, we use

20See Appendix A.3 for a formal argument.
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this stationary distribution to derive equilibrium aggregate quantities.

4.4 Equilibrium quantities

We embed the preceding analysis into a general equilibrium setting. Along the balanced

growth path, aggregate output, consumption, net dividends, and wage grow at the con-

stant, endogenous rate g. As for the unconstrained economy, the law of large numbers

implies the following relation: ∫
qjtdj = egt,

where the growth rate g is the sum of two components, as follows:

g = (λ− 1)φ

∫ C∗

0

z(c)η(c)dc+ (Λ− 1)xd . (41)

Since innovation decisions are i.i.d. across firms, the law of large numbers implies that

the contribution of incumbents to economic growth is given by the size of their quality

improvements multiplied by their average innovation rate (the first term in (41)). Simi-

larly, the contribution of entrants is given by the size of their quality improvements times

the entry rate (the second term). In equilibrium, the entry rate (i.e., the rate of creative

destruction) is pinned down by the free-entry condition

v (C∗(xd);xd)− C∗(xd) = κT + κI .

Using (36) and the approximation for C∗ in Proposition 4, we solve for xd.

Proposition 9 For ε sufficiently small, the equilibrium rate of creative destruction sat-

isfies:

xd ≈
µ∗ − (r − δ)1/2σX0ε

1/2

κT + κI
+ ϕ2(λ− 1)2κT + κI

2
− r.

To single out the various effects at play, it is interesting to study the properties of xd

while holding r fixed (we numerically investigate the “full” equilibrium in Section 5.2).

This exercise may be relevant within a single industry, whose impact on the interest rate
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is sufficiently small. Proposition 9 shows that financing frictions faced by incumbents

discourage fresh entry, and this effect is stronger when cash flow volatility σ and the

opportunity cost of cash r−δ are larger. Moreover, the entry rate is monotone increasing

in the elasticity β since X0 is monotone decreasing in β.

As for the unconstrained economy, the Euler equation of the representative household

pins down the equilibrium interest rate

r = ρ+ θ

[
(λ− 1)φ

∫ C∗

0

z(c; r)η(c; r)dc+ (Λ− 1)xd(r)

]
. (42)

This equation represents the fixed point equation for r > δ, which we solve numerically.

By the household budget constraint, consumption Ct = C0e
gt is the sum of labor

income Wt and dividends dt net of financing ft. Since these quantities grow at rate g

too, the relation C0e
gt = (W0 + d0 − f0)egt holds. In particular, the wage paid by the

competitive final good sector is given by

Wt =
1

1− β

∫ 1

0

Lβ X̄1−β
jt qβjtdj −

∫ 1

0

pjtX̄jtdj .

Since Wt = W0e
gt, simple calculations imply that W0 satisfies

W0 =
βL

1− β

∫
η(c)X(c)1−βdc .

In turn, the derivation of the dividend rate is not a trivial exercise in our continuous time

model. Even though the dividend process of every firm is singular,21 aggregate dividends

are smooth and grow at rate g. At every instant, firms with cash reserves close to C∗

may move to C∗ (following (39)) and eventually pay out dividends. The computation of

the dividend rate then requires to keep track of the whole cross-sectional distribution of

liquidity in the economy. To address this issue, we proceed as follows.

We define the function Y (qjt, c) as the present value of a virtual production unit that

we call “dynasty”. Namely, a dynasty represents the expected present value of dividends

21As in other dynamic cash management models (see, for example, Décamps, Mariotti, Rochet, and
Villeneuve, 2011; Bolton, Chen, and Wang, 2011, 2013; and Hugonnier, Malamud, and Morellec, 2015),
cash is paid out when hits the threshold C∗.
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net of cash injections of all firms that do and will ever operate in a given industry j. As

for the other quantities in a balanced growth path equilibrium, Y (qjt, c) is homogeneous

in the quality of input j. Hence, the relation

Y (qjt, c) = Lqjty(c)

holds for some function y(c). Specifically, y(c) solves the following equation:

1

2
σ2(c)y′′(c) + µ(c)y′(c) + φz(c) [λ(y(C∗)− C∗)− y(c) + c]

+ xd [Λy(C∗)− y(c) + c− Λ (C∗ + κT )] = ry(c) ,

see Appendix A.4 for further details. The first two terms on the left-hand side represent

the effect of cash flow volatility and cash savings on the value of the dynasty. The third

term represents the probability-weighted change in value due to a quality improvement

by the current incumbent. When this happens, net financing to the dynasty amounts to

λC∗ − c. The fourth term represents the probability-weighted change in value due to a

quality improvement by a new firm. Upon entry, net financing to the dynasty amounts to

Λ (C∗ + κT )−c, where the last term represents the cash reserves of the exiting incumbent.

Notice that the financing fees ε, κI , and α are paid in equity shares and not in cash. As

a result, the marginal value of cash y′(c) satisfies

y′(C∗) = 1 = y′(0) .

Solving for y(c) allows to determine the net dividend rate. Since net dividends grow at

rate g, it follows that

d0 − f0 = (r − g)L

∫ C∗

0

η(c)y(c)dc .

The analysis demonstrates that labor wage in the constrained economy is lower than

in the unconstrained benchmark. In fact, W0 ≤ W ∗
0 since X(c) < X0 for any c <

C∗. Differently, comparing net dividend in the constrained and unconstrained economies

is more difficult. On the one hand, the constrained economy features a smaller entry
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rate (see Proposition 9 and the analysis in Section 5.2), meaning that investors provide

financing to new firms less often. On the other hand, the amount provided is larger

in the constrained economy. In fact, investors finance not only the entry cost but also

provide entrants with precautionary cash reserves. We numerically analyze consumption

and welfare in the constrained and unconstrained economies in Section 5.2.

