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Uncertainty and waves of pessimism are the hallmark of �nancial crises. Financial crises and

bank runs are often associated with periods of great uncertainty and sudden widespread pessimism

on future returns of �nancial and real assets. In addition, a puzzling feature of several recent

�nancial crises has been contagion among apparently unrelated asset classes. For example, the

Asian �nancial crisis of 1997 spread to the Russian crisis of 1998, which eventually brought the

fall of LTCM (see Allen and Gale, 1999). Negative idiosyncratic news in one asset class can also

snowball into systemic shocks. For example, the recent crisis of 2008/2009 was triggered by negative

shocks in the relatively small sub-prime mortgage market, and then rapidly spread to the general

�nancial markets, leading to a near meltdown of the entire �nancial system. These events put into

question the very notion (and assessment) of systemic risk, and raise the question of the mechanism

that triggers such systemic contagions.

In this paper we propose a new theory of systemic risk based on uncertainty aversion. Our model

builds on the distinction between risk, whereby investors know the probability distribution of assets�

cash �ows, and Knightian uncertainty (Knight, 1921), whereby investors lack such knowledge. The

distinction between the known-unknown and the unknown-unknown is relevant since investors

appear to display aversion to uncertainty (or �ambiguity�) as originally suggested by Ellsberg

(1961).

We study an economy where uncertainty-averse investors hold, either directly or through �nan-

cial intermediaries (i.e., banks), a portfolio of risky assets. Investors are uncertain on the distribution

of the returns on the risky assets.1 We argue that probabilistic assessments (or �beliefs�in the sense

of de Finetti, 1974) held by uncertainty-averse investors on the future performance of each asset are

endogenous, and depend on the composition of their portfolios. We show that this property implies

that uncertainty-averse investors can be more optimistic on an uncertain asset when they can also

hold other uncertain assets in their portfolios, a feature that we denote uncertainty hedging. Thus,

�bad news�on one asset class makes investors also more pessimistic on other asset classes as well.

In this way, a shock to one asset class spreads to other asset classes, creating contagion even in cases

where shocks are idiosyncratic. Thus, uncertainty aversion is independently a source of systemic

risk.
1This uncertainty represents, for example, incomplete knowledge on the structure of the economy that generates

asset returns, i.e., it can be viewed as model uncertainty (see Hansen and Sargent, 2008).
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We build on the classic Diamond and Dybvig (1983) model to include two banks, each with access

to a bank-speci�c class of risky assets in addition to the safe asset. Following existing literature,

banks are benevolent, maximizing the welfare of investors who are exposed to uninsurable liquidity

shocks. Risk factors in each asset class are independent given the state of the economy, but the

state of the economy di¤erentially a¤ects each asset class and provides the source of uncertainty.

In the absence of uncertainty aversion, both banks invest in risky assets. Banks provide investors

with (partial) insurance against liquidity shocks, but runs are possible in equilibrium at the interim

date. Runs, however, are not necessarily systemic. Formally, as in Diamond and Dybvig (1983)

there are multiple equilibria, with and without runs. There are both panic runs, due to coordination

failure among investors, and fundamental runs, due to the arrival of (idiosyncratic) bad news about

a bank�s expected pro�tability. In the absence on uncertainty aversion, however, there is no reason

for bank runs to be systemic, that is to occur simultaneously on both banks.

With uncertainty aversion, however, investing in a class of risky assets is more valuable to

investors if they hold other asset classes in their portfolio as well, due to uncertainty hedging.

This feature has a number of important consequences. First, it generates two equilibria in banks�

investment decisions. When banks decide how much to invest in the risky asset, each bank is willing

to make such investments if and only if the other bank invests in its risky asset as well. This implies

that investors�uncertainty aversion makes investment in risky assets strategic complements, with

the possibility of a second Pareto-inferior equilibrium where both banks invest in the safe asset only,

a situation that we denote as a �lending freeze.�This second (ine¢ cient) equilibrium represents a

new type of equilibrium in a Diamond and Dybvig setting with multiple banks.

The second e¤ect of uncertainty aversion is that it creates the possibility of contagion across

banks. This happens because, if a late investor withdraws early from one bank, it can now become

optimal for that investor to withdraw early from the other bank as well, even if no one else runs.

Thus, negative idiosyncratic shocks at any one bank can generate a deterioration of the probabilistic

assessment on future returns on other banks�assets and, thus, cause runs on those banks, creating

systemic risk. In other words, negative news speci�c to one asset class may create a negative

sentiment, or pessimism, that spreads to other asset classes. In this way, uncertainty aversion

generates endogenous contagion and becomes a source of systemic risk. Note that this new source
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of systemic risk is driven by investors� preferences rather than by systemic shocks to economic

fundamentals. We also show that, interestingly, uncertainty aversion causes investors to be less

prone to run individual banks, but runs will be systemic.

In our model, bank runs can also be associated with stock market crashes leading to a ��ight

to quality.�Distinct from existing literature, contagion between the �nancial sector and the real

economy is driven by investor preferences, creating a new channel through which a banking crisis

can a¤ect the real economy which is di¤erent, for example, from the adverse e¤ects of liquidity

crunches.

Finally, we show that increasing uncertainty makes the �nancial system more fragile and more

prone to �nancial crises. Speci�cally, we show that for low levels of uncertainty idiosyncratic shocks

at a single bank generate local runs, while for greater levels of uncertainty such shocks spread to

other banks and become systemic. In addition, we show that for even greater levels of uncertainty

a second equilibrium exists where banks only invest in the safe asset, generating �lending freezes.�

In addition, we show our results extend to a setting with multiple banks.

We conclude our paper with a discussion of the empirical and public policy implications of our

model. First and foremost, the main thrust of our analysis is that �nancial crises can originate

in one sector of the economy and then propagate through the banking system and spill over to

the stock market amidst a wave of pessimism. Conversely, our paper implies that good news in

one industry can trigger additional lending to another sector, and thus result in a lending boom.

We also show that, because of the externalities introduced by uncertainty aversion, banks may be

exposed to a self-ful�lling (ine¢ cient) lending freeze, whereby each individual bank in not willing

to lend, even if it were (collectively) advantageous to do so.

Our paper has implications for public policy and the management of �nancial crises. First,

we argue that greater transparency may be bene�cial in periods of high perceived uncertainty by

investors. We also suggest that bank bailouts and assets purchases by the central bank may involve

not only the banks that are directly a¤ected, but must also be extended to other banks that may

be a¤ected by the systemic nature of the �nancial crisis. Finally, we suggest that, because the

risky equilibrium is preferred to the safe equilibrium, regulatory attempts to limit risk taking can

be harmful.
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Our paper is related to several stands of literature. First is the theory of bank runs based on

the liquidity provision/maturity transformation role of �nancial intermediation originating with

Diamond and Dybvig (1983). This includes Jacklin (1987), Bhattacharya and Gale (1987), Jacklin

and Bhattacharya (1988), Chari and Jaghannathan (1988), and Goldstein and Pauzner (2005),

among many others. Allen, Carletti, and Gale (2009) argue that aggregate volatility can induce

banks to stop trading among each other, e¤ectively generating a lending freeze. Our paper shows

that uncertainty aversion creates externalities and strategic complementarities across asset holdings

which may lead to a new Pareto inferior equilibrium where banks refrain from investing in risky

assets (and, thus, runs are not possible).

More importantly, our paper is also linked to the recent emerging literature on contagion and

systemic risk. Allen and Gale (2000) generate contagion as the outcome of an imperfect interbank

market for liquidity. Kodres and Pritsker (2002) model transmission (i.e., contagion) of idiosyn-

cratic shocks across asset markets by investors�rebalancing their portfolios�exposures to shared

macroeconomic risks among asset classes. Garleanu, Panageas, and Yu (2014) derive contagion

across assets due to limited participation and overlapping portfolios of investors. Allen, Babus, and

Carletti (2012) examine the impact of �nancial connections on systemic risk. Acharya, Mehran, and

Thakor (2013) consider a model where regulatory forbearance induces banks to invest in correlated

assets, thus creating systemic risk. Acharya and Thakor (2015) argue that, while bank leverage

can be used to discipline a bank�s risk-taking, it generates excessive liquidations that convey un-

favorable information on the economy�s fundamentals generating systemic risk. Additional papers

include Freixas, Parigi, and Rochet (2000), Rochet and Vives (2004), Acharya and Yorulmazer

(2008), Brusco and Castiglionesi (2007), among many others.

Closer to our paper is the model in Goldstein and Pauzner (2004). This paper argues that in-

vestors�portfolio diversi�cation may generate systemic risk. This happens because (idiosyncratic)

negative information on a bank (or, equivalently, an asset class), generates a wealth loss to in-

vestors. If investors have decreasing absolute risk aversion, this wealth loss may increase investors�

risk aversion su¢ ciently to trigger a run on other banks that are otherwise not a¤ected by the

initial shock. Our paper di¤ers from theirs in the fundamental mechanism that triggers contagion.

Speci�cally, in Goldstein and Pauzner (2004) the channel of contagion is through changing the
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equilibrium discount rate in an economy, since the increase of investors�risk aversion a¤ects the

market risk premium. In contrast, in our model the channel of contagion is through a deterioration

of investor sentiment, potentially leaving the market discount rate una¤ected. Thus, the two papers

complement each other, and they can jointly explain the deterioration of beliefs and increase of

discount rates that often characterize �nancial crises.

Closely related to our work is also the literature on uncertainty aversion. Uhlig (2010) highlights

the role of uncertainty aversion in a �nancial crisis: the presence of uncertainty-averse investors

exacerbates the falls of asset prices following a negative shock in the economy. Caballero and

Krishnamurthy (2008) examine a version of Diamond and Dybvig (1983) with uncertainty-averse

investors. Uncertainty in their model concerns the extent of the investors�liquidity shocks (and not

a bank�s expected pro�tability, as in our model). Uncertainty aversion makes investors very pes-

simistic (that is, they �fear the worst�) triggering a ��ight-to-quality.�In their model, uncertainty

aversion acts as an �ampli�cation mechanism.�2 Contagion (that is, the transmission mechanism)

can happen, for example, through forced asset sales in unrelated asset markets due to investors�

balance sheet constraints. In our paper, uncertainty aversion itself is a new source of contagion and

systemic risk, by its impact on investor sentiment.

Our paper is organized as follows. In Section 1, we brie�y discuss the model of uncertainty

aversion that underpins our analysis. In Section 2, we outline the model. In Section 3, we develop

our theory of systemic risk based on uncertainty aversion. In Section 4, we discuss the contagion

e¤ect of bank runs on the stock market. In Section 5, we discuss the e¤ect of increased uncertainty

on fragility of the �nancial system. Results are extended to a multiple bank setting in Section 6.

In Section 7, we discuss the empirical and policy implications of our model. Section 8 concludes.

All proofs are in the Appendix.

1 Uncertainty aversion

A common feature of current economic models is to assume that all agents know the distribution

of all possible outcomes.3 An implication of this assumption is that there is no distinction between

2See also Krishamurthy (2010) and, in a similar vein, Easley and O�Hara (2009).
3This section draws on Dicks and Fulghieri (2013).
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the known-unknown and the unknown-unknown. However, the Ellsberg paradox shows that this

implication is not warranted.4 This introductory section brie�y describes how various models have

accounted for risk and uncertainty.

In traditional models, economic agents maximize their Subjective Expected Utility (SEU). Given

a von-Neumann Morgenstern (vNM) utility function u and a probability distribution over wealth,

�, each player maximizes

U e = E� [u (w)] : (1)

One limitation of the SEU approach is that it cannot account for aversion to uncertainty, or

�ambiguity.�In the SEU framework, economic agents merely average over the possible probabilities.

Under uncertainty aversion, a player does not know the true prior, but only knows that the prior

is from a given set,M.

