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ABSTRACT 

 
Turkey is known to suffer from severe volatility in its growth patterns, as well as from 
the uneven sectorial growth and employment. Volatile rates of emissions of gaseous 
pollutants across sectors are further manifestations of this uneven structure. The purpose 
of this study is two-fold: first, we check for dynamic patterns of convergence of carbon 
dioxide (CO2) emissions across sectors; and second, using evidence from panel data 
econometrics, we search for the determinants of these processes utilizing 
macroeconomic explanatory variables. We find that based on various alternate criteria, 
CO2 emissions and emission intensities measured as the share of CO2 emissions per unit 
of value added display conditional convergence mainly driven by the business cycle.  
Furthermore, across sectors, the high technology activities display convergence over 
time; and yet, the medium technology sectors constituting the bulk of the aggregate 
value added display either poorly convergent or divergent trends. These results reveal 
that much of the emissions convergence is driven by the business cycle rather than the 
workings of discretionary mitigation policy. 
 
 
1. Motivation 

 
Turkey’s economy is known to display wide swings in its patterns of growth both in 
aggregate and also in its sectorial composition.  The stop-and-go patterns of output growth 
are manifested not only in terms of mini-business cycles of economic activity, but also in 
terms of gaseous emissions across sectors. As of 2013, Turkey’s total emissions of gaseous 
pollutants (in terms of carbon dioxide equivalent (CO2 eq.) is estimated to be 459 million 
tons (mtons).  About three quarters of this is reported to arise from energy-related activities, 
while 72 mtons are attributed to industrial processes.  According to data from the 
International Energy Agency, with total emissions of 6.1 tons of CO2 eq. per capita and 0.26 
kg per $GDP, Turkey displays a lower figure in emissions in both accounts in comparison to 
the world and OECD averages.  However, Turkey is also known to display one of the highest 
rates of growth in CO2 eq. emissions among the emerging market economies. Turkey’s CO2 
eq. emissions increased from 218 million tons in 1990, to 459 million tons in 2013; and is 
expected to increase to 822 million tons by 2030 (Acar and Yeldan, 2016).  This suggests that 
Turkey will be on a divergent trend against many of the emerging market developing 
economies as well as the world averages over the next decades. 
 
These assessments are succinctly narrated in Figures 1a and 1b below, where we display the 
rate of change in aggregate CO2 eq. emissions against changes in real GDP over the post-
1990 era.  The close association between the real rate of change in CO2 emissions and the 



real business cycles over this period is clearly visible for Turkey, suggesting that the much 
desired decoupling of gaseous emissions from real economic activity has not yet taken place.  
This observation further reveals the low elasticity of gaseous emissions in response to real 
growth, and that the returns to abatement policies had rather been dismal.  This observation 
contrasts with the Asian emerging economies, where a substantial decoupling of gaseous 
emissions from real GDP growth is observable. (See Figures 1a and 1b). 
 
Figures 1a and 1b. CO2 and GDP growth rates in Turkey versus Asian countries 

   

 
Figure 1a 

 
Source: Turkstat, Environmental Indicators 
 
 

Figure 1b 

 
Source: US International Energy Association and The IMF World Economic Outlook 
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A key hypothesis in this paper is that the projected lack of decoupling between growth and 
emissions mitigation is mostly driven by the uneven patterns of growth and industrialization 
across sectors in Turkey. Yeldan et al. (2013) suggest that one of the main causes of the 
productivity slowdown of the Turkish economy over the 2010s is due to the diverging 
patterns of regional and sectorial development and the widening gap across high versus low 
income regions, as well as modern versus traditional sectorial production (and consumption) 
patterns.  We argue that the lack of mitigation at the aggregate national level finds its 
manifestation in the widening gap across regional and sectorial carbon and gaseous emissions.  
 
To this end, we check for evidence on convergence of CO2 emissions across sectors utilizing 
panel data econometrics over sectorial data.  In continuation of evidence on convergence, if 
any, we search for the leading indicators of these processes by way of differentiating the 
production sectors according to their level of technology and energy utilization.  The paper is 
organized as follows: in the next section we provide a brief survey on the theoretical 
background and pertinent literature. Next, we introduce our methodology and data sources in 
section three. We study alternative configurations of sectorial convergence in section four.  
We summarize the results and conclude in section five. 
 