5 Model analysis

In this section, we provide a quantitative assessment of the model implications. Table

1 reports the baseline parametrization. Routine financing entails a cost ε = 8% for any

dollar raised, consistent with the estimation of Hennessy and Whited (2007). Financiers

extract a share α = 6% of surplus when financing an incumbent’s breakthrough. The

financing component of the entry cost κI is 10% of the technological component, which

means that financiers extract more rents from entrants than from incumbents (E.g., fi-

nancing of entrants is more fraught with asymmetric information). By setting λ = 1.04

and Λ = 1.10, we capture in a simple fashion that innovations by entrants tend to be

path-breaking while innovations by incumbents tend to be incremental; see, e.g., Akcigit

and Kerr (2015), and Acemoglu et al. (2013). We set σ = 0.4, which implies that cash

flow volatility σX(c) varies between 9.9% and 12.7%. We set the return on cash δ =4.9%,

which implies an opportunity cost r−δ around 0.5% (We endogenize δ in Appendix A.5).

5.1 Corporate outcomes

We start our analysis by comparing the optimal corporate policies in the constrained and

unconstrained economies. Supporting our analytical results, Figure 1 shows that, in the

constrained economy, production is increasing in cash reserves. Moreover, it is lower than

in the unconstrained economy for any c < C∗. Our analysis also reveals that investment

in innovation in the constrained economy may exceed that of the unconstrained econ-

omy. Under the baseline parametrization, z(c) is always higher than z∗, being roughly

32



7.14% higher for c close to (i.e., in a right neighborhood of) zero. The innovation rate is

decreasing when cash reserves are small and is almost flat when cash reserves are large.

Figure 2 investigates innovation decisions further. An increase in the refinancing cost

ε up to 14% makes z(c) steeper around zero. Conversely, an increase in the cost α up to

12% shifts z(c) downwards very sharply. An increase in α erodes the incumbents’ surplus

from innovation and so the incentives to invest. However, it preserves the decreasing

pattern of z(c) in c. An increase in κI up to 0.1 (implying a financing component of the

entry cost about 14.3% of the technological component) spurs innovation: e.g., z(0+) is

10.7% larger than z∗. A larger κI deters entry and renders incumbents less threatened

by creative destruction. This leads to an increase in their innovation rate.

We also explore the impact of cash flow volatility and profitability on z(c). Notably,

the parameters σ and β do not affect z∗ but do affect z(c). Figure 2 shows that a

decrease in β increases the firm’s willingness to substitute production for innovation.

When precautionary cash is scarce and profitability is low, firms cut on core production

and invest more in innovation. Moreover, a decrease in σ leads to a sharp drop in

the optimal innovation rate. Notably, z(c) is increasing in c for low-volatility firms, as

explained in Section 4.2.

Our analysis reveals that z(c) can be higher or lower than z∗. Moreover, z(c) can

be non-monotonic in c. These results may help explain the R&D decisions of small

firms. Small firms are more financially constrained (larger ε), operate with lower margins

(lower β), and their cash flows are volatile (larger σ). Despite the financial constraints,

small firms can be very R&D intensive, as discussed in the introduction. Our model can

rationalize this pattern.

Finally, Figure 1 shows that incumbent firm value can be larger in the constrained

economy. In the unconstrained economy, entry is less costly as it does not involve any

financing cost. The entry rate is larger, which implies that incumbent firms are more

likely to exit. We investigate the general equilibrium effects of this result in the next

section.
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5.2 Aggregate quantities

The cross-sectional distribution of liquidity. Figure 3 displays the cross-sectional

distribution of liquidity η(c) for c ∈ [0, C∗] under several parametrizations. The distri-

bution is increasing in c as in the model of Bolton, Chen, and Wang (2011). That is,

incumbents’ cash reserves are relatively large most of the time. Variations in the param-

eter values affect not only the shape of the distribution but also its interval of definition.

For instance, a decrease in the return on cash from 4.9% to 1% or in the coefficient of

cash flow volatility from 0.4 to 0.2 both lead to a decrease in the target cash level. The

interval of definition becomes smaller, and the distribution gets steeper. Conversely, a

decrease in the elasticity β reinforces firms’ precautionary policies. The target cash level

increases, and the distribution becomes flatter around zero. That is, firms with smaller

monopoly rents hold more cash.

The shape of the cross-sectional distribution has important implications for the aggre-

gate effect of firm-specific policies. As an illustration, consider the effect of the decreasing

pattern of z(c) on incumbents’ innovation
∫
η(c)z(c)dc. If the stationary distribution is

concentrated close to the target level C∗, the impact of the innovation decisions of liq-

uidity constrained firms (i.e., those with cash reserves close to zero) is small. Even if

constrained firms increase their innovation rate when c is close to zero, the effect of their

policies may be modest on aggregate. These considerations can help gauge the impact of

government interventions subsidizing innovation (for instance, Acemoglu, Akcigit, Bloom,

and Kerr, 2013).

Financing frictions, growth, and welfare. We next investigate the effects of fi-

nancing frictions and corporate cash hoarding on economic growth. Under the baseline

parametrization, economic growth is 1.916% (respectively, 2.013%) in the constrained

(unconstrained) economy.

