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Abstract

Previously unexploited scientific models of pollution processes can be used to isolate powerful and quasi-random

variation in airborne pollution with the aim of estimating pollution’s health effects. I simulate the geographic distri-

bution over time of fine particulate matter (PM2.5) caused by wildfires for the entire continental United States during

2004-2010 using a set of scientific models of wildfire emissions and air pollution transport commonly used in wild-

fire and air quality applications. Regressing observed concentrations of PM2.5 at pollution monitoring stations on

simulated PM2.5 from wildfires, I find that wildfires can explain at least 15 percent of ambient ground-level PM2.5

and even larger fractions of toxic mercury and lead particulates. I regress county-level health outcomes on station-

measured PM2.5 using simulated wildfire PM2.5 as an instrumental variable, finding that a 10µgm-3 (approximately

2.3 standard deviation) increase in monthly PM2.5 concentration is associated with one additional premature death

per 100,000 individuals. This effect is driven primarily by deaths from cardiovascular and respiratory diseases for

individuals over age 65. With a control function approach, I find evidence that dose response is approximately linear

below the U.S. ambient air quality standard for PM2.5. In addition, in-utero exposure to PM2.5 is associated with

higher rates of prematurity, lower birth weights, and changes in the sex ratio, which I interpret as evidence of fetal

attrition. Finally, the estimated health effects of PM2.5 are sensitive to the inclusion of controls for other pollutants,

likely reflecting changes in the underlying conditional local average treatment effect. I present suggestive evidence

that these changes are driven by heterogeneous health risks per unit mass of the chemical subcomponents of total

PM2.5 mass, with metallic particulates far more dangerous than organic particulates. These findings contribute to a

growing body of evidence on the health dangers of fine particulate matter.
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1 Introduction

In the past 40 years, ambient air quality regulation has grown in response to the burgeoning evidence of the public
health costs of air pollution. The Clean Air Act Amendments of 1970, the establishment of the Environmental Pro-
tection Agency (EPA), and subsequent refinements of air quality standards have all contributed to general downward
trends in pollution levels. While the health benefits of air quality improvement are uncontroversial at the highest mar-
gins of pollutant levels, the important question remains whether additional reductions will also yield health benefits,
and whether those health benefits exceed the marginal costs of abatement. Because pollutants are not randomly as-
signed and may be correlated with other determinants of health outcomes, an important scientific challenge has been
to develop research designs that provide precise, unbiased, and population-representative estimates of air pollution’s
effects.

In this paper, I exploit quasi-random shocks to ambient fine particulate matter (PM2.5) concentrations generated
by large wildfires across the United States to estimate effects on mortality and infant health outcomes. Wildfires are
uncontrolled fires primarily occurring in remote wildnerness areas, but cause significant variation in urban particulate
levels through mechanisms that are plausibly unrelated to non-pollution determinants of health. First, I quantify the
effect that wildfires have on air quality by applying a sequence of specialized emissions and dispersion models to
historical fire data to generate measures of wildfire pollution for the continental U.S. over time. Then, I estimate the
effects of short-term and in utero exposures on adult mortality and infant health outcomes, using modeled wildfire
PM2.5 as an instrumental variable for station-observed PM2.5. I use extensive pollution monitoring data—spanning
60 PM2.5 subspecies and 18 criteria pollutant and organic gases—to decompose the shock to air quality represented
by the wildfire PM2.5 instrument and present a methodology for assessing potential bias from omitted pollutants.

The U.S. Environmental Protection Agency (EPA) has identified six airborne “criteria” pollutants to be regulated
under the Clean Air Act that are generally considered harmful to public health: particle pollution (PM2.5 and PM10),
carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and lead (Pb). This study estimates
the effects of PM2.5 generated by wildfires and tests whether these estimates potentially reflect the effects of other
criteria pollutants. Fine particulate matter, defined as particulate matter less than 2.5 micrometers in diameter (PM2.5),
is considered the most dangerous because of its ability to penetrate deep into the human lung and sometimes enter the
bloodstream.

I make several contributions to the literature on both the health effects of air pollution and air quality effects of
wildfires. First, I systematically assess the impact of large wildfires (≥ 1000 acres) on ground-level air quality in the
continental United States. I combine estimates of source emissions with an atmospheric model to retrospectively fore-
cast the spatial distribution of wildfire-related pollutant concentrations in the period following a historical fire event,
using the resulting data to predict pollutant concentrations at air pollution monitors. For 78 pollutants, I estimate a set
of lower bounds for the percentage of each pollutant’s average ambient concentration that is attributable to wildfires;
notably, wildfires contribute at least 15% of ambient aggregate PM2.5, 5% of PM10, 5% of O3, and large fractions
(15%-35%) of several dangerous metals bound to fine particulates, including arsenic, lead, mercury, nickel, and cad-
mium. In addition to the aggregate quantities of particulate pollutants they generate, wildfires cycle metallic and other
highly toxic industrial emissions previously deposited into wildland vegetation and soils back into the atmosphere,
resulting in new ground-level exposures in population centers. These findings underscore the potential significance of
wildfires’ contribution to public health and that socially optimal fire management policies must take wildfires’ health
costs from worsened air quality into account. Furthermore, 75% of geographic exposure to wildfire PM2.5 occurs
outside of the state of origin, raising the possibility that wildfire management policy in the U.S. may be inefficient due
to inter-state spillovers.

Next, I estimate the effect of average monthly PM2.5 exposure on county-level mortality rates for 2004-2010
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via instrumental variables, controlling for weather variables and stringent sets of region-specific fixed effects. Short-
term exposure to PM2.5 is associated with mortality with magnitudes consistent with prior literature, and the dose
response is approximately linear below regulatory limits of PM2.5. A transitory 10µgm−3 increase in a county’s aver-
age monthly PM2.5 (approximately a doubling of average ambient concentrations in the sample period) is associated
with one additional death per 100,000 individuals. These effects are largely driven by cardiovascular and respiratory
fatalities, but PM2.5 is also associated with general disease-related causes of death. Nearly all short-term PM2.5-
related deaths are of individuals over age 65, and women are twice as susceptible as men. Because wildfires also emit
large quantities of several gaseous pollutants, I attempt to control for potentially correlated pollutants by including
a set of comparably modeled controls for NO2, SO2, NH3, and VOC gases. Because of the complex chemical and
environmental interactions underlying O3 production and the corresponding difficulty of predicting O3 concentrations
from wildfires using the same set of pollution models, I am unable to decisively rule out confounding effects from O3.
Based on best available estimates from other studies, I estimate that this effect is on the order of 35% of the estimated
effect of PM2.5. Finally, I estimate the effects of prenatal exposure to PM2.5 on premature birth rates, birth weight,
and sex ratios, finding small but statistically significant harmful effects. I also find marginal evidence for negative
effects on the fraction of males in a birth cohort, and my estimates are consistent with higher susceptibility of male
fetuses to death from pollution shocks estimated in Sanders and Stoecker (2011).

Controlling for non-PM2.5 emissions from wildfires results in a different composition of PM2.5 that more heav-
ily favors toxic species, and I find larger effects in the presence of higher fractions of metals and lower fractions of
non-metal particulates. While the intrusive quality of PM2.5 is the basis for the proposed dangers of PM2.5, there is
wide heterogeneity in the chemical composition of PM2.5 and some evidence of heterogeneous effects, but relatively
little understood about the relative toxicities of individual substances (Bell 2012). PM2.5 is composed of a wide range
of substances, including elemental carbon (EC), organic carbon (OC), nitrates (NO3-), sulfates (SO42-), and metals
bound to particulates (such as mercury and lead). Some of these are formed or released directly from an emission
source (commonly EC, OC, and metals) and others are formed through chemical reactions in the atmosphere (e.g.,
nitrates and sulfates). Composition also varies widely by region and over time from cross-sectional differences and
seasonal differences within regions (Franklin et al. 2008). This heterogeneity presents problems for the effective reg-
ulation of particulate levels, as small exposures of highly toxic species are potentially as dangerous as large exposures
of EC, OC, or other species that account for most of PM2.5 mass. Relatedly, it presents statistical challenges for in-
terpeting estimated effects for PM2.5. When controls for non-PM2.5 pollutants from wildfires are included, estimated
effects on mortality increase by over two times. For infant health, effects approximately double for on prematurity,
gestational age, and average birth weight. I interpret this pattern of estimates as evidence that the conditional mixture
of PM2.5 identified has increased toxicity that exceeds any reduction in upward bias accomplished by adding controls.

This work attempts to make new methodological and evidentiary contributions to the already-large and diverse
economic literature on the health effects of pollution. For short-term health outcomes, panel studies and regional
natural experiment studies are two popular research designs. The widely-accepted truism motivating most of the con-
temporary air pollution literature is that pollution exposure is non-randomly assigned and systematically related to
other determinants of health outcomes. Panel studies, such as Currie and Neidell (2005), attempt to address this non-
random assignment through exploiting narrow variation through stringent fixed effects. Natural experiment studies try
to provide a source of quasi-random assignment by isolating the variation they use to a particular type of pollution-
generating (or reducing) event. Strategies have included exploiting the timing of the Clean Air Act of 1970 to predict
relatively sudden decreases in particulate concentrations (Chay and Greenstone 2003); changes in daily airport traffic
congestion in California caused by weather in other major airports (Schlenker and Walker 2011); weekly panel varia-
tion in automobile traffic to identify the effects of carbon monoxide, ozone, and particulate matter on infant mortality
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rates (Knittel, Miller, and Sanders 2011); and temperature inversions in Mexico City (Arceo-Gomez et al. 2011).
Currie et al. (2013) provide an extensive survey of both types of papers exploring the effects of early-life exposure
to pollution, finding a general consensus that airborne pollutants are associated with infant mortality, premature birth,
and low birth weight. Papers applying natural experiments to adult mortality have been more infrequent. Chay et
al. (2003) uses the timing of the Clean Air Act of 1970, finding insignificant effects on adult and elderly mortality.
Pope et al. (2007) use an 8-month national strike of copper smelter workers to estimate the effect of sulfate particulate
reductions, finding a 2.5% reduction in mortality over the strike period.

Several papers have attempted to estimate health effects of major wildfire events, implicitly taking their exposure
measures as proxies for pollution shocks. Jayachandran (2009) examines sharp increases in particulate pollution from
an intense wildfire season in Indonesia in 1997, tracking spatial and temporal variation in pollution from wildfires
using satellite-based measures of particulate levels. She finds evidence that prenatal smoke exposures during that
period caused a substantial increase in early-life mortality, on the order of a 20 percent increase in the under-age-three
mortality rate. Breton, Park, and Wu (2011) estimate that prenatal exposure to high PM2.5 concentrations from a
week-long wildfire event in California was associated with an 18g decrease in mean infant birth weight in comparison
to counties unaffected by the fires.

Few studies have used modeled exposures from large emission events based on atmospheric transport models,
and none have used exposures in tandem with monitoring data to predict health outcomes.1 Rappold et al. (2012)
use modeled wildfire exposures in North Carolina to assess increases in asthma and congestive heart failure risks
with reduced-form Poisson regressions. I fill a gap in the literature by incorporating developments in emissions and
atmospheric transport modeling and taking advantage of substantial increases in computational power made over the
last decade. I unite quasi-random variation in pollution levels predicted from wildfire and atmospheric models with
observed pollution levels in a panel econometrics framework to estimate health effects, providing a methodology that
bridges some of the long-standing gaps between the atmospheric science, epidemiology, and economics literatures on
air quality.

2 Data

2.1 Modeled Wildfire Air Pollution

Combining historical wildfire event data and meteorology with scientifically relevant fire and atmospheric transport
models, I generate a high-resolution, gridded daily measure of wildfire pollution for the continental U.S. (CONUS)
domain. The measure represents a retrospective forecast of where pollution from documented fire events would be
likely to have traveled given what is known about atmospheric behavior during and after the fire. To this end, I use the
BlueSky Framework software package, which integrates several existing models of emissions and transport processes
into a unified process.

2.1.1 Wildfire Data

State and federal agencies responsible for wildfire management keep records on the location, size, and timing of
wildfire events. Fire events larger than 1,000 acres are gathered from the Fire Protection Agency (FPA) Fire Occurrence

1A class of study distinct from this one combines modeled exposures with pre-existing estimates of health risks to determine population-wide
impacts. For example, Caiazzo et al. (2013) use the Community Multiscale Air Quality (CMAQ) model combined with the U.S. National Emissions
Inventory for 2005 to create an annual predicted map of average pollution concentrations, and interpret this as a measure of long-term pollution
exposure. Also, several studies use observed changes in particulate measurements and only employ “backward trajectory” calculations to indirectly
verify that large changes are due to a specific event, such as wildfires or dust episodes.
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Database (FOD), an interagency collection of fire event reports updated for accuracy and cleaned for duplicates using
methods described in Short (2013). The fire event characteristics drawn from this database for modeling are the
latitude and longitude point data of the fire, date and time the fire was detected, area of the fire burned in acres, and
the date and time at which a fire agency declared it contained. For an available subset of federal fires, I draw the date
and time at which a fire agency declared the fire extinguished from a U.S. Geological Survey database of fires reported
by the six major federal agencies tasked with managing wildfires. If any of the values except for the containment
or extinguish dates are missing, the fire is omitted. Where time of extinguishment data are missing, I empirically
estimate the total burn time using a regression model with categorical dummies for the fire area and the duration from
start to containment as predictors, adjusting for region-specific unobserved effects and seasonal effects; where both
containment and extinguishment dates are missing, I use the same model without containment time to predict burn
duration. The methodology, rationale, and results of the total burn time estimation procedure are described in Appendix
8.1. Figure 1 shows the total number of acres burned in fires larger than 1,000 acres mapped by state for 2000-2010,
as calculated from the FPA FOD database. The majority of area burned is concentrated in the West, Northwest, and
Southwestern United states, with a decreasing eastward and strongly decreasing Northeastward pattern. These large
fires constitute over 85 percent of area burned in the United States over this period. Fires smaller than 1,000 acres
are a significantly larger percentage of area burned for Northeastern and Central states, but are not included because
of high computational costs of the modeling process relative to their small total emissions contributions compared to
larger fires.

2.1.2 Description of Wildfire Emissions and Air Pollution Modeling

Wildfires can be started by lightning strikes or direct sunlight when highly flammable fuels (e.g., forest underbrush)
endure an extended dry period. Wildfires are also caused by human errors, such as escaped campfires, car accidents,
or downed power lines. Occasionally, they are intentionally set by arsonists. Fires are also intentionally set by
fire management agencies to preemptively burn fuels for naturally-occurring fires, among other functions. Wildfire
incidence peaks in mid-to-late summer, but has varying seasonal peaks by region. The majority of large wildfire events
(over 1,000 acres in size) occur in the Western and Northwestern United States.

There are several phenomena which contribute variation to the amount of wildfire-generated pollution at a given
point in time in space. Broadly, these are the characteristics of the fire and the meteorological conditions at the time
of and shortly after the fire event. The duration of the fire is a function of time till detection, containment efforts,
and the containment difficulty of the fire. Besides its role in promoting the rate of spread and ultimate size of a fire,
the fuel cover determines the volume and chemical composition of emissions from the fire per unit of area burned.
Wildfires’ dominant emissions by mass are PM10, PM2.5, CO, and NOx. In addition to PM2.5 generated by biomass
burning, such as Organic Carbons (OC), wildfires release minerals and metals which accumulate in forest soils and
vegetation from atmospheric deposition. Nearby historical industrial activity is strongly related to the amount of lead
and mercury re-released by fires into the atmosphere, with these re-emissions representing a significant fraction of
atmospheric concentrations.

Once generated, emissions travel upward at varying speeds depending on a variety of factors, resulting in a hetero-
geneous vertical distribution of pollutants in a fire. This vertical distribution then interacts with ambient pressure and
wind conditions which result in airborne transport of emissions downwind. Emitted particles (and gases) interact with
weather conditions heterogeneously, resulting in relative downwind changes in concentrations that vary by pollutant.
Dry deposition is a set of processes by which pollutant concentrations decrease through contact with surfaces, which
include gravitational settling and interception (collision with trees, buildings, etc.). Wet deposition is a set of processes
by which atmospheric hydrometeors (e.g., precipitation) absorb particles.
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I utilize a sequence of wildfire models that exploit several facets of these wildfire emissions and pollution trans-
port processes to predict the contribution to PM2.5 levels from wildfires. The computational workflow is explicitly
described in Appendix Section 8.2.1; Figure 2 depicts the workflow visually. Historical fire events are input into the
BlueSky Framework, where fuel loadings, fuel consumption, emissions, and vertical plume rise are estimated; these
are fed as emission sources into HYSPLIT, which calculates the concentations’ trajectory and dispersion from each
source; hourly spatial concentration estimates are calculated at an approximately 1600km2 resolution (approximately
5,000 unique points in the continental US); then, the HYSPLIT predicted concentrations are sampled at pollution mon-
itoring station locations and averaged by county and month to create a monthly panel of county averages of wildfire
pollution.