A common way for modeling uncertainty (or ambiguity) aversion is the minimum expected

utility approach (MEU), promoted in Epstein and Schneider (2011). In this framework, economic

agents maximize

Ua = min
�2M

E� [u (w)] : (2)

As shown in Gilboa and Schmeidler (1989), the MEU approach is a consequence of replacing the

Sure-Thing Principle of Anscombe and Aumann (1963), with the Uncertainty Aversion Axiom.5

This assumption captures the intuition that economic agents prefer risk to uncertainty � they

prefer known probabilities to unknown. MEU has the intuitive feature that a player �rst calculates

expected utility with respect to each prior, and then takes the worst-case scenario over all possible

priors. In other words, the agent follows the maxim �Average over what you know, then worry

4A good illustration of the Ellsberg paradox is actually from Keynes (1921). There are two urns. Urn K has 50
red balls and 50 blue balls. Urn U has 100 balls, but the subject is not told how many of them are red (all balls are
either red or blue). The subject will be given $100 if the color of their choice is drawn, and the subject can choose
which Urn is drawn from. Subjects typically prefer urn K, revealing aversion to uncertainty (this preference is shown
to be strict if the subject receives $101 from selecting Urn U but $100 from Urn K being drawn). To see this, suppose
the subject believes that the probability of drawing blue from Urn U is pB . If pB < 1

2
, the subject prefers to draw red

from Urn U. If pB > 1
2
, the subject prefers to draw blue from Urn U. If pB = 1

2
, the subject is indi¤erent. Because

subjects strictly prefer to draw from Urn K, such behavior cannot be consistent with a single prior on Urn U. This
paradox provides the motivation for the use of multiple priors. Further, the subject�s elicited beliefs motivate the
failure of additivity of asset prices: in this example, pB + pR < p(B[R) = 1.

5Anscombe and Aumann (1963) is an extention of the Savage (1972) framework: the Anscombe and Aumann
framework has both objective and subjective probabilities, while the Savage framework has only subjective probabil-
ities.
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about what you don�t know.�6

In this paper, we use the MEU approach with recursively de�ned utilities, as described in Epstein

and Schnieder (2011). Formally, we model sophisticated uncertainty-averse economic agents with

consistent planning. In this setting, agents are sophisticated: they correctly anticipate their future

uncertainty aversion. Consistent planning accounts for the fact that agents take into account how

they will actually behave in the future.7 Our results are smooth (a.e.) because we explore a setting

where we can apply a minimax theorem.

An important property of uncertainty aversion that will play a critical role in our paper is

that beliefs about an economy�s fundamentals held by an ambiguity-averse agent are endogenous,

and depend on the agent�s overall exposure to the risk factors of the economy. This feature is

the outcome of the fact that the minimization operator in (2), which determines the probabilitic

assessment held by the investor, may depend on the composition of the investor�s overall portfolio.

In particular, we will show that investors will be relatively more �pessimistic� about assets that

represent a greater source of risk in their overall portfolio. We will refer to this feature by saying

that (under ambiguity aversion) investors hold �portfolio-distorted�assessments.

An additional implication of ambiguity aversion is that ambiguity-averse investors may bene�t

from diversi�cation across sources of uncertainty, a property that we will refer to as uncertainty

hedging. This property can be loosely interpreted as the analogue for MEU investors of the more

traditional �bene�ts of diversi�cation�displayed by SEU preferences, and it be can be seen as fol-

lows. Consider two random variables, yk, k 2 f1; 2g, with distribution � 2M, which is ambiguous

to agents. Uncertainy-hedging is the property that uncertainty-averse agents prefer to pick the

worst case scenario for a portfolio, rather than choosing the worst case scenario for each individual

asset in its portfolio.8

6Another approach is the smooth ambiguity model developed by Klibano¤, Marinacci, and Mukerji (2005). In
their model, agents maximize expected felicity of expected utility. Agents are uncertainty averse if the felicity function
is concave. Our results follow also in that framework if the felicity function is su¢ ciently concave.

7Siniscalchi (2011) describes this framework as preferences over trees.
8Note that, as such, property (3) is reminiscent of the well-known feature that a portfolio of options is worth more

than an option on a portfolio and, thus, that writing a portfolio of options is more costly than writing an option on
a portfolio.
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Theorem 1 Uncertainty-averse agents prefer uncertainty-hedging:

q min
�2M

E� [u (y1)] + (1� q) min
�2M

E� [u (y2)] � (3)

min
�2M

fqE� [u (y1)] + (1� q)E� [u (y1)]g; for all q 2 [0; 1]:

If agents are SEU, (3) holds as an equality.

This property will play a key role in our model. It implies that uncertainty-averse agents prefer

to hold a portfolio of uncertain assets rather than a single uncertain asset, because investors can

lower their exposure to uncertainty by holding a diversi�ed portfolio. It can immediately be seen

that this property also implies that an investor will be more �optimistic�about a portfolio of assets

rather than about a single asset. Thus, uncertainty hedging creates a complementarity between

asset classes for investors so that the value investors place on any one type of asset is increasing in

their portfolio exposure to other assets.9

A second critical feature of our model is that we do not impose rectangularity of beliefs (as in

Epstein and Schneider 2003). Rectangularity of beliefs e¤ectively implies that prior beliefs in the set

of admissible priors can be chosen independently from each other.10 In our model, the agent faces a

restriction on the set of the core beliefsM over which the minimization problem (2) is taking place.

These restrictions are justi�ed by the observation that the nature of the economic problem imposes

certain consistency requirements in the set of the core beliefs M. In other words, we recognize

that the �fundamentals�of the economic problem faced by the uncertainty-averse agent generates

a loss of degree of freedom in the selection of prior beliefs.11 Alternatively, following Epstein and

Schneider (2011), lack of rectangularity can be justi�ed by requiring that beliefs in the core-belief

setM satisfy a minimum likelihood ratio or, equivalently, a maximum relative entropy with respect

to a given set of reference beliefs.

9We will show that such portfolio complementarity will induce banks to exhibit strategic complementarity in their
investment decisions, resulting in multiple equilibria. In addition, we will show that uncertainty hedging generates
contagion across asset classes, and it will provide the new channel through which �nancial panics spread in the
economy.
10Rectangularity of beliefs is commonly assumed to guarantee dynamic consistency. However, Aryal and Stauber

(2014) show that, with multiple players, rectangularity of beliefs is not su¢ cient for dynamic consistency.
11For example, an uncertainty-averse producer may face uncertainty on the future consumption demand exerted

by her customers. The beliefs held by the uncertainty-averse agent on consumer demand must be consistent with
basic restrictions, such as the fact that the consumer choices must satisfy an appropriate budget constraint.
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2 The model

We study a two-period model, with three dates, t 2 f0; 1; 2g. The economy is endowed with three

types of assets: a riskless asset (or �safe technology�), which will serve as our numeraire, and two

classes (or types) of risky assets denominated by � , with � 2 fA;Bg. Making an investment in a

risky asset at the beginning of the �rst period, t = 0, generates at the end of the second period,

t = 2, a random payo¤ denominated in terms of the riskless asset. Speci�cally, a unit investment in

the type-� asset produces at t = 2 a payo¤R (success) with probability p� , and a payo¤ 0 (failure)

with probability 1� p� . A unit investment in the riskless asset, which can be made either at t = 0

or t = 1, yields a unit return in the second period, so that the (net) riskless rate of return is zero.

We assume that returns on risky assets depend on the state of the overall economy, which provides

the source of uncertainty in the model, as described below.

Our economy has two classes of players: investors and banks. The banking system is specialized:

each bank can only invest in one asset class. Thus, banks of type � can only invest in type-� assets,

for � 2 fA;Bg, at t = 0. This assumption captures the notion that banks in our economy are

specialized lenders with a well-de�ned clientele. At t = 1, a bank has the choice of (partially)

liquidating the project, allowing it to recover a fraction of the initial investment. Thus, liquidation

at t = 1 of a fraction ` of the investment in risky asset � will generate a payo¤ ` at t = 1, and

(1� `)R with probability p� (�) at t = 2.

The economy is populated by a continuum of investors. Each investor is endowed at t = 0 with

$2 in the riskless asset and, as we will show later, in equilibrium will invest $1 in Bank A and $1

in Bank B. Following Diamond and Dybvig (1983), each investor faces at t = 1 a liquidity shock

with probability �.12 Occurrence of the liquidity shock is privately observed by the investor and

determines her �type.�An investor hit with the liquidity shock, that is, a �short-term� investor,

must consume immediately, and her utility is u(c1), with u0 > 0 > u00 , where c1 is consumption at

t = 1. An investor not impacted by the liquidity shock, that is a �long-term� investor, consumes

only at t = 2. For analytical tractability we assume that long-term investors are risk neutral in

wealth, that is, their utility is u2 (c2) = c2, where c2 is consumption at t = 2.13

12Liquidity shocks are statistically independent across investors. Di¤erently from Wallace (1988, 1990), and Chari
(1989), among others, there is neither aggregate risk nor uncertainty on the liquidity shock.
13While we make the assumption that the utility for consumption at t = 2 is linear for analytical tractability,
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The model unfolds as follows. At the beginning of the period, t = 0, banks o¤er deposit

contracts (described below) to investors. At t = 1, investors learn whether or not they are a¤ected

by the liquidity shock. Investors hit by a liquidity shock withdraw from the bank(s) where they

made a deposit and consume all their wealth. Investors not hit by a liquidity shock must decide

whether to keep their deposits in the bank(s) for later withdrawal, or to withdraw (part of) their

deposits immediately from one or both banks, that is to �run�banks, and invest the proceeds in

the storage technology for later consumption. At t = 2, cash �ows from risky assets are realized

and divided among investors remaining in the bank.

An important deviation from the traditional Diamond and Dybvig (1983) framework is that we

assume investors are uncertainty averse. Following Dicks and Fulghieri (2013), we model uncertainty

aversion by assuming that the success probability of an asset of type-� depends on the value of an

underlying parameter �, and is denoted by p� (�). Uncertainty-averse agents treat the parameter � as

ambiguous, and assess that � 2 C �
h
�̂0; �̂1

i
� [�0; �1], where C represents the set of �core beliefs�.

We posit that the parameter � describes the state of the economy at t = 2, and that a greater

value of � is �favorable� for asset A and �unfavorable� for asset B.14 For analytical tractability,

we assume that pA(�) = e���1 and pB(�) = e�0��.15 In this speci�cation, greater values of the

parameter � increase the success probability of type A assets and decrease the success probability

of type B assets. Also, for a given value of the parameter �, the probabilities distributions p� (�),

� 2 fA;Bg, are independent.16

Finally, we assume that the core of beliefs is symmetric, so that �1 � �̂1 = �̂0 � �0, and we

let �e � 1
2 (�0 + �1). We will at times benchmark the behavior of uncertainty-averse agents with

the behavior of uncertainty-neutral, or SEU, agents, and we will assume that uncertainty-neutral

investors assess that � = �e, di¤erently from uncertainty-averse investors who assess that � 2

numerical analysis of the concave utility case yields similar results to the ones presented in our paper.
14A simple example of our economy is one with two consumption goods, A;B. Consumers�preferences over the

two consumption goods (that is, their relative valuation) is random and is characterized by the parameter �. In this
case, a higher (respectively, lower) value of � represents a stronger consumer preference for good A (respectively, B)
with respect to the other good.
15This assumption allows us to dispense with rectangularity of beliefs in a tractable way, but is not necessary.

Our paper�s main results go through for fpA; pBg 2 C, as long as the core belief set C is a strictly convex, compact
set with a smooth boundary. If the core of beliefs is the set of distributions that are su¢ ciently close to a (given)
reference belief, measured by relative entropy, the core of beliefs will be strictly convex as the lower level set of a
strictly convex function (details available upon request).
16Our model can easily be extended to the case where, given �, the realization of the asset payo¤s at the end of

the period are correlated.
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h
�̂0; �̂1

i
. Finally, we assume throughout that e�

e��1R > 1, which from the de�nition of �e, implies

that e�0��
e
R > 1 as well. These inequalities imply that the expected pro�ts from risky assets are

su¢ ciently large to make an uncertainty-neutral investor willing to invest in such assets. We will

also later show that they will imply that a well-diversi�ed uncertainty-averse investor is willing to

invest in the uncertain assets.

2.1 Deposit contracts

In our model, banks are benevolent and o¤er investors deposit contracts that maximize their welfare.

Because, banks can make risky investments, departing from Diamond and Dybvig (1983) deposit

contracts have three components, which determine the contractual return to the investor depending

on the date of withdrawal and the realization of the investment in the risky asset. Thus, a deposit

contract o¤ered by Bank � is a triplet d� � fd1� ; ds2� ; dr2�g, as follows. Investors who withdraw at

t = 1 receive an amount d1� of the safe asset; investors who remain in the bank until t = 2 receive

an amount ds2� of the safe asset and an amount d
r
2� of type-� asset.