Figure 4 displays creative destruction and growth as functions of the technological and

financing components of the entry cost, κT and κI . Creative destruction appears decreas-
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ing in κT , whereas growth displays a U-shaped pattern.22 Our model then highlights that

an increase in κT deters fresh entry but boosts the incumbents’ innovation rate. When

κT is low enough, an increase in κT leads to lower growth. In this case, the reduction in

entrants’ contribution to growth overtakes the increase in the incumbents’ one. When κT

is sufficiently large, conversely, a further increase in κT leads to an increase in growth. In

this case, the rise in incumbents’ contribution to growth more than offsets the decrease

in entrants’ contribution.

In our model, the entry cost includes a financing component on top of the technological

component. By imposing barriers to entrants, financiers slow down creative destruction

(i.e., the entry rate is lower). Indeed, Figure 4 shows that xd decreases in κI . If creative

destruction hits less often, incumbents expect to enjoy monopoly rents for longer and

thus increase their investment in innovation (as illustrated in Section 5.1). Since the

growth rate is non-monotonic in the entry cost, g can be larger than g∗ if κT and κI

are sufficiently large. Thus, our analysis points out that financing frictions may be not

detrimental to economic growth.

An interesting question is how financing frictions and corporate cash hoarding affect

consumption and welfare. To address this question, we make the following thought exper-

iment. Suppose that the planner intervenes to relax financing frictions. For simplicity, we

assume that the planner can remove financing frictions and “switch” the economy from

constrained to unconstrained. After this intervention, the equilibrium quantities become

those described in Section 3. Importantly, firms stop retaining earnings and pay out their

cash reserves amounting to C̃ ≡ L
∫ C∗

0
cη(c)dc. The resulting intertemporal wealth of the

representative household is the sum of consumption and corporate cash reserves. If the

planner does not intervene, conversely, cash reserves remain “trapped” in the corporate

sector.

Recall that a dynasty represents the expected present value of dividends net of financ-

ing in a given industry j. In the unconstrained economy, the scaled value of a dynasty

j equals the scaled value of the incumbent j, which is equal to κT due to the free-entry

22This may not be the case when risk aversion θ is less than (or equal to) 0.5. We do not consider these
parametrizations, as they may bring along an interest rate greater than the rate of economic growth.

35



condition. In the constrained economy, by contrast, the scaled value of the dynasty is

larger than the value of the corresponding incumbent; in particular, the following relations

y(C∗)− C∗ > v(C∗)− C∗ = κT + κI ≥ κT = v∗ = y∗ hold (see Section 4.4).

Figure 5 shows consumption and welfare as a function of κT and κI if the planner

does and does not intervene. If the planner does not intervene and the economy remains

constrained, the representative household enjoys larger net dividends. If the planner does

intervene, the representative household receives a larger income wage as well as corporate

cash reserves. The figure shows that welfare is non-monotonic in κT and follows a U-

shaped pattern as the growth rate. Importantly, the figure shows that financing frictions

may be not welfare-decreasing. When κI is sufficiently large, a firm operating in the con-

strained economy is more valuable than an identical firm operating in the unconstrained

economy. As explained, the former is less threatened by creative destruction. In the con-

strained economy, aggregate consumption is larger than in the unconstrained economy if

the increase in net dividends more than offsets the decrease in labor wage.

6 Concluding remarks

Recent empirical studies document strong relations between corporate cash reserves and

innovation, and between innovation and economic growth. In this paper, we develop

a tractable framework to study the micro and macro implications of financing frictions

and liquidity hoarding on investment in innovation and economic growth. To this end,

we embed financing frictions into a Schumpeterian model that features innovations by

incumbents and entrants. Our modeling of financial frictions accounts for several features

that characterize R&D-intensive industries. In particular, these firms prefer internal funds

and delay external (equity) financing until milestones are attained or they are in extreme

need of funds. The model generates rich joint dynamics of cash reserves, investment

in innovation, and production decisions, which capture documented stylized facts and

deliver new testable predictions. One of our main findings is that financing frictions can

spur the investment in innovation of small, constrained firms. At the aggregate level,

financing frictions and liquidity hoarding have offsetting effects on growth.
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We believe that the interactions among liquidity frictions, innovations, and growth are

important for the dynamics of the economy and policy-making. Our paper makes only the

first step in this direction. First of all, we abstract from aggregate shocks. Nonetheless,

it would be interesting to investigate the impact of government liquidity policies on pro-

duction, innovation, and long-run growth over the business cycle (see also Aghion, Farhi,

and Kharroubi, 2012). Second, we take the costs of external financing as exogenous and

do not microfound them. Such microfoundations (e.g., based on asymmetric information

and limited pledgeability of assets) could allow to investigate fully-fledged dynamic capi-

tal structure choices and study their macro (interestingly, welfare) implications. We leave

these aspects for future research.
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A Appendix

A.1 Deriving incumbents’ policies and value

In the presence of liquidity frictions, the incumbents’ HJB equation is

0 = Vt + max
z,X̄

{σ2

2
X̄2Vcc + Vc

(
δ C̄ +X(p− 1)− z2

2
qζ

)
+ φ(1− α)z(λ(V − C̄∗)− (V − C̄)) + xd (c̄− V ) − rV

}
.

(43)

We conjecture

V (t, C̄, q) = qL v

(
C̄

qL

)
≡ Qv(c) Q = qL .

Having defined X ≡ X̄/Q , c ≡ C̄/Q so the expression for the price of input becomes

p =
(
X̄−1Q

)β
= X−β .

