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ABSTRACT 

It is conjectured that the ex-post inflation forecast uncertainty can be used as a proxy for 

macroeconomic uncertainty in countries with moderate and high inflation. We argue that 

the current practice of assessing macroeconomic uncertainty by a count of articles with 

words related to uncertainty in newspapers might not be adequate. In this study, we have 

computed ex-post inflation uncertainty for Poland, Russia and Ukraine, with U.S. as a 

benchmark. The data for annual inflation are monthly and cover the period from 1994- 

until 2014. We derive measures of inflation uncertainty from a skew normal distribution 

fitted to ex-post (pseudo out of sample) forecast errors. It is shown, by Monte Carlo 

experiments, that different types of skew-normal distributions fitted to data might give 

similar results, making identification of the true distribution difficult. We suggest the 

weighted skew-normal (WSN) distribution as the approximation to the distribution of ex-

post inflation uncertainty. The advantage of this approach is that the parameters of the 

estimated WSN distribution are directly interpretable in the context of monetary policy. 

Our results show that WSN provides a good fit for Poland and the U.S. but not for Russia 

and Ukraine. Furthermore, the estimates of the parameters suggest the prevalence of anti-

inflationary policy over the output-stimulating policy for Poland, while the opposite 

seems to be true for the U.S.  

 

 



1. INTRODUCTION 

The paper tackles some issues related to the evaluation of the ex-post inflation forecast 

uncertainty in Poland, Russia and Ukraine, for the period preceding the current conflict in 

Ukraine. In a less direct way, it relates inflation uncertainty, observed ex-post, through the 

characteristics of forecast errors, to a wider issue of the unobserved, in principal, 

macroeconomic uncertainty. In this context we take a sceptical view of the current practice of 

assessing macroeconomic uncertainty for the economies with moderate and high inflation by 

a count of articles with words related to uncertainty in a single newspaper. Such practice 

might be justified for countries with effective monetary policy and, currently, for the 

resource-importing countries. For the others, it should be applied with caution,. We argue 

that, in cases where inflation is reasonably high, it might be better to assess macroeconomic 

uncertainty from the probabilistic characteristics of the distribution of forecast errors of 

inflation. 

2. MEASURING OF UNCERTAINTY IN POST-SOVIET COUNTRIES 

Appropriate measurement of macroeconomic uncertainty has recently become a contested 

issue. Although the research on the relationship between the uncertainty and growth has a 

long history (see e.g. Knight, 1921), the measurement question was somewhat neglected. It 

was usually assumed that some measures of variability of GDP or prices, conditional or 

unconditional, observed over a reasonably long period, were giving sufficient insight into 

their uncertainty. And quite rightly so; if the probability of an unexpected event is reasonably 

high and the magnitude of outcomes of such event is substantial, the effects can by observed 

reasonably frequently. Hence, a variation of the outcomes would represent uncertainty, 

understood as the absolute magnitude of whatever we cannot forecast, regarding mean.  

More recently, however, the scene for observation of outcomes of uncertainty has changed. 

The unexpected events happen less frequently. They might not even be observed in the 

historical sample. However, if they happen, the magnitude of outcome might be substantial. In 

Europe, an evident example is that of the Greek crisis; the default did not happen, the levels of 

European macroeconomic indicators like prices and GDP have not changed much in the short 

term, but there has been a substantial increase in trading insurance costs, shortening 

transactions’ horizons, affecting foreign trade, etc., which might eventually lead to a 

slowdown in GDP growth. It shows that simple observation of the historical volatility of the 

series might not give a right picture prompting the development of more complex measures. 

Among these measures, the widest coverage recently has the Economic Policy Uncertainty 

index, EPU (Baker, Bloom and Davis 2013). The EPU index is regularly published for some 

countries and areas, including China and Russia. For US and some other countries it is a 

three-component index, consisting of the (1) frequency of newspapers’ articles containing 

words/phrases related to uncertainty, (2) US temporary tax code provisions, often 

unexpectedly extended and regarded as an additional source of uncertainty and (3) some 

forecast disagreement measures based on surveys of professional forecasters, as forecast 

disagreement is often regarded as a measure of uncertainty (see e.g. Bomberger, 1999, 

Giordani, P. and P. Söderlind, 2003, Lahiri and Sheng, 2010). For most other countries, like 

China and Russia, only the first of these components is taken into account. For the US, results 

of implementing the index as an auxiliary tool for forecasting are generally positive and 

outperforms other measures like the term spread (see e.g. Karnizova and Li, 2014). 

For other countries and regions, however, application of such measure, which is based only on 

the component (1) that is on the newspaper use of the uncertainty-related phases in their 

articles can be more problematic, especially in international comparison. So far, the 

newspaper coverage of countries like Russia and China is limited to only one newspaper in 



 2 

each country, Komersant for Russia and South China Morning Post published in English in 

Hong Kong, for China. In such cases, an obvious criticism of such measures is that, in 

countries with some degree of state control over the media, it can be easily manipulated. 

Additionally, there are problems related to the idiosyncratic sociological and cultural nature of 

reporting and absorbing the news, linguistic subtleties, misusing particular terms, evaluation 

of language over time, reporting fads and fashions, cascading (repeating the same news), and 

other related issues that could make both cross country and in-time comparisons unrealistic. 

Constructing comparable uncertainty measures that contain all three elements of the full EPU 

listed above for a wide spectrum of countries seems to be a formidable task. Unresolved 

issues relate to adjusting the measure to different tax systems, in the second component 

above, and problems with homogeneity and dependence regarding the ‘uncertainty by 

disagreement’ approach, which is the base for constructing the third component see e.g. 

Bowles et al., 2007; Andrade and Bihan, 2013; Makarova, 2014).  

