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Abstract

This paper studies policy instruments that correct insufficient learning-by-doing

(LbD) and research and development (R&D) of renewable electricity technologies and

insufficient investments in energy efficiency (EE) in the presence of carbon pricing.

The theoretical model analysis shows how to re-adjust the first-best in second-best

situations, in which one of the policy instruments is restricted. Calibrated to the

European power sector, the first-best choice of all instruments reduces the climate

policy cost by one third. Feed-in tariffs turn out to be good substitutes for LbD, but

not for R&D or EE subsidies.
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Highlights

• Interacting policy instruments addressing climate change, unanticipated benefits

from R&D and learning as well as insufficient energy efficiency investments.

• Policy advice for adjusting available instruments in a second-best world when specific

instruments are unavailable.

• Theoretical model analysis of the power sector and model calibration to European

data and policy scenarios.

• Feed-in tariffs as good substitutes for output subsidies but faint substitutes for R&D

and energy efficiency subsidies.
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1 Introduction

Economists tend to give advice under the implicit assumption of the full availability of

first-best instruments and institutions. This is of limited use for policy makers since in-

stitutions are often imperfect, and specific policy instruments are often unavailable due

to political constraints, incomplete information or prohibitive transaction and compli-

ance costs (Rodrik, 2008). This is of particular importance in the domain of climate and

energy policy, where multiple market failures need to be corrected with interacting instru-

ments. Typical market failures are (i) the overuse of fossil fuels, (ii) knowledge spillovers of

learning-by-doing of low-carbon technologies, (iii) knowledge spillovers of research and de-

velopment (R&D), and (iv) imperfect perception of consumers’ benefits of energy efficiency

improvements. Such an environment justifies the implementation of four climate and en-

ergy policy instruments, one instrument for each market failure (Bennear and Stavins,

2007; Tinbergen, 1952).

Our work focuses on the interaction of these market failures and policy instruments

in a partial equilibrium model of the power sector. It studies how the remaining policy

instruments can be re-adjusted in order to improve welfare, when at least one of the first-

best optimal instruments is unavailable or restricted. As we will see, it is ex ante not

obvious whether, in which direction and how far the remaining policy instruments should

be re-adjusted. Our analysis sheds light on these interactions and re-adjustments, which

provides guidance for policy makers. So far the literature has not addressed this issue in

this practical energy policy-related form.

In practice, feed-in tariffs, which promote electricity generating renewable energy

sources, are a cornerstone of many climate and energy policy portfolios, especially in

Europe. Therefore, our work also studies how far feed-in tariffs can replace policy instru-

ments that address the above-mentioned market failures. Our results show that feed-in

tariffs are good substitutes for output subsidies that address learning-by-doing, whereas

they are blunt substitutes for subsidies that address R&D or energy efficiency.

As we know from general second-best theory, the attainment of Pareto optimal

conditions is no longer necessarily welfare improving if there are political constraints

that prevent the attainment of at least one of the conditions of Pareto optimality

(Lipsey and Lancaster, 1956). Thus, if there are multiple market failures, or in general,

economic distortions, that are not remedied by economic policy, then the remedy of one

market failure does not necessarily result in a welfare improvement. It might reduce the

welfare losses created by the other market failures, exacerbate them, or not affect them

(Lipsey and Lancaster, 1956).

More specifically, the literature has shown that pre-existing distortions (caused by

3



taxes on capital or labor) create a second-best world, in which Pigouvian taxes are

no longer the first-best response to address market failures. Parry et al. (1999) and

Goulder et al. (1999) demonstrate that pre-existing taxes raise the general equilibrium

costs of market-based environmental policies. Cremer and Gahvari (2001) show how

Pigouvian taxes can be re-adjusted in an economically beneficial way by taking into ac-

count the incentives and revenues created by pre-existing taxes.

The research focus of this paper is of particular importance for the European Union

(EU), because the pathway to an energy-efficient, low-carbon economy builds on a port-

folio of multiple climate and energy policy instruments that are implemented at different

governmental levels. The central instrument for reducing carbon emissions by 20% until

2020 is the EU emissions trading system (ETS), which covers around 45% of the EU’s

greenhouse gas emissions. Around 70% of the emissions in the EU ETS stem from the

stationary power sector. Therefore, our analysis focuses on the power sector. Additional

targets are set for generating 20% of the energy consumed in the EU by 2020 with renew-

able energy sources and for improving the efficiency of energy demand by 20% within the

same time frame. Currently, the proposed framework for 2030 expands these targets to

a 40% reduction in emissions, a 27% renewable energy share, and a 30% improvement in

energy efficiency.

As there is no common, transnational instrument to reach the 20% renewable energy

target in the EU, member states make use of country-specific regulation and policy in-

struments. Most member states have implemented a kind of feed-in tariff, i.e., renewable

energy-based electricity generators receive a feed-in support payment in addition to their

revenues from selling electricity in the spot market (feed-in premiums) or receive a cost-

based fixed price when supplying to the grid (feed-in tariff). Part of the attractiveness of

feed-in tariffs may be their revenue neutrality rather than their effectiveness.

However, the support of renewable energies and the EU ETS are interdependent. On

the one hand, the pricing of carbon emissions increases the competitiveness of renew-

able energy technologies, enhances their diffusion and fosters learning-by-doing and R&D,

which reduces electricity generation costs. On the other hand, the crowding-out of fossil-

fuel technologies by renewable energy technologies results in lower carbon emissions. In

the language of Lipsey and Lancaster (1956), the two instruments are jointly ameliorat-

ing. However, the two instruments can differ regarding their costs and effectiveness, and

they can overlap in a detrimental way. In this sense, they are jointly deteriorating.

Against this background, the literature has critically examined the European climate

and energy policy portfolio. Focusing on the interaction of the EU ETS with renewable

energy support Böhringer and Rosendahl (2010), Böhringer et al. (2008), Böhringer et al.

(2009), Fankhauser et al. (2010), Boeters and Koornneef (2011) and Requate (2015) show
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that overlapping policy instruments can have significant adverse effects on the efficiency

and effectiveness of such policy portfolios. Böhringer and Rosendahl (2010) demonstrate

that the additional diffusion of renewable energy technologies due to renewable energy

support lowers the price for emissions in the ETS and thus promotes fossil fuel-based

technologies. Such distortions can cause significant costs: Boeters and Koornneef (2011)

show that the renewable energy target of the European Union creates excess costs of up to

33% relative to the case with an ETS as the only instrument, depending on the availability

of low cost technologies and the stringency of the renewable energy target. We extend on

this literature by focusing on policy instruments that address technical progress and by

deriving second-best policies.

From a distributional point of view, a combination of policy instruments can have

advantages, since it can balance the cost burden of climate and energy policy among

different groups of producers and consumers (Kalkuhl et al., 2013; Hirth and Ueckerdt,

2013). When a knowledge spillover externality exists, a combination of policy instru-

ments is justified as well. Taking into account knowledge spillovers, Kalkuhl et al. (2012)

find that quotas for renewable energy technologies and feed-in tariffs are almost as cost-

efficient as first-best R&D subsidies. Although renewable energy policies might be good

substitutes for R&D subsidies, they are identified as poor substitutes for carbon pric-

ing (Kalkuhl et al., 2013). We extend this argument by distinguishing between technical

progress via learning, R&D and investments in energy efficiency.

In order to study the first- and second-best choice of policy instruments in the power

sector, we build on the model by Fischer and Newell (2008) (hereafter FN) extended by

Fischer et al. (2013) (hereafter FNP). FN and FNP calibrate their model to the power

sector of the United States of America (USA) and compare the welfare effects of policy

instruments that are relevant for the USA. The following paper provides new insights

and novel results by analyzing the second-best re-adjustments of policy instruments, by

introducing feed-in tariffs and by calibrating the model to EU data.

The paper proceeds as follows. In Section 2 the model is set up and solved analytically.

Based on this model, second-best policy portfolios are theoretically discussed in Section

3. Section 4 presents the numerical implementation of the model and its calibration

to the EU power sector. It compares the qualitative insights of the previous section to

quantitative results for the EU and discusses them critically. Section 5 concludes by

formulating policy implications.
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2 Model setup and solution

This section describes and solves a two-period partial equilibrium model of the electricity

market that will be used for our policy analysis. The model closely follows FN and FNP.

The model setup is, however, rewritten in a more general manner. For a more detailed

and more specific description, the reader may refer to the original sources. The model

focuses on those features that are necessary for the inspection of multiple interacting

market failures and corresponding policy instruments in a first- and second-best world.

Compared to FN, the model extension by FNP includes investments in energy efficiency

by consumers, which we also feature in our new model version. First, a non-technical

overview of the model features is given, followed by a mathematical description of the key

equations of the model. Second, the model is solved by deriving optimality conditions.

2.1 Non-technical overview

Electricity can be generated with renewable and fossil fuel-based technologies. Both are

subject to convex increasing production costs. Our analysis focuses on immature re-

newable energy technologies that are subject to cost reductions from R&D efforts and

learning-by-doing. Today’s R&D creates knowledge that helps to reduce future production

costs. Today’s accumulation of experience, represented by the total volume of electricity

generation, reduces future production costs as well. The utilization of a technology is gov-

erned by a price-taking representative producer that maximizes profits, i.e., revenues from

electricity generation minus production costs, R&D expenditures, and costs of regulation.

Electricity is demanded by a representative consumer who draws utility from its con-

sumption. Besides spending her income on electricity, she can invest in three types of en-

ergy efficiency measures that take effect either in the short-term (within the first period),

in the long-term (within the second period), or both (across both periods). Examples are

the replacement of old refrigerators by modern ones or the improvement of house insulation

in combination with modern electrical heating. The energy efficiency measures reduce the

required electricity expenditures for a given level of utility drawn from consumption. The

representative consumer maximizes utility, i.e., the value of consumed electricity services

minus the costs of electricity required to generate these services minus expenditures on

energy efficiency improvements. We discount the future in order to obtain the net present

value of electricity services and costs.

Our model considers four market failures. Each can be corrected with a specific corre-

sponding instrument. First, without regulation, carbon emissions are above their socially

optimal level. However, climate change impacts are not modeled. We assume that an

emissions trading system (ETS) with an emissions target, given by an exogenous policy
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decision, is imposed in order to reduce CO2 emissions from electricity generation. As

such, even if the resulting permit price is below the social cost of carbon, overlapping

policies will not affect overall emissions. This makes welfare comparable across policy

scenarios, while ignoring future climate change impacts. This implies that we carry out a

cost-effectiveness analysis with respect to a given emissions target. As a consequence, we

rule out the re-adjustment of support for renewable energies or energy efficiency improve-

ments as a reaction to an emissions target that may be suboptimal from a social point of

view.