We assume that banks o¤er incentive-compatible deposit contracts such that �no-run�equilibria

exist, which will be the main focus of our paper.17 Given a deposit contract d� � fd1� ; ds2� ; dr2�g

o¤ered by Bank � , for � 2 fA;Bg, investors�payo¤s from holding contracts in the two banks are

determined as follows. Absent a run, investors hit with the liquidity shock must withdraw early,

and receive from the two banks a total payo¤ equal to d1A + d1B. Investors not hit with the

liquidity shock, and who hold their initial deposits with both banks, have a payo¤ which depends

on the realized return on each of the risky assets. If both asset classes are successful, investors

receive a total payo¤ ds2A + ds2B + R(dr2A + dr2B); if only type � assets are successful, they receive

ds2A+d
s
2B +Rd

r
2� ; if neither asset class is successful, they receive d

s
2A+d

s
2B. We let U0 be the value

function of investors at t = 0, and let UL be the value function of investors who remain in the bank

at t = 1, in the absence of run. Thus,

U0 = �u (d1A + d1B) + (1� �)UL (�L) ;
17As typical in this class of models, �run�equilibria also exist. In Section 3, in the spirit of Goldstein and Pauzner

(2005) we will extend our basic model to have equilibria runs as well.
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UL (�L) = ds2A + d
2
2B + e

�L��1Rdr2A + e
�0��LRdr2B;

where �L is the belief held at time t = 1 about the state of the economy, determined next.

2.2 Endogenous Probabilistic Assessments

An important implication of uncertainty aversion is that the investors� assessment on the para-

meter � depend on their overall exposure to the source of risk in the economy and, thus, on

the structure of their portfolios.18 Speci�cally, if a long-term investor does not run either bank,

and both banks are solvent, the investor owns ds2A + ds2B units of the safe asset and d
r
2� units of

type-� assets, for � 2 fA;Bg. This means that the long-term investor holds an overall portfolio

� = fdr2A; dr2B; ds2A + ds2Bg. Because of uncertainty aversion, the investor�s assessment at t = 1 on

the state of the economy, �a, is the solution to the minimization problem:

�a (�) = argmin
�2C

UL (�) ;

and is characterized in the following Lemma.

Lemma 1 Let

~�
a
(�) = �e +

1

2
ln
dr2B
dr2A

: (4)

The assessment held by an uncertainty-averse agent with portfolio � = fdr2A; dr2B; ds2A + ds2Bg is

�a (�) =

8>>>><>>>>:
�̂0

~�
a
(�)

�̂1

~�
a
(�) � �̂0

~�
a
(�) 2

�
�̂0; �̂1

�
~�
a
(�) � �̂1

: (5)

Lemma 1 shows investors�assessments on the parameter � and, thus, on banks�expected prof-

itability, as it is a¤ected by the state of the economy, depend critically on the composition of their

overall portfolio, �. We will refer to �a (�) as the �porfolio-distorted�assessment. We will say that

the investor has interior assessments when ~�
a 2

�
�̂0; �̂1

�
. Otherwise, we will say that the investor

holds corner assessments. The following lemma can be immediately be veri�ed.

18For additional discussion, see Dicks and Fulghieri (2013).
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Lemma 2 Holding type-� assets constant, a decrease in an investor�s holding in type-� 0 assets, dr2� 0

with � 0 6= � , makes the investor more pessimistic about type-� assets, for � 2 fA;Bg. In addition,

portfolio-distorted assessments are homogeneous of degree zero in risky asset holdings, fdr2A; dr2Bg.

Lemma 2 shows that when a investor has a relatively greater proportion of her portfolio invested

in asset � (determined, for example, by a decrease in an investor�s holding in type-� 0), she will be

relatively more concerned about the priors that are less favorable to that asset. Thus, the investor

will give more weight to the states of nature that are less favorable for that asset, that is, to the

unfavorable values of the parameter �. In other words, the investor will be more �pessimistic�

about the return on that asset. Correspondingly, the investor will become more �optimistic�with

respect to the other asset. Proportional changes in an investor�s position in the risky assets will

not a¤ect her assessment.

Lemma 1 will play a crucial role in our analysis. Speci�cally, it implies that (idiosyncratic) bad

news about Bank-� , which will induce a run on that bank, will make investors also more pessimistic

about Bank-� 0 pro�tability, possibly triggering a run also on that bank. In this way, the presence

of uncertainty aversion creates the possibility of contagion, and thus systemic risk.

2.3 Optimal deposit contracts

We now examine the optimal deposit contracts o¤ered by banks. Because liquidity shocks are

privately observable only to investors at the interim date, t = 1, deposit contracts o¤ered by a

bank must satisfy appropriate incentive compatibility constraints. Early investors must consume

immediately, since they gain no utility from t = 2 consumption. Late investors, in contrast, may

pretend to be early investors and withdraw their deposits from either (or both) banks and invest in

the safe technology for later consumption. Thus, to prevent runs on one (or both) banks, deposit

contracts must satisfy three incentive compatibility constraints for late consumers, as follows.

First, late investors must prefer keeping their deposits in both banks rather than running on

both of them:

UL (�
a) � d1A + d1B: (6)
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Second, they must �nd it optimal to not run only Bank A:

UL (�
a) � d1A + d

s
2B + e

�0��̂1Rdr2B; (7)

and they must �nd it optimal to not run only Bank B:

UL (�
a) � d1B + d

s
2A + e

�̂0��1Rdr2A: (8)

Note that the incentive compatibility constraint (7) re�ects the fact that, if a long term investor

runs on Bank A and not on Bank B, she will have a portfolio that includes risky assets of type-B

only. This implies that she will be concerned only with the states of the economy that are least

favorable to asset B and, thus, will set � = �̂1. If the long-term investor runs on Bank B, a similar

argument leads the investor to hold assessment �̂0, and thus to (8). Finally, the deposit contract

o¤ered by Bank � must satisfy the bank�s budget constraint

�d1� + (1� �) [ds2� + dr2� ] � 1: (9)

In an equilibrium without bank runs, the optimal deposit contract o¤ered by Bank A, dA =

fd1A; ds2A; dr2Ag, maximizes U0 subject to (6), (7), and (9); similarly, the optimal deposit contract

o¤ered by Bank B, dB = fd1B; ds2B; dr2Bg, maximizes U0 subject to (6), (8), and (9) We will also

assume the following:

(A0): Regularity conditions:

u0 (2) > e�
e��1R > u0

�
2

e�
e��1R

�e�
e��1R+ (1� �)

�
: (10)

The �rst inequality ensures that the optimal deposit contract o¤ered by banks to uncertainty-

neutral investors provides (partial) insurance against liquidity shocks, while the second inequality

ensures that the optimal deposit contracts satisfy the incentive compatibility constraint (6), that

is, that the constraint is not binding in the optimal contract.19

19Note that the regularity conditions (A0) have the same role as the assumptions in Diamond and Dybvig (1983)
that investors have a coe¢ cient of RRA greater than 1 and that �R > 1, which together ensure that in the optimal
deposit contract in their model, fd�1; d�2g, satis�es 1 < d�1 < d�2 < R.
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As a benchmark we consider �rst the case in which agents are uncertainty-neutral, as follows.

Theorem 2 If investors are uncertainty neutral, the optimal deposit contract, dR�� � fd�1� ; ds�2� ; dr�2�g,

has:

ds�2� = 0; 1 < d�1� < e�
e��1Rdr�2� ; for � 2 fA;Bg, (11)

that is, banks provide partial insurance against liquidity shocks and are exposed to runs. Finally, it

is optimal WLOG for investors to invest equally in both banks.

Theorem 2 shows that, as in Diamond and Dybvig (1983), a symmetric equilibrium with d1A = d1B

and dr2A = dr2B always exists, whereby banks provide investors with (partial) insurance against

liquidity shocks. In addition, insurance provision implies that, in equilibrium, banks are illiquid

and, thus, exposed to runs. It is, however, important to note that bank runs are not necessarily

systemic: a run on one bank does not necessarily induce a run on the other bank. Thus, the banking

system is not necessarily fragile.

These results change dramatically when investors are uncertainty averse. From Lemma 1 we

know that, because of uncertainty aversion, the investors�assessment on the future state of the

economy and, thus, on banks�expected solvency, depends on their overall portfolio composition.

In this way, uncertainty aversion creates a direct link between investor�s desired holding in each

asset class, making asset holdings e¤ectively complementary. The strategic complementarity due

to uncertainty aversion generates the possibility of multiple equilibria.

There are two types of equilibria when investors are uncertainty averse. The �rst type of

equilibrium has the same properties as the one in which investors are uncertainty neutral, as

described in Theorem 2. In this equilibrium, banks invest in the risky assets, o¤er partial insurance

to investors, are illiquid and exposed to runs. We will denote this equilibrium as the �risky�

equilibrium. In the second equilibrium, banks invest only in the riskless asset, making the banking

system e¤ectively immune to runs, an equilibrium we will denote as the �safe�equilibrium. In this

second �safe� equilibrium, banks refrain from investing in the (potentially) more pro�table risky

assets and, rather, invest only in the safe asset. Since investment in risky assets typically consists

in carrying out banks�ordinary lending activity, we interpret this equilibrium as a �lending freeze.�
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We will make the following additional assumption:

(A1 ) : e
�̂0��1R < 1:

This inequality implies that in the core beliefs set there are priors such that an investor assessing

cash �ows with such priors is not willing to invest in risky project A. In addition, since �1 � �̂1 =

�̂0 � �0, this also implies that e�0��̂1R < 1 and, thus, that there are, in the core beliefs set, also

(other) priors such that an investor assessing cash �ows with such priors is not willing to invest in

risky project B. As will become apparent below, (A1) implies that an uncertainty-averse investor

would not be willing to invest in a risky asset individually, while she may still be willing to invest

in a portfolio of risky assets. The equilibrium with uncertainty-averse investors is characterized in

the following.

Theorem 3 If investors are uncertainty averse and (A1) holds, there are both a �risky� equilib-

rium, where the optimal deposit contract is again dR�� characterized in (11), and a �safe� equilib-

rium, in which both banks invest only in the safe technology and o¤er a safe deposit contract, dS�� ,

with no insurance against liquidity risk: dr2A = dr2B = 0. Investors optimally invest equally in both

banks. Furthermore: (i) The �risky�equilibrium Pareto dominates the �safe�equilibrium; (ii) runs

are not possible in the �safe�equilibrium, but runs are possible in the �risky�equilibrium. (iii) All

runs will be systemic.

Theorem 3 shows that the presence of uncertainty aversion has the e¤ect of creating a second

equilibrium in addition to the one prevailing in an economy populated by SEU agents. In addition

to the equilibrium where banks invest in risky technology and o¤er (partial) insurance against

liquidity shocks that prevails when investors are uncertainty neutral, there is also a �lending freeze�

equilibrium in which banks refrain from investing in risky assets. In this second �lending freeze�

equilibrium, banks invest only in the riskless asset and, thus, cannot provide any insurance against

liquidity risk.

Existence of the �lending freeze�equilibrium depends critically on the fact that an uncertainty-

averse investor is willing to deposit funds in one type of banks and, thus, be exposed to one type

of risk, only if she can invest also in the other bank and, thus, be exposed to the other source of
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risk as well. This implies that if one bank o¤ers only the safe contract, the other bank will only

o¤er the safe deposit contract as well. Thus, uncertainty aversion creates a strategic externality in

the deposit-o¤ering policy of banks: investors invest in one bank only if they have the opportunity

to invest in the other bank as well. This externality creates the potential of a �coordination

failure� among banks that leads to the possibility of multiple equilibria. In addition, the second

�safe�equilibrium is Pareto dominated by the �risky�equilibrium where banks invest in both risky

assets.

A second important e¤ect of uncertainty aversion is that a run on a class of banks also causes a

run on the other class of banks. A run by long-term investors on a bank of any given risk class shifts

the composition of risky assets in their portfolios in favor of the other risk class. From Lemma 2,

this change of portfolio composition causes the investors to become more pessimistic on the asset

class still in their portfolios, triggering a run on that asset class as well. Thus, uncertainty aversion

creates systemic risk.