Substituting

Vt = 0 , Vc = v′(c) , Vcc =
1

Q
v′′(c)

into (43), we get23

max
z,X̄

{σ2

2
X2v′′(c) + v′(c)

(
δc + X1−β −X − z2

2

ζ

L

)
+ φ(1− α)z(λ(v(C∗)− C∗)− (v(c)− c)) + xd(c− v(c)) − rv(c)

}
= 0 .

(44)

Let A(c) = −σ2 v
′′(c)
v′(c) . The first order condition for X takes the form

−A(c)X + (1− β)(X)−β = 1. (45)

Define F (a) to be the unique solution to

−aF (a) + (1− β)(F (a))−β = 1 . (46)

Then, X(c) = F (A(c)) . Denote w∗ ≡ v(C∗)−C∗. By the first order condition, we have that
the optimal innovation rate solves

z = φ(1− α)
L

ζ

(λw∗ − v(c) + c)

v′(c)

23The true surplus created upon financing a technological breakthrough occurs is given by S̃(c) =
λ (v(C∗)− C∗) + c − λv(c/λ). To ease the analysis, we take a slightly modified version of this surplus,
i.e. S(c) = λ(v(C∗) − C∗) + c − v(c). This is without loss of generality. In fact, we can show that
0 < S̃(c) < S(c). We have λ(v(C∗) − v(c/λ)) > λ(C∗ − c/λ) = λC∗ − c since v′(c) ≥ 1. Hence, it is
always optimal for the firm to bargain with the financiers.
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and the corresponding term in the HJB is

φ2(1− α)2

2

L

ζ

(λw∗ − v(c) + c)2

v′(c)

and we define ϕ ≡ φ(1− α)
(
L
ζ

)1/2
. Now, by (45), it follows that

F 1−β − F = βF 1−β − σ2 v
′′(c)

v′(c)
F 2

and hence we get

0.5σ2F (A(c))2 v′′(c) + v′(c)(F 1−β − F ) = −0.5σ2F (A(c))2 v′′(c) + v′(c)βF 1−β .

Thus, the HJB equation can be written as follows:

− σ2

2
F (A(c))2 v′′(c) + v′(c)β F (A(c))1−β + v′(c)c δ

+
ϕ2

2

(λw∗ − v(c) + c)2

v′(c)
+ xd (c− v(c)) − rv(c) = 0 ,

(47)

subject to the following set of boundary conditions

v′(0) = 1 + ε , v′(C∗) = 1, v′′(C∗) = 0 .

It follows that A(C∗) = 0 and X(C∗) = X0. Then, at C∗, the following equation

µ+ δC∗ + 0.5(ϕ(λ− 1)w∗)2 − xdw∗ − r(w∗ + C∗) = 0 (48)

holds, where we have defined µ = µ∗ = β(X0)1−β and X0 = X(C∗) = (1− β)
1
β . This reveals

that the solution to w∗ is given by24

w∗ = w(C∗) =
xd + r −

(
(xd + r)2 − 2(ϕ(λ− 1))2(µ− (r − δ)C∗)

)1/2

ϕ2(λ− 1)2
.

24The choice of the solution to pick is motivated as follows. Consider the frictionless case C∗ = 0. In
the limit when φ→ 0, w∗ = µ

r+xd
, where µ = β(X0)1−β . Our solution can be rewritten as

w∗ =
2µ

xd + r ∓
(

(xd + r)2 − 2(ϕ(λ− 1))2(µ− (r − δ)C∗)
)1/2

.

Obviously, to get the continuous solution in the limit, we need to pick the plus sign, as the other solution
blows up. Thus, by continuity, we pick that with the plus sign.
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A.2 Approximations

In this section, we derive F i(c), Ai(c), vi = v(i), where F,A, v are the functions derived in the
previous section. We start with the function A(c). By simple calculations, it follows that

A′(c) = −σ2
(v′′′(c)
v′(c)

− (v′′(c))2

(v′(c))2

)
, ⇒ A′(C∗) = −σ2v′′′(C∗),

and

A′′(c) = −σ2
(v′′′′(c)
v′(c)

− 3
v′′(c)v′′′(c)

(v′(c))2
+ 2

(v′′(c))3

(v′(c))3

)
, ⇒ A′′(C∗) = −σ2v′′′′(C∗) .

We turn to F . By differentiating (46), we have

−F − aF ′ − β(1− β)F−β−1F ′ = 0

so

F ′(A(c)) = − F (A(c))

A(c) + β(1− β)F (A(c))−β−1
⇒ F ′(A(C∗)) = − Xβ+2

0

β(1− β)
. (49)

To arrive at F ′′, we differentiate again the equation above

− 2F ′ − aF ′′ − β(−β − 1)(1− β)F−β−2(F ′)2 − β(1− β)F−β−1F ′′ = 0 (50)

⇒ F ′′(A(C∗)) =
X2β+3

0

β2(1− β)2
(β + 3)

Summarizing, the following relations hold at C∗

A′(C∗) =− σ2 v3

A′′(C∗) =− σ2 v4

and

F ′(A(C∗)) = − Xβ+2
0

β(1− β)
= −

(
(1− β)1/β

)β/2
F ′′(A(C∗)) =(β + 3)

X2β+3
0

β2(1− β)2
.