Second, electricity producers using immature renewable energy technologies do not

perceive and internalize the full benefit of productivity gains through learning-by-doing.

Although we do not explicitly model technology spillovers across producers (following FN’s

model), we suppose that a knowledge externality exists that renewable energy producers

ignore. Consequently, without policy intervention renewable energy production is lower

than socially optimal. Thus, an output subsidy can be granted to correct for this market

failure.

Third, in the same way, electricity producers using immature renewable energy tech-

nologies perceive and internalize only a fraction of the benefits from their R&D efforts due

to knowledge spillovers. Since producers do not take the full social benefit of their R&D

investments into account, R&D investments are below the socially optimal level. Thus,

an R&D subsidy for renewable energy producers can be granted in order to raise R&D

investments and their social benefits.

Fourth, the consumer perceives only a fraction of the benefits of her investments in

energy efficiency. As a consequence, she underinvests in energy efficiency measures in

the short- and long-term, and electricity demand is above its socially optimal level. To

address this market failure, specific subsidies can be granted to encourage investments in

three different types of energy efficiency measures (short-, long-term and both).

2.2 Mathematical representation

This subsection depicts and explains the key model equations.
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2.2.1 Electricity generation

Each representative electricity producer using technology i maximizes profits according to

the following expression:

max{qi1,qi2,hi1} Πi,

Πi = n1[(p1 + φi1)qi1 − Ci1(qi1) − τ1µiqi1 − (1 − σi1)Ri1(hi1)] (1)

+δn2[(p2 + φi2)qi2 − Ci2(qi2 | ρn1qi1, ρn1hi1) − τ2µiqi2]

The indices 1 and 2 indicate the first and second model period t = {1; 2}. n is the

number of years subsumed in each period. Second-period values are discounted by the

factor 0 < δ < 1. pt signifies the equilibrium electricity price in period t. φit denotes a

technology-specific net subsidy that the regulator may distribute per unit of production.

Accordingly, a negative value of φit denotes a net tax. qit is the quantity of electricity

produced with technology i in period t. qi1 and qi2 are producers’ two basic control

variables.

Carbon emissions intensity µi is technology-specific, but time-invariant. Renewable

energy technologies and nuclear power are assumed to have a carbon intensity of zero,

whereas fossil fuel technologies have positive carbon intensities. Total emissions stem-

ming from a fossil fuel technology i in period t are expressed as ntµiqit. τ t is the

period-dependent price for one unit of carbon emissions. When restricting emissions by

a binding cumulative emissions cap ξ, the carbon price will emerge endogenously so that

ξ ≥
∑t∑i(ntµiqit + ǫt) holds. ǫt denotes non-electricity emissions that are not explicitly

modeled but captured by climate policy.1

We pay special attention to the representation of production costs. Cit is the corre-

sponding technology- and period-specific cost function with the properties Cit
qit

> 0 and

Cit
qitqit

> 0. Throughout the paper, a lower index denotes a derivative with respect to this

variable. This implies that production costs are convex in output. We assume, however,

that it is possible for immature renewable energy technologies to decrease their produc-

tion costs through learning-by-doing and R&D investments. Let us therefore focus on

immature renewable and carbon-free energy technologies i ∈ r. r denotes a subset of

all technologies. The technologies subsumed in r are subject to cost-reducing technical

progress, such as wind or solar power. Other carbon-free technologies, like nuclear power

and hydro power as well as fossil fuel technologies, are treated as mature technologies

without further cost reduction potential.

1 We keep ǫ
t constant at ǫ

t = ǭ
t in the theoretical analysis, whereas we will model it explicitly in the

numerical analysis.
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The first mechanism to reduce production costs of immature renewable energy tech-

nologies r is the accumulation of knowledge via R&D. First-period technology-specific

R&D adds new knowledge hi1 to the knowledge stock H i0 existing in period 1. Hence, hi1

is the third control variable for producers using immature renewable energy technologies.

The resulting equation of motion reads H i2 = H i0 + n1hi1. The fruits of R&D become

effective in the second period. This means first-period knowledge hi1 eventually results in

lower second-period production costs Ci2 ∀ i ∈ r, but has no impact on Ci2 ∀ i /∈ r. R&D

expenditures Ri1(hi1) are convex in the creation of new knowledge:

Ri1(hi1), Ri1
hi1 > 0, Ri1

hi1hi1 > 0 (2)

Notably, only the fraction ρ of knowledge hi1 generates private benefits from R&D for a

specific producer in period 2. Hence, ρ = 1 characterizes the case of full private benefits

from R&D, whereas ρ = 0 reflects the extreme case of no private benefits. A lower ρ results

in lower private R&D investment and consequently in suboptimal knowledge creation from

a social point of view. To address underinvestment in R&D, policy makers can introduce

a technology-specific subsidy σi1 for R&D expenditures.

The second mechanism that helps to drive down costs of immature renewable en-

ergy technologies r is the accumulation of experience via learning-by-doing. First-period

technology-specific electricity output qi1 adds new experience to the stock of past expe-

rience Qi0. The resulting equation of motion reads Qi2 = Qi0 + n1qi1. We presume that

Qi2 reduces Ci2 ∀ i ∈ r, whereas it does not have an effect on Ci2 ∀ i /∈ r. As in the case

of R&D, only the fraction ρ represents private benefits from learning. Again, if ρ < 1,

producers are not able to fully benefit from their efforts and thus extend capacities below

the social optimum. In order to correct this market failure, policy makers can incentivize

the expansion of quantities with the net subsidy φit per unit of output.

We combine the two mechanisms in a two-factor learning curve. Since H i2 and hi1

differ only by the constant H i0 and the factor n1, we can replace H i2 by hi1 with respect to

qualitative marginal effects. The same argument applies to Qi2 and qi1. Based on these

considerations, we assume that the following relations hold for all immature renewable

energy technologies i ∈ r in period 2:

Ci2(qi2 | n1qi1, ρn1hi1), (3)

Ci2
qi2

> 0, Ci2
qi2qi2

> 0,

Ci2
qi1 < 0, Ci2

qi1qi1 > 0, Ci2
hi1 < 0, Ci2

hi1hi1 > 0,

Ci2
qi2hi1 = Ci2

hi1qi2 < 0, Ci2
qi1qi2 = Ci2

qi2qi1 < 0, Ci2
qi1hi1 = Ci2

hi1qi1 > 0
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Since we carry out a partial equilibrium analysis, other costs not captured by the power

sector, such as opportunity costs and crowding out of other investments by energy-specific

R&D investment, are implicitly subsumed in this cost function. The first line describes

that second-period production costs are a function of second-period electricity output as

well as first-period electricity output and new knowledge created via R&D. The second

line posits that the production costs increase in second-period output in a convex fashion.

The third line, on the contrary, posits that higher first-period output reduces second-

period production costs, yet with a decreasing marginal effect. It assumes the same

effect on production costs for knowledge created in the first period. The fourth line

deals with cross-dependencies of variables. Accordingly, higher first-period output reduces

the marginal cost of second-period production. Higher first-period knowledge reduces

the marginal cost of second-period production as well. The last expression states that

experience (learning-by-doing) and knowledge (R&D) act as substitutes: If learning has

already reduced production costs, there will be less scope for further cost reductions via

R&D. Likewise, when R&D has already driven down production costs, there will be less

scope for learning.

2.2.2 Electricity demand

The definition of the consumer side, described by this subsection in compact form, is based

on FNP, too. The consumer can invest in two short-term and one long-term type of energy

efficiency measures: A higher eS1 reduces first-period electricity demand d1, whereas

eS2 reduces second-period electricity demand d2. These are short-term energy efficiency

measures indicated by the index S. eL1 represents long-term energy efficiency measures

symbolized by the upper index L1: The investment takes place in the first period, while

it increases energy efficiency in both periods. These energy efficiency measures are the

three control variables of the consumer, and each measure is subject to convex investment

costs:

ZS1(eS1), ZS1
eS1 > 0, ZS1

eS1eS1 > 0 (4)

ZS2(eS2), ZS2
eS2 > 0, ZS2

eS2eS2 > 0

ZL1(eL1), ZL1
eL1 > 0, ZL1

eL1eL1 > 0

A demand-side market failure is reflected in that, when the consumer makes her energy

efficiency investments, she perceives only the fraction βS1, βS2 and βL1, respectively, of the

full energy savings. β = 1 characterizes the case of full valuation, whereas β = 0 reflects

the extreme case of no valuation. Since undervaluation of energy efficiency benefits causes

a sub-optimal investment, a subsidy λ, which deducts a fraction of the investment costs,
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can be granted for each type of energy efficiency improvement.

Even though the consumer may undervalue the energy savings of investments, once

investments are made, the full savings accrue to the consumer. Thus, the undervaluation

parameters will reveal themselves in the first-order conditions for the consumer, but not

in the welfare evaluation.

The representative consumer maximizes money-metric utility according to the follow-

ing expression (in this partial equilibrium analysis abstracting from consumption of other

goods):

max{v1,v2,eS1,eL1,eS2} U,

U = n1
[

v1 − p1d1(v1, eS1, eL1) − (1 − λS1)ZS1(eS1 | βS1) − (1 − λL1)ZL1(eL1 | βL1)
]

−δn2
[

v2 − p2d2(v2, eS2, eL1) − (1 − λS2)ZS2(eS2 | βS2)
]

(5)

vt denotes the value of electricity services for the consumer. On the one hand, higher

consumption of electricity services results in higher electricity demand dt, valued at the

current electricity price pt. On the other hand, the consumer can reduce electricity de-

mand, required to achieve a certain level of electricity services, via one of the three energy

efficiency measures introduced above, here for simplicity denoted by e(S/L)t:

dtvt > 0, dt
e(S/L)t < 0, dt

vte(S/L)t = dt
e(S/L)tvt

< 0 (6)

Energy efficiency measures also mitigate the increase in energy demand at the margin as

expressed by the cross derivatives. To close the model, it must hold that total electricity

supply satisfies electricity demand dt in each period:

i
∑

qit ≥ dt (7)

The full representation of the model with specific functional forms used for the numerical

analysis is spelled out by FNP.