3 Uncertainty aversion and systemic risk

There are two distinct categories of runs in our economy: panic runs and fundamental runs. Panic

runs occur when investors run a bank, even though the bank would still be solvent if they did not

run, and investors would prefer the outcome of no one running. Panic runs are essentially due to

a coordination failure among agents in an otherwise solvent economy. A fundamental run occurs

when there is a shock to fundamentals large enough so that it ceases to be optimal for a long-term

investor to remain invested in the bank, even if everyone else stays in the bank. Since in the �safe�

equilibria bank runs are not possible, we will focus on the (symmetric) �risky�equilibrium.

A further important distinction is that bank runs can either be �local runs,�that is, involving

only one bank, or �systemic runs,� that is, runs that involve both banks. As shown in Theorem

2 and Theorem 3, runs are always possible in a �risky�equilibrium. However, when investors are

uncertainty neutral, runs may not necessarily spread from one bank to the other. In contrast, if

investors are uncertainty averse, all runs will be systemic.

To model the possibility of equilibrium runs, following Goldstein and Pauzner (2005), we now
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assume that, at t = 1, investors receive public signals, s� , � 2 fA;Bg, that are informative on the

return on the risky assets at time t = 2. Speci�cally, we assume that R� = s�R, with s� 2 f�; 1g

and � < 1. We also assume that with probability " > 0 investors observe �bad news�about type �

assets only, s� = � and s� 0 6=� = 1, for � 2 fA;Bg, while with probability �, investors observe �bad

news� about both type A and type B assets, s� = s� 0 6=� = �, and with probability 1 � 2" � �,

investors learn that both asset classes are una¤ected, s� = s� 0 6=� = 1. Because �bad news�about

both banks generate the expected and arguably uninteresting outcome of fundamental systemic

runs, we set � = 0. For tractability, we now assume that investors�utility function, u, is piece-wise

a¢ ne. Speci�cally,

u (w) =

8><>:  w

 ~c+ (w � ~c)

w � ~c

w > ~c
(12)

where  > e
1
2
(�0��1)R and ~c 2

�
2; 2 e�

e��1R
�e�

e��1R+(1��)

�
. This utility function captures the notion that

early investors value lower consumption levels, up to ~c, relatively more than larger consumption.

It also implies that early investors, who are subject to the liquidity shock, value consumption more

than late investors, preserving the value of insurance against the liquidity shock.

In this section, we focus on fundamental runs, and we assume that investors run on a bank

only if it is no longer pro�table to stay in the bank, e¤ectively ruling out panic-based runs. We

start the analysis by establishing the possibility of systemic runs under uncertainty aversion for

given (arbitrary) deposit contracts d� = fd1� ; ds2� ; dr2�g, � 2 fA;Bg. We will then characterize the

optimal deposit contracts.

Theorem 4 Let d� = fd1� ; ds2� ; dr2�g, � 2 fA;Bg be symmetric deposit contracts with ds2A = ds2B =

0 and dr2� > 0 (i.e, risky deposit contracts) so that investors strictly prefer staying in both banks in

the absence of bad news. If investors are not uncertainty averse, they will run Bank � following bad

news about type � assets if d1� > �p� (�
e)Rdr2� , but investors will not run Bank �

0 = � . If investors

are uncertainty averse, they will run both banks if d1� > �
1
2 p� (�

e)Rdr2� :

Theorem 4 uncovers a new source of systemic risk that is due to uncertainty aversion, and

provides one of the key results of our paper. The theorem shows that, in the presence of uncertainty-

averse investors, bad news at one bank, say Bank A, while it generates a fundamental run on that
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bank, also induces investors to run on the other bank, Bank B, even in the absence of bad news at

the latter bank. Thus, bad news on one bank can create a systemic run; in other words, idiosyncratic

risk can indeed generate systemic risk.

The mechanism behind the systemic risk described in Theorem 4 is the uncertainty hedging

motive due to uncertainty aversion (see Theorem 1). As discussed earlier, investors�demand for a

risky asset depends on their overall portfolio. In particular, an uncertainty-averse investor is willing

to be invested in one bank, and to be exposed to the risk of one type of assets, provided that she is

also exposed to the other type of risky assets as well. This implies that, if the investor learns bad

news about one risky-asset class, say � = A, inducing a run on Bank A, the investor�s portfolio

will become overly exposed to the other risky asset class, � = B. From Lemma 2, we know that

the resulting portfolio imbalance causes a shift in the investor�s assessments against the other asset

class, B, making the investor relatively more pessimistic about risky asset B. Thus, a run on Bank

B may happen even if that bank was not a¤ected by bad news. Thus, bad news about Bank A

spills over to Bank B causing contagion and, thus, systemic risk. Note that this source of contagion

and systemic risk is entirely driven by uncertainty aversion and is novel in the literature. It will be

denoted as �uncertainty-based�systemic risk, which generates �uncertainty-based�systemic runs.

Theorem 4 describes investors�behavior in response to negative shocks, given the contract that

they are in. Banks, however, o¤er ex-ante optimal deposit contracts that anticipate such behavior.

Lemma 3 Let early investors have piecewise a¢ ne utility as in (12) and " be small enough.

(i) If investors are not uncertainty averse, the unique equilibrium is a �risky equilibrium� where

banks invest in the risky technology and provide insurance against the liquidity shock by o¤ering the

deposit contract:

d1� =
1

2
~c; ds2� = 0; and dr2� =

1� �d1�
1� � , for � 2 fA;Bg:

(ii) If investors are uncertainty averse, there are two equilibria: the �risky equilibrium�described in

part (i), and a �safe�equilibrium where banks hold only the risk-free asset and the deposit contract

is a safe deposit contract: d1� = ds2� = 1, � 2 fA;Bg.

Lemma 3 shows that the equilibrium contracts mimic those described in Theorem 2 and Theorem
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3.20 However, the presence of a public signal on the return on the risky assets, and thus on the

banks�expected pro�tability, generates the possibility of fundamental bank runs, as follows.

Theorem 5 Suppose early investors have utility as in (12), and banks invest in risky assets. If

investors are not uncertainty averse, they run Bank-� after observing bad news on that bank (s� = �)

i¤ � < � � (1��)~c
e
1
2 (�0��1)R(2��~c)

, with 0 < � < 1, but investors will not run the other bank. If investors

are uncertainty averse, they will run both banks after observing bad news on either of the two banks,

that is s� = � or s� 0 6=� = �, i¤ � < �2.

Theorem 5 describes the two e¤ects of uncertainty aversion on bank runs and systemic risk.

First, as discussed in Theorem 4, the presence of uncertainty aversion creates the possibility of

systemic runs even in cases where such runs would not occur under SEU. Thus, uncertainty aversion

is a source of contagion and systemic risk. However, under uncertainty aversion, investors are slower

to run after observing bad news on a bank than SEU investors. This happens because uncertainty-

averse investors value their investment in a risky asset more if they hold the other risky asset in

their portfolio as well. This means that an uncertainty-averse investor is more reluctant to run a

bank after observing bad news on that bank. However, if the bad news is su¢ ciently bad to induce

a run, the run spreads to the other bank. Thus, uncertainty-averse investors are less prone to bank

runs, but when they run they generate a systemic run.21

4 Bank runs and the stock market

In the previous sections, we discussed the e¤ect of uncertainty aversion on the systemic risk of

the banking sector. An important question is the potential connection between bank runs and the

performance of other parts of the �nancial sectors such as the stock market. For example, in the
20Note that in the optimal contract in the �risky� equilibrium, banks provide (partial) insurance against the

liquidity shock, since the marginal utility of early consumption (measured by  ) is su¢ ciently large. Insurance is
limited (late investors strictly prefer not mimicking early investors) because ~c is not too large.
21 It should be noted, however, that Theorem 5 depends on the assumption that utility is piecewise a¢ ne, as in

(12). A¢ ne utility guarantees that banks set the intermediate cash�ow at the kink, so d1� = 1
2
~c: Thus, the optimal

contract does not change when investors anticipate learning news. If u were strictly concave, results are similar but
banks would decrease d1� ; unless there is an Inada condition for u. Because su¢ cient bad news induces a run on both
banks, it would be possible for early households to receive 0, so banks would drastically change contracts to avoid
that state even for very small probability events if there were an Inada condition. Also, banks would have to decide
if they were going to avert a fundamental run, or to allow a fundamental run (optimally choosing the contract with
the risk of a run in mind). In either scenario, banks decrease the insurance provided to early type, d1� .
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recent �nancial crisis the near collapse of the (shadow) banking system was also associated with

a substantial drop of the stock market. This observation raises the question of the transmission

mechanism between the banking sector and the �real�sector. In this section, we show the contagion

e¤ect that we described in the previous sections can spread beyond the banking sector and spill

over to the stock market as well.

We modify our basic model as follows. Suppose that Bank A is still a bank, which now represents

the overall banking sector, but Bank B is now a stock company (or a mutual fund), denoted as

Firm B, which now represents the stock market. In this new interpretation, the stock company

has access to type-B assets. In the spirit of Jacklin (1987), we posit that Firm B promises to

pay investors a dividend �1B at time t = 1, and holds a portfolio f�2B; �2Bg of the safe asset and

type-B asset, until t = 2. Similar to our discussion in the previous section, Bank A o¤ers a contract

that gives investors the choice between receiving d1A at t = 1 and receiving ds2A of the riskless asset

of dr2A of type A assets at t = 2. Investors still face the possibility of a liquidity shock, so they

would like to have insurance against it. For tractability, we will assume again that early investors

have a¢ ne utility as in (12).

Lemma 4 The stock company implements incentive-compatible cash �ow of fd1B; ds2B; dr2Bg by

setting �1B = �d1B, �2B = (1� �) ds2B, and �2B = (1� �) dr2B. Late investors use the dividend to

buy shares from the late consumers for price P1B = (1� �)d1B.

Lemma 4 follows directly from the line of reasoning described in Jacklin (1987). The stock

company, Firm B; can duplicate the payouts of a bank by committing to pay investors a certain

dividend at t = 1. Early investors, because they must consume at t = 1, �nance consumption using

the dividend plus the proceeds from the sale of Firm-B shares to late investors. Late investors, in

turn, use the dividend they receive from Firm B to purchase shares from selling early investors,

and then consume at t = 2 the liquidating dividend they receive from Firm B. Investors�portfolio

allocation between banks and the stock market is as follows.

Lemma 5 Each investors deposits half of their wealth in the bank and buys equity with the other

half. If investors are uncertainty neutral, the �risky� equilibrium will be implemented. If investors

are uncertainty averse, there are both the �safe� equilibrium and the �risky� equilibrium.
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Lemma 5 shows that the equilibrium from Lemma 3 is not sensitive to the institutional structure.

In the spirit of Jacklin (1987), if no bad news arrives, the equilibrium allocation is identical whether

the intermediaries are stock companies or banks. What happens if there is bad news?

Theorem 6 Idiosyncratic risk leads to systemic risk i¤ investors are uncertainty averse. That is,

bad news about the bank harms the market value of the stock market, and bad news about the stock

market can produce a run on the bank, i¤ investors are uncertainty averse.

Theorem 6 establishes a new mechanism for bad news to spread across segments of the �nancial

sectors in an economy. Speci�cally, uncertainty aversion generates complementarity among di¤erent

asset classes in the economy. Because of asset complementarity, bad news spreads directly across

asset classes, due to investor preferences. This means that systemic risk extends to the broader

�nancial sector, generating fragility for the whole �nancial sector.

Theorem 6 implies that a run on the banking sector is associated with negative performance of

the stock market as well, that it leads to a �market crash.�Our model also implies that investors

would run to redeem their shares in mutual funds that have demandable features, such as money

market funds, leading to a �breaking of the buck.�Also, our model proposes a new channel through

which �nancial crises spread from the banking sector to the real sector. Note that this new channel

is driven by the impact of a bank run on investors�assessments, generating a negative e¤ect on

stock market valuations. Thus, our theory di¤ers from the more traditional view that a crisis in

the banking sector a¤ects negatively banks� lending and, thus, the real sector and stock market

valuations.

