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Abstract 

 

We implement experimentally a simple game of mandatory disclosure in which 

senders are required to disclose their private information truthfully, but can choose how 

complex to make their reports. If senders choose complex reports, receivers must exert 

costly cognitive effort to correctly determine the sender’s private information. We find 

that senders use complex disclosure when their private information would lead receivers 

to act against their interests. This obfuscation is sustained by two types of mistakes that 

receivers make when they face complexity. First, receivers who make quick decisions act 

in accordance with their prior beliefs, but these priors are often incorrect, which reflects 

incorrect beliefs about sender strategies.  Second, receivers who make considered 

decisions do not act in accordance with their prior beliefs. Instead they appear to ignore 

their prior beliefs entirely, consistent with base rate neglect. 

 

  

                                                        
1 The views expressed are those of the authors and do not necessarily represent those of the U.S. Federal 

Trade Commission or any individual Commissioner. 

 



 2 

1. Introduction 

 

Across a large number of industries, firms are mandated by law to disclose information 

about their financial health or about the nature and quality of their products and services. 

Yet in many cases, firms are allowed to determine the format of this information. For 

instance, the properties of many products are stipulated by contractual agreements or 

“terms of service”, which can take a variety of formats. In credit card, rental and 

insurance contracts, one can present payment schedules, penalties, and fees clearly or 

bury them in the fine print. In data usage agreements, the term of service can range from 

one single line to multiple pages. In disclosures made by public companies, the disclosed 

financial information can be summarized into one headline or require a team of 

accountants to decipher. 

 

The prevalence of complex disclosure appears at odds with the classical disclosure 

theory. If consumers are skeptical of firms using complex disclosures, then firms that 

offer better terms or have higher quality products will want to present their information 

clearly and simply. If they use complex reports instead, consumers may not bother to read 

through or comprehend the information that is provided. As a result, consumers may not 

know that they are offering better terms or higher quality products. Further, if the best 

firms use simple disclosures, then firms that only offer decent terms or medium quality 

products will also want to use simple disclosures in order to separate themselves from 

very worst firms. As a result, we would expect all but the worst firms to offer simple 

disclosure. This is similar to the “unraveling” logic in the case of voluntary disclosure.  

 

So why do we see so much complex disclosure in practice? Two possibilities are that 

firms are required for legal reasons to use complex reports or that some products are so 

complicated that it is impossible to present them in a simple way. However, it is also 

possible that consumers are not sufficiently skeptical of complex disclosures, or they 

make systematic mistakes when they try to extract truth from complex reports. We look 

for evidence of such mistakes by implementing a laboratory experiment in which legal 

concerns and inherent complexity are eliminated. 

 

In our experiment, there are two roles: an information sender (e.g., the firm) and an 

information receiver (e.g., the consumer). The sender observes the true state, which is a 

number, and chooses how complex to make their report of this number. When the report 

is simple, the number is presented as a single number, and when the report is complex, 

the number is presented a numeric string that adds up to that number. There is a clear 

conflict of interest: senders would like receivers to guess that the true state is as high as 

possible and the receiver would like to guess as accurately as possible.  

 

Our main findings are that for lower than average true states, senders use complex reports 

with high frequency, and that when senders use complex reports and the true state is low, 

receivers guess higher than they should. This positive bias in receiver mistakes provides 

an incentive for senders to engage in obfuscation when the true state is low. By 

measuring response times and eliciting beliefs, we find evidence that the positive bias in 

mistakes is driven by two forces. First, receivers who make quick decisions act in 
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accordance with their prior beliefs, but these priors are often incorrect, which reflects 

incorrect beliefs about sender strategies.  Second, receivers who make considered 

decisions do not act in accordance with their prior beliefs. Instead they appear to ignore 

their prior beliefs entirely, consistent with base rate neglect (see Kahneman and Tversky, 

1982). 

 

We contribute to a broad set of literatures in economics and finance. In finance, Carlin 

(2009) theoretically investigates why firms might use complex pricing when some 

consumers are myopic, Carlin and Manso (2011) use a model to study why obfuscation 

might occur with retail financial products, and Carlin, Kogan, and Lowery (2013) use 

experiments to see how subjects trade assets after viewing information of different 

complexity levels. 

 

In economics, theories of voluntary disclosure2 suggest that market forces can drive firms 

to voluntarily and completely reveal information about their quality when such 

information is verifiable and the costs of verification and disclosure are low. In Section 2, 

we show that the same “unraveling” logic can apply to our setting if receivers are fully 

rational. More specifically, rational receivers should recognize that the choice of complex 

reports in mandatory disclosure regimes, like the choice of non-disclosure in voluntary 

disclosure, is bad news about the underlying state, and therefore adjust for the adverse 

selection inherent in complex disclosure. As a result, the unraveling logic should drive 

every sender but the worst to choose simple disclosure. Given the failure of unraveling in 

our lab results, we find conditions under which complex reporting could occur in 

equilibrium when some receivers attempt to parse the complex report, but only get a 

noisy signal of the true state.  

 

Empirically, the economics literature has documented examples of incomplete disclosure 

when disclosure is voluntary3 and examples of obfuscation when sellers do disclose.4 

While external and strategic factors may explain incomplete or complex disclosure5, 

behavioral economics has suggested a third explanation. For example, Chetty et al. 

(2009) ran an experiment in which they compare two price regimes. In the first, 

customers are shown prices including tax. In the second, customers are shown prices 

excluding tax, but know the tax rate. These two conditions contain equivalent 

information; the customer can easily compute the total price in the second condition as 

well. However, people are much less responsive to tax in the second condition, because 

taxes are more complicated to compute. Pope (2009) and Luca and Smith (2013) show 

that the salience of quality disclosure also determines the extent to which customers 

respond. In a variety of settings, people are found inattentive to relevant details even after 

                                                        
2 The theories of voluntary disclosure date back to Viscusi (1978), Grossman and Hart (1980), Grossman 

(1981), and Milgrom (1981). 
3 See Mathios (2000), Jin (2005), Bollinger et al (2011), Bederson et al. (2015), Anderson et al. (2015), 

Fung et al. (2007), and Luca and Smith (2015) for these examples. 
4 For example, Brown, Hossain and Morgan (2010) show that shipping and handling cost is often shrouded 

on e-commerce platforms. Ben-Shahar and Schneider (2015) show that complex disclosure appear in many 

industries subject to mandatory disclosure.  
5 See Matthews and Postlewaite (1985), Board (2009), Feltovich, Harbaugh, and To (2002), Grubb (2011), 

Marinovic and Varas (2015) for specific theories and Dranove and Jin (2010) for a literature review. 
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disclosure occurs (Armstrong and Chen, 2010; DellaVigna and Pollet, 2005; DellaVigna 

and Pollet, 2009; Lacetera et al., 2011). Finally, Hanna, Mullainathan, and Schwartzstein 

(2014) show that consumers often only attend to certain once-overlooked information 

when information is presented in a summary form. All of this suggests a strong 

behavioral component to the economics of disclosure. 

 

A growing theoretical literature has begun to disentangle the way in which people 

respond to information, and the strategic implications this has for firm behavior. Gabaix 

and Laibson (2006) develop a model in which firms can shroud – or make less salient – 

dimensions of product information, which can lead to a breakdown in the unraveling 

result.6 Eyster and Rabin (2005) develop a model of cursed equilibrium, in which people 

underestimate the relationship the information others have and the action they take. 

Schwartzstein (2014) presents a model in which an individual only updates based on 

prior beliefs about whether the information given is predictive; if previously discarded 

information turns out to actually be predictive, the individual will not return to his initial 

decision to condition his beliefs on this information and thus will make sub-optimal 

choices.  

 

This paper aims to complement the above literatures by using lab experiments to study 

complex disclosure. Our experiments eliminate external factors that may occur in the real 

commercial or financial contexts, thus allowing us to focus on the fundamental economic 

incentives and behavior biases underlying the use of complex disclosure. 

Methodologically, our work is similar to an existing experimental literature that focuses 

on voluntary disclosure (for instance, Jin, Luca, and Martin, 2015) and cheap talk 

disclosure (for instance, Cai and Wang, 2006), and not on complex disclosure.  

  

The rest of the paper is organized as follows. Section 2 presents a theoretical analysis of a 

simple game of complex disclosure. Section 3 presents our experimental design. Section 

4 presents our experimental results for the baseline treatment. Section 5 compares these 

results to those from the robustness treatments. Section 6 concludes with a discussion. 

 

2. One simple game of complex disclosure 

 

This section analyzes a simple game of complex disclosure that mimics our lab 

experiment. The goal is to understand the incentives of the players in each role and how 

these incentives affect the equilibrium outcome.  

 

2.1 Basic setup  

 

Consider a one-shot game between two parties. The sender has perfect knowledge of his 

own product attribute 𝑥, but the receiver only knows the statistical distribution of 𝑥.  

 

                                                        
6 Gabaix and Laibson (2006) model shrouded attributes that are both truly hidden and those that are hidden 

in plain sight. However, consumers in their model are unable to “unhide” the shrouded attribute, and this is 

the main point of departure with our paper. 
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The game has two stages. In the first stage, the sender moves first by deciding whether to 

report his private information in a simple or complex way, which we denote as  

 

𝑦𝑠 = {
1𝑐𝑜𝑚𝑝𝑙𝑒𝑥

𝑥
}. 