Concerns raised above prompted us to revert, as an alternative, to measures of uncertainty 

based on the probabilistic characteristics of the distribution of point forecast errors. In this 

paper, we concentrate on the evaluation of uncertainty using the forecast errors of inflation 

(ex-post inflation forecast uncertainty, see Clements, 2014). This might be an appropriate 

measure for countries with moderate to high inflation and without significant price control. 

Clearly, such measure might be questionable for countries with stable and low-level inflation.  

For empirical investigation we have selected Poland, Russia and Ukraine. Because of the 

possibly distorted effect of the military conflict in Ukraine, our data sample ends in February 

2014. The main reason for selecting these countries was that they differ substantially in the 

nature of their inflation. Poland conducts reasonably successful inflation targeting policy; 

Russia has experimented with the exchange rate stabilisation under conditions of natural 

resource economy and ‘dirty float’ while Ukraine’s monetary policy is essentially undefined. 

Data on inflation are relatively homogeneous and reasonably long for these countries so that 

the distribution of inflation can be estimated with a high degree of accuracy. The practice of 

using past forecast errors for approximating forecast uncertainty has often been popular 

before, especially among the central banks’ practitioners (see e.g. Kowalczyk, 2013; for 

comparison with the survey of forecasters’ approach see Clements, 2014; Lahiri, Peng and 

Sheng, 2014). It developed from comparing the distributions of point forecast errors with the 

distributions used in probabilistic forecasting (Hall and Mitchell, 2007, Dowd, 2008).  

For countries where more complex series of the EPU index data are available, that is based on 

information from more than one newspaper, there is usually a significant correlation between 

EPU index and a naïve measure of uncertainty based on squares of ex-post inflation forecast 

errors for periods of moderate of high inflation. For some countries, such correlation reaches 

50% (see Charemza, Díaz and Makarova, 2015). If a slightly more complex measure of 

uncertainty based on moving standard deviation of the logs of squares of such errors is 

applied, its correlation with the three-components EPU index is markedly higher, exceeding, 

in some cases, 80% (see Charemza, Díaz and Makarova, 2014).  

However, for countries where only one-component EPU index where information from one 

newspaper is used, like Russia and China, it does not seem to be any relation whatsoever 

between the EPU index and ex-post forecast uncertainty. This is illustrated by the simple rank 

correlation between the EPU data and a naïve uncertainty measure given by logs of squares of 

the ex-post ARMA 4-step ahead forecast errors for the annual inflation measured monthly for 

the period from July 2001-February 2013 (more details on computation of these forecast 

errors are given in Section 3). 

 



 3 

 

Table 1: Rank correlation between log of EPU index and logs of squares of ARMA forecast errors 

 July 2001-February 2013 

 rank corr. coeff p-vals 

U.S. 0.201 0.007 

Russia -0.078 0.189 

Legend: EPU index: http://www.policyuncertainty.com; p-values have been obtained by bootstrapping 
the sample with 1,000 drawings. 

Table 1 shows that for U.S., for the fully developed three-components EPU index, there is 

significant, albeit not high, correlation with a naïve measure of inflation uncertainty for the 

period before February 2013. However, for Russia, with the one-component EPU index based 

on data from one newspaper, there is no such correlation. A similar result of low correlation 

of EPU index with ARMA forecast errors for China has been obtained by Wu (2015). Figure 

1compares time paths of the both measures for U.S. and Russia.  

Figure 1: Logarithm of EPU index and naïve measure of inflation forecast uncertainty 

July 2001-February 2013 

U.S. Russia 

  

 

Figure 1 shows the deviation of the EPU index and naïve inflation forecast uncertainty for the 

period between the January 2003 and August 2007. For the periods before January 2003 and 

after August 2007 the dynamics of the both measures is much more similar.
1
 For Russia, 

however, the picture is different. There are visible discrepancies in the dynamics of both 

series (EPU index has an increasing trend and naïve inflation uncertainty is constant over 

time. Moreover, the series of EPU index data exhibits a number of drops, suggesting 

substantial negative skewness, in addition to possible nonstationarity. 

The above observation suggests the rationale for using ex-post inflation uncertainty measures 

as a proxy for macroeconomic uncertainty for countries with some inflation variability, in the 

absence of more complex and perhaps less intuitive methods. Long series of data for 

consumers’ price index, used for computing inflation, are available for most countries and 

usually regarded as reasonably realistic. In the case of East European and post-Soviet 

economies, such series have not been manipulated, at least more than in other countries. The 

rationale for using ARMA forecast errors is supported by the fact that the ARMA model is 

                                                 
1
 For the period after February 2013, there is no positive correlation between EPU and forecast errors of inflation 

in the US, due to low variability of inflation. 

http://www.policyuncertainty.com/
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widely regarded as one of the best methods, regarding accuracy and robustness. It was shown 

that it encompasses forecasts from more complex multivariate models (see e.g. Mitchell, 

Robertson and Wright, 2014). Even if there are other, more accurate, forecasting methods and 

models, ARMA inflation forecast is intuitively well understood and widely used, so that any 

deviations from point forecast can be understood as caused by uncertainty. They are also 

easily comparable between countries. Consequently, it can be conjectured that, if for countries 

with well-developed EPU indices there is high and significant correlation between these 

indices and uncertainty measures developed on the basis of inflation ex-post forecast errors in 

periods where there was some variability of inflation, it is reasonable to assume that such 

correlation would have also appeared for East European and post-Soviet countries, if fully 

developed EPU indices were available.
2
  

3. SKEW NORMAL DISTRIBUTIONS AND UNCERTAINTY 

Observations on the ex-post forecast uncertainty are the pseudo-out of sample forecast errors 

(see Stock and Watson, 2007). Let 
|

ˆ
t h t 

 be the baseline h-step ahead point forecast of 

inflation t  made in time t for t h . Ex-post forecast errors are computed in recursions; that 

is as:  

| |
ˆ

t h t t h t h te       , ,  0 0, 1, ... ,t t t T h   , 

where: 

0t  - data used for the initial model estimation; 

T  - total length of data. 