Theorem 6 also implies that su¢ ciently negative news on the stock markets, which leads to a

stock market �crash,�also induces a run on the banking system. The bank run is then followed by

a subsequent rebalancing of the long term investors�portfolios with a reinvestment of their holdings

in the safe asset. Thus, a bank run generates a ��ight to quality,�as often observed in reality.

5 Increased uncertainty and �nancial crises

In this section, we examine the impact of the �extent�of uncertainty on �nancial system fragility

and contagion. We show that increasing uncertainty makes the �nancial system more fragile and

22



more prone to contagions and, thus, more vulnerable to systemic risk.

We measure the extent of uncertainty by the size of investors�core assessment set, as follows. Let

� � �e� �̂0. We interpret an increase of � as characterizing �greater uncertainty.�In this paper we

take as exogenous the factors that may induce time series variations of the parameter �. However,

Epstein and Schneider (2011) suggest that such variations in uncertainty may be the product of

learning by uncertainty-averse agents. The impact of increasing uncertainty is characterized in the

following.

Theorem 7 There are critical values f�; ��g such that

1. for � � � the only equilibrium is the �risky equilibrium,�and there is no contagion;

2. If � < � < �� the only equilibrium is the �risky equilibrium,� but there is contagion and all

runs are systemic;

3. If � � ��, there both the �risky equilibrium,� with the possibility of contagion and systemic

runs, and the �safe equilibrum�with a �lending freeze.�

Theorem 7 shows that greater uncertainty leads to a more fragile �nancial system. When uncer-

tainty is low, that is, for � � �, the only equilibrium is the �risky� equilibrium that mimics the

usual Diamond and Dybvig (1993) scenario. In this case, fundamental runs are possible following

bad news on a bank�s future expected pro�tability, but runs are local and do not create contagion.

At intermediate levels of uncertainty, that is, for � < � < ��, bad news from one bank can spread

to the other bank, thus creating contagion and systemic risk. At even greater levels of uncertainty,

that is, for � � ��, �safe�equilibria are also possible. In this case, the �nancial system may retrench

in a �safety mode�whereby banks invest only in the safe asset. This equilibrium may emerge when

banks expect other banks to be in the �safety mode� as a consequence of the increased uncer-

tainty. This is a �lending freeze�equilibrium, which is Pareto-inferior to the more ordinary �risky�

equilibrium (see Section 2.3).
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6 Multiple Banks

In this section, we examine a simple extension of our basic model by allowing the presence of

multiple banks and assets, with multiple sources of uncertainty in the economy. We show that the

main results of our paper readily extend to the more general setting.

We modify our basic model as follows. Similar to Section 2, the economy is now endowed with

N+1 types of assets: N classes of risky assets, � 2 N � f1; ::; Ng, and a riskless asset. Speci�cally,

making at t = 0 an investment in risky asset � 2 N generates at t = 2 a random payo¤ in terms of

the riskless asset: a unit investment in type � asset produces at t = 2 a payo¤ of R with probability

p� and a payo¤ of 0 with probability 1 � p� . Similar to Section 2, risky assets have an early

liquidation option at t = 1, so that liquidation of a fraction ` of the risky asset generates at t = 1 a

payo¤ ` of the riskless and at t = 2 a payo¤ of (1� `)R with probability p� and a payo¤ of 0 with

probability 1� p� .

Di¤erent from Section 2, the economy is characterized by multiple sources of uncertainty, as

follows. The success probability on risky asset � 2 N , p� , depends again on the value of a parameter

�� , and we set p� (�� ) = e����Max , with �� 2 [�L; �H ] � [�min; �Max]. We now assume that investors

are uncertain over the vector
�!
� = f��gN�=1, and assess that

�!
� 2 C � [�L; �H ]

N � [�min; �Max]
N .

To capture the notion that assessments are not rectangular, we will assume that, for all
�!
� 2 C;

�N�=1�� = N�e + �. Investors are uncertain on the value of � as well, and assess that � 2 K �

[�A;A]. We assume that N�L < N�e � A and N�H > N�e + A. We denote S � C � K as

the investors�core assessment set. We can interpret � as representing the aggregate state of the

economy at t = 2, and �� as measuring the exposure of each asset � to state of the overall economy.

In this spirit, we will denote the combination f�!� ; �g as the �state of the economy�at t = 2.

Bank � o¤ers investors the contract fd1� ; ds2� ; dr2�g. By depositing $1 in each bank at t = 0, an

investor receives a lifetime utility equal to

U = ��N�=1d1� + (1� �)min�!
�

UL

��!
� ; �

�

where

UL

��!
� ; �

�
= �N�=1 [d

s
2� + p� (�� )Rd

r
2� ] :
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Investors�assessments are again endogenous, and depend on the composition of their overall port-

folio. Speci�cally, investors�assessments at t = 1 on the state of the economy at t = 2 are the

solution to the minimization problem

f~�a; �ag = arg min
f�!� ;�g2S

UL

��!
� ; �

�
;

and are characterized in the following Lemma.

Lemma 6 Uncertainty-averse investors assess the worst about the aggregate state of the economy,

and set �a = �A; furthermore, if banks o¤er contracts that have similar risky payo¤s, ambiguity-

averse investors have �interior� assessments on the exposure of each asset to the aggregate uncer-

tainty in the economy,
�!
� , which are given by

�a� = �e � A

N
+
1

N

NX
� 0=1

ln dr2� 0 � ln dr2� , for � 2 N .

To proceed further, case, we make the following regularity assumption:

e
1

N�1 (N�
e�A��H)��MaxR < 1 < e�

e�A
N
��MaxR;

Similar to the two-bank case, the �rst inequality guarantees that it is a negative NPV project to

invest in the risky asset if at least one of the other banks does not; the second inequality guarantees

that it is a positive NPV project to invest in the risky asset, if all of the banks invests. The following

theorem shows that the basic results of our paper extend to the case of multiple banks.

Theorem 8 In the absence of uncertainty aversion, the only equilibrium is the risky equilibrium,

and local shocks stay local. In the presence of uncertainty aversion, there are both the risky equi-

librium (where all banks invest in risky assets) and the safe equilibrium (where no banks invest in

the risky asset), and all runs will be systemic.
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7 Empirical and policy implications

In this section, we discuss the empirical implications of our paper, and we outline the implications

of our model for the recent public policy debate surrounding the �nancial crises.22

1. Financial crises and investor sentiment. The main implication of our analysis is that �nancial

crises can originate in one sector of the economy and then propagate through the banking system

to other sectors and the stock market. The key distinguishing feature of our model is that the

mechanism that trigger and propagates �nancial crises is deterioration of investors�sentiment on

the economy. This negative sentiment can be triggered by an idiosyncratic event, which creates a

wave of pessimism that produces a systemic crises.

2. Lending booms. A key mechanisms in our model is that uncertainty averse investors are more

optimistic about one asset class when they hold a larger portfolio position in another asset class.

This implies that good news about one industry, like an increase in productivity of risky investment

for that industry, R, will result not only in increased lending to that industry, but also increased

lending to other industries as well. This result property is a direct outcome of the externality across

portfolio holdings created by uncertainty aversion.

In di¤erent legal environments, lenders have varying abilities to force repayment. Our model

suggests that, if they are uncertainty averse, the ability to pledge capital will a¤ect lending not

only in that industry, but also other industries as well. Thus, our model provides a rich set of

implications for cross-country analysis.

3. Lending freezes. If banks believe that other banks are not lending, they will �nd it optimal

to not lend as well, generating a self-ful�lling lending freeze. This result is due to the e¤ect of

uncertainty aversion on endogenous assessments, not because the banks are �nancially constrained.

Thus, providing liquidity to banks will not be su¢ cient to induce them to start lending again.

4. Uncertainty and �nancial crises. Our model, speci�cally Theorem 7, shows that indiosyn-

cratic shocks spread to systemic shocks i¤ investors are su¢ ciently uncertainty averse. This implies

�nancial crises should be more likely when investors are faced with a shock to an unfamiliar risk, or

when contracts are su¢ ciently complex (if investors treat contractual complexity as uncertainty).

5. Banks� equity recapitalization. Negative idiosyncratic shocks at any one bank will have a

22Thakor (2015b) provides a comprehensive survey of such debate.
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negative e¤ect on that bank�s equity capitalization. Our paper suggest that such negative shock may

a¤ect other banks�equity capitalizations as well triggering a widespread banking crisis. In other

words, an idiosyncratic shock on one bank depresses its equity value, and the negative sentiment

spreads to other banks which may now see distressed equity valuations. This may result in banks

facing binding minimum equity requirements and may force banks to raise new equity at distressed

equity prices. Thus, honoring excessive equity requirements would be very costly to banks.

Our paper also has implications for bank bailout strategies, asset sales and the management of

�nancial crises. The role of regulation to curb systemic risk and promote �nancial stability has been

the object of extensive discussion in the recent academic and public policy debate. To implement

e¤ective stabilization polices and regulations, it is critical to understand the source of systemic risk

and to assess the nature of bailout policies that must be implement by a central bank to prevent

bank runs.

If investors are uncertainty averse, our paper shows that the central bank must worry about

idiosyncratic shocks that a¤ect individual banks, since these shocks can have systemic e¤ects. In

addition, the implementation of the bailout policy depends on the size of the shocks a¤ecting the

banking sector. For su¢ ciently small shocks, the central bank can avert a run by bailing out just

the a¤ected bank. If the shock is large enough, however, the central bank must also bail out

una¤ected (potentially solvent) banks to avoid a systemic crisis. In contrast, if investors are not

uncertainty averse, the central bank only needs to bailout the a¤ected bank. In addition, one of the

basic results of our paper is that uncertainty harms stability and creates the possibility of systemic

runs. The �nancial system is more fragile in times of greater uncertainty. In these cases, regulatory

authorities may wish to release relevant information that reduces such uncertainty, thus increasing

the �resilience�of the �nancial and banking system.

Similarly, our paper has implications on a central bank�s choice in the event of �nancial crisis

between interventions through bailouts or asset sales. Speci�cally, the central bank can either

provide capital directly to the banks to fund their short term liquidity needs (a bailout, discussed

above), or it can buy a bank�s risky assets and replace them with the safe asset (asset sales). The

distinction is important because bailouts inject liquidity without changing a bank�s balance sheet,

while asset sales change the risk structure of the bank�s portfolio. If investors are uncertainty averse,
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and the shock is large enough, our paper suggests that the optimal intervention policy involves

asset sales. However, the central bank must purchase assets from the una¤ected bank, not from

the a¤ected bank. Bad news to one bank e¤ectively shifts the composition of investors�portfolios

toward the other bank�s holdings, so investors become more pessimistic about the una¤ected bank�s

holdings. The central bank will be able to purchases these assets at distressed prices, which means

that, ex post, the central bank will make large pro�ts from these asset sales. If investors are

ambiguity neutral, there is no place for asset sales. By extension, our model also suggests that the

crisis will be harsher in countries that are not allowed to use asset repurchases, like Europe, than

in countries that utilize asset repurchases, like the United States.

Finally, our paper has also implications for the Volcker Rule. We interpret here the Volcker Rule

as forcing banks to be robust to a run at other banks, that is, to systemic runs. Our paper shows

that to be immune to runs at other banks, this requirement means that banks must invest only

in the safe asset, e¤ectively ruling out the Pareto-superior �risky� equilibrium. Thus, regulation

aimed that ensuring systemic stability may in fact imply e¢ ciency losses. The upside of the Volcker

Rule, however, is that regulating traditional banks can kill the shadow banking sector (similar to

Section 4, model the shadow banking sector as Bank B). This could be optimal if runs impose

large negative externalities on the economy as a whole.

8 Conclusion

In this paper, we propose a new theory of systemic risk based on uncertainty aversion. We show

that uncertainty aversion creates complementarities among investors�asset holdings, a feature that

we denote uncertainty hedging. Because of uncertainty hedging, bad news on an asset class may

spread to other asset classes, generating systemic risk. A second implication of uncertainty hedging

is that banks may individually refrain from investing in risky assets even if, collectively, it would

be bene�cial to do so. In these situations, risky asset are valued by investors at distressed prices,

and banks invest only in the safe assets, a feature that we describe as a �lending freeze.�Finally,

we derive empirical and public policy implications of our model.
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A Appendix

Proof of Theorem 1. Let V� = qE� [u (y1)] + (1 � q)E� [u (y1)] ; and de�ne �1 = argminE� [u (y1)] ; �2 =

argminE� [u (y2)], and �q = argminV�: Thus, E�1 [u (y1)] � E�q [u (y1)] and E�2 [u (y2)] � E�q [u (y2)], so

qE�1 [u (y1)]+(1� q)E�2 [u (y2)] � qE�q [u (y1)]+(1� q)E�q [u (y2)] = minV�. Thus, (3) holds. Because uncertainty-

neutral agents can be modeled as uncertainty-averse agents with a singleton for their core of assessments, the inequality

holds with equality in the absence of uncertainty aversion.