2.3 Solving the model

We solve the model by deriving the first-order conditions of the maximization problems

described in Equations (1) and (5). We obtain the following first-order conditions derived

from ∂Πi

∂qi1
= ∂Πi

∂qi2
= ∂Πi

∂hi1 = ∂U
∂v1

= ∂U
∂v2

= ∂U
∂eS1 = ∂U

∂eS2 = ∂U
∂eL1 = 0 that characterize the
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equilibrium (see FN and FNP):

−ρδn2Ci2
qi1 + p1 + φi1 = Ci1

qi1 + µiτ1 (8)

p2 + φi2 = Ci2
qi2 + µiτ2 (9)

−ρδn2Ci2
hi1(1 − σ)−1 = Rhi1 (10)

(d1v1)−1 = p1 (11)

(d2v2)−1 = p2 (12)

−βS1n1p1d1eS1(1 − λS1)−1 = ZS1
eS1 (13)

−βS2δn2p2d2eS2(1 − λS2)−1 = ZS2
eS2 (14)

(

−βL1n1p1d1eL1 − βL1δn2p2d2eL1

)

(1 − λL1)−1 = ZL1
eL1 (15)

In the equations above, lower indices denote derivatives as usual. The left-hand side of

each equation depicts marginal benefits, whereas the right-hand side depicts marginal

costs. In equilibrium, marginal benefits and marginal costs are equalized. Note that

several derivatives appearing on the left-hand side are negative so that the terms on the

left-hand side of all equations are positive. On the demand side (Equations 11 and 12)

marginal utility is expressed as the inverse of the derivative of electricity demand with

respect to utility. Also note that Ci2
qi1

is positive for immature renewable technologies

i ∈ r, but zero for other technologies i /∈ r. On the contrary, µi is zero for all i ∈ r,

but non-negative for other technologies i /∈ r. Equation (10) is only defined for immature

renewables i ∈ r, because other technologies are not subject to R&D.

3 Theoretical policy analysis

This section derives the first-best set of policy instruments along the lines of FN and FNP.

It then carries out a novel algebraic second-best policy analysis.

3.1 First-best policy portfolio

The first-best policy response to the respective externalities is the full internalization of

these externalities. Hence, we assume that the full social benefits of R&D and of learning-

by-doing including their spillovers are taken into account by private investors so that ρ = 1.

Furthermore, we assume that the consumer perceives the full benefit of her investments

in energy efficiency so that βS1 = βS2 = βL1 = 1 . All remaining policy instruments

are set to zero, i.e., φi1 = φi2 = λS1 = λS2 = λL1 = 0. Carbon prices can be given by

τ1 = τ̄1 and τ2 = τ̄2 in the benchmark situation. If a cumulative emissions target over

both periods is given in policy scenarios, carbon prices will adjust endogenously such that
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τ1 = δτ2 holds, taking discounting with the factor 0 < δ < 1 into account. Accordingly,

the optimal carbon price rises over time.

Inserting these parameter choices into (8) to (15) yields the first-best optimal condi-

tions (8)’ to (15)’. We can now derive the choice of the policy instruments φi1, φi2, λS1,

λS2 and λL1 such that (8) to (15) are equivalent to (8)’ to (15)’. In this way, we obtain

the set of first-best policy instrument choices (see FN and FNP):

τ1 = τ̄1 = δτ2 (16)

φi1 = −(1 − ρ)δn2Ci2
qi1 , φi2 = 0 ∀ i ∈ r (17)

σ = 1 − ρ (18)

λS1 = 1 − βS1, λS2 = 1 − βS2, λL1 = 1 − βL1 (19)

The policy instruments in the four equations correct the four market failures. The first

equation describes how carbon pricing internalizes the social costs of carbon, or, rather,

the costs of meeting the emissions target that is exogenously given by a policy decision.

Carbon prices are allowed to float endogenously in the policy scenarios. The second

equation describes how an output subsidy for immature renewable technologies internalizes

the social benefit of learning-by-doing, which is not taken into account by decentralized

renewable energy producers. The second-period output subsidy is zero, because second-

period production has no impact on future costs beyond the model horizon. In the third

equation, an R&D subsidy internalizes the social benefit of R&D. In the fourth equation,

subsidies for energy efficiency investments internalize non-perceived benefits by the three

types of energy efficiency improvements. In the absence of other market failures, there

is no economic reason to impose further policy instruments, so that φi1 = 0 ∀ i /∈ r and

φi2 = 0 ∀ i is the first-best choice.

3.2 Second-best policy portfolios

If now, either due to political constraints or because transaction and enforcement costs

are too high, one or more of the described market failures cannot be remedied with their

first-best policy responses, the remaining policy instruments need to be adjusted in order

to be welfare maximizing. This means that a change in one of the instruments described

by Equations (16) to (19) calls for an adjustment of the remaining instruments. If, for

example, the R&D subsidy is not available, the welfare maximizing choice of the renewable

energy output subsidy and the energy efficiency subsidies will in general deviate from the

first-best choice. Yet there is no general theory that tells us how the second-best solution

looks compared to the first-best solution.
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3.2.1 Welfare effects

First and foremost, it is helpful to write down the change in economic surplus for any

policy intervention as derived in detail by FNP. Total economic surplus is the sum of

producer and consumer surplus and hence obtained by combining Equations (1) and (5):

W = n1[v1 − ZS1(eS1) − ZL1(eL1) −
∑

i

Ci1(qi1) −
∑

i∈r

Ri1(hi1)]

+ δn2[v2 − ZS2(eS2) −
∑

i

Ci2(qi2)]

(20)

The consumer’s electricity bill paid to electricity producers drops out as a pure transfer,

since ptdt = pt
∑i qit. By the same token, tax and subsidy payments are pure transfers

between consumers and producers and drop out. We aim at an expression for the change

in economic surplus due to the change in a policy intervention Ψ, given the choice of other

policy interventions. We obtain this expression following FNP by totally differentiating

the above expression for the economic surplus, inserting the previously derived first-order

conditions and postulating that total electricity demand equals supply.

dW

dΨ
= n1

∑

i∈r

[

−Ci2
qi1δn

2(1 − ρ) − φi1
] dqi1

dΨ

+ n1
∑

i∈r

(−Ci2
hi1)δn2 1 − ρ− σ

1 − σ

dhi1

dΨ

+ n1p1d1
(

1 − βS1 − λS1

1 − λS1

deS1

dΨ
+

1 − βL1 − λL1

1 − λL1

deL1

dΨ

)

+ δn2p2d2
(

1 − βS2 − λS2

1 − λS2

deS2

dΨ
+

1 − βL1 − λL1

1 − λL1

deL1

dΨ

)

+ n1
∑

i

τ1µidq
i1

dΨ
+ δn2

∑

i

τ2µidq
i2

dΨ

+ n1
∑

i/∈r

(−φi1)
dqi1

dΨ
+ δn2

∑

i

(−φi2)
dqi2

dΨ

(21)

This expression takes into account that total cumulative emissions are kept constant. Each

line in the above equation expresses that an increase in the associated variable will create

a positive welfare change as long as the marginal costs of the imposed policy instrument

are smaller than the corresponding marginal social benefit—that is, as long as its market

failure is under-internalized. (Note that Ci2
qi1 < 0 and Ci2

hi1 < 0.) The first line refers

to the output subsidy for immature renewable technologies, the second line to the R&D

subsidy, the third and fourth line to the subsidies for the three types of energy efficiency

investments. Inserting the optimal choices of policy instruments according to Equations

(17) to (19) results in a zero welfare change. This implies that we measure welfare changes

relative to the first-best welfare maximum, which cannot be exceeded. The fifth line refers
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to carbon pricing. On the one hand, carbon pricing creates a positive welfare effect via

tax revenues or revenues from auctioning off allowances. On the other hand, it reduces

the output of the producers affected by carbon pricing (dq
it

dΨ < 0). As a result, it creates a

negative welfare effect. Optimal carbon pricing, however, does not create a welfare effect:

According to (16), it is in this case τ1 = τ̄1 = δτ2 and n1
∑

i µ
idqi1 = n2

∑

i µ
idqi2 so that

the fifth line drops out (see FNP). The last line refers to first-period net subsidies for tech-

nologies other than mature renewables and second-period net subsidies for any technology.

A net tax (−φit) creates a revenue but reduces output and creates a distortion so that

the overall welfare effect is negative. A net subsidy (+φit) augments output but requires

a payment to producers. This means as long as all policy instruments discussed above are

set to their optimal values, any additional policy intervention will be distortionary and

result in a welfare loss. Hence, the first-best choice is φi1 = 0 ∀ i /∈ r and φi2 = 0 ∀ i.

3.2.2 Re-adjustment of policy instruments

In the following, our research goes beyond FN and FNP by addressing this research

question: Suppose one of the first-best instruments is unavailable; how does this affect

the welfare maximizing second-best adjustment of other policy instruments? The choice

of the policy instruments and the direction of re-adjustment always refer to the way in

which they are introduced in the model setup and appear in the optimality conditions

in Equations (8) to (15). The emissions target is exogenously given and kept constant

throughout the paper so that the scenario results are comparable given a specific state of

the environment. Throughout this section, the remaining policy instruments that are not

under scrutiny are kept constant at their first-best optimal levels so that we can focus on

the second-best re-adjustment of one policy instrument in each step. (This assumption

will be relaxed in the numerical analysis.) Detailed proofs, explanations and discussions

of the propositions can be found in the Appendix.

(a) Output (learning) subsidies for immature renewable technologies

We have derived the first-best choice of the first- and second-period output subsidies

for the case that all market failures are remedied as φi1 = −(1 − ρ)δn2Ci2
qi1

, φi2 = 0, see

Equation (17).

(aa) Now we suppose that the R&D subsidy σ is not (sufficiently) available as a policy

instrument so that it is set below its first-best value, in the extreme case σ = 0.

Proposition 1. A below-optimal R&D subsidy requires ceteris paribus a lower output

(learning) subsidy for immature renewable energy technologies in the short-term and a

higher output subsidy in the long-term in the second-best compared to the first-best in

order to raise welfare.
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The proof with explanations and discussions can be found in the Appendix. It is

important to note that we treat learning and R&D as substitutes and that we assume

R&D improves existing technologies rather than creating new technologies. A change in

these assumptions can result in the opposite relation between R&D and output (learning)

subsidies. In the Appendix we also argue that the below-optimal R&D subsidy is expected

to raise the second-period electricity and carbon prices.

(ab) Now we suppose that energy efficiency subsidies λt are not (sufficiently) available

as policy instruments so that in the extreme case λS1 = λS2 = λL1 = 0. Let us define the

price elasticity of electricity demand as ∆dt/dt

∆pt/pt . The emissions target is exogenously given.

The remaining policy instruments are again kept constant.

Proposition 2. Below-optimal energy efficiency subsidies require ceteris paribus a higher

(lower) output subsidy for immature renewable energy technologies in the short- and long-

term in the second-best compared to the first-best in order to raise welfare if the price

elasticity of electricity demand is above (below) unity.

For a more detailed argument see the Appendix. The lack of subsidies for energy

efficiency investment is expected to raise the electricity and carbon prices in both periods

due to the expansion of electricity demand.