In each recursion the model is re-estimated, the forecast for the horizon h is made and forecast 

error computed. Then, the estimation sample is updated by one observation, model re-

estimated, another forecast error computed, etc.. Under the assumption of independence of the 

subsequent forecast errors and ergodicity, the sequence of forecast errors of the length 

0 1T h t    constitutes the set of observations on the ex-post forecast uncertainty. According 

to the terminology of Clements and Hendry (1998), this is the ‘what we don’t know that we 

don’t know’ uncertainty; the ‘what we know that we don’t know uncertainty can by obtained 

by scaling |t h te   by some forecasts of conditional dispersion (e.g. GARCH standard 

deviations). 

Once the data on the ex-post forecast errors have been collected, there is a problem of finding 

an appropriate statistical distribution that best describes the data. Although computing 

rudimentary measures of uncertainty from empirical distribution, without any assumptions 

regarding the population, is possible, it would substantially limit the applicability. Inference 

into the distributions of forecast errors enables to compute the probabilities of particular 

events, e.g. deflation or hitting inflationary targets. It also enables more complex inference 

regarding interrelations between uncertainties of particular indicators and between countries. 

Among the numerous possible distributions that might be fitted to our data we concentrate on 

the large family of skew-normal distributions. 

                                                 
2
 It should be noted that high correlation of uncertainty measures based on inflation errors is also high for other 

measures of macroeconomic uncertainty. For instance correlation within the range of 0.53-0.77 (depending on 

forecast horizon) has been obtained for moving standard deviations of squares of US inflation forecast errors 

and the measure of uncertainty constructed by Jurado, Ludvigson and Ng (2015); see Charemza, Díaz and 

Makarova, (2015).  
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During the last decade a substantial development of the theory and applications of such 

distributions, which contain normal distribution as their special symmetric case, can be 

observed. The first distribution of this kind applied in empirical macroeconomics was 

probably the so-called two-piece normal (or split normal) distribution, TPN, originated by 

John (1982) and developed further by Kimber (1985). It gained popularity among the 

practitioners; in particular it has been widely used by economic forecasters for constructing 

probabilistic forecasts of inflation (see e.g. seminal paper by Wallis, 1999). A further 

breakthrough was made by Azzalini (1985, 1986), who developed a theory of univariate, and 

then multivariate, skew-normal distributions. These distributions have been recently subject 

of substantial generalisations. Most notably, the Balakrishnan skew normal distribution has 

been proposed by Sharafi and Behboodian (2008), generalized Balakrishnan skew normal 

distribution, GBSN, by Yagedari, Gerami and Khaledi (2007), and developed further by 

Hasanalipour and Sharafi (2012), Fujisawa and Abe (2012), Mameli and Musio (2013), and 

others. For further extension and generalization see Cohoy (2015). 

Such plethora of distributions provides a practitioner with a dilemma of which one to choose. 

Most intuitively, the distribution to be selected is the one with the best fit to the data. 

However, what if the distributions considered fit the data equally good (or equally bad) so that 

they are statistically indistinguishable?  

There are three types of skew-normal distributions which we consider in this paper: (1) 

weighted skew normal; see Charemza, Díaz and Makarova (2014), WSN; (2) two-piece 

normal, TPN, and (3) the Yagedari, Gerami and Khaledi (2007) generalized Balakrishnan 

skew-normal distribution, GBSN. Appendix A gives their basic probabilistic characteristics 

and suggests an interpretation of some of the parameters. Generally, these distributions can be 

characterized as follows: 

1. WSN is a six-parameters distribution, with parameters denoted as , , , , ,low up      , 

where 
low up  ; ,   ; 

2  ; and 1  . It becomes standard normal if 

0    and 1  . In the case where it is fitted to the inflationary forecast errors, that 

is to differences between observed inflation and the baseline inflation forecast, and the 

monetary policy makers have access to additional experts forecasts (assumed not be 

observable by the model maker), Charemza, Díaz and Makarova (2014) offer the 

following interpretation of the parameters of WSN distribution. 

,  :  measure effects of the respective anti-inflationary ( ) and pro-inflationary  

(  ) monetary policy on the uncertainty, 

,low up  : represent policy thresholds; if additional experts’ forecast is between the 

thresholds, no policy action is undertaken, 

2 : is the variance of the distribution of the uncertainty as if the monetary policy 

was impotent, 

 : is the coefficient explaining the degree of expertise (knowledge) of the 

additional experts. 

More details regarding the derivation and interpretation of this setting are given in 

Appendix A. 

2. TPN is a three-parameters distribution with parameters 1 2,    and  . It 

becomes standard normal if 1 2 1    and 0  . Skewness of this distribution is 
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decided by the ratio 1 2/  . According to Wallis (2004), the deviation of TPN from 

normality represents the balance of risks of the overvalued and undervalued forecasts.  

3. GBSN is a there parameters distribution with parameters , ,n m  , where n and m are the 

non-negative integers and     0  . It becomes normal if 1n   and 0m    or 

0n m  . Its parameters do not have a direct interpretation. Hasanalipour and Sharafi 

(2012) showed that it fits well to the distributions of some non-economic data. 

Figure 2 compares the pdf’s of WSN, TPN and GBSN with approximately identical first three 

moments, namely with means equal to 0.78, variances equal to 0.39 and the coefficient of 

skewness equal to 0.85. For comparison, the normal distribution with mean equal to 0.78 and 

variance of 0.86 is plotted in the background. 

 

Figure 2: pdf’s of WSN, TPN and GBSN with identical first three moments 

mean= 0.78, variance=0.39, coef. of skewness=0.85. 