By simple calculations, we also obtain

X(C∗) = X0 = F (A(C∗)) = (1− β)
1
β ,

X ′(C∗) = X1 =F ′(A(C∗))A′(C∗) =
2(r − δ)Xβ

0

β(1− β)
=

2(r − δ)
β

,

X ′′(C∗) = X2 = F ′′(A(C∗))(A′(C∗))2 + F ′(A(C∗))A′′(C∗)

=
X2β−1

0 (2(r − δ))2

β2(1− β)2
(β + 3)− Xβ+2

0

β(1− β)
(σ2v4),
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where we omit the arguments of the functions to ease the notation. We will provide an expression
for the term v4 = v(4)(c) in the following.

We now differentiate equation (47), obtaining

− σ2

2
v′′′(c)F (A(c))2 − σ2v′′(c)F (A(c))F ′(A(c))A′(c) + v′′(c)β(F (A(c)))1−β

+ v′(c)β(1− β)F−β(A(c))F ′(A(c))A′(c) + v′′(c)cδ + v′(c)δ − ϕ2

2

(λw∗ − v(c) + c)2v′′(c)

(v′(c))2

+ ϕ2(λw∗ − v(c) + c)

(
1

v′(c)
− 1

)
+ xd (1− v′(c)) − rv′(c) = 0.

Using the boundary conditions, we obtain an expression for the third derivative of v at the
target cash level

v′′′(C∗) ≡ v3 =
2 (r − δ)

σ2
X−2

0 .

Differentiating again the ODE, we obtain

− σ2

2
v′′′′(c)F 2 − 2σ2v′′′(c)FF ′A′ − σ2v′′(c)(F ′)2(A′)2 − σ2v′′(c)FF ′′(A′)2 − σ2v′′(c)FF ′A′′

+ v′′′(c)βF 1−β + 2v′′(c)β(1− β)F−βF ′A′ − v′(c)β2(1− β)F−β−1(F ′)2(A′)2

+ v′(c)β(1− β)F−βF ′′(A′)2 + v′(c)β(1− β)F−βF ′A′′ + v′′′(c)cδ + 2v′′(c)δ

+ ϕ2 (−v′(c) + 1)2

v′(c)
− ϕ2 (λw∗ − v(c) + c)v′′(c)

(v′(c))2
(2− v′(c))

+ ϕ2 (λw∗ − v(c) + c)2(v′′(c))2

(v′(c))3
− ϕ2

2

(λw∗ − v(c) + c)2v′′′(c)

(v′(c))2
− (r + xd)v

′′(c) = 0.

At C∗, the above equation becomes:

− σ2

2
v′′′′(C∗)X2

0 − 2σ2v′′′(C∗)XF ′A′ + v′′′(C∗)βX1−β

− β2(1− β)X−β−1(F ′)2(A′)2 + β(1− β)X−βF ′′(A′)2 + β(1− β)X−βF ′A′′

+ v′′′(C∗)C∗δ − ϕ2

2
(λw∗ − v(C∗) + C∗)2v′′′(C∗) = 0.

Therefore, we also obtain an expression for the fourth derivative of v at C∗,

v(4)(C∗) ≡ v4 =
2v3

σ2X2
0

(
ϕ2

2
(λ− 1)2(w∗)2 − βX1−β

0 − δC∗ − v3(σ2)2 Xβ+3
0

β(1− β)

)
.

Suppose that ε is sufficiently small. For c close to C∗, firm value can be approximated by
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the following expression

v(c) ≈ v(C∗) + v′(C∗)(c− C∗) +
v′′(C∗)

2
(c− C∗)2 +

v′′′(C∗)

6
(c− C∗)3

+
v′′′′(C∗)

24
(c− C∗)4 + O((c− C∗)5) ≈

w∗ + c +
v3

6
(c− C∗)3 +

v4

24
(c− C∗)4 + O((c− C∗)5) (51)

while the first and the second derivative of v satisfy

v′(c) ≈ 1 + v′′(C∗)(c− C∗) +
v′′′(C∗)

2
(c− C∗)2 +

v′′′′(C∗)

6
(c− C∗)3 =

1 +
v3

2
(c− C∗)2 +

v4

6
(c− C∗)3 (52)

v′′(c) ≈ v′′(C∗) + v′′′(C∗)(c− C∗) +
v′′′′(C∗)

2
(c− C∗)2 =

v3(c− C∗) +
v4

2
(c− C∗)2 . (53)

Using these approximations, it follows that

v′(0) = 1 +
v3

2
(C∗)2 − v4

6
(C∗)3,

v′′(0) = − v3 C
∗ +

v4

2
(C∗)2. (54)

The threshold C∗ is then obtained by exploiting the boundary condition at zero, i.e.

C∗ : 1 +
v3

2
(C∗)2 − v4

6
(C∗)3 = 1 + ε.

We use

C∗ ≈
(

2

v3

) 1
2

ε
1
2 + aε

where a can be found by solving the following equation

v3

2
ε

((
2

v3

) 1
2

+ aε
1
2

)2

− v4

6
ε
3
2

((
2

v3

) 1
2

+ aε
1
2

)3

= ε.

Ignoring the terms of order higher than 1
2 , we obtain

a =
v4

3 v2
3

.
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Then, the approximation for the target level of cash holdings is given by

C∗ ≈ C∗1
√
ε+ C∗2ε,

C∗1 =

(
2

v3

) 1
2

,

C∗2 =
v4

3 v2
3

.

We also calculate the approximation for z(c), as follows:

z(c) ≈ z(C∗) + z′(C∗)(c− C∗) +
z′′(C∗)

2
(c− C∗)2 +

z′′′(C∗)

6
(c− C∗)3.