Proof of Lemma 1. Note U 0
L (�) = R

�
e���1dr2A � e�0��dr2B

	
: Because U 00

L > 0, UL is convex in �, so �rst order

conditions are su¢ cient for a minimum. Note U 0
L = 0 i¤ � = ~�

a
where

~�
a
(�) =

1

2
(�0 + �1) +

1

2
ln
dr2B
dr2A

:

Thus, if ~�
a
(�) 2

h
�̂0; �̂1

i
, �a = ~�

a
(because ~�

a
is minimizes UL). If ~�

a
< �̂0, U 0

L > 0 for all � 2
h
�̂0; �̂1

i
, so �a = �̂0.

Similarly, if ~�
a
> �1, U 0

L < 0 for all � 2
h
�̂0; �̂1

i
, so �a = �̂1. Therefore, (5) corresponds to the worst-case scenario for

investors.

Proof of Theorem 2. We will guess that (7) and (8) are lax, solve the relaxed problem then show that these two

constraints are satis�ed. Because investors are not uncertainty averse, C = f�eg. For � 2 fA;Bg, Bank ��s problem
is

maxU0

�d1� + (1� �) [ds2� + dr2� ] � 1

UL (�
e) � d1A + d1B ;

where

U0 = �u (d1A + d1B) + (1� �)UL (�
e) ;

and

UL (�) = ds2A + ds2B + pA (�
e)Rdr2A + pB (�

e)Rdr2B :

Let ��1 be the multiplier for the budget constraint of Bank � , let ��2 be the multiplier for the incentive compatibility

constraint of Bank � , and let L� be the Lagrangian function for Bank � , for � 2 fA;Bg : Thus, the FOCs for Bank
� are

dL�
dd1�

= �u0 (d1A + d1B)� ���1 � ��2;

dL�
dds2�

= (1� �)� (1� �)��1 + ��2;

and
dL�
ddr2�

= (1� �) p� (�
e)R� (1� �)��1 + p� (�

e)R��2:

Because �e = 1
2
(�0 + �1), pA (�e) = pB (�

e) = e
1
2
(�0��1): Because e

1
2
(�0��1)R > 1, dL�

ddr2�
> dL�

dds2�
. Because there is no

upper bound on ds2� or d
r
2� , this implies that d

s
2� = 0.

It can be quickly veri�ed that the constraints will be identical for both banks.23 If the IC constraint binds

23We have four equations ( dLA
dd1A

= 0, dLA
ddr

2A
= 0, dLB

dd1B
= 0, and dLB

ddr
2A

= 0) which are linear in four multipliers

(�A1; �A2; �B1; �B2). Thus, there will be a unique set of multipliers that satisfy the FOCs because the system
of equations is full rank. Because the equations are symmetric (u0 (d1A + d1B) is the same for both banks and
e�

e��1 = e�0��
e

by de�nition of �e), �A1 = �B1 and �A2 = �B2. Therefore, the same constraints will bind at both
banks. The budget constraint always binds (monotonicity). Either the IC constraint binds at both banks or it is lax
at both banks.
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(�A2 = �B2 > 0), the equilibrium is given by

�d1A + (1� �) dr2A = 1

�d1B + (1� �) dr2B = 1

e�
e��1Rdr2A + e�0��

e

Rdr2B = d1A + d1B ;

Solving for d1A + d1B , it follows that

d1A + d1B = 2
e�

e��1R

e�e��1R�+ (1� �)

However, we assumed that u0
�
2 e�

e��1R
�e�

e��1R+(1��)

�
< p� (�

e)R, so this cannot be an equilibrium: banks would decrease

d1A and d1B .

Thus, the IC is lax at both banks: �A2 = �B2 = 0.
dLA
dd1A

= 0 implies that �A1 = u0 (d1A + d1B) ; and
dLA
ddr

2A
= 0

implies that �A1 = e�
e��1R, so u0 (d1A + d1B) = e�

e��1R. Thus, banks set d1A + d1B = (u0)
�1
�
e�

e��1R
�
; dr2A =

1��d1A
1�� ; and dr2B =

1��d1B
1�� . Because u0

�
2 e�

e��1R
�e�

e��1R+(1��)

�
< e�

e��1R, d1A + d1B < 2 e�
e��1R

�e�
e��1R+(1��) (because u is

concave). Therefore, (6) is lax:

e�
e��1Rdr2A + e�0��

e

Rdr2B > d1A + d1B :

We need to verify that (7) and (8) are satis�ed. Because the core of beliefs is a singleton, C = f�eg, (7) holds i¤
e�

e��1Rdr2A � d1A, while (8) holds i¤ e�0��
e

Rdr2B � d1B . Therefore, both of these constraints are satis�ed at the

symmetric outcome: d1A = d1B and dr2A = dr2B . Because u
0 (2) > e�

e��1R, it follows that d1A + d1B > 2, so banks

provide insurance against the liquidity shock. This insurance is imperfect because (6) is lax. WLOG, it is optimal

for investors to invest equally in both banks.

Thus, e�
e��1Rdr2A > d1A > 1: Because d1A > 1, runs are possible (the bank will be insolvent if all investors

run). Because e�
e��1Rdr2A > d1A, investors prefer to stay in the bank if all other late investors stay. Thus, there are

four equilibria at t = 1. The e¢ cient equilibrium is that late investors stay in both banks. There is also a second

equilibrium where late investors run only Bank A at t = 1, and a third where investors run only Bank B. Finally,

there is an equilibrium where investors run both. Because a bank run on only one bank is an equilibrium, runs are

not necessarily systemic.

Proof of Theorem 3. We will guess that (7) and (8) are lax, solve the relaxed problem then show that these

two constraints are satis�ed. Investors are uncertainty averse: they consider C =
h
�̂0; �̂1

i
. For � 2 fA;Bg, Bank ��s

simpli�ed problem is

maxU0

�d1� + (1� �) [ds2� + dr2� ] � 1

min
�2C

UL (�) � d1A + d1B ;

where

U0 = �u (d1A + d1B) + (1� �)min
�2C

UL (�) ;

and

UL (�) = ds2A + ds2B + pA (�)Rd
r
2A + pB (�)Rd

r
2B :

Let ��1 be the multiplier for the budget constraint of Bank � , let ��2 be the multiplier for the incentive compatibility

constraint of Bank � , and let L� be the Lagrangian function for Bank � , for � 2 fA;Bg : Thus, the FOCs for Bank
� are

dL�
dd1�

= �u0 (d1A + d1B)� ���1 � ��2;
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dL�
dds2�

= (1� �)� (1� �)��1 + ��2;

and
dL�
ddr2�

= (1� �) p� (�
a)R� (1� �)��1 + p� (�

a)R��2:

The �nal FOC is found from applying minimax theorem, because U 0
L (�)

d�a

ddr
2A
= 0 uniformly. Note that, if p� (�a)R <

1, dL�
ddr2�

< dL�
dds2�

, so dr2� = 0. Similarly, if p� (�
a)R > 1, dL�

ddr2�
> dL�

dds2�
, so ds2� = 0. Finally, if p� (�

a)R = 1, dL�
ddr2�

= dL�
dds2�

,

so ds2� � 0 and dr2� � 0.
Safe Equilibrium: Suppose Bank B sets dr2B = 0. Then, by Lemma 1, �a = �̂0 for all dr2A > 0. However,

e�̂0��1R < 1, so Bank A �nds it optimal to set dr2A = 0. Similarly, if Bank A sets dr2A = 0, Bank B optimally sets

dr2B = 0, because e�0��̂1R < 1. Because u0 (2) > 1, banks provide as much insurance against the liquidity shock as

possible, so the IC binds. Thus, d1A = ds2A = 1 and d1B = ds2B = 1. The constraints that investors not run each bank

individually, (7) and (8), simplify to ds2A � d1A and ds2B � d1B , which are both satis�ed (because they are all 1).

Risky Equilibrium: The symmetric equilibrium described in Theorem 2 is also an equilibrium here. Guess

that all IC constraints are lax, so ��2 = 0 for � 2 fA;Bg. dL�
dd1�

= 0 requires that ��1 = u0 (d1A + d1B), so �A1 = �B1.

Because dL�
ddr2�

= 0 for � 2 fA;Bg, this implies that e�a��1R = e�0��
a

R, or equivalently, that �a = �e. By Lemma 1,

�a = �e i¤ dr2A = dr2B . Because e
�e��1R > 1, this implies ds2A = ds2B = 0. The budget constraints are symmetric, so

d1A = d1B . By identical logic as the proof of Theorem 2, (6) is lax.

The constraint that investors will not run only one bank is lax as well. Note that e�
e��1Rdr2A + e�0��

e

Rdr2B >

d1A + d1B but d1A = d1B > 1. Further, dr2A =
1��d1A
1�� . Because d1A > 1, dr2A < 1. If a investor runs only Bank B,

they will assume the worst-case scenario for their remaining portfolio: �a = �̂0, so the investor�s utility of long-term

assets in Bank A is e�̂0��1Rdr2A < 1 < d1A. Therefore,

d1A + d1B > d1B + e�̂0��1Rdr2A;

implying

e�
e��1Rdr2A + e�0��

e

Rdr2B > d1B + e�̂0��1Rdr2A:

Therefore, investors will not run only Bank B. By identical logic, investors would also refuse to run only Bank A.

In the risky equilibrium, investors strictly prefer to exit one bank if they cannot access the other because d1A >

1 > e�̂0��1Rdr2A. Thus, an investor will either run both banks or not run either one. Thus, under the risky equilibrium,

there are two ex post equilibria: investors run both banks or they run neither.

In the safe equilibrium, d1A = ds2A = 1, so investors are indi¤erent to running Bank A and not running, no

matter what happens at Bank B. Because the safe equilibrium does not provide insurance against the liquidity

shock, d1A = 1, other investors running the bank does not harm those who stay in the bank (the bank will be solvent

for sure). Thus, there are no runs in the safe equilibrium.

Finally, we must show that investors �nd it optimal to invest equally in both banks in the risky equilibrium.

Investing wA in Bank A gives an investor the choice, at t = 1, between d1AwA at t = 1 or dr2AwA of type A assets.

Similarly, investing in wB in Bank B gives an investor the choice between d1BwB at t = 1 or dr2BwB of type B assets.

Also, the investor may want to save extra funds, 2� wA � wB , on their own.

Given that the investor withdraws early i¤ they are a¤ected by the liquidity shock, by investing wA in Bank A

and wB in Bank B, the investor earns payo¤

U0 = �u (d1AwA + d1BwB + 2� wA � wB) + (1� �)min
�2C

UL (�)

where

UL (�) = e���1Rdr2AwA + e�0��Rdr2BwB + 2� wA � wB :

with the constraint that wA + wB � 2. De�ne L as the Lagrangian, and let 
 be the multiplier on the constraint.
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Applying the minimax theorem:

@L

@w�
= �u0 (d1AwA + d1BwB + 2� wA � wB) (d1� � 1) + (1� �) (p� (�

a)Rdr2� � 1)� 


for � 2 fA;Bg : Because d1A = d1B > 1, the �rst term is strictly positive. Because dr2A = dr2B , p� (�
e)Rdr2� > 1

for � 2 fA;Bg ; if wA and wB are not too far from each other, p� (�a)Rdr2� > 1 for � 2 fA;Bg. Therefore, 
 > 0,

so wA + wB = 2. Because d1A = d1B , @L
@wA

= @L
@wB

= 0 implies that e�
a��1 = e�0��

a

, which implies that �a = �e.

Therefore, the investor optimally sets wA = wB .