 
2. Background Theory and Literature 

 
It is widely known that convergence in per capita income is rooted in the Solow model 
(Solow, 1956), which stipulates that countries (or regions) at lower per capita income levels 
are eager to experience higher growth rates than the richer ones due to the assumption of 
diminishing marginal returns to capital. The hypothesis has been tested frequently in the 
growth literature. 
 
Inspired by the previous economic convergence research, environmental convergence 
literature devotes itself to investigate whether convergence between environmental indicators 
or the amount of pollutants (particularly, emissions) exists across various regions and time 
periods (e.g., Aldy, 2006; Ezcurra, 2007; Strazicich and List, 2003; Nguyen Van, 2005; 
Panopoulou and Pantelidis, 2007; Westerlund and Basher, 2008; Camarero et al., 2008; 
Brock and Taylor, 2010; and Camarero et al., 2013). The bulk of this research has focused on 
carbon convergence; by utilizing either cross-country data or panel data comprising of 
countries (see Pettersson et al. (2014) for a comprehensive review). The summary of this 
research prevails convergence in per capita carbon dioxide emissions to some degree between 
developed (OECD) countries, while evidencing relatively persistent gaps or divergence at the 
global level. Besides, studies on regional convergence have investigated patterns of pollutants 
across regions. For instance, List (1999) tests for convergence of SO2 and NOx for 10 US 
regions during the period 1929-1994 and finds limited evidence of convergence. Similarly, 
Lee and List (2004) conduct unit root tests for NOx in US states from 1900 to 1994 
demonstrating that NOx emissions are not converging since the series are non-stationary and 
contain a unit root. Aldy (2007) and Bulte et al. (2007) are also among those who concentrate 
on US regional emissions. 
 
Research on sectorial convergence remains relatively limited. Wang and Zhang (2014) study 
the per capita CO2 emissions in 28 provinces and six sectors in China. They evidence 
convergence in all the sectors from 1996 to 2010; however they detect different factors that 
lead to convergence. For instance, GDP per capita and population density are the 
determinants of convergence in the industry sector as well as in the transportation, storage, 



postal, and telecommunications services sector. Apart from GDP per capita and population 
density, trade openness also influences convergence in the wholesale, retail, trade, and 
catering services. Finally, convergence of emissions due to residential consumption is mainly 
shaped by population density. 
 
Another study that quests for sectorial emissions convergence is Moutinho, Robaina-Alves 
and Mota (2014), which analyzes CO2 intensity of the Portuguese industry. The authors find 
sigma convergence for all sectors as well as provide evidence for the significant roles of 
fossil fuel use and energy consumption in determining sectorial CO2 emissions and emissions 
intensity.  
 
Finally, Brännlund, Lundgren and Söderholm (2015) investigate the convergence of CO2 
performance across the 14 Swedish manufacturing sectors from 1990 to 2008. They first 
calculate an environmental performance index derived from production of both the good and 
bad outputs. Then they estimate the growth of this index (i.e. the rate of change in the ratio 
of the inverse emission intensity) based on the initial value of the index and other factors 
such as sectorial capital intensity, fossil fuel use, fossil fuel price, value-added and EU ETS 
participation. They detect conditional β-convergence in CO2 performance together with the 
contribution of higher fossil fuel prices to improved CO2 performance in the Swedish 
industrial sectors whereas they find no significant effect of EU ETS participation.  
 
Despite not searching for convergence, Kumbaroğlu (2011) conducts a sector decomposition 
analysis of Turkey’s CO2 emissions during the period 1990-2007, and highlights the scale 
effect as the major source of emission growth in the electricity, manufacturing and transport 
sectors. He attributes emission growth in the household and agriculture sectors to energy 
intensity.   
 
Yet, to the best of our knowledge, this is the first study to undertake an analysis of sectorial 
carbon convergence in Turkey. In what follows, we introduce the methodology and data 
sources in the next section. 
 