(b) R&D subsidy for immature renewable energy technologies

We have derived the first-best choice of the R&D subsidy for the case that all market

failures are remedied as σ = 1 − ρ, see Equation (18). Note that we have defined (1 −

σi1) · Ri1(hi1) in multiplicative form in Equation (1). By expanding this term, we obtain

Ri1(hi1)−σi1Ri1(hi1) in additive form. If σi1 is kept constant, but Ri1(hi1) changes, then

the term σi1Ri1(hi1) will nevertheless change as well. This means that higher (lower)

R&D expenditures are accompanied by a higher (lower) R&D subsidy in absolute terms

even though the factor σi1 may be kept constant.

(ba) We suppose that the first-period subsidy φi1 for immature renewable technologies

is not (sufficiently) available, so that a suboptimal situation occurs, in which in the extreme

case φit = 0. The emissions target and the remaining policy instruments are constant as

before.

Proposition 3. A below-optimal output (learning) subsidy requires ceteris paribus a

higher (lower) R&D subsidy in the second-best compared to the first-best in order to raise

welfare if the output increase via R&D is larger (smaller) than the replacement of learning

by R&D.

Due to the limited support for (renewable) electricity generation, the electricity and

the carbon price are expected to increase in both periods.
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(bb) Let us assume once again that the three types of energy efficiency subsidies λ are

not (sufficiently) available as policy instruments so that in the extreme case λS1 = λS2 =

λL1 = 0. The emissions target and the remaining policy instruments are kept constant.

Proposition 4. Below-optimal energy efficiency subsidies require ceteris paribus a higher

(lower) R&D subsidy in the second-best compared to the first-best in order to raise welfare

if the price elasticity of electricity demand is above (below) unity.

In this paragraph and in the following paragraphs, the interaction of climate and

energy policy is analogous to the considerations above.

(c) Energy efficiency subsidies for consumers

In the first-best, the energy efficiency subsidies fully offset the three types of consumer

undervaluation: λS1 = 1 − βS1, λS2 = 1 − βS2, λL1 = 1 − βL1, see (19). Note that the

same considerations for subsidies defined in multiplicative or in additive form apply as for

R&D subsidies in paragraph (b) above.

(ca) We assume that the R&D subsidy σ is not (sufficiently) available as a policy

instrument so that in the extreme case σ = 0. As before we make the assumption that

the emissions target and the remaining policy instruments are given.

Proposition 5. A below-optimal R&D subsidy suggests ceteris paribus a higher subsidy

for energy efficiency investment affecting the short-term2 and lower energy efficiency sub-

sidies affecting the long-term in the second-best compared to the first-best in order to raise

welfare.

(cb) We suppose that the first-period subsidy φi1 for immature renewable energy

technologies is not (sufficiently) available as a policy instrument so that in the extreme

case φit = 0. As before we make the assumption that the emissions target and the

remaining policy instruments are given.

Proposition 6. A below-optimal output (learning) subsidy for immature renewable energy

technologies requires ceteris paribus lower energy efficiency subsidies affecting the short-

and long-term in the second-best compared to the first-best in order to raise welfare.

(d) Feed-in policies as feasible instruments

The discussed policy instruments, although adjusted in a second-best world, all aim at

a specific externality. In reality, however, policy makers often make use of so-called feed-in

policies, i.e., renewable electricity generators receive a feed-in support payment in addition

to their revenues from selling electricity in the spot market (“feed-in premium”) or receive

2Short-term refers to model period 1, whereas long-term refers to model period 2.
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a cost-based fixed price when supplied to the grid (“feed-in tariff”). The main goal of such

a feed-in support scheme is to foster the diffusion of renewable energy technologies and

thus, through learning-by-doing, bring down generation costs. The resources to finance

such a scheme can be raised either by taxing consumers, as is the case in Germany, or

by taxing non-renewable energy producers, as is assumed in the model by Kalkuhl et al.

(2013). In the following, we will examine how such feed-in systems can substitute optimal

policy instruments.

We build this analysis on paragraph (a) about output subsidies. Nonetheless, the

combination of the subsidy with the levy on producers of fossil shifts electricity generation

from carbon-emitting to non-emitting technologies. This creates an additional lever to

address the undervaluation of investments in R&D and energy efficiency. On the contrary,

the tax has a distortionary effect with negative consequences for welfare. Let us first

formulate a general proposition about feed-in tariffs. Therein, the emissions target is

exogenously given, the subsidy for renewable energy output is accompanied by a tax on

emitting technologies, and the remaining policy instruments are set to their first-best

levels.

Proposition 7. If the output subsidy for immature renewable energy technologies is ac-

companied by an output tax on the remaining (emitting) technologies, ceteris paribus the

subsidy must be lower in the second-best compared to the first-best in order to raise welfare.

The adjustment of the subsidy refers to its policy level as described by Equations (8)

and (9). The economic intuition is straightforward: The tax on the remaining technologies

shifts production from these technologies to immature renewable energy technologies so

that their output increases. This means the tax takes over part of the impact of the

subsidy. �

The second-best policy analysis replicates the previous second-best analysis, but makes

use of renewable energy output subsidies.

(da) We assume that the R&D subsidy σ is not (sufficiently) available as a policy

instrument so that in the extreme case σ = 0. The emissions target is exogenously given

as before, the subsidy for renewable energy output is accompanied by a tax on emitting

technologies, and the remaining policy instruments are kept constant at their first-best

levels.

Proposition 8. A below-optimal R&D subsidy requires ceteris paribus a lower feed-in

tariff rate in the short-term and a higher feed-in tariff in the long-term in the second-best

in order to raise welfare.

In this case, the reasoning explained in the appendix follows Proposition 1.
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(db) Let us finally suppose that energy efficiency subsidies λt are not (sufficiently)

available as policy instruments so that in the extreme case λS1 = λS2 = λL1 = 0. The

subsidy for renewable energy output is accompanied by a tax on emitting technologies,

while the assumptions on the emissions target and the remaining policy instruments are

chosen as in the previous analyses.

Proposition 9. Below-optimal energy efficiency subsidies require ceteris paribus a higher

(lower) feed-in tariff in the short- and long-term in order to improve welfare in the second-

best if the price elasticity of electricity demand is above (below) unity.

In this case, the reasoning is more complex than for Proposition 2, because the tax

and the subsidy work in opposite directions with respect to the quantity of generated

electricity. The overall effect depends on whether the subsidy or the tax dominates the

overall reaction of electricity generation and pricing. One can expect that the effect of

the subsidy dominates, because the subsidy is granted for renewable energy technologies

with learning potential, whereas the conventional technologies affected by the tax do not

involve learning, nor other externalities, so that the effect of the tax is weaker. We end

up with a result that mimics Proposition 2.

The feed-in tariff scenarios in general result in increased electricity prices, because

the electricity tax comes on top of the electricity price. With respect to the interaction

of climate and energy policy, the introduction of taxes on non-renewable energies ad-

ditionally shifts electricity generation from fossil to carbon-free technologies. This shift

reduces the CO2 price. The non-availability of R&D subsidies, however, reduces renewable

energy-based electricity generation, and the non-availability of energy efficiency subsidies

increases electricity demand. Both effects oppose the reduction of the CO2 price.

4 Applied policy scenario analysis

As shown by the theoretical considerations of second-best policy design in the previous

section, the exact design of policy instruments often depends on the dominance of op-

posing effects. Thus, a numerical implementation of the model is needed in order to (i)

quantify the opposing effects and (ii) check which effect dominates and in which direction

the total effect finally points. Furthermore, as an example for an instrument that is of-

ten used in European countries, we analyze feed-in policies in more detail. We do so by

calibrating the model to data for the EU. In the theoretical considerations in Section 3.2

we studied the impact of one below-optimal or non-available policy instrument on each

other instrument separately (for reasons of mathematical tractability). In this section,

we study for each scenario the impact of one non-available policy instrument on all re-

maining instruments. We describe the model calibration and then define the scenarios to
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Figure 1: Electricity mix in scenario with CO2 pricing for the EU in 2020 (the first model
period) referring to the electricity output in the Baseline scenario by Capros et al. (2009).

be examined numerically. This will allow us to identify possible interactions between the

adjustments of the second-best instruments.

4.1 Model calibration

The model characteristics, the specific functional forms and the parameter values are

taken from FNP if not explicitly mentioned otherwise. Hence, the reader may refer to

FNP for more details. The main difference is the calibration of the model to the European

electricity market. This subsection gives a narrative overview of the choice of specific

functional forms and their calibration to European data.

For the two stages, we assume that the short-term, period 1, runs from 2016 to 2020

and the long-term, period 2, runs from 2021 to 2040. Our calibrated model distinguishes

among seven different power generation technologies: The carbon emitting technologies,

coal (including lignite), gas, and oil. Solar (including further new renewable energies,

such as tidal power, geothermal, etc.) and wind are assumed to be immature carbon-

free technologies that are subject to cost reductions through learning-by-doing and R&D

investments. For the remaining technologies, hydro and nuclear, we assume that their

quantities are fixed or can be adjusted in the second period, respectively. Figure 1 illus-

trates the EU electricity mix in a scenario with CO2 pricing for the year 2020.

The cost function for each power generation technology is assumed to increase in

the generated quantity in a quadratic fashion. Consequently, the first-order derivative

describing marginal costs is increasing linearly in quantity, meaning that the resulting

supply schedule of each technology is linear over the explored policy space. The slopes of

the supply curves are calibrated by comparing source-specific effective prices for electric-
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ity generation and their respective quantities from scenarios in the 2009 Energy Trends

published by the European Commission’s Directorate General for Energy (Capros et al.,

2009, p. 67). The Energy Trends describe two main scenarios. The Baseline scenario

projects the development of the EU energy system under policies as of April 2009, which

includes the ETS, while the Reference scenario includes the mandatory emission and en-

ergy targets for 2020 adopted subsequently. Both scenarios under comparison refer to an

EU climate policy with a CO2 emissions reduction of about 20% by 2030 compared to

2005. We draw upon the CO2 and electricity prices as well as the shadow value of renew-

able energy in order to calculate the net producer price for each electricity technology.

For example, the CO2 price in the Baseline is 25 e’08/t for 2020 and 39 e’08/t in 2030;

in Reference it is 16.5 e’08/t in 2020 and 18.7 e’08/t in 2030, and the average shadow

value for renewable energy is 49.5 e’08/MWh in 2020 and 34.8 e’08/MWh in 2030. We

adjust our benchmark calibration to these scenarios and fix the corresponding emissions

across all scenarios. In the policy scenarios, however, CO2 prices can freely adjust, given

a cumulative emissions target derived from these scenarios.

To calculate the carbon cost burden for fossil sources, we compute the emissions in-

tensity of each technology from the data as well. Together with the electricity prices, this

information allows us to calibrate supply curves for each source.

For the renewable energy technologies, we take into account that the incentives for

engaging in learning-by-doing must be incorporated into the calculation of the supply

curves in the first stage to ensure that the first-order conditions hold. Cost reductions

via learning and R&D are modeled as a two-factor learning curve in the form of a Cobb-

Douglas function with negative exponents (that need not add up to one). The rate of

private knowledge benefits is set to one half, i.e., ρ = 0.5 for both R&D and learning.