2.1.3 Modeling Tools

The interface between wildfire management and air quality standards has prompted extensive development of tools
in the last two decades to appraise the downwind impacts of wildfires. Beginning in 2003, the National Oceanic and
Atmospheric Administration (NOAA) developed and implemented the Smoke Forecasting System (SFS) to provide
operational forecasts of wildfire PM2.5 (Rolph et al. 2008). A central tool in the NOAA SFS is the BlueSky Framework
(BSF), a modeling framework which connects independently developed models of fuel loading, fire consumption, fire
emissions, and atmospheric transport (Larkin et al. 2009). The BSF has also been used in development of regional
forecasting systems in the Pacific Northwest (O’Neill et al. 2009). The BSF readily accommodates several popular
models of each component of the modeling process.

The Fuel Characteristic Classification System (FCCS) is a 1km-resolution spatial map of fuelbed types across the
continental United States developed from a combination of fuel photo series, scientific literature, satellite imagery,
and expert opinions (Ottmar et al. 2007). CONSUME 3.0 predicts how the amount of fuel consumption for a given
fire event divides between flaming, smouldering, and residual phases, each of which have unique contributions to
emissions due to differences in combustion efficiency (Prichard et al. 2005). The Fire Emissions Production Simulator
(FEPS) is a software module that simulates emission production and plume buoyancy based on a provided consumption
profile (Anderson et al. 2004).FEPS is capable of fuel consumption calculations, but this functionality is replaced by
CONSUME 3.0 in this modeling process. These three modules have all been used, via the BSF, in the development
of national fire emissions inventories since 2008. Lastly, the Hybrid Single-Particle Lagrangian Integrated Trajectory
model (HYSPLIT) is a system which uses gridded meteorological data to simulate airmass trajectories, dispersion of
concentrations from pollutant plumes, and deposition processes (Draxler and Hess 1997). In addition to being used in
the NOAA SFS, HYPSLIT has been used in hundreds of applications, such as modeling fallout dispersion from the
Fukushima Daichii nuclear disaster (Draxler et al. 2013), African dust transport to the Iberian peninsula (Escudero et
al. 2006), and dispersion of particulate heavy metals from industrial emission sources in Spain (Chen et al. 2013).

2.2 Birth and Mortality Data

Data on the population of births, linked infant deaths, and mortality events in the United States for 2004-2010 come
from the U.S. Center for Disease Control’s (CDC) National Center for Health Statistics’ (NCHS) National Vital Statis-
tics System (NVSS). Data sets contain all non-identifying information recorded on birth and death certificates. Each
birth record contains the year and month of the birth event in addition to important perinatal health outcomes, such as
birthweight, Apgar scores, estimated gestation, birth complications, and characteristics of the mother and father of the
child. Table 3 summarizes these outcomes by gestational category (full-term and pre-term). The mortality data contain
individual death records, which include the year and month, county, cause of death, and characteristics of the deceased
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individual (race, gender, and education). For 2005 and beyond, county identifiers are censored for all counties with
fewer than 100,000 individuals.

Causes of death are coded into 39 groups, in accordance with the latest classifications of the International Statistical
Classification of Diseases and Related Health Problems (ICD-10). County-by-month mortality rates for each cause
are calculated by summing counts from the 34 categories causes of death, including cancers, heart failure, respiratory
disease, and other diseases and dividing by a population measure. The population estimates used to calculate rates per
100,000 individuals are from the CDC NCHS Bridged-Race Population Estimates, a set of annual intercensal county
population estimates with breakdowns by sex, age, and race. I generate an “all-cause” rate from all non-external,
non-accidental causes of death for by the general population, gender, and infant, child, and 10-year age groups. Table
2 reports summary statistics for mortality rates in the sample.

2.3 Ambient Air Pollution and Weather Data

Daily average monitoring station observations of pollutant levels are gathered from the U.S. Environmental Protection
Agency’s Air Quality System (AQS), a centralized database of pollutant measurements from state and federal mon-
itors. The geographic and temporal distribution of measurements varies widely by pollutant. The PM2.5 Chemical
Speciation Network provides measurements of PM2.5 subspecies of interest, such as metals and nitrates. Some stations
collect data at weekly rather than daily frequency. For county-months with missing station-days, I use the average of
nonmissing observations by first averaging to monthly station observations, and then averaging station-month values
to county-month values. County-months with no station observations are excluded from the sample. For birth and
death outcomes, I define the mother’s and decedent’s county of residences, respectively, as the aggregate geographic
units for calculating pollution exposure. For local weather measures, I use data from the North America Land Data
Assimilation System on average monthly daily maximum and minimum air temperatures and monthly precipitation
quantities for each U.S. county. These data were drawn from the CDC WONDER database. This data source is distinct
from the meteorological reanalysis data used as inputs into the pollution transport model.

3 Econometric Approach

3.1 Statistical Model

I consider the following linear model of health outcome yit with a K×1 vector of endogenous variables representing
pollution levels, Pit , and a set of unobserved effects:

yit = Pitβ+Ritψ+αi +git(t)+ εit (1)

Pkit = zitγk +Ritψ
f
k +ηki + fki(t)+ vkit (2)

git(t) = ci,a(t)+ si,m(t)+ τiω(t) (3)

fki(t) = c f
ki,a(t)+ s f

ki,m(t)+ τ
f
kiω(t) (4)

Equation (1) shows the relationship between the health outcome (e.g., mean birthweight) yit and pollutants Pit for
county i in month t. Rit is a set of time-varying county characteristics, αi represents a county fixed effect, and gi(t)
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generally represents time-varying unobserved heterogeneity. εit is an idiosyncratic error term which may generally be
correlated with Pit . Equation (2) represents the first stage relationship between pollutant k and the vector of at least
K excluded modeled wildfire pollution instruments, zit , with a set of fixed effects ηki and fki(t) matching those in
equation (1). Equation (3) defines gi(t) as the sum of sets of region-year fixed effects ci,y(t), region-month (seasonal)
effects si,m(t), and arbitrary regional time trends τiω(t). a(t) and m(t) are functions which convert the global time index
t to the correct calendar year (e.g., 2004) and calendar month (e.g., July) indices. “Region” can generally refer to any
geographic unit which hierarchically nests counties, including counties, states, and NCDC climate regions. Equation
(4) defines fki(t) in parallel to (3) for Pkit (except naturally requiring that fixed effects vary by pollutant k).

Region-year fixed effects account for annual trends in the health outcome including those driven by changes in
pollution from sources other than wildfires. This includes region-specific climatological changes and regulatory re-
sponses to wildfire incidence or pollution, which might simultaneously affect both wildfire incidence and health out-
comes. Region-month fixed effects account for unobserved persistent seasonal differences between regions, such as
weather patterns that drive seasonality in wildfire incidence and health outcomes. Including fixed effects increases the
plausibility of the assumption that the instrument is exogenous in equation 1; namely, that E[εit |zit ,Rit ,αi,git(t)] = 0.

3.2 Identification

The structural model of atmospheric transport represented by HYPSLIT seamlessly combines emission inputs, trajec-
tory and dispersion calculations, and pollutant removal from the atmosphere through deposition processes to form a
single, powerful instrument in the form of a predicted concentration. The dominant source of variation in simulated
pollution concentrations using the HYSPLIT-based modeling framework is the common movement of air parcels (i.e.,
wind). However, fuel loadings, wet deposition, and dry deposition generate some independent variation among pollu-
tant types that can separately identify their effects. The possibility of separate identification of pollutants breaks down
as the pollutants become more similar in the ways that HYSPLIT is able to distinguish them; modeled concentrations
of similar pollutants are highly collinear. A corollary of this is that even a perfectly calibrated pollutant instrument
will also proxy for the effects of its unmodeled close chemical neighbors, potentially causing bias in estimates of the
effect of a specific pollutant species. In the modeling framework used here, variation in downwind wildfire PM2.5
independent from other wildfire pollutants is identified primarily by differences in fuel composition at the wildfire
and deposition rates between PM2.5 and gases. Interpretation of the estimated effects is complicated by heteroge-
neous effects, especially those driven by the chemical composition of the PM2.5 that is statistically identified; this
complication is examined in Section 4.1.2. These problems hold true for nearly any attempt to identify the effects of
PM2.5.

Previous studies have similary exploited atmospheric phenomena and pollutant characteristics through regression
interactions. For example, Schlenker and Walker (2011) interact taxi time with wind speed to separately identify CO
and NO2, which may be explained by differing dry deposition rates between CO and NO2. NO2 has a higher de-
position velocity than CO. Assuming a fixed emission ratio of CO to NO2, higher wind speeds will carry parcels of
both pollutants equally far but deposit more NO2 than CO, resulting in an increasing ratio of CO to NO2 in distance
from the airport. An alternative explanation they supply is that higher wind speeds change the composition of emis-
sions from airplane engines to be more NO2-heavy. Both deposition differences across pollutants and differences in
emissions ratios for specific events would be captured by HYSPLIT’s deposition modeling process, with the practical
drawback that one must be specific about deposition characteristics and emissions quantities in HYSPLIT’s setup.
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3.3 Testing and Controlling for Effects from Multiple Pollutants

3.3.1 Controlling for Multiple Wildfire Pollutants

In the ideal empirical setting, one would have a large enough dataset with measurements of all species of interest with
identifying instruments for each species and estimate the effects of multiple endogenous variables using 2SLS or other-
wise appropriate IV estimator. In reality, station coverage is limited to fewer than 20% of county-month observations in
the sample period, and further limited when overlapping species measurements are required. The generation of strong
identifying instruments may be both scientifically constrained by the quality of models and practically constrained by
computational power. In lieu of the ideal estimation of all pollutants’ coefficients, it is feasible to consistently estimate
a single structural parameter of interest (in this case PM2.5’s effect) without any concern for the structural parameter
values for other pollutants. Generally, evidence for a consistent estimate of the effect of PM2.5 can be established
by exhausting potential confounding causal pathways through a combination of control variables and pre-testing for
omitted variables.2

Under the assumption that estimates using the wildfire pollution instrument will reflect effects causally originating
with wildfire events only, the primary risk of confounding comes from omitted pollutants which are correlated with the
wildfire instrument. A measure of downwind PM2.5 from a wildfire will be correlated with other pollutants emitted
concurrently in the same fire’s combustion processes, which will also share at least some of its atmospheric trajec-
tory. For example, wildfires simultaneously emit quantities of PM2.5 and NO2, and their atmospheric destinations are
highly correlated. In this framework, the health-effect parameter for PM2.5, βPM25, can be identified either through
joint IV estimation of all pollutants, or through single-variable IV estimation of PM2.5 alone with controls for pollu-
tants from the same source. This equivalence is motivated by writing the reduced form for equation 1 as follows, only
substituting the endogenous variable representing PM2.5 using the first stage based on a single instrument for wildfire
PM2.5

yit = zpm25,itηpm25 +PB,itηB +ϒk,it + ε
∗
it (5)

zk,it is defined as pollutant k originating from wildfires. PB,it is the vector of all pollutants excluding PM2.5
originating from all sources. For brevity, define ϒk,it as the composite set of controls and effects and ε∗it as a composite
error term for equation 1. Partition each pollutant k into its concentration from wildfires and its concentration from all
other sources, defining PB,it = zB,it + P̃B,it . Then,

yit = zpm25,itηpm25 + zB,itη
w f
B +ϒk,it + P̃B,it η̃B + ε

∗
it (6)

Because wildfire PM2.5 in part shares common emission and transport processes with other pollutants from fires,
PM2.5 and other wildfire pollution are correlated: E[zB,it |zpm25,it ,ϒk,it ] 6= 0. Uncontroversially, E[P̃B,it |zpm25,it ,ϒk,it ] =

0 is a core assumption for the validity of the instrument; wildfire PM2.5 must be orthogonal to any pollutants in B
from all non-wildfire sources. The reduced-form regression of y on zpm25 will be inconsistent for ηpm25. However,
zB,it is observed by virtue of the same modeling process that generates zpm25, and the reduced-form regression of y

on zpm25 and zB produces a consistent estimate for ηpm25. Correspondingly, provided the other key assumptions for
the consistency of IV are met, IV estimation of y on Ppm25 and zB with (zpm25, zB) as instruments is consistent for
βpm25. While both the joint IV estimation and the single-variable IV procedures will be consistent for βPM25, single-
variable IV is far more feasible to implement; it only requires station observations of PM2.5, an instrument for PM2.5,

2Causal pathways can also be credibly ruled out using evidence from rigorous studies that find no effects of an omitted explanator on the outcome
of interest, but I do not do this here.
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and adequate controls for correlated pollutants. In some cases, modeled pollutants may be sufficient as controls but
not sufficient as identifying instruments; joint IV estimation of PM2.5 and NO2 with a strong instrument for PM2.5
and weak instrument for NO2 may result in an inferior estimate for PM2.5 compared to the corresponding consistent
one-variable IV estimate for PM2.5.

An alternative solution to creating an instrument or proxy is to use the endogenous measure of the omitted variable
as a control, but in the pollution setting this is not always feasible. First, measurement coverage for each pollutant
species incompletely overlaps both across stations and time. Second, while the quality of station measurements for
a particular species might be sufficient for determining whether wildfires have an impact on concentrations of that
species in a station-by-station analysis, they may not be appropriate measures of concentrations for aggregate geo-
graphic regions used to measure health outcomes (i.e., counties in this paper). Relatedly, to the extent that station
measurements (whether due to direct station mismeasurement or spatial error) fail to capture variation from wildfires
due to measurement error, the control would fail to account for the influence of the omitted variable. The estimates in
this paper instead use the equivalent of a proxy for pollutants emitted from wildfires as controls, thereby reducing or
removing their confounding role.

3.3.2 Pre-testing for Omitted Pollutants

It is possible to meaningfully pre-test for potential omitted variables provided there are observations containing values
of both the omitted variable and the instrument. Sufficient power in the test obviates the need to create develop
instruments or controls for the omitted variable if the test is negative. The test is to run a pseudo-first-stage regression
of the suspected omitted variable on the current set of instruments and controls and checking whether the current
instruments are jointly significant predictors of the proposed omitted variable. In practice, a researcher may not be
able to develop an adequate identifying instrument or proxy for the potential omitted variable, and she might not be able
to directly control for measures of the omitted variable without losing sample size (or relying on imputation methods).
The creation of new instruments or proxies for new pollutant species is constrained practically by computational
requirements and development time for accurate emission factors and deposition parameters. Separate identification
of pollutants is also statistically limited by the mechanical richness of the modeling process. As separate identification
of pollutants in the modeling process used here is driven by differential emissions and deposition behavior, pollutants
with very similar emission and deposition properties will be weakly identifiable unless some part of the modeling
process is upgraded to exploit other differences in characteristics not accounted for by HYSPLIT (e.g., buoyancy,
aerodynamic, or photochemical properties).

To illustrate, consider a simple two-pollutant example with Pollutant A and Pollutant B and a wildfire-generated
measure of Pollutant A as an identifying instrument. Assume we have a prior belief that Pollutant B causes mortality.
If Pollutant B is positively correlated with wildfire-generated Pollutant A, then an instrumental variables regression of
mortality on Pollutant A with wildfire-generated Pollutant A as an instrument and no control for Pollutant B will be
biased upward due to the confounding effect of Pollutant B. Hence, a pseudo-first-stage regression of Pollutant B ob-
servations on wildfire-generated Pollutant A which produces a significantly positive coefficient on wildfire-generated
Pollutant A is interpreted as evidence of this upward bias (in context of the prior belief that Pollutant B has an effect
on mortality).

This test for omitted variables holds under one additional assumption: the direction, but not necessarily the mag-
nitude, of the average partial effect of the instrument is the same between the samples used for testing and estimation.
If the instrument is monotonically related to the endogenous variable of interest for the population, this assumption is
satisfied. For the relationship between wildfire-generated pollution to observed pollution, these assumptions are likely
to hold. While there may be first-stage heterogeneous effects of the modeled wildfire-generated pollution (either due
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to heterogeneous modeling error or because of true heterogeneity in the world due to chemistry or other processes),
I assume that effects are bounded by zero. With the exception of a few highly reactive pollutants and/or pollutants
with low atmospheric quantities, wildfire pollution can be generally expected to homogeneously weakly increase (or
decrease) each pollutant type across geographic location and time. Let superscript A and superscript B denote that the
variable is drawn from estimation sample’s and testing sample’s subpopulations, respectively. The assumption can be
written as
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In the linear case, this simply translates to the pseudo-first-stage coefficients having the same direction in each
sample (i.e., γA

k > 0⇐⇒ γB
k > 0). The corresponding hypothesis test is of H0 : γA

k = γB
k = 0, HA : γA

k 6= 0 using the
t-test of H0 : γB

k = 0 from the regression using the testing sample B. Because of sampling error, failure to reject the
null does not rule out omitted pollutants, but the estimate’s confidence interval can be informative of the largest effect
that is statistically supported by the given estimate. The true coefficient in the testing sample could be substantively
smaller than the coefficient in the estimation sample, in which case the confidence interval bound may be misleadingly
low. A more stringent assumption, which would imply (7), is similar to the necessary assumption for the consistency
of two-sample IV estimators: γA

k = γB
k . This assumption permits a more literal interpretation of the coefficients and

confidence intervals when the omitted variables test is conducted with a set of observations that is not identical to that
being used to estimate the equation of interest. I perform and interpret this test for criteria and organic gases in Section
4.1.1.