 
3. Methodology, Data and Sources 
 
The notion of convergence can be investigated through three concepts: sigma (σ), beta (β), 
and stochastic convergence. To begin with, Barro and Sala-i-Martin (1992) describe σ-
convergence as the decrease in the cross-section variance of per capita emissions over time. 
Up to this aim, cross-sectional variance or standard deviation is simply plotted to detect 
convergence. Other studies have examined the behavior of relative per capita emissions (REit), 
where the relative per capita emissions is measured as the log of one country’s or sector’s 
emissions at time t divided by the yearly sample average , as notated by Carlino and Mills 
(1993) as follows: 
 

                                      (1) 

 
Second, using time series analysis, stochastic convergence can be explored to detect whether 
shocks to emissions for country or sector i relative to another country or sector j (or the 
average of the sample) are temporary (see Pettersson et. al (2014) for further details). If the 
time series of interest does not contain a unit root and is proven to be trend stationary, the 
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series is found to be stochastically converging. Many studies including Strazicich and List 
(2003), Lanne and Liski (2004), McKitrick and Strazicich (2005), Romero-Ávila (2008), 
Westerlund and Basher (2008), Lee and Chang (2008), Nourry (2009), and Yavuz and 
Yilanci (2013) make use of various unit root tests to trace stochastic convergence of 
emissions in different samples of countries. This method can also be implemented for panel 
data by using panel unit root techniques, which will be employed in the next section of the 
current study. 
 
Finally, β-convergence can be investigated both in a cross-section and panel data setting. The 
cross-sectional approach implies that convergence is examined by regressing the logged 
period growth rate of emissions  (for the whole sample) on the initial logged 

emission levels  and an error term εi for country, region, or sector i as in below (Pettersson 

et al. 2014: 150): 
 

 

                 (2) 

 

where  is the error term for country or region i. Accordingly, β < 0 implies convergence. 
Similarly, panel β-convergence can be analyzed as in the following equation (Pettersson et al. 
2014: 151):  
 

                                (3) 

 
where is the growth rate of emissions between and t, and δ demonstrates 

sector-specific effects. This model specification helps to test whether emission growth rates 
converge across cross-section units by time; i.e. whether they are eager to slow down in the 
long-run as they approach their own long-run growth path. 
 
In our investigation of β-convergence, we utilize two separate emissions indicators, one being 
the growth rate of sectorial emissions (CO2) and the other being the growth of sectorial 
emission intensity defined as the ratio of CO2 emissions to sectorial value-added (CO2/VA). 
Alongside, we focus on the coefficient (β) of the previous emissions and emission intensities 
respectively in the search for convergence, where the null hypothesis of divergence is H0: β = 
0 for all i; and the alternative hypothesis of convergence is Ha: β < 0 for all i. A negative sign 
for β implies unconditional convergence in CO2 emissions. Adding control variables such as 
sectorial value-added (VA), capital stock (KSTOCK) and energy use (EN) to equation (3) 
entails testing conditional convergence. 
 
Our models are estimated via panel fixed-effects and dynamic panel (Arellano-Bond) 
specifications. Panel convergence has frequently been addressed by either fixed or random 
effects in the literature. However, it is plausible to include some dynamic effects into the 
standard panel model since growth of emissions accommodates dynamic effects with respect 
to the previous emission growth rates. In econometric theory, these dynamic effects can be 
integrated into the model via the inclusion of a lagged dependent variable among the 
regressors. While doing so, the lagged dependent variable might be correlated with the error 
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term especially in small samples, which comes out as a problem. An instrumental variable 
specification is preferred to tackle with this problem and more specifically, the Generalised 
Method of Moments (GMM) model can be employed using the lagged values of the variables 
in the original model as instruments. Among several approaches to dynamic panel data 
models, Arellano-Bond specification is the most commonly used one. It accounts for 
individual or fixed effects by differencing the data. Besides, it is the more favourable 
approach and results in consistent estimates when the number of cross-sections, N, is higher 
than the number of time periods, T. (Baltagi, 2005: 136). 
 
The sectorial variables used in the models are described in Table 1 below: 
 
Table 1. Variables used in the analysis 

Abbr. Definition of the variable Unit Data source 

CO2 CO2 emissions   Gg (kt) WIOD 
VA Sectorial Value-added  TLs (million) WIOD 
KSTOCK Capital stock   TLs (million) WIOD 
EN Emission relevant energy use in) TJ WIOD 
 
 
All our data are adapted from the World Input-Output Database1 (WIOD), and is further 
supplemented by the Turkstat data on CO2 emissions. The names and the classification of the 
sectors that are under consideration are provided in Appendix A2. The summary of 
descriptive statistics for the variables of interest is provided in Appendix A3.  We further 
classify our sectors in terms of their technology levels, as primary (low), medium and high 
technology-driven activities. This categorization is based on the OECD classification of 
technology adoption. WIOD data reveals that, the bulk of the manufacturing sectors display 
medium technology characteristics and the share of medium technology sectors account for 
81% of total value added in 2013 (see Table 2 below). 
 