 

 

Figure 3 shows the Q-Q diagram that is a scatter diagram of the quantiles of each of the 

distributions depicted in Figure 1 against the normal distribution. Figure 3a gives the Q-Q plot 

for the entire range of quantiles, from 0.01 to 0.99, and Figure 3b gives a close-up of Figure 

3a for the left tails of the distributions. 

Figure 2: Q-Q plots of WSN, TPN and GBSN distributions 

Fig 2a: full range of quantiles Fig. 2b: a close-up of the left tails 

  

 

Figures 2-3 illustrate potential problems in distinguishing between the distributions. The 

GBSN and TPN have, in the case illustrated, nearly identical modes, with TPN having a 

slightly thicker right tail. The corresponding quintiles are nearly identical, except the left-hand 

side quantiles, where the GBSN are slightly lower than the other corresponding quantiles, 
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relatively to the identical quantile of the normal distribution. Nevertheless, these differences 

are small, which suggest practical problems in discrimination between skew-normal 

distributions.   

4. FIT OF TRUE AND FALSE MODELS 

To check whether using the best fit criterion for selecting the best type of a skew normal 

distribution might lead to choosing a false one, we have set up three data generating processes 

(DGP’s, or ‘true models’) and fitted all three distributions to the generated data.   

The DGP’s are: 

DGP 1: WSN with 2.0   , 0.5   , 
2 1   , 1up low     and 0.75  .   

DGP 2:  TPN with 1 1.5   , 2 0.5   , 0.4  . 

DGP 3:  GBSN with n = 2, k = 1 and 0.3   . 

All three DGP’s have similar first three moments, as given in Table 2:
3
 

Table 2: Mean, st. deviation and skewness of DGP’s 

 Mean st. dev. Skewness 

DGP 1 -0.363 1.069 -0.628 

DGP 2 -0.398 1.113 -0.695 

DGP 3 -0.207 0.925 -0.687 

 

1,000 samples have been generated for each DGP, and for each sample size of 100, 150, 200, 

250, 300, 350, 400, 450 and 500. For each simulated sample, we have fitted all three 

distributions using the SMDE method outlined in Appendix A. Problem in comparison arises 

because WSN is a 6-parameters distribution and TPN and GBSN have 3 parameters each. To 

allow for a fair comparison, we have decided to keep the   parameter constant (that is, 

0.75  ) and 1  . Also, we are keeping the threshold parameters, 
up  and low  constant in 

estimation, albeit in two different variations. In the first variation, denoted by WSN(0), we 

keep the thresholds fixed as in the DGP 1, that is 1up low    . In the second variation, we 

made the thresholds dependent on  in such way that
up   and low up   . We denote this 

as WSN(1). Hence, we are left with three parameters to estimate: , β, and  . In such 

settings the skewness in WSN is induced only through the differences between the parameters 

  and  . Such settings are close to that applied in the empirical models which are analysed 

in Section 5.  

As a simple, naïve, misspecification measure, we use the frequency of cases when ( ) ( )

0 1

i id d , 

where ( )

0

id  denotes the minimum distance measure computed for the estimated properly 

specified distribution in the i
th

 replication, and ( )

1

id  denotes the minimum distance measure 

computed for one of the misspecified distribution estimated using the same generated data. 

That is, we do the comparison in pairs, comparing the properly specified distribution with the 

falsely specified one. By the properly specified distribution we understand the distribution of 

the same type as used for generating the sample. The distance criterion used here is the twice 

squared Hellinger distance, HD (results for other criteria are available on request; they do not 

differ much from these presented in this paper).  

                                                 
3
  Computing moments of GBSN requires numerical integration over an infinite interval. The algorithms applied 

here are that of Sikorski and Stenger (1984), named inthp1and inthp2 in GAUSS 13 and later versions. 



 8 

Another misspecification measure is based on bootstrapping the ratios distance measures for 

two alternative distributions fitted to the same sample. We have used methodologies 

developed originally for comparing variances: simple bootstrap and Efron bootstrap (see e.g. 

Sun, Chernick and LaBudde, 2011). 

The algorithm for the simple bootstrap is the following: 

Step 1: Draw M pairs with replacement of 
( ) ( )

0 0{ , }k jd d , k,j = 1,…, 1,000, k  j, M= 10,000; 

Step 2: Compute the ratio of distance measures 
( )

0
0 ( )

k
h

k

j

d
r

d
    ,   h = 1,2,…,M; 

Step 3: Compute the 95
th

 quantile of the distribution of 0

hr  denoted as 0.95q  ;  

Step 4: Check the simulated bootstrap criterion for the case where 
( ) ( )

0 1

i id d  as: 

( )

1
0.95( )

0

i

i

d
q

d
   .   

The frequency of cases where the above inequality is fulfilled tells about the probability of 

undertaking the right decisions regarding the distribution by rejecting the wrong one. The 

higher is this ratio, the false distribution is chosen less often. Efron bootstrap is similar, except 

that in Step 1 drawing of pairs is made from 
( ) ( )

0 1{ , }i id d , rather than from 
( )

0

id  alone. Results 

in this case are more robust, as the equality of the distance measures is explicit under the null. 

Tables 3, 4 and 5 present respectively the naïve misspecification measure and also those based 

on the simple and Efron bootstraps and for twice squared Hellinger minimum distance 

criterion. Results for other criteria and different sample sizes are available on request. 