4 Results

4.1 Wildfires’ Effect on Ambient Air Quality

4.1.1 First Stage: Wildfires’ Effect on Ambient Concentrations of Pollutants

Wildfires have a considerable impact on urban air quality, and noticeably and dangerously so for larger wildfires close
to urban centers. The wildfire PM2.5 instrument is a strong predictor of PM2.5, but also captures some of the rela-
tionship between wildfires and other criteria pollutants. For each pollutant, I regress the county-monthly average of
its station values on the county-monthly average of the wildfire PM2.5 instrument (sampled at the station sites), and
I control for county, state-year, and state-month fixed effects, and quadratics of average minimum temperature, maxi-
mum temperature, and precipitation. I measure the average contribution by wildfires for each pollutant’s concentration
in the estimation sample by calculating its partial fitted value zit γ̂

B, and calculate the percentage of all concentrations
of that pollutant attributable to the instrument by dividing by the average measured concentration. These percentages
can be interpreted as lower bounds of the amount of each pollutant attributable to wildfires in the CONUS. I repeat
this procedure controlling for estimates of NO2, SO2, NH3, and organic (VOC) gases from wildfires and assess how a
unit increase in the wildfire instrument predicts downwind concentrations of criteria gases, organic gases, and PM2.5
subspecies. In another specification, I control for only wildfire NO2 and SO2.

Panel A in Tables 4, 6, and 5 shows the estimated regression coefficients and percentage of average ambient
concentrations contributed by wildfires for criteria pollutants, non-metallic PM2.5, and five of the most toxic PM2.5
species. Appendix Tables 16 through 20 repeat this exercise for all other metallic PM2.5 species. Under the assumption
that the estimated coefficients reflect purely causal relationships, the maximum of the wildfire percentage of ambient
concentration across different control pollutant specifications can be interpreted as an estimated lower bound on the
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true percentage of ambient concentrations caused by wildfires. Assuming the station sets are representative of the
U.S., the instrument predicts nearly 15% of PM2.5 levels and 5% of PM10 levels. Controlling for non-PM2.5 species
alters the distribution of pollutants predicted by the instrument, which has significant implications for health effects
estimates. Panel B of the pollution regression tables report the estimated coefficients for the regression with controls
for other pollutants. The wildfire instrument ceases to be a statistically (and chemically) significant predictor of PM10,
while still predicting 15% of PM2.5 mass.

Interpreting hypothesis tests for these estimates as the omitted variables test described in Section 3.3 for IV es-
timates with no controls for other pollutants, we expect the effect identified by the wildfire PM2.5 instrument to be
biased upward by any health effects of non-PM2.5 pollutants that are significantly associated with the PM2.5 instru-
ment. Hence, PM10 and two criteria gases, O3 and NO2, are possible confounders, though the contributions predicted
by the instrument for these pollutants are only 4.7%, 3%, and 5.7% of ambient levels. Organic gases are insignifi-
cantly predicted, both statistically and in magnitude. Because of sampling error, this test does not rule out that other
pollutants with statistically insignificant coefficients may still confound estimates, especially if their 95% confidence
interval upper bound is a quantity that could have meaningful health effects. For example, benzene is insignificantly
predicted at 6% of total concentrations, but its confidence interval upper bound is 16.2% of benzene, which is arguably
a quantity that could have a marginal health impact. Benzene concentrations may only be poorly detected statistically;
short-lived organic gases, such as m-xylene and toluene (8 to 48 hours, Prinn et al. 1987) show neither statistically nor
substantively significant effects, while benzene has a comparatively long atmospheric lifetime (2 weeks to 2 months).

Wildfires have the unique property of inducing changes in PM2.5 almost uniformly across both highly and lightly
polluted areas. This property is favorable to estimating population-representative effects, since an area’s non-wildfire
pollution levels drives nonlinear dose response and might also be correlated with effect heterogeneity due to other
factors (e.g., highly-polluted areas also have low-income individuals who are more vulnerable to pollution shocks).
Figure 4a shows a quantile-quantile plot of all PM2.5 against the estimated implied counterfactual PM2.5 (a world
with no wildfire PM2.5), with each point representing the numerical values at which the same quantile occurs in each
distribution. The quantile relationships are approximately parallel to the line of distributional equivalence and shifted
upward, suggesting that wildfire PM2.5 largely preserves the shape of the distribution of PM2.5 and only shifts the
mean. For comparison, Figure 4b shows a comparable quantile-quantile plot when the counterfactual is estimated
using the same set of fixed effects and station observations (i.e., a pure panel data approach) instead of fixed effects-
IV, revealing a considerably different distribution of margins of change for PM2.5 driven mostly by left- and right-tail
behavior.

4.1.2 PM2.5 Chemical Composition Identified by Wildfire Instrument

The types and quantities of PM2.5 predicted by the instrument significantly change when non-PM2.5 controls are
included. Section 4.2.2 outlines an argument for how this changes the interpretation of health effects estimates because
of changes in the level of toxicity per unit PM2.5. While the total mass of PM2.5 predicted by the instrument only
decreases by 10%, the fractions of subspecies groups change significantly. In the non-metallic category, Organic
Carbons decrease in concentration by 60-75% per unit wildfire PM2.5, Elemental Carbons by 40-50%, and hydrogen
PM2.5 by 70-85%. Bromine PM2.5 increases by 100%, and nitrates by 50%, while the influence of sulfates stays
approximately the same. Several metallic PM2.5 species become more strongly represented per unit of wildfire PM2.5
by at least 50%: Arsenic, Lead, Nickel, Mercury, Cadmium, Barium, Cesium, Cobalt, Gallium, Lanthanum, Selenium,
Niobium, and Rubidium. The estimated fraction of atmospheric mercury PM2.5 attributable to wildfires becomes
approximately 30 percent, parallel to the fraction established in an inventory of mercury wildfire emissions in the U.S.
(Wiedenmyer and Friedli 2007). Predicted arsenic increases by a factor of nearly 30, now accounting for 19 percent
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of ambient arsenic concentrations. Lead, Nickel, and Cadmium are also all significantly enhanced per unit wildfire
PM2.5.

The speciated PM2.5 data present a fairly complete picture of PM2.5 in the U.S. Over 81% of average PM2.5
concentration is accounted for by the subspecies I model. The remaining unexplained PM2.5 concentration may be
due to known PM2.5 species which I measure imperfectly or not at all (such as sea salt and dust) and differences in
mean concentrations between the PM2.5 Speciation network and general PM2.5 station samples. Moreover, hetero-
geneous coefficients between testing and estimation samples are not likely to drive most of the results. The number
of observations measuring total PM2.5 exceeds the number of observations measuring individual species by 20,000
to 30,000, driven mostly by spatial variation in station coverage. Despite the disparity in spatial sampling, the in-
strument’s estimated effect on total PM2.5 concentration is closely matched by the sum of coefficients for individual
PM2.5 species (in the no-controls case, a less than 1% difference). This suggests that any between-sample differences
in the relationship between the wildfire instrument and pollutants are mean-zero across PM2.5 subspecies.

Some coefficients for metallic species are negative. The causal interpretation for negative coefficients is that
something in the pollutant plume causes a chemical reaction that removes quantities of another species or its precursors
(e.g., through oxidation or binding). Many metal PM2.5 species, including mercury, are defined as the metal bound
to other airborne particles, such as black carbon (soot). Chemical reactions with wildfire emissions may change such
metals back to their gaseous phases, or additional substances may bind to and change the particle to a larger size class.
Another possibility is that the relationship is not causal. The PM2.5 instrument is generated using a set of emissions
factors for all PM2.5. If there is geographic heterogeneity of subspecies emissions (e.g., aluminum, silicon, and other
metals) that is negatively correlated with the total amount of PM2.5 emitted, high downwind PM2.5 values will also
be negatively correlated with those metals. The final possibility is that stations’ measurement methods may have some
systematic measurement error for subspecies measurements that varies with the amount of other substances in the air.

4.2 Short-term Effects on Mortality

4.2.1 Short-term Effects of PM2.5 on All-Cause Mortality

Panel A of Table 8 reports the 2SLS estimates of the effect of average monthly PM2.5 on monthly all-cause mortal-
ity rates using wildfire PM2.5 as an instrument, each column reporting a specification with a different set of fixed
effects. Estimates range from 0.67 to 1.05 additional deaths per 100,000 people per monthly 10µgm−3 increase in
PM2.5. Panel D reports OLS estimates with the same fixed effects and weather controls as the 2SLS estimates; they
are insignificant and sharply estimated close to zero, reflecting the important role of exposure measurement error and
omitted variables causing downward bias. Estimated effects using 2SLS increase with the inclusion of more stringent
region-specific fixed effects, providing some evidence of region-specific confounders to wildfire PM2.5 such as unob-
served seasonal weather factors or endogenous annual policy responses to poor air quality or high wildfire activity. It
is also partially explainable by changes in the finite-sample bias of the 2SLS estimator across specifications because
of relative changes in the ratio of endogeneity in PM2.5 to the strength of the first-stage relationship (see Appendix
8.5); however, confidence intervals based on the inverted Anderson-Rubin test statistic (Anderson and Rubin 1949;
Finlay and Magnusson 2009) are very close to the conventional asymptotic confidence intervals, which is evidence
against any meaningful bias from weak instruments. Finally, these changes can be attributable to changes in the PM2.5
composition identified by wildfire PM2.5, since different fixed effects may remove certain correspondingly invariant
characteristics of wildfire PM2.5. The effect size in column 4 translates to approximately 39,230 premature deaths
per year in the U.S. due to monthly exposure to PM2.5, based on the 2010 U.S. population and assuming the sample
average PM2.5 of 10.6µgm−3 is representative of the entire U.S. I find evidence that many of these deaths are driven
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by forward displacement of mortality within six months in Section 4.2.5.
OLS estimates may be downward-biased because of some combination of correlated unobservables not removed

by fixed effects or measurement errors (potentially worsened by fixed effects). The traditional culprits for bias, such
as residential sorting, seasonality, and coincidental trends presumably have their influence removed by the stringent
fixed effects imposed in each specification. The identifying variation for the OLS estimates remaining is based on
within-region, within-year, within-season comparisons, with variation likely to be driven by the totality of incidental
variations in PM2.5 emissions and weather patterns. Co-emission would bias estimates upward, as changes in PM2.5
emissions would likely be accompanied by changes in other pollutants. On the other hand, the activities underlying
emissions of PM2.5 are likely correlated with several time-varying economic and health behavior processes, including
changes in traffic, smoking and drug use, short-term health inputs, physical activity, and stressful events.

More likely is that measurement error plays a significant role in shrinking both OLS and 2SLS estimates toward
zero, though the 2SLS estimate corrects this measurement error to the extent that both PM2.5 and the wildfire PM2.5
are characterized by classical measurement error. County-level averages of PM2.5 and the wildfire PM2.5 instrument
are calculated from raw averages of measurements at the sites of pollution monitors, which are not always spatially
representative. In the traditional errors-in-variables setup, nonzero correlation between the true value of the regressor
and the measurement error (i.e., non-classical error) has different implications for bias (expression in Appendix 8.4). In
the case of negative correlation large enough relative to the signal value of the mismeasured regressor, the coefficient
estimate can also reverse sign. Stations tend to be located in more densely populated and plausibly more polluted
areas. More densely populated areas have higher pollution but would have their aggregate exposures well-measured
by local station observations. Less-densely populated and less-polluted areas will use information on PM2.5 from
more highly-populated areas, resulting in overestimation of PM2.5 levels. The combination of these two factors may
result in a negative correlation between the measurement error and PM2.5 levels.

Table 11 reports estimates by age group, revealing that the observed aggregate effects are primarily driven by the
three age groups over age 65. Elderly individuals are more likely to be living at vulnerable health margins, and thus
are more susceptible to a relatively short-term shock to pollution cause a life-threatening health complication. Also
(not reported in tables), the estimated effect is twice as large for women as it is for men. Similarly, Chen et al. (2005)
find a higher increased relative risk for females for fatal heart disease and Kunzli et al. (2005) for atherosclerosis from
PM2.5 exposure.

4.2.2 Heterogeneous Effects of PM2.5 by Chemical Composition

The inclusion of any of the controls for other pollutants results in a sharp increase in the estimated effect of PM2.5 on
all-cause mortality by about two and a half times (Panels B and C, Table 8). In tandem with the distinctive changes
in composition across the specifications observed in Section 4.1.2, the increase in mortality estimates with additional
controls suggests that PM2.5 has heterogeneous effects that depend on its underlying chemical composition. Because
of changes in the toxicological properties of the PM2.5 whose effects are being measured, the interpretation of changes
in effect estimates across different identification strategies is potentially ambiguous, even when the regions and emis-
sions sources being studied are identical across estimation methods. In a homogeneous-effects world, a pollutant A’s
health effect estimate is biased upward by the effect of harmful pollutant B co-emitted from wildfires, implying that
including controls for pollutant B would make the estimated effect of pollutant A smaller in expectation. This prop-
erty does not always hold if there are heterogeneous effects from chemical composition. Specifically, heterogeneous
chemical composition may result in some controls removing the statistical influence of some subspecies of pollutant
A in favor of more harmful ones. A 1µgm−3 increase in ambient PM2.5 induced by general wildfire PM2.5 will have
a smaller marginal health impact than a 1µgm−3 increase of wildfire-emitted PM2.5 subspecies with above-average
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toxicity. Controlling for another wildfire pollutant eliminates variation from emissions and atmospheric trajectory
components common between the control pollutant and PM2.5 in the identification of the PM2.5 coefficient, resulting
in greater weight on identification idiosyncratic to the fuel type at the fire and deposition behavior. For example,
Organic Carbons (OC), common byproducts of primary combustion, are a major constituent of wildfire emissions by
mass across all wildfire fuel types and would thus have a large part of their influence removed by including any other
wildfire pollutant controls due to their commonality to all fires.3

Because including controls changes the breakdown of PM2.5 that is identifying the effect to favor relatively more
mass from highly toxic species (as demonstrated in Section 4.1.2), we can not unequivocally expect including controls
to have a net downward effect on the magnitude of health effects estimates. Hence, the increase in mortality estimates
is prima facie evidence of large compositional effects in PM2.5. As shown in Section 4.1.2, the specifications in
Panel B and Panel C reflect changes in PM2.5 composed of greater proportions of metals and nitrates than the no-
control specifications in Panel A. A common finding in the epidemiological and medical literature is that PM2.5
effects are higher in the presence of metallic PM2.5 subspecies. Bell (2012) finds 15% larger PM2.5 effect estimates
for cardiovascular and respiratory morbidity when ambient Nickel (N) is elevated. In a study of rats, Pozzi et al.
(2003) find evidence that inflammatory response from particulates is driven by contaminants adsorpted onto particles
by comparing inflammatory responses between exposures to urban-sampled particulate matter and pure black carbon.

There are also some shifts in predictions of criteria and organic gases depending on the set of pollutant controls,
suggesting a potential role of changing correlations with omitted pollutants driving the increase in mortality effects.
However, the loss of PM2.5 mass from carbons and gain from metals is roughly stable across estimates using different
pollutant control groups; the changes in estimated mass contributions by the instrument to these gaseous species varies
widely with control groups; and estimates are relatively stable across control group sets after the first control pollutant
is included. While this analysis is not a substitute for joint IV estimation of all pollutants, this is evidence that most
of the increases in effects are driven by a set of PM2.5 species and not from confounding by simultaneous wildfire
emissions of criteria and organic gases. Despite attempts to control for O3 production by modeling its key precursor
NO2, the instrument predicts approximately 1ppb of O3 per 0.1µgm−3 of PM2.5 predicted by the instrument across
specifications. Bell et al. (2004) find a 0.52% increase in daily mortality per 10ppb increase in the previous week’s
O3; if this effect were true and the base mortality rate is 67.6 deaths per 100,000, then 0.35 of the 1.04 deaths per
10µgm−3 of PM2.5 estimated with the wildfire PM2.5 instrument and no controls are attributable to bias from O3. The
estimate for O3-related bias is comparable for the effect with all non-PM2.5 controls, but relatively smaller (0.35 of
2.68 deaths).