Table 2: Value added shares of sectors according to technology utilization 

 
Source: WIOD data based on the OECD classification of technology adoption. 
 
 
Figure 2 further displays the distribution of sectorial CO2 emissions in Turkey over the 
sample period. In absolute emissions, Electricity, Gas and Water Supply (no.17) and 
Transport (no.21) stand out as the prominent sectors, whereas Leather and Footwear (no. 5) is 
the least emitting sector. The time dispersion of the emissions is the widest for Hotels and Restaurants 
(no.20) as well as Wood and Products of Wood and Cork (no.6) as illustrated in the box plot. The 
boxes are bounded by the first and third quartiles of the data, enclosing the middle 50% of the 
sample. The dots illustrate the outliers; the lines across each box show the medians; and the 
“+” signs indicate the “mean” observations for each sector. It is revealed that the sectors 

                                                        
1 See Timmer et al (2015) and the website http://www.wiod.org/new_site/home.htm for the details of the WIOD. 

1995 2013

Primary/Low Technology Sectors 0.18 0.11

Medium Technology Sectors 0.74 0.81

High Technology Sectors 0.08 0.08

value    added    shares



under consideration behave quite differently in their mean and median emissions during the 
1995-2013 period. When we compare sectorial emissions with respect to sectorial value-added 
amounts, Coke, Refined Petroleum and Nuclear Fuel (no.8) and Electricity, Gas and Water 
Supply (no.17) are noticeably the sectors which are performing badly. Other economy2 
(no.22) releases the lowest amount of CO2 per value-added among other sectors.  
 
Figure 2. Sectorial CO2 emissions distribution for 1995-2013 

 
Note: The names of the sectors from 1 to 22 corresponding to the x-axis are provided in Appendix A2. 
 
 
4. Empirical Results on Patterns of Convergence of Sectorial Gaseous Emissions 

 

4.1. σ-convergence 

 
In order to perform a distributional analysis of emissions in the Turkish sectors, we plot the 
natural logarithm of the ratio of CO2 in each sector divided by average CO2 emissions in all 
sectors in that year, i.e. log relative emissions. To that end, Figure 3 demonstrates signs of 
convergence to some extent, especially accelerating following the recent global crisis. It has 
to be noted, in this juncture, that the 2008/09 crisis had a profound impact on the nature of 
this convergence.  Figure 4 is a direct illustrator of this phenomenon, where average log 
relative CO2 emissions for all sectors increase initially, make a peak in 2003, decline 

                                                        
2 Other economy comprises of the following sectors: Post and Telecommunications; Financial Intermediation; 
Real Estate Activities; Renting of Machinery and Equipment and Other Business Activities; Public 
Administration and Defence; Compulsory Social Security; Education, Health and Social Work; Other 
Community, Social and Personal Services; Private Households with Employed Persons. 

 5

 6

 7

 8

 9

 10

 11

 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

L
N

 (
C

O
2)

sector



substantially afterwards, and hit the bottom in 2008. There has been a recovery in mean 
sectorial emissions following the global turmoil.  
 
Figure 3. Evolution of log relative CO2 emissions in each sector, 1995-2013 

 

 

Figure 4. Mean log relative CO2 emissions for all sectors by year  
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Finally, as suggested by Barro and Sala-i-Martin (1992), Table 3 displays σ-convergence 
formulated by “standard deviation”, which serves as a measure of cross-sectional variation of 
per capita emissions over time. Apparently, the standard deviation of emissions decreased by 
7% from 1995 to 2013, documenting sigma convergence in the sectors. 
 

Table 3. Standard deviation of cross-sectorial CO2 emissions from 1995 to 2013 

  1995 2013 
% Change between 

1995 and 2013 

Standard deviation of cross-

sectorial (log) CO2 emissions 

from 1995 to 2013 

1,66 1,55 -7% 

 

 

4.2. Stochastic convergence 

 
In order to test for stochastic convergence, we first test for cross-sectional dependence for the 
three relevant variables derived from the sample: natural log of CO2 emissions (LNCO2), 
CO2 emissions as a share of sectorial value-added (CO2/VA), and log relative CO2 emissions 
(LNRELCO2). The results are displayed in A4. Accordingly, we run first generation panel 
unit root tests for CO2/VA as we cannot reject cross-section independence, whereas we run 
second generation panel unit root tests for LNCO2 and LNRELCO2 as the cross-sections for 
these variables exhibit cross-section dependence.   
 