Baseline R&D spending and other knowledge and investment cost parameters follow FNP.

The fraction of the benefit of energy efficiency improvements that the consumer per-

ceives is set to 80%, i.e., β = 0.8. The reduction of electricity demand through investments

in energy efficiency is modeled in the form of an exponential function with endogenous

investments with a negative sign in the exponent. The representative consumer’s utility

rises in the consumption of electricity services.

We focus on the power sector, but since the existing EU ETS also includes additional

sectors beyond the power sector, we take emissions abatement opportunities in these

sectors into account as well to compute the CO2 price effects of overlapping policies. To

this end, the slope of the marginal costs of emissions reductions in the non-power sector

is computed similarly by calculating the difference in the CO2 prices between the two

scenarios divided by the difference in emissions.

Table 1 shows the resulting parameter values for the supply curves and the CO2
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Period 1 supply slope Period 2 supply slope CO2 intensity
[e /kWh2] [e /kWh2] [t/kWh]

Coal 2.4 × 10−13 6.6 × 10−14 0.91 × 10−03

Natural gas 1.2 × 10−09 6.2 × 10−10 0.36 × 10−03

Oil 1.9 × 10−13 2.7 × 10−13 0.88 × 10−03

Nuclear 6.7 × 10−13 2.3 × 10−13 0
Hydro 9.0 × 10−13 7.4 × 10−13 0
Wind 2.3 × 10−13 3.8 × 10−13 0
Solar 3.0 × 10−12 2.4 × 10−12 0

Table 1: Technology parameters used for the model calibration to the EU.

intensities of fossil fuel technologies.

4.2 Definition of scenarios

We define the following scenarios.

No-Policy defines a scenario with no climate policies; i.e., we simulate the electricity

sector outcomes with a zero CO2 price and without subsidies for renewable energies or

energy efficiency. Based on this scenario, we are able to calculate and compare the costs

of policy scenarios as changes in outcomes attributed to these policies.

We examine nine different policy scenarios that are related to the propositions on

second-best policies outlined in the previous section. All scenarios include carbon pricing,

while the availability of additional policy instruments varies across scenarios. In each

scenario, we require the policy mix to meet the same emissions target for the power sector

(plus implicitly other ETS sectors). We keep this emissions target constant across all

policy scenarios in order to keep the detrimental impacts (negative welfare effects) of

climate change constant.

CO2-Price assumes the only available instrument is carbon pricing (i.e., without sub-

sidies for learning, R&D, or energy efficiency). It implements the current EU policy. The

CO2 price is adjusted for 2020 and 2030 so that the corresponding emissions reduction in

the electricity and non-electricity sectors accords to the current EU climate policy with a

20% CO2 reduction by 2030 compared to 2005. This means our numerical analysis deals

with the European climate policy implemented today, not with possible more stringent

future policies. This allows us to derive policy recommendations for the current state of

the European economy and policy. We do not impose a 20% renewable share restriction

nor a requirement of a 20% energy efficiency improvement, because we will study these

policies endogenously under different scenario assumptions. In the following scenarios,

CO2 prices can float endogenous while keeping the cumulative emissions target over both

periods constant.
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1st-Best applies the first-best choice of the policy instruments, as derived in the alge-

braic analysis. Unlike the previous theoretical step-by-step analysis, all remaining policy

instruments are re-adjusted simultaneously in the second-best.

No-R&D-Sub applies the second-best choice of the policy instruments without an R&D

subsidy for immature renewable energy technologies.

No-Learn-Sub applies the second-best choice of the policy instruments without output

(learning) subsidies for immature renewable energy technologies.

No-Effic-Sub applies the second-best choice of the policy instruments without any

subsidies for energy efficiency improvements.

Feed-in considers the optimal policy combination, but with feed-in tariffs instead of

simple output subsidies. Subsidies for R&D and energy efficiency are also available in

this scenario. The feed-in tariffs are modeled as a combination of output subsidies for

immature renewable energies and a tax on electricity. The tax and subsidy rates are

chosen such that total subsidy payments exactly match total tax revenues. (The results

reported by Tables 2 and 3 in columns 7 to 10 refer to this specification.) In this scenario

the subsidies and taxes are restricted to the first period, because the implementation in the

second period would be sub-optimal. In alternative robustness checks, we impose a tax on

the overall electricity price, or impose a fixed (guaranteed) electricity price for comparison

(not reported in the numerical results in Table 3). The latter two specifications come closer

to the policy implementation in European countries. This comparison of different setups

allows us to test whether the implementation of feed-in tariffs in economic models matters

quantitatively.

Feed-in-No-R&D corresponds to scenario No-R&D-Sub with feed-in tariffs instead of

output subsidies. No subsidies for investment in R&D are allowed in this scenario, and

the available policy instruments are chosen such that a second-best situation is achieved.

Feed-in-No-Effic corresponds to scenario No-Effic-Sub with feed-in tariffs instead of

output subsidies. No subsidies on investments in energy efficiency are allowed, and the

available policy instruments are chosen such that a second-best situation is achieved.

Feed-in-Pure resembles scenario Feed-in, yet without the availability of subsidies for

R&D or energy efficiency. Since the policy implementation in EU countries guarantees

future subsidies for the sake of predictability of future revenues, we assume the same

feed-in tariffs (tax and subsidy rates) in period 2 ad in period 1.

4.3 Application and summary of the theoretical results

This section applies the previous theoretical outcomes to the European policy scenarios.

Table 2 depicts the results for each scenario, (1) to (10) (see column heads), and each

variable in periods 1 and 2 (see first column), and summarizes the theoretical outcomes
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

No- CO2-Price 1st-Best No-R&D- No-Learn- No-Effic- Feed-in Feed-in- Feed-in- Feed-in-

Policy Sub Sub Sub No-R&D No-Effic Pure

Propositions (1)/(5) (3)/(6) (2)/(4) (7) (7)/(8) (7)/(9)

Policy cost wrt CO2-Price ↓ ref ↓ ↓ ↓ ↓ ↓ ↓ ↓ ?

Policy cost wrt 1st-Best ↓ ↑ ref ↑ ↑ ↑ ↑ ↑ ↑ ↑

Share renew 1 [%] ↓ ? ref ? ? ? ? ? ? ?

Share renew 2 [%] ↓ ↓ ref ↓ ↓ ↓ ↓ ↓ ↓ ↓

Renew outp sub 1 n a n a ref ↓ n a ↑ if price elast of ↓ ↓ ? ?

elec demand > 1;

↓ otherwise

ref ↓ ↑ if price elast of ?

elec demand > 1;

↓ otherwise

Renew outp sub 2 n a n a ref=0 ↑ n a ↑/↓ see above ref=0 ↑ ↑/↓ see above ?

Renew R&D sub 1 n a n a ref n a ↑ if outp incr via R&D ↑/↓ see above ref n a ↑/↓ see above n a

> replacem of learning

by R&D; ↓ otherwise

Effic sub 1 n a n a ref ↑ ↓ n a ↓ ↑ n a n a

Effic sub 2 n a n a ref ↓ ↓ n a ↓ ↓ n a n a

Effic sub 1/2 n a n a ref ↓ ↓ n a ↓ ↓ n a n a

Elec tax 1 n a n a ref=0 0 0 0 ↑ ↑ ↑ ↑

ref ↓ ↑/↓ see above ?

Elec tax 2 n a n a ref=0 0 0 0 ref=0 ↑ ↑/↓ see above ?

Renew R&D 1 ↓ ↓ ref ↓ ↑/↓ see above ↑/↓ see above ref ↓ ↑/↓ see above ↓

Effic 1 ↓ ↓ ref ↑ ↓ ↓ ref ↑ ↓ ↓

Effic 2 ↓ ↓ ref ↓ ↓ ↓ ref ↓ ↓ ↓

Elec price 1 ↓ ↑ ref ref ↑ ↑ ↑ ↑ ↑ ↑

Elec price 2 ↓ ↑ ref ↑ ↑ ↑ ↑ ↑ ↑ ↑

CO2 price 1 n a ↑ ref ref ↑ ↑ ↓ ↓ ? ↑

CO2 price 2 n a ↑ ref ↑ ↑ ↑ ↓ ? ? ↑

Table 2: Theoretical results for the EU climate and energy policy scenarios in periods 1 (short-term) and 2 (long-term). ↑ indicates that the corresponding

policy instrument is to be adjusted upwards relative to ref(erence) in the same row in order to improve welfare, ↓ indicates the opposite adjustment to improve

welfare. n a denotes not available. 0 indicates that a zero value is optimal. ? indicates that the direction of the optimal adjustment is ambiguous.
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formulated in the previous propositions and explanations. The table highlights in which

direction the various policy instruments need to be adjusted (upwards or downwards)

compared to a reference value in order to elevate welfare, when one policy instrument is

removed. Welfare effects are expressed as policy costs relative to 1st-Best policy costs.

In the table, “Renew R&D sub 1” symbolizes an R&D subsidy for immature renewable

energies that is only available in the first period. “Renew R&D” indicates the actual

investment in research and development. If the subsidy for R&D is reduced, we expect

a reduction in R&D as well. “Renew outp sub 1” or “Renew outp sub 2”, respectively,

symbolizes a subsidy for renewable energy output in period 1 (short-term) or period 2

(long-term). “Effic sub 1/2” symbolizes a subsidy for energy efficiency investments that

affects both periods. Accordingly, the effect of this subsidy is attributed to both periods.

Changes in electricity and CO2 prices accord with the considerations of Section 3.2.

The scenarios that implement feed-in tariffs require further explanation. According

to Proposition 7, the renewable energy output subsidy in the first period is lower in

Feed-in Opt than in 1st-Best, because it is accompanied by an electricity tax larger than

zero. Following the argument of Proposition 7, the same is true for scenario Feed-in-

No-R&D compared to No-R&D-Sub and for Feed-in-No-Effic compared to No-Effic-Sub.

In scenario Feed-in-No-Effic, however, the first-period output subsidy can be re-adjusted

upward or downward depending on the price elasticity of energy demand so that the

overall adjustment of the output subsidy is ambiguous as indicated by the question mark.

Propositions 8 and 9 tell us how to adjust the first-period subsidy and electricity tax in

Feed-in-No-R&D and Feed-in-No-Effic compared to Feed-in. The feed-in tariff scenarios

result in higher electricity prices, because the electricity tax comes on top of the prices.

We expect second-period renewable energy shares in total electricity generation to be

lower than in 1st-Best in all other scenarios, because the 1st-Best provides optimal support

for renewable energies, and we do not examine above-optimal second-best policies. The

situation is less clear in period one, because the effects of learning and R&D have not yet

materialized. The numerical model analysis will shed light on such ambiguous aspects.