  

A simple disclosure is just revealing the actual value of 𝑥, while a complex disclosure 

renders a complicated report that will cost the receiver some time and energy to read. We 

refer to the time and energy spent in understanding a complex report as reading cost 𝑐, 

whose value is known to the receiver and may differ across receivers. The sender does 

not know the particular 𝑐 facing the receiver he plays with, but he does know the 

distribution of 𝑐 in the receiver population.  

 

The receiver acts in the second stage. Given a complex report, the receiver may decide 

not to read the report. In that case, her guess of 𝑥 is only conditional on the fact that the 

sender has sent a complex report. Alternatively, the receiver may pay the reading cost 

𝑐 ≥ 0, obtain a potentially noisy signal 𝑥̃, and then make a point guess of 𝑥. We assume 

the signal is unbiased and independent of the truth: 

 

𝑥̃ = 𝑥 + 𝜖,  

 

where 𝐸(𝜖) = 0, 𝜖 ⊥ 𝑥, and the pdf of 𝜖 – 𝑓(𝜖) – is positive and continuous everywhere 

for any real number of 𝜖. Under this assumption, 𝐸(𝑥|𝑥̃) = 𝑥̃ if the sender’s equilibrium 

decision 𝑦𝑠 does not depend on 𝑥. However, if the choice of complexity is a non-

increasing function of 𝑥, then 𝐸(𝑥|𝑥̃) < 𝑥̃ because observing 𝑥̃ is conditional on the 

sender choosing a complex report and that choice alone is a negative signal about the true 

𝑥. In contrast, when the report is simple, we assume reading is automatic and the receiver 

knows 𝑥 for sure. Either way, we label the receiver’s guess as 𝑥𝑔.  

 

We assume the receiver faces a convex loss function 𝐿𝑟 that will be minimized if her 

guess is equal to the truth (𝑥𝑔 = 𝑥), while the sender’s payoff 𝜋𝑠 increases with 𝑥𝑔 

regardless of the true x. In particular: 

 
(1) Receiver: 

  𝑚𝑖𝑛{1𝑟𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑥,𝑥
𝑔}  𝐿𝑟(𝑥𝑔, 𝑦𝑠) = 𝐸𝑥[(𝑥𝑔 − 𝑥)2|𝑦𝑠] + 𝑐 ∙ 1𝑐𝑜𝑚𝑝𝑙𝑒𝑥 ∙ 1𝑟𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑥, 

 

(2) Sender:     𝑚𝑎𝑥{𝑦𝑠}  𝜋𝑠(𝑦𝑠) = 𝐸𝑥𝑔[𝐺𝑠(𝑥𝑔)|𝑦𝑠], 

 

where 𝐺𝑠(. ) is a monotonic and differentiable function, 𝐸𝑥 denotes expectation over 

variable 𝑥, and 1𝑟𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑥 is a dummy equal to one if the receiver decides to read a 

complex report and zero otherwise. We define the receiver’s loss function as quadratic, to 

be consistent with our experiment. Both the sender and the receiver are assumed to be 

risk neutral. 

 

Under rational expectation, a sub-game perfect Bayesian equilibrium shall satisfy three 

conditions: (1) given the private knowledge of 𝑥, the sender chooses an optimal reporting 
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decision 𝑦𝑠(𝑥) that maximizes his own payoff 𝜋𝑠 in expectation; (2) given the sender’s 

reporting choice 𝑦𝑠, the receiver chooses an optimal reading and guessing decisions 

{1𝑟𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑥 , 𝑥𝑔|𝑦𝑠} that minimizes her loss function 𝐿𝑟; and (3) both parties’ belief 

satisfy rational expectation, which implies that the receiver’s belief about the distribution 

of 𝑥 under complex reporting matches the sender’s strategy of reporting and the sender’s 

belief of the receiver’s strategy {1𝑟𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑥 , 𝑥𝑔|𝑦𝑠} matches the receiver’s actual 

strategy.  

 

An equilibrium with bounded rationality may occur if the receiver’s belief about complex 

reports is inconsistent with the sender’s reporting strategy, or if the sender’s belief of 

receiver strategy is inconsistent with the receiver’s actual strategy. As shown below, our 

experimental results suggest that senders tend to respond optimally to receiver behavior, 

so towards the end of this section, we focus the discussion of bounded rationality on 

receivers.   

 

There could be multiple equilibria. To be consistent with what we observe in the lab, we 

focus on a particular type of equilibrium in which the receiver will read a complex report 

if her reading cost is below certain threshold 𝑐̅ and the sender will send a complex report 

if his true 𝑥 is below certain threshold 𝑥̅. Note that when 𝑐̅>0 and 𝑥̅ > min (𝑥), it is a 

separate equilibrium. When  𝑐̅=0, it is a pooling equilibrium on the receiver’s side as 

every receiver will read the complex report. If 𝑥̅ = min (𝑥), it is a pooling equilibrium on 

the sender’s side as every sender but the worst one will choose simple report. In that case, 

complex report reveals the worst type of the sender, and is equivalent to simple report. 

For simplicity, we assume the sender will always choose simple report if he is indifferent 

between simple and complex and the receiver will always choose not to read the complex 

report if she is indifferent between reading and non-reading. These tie-breaking 

assumptions should not matter when the reading cost and true 𝑥 are continuous. 

 

2.2 Equilibrium under rational expectation 

 

To understand the role of rationality in player behavior, we start with equilibrium under 

rational expectation.  

 

Let us consider the receiver’s strategy first. Obviously, if the reading cost is prohibitively 

high for all receivers, this game reduces to the typical game of voluntary disclosure. From 

the literature, we know from “unraveling” logic that full disclosure is the unique 

sequential equilibrium in that case. In particular, the sender always chooses simple 

disclosure and the receiver believes that any complex disclosure implies sufficiently bad 

news about 𝑥. This equilibrium remains an equilibrium even if the reading cost is not 

high, because receivers always have the choice of not reading a complex report and if all 

receivers believe that complex report implies sufficiently bad news about 𝑥, there is no 

need to read the complex report due to “unraveling”. 

 

If the reading cost is zero for all receivers and the signal is always precise (i.e. the 

variance of noise 𝜖 is zero), receivers will always learn the true 𝑥 no matter whether the 
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report is complex or simple. Hence, the sender does not have any incentive to engage in 

complex disclosure. 

 

The interesting case is when the reading cost is positive and heterogeneous. Because we 

assume the realization of 𝑥̃ is independent of the reading cost, the benefits of reading the 

report is the same for two receivers with different reading costs. In other words, if a 

receiver with reading cost 𝑐1 finds it worthwhile to read the report, any receiver with 𝑐 <
𝑐1 should find it worthwhile as well. It follows that, if receiver’s optimal guess 𝑥𝑔 (after 

reading the complex report) depends on 𝑥̃ (otherwise we go back to the unraveling 

equilibrium), then there must exist a cutoff 𝑐̅ such that receivers will read the complex 

report if and only if 𝑐 < 𝑐̅.  
 

In particular, when 𝑐 ≥ 𝑐̅, according to rational expectation, the receiver’s strategy is to 

guess  

 

(3)      𝑥𝑔 = 𝐸(𝑥|1𝑐𝑜𝑚𝑝𝑙𝑒𝑥). 
 

When 𝑐 < 𝑐̅, the optimal guess is: 

 

𝑥𝑔 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑥𝑔} 𝐸𝑥|𝑥̃{(𝑥𝑔 − 𝑥)2|𝑥,̃ 1𝑐𝑜𝑚𝑝𝑙𝑒𝑥} 

= 𝑎𝑟𝑔𝑚𝑖𝑛{𝑥𝑔} ∫ (𝑥𝑔 − 𝑥)2𝑓(𝑥|𝑥̃, 1𝑐𝑜𝑚𝑝𝑙𝑒𝑥)𝑑𝑥.
𝑥|𝑥̃

 

The first order condition yields: 

 

 (4)                           𝑥𝑔 = ∫ 𝑥 ⋅ 𝑓(𝑥|𝑥̃, 1𝑐𝑜𝑚𝑝𝑙𝑒𝑥)𝑑𝑥
𝑥|𝑥̃

= 𝐸(𝑥|𝑥̃, 1𝑐𝑜𝑚𝑝𝑙𝑒𝑥) = 𝑥̃ − 𝜅(𝑥̃), 

 

where 𝜅(𝑥̃) presents the discount that a receiver will include in her optimal guess after 

reading a complex report and obtaining the signal 𝑥̃. It arises out of the facts that only 

senders with inferior enough 𝑥 will choose a complex report and there is noise in the 

signal. In the extreme case of perfect signal (i.e. the variance of the noise 𝜖 is zero), 

reading the report reveals the true 𝑥, hence 𝑥𝑔 = 𝑥̃ = 𝑥 and 𝜅(𝑥̃) = 0.  
 

When 𝑐 = 𝑐̅, the receiver is indifferent between reading and non-reading the complex 

report: 

 

(5)          𝐸𝑥(𝐸(𝑥|1𝑐𝑜𝑚𝑝𝑙𝑒𝑥) − 𝑥)
2

= 𝐸𝑥(𝐸𝑥̃|𝑥(𝑥̃ − 𝜅(𝑥̃) − 𝑥)2) + 𝑐̅. 

