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Abstract

This paper quantitatively studies the behaviour of major banks’ household deposit fund-

ing in the United Kingdom. We estimate a panel of Bayesian vector autoregressive models

on a unique dataset compiled by the Bank of England, and identify deposit demand and

supply shocks, both to individual banks and in aggregate, using micro-founded sign restric-

tions. Based on the impulse responses, we estimate how much banks would be required

to increase their deposit rates by to cover a deposit gap caused by funding shocks. Banks

generally find it costly to bid-up for deposits to cover a funding gap in the short-run. The

elasticity of household deposits with respect to the interest rate paid is typically of the or-

der of 0.3, indicating that retail deposits are rate-inelastic. But this varies across banks and

the types of shock conditioned on. We also show evidence that banks are more vulnerable

to deposit supply shocks than deposit demand shocks. Historical decompositions uncover

plausible shock dynamics in the historical data.
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1 Introduction

The global financial crisis highlighted fragilities in wholesale funding markets, and at interme-

diaries in those markets on which banks depended for wholesale funding. In September 2007

Northern Rock fell victim to the first run on a bank in the UK since 1878 when it lost access to

the wholesale markets on which it relied for funding, see Shin (2009). Elevated funding costs

have remained a key issue for bankers and policy makers in recent years, as highlighted by a

recent Bank of England publication, see Beau, Hill, Hussain and Nixon (2014). At least partly

in response to funding pressures, a number of banks in the United Kingdom have reviewed

their business models and activities, leading to significant changes to their balance sheets and

funding structures: banks have reduced their reliance on wholesale funding by financing more

of their assets with deposits. The introduction of new liquidity standards under Basel III – the

Liquidity Coverage Ratio (LCR) and Net Stable Funding Ratio (NSFR) – also incentivise banks

to grow their share of retail deposits (retail funding) at the expense of wholesale funding.1

As a result of these changes, it has become increasingly important for policy-makers to be

able to assess the stability of deposit bases against a range of shocks, both to individual banks

and in aggregate, as banks transition towards their new steady-state funding structures. While

a large body of existing literature highlights risks posed by wholesale funding e.g. Acharya,

Gale and Yorulmazer (2011), we seek to draw attention to risks that retail funding may pose

to individual banks and to the banking system as a whole.

This paper contributes to the literature by quantitatively studying the behaviour of house-

hold deposit funding at major UK banks using an empirical macroeconomic methodology. We

exploit a unique dataset, compiled by the Bank of England, covering deposit rates and deposit

balances for UK banks. The data are monthly and cover the period from January 2004 to

December 2013. Together with other time series data, we estimate a panel of linear Bayesian

vector-autoregression (BVAR) regression models employing ‘hierarchical priors’ as described in

Jarocinski (2010). These priors allow us to pool short sample data during estimation, while

preserving dynamic heterogeneity across banks.

To identify structural shocks in the household deposits market, we adopt an ‘agnostic’

approach along the lines of Faust (1998), Canova and De Nicolo (2002), and Uhlig (2005). We

1By way of illustration, under the LCR just 5% of stable retail deposits are assumed to run during the first
30 days following a stress. In contrast, the rate at which unsecured wholesale funding runs is assumed to be in
the range of 75-100%.
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identify shocks by imposing a set of unique micro-founded contemporaneous sign restrictions

when estimating the panel of BVARs. These restrictions are provided by a stylised, one-period

linear partial equilibrium model. The model characterises the behaviour of a representative

household that supplies (retail) deposits to the banking system, and optimally allocates them

across individual banks. The model also captures individual banks’ optimal demand for retail

deposits. This paper simultaneously studies four types of structural shock: (i) idiosyncratic

retail deposit demand shock; (ii) aggregate retail deposit demand shock; (iii) idiosyncratic

retail deposit supply shock; and (iv) aggregate retail deposit supply shock. The first two shocks

work via the banking sector, whereas the latter two come from the household sector.

The empirical model is estimated over the full sample (January 2004 - December 2013). To

account for possible structural changes in banks’ behaviour following the onset of the global

financial crisis, we also conduct split sample analysis. We identify June 2007 as a structural

break in retail deposit markets (shortly before the crisis at Northern Rock). Mindful that the

pre-crisis sample (January 2004 – June 2007) may be too short for estimation, we estimate

the post-crisis sample (July 2007 – December 2013), and proceed to report and compare these

results against data from the full sample. Based on the impulse responses, we construct a

measure called ‘required average increase in deposit rate’ (RAIDR). This is a dynamic measure

designed to quantify how much banks would have had to bid-up their deposit rate by, in order

to raise some fixed quantity of deposits in response to a shock. To adjust for differences in

the pre-crisis and post-crisis periods, we also introduce a measure of the elasticity of household

deposits with respect to the deposit rate to facilitate time-consistent comparisons.

Post-crisis sample estimates across banks and shocks suggest that in order to raise £1 billion

of retail deposits, banks face a median RAIDR in the order of 5 basis points (bps) at the 12-

month horizon, 10bps at the 6-month horizon, and 20 bps at the 3-month horizon: As expected,

the RAIDR is generally decreasing in the length of the time horizon. This implies that when

banks are able to cover their deposit gap with less urgency, they are able to raise their deposit

rates by less than when they are forced to cover the gap over a shorter horizon.

In terms of elasticities, we find that household retail deposits in the UK are rate-inelastic.

Post-crisis sample estimates show that elasticities lie in the range of 0.1 to 0.5 at the 12-month

horizon. Moreover, our results show that elasticities conditional on deposit demand shocks

are larger than those conditional on deposit supply shocks, suggesting that banks find it more

difficult to use deposit rates to mitigate deposit supply shocks.
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By comparing the differences in the impulse responses and the computed metrics in the

full and post-crisis samples, our estimates indirectly show that retail deposit behaviour differs

before and after the financial crisis. For example, the rate-elasticity of retail deposits appears

to have increased slightly following the financial crisis.

Collectively, our findings suggest that a retail-deposit funded bank may find it difficult (and

costly) to attract deposit inflows quickly, but is increasingly able to mitigate shocks when it

can raise retail deposits over longer horizons. This implies that retail-funded banks may need

alternative means of managing shocks (such as adequate liquidity coverage) in place to ensure

they can ride-out cyclical shocks in the short-run. Moreover, our results suggest that policy-

makers and regulators should give further consideration to the impact of deposit supply shocks

as we find that banks are more vulnerable to this type of shock.

Our paper contributes to a growing body of empirical literature that seeks to study bank

funding behaviour. Damar, Meh and Terajima (2013, 2015) study how wholesale funding can

lead to bank procyclicality and the relevant implications to the real economy. Craig and Dinger

(2013) relate deposit market competition to wholesale market conditions and examine their

joint effect of the risk of bank assets. De Haan, van den End and Vermeulen (2015) use a panel

BVAR to study the response of European banks’ lending (volumes and rates) to wholesale

funding shocks, identified by Cholesky decomposition. Our paper differs from theirs in that

we focus on retail funding, and model retail deposit supply and demand shocks, and that our

BVAR analysis omits lending data, due to data constraints and to ensure tractability. Perhaps

closest to our paper is De Greave and Karas (2014): using Russian deposits market data, they

identify ‘bank run shocks’ by imposing both sign and heterogeneity restrictions. Our paper

takes a step further by identifying a full set of deposit demand and supply shocks using sign

restrictions.

This paper is also related to a large empirical literature studying retail banking activities.

De Bondt (2002) provides evidence on retail bank interest rate pass-through using a VECM

framework. McQuinn and Woods (2012) model Irish financial institutions’ corporate deposits

using an error-correction model to infer long-run and short-run dynamics. Rughoo and Saranti

(2014) investigate how the European Union retail banking sector is integrated by studying

deposit and lending rates to the household sector before and after the Global Financial Crisis.

Acharya and Mora (2015) provides evidence that, based on the US data, the traditional view

of the provision of liquidity insurance by banks was possible only because of explicit support
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from the US government.

There is also a significant body of theoretical work which seeks to model retail deposit

markets and infer the behaviour of household deposits. Diamond and Dybvig (1983) provides

a classic reference on bank-runs. Salop (1979) models bank competition spatially: ‘services’

provided by each branch are a function of the spatial distance from where the household is

located. Klemperer (1989) explains how switching costs affect the competitiveness of markets,

the theory of which is applied to the market for bank deposits by Sharpe (1997). Bruche

and Suarez (2009) present a theoretical model that captures how deposit insurance can create

asymmetry between ‘savings rich’ and ‘savings poor’ regions which can lead to a freeze in the

money market. While the literature tends to focus on identifying either deposit demand or

supply shocks, this paper constructs a theoretical model to simultaneously identify structural

demand and supply shocks in the deposits market.

The rest of the paper is structured as follows. Section 2 provides a brief overview of the

modelling approach. Section 3 describes the theoretical model that we use to select the sign

restrictions. Section 4 introduces the dataset and provides a discussion of the panel of BVARs as

a hierarchical model. Sections 5-7 present results and discussion of policy implications, followed

by robustness checks. Section 8 concludes the paper with some discussion of future work.

2 Overview of modelling approach

This short section provides a high-level overview of the two-stage modelling approach that

consists of an empirical model and a theoretical model. We also discuss some of the modelling

choices we make. Subsequent sections describe the models in more detail.

2.1 The empirical model

The first stage of modelling involves the estimation of a linear panel of BVARs. With the

employment of hierarchical priors, this model is particularly well suited to studying a group of

heterogeneous units (banks), and allows us to pool information across banks to make efficient

use of scarce data.2 The lack of comparable data on banks’ wholesale funding activities and

reliable, high-frequency data on banks’ liquid asset holdings constrains our empirical modelling

2The vector error correction model (VECM) is a common tool to study the co-movement of deposit rates, as
in De Bondt (2002). The selection of this model hinges on long-run relationships between variables. There are
two reasons we do not use VECM modelling: (i) our focus is not on modelling joint interest behaviour; (ii) we
find little theoretical backing for our choice variables displaying a long-run co-integrating relationship either.
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choices.