To ease the notation, we define the auxiliary quantity φ∗ ≡ φ (1− α) Lζ . The derivatives of z(c)
at C∗ are given by

z′(c) = φ∗
(
−1 +

1

v′(c)

)
− φ∗ v′′(c) (λw∗ − v(c) + c)

(v′(c))2
,

z′′(c) =
φ∗v′′(c)

v′(c)
− φ∗ (2v′′(c) + v′′′(c) (λw∗ − v(c) + c))

(v′(c))2
+

2φ∗ (v′′(c))2 (λw∗ − v(c) + c)

(v′(c))3
,

z′′′(c) =
2φ∗v′′′(c)

v′(c)
− φ∗

(v′(c))2

(
3v′′(c)2 + 3v′′′(c) + v(4)(c)(λw∗ − v(c) + c)

)
+

+
6φ∗

(v′(c))3

(
v′′(c)2 + v′′(c)v′′′(c)(λw∗ − v(c) + c)

)
− 6φ∗

(v′(c))4
v′′(c)3(λw∗ − v(c) + c).

So,

z(C∗) = z0 = φ∗(λ− 1)w∗, z′(C∗) = z1 = 0,

z′′(C∗) = z2 = −φ∗ v3 (λ− 1)w∗, z′′′(C∗) = z3 = −φ∗
(
v3 + v4(λ− 1)w∗

)
,

and the resulting approximation for z(c) is therefore

z(c) ≈ z0 +
z2

2
(c− C∗)2 +

z3

6
(c− C∗)3. (55)

Finally, the approximation for X(c) is

X(c) ≈ X(C∗) + X ′(C∗)(c− C∗) +
X ′′(C∗)

2
(c− C∗)2,

where X(i)(C∗) are calculated as above. Then, we have

X(c) ≈ X0 + X1(c− C∗) +
X2

2
(c− C∗)2.
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A.3 The cross-sectional distribution of liquidity

For any incumbent firm, the dynamics of scaled cash holdings satisfy

dCt = µ(Ct)dt + σ(Ct)dZt + dFt + dF It − dDt + (λC∗ − c)dNt

where Nt is a Cox process with stochastic intensity φ z(Ct). Since cash is i.i.d. across firms, the
cross-sectional distribution of firms will satisfy the Kolmogorov Forward equation

1

2

(
σ2(c)η(c))

)′′ − (µ(c)η(c))′ − xdη(c) − z(c)φη(c) = 0 .

By calculations, it follows:

(µ(c)η(c))′ = µ′(c)η(c) + µ(c)η′(c)(
σ2(c)η(c))

)′
= 2σ(c)σ′(c)η(c) + σ2(c)η′(c)(

σ2(c)η(c))
)′′

= 2(σ′(c))2η(c) + 2σ(c)σ′′(c)η(c) + 4σ(c)σ′(c)η′(c) + σ2(c)η′′(c).

Now, we need to determine the boundary conditions. By assumption, firms never vanish
and are only replaced by new entrants. So the mass always stays constant, equal to 1. At zero,
the reflection boundary condition implies that the equality

0.5(σ2(c)η(c))′(0)− (µ(0)η(0)) = 0

holds. With reflection at C∗, and with innovating firms jumping to C∗, we will also have an
additional term

1

2

(
σ2(c)η(c)

)′′ − (µ(c)η(c))′ − xdη(c) − z(c)φη(c) = 0 .

By integrating, it follows that

0 =

∫ C∗

0

(
1

2

(
σ2(c)η(c)

)′′ − (µ(c)η(c))′ − xdη(c)

)
dc −

∫ C∗

0
φz(c)η(c)dc

=

(
1

2
(σ2η)′(C∗)− (µ(C∗)η(C∗))

)
−
(

1

2
(σ2η)′(0)− (µ(0)η(0))

)
− xd

∫ C∗

0
η(c)dc −

∫ C∗

0
φz(c)η(c)dc .

(56)

Thus, mass conservation ∫ C∗

0
η(c)dc = 1

is equivalent to

1

2
(σ2η)′(C∗)− (µ(C∗)η(C∗)) −

∫ C∗

0
φz(c)η(c)dc − xd = 0 ,
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or equivalently, (
σ′(C∗)σ(C∗)− µ(C∗)

)
η(C∗) + 0.5σ2(C∗)η′(C∗) = Ψ(ε). (57)

In this equation, we have defined

Ψ(ε) ≡
∫ C∗

0
φz(c; ε)η(c; ε)dc + xd

Having derived the cross-sectional distribution of liquidity, which we solve numerically, we turn
to analyze the general equilibrium properties of the model.

A.4 General equilibrium analysis

Using the notation introduced in Section 4.4, we derive the scaled value of the dynasty y(c),
the equilibrium net dividends, labor wage, and aggregate consumption. After a technological
breakthrough at time t, outside investors inject the amount qjt−(λC∗ − c) of liquidity into the
firm. As compensation, they receive a fraction of the surplus, αqjt−(λv(C∗) − v(c)) in shares
of the firm. Note that compensation cannot be in cash because this would mean they had to
inject more than C∗ and would then receive their own cash back immediately. Thus, after this
transaction, the cash buffer rises to qjt−λC

∗ whereas the value of the firm changes from qjt−v(c)
to qjt−(v(c)+(1−α)(λv(C∗)−v(c))). However, the effect of bargaining is a pure share dilution,
and has no effect on the outside liquidity in the economy.