 

When the signal noise is sufficiently small, the cutoff reading cost 𝑐̅ can be strictly 

positive because the receiver’s loss function is convex thus there is a positive value to 

(partially) resolve the uncertainty of a complex report by reading it. In the extreme case 

of perfect signal, equation (5) reduces to 𝐸𝑥(𝐸(𝑥|1𝑐𝑜𝑚𝑝𝑙𝑒𝑥) − 𝑥)
2

= 𝑐̅. In other words, if 

some senders choose complex report, there will be some receivers choosing not to read 

the report even if reading the report reveals the truth with certainty.  

 



 8 

Now turn to the sender’s side. Given that the receiver will read the complex report if 𝑐 <
𝑐̅, the sender’s expected payoff will be: 

 

𝜋𝑠(𝑦𝑠 = 𝑥) = 𝐺𝑠(𝑥) 

𝜋𝑠(𝑦𝑠 = 1𝑐𝑜𝑚𝑝𝑙𝑒𝑥|𝑥) 

= Pr(𝑐 ≥ 𝑐̅) ∙ 𝐺𝑠(𝑥𝑔|1𝑐𝑜𝑚𝑝𝑙𝑒𝑥) + Pr (𝑐 < 𝑐̅) ⋅ ∫ 𝐺𝑠(𝑥𝑔|1𝑐𝑜𝑚𝑝𝑙𝑒𝑥 , 𝑥̃)𝑓(𝑥̃|𝑥)𝑑𝑥̃
𝑥̃|𝑥

. 

Plugging in the optimal 𝑥𝑔 derived from the receiver’s side, we have: 

 

𝜋𝑠(𝑦𝑠 = 1𝑐𝑜𝑚𝑝𝑙𝑒𝑥|𝑥)

= Pr(𝑐 ≥ 𝑐̅) ∙ 𝐺𝑠[𝐸(𝑥|1𝑐𝑜𝑚𝑝𝑙𝑒𝑥)] + Pr(𝑐 < 𝑐̅) ⋅ 𝐸𝑥̃|𝑥(𝐺𝑠(𝑥̃ − 𝜅(𝑥̃)). 

 

The sender will choose complex report if and only if 𝜋𝑠(𝑦𝑠 = 𝑥) < 𝜋𝑠(𝑦𝑠 =

1𝑐𝑜𝑚𝑝𝑙𝑒𝑥|𝑥), which can be rewritten as: 

 

(6)    Pr(𝑐 ≥ 𝑐̅) ∙ {𝐺𝑠[𝐸(𝑥|1𝑐𝑜𝑚𝑝𝑙𝑒𝑥)]−𝐺𝑠(𝑥)} 

> Pr(𝑐 < 𝑐̅) ⋅ {𝐺𝑠(𝑥) − 𝐸𝑥̃|𝑥(𝐺𝑠(𝑥̃ − 𝜅(𝑥̃))}. 

 

For a sender with 𝑥 < 𝐸(𝑥|1𝑐𝑜𝑚𝑝𝑙𝑒𝑥), the left hand side represents the benefits he 

expects from fooling a high-cost receiver that will not read the complex report. The right 

hand side reflects the expected risk of a low-cost receiver reading the complex report and 

forming a belief of 𝑥 that could be below the actual 𝑥. When the left side dominates the 

right side, it is worthwhile to send a complex report. For a sender with 𝑥 >

𝐸(𝑥|1𝑐𝑜𝑚𝑝𝑙𝑒𝑥), the left hand side is the loss he expects from choosing a complex report 

thus hiding his relatively high 𝑥 from a high-cost receiver not reading the report. The 

right hand side includes the potential gain he could get from a low-cost receiver reading 

the report and getting a signal significantly higher than the actual 𝑥.  

 

Depending on the curvature of 𝐺𝑠, 𝐸(𝐺𝑠(. )) can be greater or smaller than 𝐺𝑠(𝐸(. )). If 

we define their difference as 𝜆(. ), we can rewrite equation (6) as: 

 

(7)               Pr(𝑐 ≥ 𝑐̅) ∙ {𝐺𝑠[𝐸(𝑥|1𝑐𝑜𝑚𝑝𝑙𝑒𝑥)]−𝐺𝑠(𝑥)} 

> Pr(𝑐 < 𝑐̅) ⋅ {𝐺𝑠(𝑥) − 𝐺𝑠[𝑥 − 𝐸𝑥̃|𝑥(𝜅(𝑥̃)) + 𝜆(𝑥)]} 

 

where 𝐸𝑥̃|𝑥(𝜅(𝑥̃)) is the expected discount that the receiver will put in her optimal guess 

due to the sender’s adverse selection incentive, and 𝜆(𝑥) accounts for the value of 

uncertainty for the sender: when 𝐺𝑠(. ) is convex, the sender gains more from a high draw 

of 𝑥̃ than from a low draw of 𝑥̃. Hence there is a lottery value to roll the dice in 𝑥̃. Put it 

another way, 𝜆(𝑥) captures the compensation the sender will demand in the actual 𝑥 

before he is willing to give up the right to roll the dice. This lottery value 𝜆(𝑥) is positive 

if 𝐺𝑠(. ) is convex, and negative if 𝐺𝑠(. ) is concave. 
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For the sender’s equilibrium strategy to be 𝑦𝑠 = 1𝑐𝑜𝑚𝑝𝑙𝑒𝑥 if 𝑥 < 𝑥̅, we need a single 

crossing property such that if equation (7) is satisfied for 𝑥1, then it must be satisfied for 

any 𝑥 < 𝑥1. Although the left hand side of (7) is a strict decreasing function of 𝑥 by 

definition, this property does not come by automatically, as how the adverse selection 

term (𝐸𝑥̃|𝑥(𝜅(𝑥̃))) and the lottery value term (𝜆(𝑥)) vary by 𝑥 depends on the curvature 

of 𝐺𝑠(. ) and the noisiness of the signal.  

 

Because we have lab experiments to empirically demonstrate the single-crossing 

property, we do not attempt to derive the theoretical conditions that will give rise to the 

single-crossing property. Rather, we assume it exists and focus on the property of 𝑥̅. 

 

At the cutoff 𝑥̅, the sender is indifferent between complex and simple report, which 

implies: 

 

(8)         Pr(𝑐 ≥ 𝑐̅) ∙ {𝐺𝑠[𝐸(𝑥|1𝑐𝑜𝑚𝑝𝑙𝑒𝑥)]−𝐺𝑠(𝑥̅)} 

= Pr(𝑐 < 𝑐̅) ⋅ {𝐺𝑠(𝑥) − 𝐺𝑠[𝑥 − 𝐸𝑥̃|𝑥(𝜅(𝑥̃)) + 𝜆(𝑥)]}}. 

 

In the extreme case of perfect signal (i.e. 𝑥̃ = 𝑥 with certainty), equation (8) boils down 

to: 

 

𝐸(𝑥|1𝑐𝑜𝑚𝑝𝑙𝑒𝑥) =  𝑥̅,  
 

which can be only satisfied in rational expectation when 𝑥̅ = min (𝑥). This brings us back 

to the unraveling equilibrium. In other words, even if there are some high-cost receivers 

who will not read a complex report, rational expectation will ensure that any sender with 

a true 𝑥 above the average 𝑥 of complex report will have an incentive to choose simple 

report. This incentive leads to unraveling.  

 

That implies that a separate equilibrium can only occur when the signal is noisy. In that 

case, a sender at the cutoff 𝑥̅ must expect that some low-cost receivers will read the 

complex report and get higher-than-truth signals. Moreover, the lottery value created by 

these high draws must be big enough to trade off the loss from the high-cost receivers 

who do not read the complex report but will believe the type of the sender to be lower 

than his true type.  

 

2.3 Interpreting experimental results in light of the rational-expectation equilibria 

 

To summarize, we have identified two possible equilibria with rational expectation: one 

is the unraveling result in which the receiver always associates complex report with the 

worst sender type, which in turn motivates all types of senders to disclose the true 𝑥 in a 

simple report. The second possibility is a separate equilibrium in which the sender 

chooses a complex report if 𝑥 < 𝑥̅ while a receiver with 𝑐 ≤ 𝑐̅ will read the complex 

report and guess 𝑥𝑔 = 𝑥̃ − 𝜅(𝑥̃) and a receiver with 𝑐 > 𝑐̅ will not read the complex 

report and guess 𝑥𝑔 = 𝐸(𝑥|𝑥 < 𝑥̅). For the second equilibrium to exist, we need three 

elements: (1) at least some receivers have low enough reading cost to read the complex 
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report; (2) the signal that these receivers get from reading the complex report must be 

noisy; and (3) the sender must face a sufficiently convex payoff so that it is worthwhile to 

introduce uncertainty via a complex report.  

 

Obviously, the “unraveling” equilibrium does not occur in our lab experiments. 

Surprisingly, player behavior does not even move towards unraveling as subjects repeat 

the game for 30 rounds and receive full feedback of the true 𝑥 at the end of each round. 