It is well-known that the panel regression residuals are of reduced form and are likely to

be a mixture of economically interpretable shocks. In order to identify the four structural

shocks of interest, we follow the macro-economic literature by imposing sign restrictions on the

contemporaneous impulse responses, i.e. how variables endogenously respond on impact when

structural shocks hit. These sign restrictions are based on a micro-founded theoretical model

which is discussed in the next subsection. We provide answers to policy-relevant questions based

on this impulse response analysis.

2.2 The theoretical model

The second stage of modelling involves the construction of a theoretical model for structural

shock identification. It is motivated by the need to decompose the reduced-form BVAR resid-

uals into the four economically interpretable structural shocks, namely i) idiosyncratic retail

deposit demand shock; (ii) aggregate retail deposit demand shock; (iii) idiosyncratic retail de-

posit supply shock; and (iv) aggregate retail deposit supply shock. As mentioned, we take the

sign restrictions approach backed by a theoretical model.3 While the current macroeconomic

dynamic stochastic general equilibrium (DSGE) model literature has developed sophisticated

models on wholesale banking (Gertler and Kiyotaki 2015, Gertler et al 2015), we have yet seen

a DSGE model simultaneously identifying structural demand and supply shocks in the deposits

market. So we construct a tractable and stylised theoretical model for our own purposes.

We construct a one-period, linear, partial equilibrium model, featuring a representative

household (supplier of deposits) and heterogeneous banks (demanders of deposits). Both the

household and heterogenous banks make optimal decisions on the supply and the demand of

retail deposits. The household ’supplies’ deposits based on a portfolio optimisation problem;

banks ’demand’ deposits to meet funding needs, partly resulting from shocks in non-retail

funding markets.

In light of data constraints and to ensure tractability, we make some modelling assumptions.

In particular, we abstract from the maturity structure of banks’ liabilities and other complexities

of banks’ funding dynamics - such as their ability to liquidate assets. We do not consider any

3Another popular way to identify structural shocks is the use of cholesky decomposition, which makes ad-hoc
assumptions on whether certain variables respond to shocks contemporaneously. Under this identification scheme,
the ordering of variables matter. Since this identification does not enable us to derive the deposit demand and
supply shocks of interest, we do not take this approach.
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theoretical implications of spillover effects from one bank to another either.4

In the following sections we describe the theoretical model and the micro-founded sign

restrictions on the shock identification scheme. We proceed to provide details on the panel of

BVARs and our estimation process.

3 The theoretical model

The theoretical model introduced in this section is used to provide a set of micro-founded sign

restrictions that uniquely identify the demand and supply shocks of interest in the household

retail deposit market.5

3.1 The household’s optimisation problem

The representative household is risk averse and takes all interest rates as given. It is endowed

with some initial wealth, which is divided between cash (governed by an exogenous ‘liquidity

preference’ parameter) and non-cash assets. It then optimally allocates its non-cash wealth to

some combination of a risky asset (e.g. equities) and a risk-free asset —- funds deposited at

banks. This stylised set-up provides a framework in which to study how households rebalance

their non-cash wealth portfolio between risky assets and risk-free deposits.

3.1.1 Supply of aggregate deposits

The household seeks to maximise the risk-adjusted return of its portfolio, given an initial allo-

cation of non-cash wealth. Deposits are treated as the risk-free asset in our set-up —- reflecting

an implicit assumption that all household deposits are covered by deposit insurance.6

Given an initial allocation of wealth w, the household allocates a proportion ϕ to cash and

1−ϕ to non-cash assets, where ϕ is an exogenous parameter governing the household’s liquidity

preference. An exogenous increase in ϕ causes a household to prefer to hold more cash – perhaps

due to a loss of confidence in the banking system. Denote non-cash wealth as wnc = (1− ϕ)w.

4Some readers may argue that a more complex model would capture additional nonlinear features of deposit
behaviour which will make the model realistic. We contend that our one-period theoretical model, rather than
giving a comprehensive explanation of banks’ and households’ behaviour, provides a tractable way to identify
endogenous variable responses on impact as shown in Table 1. Since non-linear features likely set in after the
first period of the shock, a more realistic but complicated theoretical model would likely result in a very similar
contemporaneous identification scheme.

5Hereonin, household deposits are referred to simply as ‘deposits’.
6UK deposits made by private individuals to authorised firms have been protected by the Financial Services

Compensation Scheme up to a limit of £85,000 from 31 December 2010, and the majority of UK household
deposits are covered by this scheme.
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A simple portfolio choice problem is modelled. Given an allocation of non-cash wealth, the

household invests in a portfolio comprising a risky asset and risk-free bank deposits. We denote

sr as the share of wealth invested in risky assets, and sf as the share of wealth invested in

risk-free deposits. By definition, sr + sf = 1. Denote Rr ∼ d (µr, σr) as the random return

of the risky asset, and r as the aggregate return for the risk-free deposits defined in the next

subsection.7 The end-of-period expected portfolio return Rp can be written as:

Rp = rsf +Rrsr (1)

We find sr by exploiting the fact that the variance of the risk-free return is zero. Based on

(1), the variance of end-of-period wealth is:

σ2
p = σ2

rs
2
r

implying:

sr =
σp
σr

(2)

Given non-cash wealth and the standard deviation of returns on the risky asset, the house-

hold chooses to invest a larger share of its wealth in the risky asset if it chooses to have a higher

variance in the return on its portfolio. The share of wealth to be invested in the risk-free asset

is then:

sf = 1− sr = 1− σp
σr

(3)

Denote D as the aggregate deposits supplied by the household. By definition, D = sfw
nc =

sf (1− ϕ)w, and hence:

D =

(
1− σp

σr

)
(1− ϕ)w (4)

which specifies the aggregate supply of deposits8 to the banking system from the household

sector.9

7We assume that banks do not default and the household knows r for certain.
8Equilibrium condition (4) gives us a condition that the aggregate supply of deposits D does not depend on

the prevailing aggregate retail deposit rate r but on risk and liquidity preference parameters. This simplified
condition helps us uniquely identify aggregate and idiosyncratic deposit supply shocks in the model. We stress
that, as explained in the next subsection, the household’s allocation of aggregate deposits across individual banks
does indeed depend on each bank’s deposit rate.

9Substituting (2) and (3) into (1) yields the opportunity set for one risky and risk-free asset: Rp = r+σp
Rr−r
σr

.
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Proposition 1 Equation (4) implies ∂D
∂σp

< 0, ∂D∂ϕ < 0

Proof. Results immediately follow from (4).

We interpret adverse aggregate deposit supply shocks (Agg-DS shock) as either (i)

given a liquidity preference ϕ, the household prefers a riskier investment portfolio (an increase in

σp), probably during times of benign macroeconomic conditions; or (ii) an exogenous increase in

ϕ, resulting in the household preferring to hold more of its wealth as cash —- perhaps following

a drop in confidence in the banking system during times of financial instability.

3.1.2 Supply of deposits to individual banks

We assume that there is a continuum of banks i ∈ [0, 1] which are monopolistic competitors and

hence have a degree of monopoly power. Denote η > 1 as the elasticity of substitution across

banks. The aggregate supply of deposits D is treated as a composite good, and is defined by

the Constant Elasticity of Substitution (CES) aggregator:10

D =

(∫ 1

0
D

1− 1
η

i di

) 1

1− 1
η

(5)

Denote ri as the deposit rate offered by bank i, which the household takes as given. Also

denote ψi ≥ 1 as an exogenous parameter dictating how much the household likes/dislikes bank

i’s deposit ‘service’. We may think about it as the cost to the consumer of travelling to the

bank, or the quality of the bank’s customer service. Since we assume that the household treats

(insured) deposits as risk-free, we do not endogenously link this parameter to the health of the

individual bank’s balance sheet.

Instead, this parameter serves to differentiate between banks by capturing non-price factors.

The closer this value is to one, the more the household ‘likes’ that particular bank. The adjusted

return a household receives from depositing with bank i is ri
ψi

. A household depositing Di
(ri/ψi)

will

receive Di at the end of the period. We interpret an increase in ψi as an adverse idiosyncratic

deposit supply shock (Id-DS shock).11

The household minimises its ‘expenditure’ on deposits subject to supplying a given level of

aggregate deposits. It solves

In the (Rp, σp) space, the slope of the line is described by Rr−r
σr

, also known as the Sharpe ratio.
10Drechsler et al (2014) takes a similar approach in modelling deposits for households.
11This shock is a slightly more general than the ‘bank run shock’ in de Graeve and Karas (2014), that identifies

bank run shocks as adverse deposit supply shocks that hit uninsured banks harder than insured ones in the
Russian deposit market.
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min
Di

∫ 1

0

(
ψi
ri
Di

)
di

subject to (5).

Denote 1
r as the Lagrange multiplier (or the shadow value) to the aggregate deposit con-

straint, where r is interpreted as the aggregate deposit rate. The Lagrangian reads

L =

∫ 1

0

(
ψi
ri
Di

)
di− 1

r

[(∫ 1

0
D

1− 1
η

i di

) 1

1− 1
η −D

]

The first order condition with respect to Di gives:

Di =

(
ri/ψi
r

)η
D (6)

The household’s optimal supply of deposits to bank i is increasing in the adjusted interest

rate relative to the aggregate deposit rate.

In equilibrium, the household will allocate its deposits across banks i and j according to the

relative adjusted deposit rates:

Di

Dj
=

(
ri/ψi
rj/ψj

)η
Substituting (6) into (5) gives the formula for the aggregate deposit rate r:

r =

(∫ 1

0

(
ri
ψi

)η−1

di

) 1
η−1

(7)

Proposition 2 The aggregate supply of deposits from households is independent of the idiosyn-

cratic deposit supply shock, i.e. ∂D
∂ψi

= 0.

Proof. See Appendix.

3.2 Banks’ optimisation problem

Recall that the banking system is comprised of a continuum of banks i ∈ [0, 1] . Banks’ ’demand’

for deposits for retail funding needs are motivated by an optimisation problem between retail

and non-retail funding (e.g. wholesale funding market).

We make simplifying assumptions about the structure of banks’ balance sheets. On the

asset side, banks are assumed to hold a constant loan portfolio, Li. Banks are not able to run
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down (liquid) assets in order to cover liquidity shocks; nor can they raise short-term secured

funding by pledging collateral to the central bank. On the liabilities side, we assume that banks

face a simple portfolio choice between household deposit funding, Di, and ‘other’ funding, Fi.