The scaled value of the dynasty is given by the difference between the expected present
value of the dividends paid (denoted by the function D(c)) and the expected present value
of the financing received by all of the firms that will ever operate in the dynasty j. That is,
y(c) = D(c)− F (c). In particular, the function D(c) satisfies

1

2
σ2(c)D′′(c) + µ(c)D′(c) + φz(c)

(
λD(C∗)−D(c)

)
+

+ xd

(
c+ ΛD(C∗)−D(c)

)
= rD(c) , D′(0) = 0, D′(C∗) = 1 ,

whereas the function F (c) satisfies

1

2
σ2(c)F ′′(c) + µ(c)F ′(c) + φz(c)

(
λF (C∗)− F (c) + (λC∗ − c)

)
+

+ xd

(
ΛF (C∗)− F (c) + Λ (C∗ + κT )

)
= rF (c) , F ′(0) = −1, F ′(C∗) = 0 .
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Taking the difference, it follows that y(c) satisfies25

1

2
σ2(c)y′′(c) + µ(c)y′(c) + φz(c)

(
λ(y(C∗)− C∗)− y(c) + c

)
+

+ xd

(
Λy(C∗)− y(c) + c− Λ (C∗ + κT )

)
= ry(c)

with
y′(C∗) = 1 = y′(0) .

The present value of dividends net of financing is then given by∫ ∞
0

e−rt(dt − ft)dt =

∫ ∞
0

e−rt(d0 − f0)egtdt

Since qj0 = 1, it follows:

d0 − f0

r − g
=

∫ ∞
0

e−rt(dt − ft)dt =

∫
Y (qj0, cj)dj = L

∫
η(c)y(c)dc .

Turning to the wage, straightforward calculations deliver

Wt =
1

1− β

∫ 1

0
Lβ X̄1−β

jt qβjtdj −
∫ 1

0
pjtX̄jtdj .

By the results in Section 4, the term X̄1−β
jt in the above equation is given by

X̄1−β
jt = qjt (p(cj)

−1/βL)1−β , X̄jt = (p(cj))
−1/β qjt L.

Moreover, as discussed in the main text, the following relation

Wt = W0

∫ 1

0
qjtdj

holds. In this equation, the expression for W0 is given by

W0 =
L

1− β

∫
η(c)p(c)−(1−β)/βdc− L

∫
η(c)p(c)1−1/βdc ,

25For completeness, we also define the dynasty in the frictionless benchmark, denoted by y∗ and
satisfying the following relation

µ− (z∗)2

2

ζ

L
− x∗dκTΛ =

(
r∗ − x∗d(Λ− 1)− φz∗ (λ− 1)

)
y∗

Therefore, it follows that

d∗0 − f∗0 = L

(
µ− (z∗)2

2

ζ

L
− x∗dκTΛ

)
= L(r∗ − g∗)y∗.
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that is equivalent to

W0 =
βL

1− β

∫
η(c)X(c)1−βdc .

Furthermore, ∫ 1

0
qjtdj = egt.

Then, Ct = C0e
gt, with

C0 = W0 + (d0 − f0) .

Finally, total welfare is given by the utility of the representative consumer, i.e.∫ ∞
0

e−ρt
C1−θ
t − 1

1− θ
dt =

1

θ − 1

(
1

ρ
− C1−θ

0

ρ+ g(θ − 1)

)
.

A.5 Government debt and the liquidity premium

The wedge between the market interest rate and the return on cash (i.e., the opportunity cost
r− δ) plays a major role in determining the impact of financing frictions on corporate decisions.
It affects the target level of cash reserves and, thus, the firms’ financial resilience. In the
extant cash literature, this wedge is typically attributed to agency frictions (the free cash flow
problem) or to tax disadvantages.26 In this section, we propose a general equilibrium channel
to endogenize the wedge r − δ, which is based on the interplay between the demand (from the
corporate sector) and the supply (from the government) of liquidity. We follow Woodford (1990)
and assume that liquidity can only be stored by holding government bonds.27 When the supply
by the government is scarce, bonds trade at a premium that results in a positive wedge r − δ.

As in previous contributions, we assume that the government faces an exogenous expenditure
stream. We denote this expenditure stream by Gt and assume that it constitutes a fixed fraction
G ∈ [0, 1] of the final good output, i.e. Gt = GYt. To finance these expenditures, the government
levies income taxes and issues public debt. We denote the amount of taxes collected at time t
by Tt. We assume that taxes represent a fraction τ of wages, i.e. Tt = τWtL. Moreover, we
denote the public debt outstanding at time t by Bt. We assume that public debt promises a
return of δ, which is endogenously determined in equilibrium. Under these assumptions, the
budget constraint of the government is given by

Gt + δBt−1 = τWt +Bt (58)

at any time t. The left-hand side of this equation denotes the government outflow, i.e., the
expenditure stream plus the repayment of the maturing debt. The right-hand side denotes the
government inflow, i.e., the tax inflow plus the newly issued debt.

We assume that public debt grows at the equilibrium rate g, so the debt-to-output ratio is

26See also Zucchi (2015), who shows how this wedge may arise endogenously due to stock illiquidity.
27See also Holmstrom and Tirole (1998), Bansal, Coleman, and Lundblad (2011), Krishnamurthy and

Vissing-Jorgensen (2012, 2013), Greenwood, Hanson, and Stein (2015), and Nagel (2014).
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constant. Under this assumption, if the budget constraint of the government holds at time zero,

GY0 + δB0 = τW0 + gB0,

it does hold at any t. In this equation, Y0 denotes the final good output at time zero, which is
given by

Y0 =
L

1− β

∫ C∗

0
X(c)1−βη(c)dc .

The equilibrium return δ∗ makes the government debt market clear, i.e.,

L

∫ C∗(δ)

0
c η(δ, c) dc = B0 .