This is robust to the number of complex levels we allow and whether we provide full or 

no feedback of the true 𝑥 after each round. Moreover, in the lab experiment, we give the 

sender a concave payoff function, which should discourage him from playing up 

uncertainty via a complex report. This is at odds with condition #3 as stated above for the 

separating equilibrium.  

 

So how could the separate equilibrium arise in the lab? We can think of two possibilities: 

first, our subjects are so risk loving that they see a substantial lottery value in the 

complex report, even though we set their payoff function to be concave. This is unlikely 

to be the explanation, as experiments regularly find that most subjects are risk adverse 

based on the Holt-Laury measure of risk aversion (see for instance, Jin, Luca, and Martin, 

2015, which ran the measure on a similar subject pool). 

 

The second possibility is that receivers have bounded rationality. In our model, receiver 

rationality may affect the equilibrium in three ways. First, receivers may not correctly 

anticipate the sender’s reporting strategy. This undermines the fundamental logic of best 

response in Nash Equilibrium. Second, even if receivers understand the sender’s 

reporting strategy perfectly, they may have problem forming beliefs about the underlying 

true state conditional on the observed action of the sender. Both of the above two 

problems in receiver beliefs may lead the receiver to not fully understand the adverse 

selection embedded in complex reporting and therefore over-expect the average type of 

senders that choose a complex report. This is similar to the failure of unraveling results 

documented in our earlier paper (Jin, Luca and Martin 2015): if receivers over-guess the 

average quality of non-disclosing senders, it will discourage low-type senders from 

disclosing. 

 

While the above two belief problems may occur to all receivers, receivers with lower 

costs may face a third problem: if they read the complex report because their reading cost 

is sufficiently low, they may encounter multiple problems in Bayesian updating. For 

instance, they may ignore their prior beliefs and just guess based on their noisy signal. 

Base rate neglect, in a number of forms, has been well documented in other settings (see 

Kahneman and Tversky, 1982). Also, they may draw a biased signal from the report and 

they may not incorporate this bias into their posterior beliefs if they are naïve to its 

existence.  

 

With these forces of bounded rationality, the lottery embedded in complex reports could 

have a positive value to the sender, not because the sender is risk loving, but because the 

receiver on average over-guess the true 𝑥 when the reports are complex.  
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Using standard choice data, we do not know if a receiver has skipped reading the 

complex report or has misread the complex report, so it is hard to disentangle these 

explanations. However, by asking subjects about their beliefs, we are able to understand 

the first two problems directly, and infer whether the third problem is occurring by 

comparing the reported beliefs with actual guesses. Also, response times can give us an 

insight into whether attention was paid to the content of complex reports (as in Caplin 

and Martin, 2015). In the rest of the paper, we will first present lab results and then 

document evidence for some of these behavioral problems on the receiver’s side.  

 

3. Experimental design 

 

Our experiment has three treatments, which vary in terms of the actions available to 

subjects and the feedback provided to subjects. These are divided into one “baseline” 

treatment and two robustness treatments.  Subjects in a session complete just one of the 

three treatments. Full instructions for the baseline treatment are provided in the appendix. 

 

In all three treatments, subjects complete 30 rounds, and depending on the session, are 

then asked to complete an optional questionnaire that includes questions about how they 

thought others had played and questions about demographic details. Specifically, subjects 

are asked for their gender, if they are a native English speaker, their year in school, and if 

they have a friend participating in that session.  

 

At the end of each session, subjects are privately paid in cash a show up fee of $5 plus all 

additional earnings they accumulate over the course of the session. These earnings are 

denominated in “Experimental Currency Units” (ECU), but are converted to U.S. dollars 

at a rate of 150 to 1 (rounded up to the nearest dollar). While it is possible for subjects to 

end up with a negative balance of ECU, because subjects are paid for every round, this 

outcome is extremely unlikely and never came close to occurring in the sessions we ran. 

However, because subjects are paid for every round, there is the potential for intentional 

variation in play (a “portfolio” strategy), but we find little evidence of such behavior. 

 

3.1 In each round 

 

In all three treatments of our experiment, study participants are matched together in pairs 

for a round, and then in each pair, a subject is assigned either the role of information 

sender, which we can think of as the firm, or the role of information receiver, which we 

can think of as the consumer.  

 

Each round has two stages. First, the sender is presented with a randomly determined 

whole number between 1 and 10 called the “secret number”. Each number is equally 

likely and both senders and receiver are told this in the instructions. After being presented 

the secret number, the sender chooses how complex to make his/her report of that number 

to the receiver. There is no time limit on the sender’s decision. 
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In our experiment, report complexity takes a specific form. The sender chooses a “report 

length”, which is a whole number X between 1 and 20. After the sender chooses a report 

length, the computer program randomly selects X numbers between -10 and 10 until 

those numbers add up to the secret number. The sender does not know what these 

numbers will be, just that there will be X of them and the process used to generate them. 

The receiver is also told this process. 

 

In the second stage, the receiver is then presented with these X numbers and is told that 

they add up to the value of the secret number. Regardless of which report complexity the 

sender chooses, the receiver has 60 seconds to view the sender’s report and guess the 

secret number. This guess can be any whole number from 1 to 10. Subjects are only given 

whole number guesses in order to keep the payoff table simple and easy to read and 

interpret. If nothing is guessed after 60 seconds, a random guess (each equally likely) is 

entered for the receiver. Both senders and receivers are informed of this in the 

instructions. 

 

Based on the guess and the actual secret number, the receiver earns ECU equal to 

𝐸𝐶𝑈𝑅 = 110 − 20|(𝑆 − 𝐴)/2|1.4, where S is the secret number and A is the receiver’s 

guess. With this payoff function, a risk neutral receiver would guess closest to their 

expected value of the secret number. Based on the receiver’s guess, a sender earns ECU 

equal to 𝐸𝐶𝑈𝑠 = 110 − 20|(5 − 𝐴)/2|1.4. These payoffs do not depend on the actual 

secret number, but are strictly increasing with the receiver’s guess. The payoffs for 

senders and receivers are shown in a table, so that a subject does not need to know or 

interpret these functional forms.  

 

With these payoff functions, there was a clear misalignment of interests between senders 

and receivers. Receiver payoffs were higher when their guesses were closer to the secret 

number, and sender payoffs were higher when the receiver made higher guesses. Subjects 

were told these two broad features of sender and receiver payoffs.  

 

3.2 Between and across rounds 

 

At the beginning of a session, the instructions are read aloud. A paper copy is also given 

to subjects so that they can review them at any point during the experiment 

 

Subjects complete 30 rounds, and in each round, they are anonymously matched with a 

new partner, and they are equally likely to be matched with any other subject in the 

session. If there are 14 subjects in a session, the probability of being matched with the 

same subject in the subsequent round is just 0.6%. 

 

Once matched with a new partner, subjects are randomly assigned, with equal 

probability, to be the sender or receiver. The purpose of switching roles is to insure that 

both sides have a good sense for the incentives and actions available to the other side. To 

reduce framing effects, the sender was call the “A Player”, and the receiver was called 

the “B Player”. 
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After all senders have made their choices, the receivers are given 60 seconds to make 

their choices.  Once all receivers have made their choices, the subjects are shown 

feedback (if any) before starting the next round. 

 

Once all rounds are complete, subjects are asked questions about their beliefs of how 

other subjects played in their session. First, subjects are asked what the average report 

length was that senders chose for each secret number. Second, subjects are asked what 

the average secret number was when sender’s chose complexity levels between 1 and 5, 

between 6 and 10, between 11 and 15, and between 16 and 20. 

 

3.3 Treatment variation 

 

Our three treatments vary on two dimensions: the number of complexity levels that 

senders can choose among and the feedback provided to subjects after each round. 

 

In our baseline treatment, senders can choose any report length between 1 and 20 after 

being presented with the secret number. In one of our robustness treatments, senders 

could only choose a report length of 1 and a report length of 20. The reason for this 

robustness treatment is to determine whether play is substantially different if the 

“strategic complexity” of the game is reduced for both senders and receivers. 

 

Also, in our baseline treatment, subjects are provided the following feedback after each 

round: the actual secret number for their pairing, the report length chosen for their 

pairing, the guess made for their pairing, and the subject’s payoff for that round. In both 

of the robustness treatments, we shut down in this channel to see if it is an important 

source of learning. 

 

3.4 Related experiments 

 

The framing and payoffs in this experiment are similar to those used in the cheap talk 

experiments of Cai and Wang (2006) and the voluntary disclosure experiments of Jin, 

Luca, and Martin (2015). The key difference between our experiment and these 

experiments is that only the senders in our experiment had access to complex disclosure. 

Moreover, in the experiment presented in Cai and Wang (2006), senders had the option to 

misrepresent the secret number, and in the experiment presented in Jin, Luca, and Martin 

(2015), senders had the option not to disclose anything. 

 

Kalayci and Potters (2011) implement a laboratory experiment where sellers have control 

over the complexity of product quality, but in their experiment buyers are given no 

information about the objectives and incentives of sellers, so it is difficult to know what 

buyers believe about why sellers present products in a complex way. In Martin (2015), 

buyers are given information about the seller’s incentives, but the complexity of product 

quality is determined exogenously. 