Proof of Theorem 4. First, suppose investors are SEU, so they assess pA = pB = e
1
2
(�0��1). Following the shock

to type A assets, the payo¤ to the investor of staying in both banks is pA�Rdr2A + pBRd
r
2B : The payo¤ of running

only Bank A is d1A + pBRd
r
2B ; while the payo¤ of running only Bank B, is pA�Rd

r
2A + d1B : Finally, the payo¤ of

running both banks is d1A + d1B : Note the IC is lax, pARdr2A + pBRd
r
2B > d1A + d1B , and the contract is symmetric

(dr2A = dr2B and d1A = d1B). Because pBRdr2B > d1B , any run on Bank B would be a panic-based run. However, it

would be a fundamental run for investors to run Bank A if d1A > pA�Rd
r
2A.

Suppose instead that investors are MEU. Suppose that bad news about type A assets arrives, yet the investor

thinks all other investors are staying in both banks. The payo¤ to the investor of staying in both banks is

min
�2[�̂0;�̂1]

fpA (�)�Rdr2A + pB (�)Rd
r
2Bg = 2e

1
2
(�0��1)R [�dr2Ad

r
2B ]

1
2

= 2e
1
2
(�0��1)�

1
2Rdr2A:

The �rst equality follows from Lemma 1, assuming that assessments are interior. The second equality holds by

symmetry, because dr2A = dr2B . If the investor runs only Bank A, they receive payo¤ d1A + e�0��̂1Rdr2B , while if the

investor runs only Bank B, they receive payo¤ d1B + e�̂0��1�Rdr2A. If the investor runs both banks, they receive

payo¤ d1A + d1B .

If the investor runs Bank A, they will run Bank B as well. Recall that e�0��̂1R < 1, and the budget constraint

implies that dr2B =
1��d1B
1�� . d1B > 1, so dr2B < 1, so e�0��̂1Rdr2B < 1 < d1B . Thus, d1A + e�0��̂1Rdr2B < d1A + d1B .

Therefore, it is better to run both banks than only Bank A. Because Bank A received the bad news, it is worse to

run only Bank B than only Bank A. Therefore, the investor will either run both banks or run neither.

So far, we have guessed that the bad news still resulted in interior assessments. We will now show that any

shock bad enough to cause corner assessments will induce a run, thus proving that assessments are interior at the

cuto¤. Following bad news on type A assets, investors assess, from Lemma 1, �a = �e + 1
2
ln 1

�
. Thus, �a = �̂1 i¤

� � e�2(�̂1��
e). At the boundary, � = e�2(�̂1��

e) and �a = �̂1, the payo¤ to staying in both banks is

pA
�
�̂1
�
e�2(�̂1��

e)Rdr2A + pB
�
�̂1
�
Rdr2B = dr2AR

h
e�̂1��1e�2(�̂1��

e) + e�0��̂1
i

Note �̂1� �1� 2
�
�̂1 � �e

�
= ��̂1� (�1 � �0). Thus, the payo¤ to staying in both is Rdr2Ae

�0��̂1
�
e��1 + 1

�
. Because

�̂1 > 0, e��1 < 1. Also, e�0��̂1R < 1 and dr2A < 1, so we know that the RHS is less than 2, which is less than

d1A + d1B , so the investor will run both banks if news is bad enough to give her corner assessments.

Thus, uncertainty-averse investors run the bank if d1A > �
1
2 pA (�

e)Rdr2A, and they will run both banks if they

run either.

Proof of Lemma 3. To �nd the optimal contract, we must �nd the optimal contract that allows a run, the optimal

contract that deters a run, then �nd which one is best. The assumption of a¢ ne utility guarantees that the optimal

contract is the one that allows a run.

Consider what happens during a run on Bank A (runs on Bank B are symmetric). Applying the sequential

service constraint, the �rst 1
d1A

receive d1A while the remaining
�
1� 1

d1A

�
receive nothing. Because d1A + d1B � ~c

(we will prove this to be optimal later), early types receive expected utility  in a run, while late investors receive

expected utility of 1 in a run.
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We will �rst consider when the optimal contract that allows runs when investors are SEU. As shown in Lemma

5, investors only run the a¤ected bank when they hear bad news about that bank, so the expected payo¤ if there is

bad news about type A assets is

UB = �

�
1

d1A
u (d1A + d1B) +

�
1� 1

d1A

�
u (d1B)

�
+ (1� �) [1 + ds2B + pB (�

e)Rdr2B ] ;

the expected payo¤ if there is bad news about type B assets is

UA = �

�
1

d1B
u (d1A + d1B) +

�
1� 1

d1B

�
u (d1A)

�
+ (1� �) [ds2A + pA (�

e)Rdr2A + 1] ;

and the expected payo¤ in the absence of bad news is

UAB = �u (d1A + d1B) + (1� �) [ds2A + pA (�
e)Rdr2A + ds2B + pB (�

e)Rdr2B ] :

Therefore, the contract provides investors with expected utility of

U = (1� 2")UAB + "UA + "UB :

Bank � maximizes investor utility, subject to the budget constraint

�d1� + (1� �) (ds2� + dr2� ) � 1;

for � 2 fA;Bg. Let �� be the multiplier on Bank ��s budget constraint, and let L� be the the Langrangian functions
for Bank � (we will ignore the incentive compatibility constraints, then check them later). Note

@LA
@d1A

= (1� 2") @UAB
@d1A

+ "
@UA
@d1A

+ "
@UB
@d1A

� ��A:

Note @UAB
@d1A

= �u0 (d1A + d1B),
@UA
@d1A

= �
h

1
d1B

u0 (d1A + d1B) +
�
1� 1

d1B

�
u0 (d1A)

i
, and

@UB
@d1A

= �
d2
1A
fd1Au0 (d1A + d1B)� [u (d1A + d1B)� u (d1B)]g : Thus,

@LA
@d1A

= (1� 2")�u0 (d1A + d1B) + "�

�
1

d1B
u0 (d1A + d1B) +

�
1� 1

d1B

�
u0 (d1A)

�
+"

�

d21A

�
d1Au

0 (d1A + d1B)� [u (d1A + d1B)� u (d1B)]
	
� ��A:

Similarly,
@LA
@ds2A

= (1� 2") (1� �) + " (1� �)� (1� �)�A;

and
@LA
@dr2A

= (1� 2") (1� �) pA (�
e)R+ " (1� �) pA (�

e)R� (1� �)�A:

Because pA (�e)R > 1, @L
@dr

2A
> @L

@ds
2A
. By complementary slackness, @L

@dr
2A

= 0 > @L
@ds

2A
, so ds2A = 0. Thus, �A =

(1� ") pA (�
e)R. Because utility is piecewise a¢ ne, for d1A + d1B < ~c, @LA

@d1A
simpli�es to

@LA
@d1A

= � (1� ") ( � pAR) ;

and for d1A + d1B > ~c > max fd1A; d1Bg,

@LA
@d1A

= (1� ")� (1� pA (�
e)R) + "�

�
1� 1

d1B

�
( � 1)

�" �

d21A
( � 1) (~c� d1B) :
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The �rst term is negative, the second term is positive, and the third term is negative. To guarantee that @LA
@d1A

< 0

for all d1A+ d1B > ~c, it is su¢ cient that " < pA(�
e)R�1

 +pA(�
e)R�2 . Note this condition on " is su¢ cient, but not necessary.

24

Therefore, Bank A selects d1A so that d1A + d1B = ~c and sets dr2A =
1��d1A
1�� . By symmetry, Bank B selects d1B

so that d1A + d1B = ~c and sets dr2B = 1��d1B
1�� . Because investors treat investment in the di¤erent asset classes as

perfect substitutes, they are indi¤erent to all feasible25 choices of d1A and d1B , so WLOG banks set d1A = d1B =
1
2
~c.

In order to deter a run, banks must o¤er contracts so that investors do not run following bad news. That is, they

must set d1A � �pA (�
e)Rdr2A and d1B � �pB (�

e)Rdr2B . After some messy algebra, it can be veri�ed that banks will

implement contracts that allow a run, because  > e
1
2
(�0��1)R and � < 1.

Let us consider the optimal contract that allows runs when investors are MEU. As shown in Lemma 4, investors

will run both banks when they receive bad news about either bank. When there is bad news, investors run both

banks, so they earn an expected payo¤ of

UR = �UER + (1� �)ULR

where

ULR =
1

d1Ad1B
(d1A + d1B) +

1

d1A

�
1� 1

d1B

�
(d1A) +

�
1� 1

d1A

�
1

d1B
(d1B)

and

UER =
1

d1Ad1B
u (d1A + d1B) +

1

d1A

�
1� 1

d1B

�
u (d1A) +

�
1� 1

d1A

�
1

d1B
u (d1B) :

Note that ULR simpli�es to ULR = 2. Because u is piecewise a¢ ne, if d1A + d1B � ~c, UER = 2 . If d1A + d1B > ~c >

max fd1A; d1Bg, UER = 2 � ( � 1) 1
d1Ad1B

[d1A + d1B � ~c] :26

If there is no run, investors earn a payo¤ of

US = �u (d1A + d1B) + (1� �) min
�2[�̂0;�̂1]

UL (�)

where

UL (�) = ds2A + ds2B + e���1Rdr2A + e�0��Rdr2B :

Therefore, investor welfare is given by

U = (1� 2")US + 2"UR:

Therefore, �A be the multiplier on the budget constraint for Bank A, and let LA be the respective Lagrangian

functions of Bank A.
@LA
@d1A

= (1� 2") @US
@d1A

+ 2"
@UR
@d1A

� ��A;

@LA
@ds2A

= (1� 2") @US
@ds2A

+ 2"
@UR
@ds2A

� (1� �)�A;

and
@LA
@dr2A

= (1� 2") @US
@dr2A

+ 2"
@UR
@dr2A

� (1� �)�A:

FOCs of optimality for Bank B are symmetric. Because late investors receive an average of 2 in a run, and this

does not depend on the contract they receive, @UR
@ds

2A
= @UR

@dr
2A

= 0. Further, @US
@ds

2A
= 1 � �: If dr2B = 0, @US

@dr
2A

=

24We derived this cuto¤ by ignoring the third piece, which is strictly negative, and ignoring the 1
d1B

, because that

will be a negative term as well. Finally, if d1B > ~c, the third term disappears, but @LA
@d1A

< 0 so long as " is less than
this cuto¤.
25Banks cannot make either of the promised intermediate cash �ows too big, so that late investors do not run

following no bad news at t = 1, which requires that pA (�e)Rdr2A > d1A and pB (�e)Rdr2B > d1B :
26Similarly, if d1A > ~c > d1B , UER = ( � 1) 1

d1A
(~c� 1) + 1 +  . Finally, if ~c < min fd1A; d1Bg, UER =

( � 1) ~c
d1Ad1B

(d1A + d1B � 1) + 2: It will never be optimal to set d1A and d1B this large, however, because " is
small.
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(1� �) e�̂0��1R < 1 � �, so @LA
@dr

2A
< @LA

@ds
2A
, which implies by complementary slackness, that @LA

@dr
2A

< @LA
@ds

2A
= 0, so

dr2A = 0. Thus, the safe equilibrium is an equilibrium (the IC constraint requires that d1A = 1 and ds2A = 1).

Similar to the proof of Theorem 3, we can also show that the risky equilibrium is an equilibrium here. Note that
@US
@dr

2A
= e�

a��1R. If it is optimal to set dr2A > 0, @LA
@dr

2A
= 0, so �A = (1� 2") e�a��1R. In order for it to be optimal

for bank B to set dr2B > 0, @LB
@dr

2B
= 0, so �B = (1� 2") e�0��

a

R. For it to be optimal to set d1A + d1B = ~c, it must

be that @LA
@d1A

> 0 for d1A + d1B < ~c and @LA
@d1A

< 0 for d1A + d1B > ~c. It can be easily shown that @UR
@d1A

= 0 for

d1A+d1B < ~c, but @UR
@d1A

< 0 for d1A+d1B > ~c. Further, @US
@d1A

=  for d1A+d1B < ~c but @US
@d1A

= 1 for d1A+d1B > ~c:

Therefore, @LA
@d1A

> 0 for d1A + d1B < ~c but @LA
@d1A

< 0 for d1A + d1B > ~c. Though there are many risky equilibria, the

symmetric risky equilibrium referred to in the text is the most e¢ cient (it provides the highest payo¤ for investors).