We abstract from modelling the maturity structure by assuming that all funding lasts for one

period. Since this is a one-period model, banks face a static balance sheet and all household

deposits can be raised in one period. All banks take the central bank’s policy rate as given.

In combination, these assumptions mean that a bank can only respond to shocks by substi-

tuting between deposit funding and non-deposit/other funding. The does not permit a bank to

increase its market share by, for example, building new branches, or improving its online/mobile

banking service. Hence we assume away banks’ ability to influence the parameter ψi.

3.2.1 Demand for deposits

Each bank has monopoly power in setting the deposit rate ri (Di) as it faces an upward sloping

supply curve Di (see (6)). The ‘production’ of deposits incurs a cost Ci (Di). The bank’s

marginal cost, C ′i (Di), is assumed to be increasing in Di (i.e. C ′′i (Di) > 0).

For the purpose of illustration, we can think of ‘other’ funding as interbank borrowing. But

the intuition developed in this section could be applied more generally to sources of funds that

banks can use instead of retail deposits. The interest rate a bank i has to pay for interbank

loans can be decomposed into two components: a global interbank rate r̃ and a bank-specific

spread si. Assume that the spread si = si
(
z, σbi

)
,where s′i

(
σbi
)
> 0 and s′i (z) = φ > 0 across

all banks. The parameter σbi is interpreted as the idiosyncratic riskiness of interbank lending

to bank i, whereas z is interpreted as the riskiness of the UK interbank system as a whole. By

definition, this assumption implies that a change in z will cause the same change in spreads si

for all banks i.

A change in σbi corresponds to an idiosyncratic deposit demand shock (Id-DD shock).

Specifically, a rise in the value of σbi is interpreted as an increase in the riskiness of lending to

bank i in ‘other’ markets (e.g. interbank markets), prompting that particular bank to re-balance

its liabilities portfolio away from ‘other’ funding, towards deposit funding. Moreover, this shock

will also increase the bank spread si for bank i only. In contrast, an aggregate deposit

demand shock (Agg-DD shock) is characterised by an increase in the common component

z, which drives up bank spreads si for all banks symmetrically, prompting all banks to demand

additional deposits.
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Defining the average spread across banks s =
∫ 1

0 si
(
z, σbi

)
di and an individual bank’s spread

relative to the market average spread s̃i = si − s, we arrive at the following proposition:

Proposition 3 It follows that ∂s̃i
∂z = 0 and ∂s̃i

∂σbi
> 0 for a particular bank i.

Proof. See appendix.

This proposition states that the relative interbank spread for an individual bank goes up

when it faces a bank-specific wholesale funding shock (a rise in σbi ), whereas the relative spread

remains unchanged when the wholesale funding shock affects the banking system as a whole (a

rise in z).

Bank i attempts to minimise its funding cost function, which includes the total cost of retail

funding, wholesale funding and the cost of producing deposits, subject to the balance sheet

constraint:

min
Di,Fi

∇ = ri (Di)Di +
(
r̃ + si

(
z, σbi

))
Fi + Ci (Di) (8)

subject to:

Li = Di + Fi (9)

The first order condition reads:

∂ri (Di)

∂Di
Di + ri (Di) + C ′i (Di) = r̃ + si

(
z, σbi

)
(10)

which implicitly defines the downward sloping demand for deposits of each bank i.

3.3 Retail deposits equilibrium and comparative statics

Equilibrium deposit rate r∗i and deposit balance D∗i for bank i can be found by solving (6) and

(10), taking r and D as given. We derive comparative statics with respect to the parameters of

interest in the model.

Proposition 4 Based on the deposit equilibrium conditions for bank i, we derive the following

comparative statics for its equilibrium level of deposits D∗i :

∂D∗i
∂σbi

> 0,
∂D∗i
∂z

> 0,
∂D∗i
∂ψi

< 0,
∂D∗i
∂σp

< 0,
∂D∗i
∂ϕ

< 0
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Table 1: Summary of identifying restrictions

Id-DD Shock Agg-DD shock Id-DS Shock Agg-DS Shock
(σbi ↑) (z ↑) (ψi ↑) (σp ↑, ϕ ↑)

Di >0 >0 <0 <0
ri >0 >0 >0 >0
D ? ? =0 <0
s̃i > =0 ? ?

Note: Di refers to bank i’s stock of deposits, and ri to its deposit rate

D refers to aggregate household deposits, and s̃i is bank i’s
‘other’ funding spread, relative to the market average spread.

‘?’ indicates no sign restriction.

Proof. See appendix.

Proposition 5 Based on the deposit equilibrium conditions for bank i, we derive the following

comparative statics for its equilibrium deposit rate r∗i :

∂r∗i
∂σbi

> 0,
∂r∗i
∂z

> 0,
∂r∗i
∂ψi

> 0,
∂r∗i
∂σp

> 0,
∂r∗i
∂ϕ

> 0

Proof. See appendix.

3.4 Sign restrictions for shock identification

The theoretical model and accompanying comparative statics provide a set of micro-founded

restrictions to uniquely identify the contemporaneous effects brought about by the four types of

structural shocks. Table 1 summarises the shock identification scheme, which can be described

in words as:

• A deposit demand shock to an individual bank (Id-DD shock) is associated with an increase

in the interbank spread of the bank relative to other banks in the system. The bank

responds by bidding up for deposits, closing the funding gap by attracting additional

deposits.

• A deposit demand shock to the banking system in aggregate (Agg-DD shock) is defined

as a parallel shift in all banks’ interbank spreads. Under this definition, relative spreads

between banks are unchanged. All other effects are similar to an Id-DD shock.

• A deposit supply shock to an individual bank leads to an outflow of deposits (Id-DS shock)

and causes it to increase its deposit rate. The aggregate deposit level is not affected:
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outflows are assumed to be redistributed across the banking system.

• A deposit supply shock to the banking system in aggregate (Agg-DS shock) is similar

in nature to the individual deposit supply shock – the only difference being the negative

impact on aggregate deposits. The decrease in aggregate deposits can be caused by either:

(i) households rebalancing their portfolios towards risky investments, typically in benign

macroeconomic conditions; or (ii) households preferring to hold more cash, which could

occur, for example, during a crisis of confidence in the banking system.

4 The empirical model

4.1 Panels of VARs as a hierarchical linear model

Vector autoregressive (VAR) models have been widely used in the empirical macro literature to

model economic dynamics and identify structural shocks. As a researcher may also be interested

in studying a group of heterogenous units (of the same underlying economic model), panel VARs

which pool information across units have also been developed to make efficient use of scarce

data for estimation.

Using i = 1, ..., I to represent each bank, j = 1, ..., p to represent the number of lags, and

t = 1, ..., T to represent the time dimension of the data, we specify the panel-VAR model as

follows:

Yi,t =

p∑
j=1

Ai,jYi,t−j +BiXt + Cizi,t + ui,t (11)

where Yi,t = [Di,t; ri,t; Dt; s̃i,t]
′ is a vector of four endogenous variables discussed in the

theoretical model, Xt is a vector of exogenous variables common across banks, zi,t represents the

bank-specific constant terms (bank fixed effects), and ui,t ∼ N (0,Σi) are reduced form shocks.

In this set-up, we assume away any static or dynamic interdependencies between banks, but we

do preserve dynamic heterogeneity in the form of ‘partial pooling’.

We propose the use of the hierarchical linear model of Gelman, Carlin, Stern and Rubin

(2003), following Jarocinski (2010), for two reasons: the short data sample necessitates some

form of pooling, and the assumption that bank coefficients shrink to some common mean is

reasonable given the sample of banks under study.

The first stage of hierarchy is to formalise the idea of ‘similarity’. An exchangeable prior is
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imposed which specifies that banks’ coefficients are assumed to be centred at a common mean.

This prior shrinks the bank coefficients to some common mean. The second stage of hierarchy

involves the ‘hypervariance’, a hyperprior about the prior parameters: it governs the common

mean and the variance of bank coefficients around the common mean.

The hierarchical linear model allows us to specify the priors in the second stage of the

hierarchy as non-informative, and let the data inform the posterior mean and hypervariance,

given the assumed likelihood and prior structure. A greater degree of heterogeneity in the

estimated bank coefficients implies that the posterior probability of a large hypervariance will

be higher. Bank models which are more tightly estimated receive relatively more weight in the

posterior common mean, compared to those in which the estimates are less precise.

We specify non-informative priors for banks’ fixed effects (zi,t) and the common mean of the

coefficients Ai,j and Bi. Exchangeable priors are imposed for the endogenous variables (Yi,t−j)

and common exogenous variables (Xt). In line with Jarocinski (2010), each of the diagonal

entries of the hypervariance matrix is specified by the coefficient’s variance, adjusted for the

size of the coefficient. All off-diagonal entries are set to zero. The variances are then scaled

by a common parameter λ, which determines the overall tightness of the exchangeable prior.

The econometrician imposes priors on λ, whose posterior distribution will be determined by the

data and the priors. If the econometrician imposes strong priors such that the parameter λ is

equal to zero, the estimates will be equivalent to the full pooling of information across banks.

In contrast, imposing λ to centre around large values will result in each bank’s model to be

farther from the common mean. As noted by Jarocinski (2010), the estimation supposes that

there is some intermediate range for λ, and the underlying data play a role in determining the

posterior distribution of λ which tends to be a very small number. We will discuss our priors

in the next section.

4.2 Data and estimation details

4.2.1 Endogenous variables

The empirical estimation in this paper is based on a unique confidential dataset compiled by

the Bank of England. Effective deposit rates and deposit balances are collected from a sample

of institutions that collectively account for at least 75% of Sterling household deposits in the

UK. Effective rates are calculated as a function of average loan/deposit balances and interest
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Table 2: List of variables and data

Variable Data used for estimation for bank i

Di Monthly percent changes (growth rate) of individual bank deposit data (%)
ri Effective household deposit rate - Bank Rate (deposit spread,%)
D Monthly percent changes of Household M4 (%)
s̃i Individual bank’s 5-year Euro Senior CDS data - average market spread (basis points)

payable/receivable on those balances.12 The estimation makes use of total household deposit

data (i.e. the stock of household deposits) and effective household deposit rates. Individual

banks’ stocks of deposits are converted into monthly percent changes and become the variable

Di. Four banks are used in our analysis.