4.2.3 Nonlinear Effects of PM2.5

Using a control function approach to estimate nonlinear dose response of short-term mortality, I find that the marginal
effect of PM2.5 slightly declines at low concentrations (less than 5µgm−3) and becomes approximately linear. Previous
studies using multi-city time series analyses examining short-term PM2.5 dose response have also found a roughly
linear relationship below the NAAQS concentration level of 25µgm−3 for all-cause mortality (Schwartz, Laden, and
Zanobetti 2002; Stieb et al. 2008); Daniels et al. (2000) additionally finds approximate linearity in PM10 for all-cause
mortality. Piecewise regressions for an endogenous variable can be easily estimated via control function methods
without the need to develop additional identifying instruments. In the control function procedure, the first-stage
regression is identical to the conventional IV first stage, but the residuals from that regression are generated and used

3Also, the deposition parameters chosen for PM2.5 place relatively more weight on PM2.5 species whose deposition characteristics mimic
the chosen parameters most closely. This has ambiguous estimation consequences without further investigation of the distribution of emission
deposition characteristics across PM2.5 subspecies.
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as a control variable in a regression of the outcome on the endogenous variable. Results can be made further robust
to endogeneity by controlling for corresponding nonlinear functions of the control function residual, accounting for
changing correlation with the error term across the support of the endogenous variable. The only other required
assumptions are mean independence of the instrument from the structural error and that the distribution of the first
stage is correctly specified; in the case of wildfire pollution, the endogenous explanatory variable is continuous and its
relationship to the instrument is conceptually linear. Figure 5 is a graph of the fitted values and 95% confidence interval
of a spline regression dividing average monthly PM2.5 concentrations into splines by decile (denoted by vertical bars),
controlling for the linear control function residual.

4.2.4 Short-Term Effects of PM2.5 by Cause of Death

I estimate effects on mortality rates by broad cause-of-death categories using specification (4) from Table 8, and report
the results in Table 9. Unsurprisingly, the fatal effects of PM2.5 manifest most strongly through cardiovascular and
respiratory causes, consistent with prior literature. A 10µgm−3 increase in average monthly PM2.5 is associated with
additional deaths from ischemic heart disease (0.26 additional deaths per 100,000), cerebrovascular disorders (0.17),
influenza and pneumonia (0.15), and chronic lower respiratory disease (0.19). PM2.5 also has an impact (0.16) on
deaths in the ICD-10’s broad “Other Diseases” category, suggesting that PM2.5 exposures either lead to complications
for already-vulnerable individuals or also cause cardiovascular and respiratory-related deaths for individuals whose
cause of death is coded in accordance with the presence of another major health condition.

These wide-ranging effects are supported by the medical literature, which generally finds various undesirable
immune system and other bodily responses to fine particulates. Proposed pathophysiological pathways for short-
term effects to exposure of PM reviewed in Brook et al. (2010) and Pope et al. (2003) include the production of
proinflammatory cytokines that create a systemic inflammatory response affecting bodily areas outside the lungs (also
in van Eeden et al. 2001), systemic oxidative stress, changes in coagulation, changes in blood pressure, impaired
vascular function, and increased heart rate variability. Brook et al. (2010) cite some conflicting evidence on the effects
of particulates on biomarkers for these pathways, likely due to heterogeneity in chemical composition and exposure
duration and intensity, but nevertheless reveal a common association between PM2.5 and important biomarkers related
elevated risks of cardiovascular and respiratory morbidity. Specific studies have also specifically tied certain types
of morbidity to particulate pollution, such as pneumonia (Zeikloff et al. 2002; Zeikloff et al. 2003) and chronic
obstructive pulmonary disease (MacNee and Donaldson 2003). There are also research findings which associate
subspecies with certain respiratory and cardiovascular health effects. Dye et al. (2001) find pulmonary injury in rats
after exposure to PM2.5 subcomponents, with suggestive evidence of the high pulmonary toxicity of metal particulates,
while Huang and Ghio (2006) implicate arsenic, mercury, and nickel exposure as causes for anemia, tachycardia, and
increased blood pressure.

The inclusion of the wildfire non-PM2.5 pollution controls show the corresponding increases of toxicity of implied
changes in PM2.5 across these dominant causes of death. Effects per unit mass PM2.5 on increase by factors of
approximately 1.8 for ischemic heart disease and cerebrovascular deaths and 2.3 for chronic lower respiratory deaths,
while increasing by a factor of 3 for influenza/pneumonia and other disease-related deaths (though individually remain
within sampling error of the no-control effect sizes). Assuming these accurately represent the comparative magnitudes
of true effects and that changes in identified PM2.5 composition explain most of the estimated increase in mortality per
unit mass, this implies greater toxicity of PM2.5 metals for respiratory and general illnesses relative to cardiovascular
illnesses. One explanation is that metals interfere with antimicrobial processes in the lungs, thereby raising the risk and
severity of infection. Systemic inflammatory response may also inhibit the body’s ability to fight infections outside
the lungs.

17



As a sensitivity check, I estimate whether wildfire-instrumented PM2.5 has an impact on external causes of death
(Table 10), with rationale comparable to Heutel and Ruhm (2013): if effect estimates are driven by confounding
variation from seasonal or trending factors related to both wildfires and mortality, then external causes of death phys-
iologically unrelated to wildfires might show an effect. I consider 5 outcome groups as classified by the ICD-10:
deaths from motor vehicle accidents, accidents, suicides, assaults/homicides, and from “all other external and unspec-
ified causes.” Motor vehicle accidents may regardless be affected by wildfires in extreme cases, as wildfires near
major roadways can rapidly impede visibility causing massive, multi-vehicle accidents (Collins et al. 2009). ICD-10’s
“all other external and unspecified” category contains deaths due to fire exposure and acute smoke inhalation, which
would reflect the deaths of firefighters, rural residents, campers, hikers, and other individuals who may be trapped in
the vicinity of a wildfire. However, neither of these show any relationship to wildfire smoke, which is some evidence
that wildfire pollution exposure is driven by fires distant enough to not have potential direct effects of fire events
themselves (e.g., stress caused by imminent danger or property damage). I also find no relationship to suicides and
homicides. With no wildfire pollution controls, I find a moderate, marginally statistically significant positive effect
on the deaths under the “other unspecified accidents or adverse effects” category, which includes all deaths due to
complications related to surgery or medication. This result may be explained by expected increase in the frequency of
medical care being administered for increased rates of morbidity due to pollution.

4.2.5 Lagged and Lead Short-Term Associations with PM2.5

Estimating causal associations of air pollution with health outcomes is complicated by a wide range of potential
intertemporal relationships between outcome and regressor, both causal and non-causal. There are three reasons to
expect lagged pollution values to have negative effects: forward displacement of deaths, depletion of wildfire fuel
stocks combined with contemporaneous measurement error, and denominator error in population rates due to annual
population measures. In Table 12, I report reduced form estimates of lead, lagged, and both lead and lagged effects
of the instrument on all-cause mortality, as well as the joint F-statistic of lead/lagged coefficients. I find evidence of
forward displacement and generally violations of the strict exogeneity assumption for fixed effects estimators.

Pollution exposure causes forward displacement of an event if it causes the relocation of an event that otherwise
would have occurred to an earlier time period. Schlenker and Walker (2011) argue that welfare impacts of air pollution
through morbidity would be be overestimated if forward displacement occurs and is not taken into account (but they
test for and find no evidence of forward displacement of hospitalizations). Unless there is a value on postponing a
particular outcome, the only negative impact pollution exposure would have on welfare is through events that counter-
factually would not have existed if not for the exposure. Since everybody dies4, welfare effects of pollution-induced
mortality can only be measured through the average change in life expectancy. Short-term pollution exposures may
primarily only affect those who would otherwise die within a few months, but forward displacement of mortality in
this sense is still economically meaningful as long as individuals place positive value on an additional month of life,
though one might expect that such value is lower than that of a healthy working individual. The estimates in the second
column reveal significant forward displacement.

If wildfire smoke is measured with substantial error, part of the error term of observed pollution is a function of the
true level of wildfire pollution, which may in turn be predicted by past (or future) wildfire pollution due to fuel stock
dynamics. A large wildfire may burn fuels accumulated over long periods that are not immediately replaced. Wildfires
in the near future in the same area are well-situated to affect the same downwind areas as the past large wildfire, but
likely to have smaller sizes and shorter durations. In turn, high concentrations in the past predict low concentrations
in the present, which would result in lower present mortality.

4I was unable to find a citation for this.
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Lastly, error in the population measure used to calculate mortality rates may cause a lagged negative relationship
between mortality and pollution to appear. I measure mortality rates using annual intercensal estimates of population,
but measure mortality effects with monthly frequency. Holding changes due to births and migrations fixed, if contem-
poraneous pollution causes deaths in one month, then the following month’s population count is too high, resulting in
a measured mortality rate lower than the true rate. The measured rate is hence negatively correlated with the previous
month’s pollution, generating downward bias in estimates of lagged effects.

Jointly significant lead and lagged effects are interpreted as evidence of violation of the strict exogeneity assump-
tion needed for large-N (number of cross-sectional observations) consistency of fixed effects estimators with a small
number of time periods. The inconsistency has bounds shrinking at a rate proportional to the number of time periods
(Wooldridge 2010), which in this case is 84 months. In all three specifications I find evidence that strict exogeneity
is violated. Lagged and lead effects may also be indicative of shocks correlated with the regressor that affect multiple
time periods and the outcome variable. In the wildfire setting, this may be weather or climatological variables not
adequately captured by temperature, precipitation, and annual and seasonal regional fixed effects.

4.3 Effects on Infant Health

While infants at the most vulnerable health margins may be more likely to die from pollution shocks, the larger
population of surviving infants may have their health after birth and subsequent quality of life impacted by in utero

pollution exposure. Table 13 reports IV estimates for average exposures over the 9 months preceding birth and 4
months preceding birth. Prenatal exposure to PM2.5 has a strong effect on premature births, with effects concentrated
in the 4 months leading up to birth. A 10µgm−3 increase in PM2.5 over the gestational period is associated with a 2.6
percentage point increase in the number of premature births and an average decrease in gestational age of 0.23 weeks.
There are also negative, but not statistically significant effects on average birth weight, amounting to a 19g decrease
per 10µgm−3 increase in PM2.5.

As with the mortality outcomes, controlling for NO2 and SO2 strengthens effects, testament to the increased
relative toxicity of a unit change in PM2.5; in the final 4 months before birth, a 10µgm−3 increase in PM2.5 lowers
average birth weights by 31g, but there is no significant increase in the likelihood of low birth weight. If the increased
toxicity also would result in increased fetal attrition (weakly suggested by the increase in the effect on percentage of
female births), then this effect is likely to be occurring for healthier neonates. Alternatively, the effect could be driven
by additional growth losses for neonates who regardless of exposure would have been low birth weight. There are
at least four classes of physiological mechanisms which may explain the observed negative associations with birth
weight: intrauterine growth restriction, fetal genetic or epigenetic changes, pollutant-DNA adducts, and premature
birth (Slama et al. 2008). Prematurity may be highly correlated with any of the other mechanisms, or the increased
rates of prematurity alone could be driving most of the effect.

The complex interaction of birth timing, overlapping exposures between birth cohorts, and strict exogeneity re-
quirements for fixed effects estimators are possible hazards to identifying meaningful effects of in utero exposure.
Because these exposure estimates are framed relative to the birth month, and not the month of conception, substan-
tial harmful effects may be attributable to displacement of unhealthy births from future cohorts into current ones via
decreases in gestational age. In the same vein, I expect that displacement due to premature births (and fetal deaths)
caused by PM2.5 exposure will cause bias in the opposite direction due to cohort composition effects, as infants with
worse health outcomes are deselected from a birth cohort and displaced into earlier cohorts (or completely removed
the sample due to fetal death). Exposure timing varies even for births within the same month (by as much as 30
days), resulting in a mixture of true exposure effects estimated in each exposure window. More complicatedly, if the
error is not strictly exogenous conditional on the exposure measures and controls, then exposure windows with a mix-
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ture of true exposure period and non-exposure periods will reflect a mixture of exposure effects and strict exogeneity
violations (i.e., feedback between the dependent variable and lead/lagged values of the regressor).

Attrition from fetal deaths is likely to cause downward bias in the magnitude of these estimates. One key piece
of evidence for fetal attrition is the large, albeit imprecisely estimated, effect of average exposure on the sex ratio:
each 1µgm−3 increase in average PM2.5 exposure over nine months before birth raises the percentage of female births
by 0.2 percentage points with no non-PM2.5 controls and 0.4 percentage points with NO2 and SO2 controls. This
magnitude is comparable to the findings of Sanders and Stoecker (2011) for Total Suspended Particulates (TSPs),
which are all particles less than 100µm. Limited monitor coverage at the time of Clean Air Act makes it impossible to
ascertain the effects TSP reductions had on fine particulates. Using rough conversion factors (based on ratios of means
in the AQS data) for TSPs to PM10 of 0.55, and PM10 to PM2.5 of 0.6, a one-unit change in TSPs corresponds to
a 0.33 unit change in PM2.5, translating the estimate to 0.067 percentage points per unit change in TSP compared to
Sanders and Stoecker’s (2011) 0.088.

This pattern of results is comparable to Bharadwaj and Eberhard’s (2008) estimates of the effects of PM10 in
Santiago, Chile on birth outcomes, but with smaller magnitudes. They estimate a 125g effect on birth weight per
17.57µgm−3 (one standard deviation) increase in PM10 pollution 1-16 weeks before birth, whereas I estimate a
substantially smaller effect of 32g for a comparable change in PM2.5 (again using a conversion factor of PM10 =

0.6×PM2.5). Besides differences in toxicity between PM10 and PM2.5 (which we regardless might expect to make
the difference smaller), this large difference is likely to be driven by some combination of nonlinear effects due to the
substantially higher pollution levels in their sample period and the effects of omitted pollutants that also significantly
decrease with rainfall. Average PM10 in the U.S. sample period is 18µgm−3 compared to 76µgm−3 in the Santiago
sample, and any increasing dose response would be reflected. The rainfall instrument is likely to be strongly associ-
ated with decreases in non-PM10 pollutants relative to its association with PM10. While the wildfire instrument does
predict some non-PM2.5 pollution levels, this contribution (and thus potential upward bias in estimates’ magnitudes)
is constrained by the wildfire instrument’s dependence on wildfire-specific PM2.5 emissions and PM2.5-specific de-
position parameters, compared to the broad and relatively less PM-heavy distribution of pollutants from all industrial
sources in or near Santiago. Lastly, because they identify their pollution changes through rainfall, they also identify
effects on health outcomes through the associated changes in water pollution generated thru deposition; deposited
pollutants run off into water and food supplies and are exposed to individuals through consumption and skin contact.
This can bias their estimates either way, depending on whether the pollutants are more harmful after deposition or
in the air. In contrast, I control for local rainfall, which will generally account for the aggregate effect of deposited
pollutants that could affect health outcomes through the water supply. If deposition occurs in watersheds outside of the
area that affect the area’s water supply and precipitation differs significantly between the two areas, then the airborne
pollutant estimated effects may still pick up effects from associated changes in water supply quality.

5 Wildfire Externalities and Current Management Policy

Wildfires induce significant changes in PM2.5 concentrations over long distances, with polluted air parcels crossing
intranational and international boundaries. Assuming that monitoring stations are representative of a state’s overall
exposure to wildfire pollution, I calculate the fraction of wildfire PM2.5-months that occur outside the state of the
wildfire, finding that over 75% of geographic exposure to PM2.5 from large wildfire events in the continental U.S.
occurs in states other than the state of origin. Table 7 reports the percentage of modeled wildfire PM2.5 exposure
that occurs outside of each state of the wildfire occurrence as an approximation of the intensity of inter-state pollution
externalities from wildfires. Because of the implied externalities, wildfire management is subject to the classic tradeoff
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between inefficient local management behavior and potentially inefficient centralized, uniform policies for environ-
mental goods. To the extent that local jurisdictions in charge of wildfires (e.g., state fire agencies) are individual actors
and ignore inter-state pollution spillovers in making fire management decisions, then they will tend to under-suppress
wildfire activity or engage in more aggressive prescribed burning for other local benefits. The structure of wildfire
management in the U.S. is a complicated mixture of many agencies acting individually and collaborating at multiple
levels of government, while the Clean Air Act does not penalize states for pollution from naturally-occurring wildfires.
Hence, it is unclear whether current wildfire management efforts properly account for the welfare effects from poor
air quality.

While air quality externalities largely make wildfire abatement a national environmental good, it is uncertain
whether fire policy would strongly improve with greater centralization. Banzhaf and Chupp (2011) show for the U.S.
electricity sector that a uniform federal pollution abatement policy has better welfare implications than decentral-
ized state policies because the inter-state spillovers addressed by a uniform policy are relatively more important than
the between-state heterogeneity of benefits addressed by decentralized policies. They argue that relatively inelastic
marginal cost of abatement in the relevant region of the uniform policy results in smaller distortions from ignoring
between-state heterogeneity of marginal benefits. Wildfires are characterized by large inter-state spillovers, but the
concavity or convexity properties of the marginal costs of abatement are unclear, as are their true marginal dam-
ages. Wildfire management has two dimensions of abatement: pre-fire measures, such as prescribed burning and fuel
clearing, and suppression efforts. Marginal costs of suppression efforts are relatively easy to measure; for example,
Donovan (2006) finds a convex marginal cost function for the number of contract-based firefighting crews hired in a
season. Regardless, all abatement measures may have strong heterogeneity and uncertainty in marginal benefits and
costs associated with them. Prescribed wildfires themselves generate pollution and some ecological hazards because
of their artificial timing (Knapp et al. 2009). Naturally-occurring wildfires have ecological benefits, such as biodiver-
sity and better disease regulation, which may potentially counterbalance the marginal benefits of improved air quality
(e.g., Keane and Karau 2010). Even suppression’s benefits cannot be well-accounted for, as aggressive suppression
can lead to higher likelihood and intensity of future fires by altering the nature of fuel accumulation (Yoder 2004).