That is, the demand for liquidity in the economy equals the supply of bonds issued by the
government.28 Fixing the supply B0 amounts to determining the equilibrium tax rate τ(B0)
from the government budget constraint, which is then given by

τ(B0) =
GY0(δ∗)−B0(g(δ∗)− δ∗)

W0(δ∗)
.

In the absence of liquidity frictions, government bonds trade at the market rate r and have no
impact on the dynamics of the economy. By contrast, the supply of government bonds has real
effects in the presence of liquidity frictions. By affecting the liquidity premium, debt supply
influences corporate policies. In particular, as B0 increases, liquidity frictions vanish, and the
economy converges with the frictionless one. We numerically analyze the interplay between
liquidity demand and supply in the next section.

We provide a quantitative assessment of our implications. We use again the benchmark
parametrization and additionally set G = 10%. The equilibrium tax rate τ is uniquely pinned
down by the government’s budget constraint. Consistent with Bansal, Coleman, and Lundblad
(2011) and Krishnamurthy and Vissing-Jorgensen (2012), Figure 6 shows that an increase in B0

leads to a surge in δ and a decrease in the liquidity premium r − δ. At the same time, a larger
δ makes debt more costly for the government, which results in a higher tax rate τ . As a result,
higher levels of government debt imply higher taxes, as in Woodford (1990).

Figure 6 also shows that a larger B0 is associated with a bigger growth rate (and to a larger
rate of creative destruction, not displayed in the figure). That is, when firms are constrained,
policies that increase liquidity in the economy might effectively enhance growth by stimulating
the incumbents’ and entrants’ innovation rate. The mechanism is the following. An increase
in B0 decreases the cost of holding cash and thus leads to an increase in the target level of
cash C∗ (Figure 7, right panel). As cash is the resource used to finance R&D, the incumbents’
innovation rate also increases in B0 (see Figure 7, left panel). The value of incumbent firms then
rises, which makes it more attractive for new firms to enter the industry. As a result, the rate of
creative destruction increases. Although larger liquidity supply is associated with a larger tax
rate, we find (in unreported results) that an increase in B0 can enlarge aggregate consumption
and welfare via the positive effect on firms’ innovation and growth.

28Note that the representative agent does not hold government bonds because δ < r.
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Table 1: Baseline parametrization.

Symbol Description Value

ρ Discount rate 1.5%

θ Risk aversion 2.00

σ Cash-flow volatility coefficient 0.40

φ Innovation rate coefficient 3.00

ζ Innovation cost coefficient 1.00

β Elasticity of substitution 0.25

δ Return on cash 4.9%

ε Proportional refinancing cost 0.08

α Surplus haircut 0.06

λ Quality improvement (incumbents) 1.04

Λ Quality improvement (entrants) 1.10

κT Entry cost (technological component) 0.70

κI Entry cost (financing component) 0.07

L Labor supply 1.00
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Figure 1: Corporate policies.

The figure illustrates the production decision X(c), cash flow volatility σ(c), the innova-
tion rate z(c), and the scaled value of an incumbent firm v(c) as functions of cash reserves
c ∈ [0, C∗], under the baseline parametrization. The red line represents the benchmark
unconstrained economy, whereas the blue line represents the constrained economy.
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Figure 2: Innovation, Financing frictions, and Firm characteristics.

The figure illustrates the innovation rate z(c) as a function of cash reserves c ∈ [0, C∗]
when varying the financing costs ε, α, and κI , the elasticity β, and the coefficient of cash
flow volatility σ. The red line represents the benchmark unconstrained economy, whereas
the blue line represents the constrained economy.
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Figure 3: Stationary distribution of liquidity.

The figure illustrates the stationary cross-sectional distribution of liquidity η(c) as a
function of cash reserves c ∈ [0, C∗] in the baseline parametrization and when varying
the return on cash δ, the elasticity β, the coefficient of cash flow volatility σ, and the
financing costs ε and α.
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Figure 4: Creative destruction and Growth.

The figure shows the equilibrium rate of creative destruction xd and the equilibrium
growth rate g as functions of the technological κT (top panel) and financing κI (bottom
panel) components of the entry cost. In the top panels, we vary κT while setting κI to
be 10% of κT . In the bottom panels, we vary κI while keeping κT as in the baseline. The
red line represents the benchmark unconstrained economy, while the blue line represents
the constrained economy.
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Figure 5: Aggregate consumption and welfare.

The figure shows aggregate consumption and welfare as functions of the technological κT
(top panel) and financing κI (bottom panel) components of the entry cost. In the top
panels, we vary κT while setting κI to be 10% of κT . In the bottom panels, we vary κI
while keeping κT as in the baseline. The red line represents the benchmark unconstrained
economy, while the blue line represents the constrained economy.
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Figure 6: Liquidity supply and equilibrium quantities.

The figure shows the equilibrium return on government debt δ, the liquidity premium
r − δ, the tax rate τ , and the economic growth rate g as functions of liquidity supply
B0. The red line represents the benchmark unconstrained economy, while the blue line
represents the constrained economy.
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Figure 7: Liquidity supply and innovation.

The figure illustrates the innovation rate z(c) (left panel) and the stationary cross-
sectional distribution of liquidity η(c) (right panel) as functions of cash reserves c ∈ [0, C∗]
for low supply of liquidity (B0 = 0.07, top panel) and high supply of liquidity (B0 = 0.18,
bottom panel). The red line represents the benchmark unconstrained economy, whereas
the blue line represents the constrained economy.
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