To control for the impact of monetary policy on deposit rates, we express deposit rates as a

spread over the risk-free rate in our empirical implementation for ri. Specifically, we define the

deposit spread as the difference between the effective household deposit rate and the central

bank policy rate (Bank rate).13

We use monthly percentage changes to household M4 to proxy for aggregate deposits D.This

set-up allows for the interpretation of results in the most aggregate sense: responses to each

bank are measured against the rest of the banking system, rather than just the other banks for

which deposit balances are available.14

The spreads on other funding, si, are proxied by 5-year Euro-denominated Senior CDS

data. The average market spread is a simple average of CDS spreads across the banks. Table

2 summarises the data and the variables used.

4.2.2 Control variables

We also include a selection of variables, Xt, in the regression in order to control for exogenous

macroeconomic conditions on the retail deposit market. We include the Bank of England’s

policy rate and the monthly growth rate of GDP (as estimated by the National Institute of

Economic and Social Research). To proxy for international wholesale funding conditions, we

also include the ‘Merrill Option Volatility Estimate’ index which measures the implied interest

12For more information on effective rates, see http://www.bankofengland.co.uk/statistics/Pages/iadb/

notesiadb/effective_int.aspx.
13The model is partial equilibrium, and monetary policy is taken as given. This means that subtracting the

Central Bank policy rate from the deposit rate results only in a change in the level. Neither the optimal conditions
for deposit supply nor the comparative statics listed in proposition 5 are affected.

14Similar results are obtained if we simply sum balances across banks to proxy for aggregate deposits.
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Table 3: Summary statistics of the panel data on total retail deposits and rates

Full sample (04M1-13M12) Post-crisis sample (07M7-13M12)
Avg stock Avg rate paid Avg mthly Avg stock Avg rate paid Avg mthly
of deposits on deposit growth of deposits on deposit growth

(£bn) stock (bps) in stock (%) (£bn) stock (bps) in stock (%)

Unweighted
mean 127.4 210 0.80 138.8 170 0.40

Weighted
mean 159.3 211 0.67 172.3 175 0.35

Source: Bank of England.

The weighted mean is computed by weighing the statistics by the individual bank’s relative share

of household deposits in the data samples. Four banks are included in the sample.

rate volatility in the US market.

4.2.3 Estimation, priors and shocks identification

We estimate the model using the full sample (Jan 2004 - Dec 2013) and the post-crisis sample

(Jul 2007 - Dec 2013). Table 3 reports the summary statistics for the dataset. We resort to

reporting averages in order to preserve the anonymity of banks.

We estimate the panel-VAR model (11) with six lags (i.e. p = 6).15 Each Gibbs simulation

gives us estimates of the reduced-form innovations ui,t for each bank i. The shock identification

scheme (Table 1) is imposed using Arias, Rubio-Ramirez and Waggoner (2014) on these inno-

vations to identify the four structural shocks of interest, and to compute the impulse-response

functions.16. With a range of loose priors on λ, we find that this parameter converges to pos-

terior median of the distribution of
√
λ centres at 2x10−5, with standard deviation at 5x10−6.

As robustness checks, we also consider pooled-estimation (by imposing strong priors such that

λ = 0) and bank-by-bank estimation (by imposing strong priors such that λ being a relatively

big number) and report the relevant results. Finally, convergence is monitored following Geweke

(1992).17

15The choice of this lag number reflects our consideration of properly capturing the model dynamics and the
limited data sample. Ivanov and Kilian (2005) provides a survey on lag order selection and finds that most of
the papers use at least 6 lags for monthly VAR models.

16For estimation, 1,020,000 draws are executed with the first 20,000 draws treated as burn-in. Every 1000th
draw is retained for impulse response analysis and inference.

17Geweke (1992) proposes a Z-score, which tests whether the mean of the first 10% of The Markov chains and
the mean of the last 50% of the sequence are equal, taking into account potential autocorrelation in the chain.
In converged chains, Z-scores should have a standard normal distribution. The Z-score for λ in our estimation is
not larger than 0.1 in both samples, hence indicating convergence.
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5 Impulse responses

The model developed in this paper allows us to investigate banks’ endogenous responses to

cyclical shocks, because impulse responses (functions of the panel BVAR coefficients and our

structural shock identification) summarise the dynamic transmission of structural shocks.18

Figure 1a illustrates a stylised deposit growth dynamic, where the level of deposit balances

initially grows approximately log-linearly in steady state. Cyclical deposit demand or supply

shocks create deposit gaps which a bank must close by raising additional deposits. Figure 1b

shows a set of illustrative impulse responses fluctuating around the steady state trend growth.

Deposit demand and deposit supply shocks hit at t0, both of which require the banks to raise

their deposit rates to bid-up for deposits. The growth rate of deposits deviates from trend

temporarily, as a result of shocks and banks’ mitigating actions, before returning to zero (i.e.

no cyclical deviation) at time th. In this paper, we focus on studying the endogenous responses

of retail deposit spreads and retail deposit growth rates.19

Figures 2 and 3 display the impulse responses of retail deposit spreads and deposit growth

rates for an anonymous bank in the full and post-crisis data samples. Both variables are

reported in the unit of percentage point (pp). The results are presented such that deposit

growth is normalised on impact to an increase of 1 percentage point for deposit demand shocks

(as in Figure 2), and to a decrease of 1 percentage point for deposit supply shocks (as in Figure

3). In other words, Figure 2 displays a scenario of adverse wholesale funding shocks which,

in equilibrium, cause banks to attract more retail deposits by raising retail deposit spreads,

whereas Figure 3 shows a scenario of adverse retail funding shocks which, in equilibrium, lead

banks to increase their retail deposit spreads. Green lines denote the full-sample results. Black

lines represent the post-crisis sample results.20

18The system modelled is assumed to be at steady-state, absent cyclical shocks and with deposit stocks growing
at some ‘trend’ rate. The emergence of cyclical shocks (impulses) perturbs the system, generating endogenous
responses of modelled variables. Implicit in our modelling is the assumption that the cyclical shocks are small
enough to be approximated by our linear empirical and theoretical models.

19Recall from Section 3 that the model set-up restricts banks’ responses so that the interest rate paid on
deposits is the only ‘lever’ banks can pull to mitigate the impact of these structural shocks.

20The use of sign restrictions can only identify the size of shocks up to a proportional constant because of its
set-identification properties, i.e. it admits a set of models satisfying the sign restrictions. We are not able to
compare the size of structural shocks across banks.
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5.1 Deposit demand shocks

Figure 2 displays the impulse responses corresponding to idiosyncratic (top panel) and aggregate

(bottom panel) deposit demand shocks. The response of deposit growth rate appears to be

similar across the two samples for both shocks. The increase in deposit growth rate is not very

persistent: growth rates quickly revert to their steady-state value. This is particularly true in

the full sample.

5.2 Deposit supply shocks

Figure 3 shows evidence that growth in retail deposits in the post-crisis sample (black lines)

is higher in the first six months after supply shocks hit. This difference is especially stark for

idiosyncratic deposit supply shocks (top left panel), which show that this bank struggles to

generate positive deposit growth in the full sample. It is also interesting to observe that this

bank experiences a significant outflow of retail deposits six months after the supply shocks hit

in both samples. Retail deposit spreads rise more on impact, but quickly revert to trend after

six months in the post-crisis sample.

5.3 General discussion

Impulse responses across banks display heterogeneity in the level and degree of significance.21

Interestingly, the shapes of the responses are consistently different between data samples – as

seen in Figures 2 and 3. This indirectly suggests that deposit behaviour is structurally different

before and after the financial crisis.

Two reasons potentially explain the differences across the samples: (i) The composition

of banks’ funding has changed as bank’s business models have changed following the global

financial crisis; and (ii) the degree of household risk aversion rose sharply during the crisis and

has been slow to unwind. As a result, aggregate deposit supply is likely to be less constrained

in the post-crisis period.

We transform these dynamic responses into two metrics in the following section to aid our

interpretation of them.

21Impulse responses for the other three banks are shown in a separate chart appendix.
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6 Two computed metrics based on impulse responses

The sensitivity of deposit balances to changes in deposit rates is relevant for the likely evolution

of banks’ funding costs, and hence the future profitability of banks. If the sensitivity varies

significantly across different shocks, this would be useful information to provide to policy makers

for the purpose of assessing the riskiness of deposit bases in different scenarios, as well as

informing quantitative models of bank resilience (including stress tests). To address questions

of this nature, we introduce two new metrics that capture the sensitivity of deposit balances to

deposit rates: the required average increase in deposit rate, and the dynamic deposit elasticity

with respect to the deposit rate. Both metrics are based on impulse responses.22

6.1 Required average increase in deposit rate

When a bank raises its deposit rate to mitigate the effect of a cyclical shock, a key question

to ask is by how much a bank has to bid up its average deposit rate to close the ’funding’ gap

over a certain horizon. We call this the required average increase in deposit rate (RAIDR).

Conditional on a structural shock and a horizon of h months, RAIDR is computed by:

RAIDRh =
Average change in deposit rates over h months (in bps)

Cumulative change in deposits over h months (£bn)
(12)

For visual comparison, we plot RAIDRs across the full range of the time horizon to form

RAIDR curves. We consider the horizon h to be 3, 6, 9 and 12 months.23

6.2 Dynamic deposit elasticities

As RAIDR results are potentially influenced by the steady-state levels of interest rates and

deposit balances, they are less useful for comparisons across time periods. As shown in Table

3, banks pay lower retail deposit rates in the post-crisis period and the growth rate of deposit

balances is also lower. To control for these inter-period differences, we propose a second metric:

the h-month deposit rate elasticity, conditional on a structural shock for a particular bank:

22It is important to note that both metrics are computed based on the cyclical increase in the stock of deposits;
the trend growth of deposits is excluded from these calculations.