Despite federal guidelines governing fire suppression attempts in the interest of protecting public health (Fire
Executive Council 2009), the incentives facing the agencies making fire management choices are vague relative to the
regulation of agents generating industrial air pollution. The Clean Air Act distinguishes between “unplanned” and
“planned” fire, only penalizing states for the pollution generated by planned fire (i.e., prescribed burns), resulting in
the adverse health effects of natural wildfires not being inherently taken into account by air quality regulations (Engel
and Reeves 2011). There are federal directives and funding for wildfire management, with $3.9 billion allocated for
FY2014 (Bracmort 2013). Decision-making regarding suppression and prescribed burning is not federally-determined,
however. Currently, fire management in the U.S. predominantly falls upon five federal agencies for fires over 1,000
acres5 and individual state, county, and local agencies, with frequent interagency collaboration. For the fires in the
sample period, 36% were reported by state, county, and local agencies, while the remainder were federally-reported.
The Forest Service and and Bureau of Land Management reported the majority of the remaining fires. There are
ambiguities regarding which agency is responsible for suppression decisions; for example, the agency making the
report does not always commit all of the resources tasked with managing the fire, and multiple agencies may report
the same fire but only one record is retained in the FPA fire database.

5These are the the Bureau of Land Management (BLM), Bureau of Indian Affairs (BIA), the U.S. Forest Service (USFS), Fish and Wildfire
Service (FWS), and National Park Service (NPS) for 99% of federally-reported fires.
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6 Conclusion

This study uses new tools to measure the health externality costs of both industrial and natural sources of air pollution
and provides estimates for the effects of fine particulate matter on mortality and infant health. To my knowledge, it is
the first to synthesize historical emissions, atmospheric transport models, and ground-level monitoring data at a large
scale to estimate the distribution of environmental pollutants and their health effects in the United States. Its design
provides spatially and temporally smooth measures of pollution shocks, and the ability to construct a full emissions-
to-destination modeling process provides a large degree of customizability and control over the variation used to
identify changes in air quality. The choice of wildfires as emissions source results in geographically wide-reaching
variation in particulate levels, inducing both small and large shocks to highly polluted and relatively unpolluted areas.
The findings of effects on short-term mortality and infant health contribute to the body of evidence supporting that
PM2.5, and generally air quality, has important impacts on human health. They also highlight the importance of fire
management as an important public health issue.

As might be expected with a new source of data, there are several statistical issues which must be addressed to
fully realize the potential of wildfires to identify useful, policy-relevant health effects parameters. Incorrect expo-
sure measurements in both space and time create potentially serious measurement error problems which are only
partially alleviated by instrumental variables techniques. Imperfect monitoring coverage results in measurement error
of exposures both within and between geographic units. Spatial measurement error can be alleviated through more
comprehensive measures of ambient pollution, generated through a combination of interpolation of data points, re-
mote sensing data, and two-sample instrumental variables estimation techniques (Khawand 2014). Two-sample IV
techniques can also be used to include geographic regions with no monitoring coverage in estimating health effects,
resulting in estimated average effects more representative of the U.S. population. In the short run, this study can be
improved upon through developing richer model inputs from higher-quality data products that require substantially
greater computational input to implement. Satellite products for fire detection allow wildfire burn dynamics to be
better parsed out in space and time. Higher-resolution meteorological products can be used to better capture short-
range dispersion patterns, which in turn require more intensive geographic sampling schemes to properly translate to
aggregate concentrations.

The modeling of wildfires’ air quality impact itself also stands to be significantly improved. The relationship
between the wildfire pollution forecasts and actual pollution levels, while intuitively seeming to be relatively un-
complicated, is subject to situation-specific measurement errors due to the complex interaction among fire, fuel, and
meteorological data inputs and modeling assumptions. Modeling errors may occur due to unmodeled heterogeneity at
the source or between the source and the destination. A richer exploration of heterogeneous source-receptor relation-
ships is needed to understand where modeling errors may result in putting undue weight on health effects in certain
areas or discarding useful variation in others. Extensive further work, particularly in collaboration with scientists in
the wildfire community, is required to improve the realism and predictive power of the wildfire pollution simulation.
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7 Tables and Figures
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Figure 1: Number of Acres Burned (Thousands) for All Fires Greater than 1,000 Acres, 2000-2010

Map shows the number of acres (in thousands) for all 1,000 acre or greater fires in the US from 2000 to 2010 by state, ranging from red (most area burned) to blue
(least area burned).
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Figure 2: Wildfire Air Pollution Modeling - BlueSky Framework Workflow

 

Weather Reanalysis 

(EDAS 40km) 

Fuel Loading (FCCS) 

Fire Event Data 

(FPA FOD) 
) 

Fuel Consumption 

Emissions (CONSUME) 

Atmospheric Transport 

(HYSPLIT) 

Predicted 

Concentrations 

Flow chart depicting the modeling workflow to produce pollution concentration outputs from ingestion of fire data to
output by the HYSPLIT model.
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Figure 3: Average Raw Wildfire PM2.5 Output by County, CONUS, 2004-2010

Map of untransformed average PM2.5 concentrations by U.S. county for 2004-2010 sample period. Dark blue values represent low concentrations and brown values
high concentrations (e.g, California has high concentrations, while Maine has low concentrations).
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Figure 4: Quantile-Quantile Plots of PM2.5 versus Counterfactuals

(a) PM2.5 (with Wildfire PM2.5) versus Estimated Counterfactual PM2.5 (No Wildfire PM2.5)
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(b) PM2.5 versus Counterfactual PM2.5 Estimated with Fixed Effects
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Sub-figure A plots PM2.5 against the counterfactual estimated using the wildfire PM2.5 instrument; sub-figure B plots it against
the counterfactual as estimated using state-year, state-month, and county fixed effects. Each point on the plot represents the values
in each distribution at which the quantiles are equivalent.
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Figure 5: Spline Control Function Regression of All-Cause Mortality on PM2.5, by Decile
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This is a plot of the estimated effect of average monthly PM2.5 estimated by splines in deciles of average monthly
PM2.5 conditional on a linear control function residual using wildfire PM2.5 as the excluded instrument.
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Table 1: AQS PM2.5 and NLDAS Weather Descriptive Statistics

Mean Std. Dev 5th Pctile. Median 95th Pctile. N
Average Daily Pollution and
Weather Measures
 PM2.5 Concentration (ug/m3) 10.60 4.37 4.50 10.13 18.47 37,259
 Precipitation (mm) 2.72 2.04 0.25 2.35 6.45 171,014
 Maximum Air Temperature (F) 63.82 19.43 29.13 65.96 91.02 171,014
 Minimum Air Temperature (F) 46.09 17.23 16.88 46.49 72.48 171,014

County-level descriptive statistics for 2004-2010 across all U.S. counties. PM2.5 concentration is only available for
county-months with monitoring data.

Table 2: Monthly, County-Level Mortality Rate (per 100,000) by Subgroup from U.S. Death Certificates, 2004-2010

Mean Std. Dev 5th Pctile. Median 95th Pctile. N
All individuals 78.58 33.62 36.38 73.73 136.38 171,182
< 1 year 54.67 222.98 0.00 0.00 278.55 170,782
01 to 04 1.56 18.77 0.00 0.00 2.15 170,787
05 to 14 0.69 6.50 0.00 0.00 1.52 170,796
15 to 24 1.71 10.65 0.00 0.00 7.56 170,855
25 to 34 4.18 18.92 0.00 0.00 22.82 170,836
35 to 44 11.52 27.14 0.00 0.00 50.48 170,837
45 to 54 31.70 41.41 0.00 24.25 98.14 170,847
55 to 64 73.93 70.76 0.00 64.44 188.95 170,834
65 to 74 173.19 128.88 0.00 159.49 386.10 170,820
75 to 84 431.85 255.33 0.00 410.98 833.33 170,831
85+ 1247.40 747.52 0.00 1173.70 2395.20 170,823
All Ages, Male 76.67 42.35 24.85 70.17 147.49 171,075
All Ages, Female 79.28 43.25 26.26 72.74 152.65 170,917
County Population 110,000 350,000 3,394 28,494 490,000 171,182

County-level mortality rates calculated using U.S. death certificate date for 2004-2010. All figures are scaled per
100,000 county population.
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Table 3: Monthly, County-Level Mean Birth Outcomes and Rates for Birth Cohorts from U.S. Birth Certificates,
2004-2010

Mean Std. Dev 5th Pctile. Median 95th Pctile.

# Births 113 391 3 28 476
Avg. Birth Weight (g) 3268 197 2966 3274 3556
%  Male 48.8% 15.1% 25.0% 49.1% 71.4%
% Low Birth Weight 8.1% 8.3% 0.0% 7.1% 21.4%
APGAR 0-3 0.5% 2.3% 0.0% 0.0% 2.9%
APGAR 4-6 1.4% 3.9% 0.0% 0.0% 6.7%
APGAR 7-8 13.0% 14.4% 0.0% 9.4% 40.0%
APGAR 9-10 82.7% 19.2% 46.0% 88.0% 100.0%
APGAR Unknown 2.4% 13.7% 0.0% 0.0% 3.8%
Preterm Birth 12.6% 10.4% 0.0% 11.7% 29.2%
Full-Term Birth 87.3% 10.5% 70.5% 88.1% 100.0%
Gest. Age Unknown 0.2% 1.3% 0.0% 0.0% 0.4%
N = 259,471

# Births 98 339 2 24 417
Avg. Birth Weight (g) 3368 167 3108 3371 3619
%  Male 49.1% 15.9% 25.0% 49.8% 75.0%
% Low Birth Weight 3.2% 5.5% 0.0% 1.8% 11.9%
APGAR 0-3 0.2% 1.6% 0.0% 0.0% 0.9%
APGAR 4-6 1.0% 3.5% 0.0% 0.0% 5.0%
APGAR 7-8 11.5% 14.5% 0.0% 7.7% 40.0%
APGAR 9-10 85.0% 19.4% 50.0% 90.6% 100.0%
APGAR Unknown 2.3% 13.7% 0.0% 0.0% 3.1%
N = 258,748

# Births 14 48 0 3 60
Avg. Birth Weight (g) 2570 481 1778 2574 3323
%  Male 46.4% 29.2% 0.0% 48.5% 100.0%
% Low Birth Weight 41.3% 29.4% 0.0% 42.3% 100.0%
APGAR 0-3 2.8% 9.8% 0.0% 0.0% 16.7%
APGAR 4-6 4.2% 12.1% 0.0% 0.0% 25.0%
APGAR 7-8 22.3% 25.8% 0.0% 16.7% 100.0%
APGAR 9-10 68.1% 30.0% 0.0% 74.1% 100.0%
APGAR Unknown 2.6% 14.5% 0.0% 0.0% 4.7%
N = 216,452

All Births

Full-Term Births Only  (< 37 wks.)

Pre-Term Births Only  (≥ 37 wks.)

County-level birth outcome descriptive statistics derived from U.S. birth certificate data for 2004-2010.
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Table 4: First Stage Regression of PM2.5 and Regressions of Criteria Pollutants on Wildfire Instrument

Fine
Particulate

(PM2.5)

Coarse
Particulate

(PM10)

Carbon
Monoxide

(CO)

Sulfur
Dioxide
(SO2)

Nitric
Oxide
(NO)

Nitrogen
Dioxide
(NO2)

Ozone (O3)

Coefficient 1.1e-01*** 5.5e-02** -1.2e-04 2.9e-03 -2.2e-02 2.2e-02*** 1.1e-04***
(1.1e-02) (2.4e-02) (3.2e-04) (3.4e-03) (1.5e-02) (5.8e-03) (1.1e-05)

% Wildfire 15.3% 4.7% -0.4% 1.5% -4.8% 3.0% 5.7%
95% CI Upper 18.5% 8.7% 1.6% 4.8% 1.6% 4.6% 6.9%
95% CI Lower 12.2% 0.7% -2.4% -1.9% -11.2% 1.4% 4.6%

Coefficient 1.1e-01*** 4.7e-02 6.1e-04 4.0e-03 -1.4e-02 5.5e-03 9.2e-05***
(1.2e-02) (2.9e-02) (3.7e-04) (4.9e-03) (2.1e-02) (8.0e-03) (1.8e-05)

% Wildfire 16.1% 4.0% 2.0% 2.0% -3.1% 0.8% 4.8%
95% CI Upper 19.5% 9.0% 4.3% 6.8% 5.8% 2.9% 6.6%
95% CI Lower 12.8% -0.9% -0.4% -2.8% -12.1% -1.4% 3.0%

Coefficient 1.0e-01*** 3.3e-02 5.6e-04 4.6e-03 8.5e-03 3.8e-03 9.7e-05***
(1.1e-02) (2.7e-02) (3.7e-04) (4.8e-03) (1.8e-02) (8.6e-03) (1.9e-05)

% Wildfire 14.5% 2.8% 1.8% 2.3% 1.8% 0.5% 5.1%
95% CI Upper 17.5% 7.3% 4.1% 7.1% 9.6% 2.9% 7.0%
95% CI Lower 11.5% -1.7% -0.5% -2.4% -6.0% -1.8% 3.1%

Mean Conc. 1.10E+01 1.80E+01 4.60E-01 2.90E+00 7.00E+00 1.10E+01 3.00E-02
N 36752 14706 11955 14719 10665 13119 26063

Panel A: OLS

Panel C: OLS with Wildfire NO2, SO2, NH3, VOC Controls

Panel B: OLS with Wildfire NO2, SO2 Controls

Coefficients are for a 1µgm-3 change in PM2.5. Units are ppb for SO2, NO, and NO2 and ppm for O3 and CO. "% Wildfire" is calculated as the overall
quantity of pollutant predicted by the instrument divided by the mean concentration times 100%. Standard errors clustered at state-year level are in
parentheses. Significance stars represent p < 0.1 (*), p < .05 (**), p < .01 (***).
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Table 5: Regressions of Highly Toxic PM2.5 Subspecies on Wildfire PM2.5

Arsenic Mercury Lead Nickel Cadmium

Coefficient 2.1e-07 -1.6e-05*** 2.0e-05** 4.7e-06 9.5e-06
(1.5e-06) (4.1e-06) (8.6e-06) (3.2e-06) (6.5e-06)

% Wildfire 0.4% -24.0% 10.6% 6.7% 8.4%
95% CI Upper 6.8% -12.1% 19.7% 15.5% 19.8%
95% CI Lower -5.9% -35.9% 1.5% -2.2% -3.0%

Coefficient 8.7e-06*** 2.4e-05*** 2.6e-05* 8.5e-06 3.8e-05***
(2.3e-06) (6.3e-06) (1.4e-05) (6.3e-06) (9.4e-06)

% Wildfire 18.6% 35.5% 14.1% 12.1% 33.9%
95% CI Upper 28.0% 53.6% 28.6% 29.8% 50.2%
95% CI Lower 9.1% 17.4% -0.5% -5.6% 17.6%

Coefficient 9.1e-06*** 2.2e-05*** 3.3e-05** 1.1e-05* 3.5e-05***
(2.4e-06) (6.2e-06) (1.3e-05) (6.3e-06) (9.1e-06)

% Wildfire 19.4% 31.7% 17.9% 16.3% 30.7%
95% CI Upper 29.3% 49.6% 32.2% 33.9% 46.5%
95% CI Lower 9.6% 13.9% 3.6% -1.2% 14.9%

Mean Concentration 7.00E-04 1.10E-03 2.80E-03 1.00E-03 1.70E-03
N 15,566 8,300 15,624 15,624 10,439

Panel A: OLS

Panel B: OLS with Wildfire NO2, SO2 Controls

Panel C: OLS with Wildfire NO2, SO2, NH3, VOC Controls

Coefficients are for a 1-unit change in the wildfire PM2.5 instrument. Units are in µgm-3 for all PM2.5. "% Wildfire" is calculated as
the overall quantity of pollutant predicted by the instrument divided by the mean concentration times 100%. Standard errors clustered
at state-year level are in parentheses. Significance stars represent p < 0.1 (*), p < .05 (**), p < .01 (***).
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Table 6: Regressions of Non-Metallic PM2.5 Subspecies on Wildfire PM2.5

Organic
Carbon

(OC)

Elemental
Carbon

(EC)
Hydrogen Chloride Bromine Sulfur Nitrite Soil Sulfate Nitrate

Coefficient 2.3e-02*** 3.0e-03*** 2.9e-03*** -2.6e-04 1.9e-05*** 9.7e-03*** 1.1e-04** -2.3e-04 2.7e-02*** 2.1e-02***
(4.8e-03) (8.4e-04) (4.9e-04) (4.8e-04) (3.7e-06) (1.3e-03) (4.5e-05) (1.8e-03) (3.8e-03) (3.1e-03)