After some messy algebra, it can be shown that banks will implement this contract, rather than the contract which

deters runs, because  > e
1
2
(�0��1)R and � < 1.

Proof of Theorem 5. The claim follows directly from Theorem 4 and Lemma 3.

Proof of Lemma 4. The stock company agrees to pay dividend �1B at t = 1, and hold portfolio f�2B ; �2Bg,
which are risk-free and type-B assets respectively, until t = 2. Suppose that the stock is traded at t = 1 for price

P1B . Because households are identical, they will all behave the same at t = 0, so all investors hold one share of the

stock at t = 0.

Early investors are willing to sell their share of the stock for any P1B > 0; because they place no value on t = 2

consumption. Thus, they will consume �1B + P1B at t = 1. They will sell to the late investors. Late investors

are willing to buy the shares from the early investors i¤ it improves their utility. If investors are SEU, they value

shares of the mutual fund at �2B + e�0��
e

R�2B , so they are willing to buy i¤ �2B + e�0��
e

R�2B > P1B : Because

they invested all their funds at t = 0, late investors can only reinvest the dividend, so market clearing requires

that �P1B � (1� �)�1B : If �1B is not too large, this binds, so P1B = 1��
�
�1B . Thus, the early type receives

�1B +P1B =
1
�
�1B , while the late type receives 1

1��

h
�2B + e�0��

e

R�2B

i
. Thus, the late type is willing to use all of

their funds to buy if �2B + e�0��
e

R�2B � 1��
�
�1B . Note that this collapses to the incentive compatibility constraint

that the late type does not want to run the bank.

Therefore, the stock company can implement the same cash �ows as the banking contract fd1B ; ds2B ; dr2Bg by
setting �1B = �d1B , �2B = (1� �) ds2B , and �2B = (1� �) dr2B : The stock will trade at price P1B = (1� �) d1B .

The case with MEU investors follows with similar logic, except that MEU investors are even more willing to buy

the shares, because di¤erent asset classes are complements (prices are the same because the stock is priced by cash

in the market).

Proof of Lemma 5. Lemma 4 showed that the stock company can implement contract fd1B ; ds2B ; dr2Bg by promising
to pay dividend �1B = �d1B , holding risk-free assets �2B = (1� �) ds2B , and type-B assets of �2B = (1� �) dr2B .

By identical logic to Theorem 2, it can be shown that the optimal contract to o¤er is sets d1� = 1
2
~c, ds2� = 0, and

dr2� =
1��

2
~c

1�� where ~c satis�es u0 (~c) = e
1
2
(�0��1)R with concave u; or ~c is the kink in u as in (12). All that remains

to show is that the it is optimal for investors to invest $1 in the bank and $1 in the stock. Similar to the proof of

Theorem 2, uncertainty-neutral investors are indi¤erent between asset classes, the claim holds WLOG. Similarly, the

case with uncertainty-averse investors follows by identical logic to Theorem 3.

Proof of Theorem 6. Two things need to be shown to prove the claim about uncertainty averse investors. First,

we must show that a bank run harms the stock market. Second, we need to show that a su¢ ciently big shock to the

stock market induces a bank run.

Consider �rst stock valuation. Late investors are willing to buy from early investors only if P1B � e�0��
a

R�2B ,

where �a is determined by the overall portfolio of late investors, as in Lemma 1. Because �2B = (1� �) dr2B , and

because the initial allocation is incentive compatible, d1B < e�0��
e

Rdr2B , this constraint is lax in the absence of bad

news, because �a = �e. Thus, if there is no bad news, P1B = (1� �) d1B : If there is a run on the bank, however,

�a = �̂1 (because late investors only hold type B assets), so PRun1B = e�0��̂1R�2B , because d1B > 1 > e�0��̂1Rdr2B :

Because PRun1B < P1B , a run on the bank harms stock market valuation.

Bad news on the bank can harm the stock even if the bad news is not su¢ ciently bad that it produces a run.
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As shown above, stock valuation is depressed i¤ e�0��
a

Rdr2B < d1B . If there is bad news about type A assets, but

not su¢ ciently strong bad news to induce a run,27 Lemma 1 implies that e�0��
a

Rdr2B = e�0��
e

R�
1
2 [dr2Ad

r
2B ]

1
2 . By

symmetry of the optimal contract, the stock is harmed by bad news to the bank i¤ � < �2, where � is de�ned in

Theorem 5.

It is optimal to run on the bank, however, if

d1A + e�0��̂1Rdr2B � 2e
1
2
(�0��1)�

1
2R [dr2Ad

r
2B ]

1
2 :

Because the optimal contract is symmetric, it is optimal to run the bank if

�
1
2 � 1

2

h
�+ e�

e��̂1
i
:

By (A1), it can be quickly veri�ed that e�
e��̂1 < �. Because this implies a strictly smaller cuto¤ for �, it is possible to

have bad news about the bank that harms stock valuation without triggering a run (a su¢ ciently bad shock induces

a run and harms the stock). Also, this implies that the bank is less prone to runs when paired with a stock than

when paired with another bank.

When there is bad news about the stock, it may be optimal to run the bank. Following bad news about the stock,

if late investors stay in the bank, by Lemma 1, �a = �e+ 1
2
ln (�dr2B)� 1

2
ln dr2A, so staying in the bank provides utility

2e
1
2
(�0��1)�

1
2R [dr2Ad

r
2B ]

1
2 . Running the bank provides late investors with utility d1A+e�0��̂1�Rdr2B , so it is optimal to

run i¤ d1A+e�0��̂1�Rdr2B � 2e
1
2
(�0��1)�

1
2R [dr2Ad

r
2B ]

1
2 , or, by applying symmetry, if e�

e��̂1��2� 1
2 + d1A

e�0��
e
Rdr

2A

� 0.

Applying the quadratic formula, it can be quickly shown that it is optimal to run the bank if � <
�
1�
p
1�e���
e��

�2
,

where � = �̂1 � �e and � = d1A
e�0��

e
Rdr

2A

as in Theorem 5. Therefore, su¢ ciently bad news about the stock spreads to

the banks and causes runs.

Finally, note that there is no contagion when investors are uncertainty neutral. When the investors are uncertainty

neutral, they always assess � = �e, so, by Theorem 4, they run the bank i¤ there is bad news on type A assets with

� � � � (1��)~c

e
1
2
(�0��1)R(2��~c)

; and this will not a¤ect the stock market. Similarly, bad news in the stock market will

depress stock prices, to e�0��
e

�R�2B if � is small enough, but will not a¤ect the bank.

Proof of Theorem 7. If there is run on Bank B, late investors receive d1A by running Bank A, but they receive

e�
e����1Rdr2B if they stay in Bank A (and so do all the other late investors), because late investors hold only

type A assets, so they assess �a = �e � �. Thus, it is an equilibrium for late investors to stay in Bank A only if

d1A � e��e�
e��1Rdr2A, or equivalently, only if � � ln

e
1
2
(�0��1)Rdr2A

d1A
. The tradeo¤ in Bank B, is symmetric, so de�ne

� � ln e
1
2
(�0��1)Rdr2A

d1A
. Alternatively, if � > �, all runs will be systemic.

Similarly, the safe equilibrium arises i¤ assumption (A1) holds: e�̂0��1R < 1. Because �̂0 = �e � �, the safe

equilibrium arises i¤ � > lnR� 1
2
(�1 � �0) : Thus, de�ne �� � lnR� 1

2
(�1 � �0) : Because d1A > dr2A, �� > �.

Proof of Lemma 6. Bank � o¤ers contract fd1� ; ds2� ; dr2�g. Note that uncertainty only a¤ects the payo¤ of the
risky portion of the portfolio. Thus, investors�worst-case scenario is

min
�

NX
�=1

e����Maxdr2�

subject to �� 2 [�L; �H ] and
PN
�=1 �� 2 [N�

e �A;N�e +A]. Because N�L < N�e � A, 9� s.t. �� > �L: Similarly,

because N�H > N�e + A, 9� s.t. �� < �H . Because the bank o¤ers only long contracts, dr2� � 0, increasing � helps
the agent, so the minimization problem sets the sum of � as low as possible. Thus, �a = �A. Let � be the multiplier
on the constraint that

PN
�=1 �� = N�e � A; let 
�L and 
�H be the respective constraints on �� , and let L be the

27This assumes that the shock is not su¢ ciently bad to induce corner beliefs. If the shock is su¢ ciently bad to
induce corner beliefs, however, investors will always run, because d1A > 1 > e�̂0��1Rdr2A:
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Lagrangian for the minimization problem. Thus,

@L

@��
= �e����Maxdr2� + �+ 
�L � 
�H :

If 
�H > 0, �� = �H . This holds i¤ �e�H��Maxdr2� + � > 0, or equivalently, if dr2� < D � e�Max��H�. Similarly, if


�L > 0, �� = �L. This holds i¤ dr2� > �D � e�Max��L�. If 
�H = 
�L = 0, �� 2 (�L; �H), so e����Maxdr2� = �, so

�� = �Max+ln
�
dr2�
. De�ne AL =

�
� : dr2� � �D

	
, AH = f� : dr2� � Dg, and AI =

�
� : dr2� 2

�
D; �D

�	
: Similarly, de�ne

NL = jALj ; NH = jAH j, and NI = jAI j. Because
PN
�=1 �� = N�e �A, this implies

P
�2AI �� = N�e �A�NH�H �

NL�L. We can also express
P
�2AI �� = NI�Max+NI ln��

P
�2AI ln d

r
2� ; so ln� =

1
NI
[N�e �A�NH�H �NL�L]�

�Max +
1
NI

P
�2AI ln d

r
2� : This implies that

�� =
1

NI
[N�e �A�NH�H �NL�L] +

1

NI

X
� 02AI

ln dr2� 0 � ln dr2� :

This gives the general expression for endogenous assessments. Investors hold extremely pessimistic assessments,

�� = �L, on their largest risky positions, dr2� � �D. They hold very optimistic assessments, �� = �H , on their smallest

risky positions, dr2� � D. They hold interior assessments on the positions between.

Finally, consider the case when all assessments are interior: �� 2 (�L; �H) for all � . In this case, NH = NL = 0,

NI = N , and all � 2 AI , so investor assessments are

�� = �e � A

N
+
1

N

NX
� 0=1

ln dr2� 0 � ln dr2� :

Note an increase in dr2� decreases �� and increases �� 0 for all �
0 6= � (this holds weakly for corner assessments).

Proof of Theorem 8. For uncertainty-neutral investors, the proof is obvious: they assess � = �e, so investment

in risky assets is positive NPV because e�
e��MaxR > e�

e� A
N
��MaxR > 1. Thus, banks set d1� optimally: so

u0 (Nd1� ) = e�
e��MaxR in the case of concave utility, and Nd1� = ~c in the case of piece-wise a¢ ne utility, as in

Theorem 2 and Lemma 3, respectively. Local shocks stay local by identical reasoning to Theorem 4.

If investors are uncertainty averse, by identical reasoning to Theorem 3, Theorem 4, and Lemma 3, it is su¢ cient

to show that investment has a positive NPV i¤ investors can invest in all the other uncertain assets as well. If all

banks select the same risky payo¤, dr2� = dr�2 , �� = �e � A
N
by Lemma 6. Because e�

e� A
N
��MaxR > 1; it is positive

NPV to invest in all the uncertain assets, so the risky equilibrium is an equilibrium. If all banks except one select the

same risky payo¤: dr2� = dr�2 for all � 6= � 0 and dr2� 0 = 0, investors will assess �� 0 = �H and �� = 1
N�1 [N�

e �A� �H ].

Because e
1

N�1 [N�
e�A��H ]R < 1, it is a negative NPV project to invest in any of the uncertain projects, so the safe

equilibrium is an equilibrium and all runs will spread.28

28This cuto¤ is su¢ cient, but not necessary. Because banks want to insure against the liquidity shock, d1� > 1 > dr2�
in the risky equilibrium. For runs to spread, it must be the case that e

1
N�1 [N�

e�A��H ]Rdr2� < d1� , by identical
reasoning to Theorem 5. Similarly, if (N � 1) �H + �L � N�e � A, then the safe equilibrium is an equilibrium i¤
e�L��MaxR < 1.
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