23We also consider a slight variant of RAIDR curves normalised by one percent of the average size of the stock
of deposits of the bank over each sample. This is to take into account of the relative size of household deposit
stocks (market share of deposits) held by each bank. Since the results are very similar, we report them in a
separate chart appendix.
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ηh =
Cumulative change in deposits over h months (in percent)

Average change in deposit rate over h months (in percent)
(13)

The conditional elasticity measures, relative to the steady state, how responsive the growth

in deposits (measured in percent) is with respect to the average change in retail deposit rate

(measured in percent) over a given time horizon. For example, ηh = 1 implies that when a shock

hits now, an increase in the deposit rate of one percent from its steady state level, maintained

over h months, leads to a one percent increase in the stock of deposits over and above the trend

growth of deposits.

6.3 Results and discussion

This section summarises and discusses the results based on the two metrics outlined above.

These are plotted in Figures 4 and 5. We report the highest and lowest values in the sample

(denoted by dotted lines), and the average value weighted by individual bank’s relative share of

household deposits in the sample. Full sample results are represented by green lines; post-crisis

sample results are in black. By comparing these two sets of results, we make indirect inferences

about deposit behaviour in the UK before and after the financial crisis.

6.3.1 Idiosyncratic and aggregate deposit demand shocks

The top panel of Figure 4 displays RAIDR curves for both types of demand shocks. These

curves are downward sloping for all banks in both data samples. In the post-crisis period,

RAIDRs start at a level of 15 bps at h = 3, and fall to around 3 bps at h = 12. RAIDRs are

lower across the horizon post-crisis, implying that banks find it relatively easier to raise retail

deposits in response to deposit demand shocks in this period.

We also observe a steep, downward sloping RAIDR curve for idiosyncratic deposit demand

shocks in the full-sample results (top left panel). One sample bank’s RAIDR is unusually high

at h = 3, taking a value in excess of 200 bps. We interpret this as banks being unable to mitigate

the shock by using deposit rates to close the resulting deposit gap. Rather, these banks may

have to resort to non-price mitigants, such as selling liquid assets, to cover these shocks.

In the post-crisis period, deposit responses are less different across banks, i.e. RAIDR curves

are more closely clustered. This contrasts with the full-sample results, which show a much wider

range of RAIDR values across all horizons, particularly for idiosyncratic deposit demand shocks.
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The top panel of Figure 5 shows the dynamic conditional deposit elasticities conditional on

two types of demand shocks. Values are generally smaller than one, implying that bank deposits

are rate-inelastic. There has been an increase in elasticities for idiosyncratic demand shocks in

the post-crisis sample, but elasticities for aggregate demand shocks are strikingly similar across

both samples.

6.3.2 Idiosyncratic deposit supply shocks

The bottom left panel of Figure 4 shows that, when they face bank-specific deposit outflow

shocks, banks have have to persistently impose a higher deposit rate rise in the full sample

results but not in the post-crisis sample. We infer that there were challenges for banks to raise

deposits in response to this type of shock before the crisis. This is consistent with our earlier

comments on the impulse responses that show that banks struggle to generate positive deposit

growth (top left panel of Figure 3).

Consistent with the RAIDR estimates, retail deposits conditional on this shock are found

to be perfectly inelastic in the full sample (lower left panel of Figure 5). Deposit elasticities

increase in the post-crisis sample, but are still very rate-inelastic as the weighted elasticity is

just 0.12 for the 12-month horizon.

6.3.3 Aggregate deposit supply shocks

As presented in the lower right panel of Figure 4, RAIDR curves are not decreasing in the

length of the horizon in the full-sample results, in particular there is a jump in the RAIDR at

the 9-month horizon. In contrast, the RAIDR curves are strictly decreasing in the post-crisis

sample results, and they are comparable to the RAIDR results with respect to deposit demand

shocks. Conditional elasticities are also significantly larger in the post-crisis data (lower right

panel of Figure 5).

However, we should point out one important caveat in the results: our model is likely to

underestimate the difficulty banks face in retaining deposits in response to aggregate deposit

supply shocks due to the absence of spill-over effects. It is not possible for all banks to close

a deposit gap simultaneously. Through changing their deposit rates to attract deposits, banks

effectively ‘steal’ deposits from elsewhere in the banking system: widening the deposit gap of

other banks. This dynamic is likely to lead to other banks bidding up in response, making it

difficult for banks to use deposit rates to attract net inflows of deposits.
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6.3.4 Policy implications

The above estimates provide useful information for policy makers. First, in order to raise one

billion pounds of retail deposits, banks face a median RAIDR in the order of 5 bps at the

12-month horizon, 10bps at the 6-month horizon, and 20 bps at the 3-month horizon, when

we compare post-crisis sample RAIDR estimates across banks and shocks. In other words, the

difference in RAIDR to close a deposit gap over a 3 month horizon compared to a 12 month

horizon is around a factor of 4. This reflects the fact that deposits are typically difficult to raise

quickly. This observation is further reinforced by the finding that deposits are rate-inelastic.

For the post-crisis sample, the 12-month rate-elasticity ranges from around 0.1 to 0.5 across

banks and shocks and typically takes a value around 0.3. This implies that a 1% increase in the

deposit rate, maintained over 12 months, is associated with an increase in the stock of deposits,

over and above the trend growth of deposits, of around 0.3% over the same horizon.

Second, to close a deposit gap equivalent to 1% of total deposits opened up by an idiosyn-

cratic deposit demand shock, over a 12-month horizon, a bank must increase the rate on the

stock of deposits by around 5 bps post-crisis (the median of weighted RAIDRs post-crisis). To

put that in perspective, a bank with a deposit base of £50bn would incur an additional £0.25

bn per annum in interest expense. This provides one simple measure of the cost of a shock24

and may be useful for assessing banks’ resilience to shocks.

Third, evidence suggests that, although deposit rate-elasticity has increased in the post-

crisis period, rate-elasticities with respect to deposit supply shocks are lower when compared

to deposit demand shocks. Moreover, as discussed, our model may have under-estimated the

true RAIDR conditional on aggregate deposit supply shocks because of the absence of spillover

effects.

6.4 Robustness checks

We implement bank-by-bank and pooled-data estimation as robustness checks. We should note

that pooling the data ignores bank-specific differences, whereas bank-by-bank estimation may

produce biased estimates as the data sample is relatively short. Nevertheless, there is some

merit in comparing them against our baseline results. The corresponding RAIDR curves are

reported in Tables 4 and 5.

24In practice, banks have a range of options, including non-price options, available to them when trying to
mitigate these shocks.

23



We generally see downward sloping RAIDR curves in the robustness checks exercises, espe-

cially for deposit demand shocks. It is still the case that deposits are less rate-elastic conditional

on deposit supply shocks. Bank-by-bank results show that elasticities range widely, which is

not surprising when there is no pooling across the short data sample. Overall, we are reassured

that the baseline results are reasonably robust.

7 Historical decomposition

Historical decomposition is a useful technique for illustrating the historic paths of observed val-

ues of the endogenous variables in terms of the structural shocks and the path of the exogenous

variables. This allows us to trace which of the structural shocks were driving movements in

endogenous variables at different points in time. We can cross-check these descriptions with

qualitative studies of key points in history as a means of validating the model’s results.

In the interest of brevity, we only report results of the historical decomposition of two

endogenous variables: retail deposit growth rates and the relative CDS of some banks in the

post-crisis sample. The contributions of the structural shocks to the observed data series are

represented by coloured bars. By definition, the sum of the heights of the coloured bars equates

to the value of the observed data. To preserve confidentiality and anonymity, neither the

observed data series nor the y-axis labels are plotted.

7.1 Retail deposit growth

Figures 6 and 7 display the historical decomposition of retail deposit growth rates of two anony-

mous banks, which we call bank A and bank B. We observe that:

• In 2008Q3, aggregate deposit supply shocks largely explain the fall in deposit growth for

both banks. The model apparently captures a deposit flight that affected banks (modelled

by the model parameter ϕ), indicating that a flight-to-cash may have occurred at the onset

of the global financial crisis.

• For bank A, aggregate deposit demand shocks play a key role in explaining the change in

retail deposits between 2009 and 2013. For most of the quarters since 2010, the increase

in deposit flow is explained by positive aggregate deposit demand shocks. This likely is

explained by this bank substituting away from non-deposit funding (wholesale funding)

sources.
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• The increase in retail deposit flow experienced by bank B between 2009 and 2010, and

especially the sharp increase in 2009Q2-3 and 2010Q4, is largely explained by aggregate

deposit demand shock. We take this as evidence that bank B was competing harder

for deposits because it was finding it increasingly difficult to raise alternative sources of

funding such as wholesale funding. Interestingly, this trend is reversed after 2011, in

contrast to Bank A.

7.2 Relative CDS

Figures 8 and 9 illustrate the historical decomposition for the relative CDS spreads of two

anonymous banks, bank X and bank Y.

• Bank X’s CDS spread rises relative to the other UK banks in 2008 and early 2009. This can

be largely explained by positive idiosyncratic deposit demand shocks (caused by adverse

idiosyncratic wholesale funding conditions), and to some extent, aggregate deposit supply

shocks. The main driving forces behind the fall in its CDS spread over the course of 2010

and 2012 are negative idiosyncratic deposit demand shocks, i.e. improving bank-specific

wholesale funding conditions.

• In contrast, idiosyncratic deposit supply shocks play an important role in explaining the

rise in the relative CDS spreads of bank Y, especially in the period of 2009 and 2012.

Similarly, the subsequent decline in relative CDS spreads after 2012 is largely attributable

to this shock. This likely suggests that households lost confidence in this bank (relative

to the other UK banks) following the financial crisis.

8 Conclusion and future work

We have presented a quantitative study on retail deposit behaviour at major banks in the UK.

We take advantage of a confidential dataset of deposit rates and balances for four UK banks,

that starts in January 2004. Having estimated a panel of BVARs with hierarchical priors, we

uncover deposit demand and supply shocks, both to individual banks and in aggregate, from

micro-founded sign restrictions derived from a stylised partial equilibrium model. Based on

the impulse response functions, we develop two metrics to estimate the cost for banks to close

deposit gaps opened up following cyclical shocks. To account for the possible structural break

in the deposit market behaviours during the financial crisis, we carry out split-sample analysis.
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We report and compare the results for the ‘full-sample’ and ‘post-crisis’ periods, highlighting the

fact that differences may provide (indirect) empirical support for a possible structural change

in household deposit behaviour in the wake of the financial crisis.