% Wildfire 25.3% 13.7% 15.9% -4.9% 10.4% 17.9% 10.8% -0.5% 17.4% 28.2%
95% CI Upper 35.9% 21.2% 21.2% 12.9% 14.4% 22.5% 19.2% 6.7% 22.1% 36.4%
95% CI Lower 14.8% 6.3% 10.6% -22.8% 6.4% 13.3% 2.4% -7.7% 12.6% 20.1%

Coefficient 5.6e-03 1.5e-03 6.7e-04 -1.4e-03 3.8e-05*** 1.1e-02*** 4.4e-05 8.7e-04 3.2e-02*** 3.2e-02***
(4.7e-03) (1.7e-03) (6.7e-04) (9.8e-04) (6.1e-06) (1.5e-03) (4.4e-05) (2.3e-03) (4.6e-03) (4.5e-03)

% Wildfire 6.3% 6.8% 3.7% -26.8% 20.8% 20.0% 4.2% 1.8% 20.6% 42.4%
95% CI Upper 16.7% 21.8% 10.9% 9.7% 27.4% 25.6% 12.5% 11.2% 26.2% 54.2%
95% CI Lower -4.1% -8.2% -3.6% -63.2% 14.2% 14.3% -4.1% -7.7% 14.9% 30.6%

Coefficient 9.6e-03* 1.7e-03 4.1e-04 -9.9e-04 3.6e-05*** 8.6e-03*** 5.7e-05 2.1e-03 2.5e-02*** 3.2e-02***
(5.3e-03) (1.5e-03) (6.7e-04) (9.7e-04) (5.4e-06) (1.7e-03) (4.6e-05) (2.5e-03) (5.0e-03) (4.1e-03)

% Wildfire 10.7% 7.7% 2.3% -18.8% 19.9% 15.9% 5.4% 4.3% 15.9% 42.6%
95% CI Upper 22.3% 20.6% 9.5% 17.5% 25.7% 22.1% 14.1% 14.2% 22.2% 53.4%
95% CI Lower -0.8% -5.3% -5.0% -55.0% 14.1% 9.7% -3.3% -5.6% 9.7% 31.7%

Mean Concentration 1.30E+00 3.20E-01 2.60E-01 7.60E-02 2.70E-03 8.00E-01 1.50E-02 7.10E-01 2.30E+00 1.10E+00
N 6,477 6,469 6,281 6,359 15,481 15,561 6,299 6,281 15,628 15,378

Panel C: OLS with Wildfire NO2, SO2, NH3, VOC Controls

Panel B: OLS with Wildfire NO2, SO2 Controls

Panel A: OLS

Coefficients are for a 1-unit change in the wildfire PM2.5 instrument. Units are in µgm-3 for all PM2.5. "% Wildfire" is calculated as the overall quantity of pollutant predicted by the instrument divided by the mean
concentration times 100%. Standard errors clustered at state-year level are in parentheses. Significance stars represent p < 0.1 (*), p < .05 (**), p < .01 (***).
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Table 7: Percentage of Wildfire PM2.5 Exposure Outside of the State of Origin

AL AR AZ CA CO CT DE FL GA IA ID IL IN KS KY LA

72.2% 72.1% 77.9% 80.3% 56.9% 7.3% -- 83.4% 86.7% -- 74.1% 83.6% 74.5% 92.5% 82.0% 73.7%

MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY

-- 96.5% -- 84.8% 94.3% 69.8% 58.5% 75.7% 86.1% 75.1% 90.6% -- 65.8% 69.8% 73.7% 68.0%

OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY

80.4% 61.7% 72.0% 78.4% -- 58.0% 50.2% 75.2% 92.3% 65.2% 78.6% -- 76.2% -- -- 54.5%

Each cell represents the fraction of raw average wildfire PM2.5 unit-months that occurs within the wildfire's state of origin. Empty cells indicate states with no wildfires larger than 1,000 acres in the
sample period.
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Table 8: IV Estimates: PM2.5 Effects on All-Cause Mortality (by Fixed-Effects Specification)

(1) (2) (3) (4) (5) (6)

Avg. PM2.5 (10µgm-3) 0.671*** 0.806*** 0.881*** 1.041*** 1.049*** 0.926***
(0.121) (0.126) (0.123) (0.199) (0.125) (0.129)

First-Stage F-Statistic 67.791 80.118 79.523 79.078 82.994 76.378
First-Stage Partial R2 0.03 0.025 0.025 0.024 0.025 0.028

Avg. PM2.5 (10µgm-3) 1.590** 1.965*** 2.067*** 2.350*** 2.419*** 2.875***
-0.701 (0.670) (0.695) (0.737) (0.736) (1.015)

First-Stage F-Statistic 10.102 17.334 16.737 19.645 20.799 13.569
First-Stage Partial R2 0.003 0.004 0.004 0.004 0.004 0.003

Avg. PM2.5 (10µgm-3) 1.791** 2.269*** 2.365*** 2.680*** 2.779*** 3.175***
(0.780) (0.802) (0.823) (0.870) (0.874) (1.145)

First-Stage F-Statistic 9.123 14.695 14.556 17.441 18.459 12.713
First-Stage Partial R2 0.003 0.003 0.003 0.003 0.003 0.003

Avg. PM2.5 (10µgm-3) -0.043* -0.017 -0.022 -0.013 -0.009 0.001
(0.024) (0.025) (0.025) (0.024) (0.025) (0.026)

Fixed Effects
Year Y Y -- -- -- --
Month Y -- -- -- -- --
County Y Y Y Y -- --
County-Month N N N N N Y
County-Year N N N N Y N
Climate Region-Month N Y Y -- -- --
State-Year N N Y Y -- Y
State-Month N N N Y Y --

Panel A: 2SLS

Panel B: 2SLS - Wildfire NO2, SO2 Controls

Panel C: 2SLS -Wildfire NO2, SO2, NH3, VOC Controls

Panel D: OLS

N = 36,752. Coefficients are effects for mortality rate per 100,000 population for a 10µgm-3 change in PM2.5. Standard errors clustered
at state-year level are in parentheses. Significance stars represent p < 0.1 (*), p < .05 (**), p < .01 (***).
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Table 9: IV Estimates: PM2.5 Effects on Mortality (by Cause)

All-Cause All-Cause
(ln(rate))

Ischemic
Heart Disease

Other
Heart Disease Cerebrovascular Influenza &

Pneumonia
Chronic Lower

Respiratory

ICD-10
"All Other
(Residual)"

1.041*** 0.013*** 0.258*** 0.066 0.166*** 0.146*** 0.194*** 0.163**
(0.233) (0.003) (0.073) (0.041) (0.043) (0.044) (0.048) (0.070)

2.680*** 0.033*** 0.472** 0.257* 0.292** 0.458*** 0.454*** 0.529**
(0.885) (0.012) (0.225) (0.133) (0.134) (0.167) (0.169) (0.230)

-0.013 0.000 -0.010 0.007 -0.015** -0.009** -0.003 -0.003
(0.024) (0.000) (0.011) (0.007) (0.006) (0.004) (0.006) (0.009)

67.64 4.16 11.97 5.53 4.20 1.67 4.20 11.92
N = 36,752

Panel B: 2SLS with Wildfire NO2, SO2, NH3, VOC Controls

Panel A: 2SLS

Panel C: OLS

Outcome Means (monthly, per 100,000)

Coefficients are effects for mortality rate per 100,000 population for a 10µgm-3 change in PM2.5. Standard errors clustered at state-year level are in parentheses. Significance stars
represent p < 0.1 (*), p < .05 (**), p < .01 (***).
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Table 10: IV Estimates: PM2.5 (Non-)Effects on Mortality from External Causes

Motor
Vehicle

Accidents

Other
Unspecified
& Adverse

Effects

Homicides Suicides
Other

External
Causes

0.020 0.083** -0.031 0.001 0.008
(0.026) (0.040) (0.021) (0.009) (0.007)

0.067 0.060 -0.063 -0.007 0.006
(0.076) (0.111) (0.060) (0.024) (0.020)

-0.001 -0.003 0.007** -0.000 -0.000
(0.004) (0.005) (0.003) (0.002) (0.001)

1.35 2.53 1.10 0.42 0.18
N = 36,752

Panel A: 2SLS

Panel B: 2SLS with Wildfire NO2, SO2, NH3, VOC Controls

Panel C: OLS

Outcome Means (monthly, per 100,000)

Coefficients are effects for mortality rate per 100,000 population for a 10µgm-3 change in PM2.5.
Standard errors clustered at state-year level are in parentheses. Significance stars represent p < 0.1
(*), p < .05 (**), p < .01 (***).
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Table 11: IV Estimates: PM2.5 Effect on All-Cause Mortality by Age Group

01 to 04 05 to 14 15 to 24 25 to 34 35 to 44

-0.028 -0.043 0.011 -0.230* 0.032
(0.088) (0.037) (0.072) (0.124) (0.148)

-0.014 -0.057 0.069 -0.395 0.042
(0.241) (0.102) (0.199) (0.344) (0.408)

45 to 54 55 to 64 65 to 74 75 to 84 85+

0.103 0.584 3.140*** 7.009*** 27.027***
(0.227) (0.419) (0.907) (1.956) (6.978)

0.275 1.615 6.042** 14.892** 78.988***
(0.626) (1.223) (2.795) (6.181) (26.583)

Coefficients are effects for mortality rate per 100,000 population for a 10µgm-3 change in
PM2.5. Standard errors clustered at state-year level are in parentheses. Significance stars
represent p < 0.1 (*), p < .05 (**), p < .01 (***).

Panel A: 2SLS

Panel A: 2SLS

Panel C: 2SLS -Wildfire NO2, SO2, NH3, VOC Controls

Panel C: 2SLS -Wildfire NO2, SO2, NH3, VOC Controls
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Table 12: Reduced Form Lead and Lagged Wildfire PM2.5 Effect on All-Cause Mortality

(1) (2) (3)
6 Month Lead -0.007 0.011

(0.01) (0.02)
5 Month Lead 0.009 -0.035**

(0.019) (0.016)
4 Month Lead 0.046** 0.046**

(0.019) (0.023)
3 Month Lead 0.016 0.008

(0.018) (0.022)
2 Month Lead -0.035* -0.009

(0.019) (0.019)
1 Month Lead 0.015 -0.018

(0.019) (0.023)
Contemp. 0.077*** 0.046*** 0.036*

(0.018) (0.018) (0.022)
1 Month Lag -0.022 -0.043**

(0.016) (0.018)
2 Month Lag -0.008 0.016

(0.016) (0.019)
3 Month Lag -0.049*** -0.03

(0.016) (0.019)
4 Month Lag -0.021 -0.031

(0.019) (0.021)
5 Month Lag -0.052*** -0.062***

(0.019) (0.022)
6 Month Lag 0.009 0.036

(0.018) (0.023)
Joint F-test Leads/Lags (p-
value) 0.00015 0.00055 0.00028
N 30,355 30,394 24,096

44



Table 13: IV Estimates: Effect of PM2.5 Exposure for Full Gestation and 16 Weeks Before Birth on Birth Outcomes

% Female
Gestational Age

(Weeks)
% Premature

(< 37 Weeks GA)
Avg. Birth
Weight (g)

Low Birth Weight
(< 2500g)

Low Apgar
(< 5)

Avg. PM2.5
(9 mo. Before Birth)

0.00226* -0.0228*** 0.00257*** -1.9235 0.0090 -0.0003

(0.00116) (0.0077) (0.00083) (1.7574) (0.0070) (0.0005)

1-16 Weeks Before Birth 0.00117 -0.0238*** 0.00195*** -1.7355 0.0031 0.0000
(0.00086) (0.0055) (0.00064) (1.1570) (0.0046) (0.0003)

Avg. PM2.5
(9 mo. Before Birth)

0.00397 -0.0464*** 0.00388** -4.4164 0.0006 0.0001

(0.00244) (0.0164) (0.00177) (3.6309) (0.0015) (0.0010)

1-16 Weeks Before Birth 0.00107 -0.039*** 0.00297*** -3.1059** 0.00001 0.0002
(0.00112) (0.0078) (0.00088) (1.4327) (0.0006) (0.0004)

FS F-stat = 37.68, Partial R2 = 0.023, N = 43,585. PM2.5 is denominated in 1ugm-3 and averaged over the specified period. The instrument is wildfire PM2.5 averaged over the same period, and all
controls are averaged over the same period.

FS F-stat F = 156.45, Partial R2 = 0.0977, N = 43,585

Panel A: 2SLS

Panel B: 2SLS - Wildfire NO2, SO2 Controls45



8 Appendix

8.1 Estimating Fire Burn Durations

Wildfires can last for a period of hours to hundreds of days (for large, remote complex fires). The best measure in
the FPA database of a fire’s start time is the discovery time by the reporting agency, which is almost always reported.
The time of the fire’s containment, which indicates a judgment by the fire managing agency that the fire perimeter
is secured from spreading further, is reported with similar frequency. Only some of the FPA database sources also
have reports of their fires’ extinguishment dates. Substantial emissions may still occur during the period between
containment and extinguishment, especially for large fires. For fires greater than 300 acres, approximately 43% of
burn time is post-containment. To better calibrate the time profile of emissions from fires, I use these fire events to fit
a model and predict the burn duration for all fires in the absence of an explicitly-reported extinguishment or “put-out”
time.

I merge fire extinguishment dates from the DOI-USGS database of fire reports from six major federal agencies.
Then, estimate a linear model of a fire’s burn duration:

Di = ciξ+ s(i)θs +m(i)θm + y(i)θy + ri

A fire’s burn duration is a function of its time to containment Di; its final land-area size, measured by a categorical
“size class” ci; some unobserved seasonal-, year-, and state-specific factors; and idiosyncratic factors ri. I estimate
this relationship using all fires from 2000-2010 larger than 300 acres. The containment time is naturally a strong
predictor, as it is the earliest a fire can be extinguished. Its coefficient is sharply estimated close to 1, suggesting that
time-to-containment is at least conditionally unrelated to unobservable characteristics of the fire that affect its total
duration.

Where both containment and put-out dates are unavailable, a fire is assigned its duration based on the same model,
estimated without including containment date as a covariate. All predictions less than 1 day due to the linear fit of the
model are assigned a value of 1 day of burning. All fires with reported and predicted durations exceeding 160 days are
assigned 160 days of burning to lower computational overhead. This is based on an assumption that fires reported to
burn in excess of 160 days have reporting error in their records or are long-burning smoldering fires, which do not have
comparable emissions to flaming fires. This truncation procedure removes approximately 10 percent of fire emission
days, and less than 4 percent of emissions when weighted by the total land area of the fire.

The purpose of these duration estimates is to improve the predictive power of modeled concentrations. Errors in the
prediction from reporting errors or misspecification of the model for fire burn duration will result in emissions profiles
of incorrect length. These errors will not affect the validity of the modeled pollutant concentrations as instruments
for observed pollutant concentrations, provided they are statistically unrelated to the determinants of the observed
pollutant concentrations I do not include in my first stage estimation.

8.2 Wildfire Modeling Details

8.2.1 Modeling Workflow

The fire events from the FPA FOD database are each input as individual events into the BSF. The CONSUME module
reads the coordinate data of the event and determines the likely fuel type using the FCCS fuel map. CONSUME then
divides the fuel consumption into flaming, smouldering, and residual emission phase, each of which has a distinct
contribution to emissions volume for the same fuel (as a model of fuel combustion efficiency). Combining the fuel
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consumption profile with empirically-derived emissions factors, FEPS then estimates the quantities of heat and the
pollutant of interest released by the fire. Using an empirically-derived diurnal (i.e., daily recurring) time profile
embedded in FEPS, I generate a 24-hour emissions pattern that repeats for each day a fire burns and terminates at
the estimated date of the fire’s extinguishment. The pattern distributes the total emissions calculated by CONSUME
among hours of the day. This modeling step is designed to improve downwind concentration estimates by accounting
for fire burn cycles that vary with meteorological parameters that systematically vary with time of day, with lower
emissions during nighttime hours.

The FEPS Plume Rise module estimates the buoyancy of the emitted pollutant due to the heat calculated by
CONSUME and assigns 20 heights into which fractions of the hourly emissions are injected. This step reflects that
quantities of a pollutant will be lofted higher from a fire location the more heat the fire releases, and that larger fires
will also tend to have higher plumes that will result in longer-range transport. The result is a set of hourly point-source
emissions for each fire event, with 20 emissions quantities in each hour released at the FEPS-calculated altitudes.

The point-source emissions generated by the CONSUME and FEPS models from the fire event data are then in-
putted into HYSPLIT, which calculates the trajectory and dispersion of the emitted pollutants and outputs a spatial
field of concentrations over time. To calculate concentrations, HYSPLIT requires continuous meteorological data
spanning the time period of the fire event and its corresponding downwind impacts of interest. Meteorological re-
analysis data sets or archived forecasts are typically used for retrospective applications. Here, I use the Eta Data
Assimilation System 40km (EDAS40), an archived 3-hourly forecast spanning 2004 to the present with a spatial reso-
lution of 40km. This forecast system was developed and maintained by National Weather Service’s National Centers
for Environmental Prediction.