 

Several other recent experiments have presented numbers as the sum of a string of 

numbers in order to generate cognitive costs for subjects. For instance, Caplin, Dean, and 
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Martin (2011) find evidence of sacrificing behavior by having subjects choose among 

strings of numbers, where the value of an option is determined by the sum of the string. 

Caplin and Martin (2015) also ask subjects to choose among sums of strings and find 

evidence consistent with a dual-process model of choice. 

 

4. Experimental results (baseline treatment) 

 

Our experiments were run at the Computer Lab for Experimental Research (CLER) 

facility at the Harvard Business School. Subjects did not have to be Harvard University 

students, but they were restricted to be no older than 25 years old. The software used to 

run the experiments was the z-Tree software package (Fischbacher 2007). 

 

In the baseline treatment, 160 subjects completed a total of 4,774 rounds. For the baseline 

treatment, the average earnings were $19.93, with a minimum payment of $12 and a 

maximum of $25. 

 

Table 1 provides summary information for the baseline treatment. Of the students who 

volunteered their demographic information, approximately 60% were undergraduate 

students, and over 60% were female. Most were native English speakers, and less than 

10% had a friend in the room. 

 

Around 3.3% of receivers did not make a choice before the 60-second time limit was hit, 

so a random guess was made on their behalf. We exclude these decisions from all of the 

analyses that follow, and the resulting summary statistics are provided in the final three 

columns of table 1. 

 

4.1 Sender behavior 

 

In these sessions, senders made use of the option to engage in complex disclosure. From 

table 1, we can see that on average, senders chose a report length of 9.633 out of a 

possible 20.  

 

In addition, there was a strong relationship between the secret number drawn and the 

complexity used. Table 2 indicates that for the lowest possible secret number, the average 

is above 15, and for the highest possible secret number, the average is less than 4. This 

trend is present across the distribution of complexity levels, as is indicated by the last two 

columns. The percentage of rounds that high complexity (a report length of 16 to 20) is 

used falls from 69.0% to 9.8% from the lowest to highest secret number, and the 

percentage of rounds that low complexity (a report length of 1 to 5) is used rises from 

15.1% to 79.6%. More interestingly, senders are more likely to choose the complexity 

levels that are either at the two extremes or equal to a multiple of 5 (i.e. 1, 5, 10, 15, 20), 

suggesting that the actual choice set in the sender’s mind is more discrete than 

continuous. 

 

Figure 1 gives more detail on the use of complexity for each secret number. At the lowest 

secret number, the largest bubble is around the highest complexity level (of 20), and for 
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the highest secret number, the largest bubble is around the lowest complexity level. The 

linear fit is downward sloping, and there is an S-shape in the median complexity levels. 

However, the bubbles show that even for a secret number of 5, the most frequently used 

complexity levels are 1 and 20. 

 

Figures 2a and 2b give a sense for how complexity use varies over the course of the 

experiment. Looking across rounds, there is variation in the average complexity level for 

low, medium, and high secret numbers. However, the average complexity levels are 

ordered throughout the experiment. Moreover, the linear fits reveal a larger decrease for 

the lowest secret numbers and a smaller decrease for middle secret numbers. For the 

largest secret numbers, we see no evidence of a decrease in the average complexity level. 

 

In fact, figure 2b demonstrates that there is little change in the use of high complexity 

reports for all secret numbers, though senders with low secret numbers appear to use 

them less as the experiment goes along. Instead, figure 2a shows that the changes in 

average complexity levels are driven by a substantial increase in the use of low 

complexity reports by senders with low secret numbers. 

 

Table 5 quantifies these patterns using a regression analysis. Looking at regressions 1 and 

2, we see that complexity decreases over rounds and is smaller for higher secret numbers. 

Looking at the probability of using the five highest complexity levels (regressions 3 and 

4), there is not a significant impact of round, but it is significantly less likely to be used 

by senders with higher secret numbers. Looking instead at the probability of using the 

five lowest complexity levels (regressions 5 and 6), there is a small increase in the 

probability over rounds and senders with higher secret numbers are more likely to use it. 

 

4.2 Receiver behavior 

 

As table 3 shows, on average receivers made lower guesses when the complexity level 

was higher. They also made larger mistakes as the complexity level increased, which is 

indicated by the average absolute difference between their guess and the actual secret 

number. To see if there was a bias in these mistakes, we can examine the average of this 

difference without taking the absolute value. For all complexity levels above 13, the 

average of this difference is positive. Figure 3a represents these patterns visually. 

 

If the average receiver mistake with complex reports is positive for every secret number, 

every sender would have an incentive to use complex report. However, we only observe 

complex reports concentrating in lower secret numbers. As shown in table 4, this makes 

sense because the average receiver mistake with complex reports varies by secret 

number. For lower secret numbers, the bias is positive (guesses are above the actual 

number), and for higher secret numbers, the bias is negative (guesses are below the actual 

number). For lower secret number, this positive bias is larger for higher complexity 

levels, which can be seen visually in figure 3b. This gives senders with low secret 

numbers an incentive to use higher complexity levels, as higher guesses result in higher 

earnings. In the meantime, the negative bias on complex reports of high secret numbers 
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gives senders an incentive to use lower complexity levels, which explains why over time 

there is an increase in simple reports for high secret numbers.  

 

Figure 4b shows that for the highest complexity levels there is a general decrease in the 

size of mistakes over rounds, but figure 4a shows that for the highest complexity levels, 

there is insignificant decrease in the bias of these mistakes.  

 

Table 6 quantifies these patterns using a regression analysis. Higher complexity 

corresponds to lower guesses and this relationship is statistically significant, but higher 

complexity also corresponds to larger mistakes and a significantly higher positive bias in 

mistakes over the group of the highest complexity levels (16 and above). These results 

are robust to using subject level fixed effects. 

 

Above all, these results suggest a separating equilibrium: senders with few low secret 

numbers tend to choose high complexity and stay there overtime, while senders with 

middle to high secret numbers gravitate to low complexity. These behaviors can be 

explained by receiver mistakes, because receivers tend to make bigger mistakes for 

complex reports and these mistakes are only positive if the secret number is below the 

population average (5). Now we turn to detect factors contributing to these receiver 

mistakes. 

 

4.3 Explanations for receiver mistakes 

 

According to the model presented in Section 2, we can think of several behavioral 

explanations for the systematic receiver mistakes when senders use complex reports.  

 

First, receivers may not anticipate the sender’s reporting strategy correctly. We directly 

asked most subjects in our baseline treatment at the end of the 30th round to state their 

beliefs of sender strategy for each specific secret number. Table 7 presents the average of 

these reported beliefs, along with the actual reporting strategy used by the subject as a 

sender, and the reporting strategy used by all senders that play in the same session as the 

subject. Clearly, our subjects believe in a monotonic relationship between the true state 

and sender choice of complexity, and the average belief presented in column 3 is highly 

correlated with the actual strategy played by self (column 5) or by other senders (column 

7).7 The absolute magnitudes are slightly different: our subjects believe that senders with 

the lowest secret numbers report slightly higher complexity than they actually do and 

senders with the highest secret numbers report slightly lower complexity than they 

actually do.  

 

However, these averages mask substantial heterogeneity across individual subjects. For 

any specific secret number, we can compute the across-individual correlation between 

reported beliefs and actual strategies.  This correlation ranges from 0.33 to 0.56 between 

reported beliefs and the subject’s own reporting strategy as a sender, and from 0.19 to 

0.37 between reported beliefs and all senders’ strategy. Above all, evidence suggests that 

                                                        
7 These correlations are slightly higher than 0.99. 
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our subjects possess heterogeneous beliefs, but on average have reasonable beliefs about 

the sender’s reporting strategy. 

 

From these beliefs about sender’s strategies, we can compute the guess that a receiver 

would have made for the average secret number for each complexity level if they applied 

Bayes’ rule. A comparison between this “implied guess” and the same subject’s actual 

guess”, should help us to understand how these beliefs contribute to their actual behavior 

as a receiver. 

 

More specifically, given the sender’s tendency to choose complexity at round or extreme 

levels (1, 5, 10, 15, 20), we group complexity levels in four categories: 1-5, 6-10, 11-15, 

and 16-20. For each category and each subject, we compute the implied guess by 

Bayesian updating, using the fact that each secret number is equally likely. For example, 

if a subject believes that senders will choose level 20 if the secret number is 1 or 2, level 

15 if 3-5, level 10 if 6-7, level 5 if 8-9, and level 1 if 10, then his/her implied guess 

should be 9 for level group 1-5, 6.5 for level group 6-10, 4 for level group 11-15, and 1.5 

for level 20.  

 

Treating each subject as one observation, panel A of table 8 reports the average implied 

guess by the four complexity groups separately (column 3). Comparing implied guesses 

with actual guesses in column 7, we find that receivers should have guessed higher for 

low complexity levels and lower for high complexity levels, according to their belief of 

sender’s strategies and Bayesian updating. Moreover, panel B of table 8 shows a low and 

insignificant correlation between an individual’s implied guess and his/her actual guess 

for every complexity group (-0.02 to 0.10). This suggests that, although our subjects on 

average have a reasonable prediction about the sender’s reporting strategy, it has little 

influence on their actual guesses. In other words, there must be other important factors 

when receivers translate their beliefs into guesses.  