4.4 Numerical policy analysis

This section describes and interprets the simulation results. It pays special attention to

the propositions derived in the algebraic policy analysis that have been translated into

the qualitative policy results in Table 2. In the theoretical considerations in Section

3.2 we studied the impact of one below-optimal or non-available policy instrument on

each other instrument separately. In the following numerical treatment we are able to

study the impact of one non-available policy instrument on all remaining instruments

simultaneously. This is supposed to reveal possible interactions between the adjustments
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of second-best instruments. Immature renewable energy technologies are represented by

wind and solar power. The section concludes with a critical discussion of the methodology

and the results.

4.4.1 Results

Table 3 depicts the results for each scenario, (1) to (10) (see column heads), and each

variable in periods 1 and 2 (see first column). The table mirrors Table 2. (For further

explanations of abbreviations used in the table see Section 4.3). One difference between

the tables is that (immature) renewable energy technologies (“renew”) are now split into

wind and solar technologies. The electricity mix changes endogenously across scenarios

but is not substantially different from the reference mix in scenario CO2-Price. The CO2

price is fixed in scenario CO2-Price, whereas it declines endogenously in the other scenar-

ios. Electricity prices, measured in Euros, endogenously determine the electricity market

equilibrium. Wind and solar R&D as well as energy efficiency improvements emerge en-

dogenously, too. They are measured in model-specific “physical” units. Investments in

energy efficiency are normalized such that CO2-Price investments are set to zero. Thus,

investments smaller than in CO2-Price show up as negative numbers. The investments in

energy efficiency denoted by “Effic 1/2” are attributed to both periods. The relative mag-

nitudes of policy instruments are expressed in percentage of 1st-Best implementations.

Since the 1st-Best scenario assumes zero second-period output subsidies, second-period

output subsidies are expressed relative to their first-period values. The values in brackets

report the absolute magnitudes of policy instruments in EUR/MWh.

Scenario CO2-Price with carbon pricing creates a loss, i.e., a policy cost, compared to

No-Policy without any carbon or energy policy based on Equation (20). This cost reflects

about 7.5 billion Euros. It serves as our reference and is set to 100%. The policy costs

of the other scenarios are measured in percentage of the CO2-Price cost. 1st-Best entails

policy costs that are about three quarters of the CO2-Price cost. The remaining columns

contain the second-best scenarios, which generate smaller cost savings than 1st-Best. The

cost reduction due to leaving out energy efficiency subsidies in column (6) is much more

pronounced than the cost saving due to leaving out R&D or output subsidies for immature

renewable energies in columns (4) and (5). This result underlines the important role

of energy efficiency improvements and related policies in achieving emissions reductions

effectively. Column (7) reports the results for scenario Feed-in, which adds an electricity

tax to scenario 1st-Best. Due to the economically inefficient tax, the cost saving (not

visible in the table) is slightly smaller than in 1st-Best. The Feed-in-Pure scenario in

column (10) creates even higher policy costs than CO2-Price. This means the distortion

created by the tax instrument overcompensates the benefit of using the output subsidy,
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which is not present in scenario CO2-Price. These results suggest that not making use of

feed-in tariffs is welfare superior to making use of them. They also suggest that feed-in

tariffs are inappropriate instruments for addressing the market failures in the domain of

R&D and in the domain of energy efficiency.

The CO2 price declines in scenario 1st-Best, especially in the second period, because

the policy instruments used in this scenario reduce electricity demand and foster wind

and solar power. As a consequence, CO2 emitting electricity generation is dampened.

The second-best scenarios in the subsequent columns are in most cases less effective in

reducing CO2 prices. Scenario Feed-in introduces the tax instrument, which induces an

additional shift of electricity generation from fossil to renewable energies. This is reflected

by lower CO2 prices. Note that total emissions generated by the power sector and by the

other emissions trading scheme sectors are constant.

As predicted by Table 2, the second-period renewable energy share (electricity gen-

eration from wind and solar power divided by total electricity generation) never exceeds

that of 1st-Best. The first-period renewable energy share, on the contrary, exceeds it in

scenarios without energy efficiency subsidies. In these scenarios, the higher electricity de-

mand goes along with a higher renewable energy share. This implies that the additional

energy production is biased towards renewable energies.

In the second-best scenarios the remaining policy instruments are re-adjusted so that

welfare is maximized under the restriction of the non-availability of a specific policy instru-

ment. In accordance with Proposition 1, the first-period output subsidies for immature

renewable energy technologies are lower in column (4) No-R&D-Sub than in column (3)

1st-Best. Also in accordance with Proposition 1, the second-period output subsidies for

immature renewable energies are positive and hence higher than in 1st-Best. In accor-

dance with Proposition 5, both energy efficiency subsidies affecting the long-term, “Effic

sub short 2” and “Effic sub long 1/2 ” are slightly reduced in column (4) compared to

column (3). Due to the interaction of policy instruments, the adjustment of the short-

term subsidy for energy efficiency is more complicated. Proposition 5 predicts a higher

short-term subsidy. Yet Proposition 6 predicts a lower short-term subsidy, because the

renewable output subsidy is lower than in 1st-Best. According to the numerical results,

the latter effect dominates.

When comparing column (5), No-Learn-Sub, with column (3), 1st-Best, the welfare

maximizing second-best choice of the R&D subsidies for wind and solar turns out to be

slightly higher than the first-best choice. This accords to Proposition 3, which proposes an

ambiguous outcome. A clearer difference appears when calculating R&D subsidy payments

per (first-period) physical output volume of the corresponding technology (not shown in

the table). Then the R&D subsidy rate per output clearly rises in No-Learn-Sub compared
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

No- CO2-Price 1st-Best No-R&D- No-Learn- No-Effic- Feed-in Feed-in- Feed-in- Feed-in-

Policy Sub Sub Sub No-R&D No-Effic Pure

Proposition (1)/(5) (3)/(6) (2)/(4) (7) (8) (9)

Policy costs wrt CO2-Price [%] 0 100 67.56 68.49 67.59 99.37 67.56 68.55 99.36 100.26

Share renew 1 [%] 25.42 26.45 26.23 26.23 26.15 26.45 26.25 26.24 26.45 26.60

Share renew 2 [%] 29.34 32.44 32.63 32.48 32.63 32.60 32.63 32.49 32.58 32.57

Wind output sub 1 [% (EUR/MWh)] 0 0 100 (0.66) 97 (0.63) 0 0 89 (0.59) 87 (0.56) 0 123 (0.82)

Solar output sub 1 [% (EUR/MWh)] 0 0 100 (5.11) 97 (4.93) 0 0 89 (4.55) 87 (4.43) 0 138 (7.07)

Wind output sub 2 [% (EUR/MWh)] 0 0 0 18* (0.12) 0 0 0 18* (0.12) 0 123* (0.82)

Solar output sub 2 [% (EUR/MWh)] 0 0 0 18* (0.91) 0 0 0 18* (0.92) 0 138* (7.07)

Wind R&D sub 1 [% (EUR/MWh)] 0 0 100 (0.41) 0 100 (0.41) 80 (0.37) 100 (0.41) 0 75 (0.30) 0

Solar R&D sub 1 [% (EUR/MWh)] 0 0 100 (0.81) 0 100 (0.82) 80 (0.77) 100 (0.81) 0 75 (0.61) 0

Effic sub short 1 [% (EUR/MWh)] 0 0 100 (0.12) 99.7 (0.12) 99.2 (0.12) 0 99.9 (0.12) 99.5 (0.12) 0 0

Effic sub short 2 [% (EUR/MWh)] 0 0 100 (0.45) 99.93 (0.46) 99.8 (0.45) 0 99.5 (0.45) 99.4 (0.46) 0 0

Effic sub long 1/2 [% (EUR/MWh)] 0 0 100 (0.64) 99.93 (0.64) 99.8 (0.64) 0 99.5 (0.64) 99.4 (0.64) 0 0

Elec tax 1 [EUR/MWh] 0 0 0 0 0 0 0.31 0.30 0 0.46

Elec tax 2 [EUR/MWh] 0 0 0 0 0 0 0 0.10 0 0.76

Wind R&D 1 0 0.01 0.06 0.01 0.06 0.07 0.06 0.01 0.06 0.02

Solar R&D 1 0 0.01 0.04 0 0.04 0.05 0.04 0 0.11 0.01

Effic 1 -1.68 0 3.46 3.48 3.47 -0.03 3.46 3.48 0 -0.02

Effic 2 -4.69 0 5.46 5.56 5.46 -0.11 5.46 5.55 -0.10 -0.02

Elec price 1 [EUR/MWh] 97.69 101.00 94.93 94.91 95.15 101.04 95.08 95.06 101.04 100.90

Elec price 2 [EUR/MWh] 85.28 98.00 86.97 87.24 86.99 97.67 86.97 87.22 97.83 97.95

CO2 price 1 [EUR/t] 0 22.00 20.86 20.86 20.91 22.01 20.83 20.83 22.01 21.89

CO2 price 2 [EUR/t] 0 39.00 29.46 29.70 29.48 38.72 29.46 29.66 38.75 38.30

Table 3: Simulation results for the ten EU climate and energy policy scenarios in periods 1 (short-term) and 2 (long-term). Policy costs are expressed

in percentage of the policy costs of the CO2-Price scenario with a carbon price only. The relative magnitudes of the policy instruments are expressed in

percentage of 1st-Best. (*Since 1st-Best assumes zero second-period output subsidies, second-period output subsidies are expressed relative to their first-period

values.)
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to 1st-Best. Based on Proposition 3, we conclude that in our model specification and

calibration, the output increase resulting from higher R&D subsidies is larger than the

replacement of learning by R&D. In accordance with Proposition 6, all types of energy

efficiency subsidies slightly decrease in the second-best scenario No-Learn-Sub compared

to 1st-Best.

In column (6), No-Effic-Sub, the first-period output subsidies drop to zero,3 and the

R&D subsidies are reduced to 80% of the 1st-Best values. Referring to Proposition 2 and

Proposition 4, this implies that the price elasticity of electricity demand is below unity in

our model specification and calibration. As a consequence, the reduction of electricity from

renewable energies translates into lower electricity demand. The reduction of electricity

from renewable energies leads to a more than proportional increase in the electricity price,

which in turn incentivizes higher investments in energy efficiency. Nonetheless, the non-

availability of energy efficiency subsidies results in a strong reduction in energy efficiency

investments as indicated by the negative numbers.