HYSPLIT represents the distribution of pollutants from a source through the behavior of a large number of indi-
vidual “particles” (which are computational representations of pollutant masses, not to be confused with particulate
pollutants in themselves). These particles are released over the duration of an emission and HYSPLIT models their
advective motion using three-dimensional velocity vectors from the meteorological data. In addition, the particle ap-
proach adds a random component to their advective motion that approximates a random walk process calibrated by
local atmospheric turbulence. HYSPLIT particles are assigned a proportional fraction of pollutant mass at the time of
emission and shed mass through atmospheric removal processes (dry and wet deposition). Concentrations for a grid
cell are calculated through the sum of masses of particles within the grid cell divided by the size of the grid cell. All
HYSPLIT calculation methods are described in detail in Draxler and Hess (1997). I describe deposition processes and
my choice of calibration parameters in the next section.

Each HYSPLIT run uses a 5-day set of hourly burning emissions at 21 vertical levels for a single fire location. I set
HYSPLIT to release 300,000 particles per emissions hour, which are evenly divided among the vertical emission levels.
I allow HYSPLIT to calculate the travel of particles for 920 hours (approximately five and a half weeks) from the hour
of the first emission. From these calculations, HYSPLIT creates an hourly concentration grid for the CONUS model
domain roughly matching the resolution of the meteorological data, with each grid square encompassing approximately
1,600 km sq. for 2004-2010. I sample concentrations from each fire event’s grid at 10 meters above ground level
at pollution monitoring sites and census tract centroids, sum concentrations across all fire events, and average the
resulting hourly concentrations to daily average concentrations by each sampling site.

While the raw output is constructed from emissions measures and conversions that would denominate it in µgm−3

if it were to be taken literally, I remain agnostic about the units of the output and allow first-stage regressions to
implicitly rescale the wildfire PM2.5 measure. In Appendix Section 8.3, I establish that the output has a strongly
logarithmic fit to observed pollution data and take a logarithmic transformation of the raw concentrations shifted by a
small constant. This will be the wildfire PM2.5 instrument used for the remainder of the paper.
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8.2.2 Deposition Processes

HYSPLIT’s modeling of deposition, or the removal of pollutants from the atmosphere by precipitation and settling
or impaction upon terrain, plays an important role in generating independent variation among pollutants to allow the
separate identification of their health effects. HYSPLIT dynamically accounts for the amount of air pollution lost to
precipitation by modeling the interaction of traveling parcels of air pollution from origin to destination with temporally
and spatially smooth representations of precipitation events. HYSPLIT models particle pollutant wet deposition (also
referred to as “wet removal” and “wet scavenging”) via two processes described as in-cloud removal (“washout”)
and below-cloud removal (“rainout”).6 For gaseous pollutants, it uses a calculation method based on gas solubility.
HYSPLIT has one common process for both particles and gases for modeling dry deposition which assumes a rate of
removal driven by wind speed. One pollutant-specific constant calibrates the intensity of each process: the washout
ratio, representing an average ratio of pollutant concentration in air to concentration in water at the ground; the rainout
rate, or a fixed rate of pollutant removal while pollutant concentrations are in a meteorological layer with precipitation
(s−1); the Henry’s Law Constant for wet removal of soluble gases (mol atm−1); and the dry deposition velocity (ms−1).
The constants I choose for each pollutant type, along with corresponding citations, are reported in Appendix Table 14.
For reference, I also report constants for related pollutants that I do not model.

Wet deposition of particulate pollutants is characterized by HYSPLIT through one process in which polluted air
is ingested over time into proximal atmospheric moisture (washout), and another in which rain falls through polluted
air (rainout). Wet deposition processes play a relatively larger role in mass removal of fine particulate pollutants than
they do for gaseous pollutants, up to an order of magnitude higher, though this relation varies by species. While there
is substantial heterogeneity in the efficiency with which PM2.5 pollutants are removed by rain because of the many
component subspecies and variation in the particle size distribution, a washout ratio of 1× 105 is broadly used as an
estimate for the washout ratio of general PM2.5. In the absence of well-established parameters for rainout rates, I
use HYSPLIT’s suggested particle rainout rate of 5× 10−5s−1 which has been used in other HYSPLIT particulate
modeling applications (Chand et al. 2008; Wen et al. 2013). I expect that empirically-derived washout ratios will
capture most deposition since they are often measured without HYSPLIT’s deposition process distinction in mind, and
at least one study finds that below-cloud deposition is insignificant for fine particles except in extreme precipitation
events (Andronache 2003).

Instead of explicit washout and rainout parameters, gaseous pollutants’ wet deposition is calibrated by the appro-
priate Henry’s Law constant for the water-soluble gas. Henry’s Law holds that at a constant temperature, the solubility
of gas in a liquid is proportional to the pressure of the gas surrounding the liquid. An intuitive example of Henry’s
Law at work is a carbonated soda: while sealed, a soda bottle contains liquid with dissolved CO2 and a space above
the liquid with CO2 gas. The opening of the bottle lowers the resulting pressure above the liquid, and over time the
CO2 escapes from the liquid and into the open air through the bottle opening. The reverse process occurs if there is
liquid in the same bottle with no CO2, and CO2 is injected into the empty space of the sealed bottle: the higher the
pressure of the resulting air space in the bottle (and the greater the concentration of CO2), the greater the equilibrium
concentration of CO2 in the liquid will be. Henry’s Law constants are chosen from an extensive collection of esti-
mates from academic papers (Sander 1999). Estimates are typically calculated in one of three ways: by theoretical
calculations, extrapolations from other measured constants, or by field measurements and experiments. For each gas,
I choose the most recent estimate from a literature review where available. If a literature review-based estimate is not
available, I choose the modal Henry’s Law constant reported in Sander (1999).

Dry deposition is modeled through gravitational settling and impaction at ground level which intensifies with
wind velocity. In the absence of precipitation and chemical reactions, dry deposition is the primary determinant of a

6There is some inconsistent usage of the terms “washout” and “rainout” in across some papers, their meanings occasionally swapped.
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pollutant’s lifetime in the atmosphere following emissions. I conduct a literature search for dry deposition velocities,
using the compound name and “deposition velocity” as search terms. For deposition velocities for gases drawn from
field observations, urban-setting deposition velocities are preferred. Many gases, such as NO and HCHO, do not
have significant dry deposition fluxes over land. I use a deposition velocity of 0ms−1 for such gases with trivial land
deposition rates, and also for any gases for which I am unable to find any direct reference to deposition fluxes or
velocities. The deposition velocities I choose are reported in Appendix Table 14.

8.3 Nonlinear First Stage Transformation

The relationship between measured concentrations and modeled concentrations is extremely nonlinear, requiring a
monotonic transformation to maximize the predictive power of the wildfire pollution instrument. Figure 6a shows
the estimated coefficients of a piecewise linear regression of daily station PM2.5 on wildfire PM2.5 interacted with
vigintile (5-percentile-block) indicator, representing an approximation of the first derivative of the true dose response
function between measured and raw modeled PM2.5 across the raw modeled PM2.5 distribution. This regression con-
trols for year, month, and county fixed effects, with standard errors clustered at the state level. The pattern is highly
nonlinear, scaling multiple orders of magnitude, with the estimated slope monotonically decreasing in concentration.
A function of the form f (x) = a

x+c (with a > 0, c≥ 0) follows a comparable pattern, suggesting that a linear approxi-
mation better predicts station PM2.5 using as a regressor the natural logarithm of modeled wildfire PM2.5 plus some
constant. This nonlinear pattern implies that some combination of the emissions calculations and HYSPLIT is resulting
in systematic overestimation of large concentrations and underestimation of small concentrations. The monotonically
decreasing slope across the domain of concentrations implicates the dispersion calculation of HYSPLIT, which relies
on calibration from atmospheric parameters to determine turbulent velocities and a Gaussian random component that
determine the random-walk-like dispersive behavior of the particle. One explanation for the subsequent logarithmic
fit is that the calibration of the Gaussian component’s variance does not account for how the true variance is itself
positively related to concentration level, resulting in systematic underestimation of dispersion for large concentrations
and overestimation for small concentrations (causing overestimated and underestimated concentrations, respectively).

A logarithmic transformation of the wildfire pollution measure in the first stage accounts for the implicit overdis-
persion of concentrations along trajectories by compressing the distribution of magnitudes. To accomplish this trans-
formation without discarding zero values, I take the natural logarithm of daily average wildfire PM2.5 plus a constant.
The choice of constant by which to shift the raw concentration before taking the logarithm, the “shift parameter” has
two important impacts: it determines the position of zeroes on the log function, and relatedly, it changes the relative
curvature of the fit of logged concentrations to observed concentrations. Shift parameters that are too small will result
in the log transformation overestimating the contrast between the effect of positive wildfire concentrations relative to
zero wildfire concentrations, while shift parameters that are too large will cause an underestimated contrast. Large
shift parameters may also distort the marginal effects for larger values in the distribution. One sensible choice of shift
parameter is a point at which positive concentrations could be considered effectively zero for the dependent variable
of interest. HYSPLIT’s concentration outputs near zero can be reasonably framed as a sensitivity problem: there is
a computational threshold below which it will never give a positive value, and the distribution of values approaching
zero is continuous until the trivial minimum value at 4.92×10−34µgm−3. I choose a value corresponding to the 10th
percentile of positive values (7.21×10−14µgm−3), add it to the raw concentration value, and take the logarithm. For
ease of interpretation later, I also shift all transformed values by the minimum of the transformed values to make
all values nonnegative. Figure 6b shows the same regression as in Figure 6b, but now with logged daily wildfire
PM2.5 interacted with vigintile indicator. The slopes now fall within the same order of magnitude, slightly increas-
ing in vigintile (implying a gradual shift to underestimation of marginal changes in concentrations relative to smaller
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vigintiles).
Additionally, there are several numerically large outliers which may affect the fit, but station data provides a way

of trimming outlier values sensibly. I account for these right-tail outliers by assigning the instrument the station PM2.5
value if the raw modeled wildfire PM2.5 exceeds the station-observed PM2.5 value, and both values are greater than
65µgm−3. Empirically, the latter condition implies the former in 100 percent of cases, which motivated the selection
of this cutoff. Less than 0.1 percent of station-days have measured PM2.5 exceeding 65µgm−3. All other wildfire
PM2.5 values exceeding 65µgm−3 (approximately 0.6 percent of all values) are set to 65µgm−3. This adjustment
compresses the right tail of the distribution, enhancing the performance of the logarithmic transformation I take to
improve the fit of the instrument (in exchange for losing some variation in extreme values). Because the observed
nonlinear relationship and outliers are ostensibly due to HYSPLIT’s dispersion calculation methods, which are not
unique to any pollutant, I assume that concentrations for other pollutant species follow a comparable relationship
with their observed values (in the absence of daily station data to do a pollutant-specific adjustment). For all control
species, I reduce all right-tail values for other pollutant species to their 98th percentile of positive values before taking
the logarithmic transformation, since that is the approximate point at which the PM2.5 values always exceed station
values. Then, I take the logarithm of the outlier-adjusted modeled concentration outputs plus the 10th percentile of
their positive values added.

8.4 Coefficient Estimates under Non-Classical Measurement Error

Consider a simplified cross-sectional setting, with health outcome y as a function of true exposure x∗,

yi = x∗i β+ εi

Assume x∗i is uncorrelated with εi, and that the researcher only observes an imperfect measure x of x∗such that
x = x∗+ e. Define var(x∗) = σ2

x∗ , var(e) = σ2
e , and cov(x∗, e) = σx∗e. Then, the probability limit of the ordinary least

squares estimator of y on x can be written as

plimβ̂ = β
(σ2

x∗ +σx∗e)

σ2
x∗ +σ2

e +2σx∗e

By the Cauchy-Schwarz inequality, the denominator is always positive: it represents the variance of the error-prone
regressor x. σx∗e = 0 corresponds to the classical errors-in-variables assumption, which results in attenuation bias. The
probability limit of the OLS estimate β̂ is both attenuated and incorrectly-signed if σx∗e < 0 and σ2

x∗ < |σx∗e|. Negative
correlation between the true regressor value and the size of the measurement error is plausible in the pollution setting
if population density increases both pollution levels and reduces exposure measurement error asymmetrically across
polluted areas.

8.5 Change in Finite-Sample Bias of IV when Fixed Effects are Included

Another possibility for the increase in estimates across different fixed effects specifications is that the inclusion of
fixed effects potentially changes the finite-sample bias of the 2SLS estimate, even with equally “strong” instruments
in the Staiger and Stock (1997) nomenclature. This is because both the strength of the first-stage relationship and
the amount of correlation between the endogenous variable and structural equation error term both determine finite-
sample bias of IV estimators. In this interpretation, the inclusion of fixed effects chooses variation in observed PM2.5
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that is less correlated with unobserved determinants of health than the total variation in PM2.5, while simultaneously
not weakening the relationship between wildfire PM2.5 and station PM2.5 sufficiently to counterbalance the change.
The corresponding OLS estimates for PM2.5 are close to zero and relatively precise, implying that IV estimates would
be biased toward zero. One might be inclined to believe that between-county variation in pollution is more strongly
associated with unobserved determinants of health than within-county variation is, both based on the mechanisms
proposed for either correlation (e.g., residential and industrial sorting versus micro-level changes in economic activity)
and more pragmatically through the revealed preference of researchers for multiple time-series and panel studies over
cross-sectional studies. Murray (2006) provides a simplified approximation of the finite-sample bias of 2SLS based
on Hahn and Hausman (2001) (where the structural and first-stage equation error terms have varianced normalized to
one) as follows:

E(β̂,2SLS)−β≈ lρ(1− R̃2)

NR̃2 .

Here, β is the effect of PM2.5 on mortality, l = 1 is the number of instruments, ρ is the correlation between the
structural and first-stage equation error terms (a measure of the level of endogeneity), R̃2 is the partial R-squared of
the first stage regression, and N is the sample size. If the inclusion of fixed effects decreases ρ to ρ f e, but decreases R̃2

to R̃2
f e , then the approximate bias decreases as long as ρ

ρ f e
>
(
(1−R̃2)

R̃2

)(
(1−R̃2

f e)

R̃2
f e

)−1

.
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8.6 Appendix Tables and Figures
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Figure 6: Piecewise Regression Coefficient Estimates of Daily Station PM2.5 on Raw and Log-transformed Wildfire
PM2.5 Model Output, by Vigintile
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0

100

200

300

400

500

600

700

800

900

40th 55th 70th 85th 100th

C
oe

ff
ic

ie
nt

 E
st

im
at

e

Vigintile Indicator

Coefficient Estimate
95% CI

(b) Log-Transformed Wildfire PM2.5 Output
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Table 14: Henry’s Law Constants and Dry Deposition Velocities for Gaseous Pollutants

Pollutant Henry's Law Constant Citation Dry Deposition Velocity Citation
Ozone (O3) 9.40E-03 1.25E-02
Sulfur Dioxide (SO2) 1.23E+01 1.50E-02
Nitrogen Dioxide (NO2) 1.20E-02 3.60E-03
Nitric Oxide (NO) 1.90E-03 0.00E+00
Carbon Monoxide (CO) 9.40E-04 3.00E-04
Methane (CH4) 1.40E-03
Carbon Dioxide (CO2) 3.40E-02
Ammonia (NH3) 6.10E+01 6.50E-03
Formaldehyde (HCHO) 3.20E+03 5.00E-03
Mercury Elemental (Gas) 9.30E-02 1.00E-04
Mercury Reactive Gaseous 1.40E+06 1.00E-03
Toluene (C6H5CH3) 1.50E-01 0.00E+00
Benzene 1.60E-01
O-Xylene 1.30E-01
M-Xylene 1.90E-01
P-Xylene 1.30E-01
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Table 15: Regression of Organic Gases on Wildfire PM2.5

M/P Xylene Benzene Toluene Ethylbenzene O-Xylene Styrene

Coefficient -2.4e-04 8.7e-03 1.5e-02 8.5e-04 1.6e-03 -5.5e-03
(5.1e-03) (6.5e-03) (1.7e-02) (2.6e-03) (2.8e-03) (3.8e-03)

% Wildfire -0.2% 6.6% 4.6% 1.8% 2.9% -18.8%
95% CI Upper 7.1% 16.2% 15.2% 12.5% 13.0% 7.2%
95% CI Lower -7.5% -3.0% -6.0% -9.0% -7.3% -44.9%

Coefficient 1.1e-02 1.3e-02 6.0e-03 -2.0e-03 -4.3e-03 -2.0e-03
(7.4e-03) (8.1e-03) (4.0e-02) (6.4e-03) (7.3e-03) (4.3e-03)

% Wildfire 8.1% 9.6% 1.9% -4.3% -7.9% -7.0%
95% CI Upper 18.7% 21.5% 26.9% 22.1% 18.6% 22.1%
95% CI Lower -2.5% -2.4% -23.1% -30.7% -34.5% -36.1%