Among several first generation panel unit root tests, Im-Pesaran-Shin (IPS) (2003) and 
Breitung (2000) tests, which are the two widely used panel unit root tests, are employed here. 
The methodology is as follows. Considering an AR (1) process for panel data,  is modeled 

as: 
  

                           (4) 

 
where t and i stand for time and cross section units, respectively. Individual unit root tests 
such as IPS, Fisher-ADF, and Fisher-PP allow differing ρi  across cross-sections, whereas 
common unit root tests such as LLC, Breitung and Hadri assume a common unit root process, 
thereby taking identical ρi = ρ across cross-sections, i.e. for all i.  IPS test provides individual 
tests for each series. The null and alternative hypotheses of the IPS test are as follows: Ho: 

All panels contain unit roots. Ha: Some panels are stationary. In other words, IPS assumes 
that at least one of the series is stationary under the alternative hypothesis. On the other hand 
the corresponding hypotheses for the Breitung unit-root test are stated as follows: Ho: Panels 

contain unit roots. Ha: Panels are stationary. Breitung illustrates that the IPS tests suffers 
from a significant loss of power when individual-specific trends are included to the test and 
his alternative test statistic “does not employ a bias adjustment” (Baltagi, 2005: 243). As such, 
the Breitung test implies stronger results than the IPS. In both tests, the rejection of a unit 
root and the presence of stationarity imply convergence, whereas the non-rejection of a unit 
root implies divergence.  
 
For LNCO2 and LNRELCO2, we employ Pesaran’s CADF test (2007), which is a second 
generation panel unit root test. The test allows the individual autoregressive roots to differ   
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across the cross-sectional units and is normally distributed under the null hypothesis of non-
stationarity. 
 
 
Table 4. Panel unit root tests 

    LNCO2 CO2/VA LNRELCO2 

IPS test 
statistic 

With a drift and trend 
-0.7533        
(0.2256) 

 

Without a drift, with trend -2.3591        

(0.0092) 

 

With a drift, without trend -1.7694        

(0.0384) 

 

Without a drift and trend 

 

2.8945         
(0.9981) 

 

Breitung 
test 

statistic 

With a drift and trend 
0.4861         

(0.6866) 
 

Without a drift, with trend 
0.2554         

(0.6008) 
 

With a drift, without trend -1.8267        

(0.0339) 

 

Without a drift and trend 

 

1.2558         
(0.8954) 

 

Pesaran’s 
CADF test 

statistic 

Constant 
-0.426 
(0.335)   

-1.247 
(0.106) 

Constant and trend 
-0.0667 
(0.252) 

 

-0.942  
(0.173) 

p-value in parentheses.  
 
 
According to Table 4, the IPS and Breitung test results for CO2/VA suggest that unit roots 
cannot be rejected in the majority of the specifications, implying non-stationarity and hence, 
stochastic divergence. However both tests imply convergence when the series are de-trended. 
Pesaran’s CADF test also shows that sectorial emissions and relative emissions in logarithms 
do not converge as the null hypothesis of unit roots cannot be rejected. To sum up, these 
results provide strong support for a diverging pattern in sectorial emission levels and poor 
evidence for convergence in emission intensity. 
 
 

4.3. β-convergence 

 

As described in section three, β-convergence is analyzed via panel data regression techniques 
here. Table 5 demonstrates the results of the analyses which are undertaken for the whole 
sample. Models 1_FE and 1_AB represent Fixed Effects and Dynamic GMM (Arellano-
Bond) models respectively with the growth rate of log sectorial CO2 emissions as the 
dependent variable; whereas 2_FE and 2_AB represent the corresponding models with 
growth rate of CO2/VA as the dependent variable. Accordingly, the independent variables 
are in natural logarithms in models 1_FE and 1_AB, while they are transformed into shares in 
value added of each sector in models 2_FE and 2_AB. 
 