Column (7) reports scenario Feed-in, which adds an electricity tax to scenario 1st-

Best. As a result, the output subsidy rates are lower than in 1st-Best in accordance

with Proposition 7. Column (8) reports Feed-in-No-R&D, where no R&D subsidies for

renewable energies are allowed. Similarly to Proposition 1, the resulting second-best

optimal renewable energy output subsidies are lower in the first period and higher in the

second period than in Feed-in. Furthermore, the subsidy rates are lower than in No-R&D-

Sub as predicted by Proposition 7. The corresponding electricity taxes are adjusted in the

same direction as the subsidies. The energy efficiency subsidies are adjusted downwards

as expected.

Column (9) depicts scenario Feed-in-No-Effic, where no energy efficiency subsidies are

allowed. Since the price elasticity of electricity demand is below unity as argued above,

the renewable energy output subsidies for both periods as well as the R&D subsidies are

adjusted downwards compared to Feed-in. As expected, the R&D subsidy rates in Feed-

in-No-Effic are lower than in No-Effic-Sub, because the subsidies are accompanied by

taxes.4 Column (10), Feed-in-Pure deals with feed-in tariffs as practically implemented

in Europe, in particular in Germany. This implementation excludes R&D and energy

efficiency subsidies.5 The output subsidy and tax rates exceed those of the 1st-Best

scenario.

3In this case the model generates a strong effect by finding a corner solution for the output subsidies.
A possible reason is that the output subsidies’ potential for reducing energy supply and demand is by far
smaller than the potential of the energy efficiency subsidies that they replace.

4The model generates zero second-best output subsidy rates.
5We leave out R&D subsidies as well as energy efficiency subsidies in order to match the analysis with

typical European feed-in tariff systems such as the German system.
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Due to overlapping policy effects, the pattern of CO2 and electricity prices is less clear

than in the theoretical step-by-step analysis.

4.4.2 Discussion

This section critically discusses our results and positions them within the literature.

The policy effects generated by our numerical model application to the EU, sum-

marized in Table 3, overall corroborate and illustrate our general theoretical findings,

summarized in Table 2. This congruence shows that possible interdependencies between

the re-adjustments of different second-best instruments are negligible. Otherwise, the

numerical results, which take all interdependencies into account, would deviate from the

step-wise theoretical results in Section 3.2.

The differences in the numerical results across scenarios are small in several cases.

Thus, taking the results at face value, the error value of not re-adjusting single policy

instruments in second-best situations is small, given the current situation of the European

power sector and today’s policies.

This result differs from that of Böhringer and Rosendahl (2010) and

Boeters and Koornneef (2011) who find substantial welfare losses caused by over-

lapping policy instruments. The reason is that our analysis rules out the possibility of

adverse distortive effects created by exogenously given overlapping policy constraints

such as the 20% renewable energy target. Such constraints would undermine our study

of second-best optimal policy scenarios.

Furthermore, we build our analysis on a baseline scenario, which includes moderate

climate and policy targets that are in practice or decided today. Consequently, our results

provide conservative advice for current policy implementations. Notably, we have carried

out a robustness check with a more stringent CO2 emissions reduction of 30% by 2030

compared to 1990 instead of 20% by 2030 compared to 2005. The results, however, hardly

differ, especially when referring to welfare effects in relative terms. Possible more ambi-

tious future emissions targets as proposed by the European Roadmap to 2050 (EU-COM,

2011) will likely increase the long-term magnitude of the estimated policy effects. Like-

wise, the benefits of supporting knowledge creation in the renewable energy sector via

R&D and learning subsidies can become more pronounced over a longer time horizon.

This is particularly true when taking the appearance of novel breakthrough technologies

into account.

Higher values of the slope parameters that influence the adjustment of electricity

generation from different technologies would also increase the magnitude of the policy

effects. However, as in the analyses by FN and FNP, it is not the main purpose of our

simulations to deliver precise quantifications, but to illustrate and validate our theoretical

30



findings. Notwithstanding, we test the impact of different key parameter values in a

sensitivity analysis. The parameter ρ governs the strength of knowledge spillovers. Its

impact turns out to be relatively small. We also vary the magnitude of the feed-in tariff

rates in both periods without finding a clear-cut qualitative change in the results. Overall,

the order of magnitude of the effects that we find for the EU is similar to the order of

magnitude that FN and FNP find for the USA.

In another robustness check, we find that the economic distortion that feed-in tariffs

create is small and very similar across different implementations in the model. We im-

plement them as a combination of fixed renewable energy subsidies and fossil fuel taxes

(Kalkuhl et al., 2013), or a combination of fixed renewable energy subsidies and a general

tax on electricity, or a combination of a guaranteed electricity price payment and a general

tax on electricity as in practice in Germany.

In accordance with FNP’s finding for renewable performance standards and in contrast

to Kalkuhl et al. (2012) and Kalkuhl et al. (2013), our results are critical with respect

to feed-in tariffs as a substitute for first-best instruments. In particular, we find that

energy efficiency improvements and related policies are crucial for efficiently achieving

an emissions target. Energy efficiency improvements can hardly be replaced by other

policy measures on the electricity supply side. But also within the domain of renewable

energies, R&D-related policies cannot be efficiently replaced by output-related policies

such as output subsidies or feed-in tariffs.

Although the numerical differences between the policy scenarios are in some cases

small, the first-best policy reduces the European baseline cost burden imposed by the

emissions target by about one third compared to carbon pricing as the sole instrument.

In practice, the magnitudes estimated for the EU will differ across European countries,

for example, depending on the country-specific potential of renewable energy sources.

5 Conclusion

We have studied the interaction of output (learning) and R&D subsidies for immature

renewable energy-based power generation as well as subsidies for improving energy effi-

ciency in the presence of carbon pricing. Our considerations and results should be helpful

for policy makers who would like to know how they should re-adjust policy instruments in

order to elevate welfare if a specific instrument is not (sufficiently) available for practical

or political reasons.

According to our conservative numerical results, the policy cost of the European carbon

emissions target, currently implemented in the EU ETS, has an order of magnitude of

about 7.5 billion Euros. The EU ETS, however, creates an important environmental
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benefit that is not included in our analysis. Accordingly, the real “bird in the hand”

is the EU ETS. The estimated welfare gains from the fine-tuning of single second-best

instruments are in some cases small. Nonetheless, the joint re-adjustment of all policy

instruments can reduce the current cost burden of the European climate and energy policy

by up to one third or 2.5 billion Euros compared to a scenario with carbon pricing as the

only instrument. Energy efficiency improvements contribute the largest cost reduction.

For policy makers who strive for these “birds in the bush,” our analysis provides the recipe

to catch them.

To this end, we have theoretically derived detailed recommendations for the second-

best re-adjustment of policy instruments. Additionally, we have studied to what extend

feed-in tariffs can replace these instruments. We have modeled feed-in tariffs by combining

the output subsidy for immature renewable energy technologies with a tax on electricity

or the output of the remaining technologies. In this combined form, the output subsidy

needs to be reduced compared to its use as a single instrument in order to improve

welfare, because the tax does part of the job of the subsidy. Our results suggest that

feed-in tariffs, as currently implemented in several European countries, are inappropriate

instruments for addressing the market failures in the domain of R&D spillovers and in

the domain of energy efficiency improvements. Nonetheless, the economic distortion that

is created by a feed-in tariff is small. In this sense, feed-in tariffs are good substitutes for

pure renewable energy output subsidies. The advantage of feed-in tariffs compared to pure

subsidies is that cost neutrality is guaranteed such that the tax on electricity finances the

subsidy for renewable energy technologies. The guaranteed future electricity prices also

create certainty in income streams of investors. If investors are risk averse, this will lead

to more R&D and learning. Yet subsidies that directly support R&D and investments in

energy efficiency are more efficient than feed-in tariffs. Our results in particular suggest

better investment incentives in the domain of energy efficiency.

Taking the discussed caveats into account, we hope that our analysis provides useful

guidance for climate and energy policy design. Future research could model feed-in tar-

iffs in specific European countries and assume more ambitious long-term climate policy

targets. Today, however, more ambitious targets are still debated.
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7 Supplementary Appendix

(aa) Proof of Proposition 1:

Output subsidies cannot directly affect knowledge creation, but they can indirectly

induce it by influencing the volume of electricity generation. We know from Equation

(21) that in the presence of R&D spillovers any intervention Ψ that increases knowledge

hi1 elevates welfare W . We know from (10) that the R&D investments are below the social

optimum if σ is smaller than (1− ρ). Furthermore, a below-optimal R&D subsidy results

in below-optimal second-period output qi2. We know from (3) that Ci2
hi1qi2

< 0 so that

the left-hand side of (10) becomes below-optimal. Hence, overall we need to augment the

left hand side of (10) to come closer to the socially optimal subsidy rate. We know from

(3) that Ci2
hi1 < 0, Ci2

hi1qi1
> 0 and Ci2

hi1qi2
< 0. This means policy makers need to decrease

the subsidy for immature renewable energy output φi1, ∀ i ∈ r in the short-term, i.e.,

period 1, but increase the subsidy for immature renewable energy output φi2, ∀ i ∈ r in
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the long-term, i.e., period 2, in order to raise the magnitude of the cost reduction effect

of knowledge, represented by Ci2
hi1 .6 �

This finding requires further explanation and leaves room for discussion. The aug-

mentation of the second-period subsidy appears straightforward and unambiguous: When

more electricity is to be produced in the future, then any reduction of future costs will

affect a larger generated quantity in the future and thus increase the benefits of today’s

R&D. The cutback of the short-term subsidy surprises: One might think that a higher

output subsidy has to compensate for the shortfall of the R&D subsidy. However, the full

benefit of learning-by-doing has already been exploited by the first-best output subsidy.

A further increase of learning-by-doing would crowd out R&D investments. Yet, we aim

at the enhancement of knowledge creation via R&D investment. One might argue, higher

production enhances R&D in a complementary way. Though, the following consideration

suggests the opposite: Suppose an initially immature technology has made tremendous

progress in terms of cost reductions over time. The potential for further cost reductions

through R&D for the same technology will be limited. Less technical progress through

learning, on the contrary, leaves more room for cost reductions through R&D and hence

creates an additional incentive for R&D investment. Following this argument, we assume

R&D and learning act as substitutes. The interdependence of the R&D-related and the

learning-related policy instruments will work in opposite directions, if one assumes that

R&D and learning act as complements. (For a further discussion see FN.)

We refer to cost reductions within a given set of technologies in our analysis. We

abstain from taking into account that research can create new (breakthrough) technologies.

Thus, R&D with the aim to create new technologies is hardly affected by learning, and

it is likely economically reasonable to support this kind of research even more when the

potential of technical progress has been exploited for the existing technologies. This

means the reduction of the short-term output subsidy in the second-best hinges upon the

assumption that technical progress reduces the production costs of existing technologies.

The result would likely be reversed if the creation of new technologies were taken into

account.