We present some new and interesting empirical results. Our estimates show that when banks

are able to cover their deposit gap with less urgency, they are able to raise their deposit rates

by less than when they are forced to cover the gap over a shorter horizon. UK retail deposits

are also shown to be rate-inelastic. Our post-crisis sample estimates show that elasticities lie

at the range of 0.1 to 0.5 at the 12-month horizon. Moreover, our results show that elasticities

conditional on deposits demand shocks are larger than those conditional on deposit supply

shocks, suggesting that banks are more vulnerable to deposit supply shocks.

We recognise that there is scope for further work on this topic. In particular, our modelling

framework could be enhanced in a number of ways. One area for future work is the introduction

of non-linearities, including non-linear funding costs, spill-over effects or even bank defaults,

to our theoretical and empirical models. Another avenue to explore is the relaxation of the

restrictive assumptions made when modelling banks’ balance sheets. For example, banks could

be allowed to accumulate liquid assets which can be easily converted to cash when they face

funding shortfalls. We leave these extensions to future research.
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Appendix
Proof of Proposition 2
By chain rule, we rewrite

∂D

∂ψi
=
∂D

∂r

∂r

∂ψi
= 0

Since the equilibrium aggregate deposit is not a function of r as shown in equation (4),
implying that ∂D

∂r = 0, results follow.

Proof of Proposition 3
Note that ∂s̃i

∂z = ∂
∂z (si − s) = φ−

∫ 1
0 φdi = 0.

For a change in σbi of bank i, s′i
(
σbi
)
> 0 but s′j

(
σbi
)

= 0, ∀j 6= i. The market average spread
s will move less than one-for-one compared with the individual bank spread si. Therefore
∂s̃i
∂σbi

= ∂
∂σbi

(si − s) = s′i
(
σbi
)
−
∫ 1

0 s
′
j

(
σbj

)
dj > 0.

Proof of Proposition 4
Considering the equilibrium deposit demand (10), and the equilibrium supply of aggregate

deposit (4), as well as the following two equations derived from the equilibrium supply of deposits
to an individual bank i(6):

ri (Di) = ψir

(
Di

D

) 1
η

∂ri (Di)

∂Di
=
ψir

ηD

(
Di

D

) 1
η
−1

we obtain the equilibrium condition

ψir

(
1 +

1

η

) Di

(1− ϕ)w
(

1− σp
σr

)
 1
η

+ C ′i (Di) = r̃ + si

(
z, σbi

)
(14)

This is a non-linear equation in Di. Define ∆ = 1− σp
σr
> 0, and recall our assumption that

C ′′i (Di) > 0 and s′i
(
σbi
)
> 0. By implicit function theorem, we derive the following derivatives
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∂Di

∂ϕ
=

rψi

(
1 + 1
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1
η
Di
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Proof of Proposition 5
Similarly, by plugging (6) into (14), we can solve for the equilibrium deposit rate:

ψir

(
1 +

1

η

)[
Di

D

] 1
η

+ C ′i (Di) = r̃ + si

(
z, σbi

)
(

1 +
1

η

)
ri + C ′i

((
ri/ψi
r

)η
(1− ϕ)w

(
1− σp

σr

))
= r̃ + si

(
z, σbi

)
which is also a non-linear equation in ri. Again by implicit function theorem, we derive the

relevant derivatives:

∂ri

∂σbi
=

s′i
(
σbi
)

1 + 1
η + C ′′i (Di)

η(1−ϕ)w
ψir

(
ri/ψi
r

)η−1 (
1− σp

σr

) > 0

∂ri
∂z

=
1

1 + 1
η + C ′′i (Di)

η(1−ϕ)w
ψir

(
ri/ψi
r

)η−1 (
1− σp

σr

) > 0

∂ri
∂ψi

=
s′i (ψi) + C ′′i (Di) (1− ϕ)wη

(
1− σp

σr

)
ri
ψ2
i r

(
ri
ψir

)η−1

1 + 1
η + C ′′i (Di)

η(1−ϕ)w
ψir

(
ri/ψi
r

)η−1 (
1− σp

σr

) > 0

∂ri
∂σp

=
C ′′i (Di)

(1−ϕ)w
(

1−σp
σr

)
σ2
r

(
ri/ψi
r

)η
1 + 1

η + C ′′i (Di)
η(1−ϕ)w
ψir

(
ri/ψi
r

)η−1 (
1− σp

σr

) > 0

∂ri
∂ϕ

=
C ′′i (Di)

w
(

1−σp
σr

)
σ2
r

(
ri/ψi
r

)η
1 + 1

η + C ′′i (Di)
η(1−ϕ)w
ψir

(
ri/ψi
r

)η−1 (
1− σp

σr

) > 0
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Figure 1a: A stylised dynamic for household deposits in level.

Figure 1b: Intuitive impulse responses of the deposit growth corresponding to a funding shortfall
caused by deposit demand and supply shocks, corresponding to the descriptions in Figure 1a.

31



0
2

4
6

8
10

12
−

1

−
0.

50

0.
51

1.
52

m
on

th
s

IR
 o

f d
ep

os
it 

gr
ow

th
 r

at
e,

 Id
−

D
D

 s
ho

ck

pp

0
2

4
6

8
10

12

0

0.
2

0.
4

0.
6

0.
8

m
on

th
s

IR
 o

f r
et

ai
l d

ep
os

it 
sp

re
ad

s,
 Id

−
D

D
 s

ho
ck

pp

0
2

4
6

8
10

12
−

1

−
0.

50

0.
51

1.
52

m
on

th
s

IR
 o

f d
ep

os
it 

gr
ow

th
 r

at
e,

 A
gg

−
D

D
 s

ho
ck

pp

0
2

4
6

8
10

12

0

0.
2

0.
4

0.
6

0.
8

m
on

th
s

IR
 o

f r
et

ai
l d

ep
os

it 
sp

re
ad

s,
 A

gg
−

D
D

 s
ho

ck
,

pp
F

ig
u

re
2
:

Im
p

u
ls

e
re

sp
on

se
s

of
d

ep
o
si

t
g
ro

w
th

ra
te

s
(l

ef
t

p
an

el
)

an
d

re
ta

il
d

ep
os

it
sp

re
ad

s
(r

ig
h
t

p
an

el
)

o
f

a
n

a
n

o
n
y
m

o
u

s
b

a
n

k
in

th
e

es
ti

m
a
ti

o
n

.
T

h
e

re
sp

o
n

se
s

a
re

co
n

d
it

io
n

a
l

on
id

io
sy

n
cr

at
ic

d
ep

os
it

d
em

an
d

sh
o
ck

s
(t

op
p

an
el

)
an

d
ag

gr
eg

at
e

d
ep

os
it

d
em

a
n

d
sh

o
ck

s
(b

o
tt

o
m

p
a
n

el
).

B
la

ck
li

n
es

re
p

re
se

n
t

th
e

re
su

lt
s

fo
r

th
e

’p
os

t-
cr

is
is

sa
m

p
le

’
d

at
a,

w
h

er
ea

s
gr

ee
n

li
n

es
re

p
re

se
n
ts

th
e

re
su

lt
s

fo
r

th
e

’f
u

ll
sa

m
p

le
’

d
a
ta

.
S

o
li

d
li

n
es

co
rr

ep
o
n

d
to

th
e

m
ed

ia
n

im
p

u
ls

e
re

sp
on

se
s,

a
n

d
d

ot
te

d
li

n
es

to
th

e
16

th
an

d
84

th
p

er
ce

n
ti

le
of

th
e

re
sp

on
se

s.

32



0
2

4
6

8
10

12
−

2

−
1.

5

−
1

−
0.

50

0.
51

m
on

th
s

IR
 o

f d
ep

os
it 

gr
ow

th
 r

at
e,

 Id
−

D
S

 s
ho

ck

pp

0
2

4
6

8
10

12

0

0.
2

0.
4

0.
6

0.
81

m
on

th
s

IR
 o

f r
et

ai
l d

ep
os

it 
sp

re
ad

s,
 Id

−
D

S
 s

ho
ck

pp

0
2

4
6

8
10

12
−

2

−
1.

5

−
1

−
0.

50

0.
51

m
on

th
s

IR
 o

f d
ep

os
it 

gr
ow

th
 r

at
e,

 A
gg

−
D

S
 s

ho
ck

pp

0
2

4
6

8
10

12

0

0.
2

0.
4

0.
6

0.
81

m
on

th
s

IR
 o

f r
et

ai
l d

ep
os

it 
sp

re
ad

s,
 A

gg
−

D
S

 s
ho

ck

pp
F

ig
u

re
3
:

Im
p

u
ls

e
re

sp
on

se
s

of
d

ep
o
si

t
g
ro

w
th

ra
te

s
(l

ef
t

p
an

el
)

an
d

re
ta

il
d

ep
os

it
sp

re
ad

s
(r

ig
h
t

p
an

el
)

o
f

a
n

a
n

o
n
y
m

o
u

s
b

a
n

k
in

th
e

es
ti

m
a
ti

o
n

.
T

h
e

re
sp

o
n

se
s

a
re

co
n

d
it

io
n

al
o
n

id
io

sy
n

cr
a
ti

c
d

ep
o
si

t
su

p
p

ly
sh

o
ck

s
(t

op
p

an
el

)
an

d
ag

gr
eg

at
e

su
p
p

ly
d

em
a
n

d
sh

o
ck

s
(b

o
tt

o
m

p
a
n

el
).

B
la

ck
li

n
es

re
p

re
se

n
t

th
e

re
su

lt
s

fo
r

th
e

’p
o
st

-c
ri

si
s

sa
m

p
le

’
d

at
a
,

w
h

er
ea

s
gr

ee
n

li
n

es
re

p
re

se
n
ts

th
e

re
su

lt
s

fo
r

th
e

’f
u

ll
sa

m
p

le
’

d
a
ta

.
S

o
li

d
li

n
es

co
rr

ep
o
n

d
to

th
e

m
ed

ia
n

im
p

u
ls

e
re

sp
on

se
s,

a
n

d
d

ot
te

d
li

n
es

to
th

e
16

th
an

d
84

th
p

er
ce

n
ti

le
of

th
e

re
sp

on
se

s.