The results imply conditional β-convergence in all cases, with the exception of 1_FE, with 
slight differences regarding the effects of the explanatory variables. It appears that sectorial 
energy use increases the emissions growth rate significantly whereas industrial value added 
decreases emissions growth rate contributing to convergence in model 1_AB. This might 



stem from the existence of economies of scale as the industry produces higher value added. 
That is to say, when the sectors have a lower output level, they would produce some amount 
of the “bads”, i.e. emissions. As sectors grow, they do not necessarily increase their amount 
of CO2 proportionally to their output growth since they would require relatively less energy 
or other inputs per output as the production scale increases. Besides, sectorial capital stock 
has a slightly significant positive impact on the growth of emissions in only one of the 
models (1_AB). 
 
Table 5. Fixed effects and dynamic panel data estimation (Arellano-Bond) results for 

the whole sample 
 (1_FE) (1_AB) (2_FE) (2_AB) 
 Growth of 

CO2 
Growth of 

CO2 
Growth of 
CO2/VA 

Growth of 
CO2/VA 

CO2_1 -0.190*** -0.222*** -0.012*** -0.006** 
 (-2.73) (-3.98) (-4.35) (-2.41) 
VA_1 -0.049 -0.053*   
 (-1.08) (-1.94)   
KSTOCK_1 0.009 0.053* 0.00001 -0.0002 
 (0.19) (1.91) (0.03) (-0.84) 
EN_1 -0.112 0.197*** 0.0009*** 0.0006** 
 (-1.23) (3.20) (3.14) (2.40) 
Constant 3.059*** -0.469** 0.126*** 0.053** 
 (4.89) (-2.03) (2.77) (2.11) 
Observations 396 396 396 396 
F 21.26  12.90  
P > F 0.000  0.000  
r2_o 0.017  0.006  
chi2  20.95  7.19 
P > chi2  0.000  0.066 
Sargan  315.24  316.37 
sarganp  0.847  0.795 
ar1  -1.97  -11.06 
ar1p  0.049  0.000 
t statistics in parentheses. Denotations (F:F-Value, r2_o:Overall R-Square, chi2:Chi-Square, p:P-Value)  
* p < 0.1, ** p < 0.05, *** p < 0.01 
 
 
Finally, Table 6 displays the results of the convergence analysis in three sectors classified 
according to their technology levels: primary (low) technology (LOWTEC), medium 
technology (MEDTEC) and high technology (HITEC). As the number of observations does 
not satisfy model assumptions, we are not able to conduct a dynamic analysis for the 
specified sectors. Hence we proceed with panel fixed effects. 
 
The results imply that the sample of medium-tech sectors does not support β-convergence in 
CO2 emission levels, whereas low- and high-tech sectors experience absolute convergence 
(although low-tech sectors do not have a highly significant coefficient for their past emissions, 
implying weaker convergence). The lack of support for convergence in the absolute level of 
emissions of medium technology sectors, which consist of the bulk of the Turkish 
manufacturing industries, is clearly the main driving factor in the relatively low degree of 
convergence at the aggregate level (observed via the corresponding beta coefficients above).  



 
When we deal with emission intensities (CO2/VA) instead, we find that the medium-tech and 
high-tech sectors provide evidence for convergence while low-tech sectors do not. It can be 
argued that the convergence as observed within the high technology sectors can be attributed 
to their dynamic and open character. Openness and relative ease in access to advance 
technology would have helped these sectors to internalize the external economies of scale and 
thereby reduce their pollution intensities. On the other hand, capital stocks in the high-tech 
sectors play a positive role in accelerating the growth rate of CO2/VA. 
 
Table 6. Fixed effects estimation results for sectors classified with respect to technology 