Regarding the interaction of climate and energy policies, the question of how

unavailable or inadequate R&D subsidies for immature renewable energies affect the

6Conversely, a higher output subsidy in the short-term would also expand output in the long-term
via learning. This effect counteracts the incentive to reduce the first-period subsidy. Nevertheless, when
the second-period output subsidy is available, one can induce higher second-period output via a higher
second-period subsidy and reduce the first-period subsidy. If the second-period subsidy is not available, it
is not evident whether the first-period subsidy should be de- or increased due to the two opposite effects.
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electricity and the CO2 price is of importance for policy makers. The long-term effect

is straightforward: Less R&D in carbon-free technologies leads to higher produc-

tion costs of these technologies, according to (3) and (10), and thus less carbon-free

electricity generation qi2, i ∈ r. Hence, the output of other technologies including

fossil-based technologies must rise in order to satisfy electricity demand. As a result,

the electricity and the carbon price for the second period will increase when emis-

sions are curbed by a given emissions cap. The short-term impact within the first

period is zero, because the effect of R&D is not realized before the second period and

the burden on public finance does not affect the behavior of economic agents in the model.

(ab) Proof of Proposition 2:

We know from Equation (21) that in the presence of undervaluation of the represen-

tative consumer’s true benefit of energy efficiency improvements, any increase in energy

efficiency measures will raise welfare. We know from Equations (13), (14) and (15) that

the left hand side of each equation will be too low from a social point of view if each λ is

too low or zero. Hence, we need to augment the left hand side of each equation to come

closer to the social optimum. The way to achieve this is to enlarge the marginal value

of electricity demand reduction through investment in energy efficiency, signified by ptdtet

and the three types of et. Basically, this requires an increase in the electricity volume

times the electricity price. On the one hand, each output subsidy φit extends electricity

output qit in the same period. Additionally, φi1 extends future output qi2 via learning.

We know from (7) that electricity demand equals electricity supply in equilibrium. Fur-

thermore, Equation (6) tells us that the magnitude of the marginal reduction of electricity

demand through energy efficiency measures will become higher when the consumption of

energy services is higher, i.e., dtetvt < 0. We know implicitly that the consumption of

energy services and energy demand are positively linked since dtvt > 0 and hence vtdt > 0.

Therefore, higher output subsidies φit for immature renewable energy technologies (with

an additional learning effect) in particular and for any electricity generation technologies

(without an additional learning effect, but causing an output expansion in the same pe-

riod) in both periods are the preferable choice with respect to welfare maximization. On

the other hand, the subsidy and the increased electricity supply reduce the electricity price

pt. This consideration, on the contrary, suggests lower (or for the second period negative)

electricity output subsidies. The overall effect on the marginal value of demand reduction

depends on whether the price or the quantity sensitivity is stronger. A price elasticity of
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electricity demand above unity implies that electricity quantities react more sensitively

than prices. �

Note that any subsidy or tax creates a transfer that is welfare neutral in the model.

We assume that this transfer does not affect the consumer’s calculus via a change in her

budget. If this were taken into account, a higher subsidy would reduce the consumer’s

disposable income budget. This would in turn reduce her demand for electricity and hence

the electricity price.

Regarding the interaction of climate and energy policy, the key question is how the

lack of subsidies for energy efficiency investment affects the electricity and CO2 price.

It is apparent that less investment in energy efficiency increases electricity demand and

hence electricity generation, as formally described by Equations (4), (7) and (13) to (15).

This creates upward pressure on the electricity price in the corresponding period; since

the electricity mix includes fossil energy, the use of fossil fuels will rise and drive up the

CO2 price for a given emissions cap.

(ba) Proof of Proposition 3:

This examination partly mirrors the examination of the output subsidy in the absence

of the R&D subsidy in (aa). Yet there are two differences: First, producers’ choice of

output also depends on the electricity price pt, whereas there is no explicit market price

for knowledge. Second, unlike the output subsidy, the R&D subsidy is only available for

the first period. (A second-period R&D subsidy is not reasonable, because it would affect

a third model period, which is not taken into account.) We know from Equation (21)

that in the presence of learning spillovers any intervention Ψ that increases output qi1

of immature renewable energy technologies will elevate welfare W . We know from (8)

that the left hand side will be too low from a social point of view if φ is too low or zero.

For the right hand side of (8), (3) says that low marginal production costs are associated

with limited production qi1. Hence, we need to augment the left hand side of (8) to come

closer to the social optimum. Now there are two opposing effects. We know from (3) that

Ci2
qi1qi2 < 0, i.e., the magnitude of the marginal cost reduction through learning from the

point of view of the first period will increase when there is more electricity production

in the second period. This consideration suggests choosing a higher R&D subsidy in

order to enhance the value of learning from first-period production. By contrast, the

negative interdependence between learning and R&D as discussed in detail in (aa) and

expressed by Ci2
hi1qi1

> 0 in (3) implies that we require a lower R&D subsidy in order to
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leave more room for cost reductions via learning. Additionally, according to (8), first-

period output implicitly increases in the first-period electricity price, because a higher

p1 on the left-hand side of (8) lowers the marginal effect Ci2
qi1 < 0, which ceteris paribus

requires a larger qi1. Furthermore, a higher second-period electricity price requires a lower

first-period R&D subsidy so that the resulting cost reduction and second-period output

expansion are smaller. �

Regarding the interaction of climate and energy policy, a relevant question is how

the non-availability of the output (learning) subsidy for immature renewable energies

affects the CO2 price. The long-term effect is again straightforward. The difference with

the non-availability of the R&D subsidy is that the output subsidy affects electricity

generation of immature renewables in both periods, as can be seen in (8). Hence, in

the short- and long-term, a lower subsidy for carbon-free technologies results in higher

production costs of these technologies, according to (3) and (8), and hence less carbon-free

output qi1, qi2, i ∈ r. The output of other electricity generation technologies including

fossil-based technologies must rise in order to satisfy electricity demand. As a result, the

electricity and the carbon price will increase in both periods when emissions are curbed

by a given emissions cap.

(bb) Proof of Proposition 4:

This policy experiment mimics (ab), albeit with a notable difference: The first-period

output subsidy augments the output of the first and second period, and a second-period

subsidy the output of the second period. The R&D subsidy is granted in the first period,

but affects output in the second period only. Neglecting income effects of transfers to

producers, the R&D subsidy is unaffected by the unavailability of the short-term, i.e.,

first-period, energy efficiency subsidy λS1. The reason is that today’s R&D decisions focus

on the long-term situation when the fruits of R&D have become apparent. Therefore,

the R&D subsidy is affected by the energy efficiency subsidies that affect the long-term,

i.e., λS2 and λL1. As in (ab), higher energy efficiency investments can be induced by

increasing the marginal value of electricity demand reduction, expressed by ptdtet in

(14) and (15). As a consequence, the overall effect on the marginal value of demand

reduction depends on whether the price or the quantity sensitivity is stronger, as in (ab).

A price elasticity of electricity demand above unity implies that electricity quantities

react more sensitively than prices. Hence, given an elasticity above unity, one will aim

at a larger electricity quantity in order to induce higher investments in energy efficiency. �
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(ca) Proof of Proposition 5:

Energy efficiency investments cannot directly affect knowledge creation, but they can

affect it indirectly by influencing the volume of electricity generation. We know from

Equation (21) that in the presence of R&D spillovers any intervention Ψ that increases

knowledge hi1 will elevate welfare W . Equations (13) to (15) state that the left hand

side will be too low from a social point of view if λ is too low or zero. For the right hand

side, we know from (4) that the resulting low marginal energy efficiency expenditures are

associated with limited energy efficiency improvements ei1. Hence, we need to augment

the left hand side of (10) to come closer to the social optimum. The following argument

is similar to the reasoning in (aa) and (ab). We know from (3) that Ci2
hi1qi1

> 0 and

Ci2
hi1qi2

< 0. This means policy makers need to decrease immature renewable energy

output in the short-term, i.e., period 1, and increase it in the long-term, i.e., period 2,

in order to raise the magnitude of the cost reduction effect of knowledge, represented

by Ci2
hi1 . More knowledge creation in the short-term will create higher output in the

long-term since Ci2
hi1 < 0. According to (7), lower electricity supply translates into lower

demand and vice versa in the market equilibrium. The means to decrease electricity

demand and hence supply in period 1 is a higher energy efficiency subsidy for the first

period. The means to increase demand and hence supply in period 2 is consequently a

lower energy efficiency subsidy for the second period. �

(cb) Proof of Proposition 6:

The argument mimics that of (ca) above with a notable difference: Equation (21)

states that in the presence of learning spillovers any intervention Ψ that increases output

qi1 of immature renewable energy technologies will elevate welfare W . Now changes

in energy efficiency imply changes in electricity demand via (4), which directly affects

electricity supply via (7). As a consequence, policy makers can directly augment elec-

tricity output by reducing energy efficiency subsidies for the short- and long-term, which

lowers the consumer’s investments in energy efficiency and raises her electricity demand. �

(da) Proof of Proposition 8:

The feed-in tariff rate refers to the choice of the policy levels as described by Equations

(8) and (9). The reasoning is equivalent to that of Proposition 1. Now we compare the

situation with a feed-in tariff (including renewable energy output subsidies) and energy
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efficiency subsidies, but without R&D subsidies, to a situation with a feed-in tariff and

energy efficiency subsidies and R&D subsidies as well. The proposition explains how to

adjust the feed-in tariff when R&D subsidies are not available (for political reasons).

Proposition 7 holds as well. �

(db) Proof of Proposition 9:

The argument mimics that of Proposition 2 at first glance. Now we compare the situ-

ation with a first-period feed-in tariff (including renewable energy output subsidies) and

an R&D subsidy but without energy efficiency subsidies to a situation with a first-period

feed-in tariff and an R&D subsidy and with energy efficiency subsidies. The proposition

explains how to adjust the feed-in tariff when energy efficiency subsidies are not (suffi-

ciently) available (for political reasons). At second glance, we need to take the effect of

the tax on total electricity generation into account. The subsidy for immature renew-

able energies enhances electricity output, whereas the tax on the remaining technologies

abates electricity output. Furthermore, the tax creates an additional distortion. On the

contrary, the optimal output subsidy will, according to Proposition 7, be reduced, once a

tax is added. This reduces the subsidy-induced distortion. In this sense, the tax opposes

the subsidy. This also holds for the effect of the tax and the subsidy for the electricity

price as outlined under Proposition 2. The overall effect depends on whether the subsidy

or the tax dominates the overall reaction of electricity generation and pricing. Notwith-

standing, one can expect that the effect of the subsidy dominates. The reason is that the

subsidy is granted for renewable energy technologies with learning potential. Besides the

direct output expansion, the subsidy therefore fosters learning (see Equation 8). On the

contrary, the effect of the tax does not involve learning, nor other externalities, and is

hence weaker. We end up with a result that mimics Proposition 2. �
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