33



3
6

9
12

05010
0

15
0

20
0

H
or

iz
on

 (
m

on
th

s)

Basis points

R
A

ID
R

 c
ur

ve
s 

pe
r 

bi
lli

on
 p

ou
nd

, I
d−

D
D

 s
ho

ck

3
6

9
12

01020304050

H
or

iz
on

 (
m

on
th

s)

Basis points

R
A

ID
R

 c
ur

ve
s 

pe
r 

bi
lli

on
 p

ou
nd

, A
gg

−
D

D
 s

ho
ck

3
6

9
12

05010
0

15
0

20
0

H
or

iz
on

 (
m

on
th

s)

Basis points

R
A

ID
R

 c
ur

ve
s 

pe
r 

bi
lli

on
 p

ou
nd

, I
d−

D
S

 s
ho

ck

3
6

9
12

05010
0

15
0

H
or

iz
on

 (
m

on
th

s)

Basis points

R
A

ID
R

 c
ur

ve
s 

pe
r 

bi
lli

on
 p

ou
nd

, A
gg

−
D

S
 s

ho
ck

F
ig

u
re

4:
R

A
ID

R
cu

rv
es

p
er

b
il

li
on

p
ou

n
d

,
co

n
d

it
io

n
al

on
th

e
fo

u
r

id
en

ti
fi

ed
st

ru
ct

u
ra

l
sh

o
ck

s.
G

re
en

li
n

es
d

en
o
te

th
e

’f
u

ll
-s

a
m

p
le

’
re

su
lt

s,
w

h
er

ea
s

b
la

ck
li

n
es

d
en

ot
e

th
e

’p
os

t-
cr

is
is

’
re

su
lt

s.
C

o
m

p
u
te

d
b
y

tr
an

sf
or

m
in

g
th

e
im

p
u

ls
e

re
p

on
se

s
to

R
A

ID
R

s
fo

r
ea

ch
b

a
n

k
in

th
e

sa
m

p
le

.
B

o
ld

li
n

es
sh

ow
th

e
av

er
ag

e
R

A
ID

R
w

ei
gh

te
d

by
ea

ch
ba

n
k’

s
m

a
rk

et
sh

a
re

o
f

h
o
u

se
h
o
ld

re
ta

il
d
ep

o
si

ts
,

w
h

er
ea

s
d

ot
te

d
li

n
es

sh
ow

th
e

h
ig

h
es

t
a
n

d
lo

w
es

t
R

A
ID

R
va

lu
es

.

34



3
6

9
12

0

0.
2

0.
4

0.
6

0.
81

H
or

iz
on

 (
m

on
th

s)

Basis points

R
et

ai
l d

ep
os

its
 e

la
st

ic
iti

es
 c

on
di

tio
na

l o
n 

Id
−

D
D

 s
ho

ck

3
6

9
12

0

0.
2

0.
4

0.
6

0.
81

H
or

iz
on

 (
m

on
th

s)

Basis points

R
et

ai
l d

ep
os

its
 e

la
st

ic
iti

es
 c

on
di

tio
na

l o
n 

A
gg

−
D

D
 s

ho
ck

3
6

9
12

0

0.
2

0.
4

0.
6

0.
81

H
or

iz
on

 (
m

on
th

s)

Basis points

R
et

ai
l d

ep
os

its
 e

la
st

ic
iti

es
 c

on
di

tio
na

l o
n 

Id
−

D
S

 s
ho

ck

3
6

9
12

0

0.
2

0.
4

0.
6

0.
81

H
or

iz
on

 (
m

on
th

s)

Basis points

R
et

ai
l d

ep
os

its
 e

la
st

ic
iti

es
 c

on
di

tio
na

l o
n 

A
gg

−
D

S
 s

ho
ck

F
ig

u
re

5:
H

ou
se

h
ol

d
d

y
n

am
ic

re
ta

il
d

ep
o
si

ts
el

as
ti

ci
ti

es
co

n
d

it
io

n
al

on
th

e
fo

u
r

id
en

ti
fi

ed
st

ru
ct

u
ra

l
sh

o
ck

s.
G

re
en

li
n

es
d

en
o
te

th
e

’f
u

ll
-s

a
m

p
le

’
re

su
lt

s,
w

h
er

ea
s

b
la

ck
li

n
es

d
en

o
te

th
e

’p
o
st

-c
ri

si
s’

re
su

lt
s.

B
ol

d
li

n
es

sh
ow

th
e

av
er

ag
e

el
as

ti
ci

ty
va

lu
es

w
ei

gh
te

d
by

ea
ch

ba
n

k’
s

m
a
rk

et
sh

a
re

o
f

re
ta

il
d
ep

o
si

ts
,

w
h

er
ea

s
d

o
tt

ed
li

n
es

sh
ow

th
e

h
ig

h
es

t
an

d
lo

w
es

t
el

as
ti

ci
ty

va
lu

es
.

35



20
08

.1
20

08
.2

20
08

.3
20

08
.4

20
09

.1
20

09
.2

20
09

.3
20

09
.4

20
10

.1
20

10
.2

20
10

.3
20

10
.4

20
11

.1
20

11
.2

20
11

.3
20

11
.4

20
12

.1
20

12
.2

20
12

.3
20

12
.4

20
13

.1
20

13
.2

20
13

.3
20

13
.4

G
ro

w
th

 r
at

e 
of

 r
et

ai
l d

ep
os

its
 (

in
 %

)

 

 

P
re

−
20

08
 s

ho
ck

s
Id

−
D

D
 s

ho
ck

A
gg

−
D

D
 s

ho
ck

Id
−

D
S

 s
ho

ck
A

gg
−

D
S

 s
ho

ck

F
ig

u
re

6
:

H
is

to
ri

ca
l

d
ec

o
m

p
os

it
io

n
fo

r
re

ta
il

d
ep

o
si

t
ch

an
ge

s
fo

r
an

an
on

y
m

ou
s

b
an

k
’A

’
in

th
e

po
st

-c
ri

si
s

sa
m

p
le

.
T

h
e

a
ct

u
a
l

d
a
ta

se
ri

es
a
n

d
th

e
y
-a

x
is

la
b

el
s

a
re

h
id

d
en

to
p

re
se

rv
e

co
n

fi
d

en
ti

a
li

ty
a
n

d
an

on
y
m

it
y.

V
ar

ia
ti

on
s

n
ot

ex
p

la
in

ed
b
y

th
e

fo
u

r
st

ru
ct

u
ra

l
sh

o
ck

s
a
re

d
en

o
te

d
a
s

’P
re

-2
0
0
8

sh
o
ck

s’
.

36



20
08

.1
20

08
.2

20
08

.3
20

08
.4

20
09

.1
20

09
.2

20
09

.3
20

09
.4

20
10

.1
20

10
.2

20
10

.3
20

10
.4

20
11

.1
20

11
.2

20
11

.3
20

11
.4

20
12

.1
20

12
.2

20
12

.3
20

12
.4

20
13

.1
20

13
.2

20
13

.3
20

13
.4

G
ro

w
th

 r
at

e 
of

 r
et

ai
l d

ep
os

its
 (

in
 %

)

 

 

P
re

−
20

08
 s

ho
ck

s
Id

−
D

D
 s

ho
ck

A
gg

−
D

D
 s

ho
ck

Id
−

D
S

 s
ho

ck
A

gg
−

D
S

 s
ho

ck

F
ig

u
re

7
:

H
is

to
ri

ca
l

d
ec

o
m

p
os

it
io

n
fo

r
re

ta
il

d
ep

os
it

ch
an

ge
s

fo
r

an
an

on
y
m

ou
s

b
an

k
’B

’
in

th
e

po
st

-c
ri

si
s

sa
m

p
le

.
T

h
e

a
ct

u
a
l

d
a
ta

se
ri

es
a
n

d
th

e
y
-a

x
is

la
b

el
s

a
re

h
id

d
en

to
p

re
se

rv
e

co
n

fi
d

en
ti

a
li

ty
a
n

d
an

on
y
m

it
y.

V
ar

ia
ti

on
s

n
ot

ex
p

la
in

ed
b
y

th
e

fo
u

r
st

ru
ct

u
ra

l
sh

o
ck

s
a
re

d
en

o
te

d
a
s

’P
re

-2
0
0
8

sh
o
ck

s’
.

37



20
08

.1
20

08
.2

20
08

.3
20

08
.4

20
09

.1
20

09
.2

20
09

.3
20

09
.4

20
10

.1
20

10
.2

20
10

.3
20

10
.4

20
11

.1
20

11
.2

20
11

.3
20

11
.4

20
12

.1
20

12
.2

20
12

.3
20

12
.4

20
13

.1
20

13
.2

20
13

.3
20

13
.4

R
el

at
iv

e 
C

D
S

 (
in

 b
ps

)

 

 

P
re

−
20

08
 s

ho
ck

s
Id

−
D

D
 s

ho
ck

A
gg

−
D

D
 s

ho
ck

Id
−

D
S

 s
ho

ck
A

gg
−

D
S

 s
ho

ck

F
ig

u
re

8:
H

is
to

ri
ca

l
d

ec
o
m

p
o
si

ti
o
n

fo
r

th
e

re
la

ti
ve

C
D

S
sp

re
ad

s
fo

r
an

an
on

y
m

ou
s

b
an

k
’X

’
in

th
e

po
st

-c
ri

si
s

sa
m

p
le

.
T

h
e

a
ct

u
a
l
d

a
ta

se
ri

es
a
n

d
th

e
y
-a

x
is

la
b

el
s

a
re

h
id

d
en

to
p

re
se

rv
e

co
n

fi
d

en
ti

a
li

ty
a
n

d
an

on
y
m

it
y.

V
ar

ia
ti

on
s

n
ot

ex
p

la
in

ed
b
y

th
e

fo
u

r
st

ru
ct

u
ra

l
sh

o
ck

s
a
re

d
en

o
te

d
a
s

’P
re

-2
0
0
8

sh
o
ck

s’
.