Coefficient 1.0e-02 1.7e-02** 1.9e-02 1.7e-03 -6.3e-05 -2.3e-03
(7.7e-03) (7.7e-03) (3.1e-02) (4.8e-03) (5.2e-03) (5.1e-03)

% Wildfire 7.6% 12.9% 6.0% 3.6% -0.1% -7.8%
95% CI Upper 18.6% 24.4% 25.3% 23.4% 18.9% 26.8%
95% CI Lower -3.5% 1.5% -13.3% -16.2% -19.1% -42.4%

Mean Concentration 2.00E+00 1.90E+00 4.60E+00 6.90E-01 7.90E-01 4.30E-01
N 8044 8924 8653 8580 8364 7761

Chloroform
Carbon

Tetrachloride
Methyl

Chloroform
Tetrachloro-

ethylene
Trichloro-ethylene

Dichloro-
Trifluoroethane

Coefficient -8.6e-05 -1.8e-04 -2.6e-04 -2.4e-04 -5.6e-05 -5.6e-05
(7.6e-05) (1.3e-04) (5.1e-04) (2.8e-04) (4.9e-04) (4.9e-04)

% Wildfire -4.9% -2.9% -6.4% -4.5% -2.2% -2.2%
95% CI Upper 3.6% 1.3% 17.8% 5.8% 36.5% 36.5%
95% CI Lower -13.3% -7.1% -30.6% -14.7% -41.0% -41.0%

Coefficient -1.8e-04 -9.6e-05 -4.2e-04 -1.0e-03* 8.5e-04 8.5e-04
(1.5e-04) (1.4e-04) (8.7e-04) (5.9e-04) (6.4e-04) (6.4e-04)

% Wildfire -10.5% -1.5% -10.1% -18.7% 34.2% 34.2%
95% CI Upper 6.1% 2.9% 31.2% 3.1% 84.9% 84.9%
95% CI Lower -27.0% -6.0% -51.4% -40.6% -16.4% -16.4%

Coefficient -1.9e-04 -2.4e-04* -7.6e-04 -6.3e-04 9.5e-04 9.5e-04
(1.6e-04) (1.5e-04) (1.1e-03) (6.0e-04) (7.6e-04) (7.6e-04)

% Wildfire -11.0% -3.8% -18.3% -11.9% 38.2% 38.2%
95% CI Upper 6.6% 0.7% 34.1% 10.3% 98.9% 98.9%
95% CI Lower -28.6% -8.4% -70.7% -34.2% -22.5% -22.5%

Mean Concentration 2.50E-02 8.80E-02 6.00E-02 7.60E-02 3.50E-02 3.50E-02
N 8086 7687 7569 8131 8090 8090

Coefficients are for a one-unit change in the wildfire PM2.5 instrument. Units for organic gases are ppbC (parts per billion carbon). "% Wildfire" is calculated as the overall
quantity of pollutant predicted by the instrument divided by the mean concentration times 100%. Standard errors clustered at state-year level are in parentheses. Significance
stars represent p < 0.1 (*), p < .05 (**), p < .01 (***).

Panel A: OLS

Panel B: OLS with Wildfire NO2, SO2 Controls

Panel C: OLS with Wildfire NO2, SO2, NH3, VOC Controls

Panel A: OLS

Panel B: OLS with Wildfire NO2, SO2 Controls

Panel C: OLS with Wildfire NO2, SO2, NH3, VOC Controls
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Table 16: Regression of PM2.5 Metal Subspecies on Wildfire PM2.5, Set I

Aluminum Ammonium
Ion

Ammonium
Nitrate

Ammonium
Sulfate Antimony Barium Calcium Cerium Cesium Chlorine

Coefficient -4.6e-04*** 2.1e-02*** 9.8e-03*** 1.8e-02*** -2.4e-05 7.7e-05*** 4.2e-05 6.4e-05** 6.6e-05*** -1.1e-04
(1.2e-04) (2.6e-03) (2.7e-03) (3.7e-03) (1.9e-05) (2.5e-05) (8.8e-05) (2.7e-05) (1.7e-05) (1.9e-04)

% Wildfire -15.9% 24.0% 23.1% 12.3% -2.3% 9.0% 1.2% 7.0% 9.0% -5.0%
95% CI Upper -7.5% 29.9% 35.7% 17.3% 1.3% 14.8% 6.1% 12.7% 13.7% 11.1%
95% CI Lower -24.3% 18.2% 10.6% 7.3% -5.9% 3.2% -3.7% 1.2% 4.3% -21.1%

Coefficient -6.0e-04*** 2.8e-02*** 2.0e-02*** 2.1e-02*** -5.3e-05* 1.2e-04*** 1.1e-04 2.2e-04*** 5.5e-05** -5.0e-04
(1.5e-04) (3.5e-03) (5.1e-03) (6.3e-03) (2.8e-05) (4.1e-05) (1.2e-04) (3.9e-05) (2.6e-05) (3.7e-04)

% Wildfire -20.8% 32.2% 0.4806919 14.3% -5.1% 13.6% 3.2% 23.8% 7.4% -21.8%
95% CI Upper -10.5% 40.2% 0.7209205 22.8% 0.3% 22.9% 10.2% 32.2% 14.4% 9.7%
95% CI Lower -31.1% 24.2% 0.2404632 5.8% -10.6% 4.3% -3.8% 15.4% 0.4% -53.4%

Coefficient -5.6e-04*** 2.4e-02*** 1.8e-02*** 1.5e-02** -4.0e-05 1.2e-04*** 1.2e-04 2.3e-04*** 6.5e-05** -3.8e-04
(1.6e-04) (3.2e-03) (4.6e-03) (6.4e-03) (3.0e-05) (4.0e-05) (1.2e-04) (4.0e-05) (3.0e-05) (3.4e-04)

% Wildfire -19.3% 27.5% 43.4% 10.2% -3.9% 14.5% 3.4% 25.4% 8.8% -16.5%
95% CI Upper -8.6% 34.7% 64.7% 18.9% 1.8% 23.6% 10.4% 34.0% 16.8% 12.9%
95% CI Lower -30.1% 20.2% 22.0% 1.5% -9.5% 5.5% -3.6% 16.8% 0.8% -45.9%

Mean Concentration 4.30E-02 1.30E+00 6.10E-01 2.10E+00 1.60E-02 1.30E-02 5.20E-02 1.40E-02 1.10E-02 3.40E-02
N 15529 10899 6299 6295 10859 10719 15516 10273 10432 15561
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Table 17: Regression of PM2.5 Metal Subspecies on Wildfire PM2.5, Set II

Chromium Chromium Vi Cobalt Copper Europium Gallium Gold Hafnium Indium

Coefficient -6.1e-06 6.6e-05*** 1.6e-06*** 5.8e-06 -1.1e-05 2.6e-06 2.0e-06 4.2e-05*** -1.3e-05**
(1.0e-05) (1.7e-05) (5.7e-07) (8.3e-06) (1.5e-05) (1.6e-06) (2.6e-06) (1.1e-05) (6.0e-06)

% Wildfire -5.5% 9.0% 3.2% 2.5% -3.6% 2.7% 1.3% 8.4% -2.5%
95% CI Upper 12.6% 13.7% 5.3% 9.5% 5.5% 6.1% 4.6% 12.6% -0.2%
95% CI Lower -23.6% 4.3% 1.0% -4.5% -12.7% -0.7% -2.0% 4.2% -4.7%

Coefficient 2.5e-06 5.5e-05** 2.8e-06** 5.4e-06 9.1e-06 -6.4e-07 -7.3e-06** -1.6e-05 -8.6e-06
(1.8e-05) (2.6e-05) (1.2e-06) (1.6e-05) (2.6e-05) (2.3e-06) (3.4e-06) (1.2e-05) (7.8e-06)

% Wildfire 2.2% 7.4% 5.5% 2.3% 2.9% -0.7% -4.7% -3.2% -1.6%
95% CI Upper 34.3% 14.4% 9.9% 16.1% 19.2% 4.0% -0.4% 1.6% 1.3%
95% CI Lower -29.8% 0.4% 1.0% -11.5% -13.4% -5.3% -9.1% -7.9% -4.5%

Coefficient 7.5e-06 6.5e-05** 3.7e-06*** 5.0e-06 -6.2e-06 4.4e-06* -8.3e-07 7.2e-06 -6.9e-06
(1.8e-05) (3.0e-05) (1.2e-06) (2.0e-05) (2.9e-05) (2.6e-06) (3.9e-06) (1.2e-05) (8.0e-06)

% Wildfire 6.7% 8.8% 7.1% 2.1% -2.0% 4.6% -0.5% 1.4% -1.3%
95% CI Upper 37.9% 16.8% 11.6% 18.7% 15.9% 9.9% 4.3% 6.3% 1.7%
95% CI Lower -24.4% 0.8% 2.5% -14.5% -19.9% -0.8% -5.4% -3.4% -4.3%

Mean Concentration 1.70E-03 1.10E-02 7.80E-04 3.50E-03 4.80E-03 1.50E-03 2.40E-03 7.70E-03 7.90E-03
N 15579 10432 10769 15561 7850 7896 7896 7850 10319
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Table 18: Regression of PM2.5 Metal Subspecies on Wildfire PM2.5, Set III

Iridium Iron Lanthanum Magnesium Manganese Molybdenum Niobium Potassium Potassium
Ion

Coefficient -9.1e-07 -2.0e-04 1.0e-04*** -1.4e-04*** 5.2e-06 4.3e-06 2.5e-06* 6.4e-04*** 5.7e-04***
(3.0e-06) (1.3e-04) (2.5e-05) (3.4e-05) (1.7e-05) (3.9e-06) (1.4e-06) (1.4e-04) (2.0e-04)

% Wildfire -0.5% -4.2% 11.8% -13.4% 2.8% 2.1% 2.0% 15.1% 13.9%
95% CI Upper 2.7% 1.1% 17.6% -7.0% 20.8% 5.8% 4.2% 21.7% 23.6%
95% CI Lower -3.7% -9.4% 5.9% -19.8% -15.3% -1.6% -0.2% 8.4% 4.2%

Coefficient -1.5e-05*** -2.8e-05 2.2e-04*** -7.2e-05 6.9e-06 -2.1e-05*** 1.9e-06 5.5e-04** 5.0e-04
(4.1e-06) (2.0e-04) (3.6e-05) (5.3e-05) (3.4e-05) (6.7e-06) (1.9e-06) (2.2e-04) (3.3e-04)

% Wildfire -8.3% -0.6% 26.2% -6.9% 3.7% -10.4% 1.5% 12.9% 12.1%
95% CI Upper -3.9% 7.6% 34.7% 3.1% 39.3% -4.0% 4.5% 23.1% 27.6%
95% CI Lower -12.8% -8.7% 17.8% -17.0% -32.0% -16.8% -1.6% 2.7% -3.4%

Coefficient -3.4e-06 4.9e-05 2.4e-04*** -9.0e-05* 3.1e-05 -1.0e-05 5.1e-06** 7.0e-04*** 7.2e-04**
(4.7e-06) (2.2e-04) (3.9e-05) (5.3e-05) (3.7e-05) (7.8e-06) (2.1e-06) (2.4e-04) (3.4e-04)

% Wildfire -1.9% 1.0% 28.2% -8.6% 16.8% -5.0% 4.0% 16.5% 17.5%
95% CI Upper 3.2% 10.0% 37.3% 1.4% 56.0% 2.4% 7.3% 27.4% 33.9%
95% CI Lower -7.0% -7.9% 19.1% -18.7% -22.4% -12.5% 0.7% 5.5% 1.2%

Mean Concentration 2.80E-03 7.20E-02 1.30E-02 1.50E-02 2.80E-03 3.20E-03 1.90E-03 6.40E-02 6.20E-02
N 7850 15574 7896 15081 15611 8378 7850 15592 10628
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Table 19: Regression of PM2.5 Metal Subspecies on Wildfire PM2.5, Set IV

Rubidium Samarium Scandium Selenium Silicon Silver Sodium Sodium Ion Strontium

Coefficient 1.2e-06** -1.1e-05 -5.7e-05*** 4.6e-06*** -6.7e-04** -1.5e-05*** -7.2e-05 6.4e-04*** 1.4e-07
(5.7e-07) (1.1e-05) (9.5e-06) (1.6e-06) (2.7e-04) (5.1e-06) (1.5e-04) (2.1e-04) (2.3e-06)

% Wildfire 2.6% -4.3% -14.1% 6.4% -8.2% -3.7% -1.4% 7.8% 0.2%
95% CI Upper 4.9% 4.8% -9.5% 10.7% -1.8% -1.3% 4.1% 12.8% 5.7%
95% CI Lower 0.2% -13.5% -18.7% 2.1% -14.7% -6.1% -6.9% 2.7% -5.3%

Coefficient 4.2e-06*** -5.1e-06 -1.3e-04*** 1.1e-05*** -7.6e-04** 9.8e-06 1.4e-04 3.4e-04 -6.7e-06*
(7.3e-07) (2.0e-05) (1.5e-05) (2.6e-06) (3.1e-04) (6.3e-06) (2.7e-04) (2.9e-04) (3.6e-06)

% Wildfire 8.8% -2.1% -31.2% 14.8% -9.3% 2.4% 2.6% 4.1% -8.2%
95% CI Upper 11.8% 14.2% -23.9% 21.8% -1.8% 5.4% 12.9% 11.1% 0.3%
95% CI Lower 5.8% -18.3% -38.5% 7.8% -16.8% -0.6% -7.7% -2.9% -16.8%

Coefficient 4.7e-06*** -9.0e-06 -1.1e-04*** 1.1e-05*** -6.8e-04** 9.3e-06 2.3e-04 4.3e-04 -5.2e-06
(7.9e-07) (2.2e-05) (1.6e-05) (2.7e-06) (3.3e-04) (6.8e-06) (3.0e-04) (3.1e-04) (3.9e-06)

% Wildfire 9.8% -3.7% -26.3% 15.6% -8.4% 2.2% 4.4% 5.3% -6.4%
95% CI Upper 13.1% 14.1% -18.6% 23.1% -0.4% 5.5% 15.6% 12.8% 2.9%
95% CI Lower 6.6% -21.5% -34.1% 8.0% -16.3% -1.0% -6.8% -2.2% -15.7%

Mean Concentration 7.10E-04 3.80E-03 6.30E-03 1.10E-03 1.20E-01 6.20E-03 7.80E-02 1.20E-01 1.20E-03
N 15561 7850 7863 15611 15561 10319 15112 10697 15561
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Table 20: Regression of PM2.5 Metal Subspecies on Wildfire PM2.5, Set VI

Tantalum Terbium Tin Titanium Tungsten Vanadium Yttrium Zinc Zirconium

Coefficient 1.6e-05** -8.7e-06 3.8e-06 -2.3e-05** 1.2e-05** 2.3e-06 2.5e-06* -1.6e-06 -4.2e-06**
(6.3e-06) (1.8e-05) (6.5e-06) (9.1e-06) (5.6e-06) (2.6e-06) (1.4e-06) (3.2e-05) (2.1e-06)

% Wildfire 4.7% -2.2% 0.5% -8.2% 4.5% 1.9% 2.8% -0.2% -3.9%
95% CI Upper 8.5% 6.9% 2.3% -1.8% 8.8% 6.4% 5.9% 9.0% -0.2%
95% CI Lower 1.0% -11.4% -1.3% -14.6% 0.3% -2.5% -0.2% -9.5% -7.6%

Coefficient 8.9e-06 6.7e-06 -1.7e-05 -1.1e-05 -1.1e-07 3.0e-06 4.6e-06*** 5.4e-05 -8.6e-06**
(7.5e-06) (3.1e-05) (1.2e-05) (1.2e-05) (7.1e-06) (4.8e-06) (1.7e-06) (4.0e-05) (3.4e-06)

% Wildfire 2.7% 1.7% -2.4% -3.8% 0.0% 2.6% 5.2% 8.1% -7.9%
95% CI Upper 7.2% 17.4% 1.1% 4.5% 5.3% 10.7% 9.0% 19.8% -1.7%
95% CI Lower -1.8% -14.0% -5.8% -12.1% -5.4% -5.5% 1.3% -3.7% -14.0%

Coefficient 2.7e-05*** 4.4e-06 -1.4e-05 -5.7e-06 1.3e-05 8.6e-07 6.5e-06*** 6.4e-05 -6.6e-06*
(8.8e-06) (3.3e-05) (1.3e-05) (1.2e-05) (7.7e-06) (4.6e-06) (2.0e-06) (4.1e-05) (3.5e-06)

% Wildfire 8.1% 1.1% -1.9% -2.0% 4.9% 0.7% 7.3% 9.5% -6.0%
95% CI Upper 13.3% 17.9% 1.7% 6.3% 10.8% 8.4% 11.6% 21.6% 0.3%
95% CI Lower 2.8% -15.6% -5.5% -10.4% -1.0% -6.9% 2.9% -2.5% -12.3%

Mean Concentration 5.10E-03 6.00E-03 1.10E-02 4.20E-03 4.00E-03 1.70E-03 1.40E-03 1.00E-02 1.60E-03
N 7850 7850 10809 15561 7850 15574 8470 15574 15161
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