 LOWTEC 
Growth of 

MEDTEC 
Growth of 

HITEC 
Growth of 

LOWTEC 
Growth of 

MEDTEC 
Growth of 

HITEC 
Growth of 

 CO2 CO2 CO2 CO2/VA CO2/VA CO2/VA 
CO2_1 -0.426* -0.124 -0.694*** -0.050 -0.009** -0.021** 
 (-1.71) (-1.54) (-2.94) (-1.66) (-2.52) (-2.46) 
VA_1 -0.363 -0.014 -0.054    
 (-0.90) (-0.18) (-0.87)    
KSTOCK_1 0.287 -0.025 -0.131 0.001 -0.001 0.006** 
 (1.30) (-0.38) (-0.92) (0.31) (-1.12) (2.55) 
EN_1 0.218 -0.183 0.376 0.003 0.000 0.001 
 (0.82) (-1.65) (1.33) (1.03) (0.56) (1.55) 
Constant 0.499 3.416*** 3.319** 0.189 0.289*** -0.055 
 (0.33) (4.20) (2.62) (0.54) (3.41) (-0.48) 
Observations 54 270 72 54 270 72 
F 1.813 13.199 8.074 2.236 11.565 4.584 
p > F 0.117 0.000 0.000 0.066 0.000 0.001 
r2_o 0.000 0.013 0.075 0.098 0.005 0.015 
t statistics in parentheses. Denotations (F:F-Value, chi2:Chi-Square, p:P-Value, r2_o:Overall R-Square) 
* p < 0.1, ** p < 0.05, *** p < 0.01 
 
 
5. Conclusion 
 
In this paper we searched for the existence and nature of convergence of carbon dioxide 
emissions for the Turkish economy under conditions of uneven growth. We applied a series 
of econometric tests to deduce patterns of convergence, both at the aggregate –economy-wide 
level, as well as across sectors. 
 
The simplest metric we utilized was the measure of standard deviations from the mean, i.e., 
the “σ-convergence”.  This measure was found to indicate convergence in the aggregate.  A 
closer investigation reveals that the main driving factor behind this result had been the 
business cycle.  In particular, the repercussions of the 2009 global crisis are observed to have 
a profound impact on accelerating the convergence of the CO2 emissions by way of evening 
out the fluctuations of the aggregate economic activity.   
 
Second we focused on the dynamics of stochastic convergence. This analysis was carried 
both on the level of CO2 emissions, and also on CO2 intensity, i.e., CO2 per value added 
(CO2/VA). We found that sectorial CO2 emissions per unit of value added depict stochastic 
convergence (when de-trended) corroborating our finding that the CO2 emissions follow the 
business cycle. At the aggregate level of CO2 emissions, however, patterns of convergence 



are dissipated and give way to a diverging trend. We then searched for evidence on 
conditional convergence, the so-called β-convergence. Here we regressed the rate of growth 
of the level of CO2 emissions on the one period lagged value of the following explanatory 
variables: CO2, value added, physical capital stock, and energy utilization. In a second variant 
of this model, the rate of change of CO2/VA intensities were regressed against the per unit 
value added ratios of the same variables, K/VA and EN/VA. Our results implied conditional 
convergence in most of the cases specified. Energy use appeared to be the most prominent 
indicator that drove emissions growth and emission intensity growth in the whole sample. 
 
Finally, we distinguished the aggregate economy under a three-tier sectorial specification 
based on their technology characteristics: low, medium, and high. We find that while the high 
technology sectors display strong convergence, the medium technology sectors –the bulk of 
Turkey’s economy accounting for 80% of the aggregate value added, does not support β-
convergence in CO2 emission levels. Our results further revealed that the physical capital 
stock fails to generate a statistically significant impact on CO2 emissions (except its positive 
role on the high-tech sectors’ emission intensities). This is an unexpected result given the 
rather strong capital intensity of the Turkish growth path, especially over the 2000s. We 
interpret these observations as a result of the lack of any viable de-coupling due to the 
persistent structural reliance on energy resources with heavy coal and fossil intensities. 
 
Several policy implications could be derived from these results. First, since the emission 
growth rates are mostly attributable to the energy intensities in the sectors, it appears 
necessary to reconsider the patterns of energy use taking into account the fact that fossil fuels 
are currently the most dominant energy sources for these sectors. Second, as technology level 
makes a difference in the convergence characteristics, the country could try to transform or 
diversify its technological sophistication towards cleaner options. Last but not the least, a 
sectorial CO2 convergence analysis of this kind might provide insights about the impacts of 
relevant energy and climate policies on industries with differing characteristics with respect 
to technology, capital composition and energy use. 
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Appendix 

 

A1. Turkey’s greenhouse gas emissions by sectors (CO2 equivalent), 1990 – 2013 

(million tonnes)  
 

 

Year 

 

Energy 

Industrial 

processes and 

product use 

Agriculture 
 

Waste 

 

Total 

Change 

compared to 

1990 (%) 