38



20
08

.1
20

08
.2

20
08

.3
20

08
.4

20
09

.1
20

09
.2

20
09

.3
20

09
.4

20
10

.1
20

10
.2

20
10

.3
20

10
.4

20
11

.1
20

11
.2

20
11

.3
20

11
.4

20
12

.1
20

12
.2

20
12

.3
20

12
.4

20
13

.1
20

13
.2

20
13

.3
20

13
.4

R
el

at
iv

e 
C

D
S

 (
in

 b
ps

)

 

 

P
re

−
20

08
 s

ho
ck

s
Id

−
D

D
 s

ho
ck

A
gg

−
D

D
 s

ho
ck

Id
−

D
S

 s
ho

ck
A

gg
−

D
S

 s
ho

ck

F
ig

u
re

9:
H

is
to

ri
ca

l
d

ec
o
m

p
o
si

ti
o
n

fo
r

th
e

re
la

ti
ve

C
D

S
sp

re
ad

s
fo

r
an

an
on

y
m

ou
s

b
an

k
’Y

’
in

th
e

po
st

-c
ri

si
s

sa
m

p
le

.
T

h
e

a
ct

u
a
l
d

a
ta

se
ri

es
a
n

d
th

e
y
-a

x
is

la
b

el
s

a
re

h
id

d
en

to
p

re
se

rv
e

co
n

fi
d

en
ti

a
li

ty
a
n

d
an

on
y
m

it
y.

V
ar

ia
ti

on
s

n
ot

ex
p

la
in

ed
b
y

th
e

fo
u

r
st

ru
ct

u
ra

l
sh

o
ck

s
a
re

d
en

o
te

d
a
s

’P
re

-2
0
0
8

sh
o
ck

s’
.

39



T
ab

le
4:

W
ei

gh
te

d
re

q
u

ir
ed

av
er

ag
e

in
cr

ea
se

in
re

ta
il

d
ep

os
it

ra
te

(R
A

ID
R

,
in

b
p

s)
fo

r
b

an
k
s

to
ra

is
e

1
b

il
li

o
n

p
o
u
n

d
o
f

re
ta

il
d

ep
o
si

ts
w

it
h

in
h

m
on

th
s,

co
n
d

it
io

n
al

on
ea

ch
st

ru
ct

u
ra

l
sh

o
ck

:
b

as
el

in
e

an
d

ro
b

u
st

n
es

s
ch

ec
k
s

re
su

lt
s.

F
u

ll
sa

m
p

le
P

o
st

-c
ri

si
s

sa
m

p
le

h
=

3
h

=
6

h
=

9
h

=
12

h
=

3
h

=
6

h
=

9
h

=
1
2

(i
)

Id
io

sy
n

c
ra

ti
c

d
e
p

o
si

t
d

e
m

a
n

d
sh

o
ck

s
B

as
el

in
e

(W
)

19
5

27
.4

18
.3

14
.5

15
.5

6.
65

4.
9
5

3
.5

0
B

an
k
-b

y
-b

an
k

(W
)

47
.5

42
.1

40
.9

40
.1

8.
87

3.
30

2.
4
3

1
.9

2
P

o
ol

ed
87

.7
62

.4
33

.2
29

.6
51

.1
29

.0
16

.4
1
3
.6

(i
i)

A
g
g
re

g
a
te

d
e
p

o
si

t
d

e
m

a
n

d
sh

o
ck

s
B

as
el

in
e

(W
)

12
.1

8.
03

5.
38

4.
22

9.
72

4.
84

3.
1
6

2
.2

6
B

an
k
-b

y
-b

an
k

(W
)

6.
00

3.
80

1.
55

1.
44

7.
05

3.
10

2.
4
7

2
.2

9
P

o
ol

ed
9.

78
4.

17
2.

39
1.

74
9.

79
3.

89
2.

2
0

1
.8

2

(i
ii
)

Id
io

sy
n

c
ra

ti
c

d
e
p

o
si

t
su

p
p

ly
sh

o
ck

s
B

as
el

in
e

(W
)

11
8

>
20

0
>

20
0

>
20

0
67

.5
15

.5
24

.6
1
1
.0

B
an

k
-b

y
-b

an
k

(W
)

13
4

>
20

0
>

20
0

>
20

0
12

5
10

1
1
1
2

1
0
5

P
o
ol

ed
>

20
0

>
20

0
>

20
0

>
20

0
>

20
0

>
20

0
>

2
0
0

>
2
0
0

(i
v
)

A
g
g
re

g
a
te

d
e
p

o
si

t
su

p
p

ly
sh

o
ck

s
B

as
el

in
e

(W
)

33
.9

21
.9

68
.2

32
.9

22
.6

7.
08

6.
7
1

4
.3

7
B

an
k
-b

y
-b

an
k

(W
)

12
4

15
.8

16
2

17
3

10
1

96
1
3
9

1
3
5

P
o
ol

ed
81

.3
28

.0
>

20
0

>
20

0
>

20
0

15
.7

4
7
.2

1
6
.8

N
ot

e:
V

al
u

es
’>

20
0’

in
d

ic
a
te

th
a
t

b
a
n

k
s

m
ay

n
ee

d
to

im
p

o
se

a
ve

ry
h

ig
h

ra
te

ri
se

in
or

d
er

to
co

ve
r

th
e

fu
n

d
in

g
sh

o
rt

fa
ll

,
su

b
je

ct
to

o
u

r
m

o
d

el
li

n
g

a
n

d
es

ti
m

a
ti

o
n

as
su

m
p

ti
on

s.
(W

)
in

d
ic

at
es

re
su

lt
s

w
ei

g
h
te

d
b
y

th
e

re
la

ti
ve

sh
a
re

o
f

re
ta

il
d

ep
o
si

t

si
ze

of
th

e
b

an
k
s.

’B
as

el
in

e’
re

fe
rs

to
th

e
re

su
lt

s
o
b

ta
in

ed
b
y

th
e

p
a
n

el
o
f

B
V

A
R

s;

’B
an

k
-b

y
-b

an
k
’

in
d

ic
at

es
re

su
lt

s
es

ti
m

a
te

d
w

it
h

o
u
t

a
n
y

fo
rm

o
f

p
o
o
li

n
g
;

’P
o
o
le

d
’

m
ea

n
s

th
at

re
su

lt
s

ar
e

ob
ta

in
ed

w
it

h
p

o
o
li

n
g

d
a
ta

a
cr

o
ss

a
ll

b
a
n

k
s.

40



T
ab

le
5:

W
ei

gh
te

d
d

y
n

am
ic

ra
te

-e
la

st
ic

it
ie

s
co

n
d

it
io

n
al

on
ea

ch
st

ru
ct

u
ra

l
sh

o
ck

:
b

as
el

in
e

an
d

ro
b

u
st

n
es

s
ch

ec
k
s

re
su

lt
s.

F
u

ll
sa

m
p

le
P

o
st

-c
ri

si
s

sa
m

p
le

h
=

3
h

=
6

h
=

9
h
=

12
h

=
3

h
=

6
h

=
9

h
=

1
2

(i
)

Id
io

sy
n

c
ra

ti
c

d
e
p

o
si

t
d

e
m

a
n

d
sh

o
ck

s
B

as
el

in
e

(W
)

0.
02

0.
11

0.
15

0.
18

0.
08

0.
18

0.
25

0
.3

5
B

an
k
-b

y
-b

an
k

(W
)

0.
09

0.
08

0.
07

0.
05

0.
16

1.
00

1.
33

0
.9

6
P

o
ol

ed
0.

03
0.

04
0.

08
0.

09
0.

04
0.

06
0.

11
0
.1

4

(i
i)

A
g
g
re

g
a
te

d
e
p

o
si

t
d

e
m

a
n

d
sh

o
ck

s
B

as
el

in
e

(W
)

0.
18

0.
29

0.
44

0.
58

0.
14

0.
27

0.
43

0
.6

0
B

an
k
-b

y
-b

an
k

(W
)

0.
65

1.
27

>
2

>
2

0.
19

0.
77

0.
70

0
.7

5
P

o
ol

ed
0.

28
0.

65
1.

13
1.

56
0.

19
0.

48
0.

85
1
.0

3

(i
ii
)

Id
io

sy
n

c
ra

ti
c

d
e
p

o
si

t
su

p
p

ly
sh

o
ck

s
B

as
el

in
e

(W
)

0
0

0
0

0.
02

0.
09

0.
07

0
.1

2
B

an
k
-b

y
-b

an
k

(W
)

0.
01

0.
02

0
0

0.
03

0.
11

0.
02

0
.0

7
P

o
ol

ed
0

0
0

0
0

0
0

0

(i
v
)

A
g
g
re

g
a
te

d
e
p

o
si

t
su

p
p

ly
sh

o
ck

s
B

as
el

in
e

(W
)

0.
06

0.
09

0.
05

0.
08

0.
06

0.
18

0.
19

0
.2

9
B

an
k
-b

y
-b

an
k

(W
)

0.
02

0.
11

0.
02

0.
02

0.
08

0.
08

0.
03

0
.0

3
P

o
ol

ed
0.

03
0.

10
0

0
0.

01
0.

12
0.

04
0
.1

1

N
ot

e:
V

al
u

es
’0

’
in

d
ic

at
e

ve
ry

ra
te

-i
n

el
a
st

ic
d

ep
o
si

ts
b

eh
av

io
u

r,
w

h
er

ea
s

’>
2’

in
d

ic
at

es
ve

ry
ra

te
-e

la
st

ic
o
n

es
,

su
b

je
ct

to
o
u

r
m

o
d

el
li

n
g

a
n

d
es

ti
m

a
ti

o
n

as
su

m
p

ti
on

s.
(W

)
in

d
ic

a
te

s
re

su
lt

s
w

ei
g
h
te

d
b
y

th
e

re
la

ti
ve

sh
a
re

o
f

re
ta

il
d

ep
os

it

si
ze

of
th

e
b

an
k
s.

’B
as

el
in

e’
re

fe
rs

to
th

e
re

su
lt

s
o
b

ta
in

ed
b
y

th
e

p
a
n

el
o
f

B
V

A
R

s;

’B
an

k
-b

y
-b

an
k
’

in
d

ic
at

es
re

su
lt

s
es

ti
m

a
te

d
w

it
h

o
u

t
a
n
y

fo
rm

o
f

p
o
o
li

n
g
;

’P
o
o
le

d
’

m
ea

n
s

th
at

re
su

lt
s

ar
e

o
b

ta
in

ed
w

it
h

p
o
o
li
n

g
d

a
ta

a
cr

o
ss

a
ll

b
a
n

k
s.

41