 

One such factor could be that receivers may have problem forming beliefs about the 

underlying true state conditional on the observed action of the sender. In panel A of table 

8, we summarize subjects’ reported belief about the average secret number for each level 

of complexity, which we refer to as “complex guess.” By definition, the reported 

complex guess includes both the receiver’s belief of the sender’s reporting strategy and 

the method that the receiver uses in translating that belief into a guess. If the method is 

Bayesian, implied guess should be equal to or at least highly correlated with complex 

guess. It is worth noting that complex guess is not necessarily equal to actual guess, 

because when we ask about complex guess, the subject faces a specific complexity level 

without a string of numbers that adds up to the truth. In other words, complex guess does 

not allow the receiver to exert any effort in reading a specific report. This is equivalent to 

receivers having a prohibitively high cost of reading in our model.   

 

Table 8 shows that the average complex guess is different from both the implied guess 

and the actual guess. While complex guess is correlated with both, the correlation is only 

0.04-0.32 with the actual guess, and 0.31-0.43 with the implied guess. Moreover, the 

correlation between complex and actual guesses goes up with complexity, while the 
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correlation between complex and implies guesses is relatively stable across the four 

complexity groups.  

 

The significant and positive correlation between complex and actual guesses for higher 

complexity levels is reinforced by a regression analysis presented in table 9. In columns 1 

and 2, we regress actual guess on implied guess, complex guess, complexity group fixed 

effects, and, some control of subject attributes (either subject demographic variables in 

column 1 or subject fixed effects in column 2). Regression results suggest that complex 

guess has a positive and significant relationship with the actual guess, but the coefficient 

on implied guess is insignificant. In the rest of table 9, the dependent variable changes to 

receiver mistake (i.e. guess minus secret number) in columns 3 and 4, and to the absolute 

receive mistake in columns 5 and 6. We find that complex guess is significantly and 

positively correlated with receiver mistake, which suggests that part of what is driving the 

positive bias in mistakes is that some receivers have formed overly positive beliefs about 

the secret number when disclosure is complex. In contrast, implied guess is not 

significant in all columns except for column 5, where the coefficient is significant at a 

10% confidence level but becomes insignificant after we control for subject fixed effects.  

 

More importantly, table 9 continues to show a significant positive bias in high complexity 

levels, even after we control for implied guess and complex guess. This indicates that 

receiver beliefs alone cannot explain all the receiver mistakes. This brings up the third 

behavioral explanation: could there be a systematic error in assessing the information 

contained in complex messages?  

 

Before answering that question, one may ask whether receivers read complex reports at 

all. For this, we can look for evidence from response times. For complexity levels from 

16 to 20, receivers spent an average of 41.51 seconds. However, receivers sometimes 

spent substantially less time on their decisions. The 10th percentile was 24.98 seconds, 

and the 25th percentile was 31.87 seconds. We refer to the former as “very quick” 

decisions and the latter as “quick decisions”. 

 

Decisions of all response time durations have a positive bias on average. For complexity 

levels from 16 to 20, the guess is 0.778 above the actual secret number on average for 

very quick decisions, 0.433 above for quick decisions, and 0.420 above for non-quick 

decisions (“considered” decisions). However, there are large differences in beliefs and 

behavior between quicker and considered decisions, suggesting different mechanisms are 

at work in producing the positive biases. 

 

Looking first at quick and very quick decisions, the relationship between complex guess 

and actual guess is strong for complexity levels from 16 to 20. If we regress the actual 

guess onto complex guess for very quick decisions (with cluster robust standard errors), 

the coefficient is 0.655, and it is significant at a 1% level. For quick decisions, the 

coefficient is 0.503, and it is also significant at a 1% level. These results imply that for 

quicker decisions, subjects are deciding based largely on their prior beliefs. 
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For these decisions, incorrect beliefs about sender strategies seem to be the driving force 

behind incorrect beliefs. If we regress the complex guess onto the implied guess, the 

coefficient is 0.930 for quick decisions and 1.280 for very quick decisions. 

 

On the other hand, for considered decisions where receivers incorrectly guessed the 

secret number, the relationship between complex guess and actual guess not significantly 

different from 0 for complexity levels from 16 to 20. If we regress the actual guess onto 

complex guess for very quick decisions (with cluster robust standard errors), the 

coefficient is 0.105, and the p-value is 0.494. This suggests that for these decisions, prior 

beliefs (whatever their source) are not factoring into posterior beliefs. 

 

5. Experimental results (robustness treatments) 

 

For the robustness treatments, 134 subjects completed 4,020 rounds. Of these, 68 subjects 

were in the treatment with only two complexity levels (report lengths of 1 or 20) and no 

feedback, and 66 subjects were in the treatment with many complexity levels (report 

lengths of anywhere from 1 to 20) and no feedback. 

 

The two panels of Table 10 show the summary statistics for the robustness treatments. 

The average sender choices of complexity are similar to before, though slightly lower. In 

the baseline treatment, the average was 9.633, in the robustness treatment with many 

complexity levels the average was 8.490 and in the two complexity level robustness 

treatment the average was 8.544. 

 

As in the baseline treatment, there was a strong relationship between the secret number 

drawn and the complexity used in both of the robustness treatments. In table 11, there is a 

general decrease in the mean complexity level and in the percentage of rounds that high 

complexity reports are used as the secret number increases. 

 

Figure 5 allows for an easy comparison of this relationship across treatments. Naturally, 

there is more use of the lowest and highest complexity reports with the two complexity 

level treatment, but these differences disappear when they are used less often. 

 

We also see robustness in receiver decisions when looking at table 12 and figure 6. At the 

lowest level of complexity and highest level of complexity, the average secret number 

and average mistake are very similar across all three treatments. 

 

6. Discussion and Future Work (Incomplete) 

 

To better understand subject choices in our experiment, we plan to run a number of 

additional treatments. For instance, we will use an additional task to identify the risk 

preferences of subjects, which may explain why there is heterogeneity in the choice of 

complexity among senders. In addition, to see if receiver inattention to complex reports is 

sensible, we plan to vary the incentives in the experiment and to run additional rounds 

where subjects have the option to pay to reduce complexity.
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Figure 1. Sender choice of complexity by secret number (baseline treatment) 

 

 
 

 

Figure 2a. Sender choice of complexity by round and secret number (baseline treatment) 
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Figure 2b. Sender choice of low complexity (1-5) by round and secret number (baseline 

treatment) 

 

 
 

Figure 2b. Sender choice of high complexity (16-20) by round and secret number 

(baseline treatment) 
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Figure 3a. Average secret number, receiver guess, receiver mistake (guess – secret 

number), and absolute receiver mistake (absolute value of guess – secret number) by 

complexity level (baseline treatment) 

 

 
 

 

Figure 3b. Average receiver mistake (guess – secret number) by secret number (baseline 

treatment) 
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Figure 4a. Average receiver mistake (guess – secret number) by round (baseline 

treatment) 

 

 
 

Figure 4b. Average absolute receiver mistake (absolute value of guess – secret number) 

by round (baseline treatment) 
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Figure 5. Sender choice of complexity by secret number (all treatments) 

 

Panel A. Median complexity level 

 
Panel B: Fraction low complexity (1-5) 

 
Panel C. Fraction high complexity (16-20) 
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Figure 6: Average secret number and absolute receiver mistake (absolute value of guess – 

secret number) by complexity level (all treatments) 
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Table 1. Summary statistics (baseline treatment) 

 

  All 

Conditional on the receiver 

submitting a guess before time limit 

Variable Obs. Mean Std. dev. Obs. Mean Std. dev. 

Session ID (total 15) 4,774 7.472 4.636 4,695 7.472 4.642 

Round (1 to 30) 4,774 15.421 8.613 4,695 15.454 8.621 

Role (1=sender, 0=receiver) 4,774 0.500 0.500 4,695 0.508 0.500 

Sender:   

 

  

  

  

Secret number (1 to 10) 2,387 5.488 2.903 2,387 5.488 2.903 

Sender choice of complexity (1 to 20) 2,387 9.633 7.859 2,387 9.633 7.859 

Sender time used (in seconds) 2,387 10.110 7.580 2,387 10.110 7.580 

Receiver:   

 

  

  

  

Receiver's guess (1 to 10) 2,387 5.684 2.914 2,308 5.688 2.913 

Receiver time used (in seconds) 2,387 25.858 18.879 2,308 24.690 18.092 

Receiver made no decision within time limit (60 s) 2,387 0.033 0.179 2,308 0.000 0.000 

All subjects:   

 

  

  

  

Male 4,020 0.381 0.486 3,952 0.380 0.486 

Native English speaker 3,930 0.863 0.344 3,873 0.863 0.344 

Undergrad 4,020 0.597 0.491 3,952 0.598 0.490 

Had friend(s) in the room 4,020 0.075 0.263 3,952 0.074 0.262 

Note: All sessions in this sample give full feedback after each round. The time limit for the receiver is 60 seconds. If a receiver does 

not make a decision within 60 seconds, time used is coded as 60 and the computer generates a random number between 1 and 10 as 

the receiver's guess. There is no time limit for the sender. 
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Table 2. Summary of sender’s choice of complexity (baseline treatment) 