1990 131,6 31,1 41,6 13,9 218,2 

1991 135,6 32,5 42,3 14,5 224,9 3,1 

1992 141,3 31,9 42,5 15,1 230,8 5,8 

1993 149,1 32,3 43,4 15,7 240,5 10,2 

1994 145,6 32,0 40,7 16,3 234,6 7,5 

1995 158,8 33,7 40,2 16,9 249,5 14,4 

1996 173,9 35,4 41,2 17,5 268,0 22,9 

1997 187,0 37,3 39,5 18,3 282,1 29,3 

1998 186,6 37,1 41,3 18,9 283,8 30,1 

1999 186,3 35,8 41,7 19,8 283,7 30,0 

2000 213,8 36,2 40,1 20,7 310,8 42,5 

2001 197,2 36,6 37,4 21,5 292,7 34,1 

2002 205,2 37,8 36,2 22,2 301,3 38,1 

2003 218,2 41,0 37,6 22,8 319,7 46,5 

2004 228,5 43,4 37,5 23,7 333,1 52,7 

2005 251,8 46,9 38,5 24,6 361,7 65,8 

2006 275,1 48,4 39,5 25,6 388,6 78,1 

2007 306,4 50,2 39,0 26,2 421,8 93,4 

2008 294,2 52,6 36,9 26,6 410,4 88,1 

2009 280,5 54,9 38,5 26,9 400,7 83,7 

2010 284,8 60,0 39,8 27,2 411,7 88,7 

2011 297,6 65,6 41,6 27,7 432,5 98,2 

2012 320,8 69,6 46,3 27,6 464,2 112,8 

2013 311,2 72,0 49,8 26,0 459,1 110,4 
Source: TurkStat, Greenhouse Gas Emissions Inventory, 2013 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A2. Codes and classification of the sectors included in the analysis 

 

Code Sector Technology classification 

1 Agriculture, Hunting Forestry and Fishing Primary / Low Technology Sectors 
2 Mining and Quarrying Primary / Low Technology Sectors 
3 Food, Beverages and Tobacco Primary / Low Technology Sectors 
4 Textiles and Textile Products Medium Technology Sectors 
5 Leather and Footwear Medium Technology Sectors 
6 Wood and Products of Wood and Cork Medium Technology Sectors 
7 Pulp, Paper, Printing and Publishing Medium Technology Sectors 
8 Coke, Refined Petroleum and Nuclear Fuel High Technology Sectors 
9 Chemicals and Chemical Products High Technology Sectors 

10 Rubber and Plastics High Technology Sectors 
11 Other Non-Metallic Mineral Medium Technology Sectors 
12 Basic Metals and Fabricated Metal Medium Technology Sectors 
13 Machinery, Nec Medium Technology Sectors 
14 Electrical and Optical Equipment High Technology Sectors 
15 Transport Equipment Medium Technology Sectors 
16 Manufacturing, Nec; Recycling Medium Technology Sectors 
17 Electricity, Gas and Water Supply Medium Technology Sectors 
18 Construction Medium Technology Sectors 
19 Motor Vehicles Medium Technology Sectors 

20 Hotels and Restaurants Medium Technology Sectors 
21 Transport Medium Technology Sectors 

22 Other Economy Medium Technology Sectors 
 

 

A3. Summary Statistics, using the observations for 22 sectors, 1995-2013 
 

Variable Mean Median Minimum Maximum 
CO2 12480.1 5882.59 148.788 156260. 
VA 722.708 361.997 30.4871 6575.96 

KSTOCK 70352.6 28491.0 868.044 440838. 
EN 129908. 73017.7 2140.02 1.47989e+006 

Variable Std. Dev. C.V. Skewness Ex. kurtosis 
CO2 23219.4 1.86051 3.96951 17.6107 
VA 981.395 1.35794 3.05638 11.3172 

KSTOCK 95118.8 1.35203 2.00949 3.07307 
EN 229656. 1.76784 3.92973 16.9772 

Variable 5% Perc. 95% Perc. IQ range Missing obs. 
CO2 331.202 55745.0 11338.5 0 
VA 56.5941 2519.86 618.174 0 

KSTOCK 2281.85 316989. 75118.7 0 
EN 6687.27 545754. 109629. 0 

 

 

 

 



A4. Pesaran (2004) cross-section dependence tests  

 

     Variable    CD-test  p-value   corr   abs(corr) 

    LNCO2        15.51    0.000    0.234    0.422 

    CO2/VA        0.90    0.369    0.014    0.485 

   LNRELCO2   4.04    0.000    0.061    0.473 

Null hypothesis: There is cross-section independence. 