Table 3: Frequency of cases where 
( ) ( )

0 1

i i
d d  

Sample 
size 

DGP 1 (WSN) DGP 2: (TPN) DGP 3: (GBSN) 

TPN GBSN WSN(1) WSN(0) GBSN WSN(1) WSN(0) TPN 

100 0.380 0.479 0.504 0.507 0.396 0.314 0.287 0.269 

250 0.261 0.229 0.37 0.442 0.091 0.304 0.299 0.228 

500 0.258 0.06 0.186 0.341 0.005 0.377 0.353 0.233 

Table 4: Frequency of cases where 
( ) ( )

1 0 0.95
/

i i
d d q  , simple bootstrap 

Sample 

size 

DGP 1 (WSN) DGP 2: (TPN) DGP 3: (GBSN) 

TPN GBSN WSN(1) WSN(0) GBSN WSN(1) WSN(0) TPN 

100 0.088 0.045 0.047 0.046 0.026 0.186 0.207 0.219 

250 0.135 0.099 0.073 0.046 0.049 0.201 0.191 0.267 

500 0.148 0.216 0.137 0.071 0.183 0.152 0.168 0.254 

Table 5: Frequency of cases where 
( ) ( )

1 0 0.95
/

i i
d d q  , Efron bootstrap 

Sample 

size 

DGP 1 (WSN) DGP 2: (TPN) DGP 3: (GBSN) 

TPN GBSN WSN(1) WSN(0) GBSN WSN(1) WSN(0) TPN 

100 0.085 0.069 0.045 0.038 0.074 0.071 0.093 0.086 

250 0.117 0.112 0.086 0.061 0.156 0.09 0.081 0.116 

500 0.131 0.161 0.124 0.103 0.174 0.076 0.082 0.113 

Tables 3-5 show that results of fitting WSN and TPN to data generated from GBSN behave 

differently to that fitted to data generated from WSN or TPN distributions. Let us first 

concentrate on evaluating the misspecification in case where data are generated by WSN and 

TPN; it is clearly difficult to distinguish between these two distributions. Using HD criterion 

for the small sample size, it is practically impossible to find out which statistic is 
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systematically smaller than the other, regardless of the data generating process. In particular, 

if data are generated from TPN, there is a virtually equal chance that WSN would fit better 

than the true TPN distribution. However, with the increase in sample size the frequencies of 

cases where the HD statistics for the ‘true’ distribution is smaller than for the ‘false’ one 

increase, suggesting the consistency of choice based on the HD criterion. This is confirmed by 

the bootstrap results. The empirical power of the tests based on the HD statistics is, in 

absolute terms, not high. Even for samples of size 500 it is not reaching 20%. In another 

words, it is in practice problematic to distinguish between the WSN and TPN distributions.  

Nevertheless, some differences between the fits given by WSN and TPN can be observed 

here. Generally TPN is more often falsely well approximated by WSN, particularly in the case 

when up   that is for WSN, than WSN by TPN. Also, for middle-sized samples (250 

observations) chances for proper identification of WSN against TPN by rejecting the null of 

identical MD statistics are visibly higher than otherwise, albeit still small in absolute terms.  

For data generated by WSN and TPN, the danger of misspecification by falsely selecting 

GBSN is visibly smaller. Except for small samples of data generated by WSN, HD statistics 

for GBSN are usually bigger than for two remaining distributions in this case than the 

corresponding WSN and TPN statistics, reducing the chance of distributional 

misspecification. Also, the empirical power of the HD ratio test rises relatively quickly with 

an increase in sample size exceeding, in some cases, 20% for large samples. 

In contrast to WSN and TPN, data generated by GBSN exhibit different patterns. In terms of 

power of the bootstrap tests, they can also be easily confused with two other distributions as 

the power of the HD ratio test is low. However, the power of the test is not visibly increasing 

with the increase of sample size, causing doubts regarding the consistency. On the positive 

side, the naïve misspecification benchmark based on the differences between the HD statistics 

for the true and false distributions is less often false than in the case of data generated from 

WSN and TPN.  

To sum up, one would expect the confusions in deciding which skew normal distribution is 

the best one o be relatively frequent, if the selection is based on the goodness of fit measures 

alone.  

5. EMPIRICAL RESULTS: DISTRIBUTIONS OF INFLATION EX-POST 

UNCERTAINTY FOR POLAND, RUSSIA, UKRAINE AND U.S. 

The distributions discussed above have been fitted to the ex-post forecasts uncertainties of 

three selected post-Soviet countries, of different origins and history of monetary policy, 

namely Poland, Russia and Ukraine. For the sake of comparison, we have also fitted these 

distributions to the U.S. data as well. As the benchmark test, we have used the estimated 

distributions for computing the probabilities that inflation is to be within a pre-defined target 

band. For all these countries, we have decided to use data ending in February 2014. This has 

been done for the sake of comparability, to avoid the effects of the Ukrainian crisis, which 

might distort the comparison. Last 12 data points have been retained for checking the ex-post 

forecast properties of the model, so that the distributions have been estimated using data until 

February 2013. 

Economies of these countries differ substantially among themselves, both in term of economic 

growth, the average level of inflation and types of conducted monetary policy. Among these 

countries, only Poland conducted a reasonably successful monetary policy since 1998, with a 

clearly defined inflation target set at 2.5%, with ±1% band, since 2004. Russia, although 

officially pursuing inflation stabilization, was, in fact, targeting exchange rate stabilisation, 

until 2010, with some indication that it might earlier target monetary aggregates, at least until 
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2002 (see Esanov, Merkl and de Souza, 2004). It resulted in inflation fuelled by a ‘dirty float’ 

(see Vdovichenko and Voronina, 2009). Since 2010, it has been implementing inflation 

targeting more efficiently. For 2013, the year of the forecast, official inflation target was 5%-

6%. Nevertheless, to allow for a comparison with other countries, we have evaluated the 

probability of inflation being within the ±1% band around its upper limit, that of around 6%. 

Ukraine monetary policy was the least transparent. It first had implemented the exchange rate 

targeting that was followed, since 2000, by the exchange rate pegging, relaxed after 2008 

(International Monetary Fund,, 2011). In 2013, it announced the transition to inflation 

targeting, with indications that a likely target will be 5%. Consequently, we have assumed for 

Ukraine the target band of ±1% around 5%. For the analysis of the development of monetary 

policy in these three countries see e.g. Égert and MacDonald (2008). In the U.S., the nominal 

target of 2% has been announced by the Federal Open Market Committee in early 2012. 