 

  Sender choice of complexity (1 to 20) 

Secret number Mean Median Std. dev. N 

Percent high 

complexity  

(16-20) 

Percent low 

complexity (1-5) 

1 15.560 20 6.648 252 69.0% 15.1% 

2 15.081 19 6.525 246 63.0% 14.6% 

3 13.544 16 7.141 239 51.5% 22.6% 

4 12.877 15 7.028 219 47.5% 24.7% 

5 10.577 10 7.038 222 30.2% 35.1% 

6 7.878 6 6.827 262 18.7% 48.9% 

7 6.819 4 6.654 227 16.7% 57.3% 

8 5.132 2 6.083 234 11.1% 70.9% 

9 4.892 1 6.491 241 13.3% 74.7% 

10 3.939 1 5.758 245 9.8% 79.6% 

   Total  9.633 8 7.859 2387 33.2% 44.4% 
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Table 3. Summary of receiver guesses by complexity (baseline treatment) 

 

Sender choice of 

complexity Frequency 

Average  

secret number 

Average 

guess 

Average  

(guess - secret 

number) 

Average  

abs(guess - secret number) 

1 677 7.517 7.549 0.032 0.171 

2 129 6.659 6.767 0.109 0.171 

3 77 6.844 6.662 -0.182 0.208 

4 60 5.967 5.833 -0.133 0.233 

5 112 5.268 5.446 0.179 0.304 

6 47 5.574 5.745 0.170 0.170 

7 45 5.889 5.822 -0.067 0.200 

8 54 5.444 5.389 -0.056 0.315 

9 35 4.543 4.800 0.257 0.486 

10 128 5.414 5.391 -0.023 0.414 

11 27 5.037 4.926 -0.111 0.333 

12 42 4.810 5.071 0.262 0.786 

13 30 4.967 4.900 -0.067 0.800 

14 19 5.053 5.789 0.737 0.737 

15 97 4.351 4.402 0.052 0.649 

16 36 3.889 4.000 0.111 0.389 

17 48 4.417 4.854 0.438 0.771 

18 48 4.333 4.479 0.146 0.979 

19 69 3.826 4.101 0.275 0.681 

20 528 3.515 3.947 0.432 1.091 

 Total  2308 5.538 5.688 0.150 0.507 
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Table 4. Summary of receiver mistakes by secret number and complexity (baseline treatment) 

 

Secret number 

Average of (guess - secret number) 

All complexity 

levels 

Complexity 

=1 to 5 

Complexity 

=6 to 10 

Complexity 

=11 to 15 

Complexity 

=16 to 20 

1 0.975 0.474 0.000 1.000 1.224 

2 0.636 0.139 0.710 1.250 0.643 

3 0.323 0.500 -0.034 0.156 0.378 

4 0.122 0.148 0.188 -0.179 0.172 

5 0.190 0.167 0.171 -0.220 0.500 

6 0.008 0.024 -0.021 0.303 -0.227 

7 -0.027 0.031 -0.044 -0.083 -0.200 

8 -0.190 -0.090 -0.464 0.000 -0.640 

9 -0.275 -0.056 0.000 -1.364 -1.379 

10 -0.246 -0.097 -0.429 -1.400 -1.087 

Total 0.150 0.032 0.026 0.116 0.383 

Obs. 2308 1055 309 215 729 
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Table 5. Dynamics of sender choice (baseline treatment) 

 

Dependent Variable Complexity level Complexity level Complexity>=16 Complexity>=16 Complexity<=5 Complexity<=5 

  (1) (2) (3) (4) (5) (6) 

Round -0.0708*** -0.0715*** -0.000909 -0.000998 0.00612*** 0.00595*** 

  (0.0155) (0.0138) (0.001000) (0.000914) (0.00103) (0.000951) 

Constant 19.22*** 16.70*** 0.831*** 0.706*** -0.0875** 0.0521* 

  (0.688) (0.477) (0.0457) (0.0328) (0.0412) (0.0292) 

Secret number = 2 -0.636 -0.669 -0.0662 -0.0688* 0.00664 0.0150 

  (0.591) (0.570) (0.0425) (0.0401) (0.0319) (0.0330) 

Secret number = 3 -2.188*** -1.520*** -0.183*** -0.141*** 0.0872** 0.0594* 

  (0.627) (0.568) (0.0438) (0.0399) (0.0356) (0.0349) 

Secret number = 4 -2.894*** -3.207*** -0.225*** -0.250*** 0.109*** 0.119*** 

  (0.630) (0.576) (0.0447) (0.0415) (0.0368) (0.0352) 

Secret number = 5 -5.278*** -5.384*** -0.400*** -0.401*** 0.220*** 0.231*** 

  (0.620) (0.558) (0.0420) (0.0381) (0.0386) (0.0363) 

Secret number = 6 -7.779*** -7.491*** -0.508*** -0.498*** 0.344*** 0.334*** 

  (0.585) (0.539) (0.0375) (0.0356) (0.0377) (0.0356) 

Secret number = 7 -8.784*** -8.992*** -0.524*** -0.539*** 0.425*** 0.438*** 

  (0.598) (0.551) (0.0379) (0.0357) (0.0395) (0.0366) 

Secret number = 8 -10.58*** -10.50*** -0.587*** -0.576*** 0.569*** 0.570*** 

  (0.573) (0.547) (0.0356) (0.0354) (0.0371) (0.0350) 

Secret number = 9 -10.81*** -10.75*** -0.567*** -0.570*** 0.603*** 0.597*** 

  (0.588) (0.569) (0.0364) (0.0353) (0.0355) (0.0354) 

Secret number = 10 -11.79*** -11.28*** -0.600*** -0.562*** 0.656*** 0.637*** 

  (0.553) (0.543) (0.0347) (0.0346) (0.0340) (0.0342) 

Subject demographics Included 

Subject fix 

effects Included 

Subject fix 

effects Included 

Subject fix 

effects 

Observations 2,387 2,387 2,387 2,387 2,387 2,387 

R-squared 0.311 0.523 0.222 0.428 0.261 0.469 

Note: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1. 
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Table 6. Dynamics of receiver guesses (baseline treatment) 

 

Dependent variable Receiver guess Guess - Secret number abs (Guess - Secret number) 

  (1) (2) (3) (4) (5) (6) 

Round -0.0111* -0.0135** 0.000171 -0.00148 -0.00896*** -0.00943*** 

  (0.00633) (0.00634) (0.00365) (0.00348) (0.00333) (0.00303) 

Constant 7.241*** 7.355*** -0.0135 0.0689 0.406*** 0.369*** 

  (0.236) (0.133) (0.142) (0.0697) (0.130) (0.0605) 

Complexity = 6~10 -1.663*** -1.748*** -8.56e-05 0.0105 0.122* 0.0342 

  (0.170) (0.172) (0.0752) (0.0803) (0.0710) (0.0707) 

Complexity = 

11~15 -2.301*** -2.389*** 0.110 0.0912 0.477*** 0.482*** 

  (0.181) (0.181) (0.116) (0.117) (0.107) (0.103) 

Complexity = 

16~20 -3.026*** -3.170*** 0.355*** 0.298*** 0.789*** 0.743*** 

  (0.127) (0.127) (0.0803) (0.0780) (0.0728) (0.0682) 

Subject 

demographics 

 

Included 

 

Subject fixed 

effects 

Included 

 

Subject fixed 

effects 

Included 

 

Subject fixed 

effects 

Observations 2,308 2,308 2,308 2,308 2,308 2,308 

R-squared 0.217 0.306 0.023 0.157 0.083 0.269 

Note: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1. 
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Table 7: Summary of reported belief of sender strategy 

 

Secret 

Number 

Reported belief of 

sender strategy 

Own strategy as a 

sender 

Strategy of all 

senders in the same 

session 

Correlation 

(belief, own 

strategy as a 

sender) 

Correlation 

(belief, strategy 

of all senders) 

  N Mean N Mean N Mean 

 

  

1 134 16.119 132 15.289 132 15.616 0.3268*** 0.2189** 

2 134 15.224 131 15.048 131 14.943 0.3810*** 0.1937** 

3 134 13.448 118 13.901 118 13.697 0.4653*** 0.2808*** 

4 134 11.358 107 12.193 107 12.446 0.3893*** 0.3107*** 

5 134 9.612 128 10.487 128 10.554 0.4982*** 0.3243*** 

6 134 7.955 123 8.064 123 7.890 0.4215*** 0.3285*** 

7 134 6.097 124 6.940 124 6.846 0.5576*** 0.3722*** 

8 134 3.993 119 4.767 119 4.961 0.4814*** 0.3083*** 

9 134 3.090 124 4.883 124 4.811 0.5184*** 0.2870*** 

10 134 2.597 122 4.080 122 3.988 0.5335*** 0.2731*** 

***p<0.01; **p<0.05. 
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Table 8. Summary of receiver beliefs (baseline treatment) 

 

Unit of observation = per subject that answered our belief questions 

 

Implied guess = mean of secret number inferred from receiver-reported complexity per secret number 

Complex guess = receiver belief of average secret number for the group of complexity 