Before that, the unofficial target was within the range of 1.7%-2%. In line with the 

assumptions made for other countries, for U.S. we are assuming the target of 2%, with the 

band of ±1%. Figure 4 shows the inflation data for all four countries with the inflation target 

bands depicted. It depicts the differences in inflation dynamics in the analysed countries and 

also the differences in the frequencies the inflation target bands for 2013 were crossed in the 

past. 

We have computed the probabilities of inflation being within the bands using the distributions 

of 4-step ahead forecast errors obtained for forecasts made before February 2013, 

approximated by the skew normal distributions discussed above, that is WSN, TPN and 

GBSN.  

Figure 4: Annual inflation in Poland, Russia, Ukraine and U.S., 2000-2013, and the assumed target 
bands for 2013 

Poland Russia  

 
 

Ukraine U.S. 

  

 

After checking for the order of seasonal and non-seasonal integration by the Taylor (2003) 

test that takes into account the possibility of the presence of unit roots at frequencies other 

than tested, we have estimated the seasonal ARIMA (SARIMA) model for inflation data yt: 
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   ( ) ( ) ( ) ( )s D s

t tL L y L L u       , 

where L is the lag operator,   is the order of integration of the regular part of yt, (1 )L     

is the regular difference operator of order  , (1 )D s DL    is the seasonal difference 

operator of order s for a seasonal I(D) process and ut is the error term. Polynomials  ,   ,   

and   are based on regular ( L ) and seasonal ( sL ) lag operators correspondingly. Their 

orders have been obtained using the Gómez and Maravall (1998) procedure that is based on 

an automatic lag selection criterion that leads to a minimum of Ljung-Box the autocorrelation 

statistic. The entire data span, for the annual inflation recorded monthly in percentages, is 

from August 1994 (September 1994 for Russia) to February 2012.
4
 Due to data availability, 

for Ukraine we have used a slightly shorter data span, from January 1995 to February 2012. 

As described in Section 3, forecasts have been computed recursively, starting from the initial 

period and updating the sample by one observation in each recursion. The initial (for the first 

recursion) period for estimation has been defined as a maximum of the first 80 observations of 

the series. Basic descriptive statistics of the recursive 4-step ahead uncertainty is given in 

Table 6. All the results given below relate to the 4-step ahead uncertainty. Results for 

uncertainties for other forecast horizons (up to 12) are available on request. 

Table 6: Basic characteristics of 4-step ahead uncertainty 

 
Poland Russia Ukraine U.S. 

Full data span 
 

07-1994 
02-2013 

08-1994 
02-2013 

01-1995 
02-2013 

07-1994 
02-2013 

total no. of observation in 
sample.  222 221 217 222 

no. of obs. for estimation of 
the densities 138 137 133 138 

mean. -0129 -0.187 0.106 0.034 

std. dev. 1.037 1.977 3.560 1.379 

skewness 0.211 0.793 0.106 0.533 

All three skew normal distributions discussed here, which is WSN, TPN and GBSN, have 

been fitted to the forecast errors data. As in Section 4, we have estimated three parameters of 

WSN: , β, and , keeping 0.75  , up   and low up   . Table 7 presents the results of 

estimation of the parameters of the density functions. 

Table 7: Results of empirical estimation of different skew normal distributions  

 
Parameters Poland Russia Ukraine U.S. 

 

WSN 
 -1.817 

(0.1803) 
-2.281 

(0.1303) 
-3.320 

(0.1262) 
-1.887 

(0.1051) 

Β -1.223 
(0.1792) 

-2.358 
(0.6400) 

-3.478 
(0.372) 

-2.241 
(0.0042) 

 1.000 
(0.001) 

0.999 
(0.0.002) 

0.999 
(0.004) 

0.851 
(0.0290) 

HD 2.629 21.05 47.42 1.19 

 

 

 

 

                                                 
4
 Data are from the official statistical agencies of each country, available at http://www.tradingeconomics.com   

http://www.tradingeconomics.com/
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Parameters Poland Russia Ukraine U.S. 

 

TPN 
1 1.169 

(0.1101) 
1.400 

(0.617) 
1.995 

(0.0144) 
0.902 

(0.0533) 

2 0.8422 
(0.367) 

2.000 
(0.001) 

2.000 
(0.001) 

1.306 
(0.0712) 

 0.088 
(0.482) 

-0.7222 
(0.4990) 

-0.153 
(0.275) 

-0.336 
(0.303) 

HD 3.10 1.11 51.52 6.26 

 

GBSN 

N 5 5 5 5 

M 2 1 5 2 

  -0.061 
(0.0510) 

-0.084 
(0.0110) 

0.000 
(0.09800) 

-0.976009 
(0.0229) 

HD 4.71 72.80 251.7 8.90 

As in the previous section, for each distribution three parameters have been estimated by the 

SMDE (see Appendix A for the details). As parameters m and n of the GBSN distribution are 

integers, their standard errors have not been computed. For the non-integer parameters, 

standard errors are given in brackets below the estimates. 

The distance measure criterion suggests the choice of different distributions for particular 

countries. For Poland the best fit is that of TPN, followed closely by WSN, and for U.S.A the 

best fit is that by WSN. As concluded in Section 4, there is a high chance of distributional 

misspecification between WSN and TPN. With this is mind and taking into account that, for 

Polish data, differences in MD’s in fitting WSN and TPN are not negligible, we can interpret 

parameters of WSN in the light of monetary policy outcomes. For Poland, the positive 

difference between the absolute values of the estimates of  and β in WSN indicates 

footprints of the prevalence of anti-inflationary policy over the output-stimulating policy. For 

U.S., however, where such difference is negative, there is some evidence of signs of output-

stimulating policy. For Russia, TPN gives the best fit, and for Ukraine all minimum distance 

statistics are rather large, suggesting poor fit of all the distributions considered.  

In order to discriminate between the distributions further, we have tested which of these 

distributions fits better to the observed data with the use of the probability integral transform 

(pit) test (see Diebold, Gunther and Tai, 1998; for application to evaluation of inflation 

probabilistic forecast see Clemens, 2004, and Galbraith and van Norden, 2012); for other 

similar approaches and applications to inflation modelling see Mitchell and Hall (2005). The 

probability integral transform is defined as the probability of observing values of a random 

variable not greater than its realized value. If the forecasted density is close enough to the true 

but unknown density, pit’s will be uniform on the interval from zero to one. If several pit’s 

(that is, for different forecasts) are available, one can test their accuracy by checking whether 

their values are uniformly distributed using well-known ‘goodness-of-fit’ tests. Figure 4 give 

the scatter diagram of pit’s for all three distributions and countries analysed and Table 7 gives 

the results of the Cramer-von Mises test for uniformity of pit’s.
5
 

 

 

 

 

 

                                                 
5
 Another test often used for evaluating the uniformity of pit’s is that of Berkovitz (2001). Hovever, we have 

decided not to use it, as this test is proved to be biased in evaluation of multi-step forecasts (Dowd, 2007). 
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Figure 4: pit’s for fitted skew normal distributions 

Poland Russia 

  

Ukraine U.S. 

  

Table 8: Test statistic: Cramer-von Mises statistics for testing uniformity 

significant statistics are marked by * for 10% significance and ** for 5% significance 

 WSN TPN GBSN 

Poland 0.034 0.100 0.611** 

Russia 0.671** 0.328 2.492** 

Ukraine 0.739** 1.649** 2.633** 

U.S. 0.095 0.279 0.068 

Both Figure 4 and Table 8 show that all distributions give a better fit for the Poland and 

U.S.A rather than for Russia and Ukraine. In particular, the uniformity of GBSN estimates is 

questionable for last two countries, with pit’s concentrated close to zero and one. 

Finally, Table 9 gives the probabilities that inflation, in July 2013, that is four month's periods 

after the end of the sample data, will be within the target intervals. They were obtained by 

computing numerical integrals of the respective estimated pdf’s over the target interval. It also 

presents pit’s of the realisations of headline inflation in July 2013 (for the interpretation of 

such pit’s in relation to forecast uncertainty see Rossi and Sekhposyan, 2014). They describe 

the probability of observing values of the random variable not greater than the observed 

headline inflation. 
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Table 9: Probabilities of hitting inflation target bands, headline inflation in July 2013 and its p-values  

 Target 

interval, 

% 

Infl. 

in 

July 

2013 

WSN TPN GBSN 

 (1) (2) (1) (2) (1) (2) 

Poland 1.5 - 3.5 1.1 0.60 0.25 0.59 0.24 0.63 0.18 

Russia 5 – 7 6.5 0.43 0.38 0.79 0.56 0.43 0.26 

Ukraine 4 – 6 0.0 0.07 0.34 0.40 0.21 0.00 0.32 

U.S. 1 - 3 2.0 0.60 0.56 0.62 0.64 0.68 0.56 

Legend:  (1): probabilities of inflation being within the target in June 2013 according to the particular 

distribution;  

(2): pit’s of observed headline annual inflation in June 2013 according to the particular distribution. 

As expected, Table 9 does not show much difference between the estimated probabilities of 

hitting the inflation target, especially for Poland and U.S., where all examined skew normal 

distributions fit well. More substantial differences can be noticed for Russia, where the results 

for TPN, which is the only distribution for which the null hypothesis of the uniformity of pit’s 

is not rejected, shows different probabilities of hitting inflation target and pit for the observed 

inflation distinctively. A positive conclusion that can be drawn here is that more than one 

skew normal distribution might fit well to the data, and it might not matter much which one is 

used. However, only the parameters of the estimated WSN distribution can be sensibly 

interpreted in the context of monetary policy. 

6. CONCLUSIONS 

Results of the paper indicate striking similarities between the overall efficiency of monetary 

policy and fit of skew-normal distributions to the ex-post forecast uncertainty data. Although 

no direct comparison is available, it might be prudent to assume that, at least because of an 

absence of drastic monetary policy changes, monetary policy efficiency, monetary policy  

efficiency of U.S. and Poland can be classified as similar, as it is in the case of Poland and the 

West of Europe (see Jarociński, 2010). For these countries, the fit of the skew-normal 

distributions is much better than that for Russia and Ukraine. Although, for these countries, it 

is difficult to decide between the two-piece normal and weighted skew normal distributions, 

the estimates of the latter provide a clear interpretation of the imprints of monetary policy on 

the uncertainty. For Russia and Ukraine, however, not much can be read from the estimates. 

Regarding the statistical side of the results, the general message is somewhat pessimistic. We 

showed that it might be difficult to tell one skew normal distribution from another by the best 

fit, especially if the sample size is not very large. As the number of potential skew normal 

candidates for fitting to data is substantial (especially in the light of the fact that there are 

other propositions in the literature not considered in this paper) it seems to be sensible to 

decide on the type of distribution not by the best fit but rather on the basis of interpretation of 

its parameters, especially if there is not much difference in the closeness of the fit of the 

competing distributions.  

It is worth noting that the difficulty in deciding on the type of skew normal distribution is 

deepened by the fact that there are no operational statistics developed for testing the degree of 

disparities between distance measures (or other characteristics) of these distributions. The 

bootstrap procedure used in this paper suggests a way for further investigation.  
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APPENDIX A: 

THREE SKEW NORMAL DISTRIBUTIONS, INTERPRETATION AND ESTIMATION 

WEIGHTED SKEW NORMAL DISTRIBUTION (WSN) 

The random variable Z  with WSN distribution, as defined by Charemza, Díaz and Makarova, 

(2014), is described by: 

up lowY YZ X Y I Y I             ,       (A1) 

where: 

1 if

0 otherwiseup

up

Y

Y
I 





 


 , 
1 if

0 otherwiselow

low

Y

Y
I 





 


  ,  

2 2

2 2

0
( , ) ,

0
X Y N

 

 

   
    
    

, 

low up  ; ,   ; 
2  ; and 1  .  