Actual guess = average guess that a receiver reports in actual plays, conditional on the group of complexity 

 

Panel A. Summary statistics 

 

Complexity  

Secret Number Implied guess Complex guess Actual guess Time used 

N Mean N Mean N Mean N Mean N Mean 

1~5 134  127 7.981 134 7.664 134 7.125 134 10.172 

6~10 134  110 5.238 134 5.675 115 5.563 115 23.685 

11~15 134  91 3.591 134 3.896 102 4.839 102 35.847 

16~20 134  113 2.369 134 2.545 130 3.954 130 41.520 

 

Panel B. Correlations 

 

Complexity  

Correlation 

(implied guess, 

complex guess) 

Correlation 

(implied guess, 

actual guess) 

Correlation 

(complex guess, 

actual guess) 

Correlation 

(implied guess, 

time used) 

Correlation 

(complex guess, 

time used) 

Correlation 

(actual guess, 

time used) 

1~5 0.3837*** 0.0259 0.1168*** 0.035 -0.0838  -0.2623*** 

6~10 0.3143*** -0.0215 0.0381 0.0593 -0.0122  -0.1833** 

11~15 0.4285*** 0.1002 0.2489** 0.0176 0.0346 -0.0334 

16~20 0.3544*** 0.044 0.3196*** -0.0323 -0.1216 -0.036 

*** p<0.01, ** p<0.05, * p<0.1. 
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Table 9. Regression of receiver beliefs (baseline treatment) 

 

Dependent Variable Guess Guess-Secret Number abs(Guess-Secret Number) 

  (1) (2) (3) (4) (5) (6) 

Round -0.00618 -0.00838 0.00146 0.00112 -0.00882** -0.00824** 

  (0.00750) (0.00760) (0.00384) (0.00368) (0.00356) (0.00332) 

Impliedguess_thisround 0.0328 -0.112 0.0337 0.0303 0.0471* 0.0292 

  (0.0494) (0.0700) (0.0297) (0.0476) (0.0276) (0.0393) 

Complexguess_thisround 0.0783* 0.118** 0.0488* 0.0887** -0.00223 0.0675** 

  (0.0438) (0.0526) (0.028) (0.038) (0.026) (0.033) 

Constant 6.242*** 7.233*** -0.824*** -0.927** 0.00195 -0.417 

  (0.531) (0.579) (0.319) (0.381) (0.299) (0.336) 

Complexity=6~10 -1.301*** -1.659*** 0.161 0.266* 0.279** 0.272** 

  (0.244) (0.283) (0.116) (0.151) (0.110) (0.133) 

Complexity=11~15 -1.643*** -2.285*** 0.483** 0.623** 0.690*** 0.865*** 

  (0.312) (0.384) (0.218) (0.275) (0.200) (0.240) 

Complexity=16~20 -2.395*** -3.176*** 0.725*** 0.919*** 0.925*** 1.174*** 

  (0.336) (0.449) (0.228) (0.305) (0.212) (0.267) 

Subject demographics included 

subject 

fixed effects included 

subject fixed 

effects included 

subject fixed 

effects 

Observations 1,634 1,634 1634 1634 1634 1634 

R-squared 0.210 0.310 0.021 0.156 0.064 0.243 

Note: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1. 
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Table 10: Summary statistics (robustness treatments) 

 

Panel A: Complexity level 1 to 20 and no feedback 

 

  All 

Conditional on the receiver submitting a 

guess before time limit 

Variable Obs. Mean Std. dev. Obs. Mean Std. dev. 

Session ID (total 5) 1,980 2.939 1.325 1,958 2.936 1.325 

Round (1 to 30) 1,980 15.500 8.658 1,958 15.551 8.652 

Role (1=sender, 0=receiver) 1,980 0.500 0.500 1,958 0.506 0.500 

Sender: 

     

  

Secret number (1 to 10) 990 5.451 2.884 990 5.451 2.884 

Sender choice of complexity (1 to 

20) 990 8.490 7.359 990 8.490 7.359 

Sender time used (in seconds) 990 8.547 6.667 990 8.547 6.667 

Receiver: 

     

  

Receiver's guess (1 to 10) 990 5.595 2.886 968 5.588 2.889 

Receiver time used (in seconds) 990 24.399 18.484 968 23.590 17.886 

Receiver made no decision within 

time limit (60 s) 990 0.022 0.147 968 0.000 0.000 
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Panel B: Complexity level 1 or 20 and no feedback 

 

  All 

Conditional on the receiver submitting a 

guess before time limit 

Variable Obs. Mean Std. dev. Obs. Mean Std. dev. 

Session ID (total 5) 2,040 3.029 1.404 2,010 3.026 1.406 

Round (1 to 30) 2,040 15.500 8.658 2,010 15.534 8.650 

Role (1=sender, 0=receiver) 2,040 0.500 0.500 2,010 0.507 0.500 

Sender: 

      Secret number (1 to 10) 1,020 5.477 2.874 1,020 5.477 2.874 

Sender choice of complexity (1 or 

20) 1,020 8.544 9.301 1,020 8.544 9.301 

Sender time used (in seconds) 1,020 6.040 4.895 1,020 6.040 4.895 

Receiver: 

      Receiver's guess (1 to 10) 1,020 5.625 2.871 990 5.625 2.870 

Receiver time used (in seconds) 1,020 23.856 21.094 990 22.761 20.436 

Receiver made no decision within 

time limit (60 s) 1,020 0.029 0.169 990 0.000 0.000 
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Table 11: Summary of sender’s choice of complexity (robustness treatments) 

 

Panel A: Complexity level 1 to 20 and no feedback 

 

  Sender choice of complexity (1 to 20) 

Secret 

number Mean Median Std. dev. N 

Percent high 

complexity 

(16-20) 

Percent low 

complexity 

(1-5) 

1 14.382 18.5 7.013 102 57.8% 17.6% 

2 14.161 18 6.930 93 55.9% 17.2% 

3 13.349 16 7.043 109 50.5% 19.3% 

4 9.018 10 6.153 111 17.1% 32.4% 

5 8.653 8 6.058 95 16.8% 37.9% 

6 6.151 4 5.945 93 10.8% 58.1% 

7 5.989 3 6.234 95 11.6% 63.2% 

8 3.699 1 5.045 83 6.0% 79.5% 

9 4.017 1 4.666 115 1.7% 70.4% 

10 4.606 1 6.450 94 12.8% 75.5% 

   Total  8.490 7 7.359 990 24.3% 46.4% 

 

Panel B: Complexity level 1 or 20 and no feedback 

 

  Sender choice of complexity (1 or 20) 

Secret 

number Mean Median Std. dev. N 

Percent high 

complexity 

(16-20) 

Percent low 

complexity 

(1-5) 

1 16.562 20 7.350 105 81.9% 18.1% 

2 15.485 20 8.127 101 76.2% 23.8% 

3 14.242 20 8.776 99 69.7% 30.3% 

4 11.640 20 9.479 100 56.0% 44.0% 

5 7.861 1 9.169 108 36.1% 63.9% 

6 7.388 1 9.015 116 33.6% 66.4% 

7 3.111 1 6.005 90 11.1% 88.9% 

8 3.446 1 6.394 101 12.9% 87.1% 

9 3.297 1 6.228 91 12.1% 87.9% 

10 1.872 1 3.993 109 4.6% 95.4% 

   Total  8.544 1 9.301 1020 39.7% 60.3% 
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Table 12. Summary of receiver guesses by complexity (robustness treatments) 

 

Panel A. Complexity level 1 to 20 and no feedback 

 

Sender 

choice of 

complexity Frequency 

Average 

secret 

number 

Average 

guess 

Average 

(guess - 

secret 

number) 

Average  

|guess - 

secret 

number| 

1 332 7.244 7.169 -0.075 0.190 

2 37 6.081 6.081 0.000 0.486 

3 34 5.735 5.765 0.029 0.029 

4 20 6.750 6.850 0.100 0.100 

5 35 5.171 5.229 0.057 0.114 

6 25 5.080 5.520 0.440 0.440 

7 21 4.952 4.952 0.000 0.000 

8 36 5.083 5.333 0.250 0.417 

9 26 5.846 5.692 -0.154 0.154 

10 78 4.974 4.756 -0.218 0.551 

11 12 7.083 7.000 -0.083 0.083 

12 12 4.500 4.500 0.000 0.167 

13 25 5.320 5.200 -0.120 1.240 

14 21 4.238 4.714 0.476 0.952 

15 32 3.875 4.250 0.375 0.438 

16 18 3.611 4.000 0.389 1.167 

17 16 4.750 4.938 0.188 1.688 

18 17 3.235 3.588 0.353 0.353 

19 10 4.900 7.400 2.500 2.500 

20 161 2.988 3.391 0.404 0.925 

 Total  968 5.481 5.588 0.106 0.472 

 

Panel B. Complexity level 1 or 20 and no feedback 

 

Sender 

choice of 

complexity Frequency 

Average 

secret 

number 

Average 

guess 

Average 

(guess - 

secret 

number) 

Average  

|guess - 

secret 

number| 

1 615 6.771 6.787 0.016 0.221 

20 375 3.499 3.720 0.221 1.005 

 Total  990 5.531 5.625 0.094 0.518 
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