Z is a random variable described fully by six parameters: , , , , ,low up      . It is shown in 

Charemza, Díaz and Makarova (2015), that the probability density function (pdf) of the 

standard weighted skew normal distribution, that is for 1  , is given by:  

 
1WSN

2 2

2 2

1 1

(1 ) (1 )

( ) ,
1 1

B t kAB t mAt t
f t

A A A AA A

m t k t
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             
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       

         

 

where  and  denote respectively the density and cumulative distribution functions of the 

standard normal distribution, and 2( ) 1 2A A       ,  ( )B B       . 

Suppose that the WSN is fitted to a set of inflation forecast errors of the same horizon. It is 

convenient to assume that the baseline (point) forecast can be in turn improved by second 

stage forecast, given by Y in (A1). Under these settings the parameters of WSN have the 

following interpretation:  

(i)   and   represent the marginal effect of the stimulative and contractionary 

economic policies on uncertainty respectively; 

(ii) low  and up  represent the thresholds deciding about the relevance of the second 

stage forecast information for the policy decisions; 

(iii) 2  that is variance of X and Y, represent the uncertainty related to the second stage 

forecast information used for improving the baseline forecast outcome; 

(iv)  , that is the correlation coefficient between X and Y, describes the accuracy of the 

second stage forecasts.  

 TWO PIECE NORMAL DISTRIBUTION (TPN) 

A random variable with TPN distribution is defined by its pdf: 

 

 

2 2

1

1 2 2 2

2

exp ( ) / 2 if
( ; , , )

exp ( ) / 2 if
TPN

A t t
f t

A t t

  
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  

   
 

  

   ,  t    , 
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where 
1

1 22 / ( )A       . Three parameters to be estimated are 
1 2,    and  . 

It is often interpreted in the context of forecast uncertainty as a representation of the balance 

of risks the over-and underestimated forecasts (see Wallis, 2004). 

GENERALIZED SKEWED BALAKRISHNAN DISTRIBUTION (GBSN) 

The third distribution considered here, the GBSN, is given by the following pdf: 

1
( ; , , ) [ ( )] [1 ( )] ( )

( , , )

n m

GBSNf t n m t t t
C n m

   


       ,    t   , 

where 
0

( , , ) ( 1) [ ( )] ( )
m

i n i

i

m
C n m t t dt

i
  





 

 
   

 
   ,   and   are respectively the cdf and pdf 

of the standard normal distribution and the non-negative integers n and m and    are the 

parameters. The GSBN includes the Balakrishnan skew normal distribution for m = 0, and the 

original Azzalini skew normal distribution (with the probability density function 

SN ( ; ) 2 ( ) ( )f t t t    ) for n = 1 and m = 0). Azzalini distribution is also a special case of the 

WSN for, 2   , 0up    and 
2 1  . All three distributions can be reduced to a 

standard normal: WSN for 0    and 
2 1  ; TPN for 1 2 1    and 0  ; GBSN for 

1n   and 0m    or 0n m  . So far, the parameters of the GBSN distribution have not 

been given any particular interpretation. 

ESTIMATION AND GENERAL SETTINGS 

Estimation of WSN, TPN and GBSN distributions by the maximum likelihood or the 

generalized method of moments is numerically awkward. This problem is particularly well 

discussed for the Azzalini distribution (see e.g. Azzalini and Capitanio, 1999, Sartori, 2006, 

Franceschini and Loperfido, 2014), and is evident also for all three families of distributions 

considered here. For this reason we have resorted to simulation-based estimation methods. 

These methods are particularly attractive as it is straightforward to derive random number 

generators for all three distributions. For WSN given by Error! Reference source not found. 

it is described in Charemza, Díaz and Makarova (2014), for TPN in Nakatsuma (2003) and for 

GBSN in Yagedari, Gerami and Khaledi (2007). With the use of these generators and inspired 

by Greco (2011) we have applied the simulated minimum distance estimators method (SMDE, 

see Charemza et al., 2012), which consists of fitting the approximated by simulation density 

function to empirical histograms of data and applying a minimum distance criterion. 

The version of SMDE applied here can be defined as: 

  , 1
ˆ arg min ( , )

TSMDE

n w n t t
d g f 



 




   , 

where ,tf   is the approximation of the pdf , f , of a random variable obtained by generating  

t = 1,…,T replications (drawings) from a distribution with parameters   ( k ), ng  

denotes the density of empirical sample of size n, w  is an operator based on T replications, 

which deals with the problem of the ‘noisy’ criterion function (median, in this case), and 

( , )d    is the distance measure. The minimum distance measures, MD, applied here are that of 

the Cressie and Read (1984) power divergence disparities family given by: 
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1
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( , ) ( ) 1

( 1) ( )
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n
n t n

iCR CR t

g i
d g f g i

f i





 





  
        

     ,   (A2) 

where m denotes the number of cells in which data are organized. For 1CR  , (A2) gives the 

Pearson 
2  measure, for 1/ 2CR    the (twice squared) Hellinger distance (HD) and for 

2CR    the Neyman 
2  measure. For 0CR   and 1CR   the continuous limits of the 

right-hand side expression in Error! Reference source not found. are respectively the 

likelihood disparity (LD) and the Kullback-Leibler divergence statistics. Cressie and Read 

(1984) advocate optimal setting 3 / 2CR  . For a detailed discussion and alternatives see 

Basu, Shioya and Park (2011). More details and the properties of the MSD are discussed in 

Charemza et al (2012). 
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