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Abstract
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1 Introduction

Efforts to explain movements in exchange rates as a rational response to economic funda-

mentals have, for the most part, met with little success. More than thirty years ago, Meese

and Rogoff (1983) demonstrated that none of the usual economic variables (money supplies,

real incomes, trade balances, inflation rates, interest rates, etc.) could help forecast future

exchange rates better than a simple random walk forecast. With three decades of additional

data in hand, researchers continue to confirm the Meese-Rogoff results.1 While some tenuous

links between fundamentals and exchange rates have been detected, the empirical relationships

are generally unstable (Bacchetta and Van Wincoop 2004, 2013), hold only at 5 to 10 year

horizons (Chinn 2006), or operate in the wrong direction, i.e., exchange rates may help predict

fundamentals but not vice versa (Engel and West 2005).2 The failure of fundamental variables

to improve forecasts of future exchange rates has been called the “exchange rate disconnect

puzzle.”

Another puzzle relates to the “excess volatility”of exchange rates. Like stock prices, ex-

change rates appear to move too much when compared to changes in observable fundamentals.3

Engel and West (2006) show that a standard rational expectations model can match the ob-

served persistence of real-world exchange rates, but it substantially underpredicts the observed

volatility. West (1987) makes the point that exchange rate volatility can be reconciled with

fundamental exchange rate models if one allows for “regression disturbances,”i.e., exogenous

shocks that can be interpreted as capturing shifts in unobserved fundamentals. Similarly,

Balke, Ma and Wohar (2013) find that unobserved factors (labeled “money demand shifters”)

account for most of the volatility in the U.K./U.S. exchange rate using data that extends back

more than a century. An innovative study by Bartolini and Gioginianni (2001) seeks to account

for the influence of unobserved fundamentals using survey data on exchange rate expectations.

The study finds “broad evidence...of excess volatility with respect to the predictions of the

canonical asset-pricing model of the exchange rate with rational expectations”(p. 518).

A third exchange rate puzzle is the so-called “forward-premium anomaly.” In theory, a

currency traded at a premium in the forward market predicts a subsequent appreciation of

that currency in the spot market. In practice, there is a close empirical link between the

observed forward premium and cross-country interest rate differentials, consistent with the

covered interest parity condition. Hence, theory predicts that a low interest rate currency

should, on average, appreciate relative to a high interest rate currency because the subsequent

appreciation compensates investors for the opportunity cost of holding a low interest rate

bond. The theoretical slope coeffi cient from a regression of the observed exchange rate change

1For surveys of this vast literature, see Rossi (2013), Cheung, Chinn and Pascual (2005), and Sarno (2005).
2Specifically, Engel and West (2005) find Granger causality running from exchange rates to fundamentals.

Recently, however, Ko and Ogaki (2015) demonstrate that this result is not robust after correcting for the
small-sample size.

3Early studies applied to exchange rate volatility include Huang (1981) and Wadhwani (1987). Lansing and
LeRoy (2014) provide a recent update on evidence of excess volatility in the U.S. stock market.
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on the prior interest rate differential is exactly equal to one. This prediction of the theory,

known as the uncovered interest parity (UIP) condition, is grossly violated in the data. As

shown by Fama (1984), regressions of the observed exchange rate change on the prior interest

rate differential yield estimated slope coeffi cients that are typically negative and significantly

different from one. Like the other two puzzles, the forward-premium anomaly has stood the

test of time.4

The wrong sign of the slope coeffi cient in UIP regressions can be reconciled with no-

arbitrage and rational expectations if investors demand a particular type of risk premium to

compensate for holding an uncovered currency position. By failing to account for a potentially

time-varying risk premium that may co-move with the interest rate differential, the standard

UIP regression may deliver a biased estimate of the slope coeffi cient.5 Recently, Lustig and

Verdelhan (2007) provide some evidence that carry-trade profits (excess returns from betting

against UIP) may reflect a compensation for risk that stems from a negative correlation be-

tween the carry-trade profits and investors’ consumption-based marginal utility.6 However,

Burnside (2011) points out that their empirical model is subject to weak identification such

that there is no concrete evidence for the postulated connection between carry-trade profits

and fundamental risk. Moreover, Burnside, Eichenbaum, and Rebelo (2011) show that there is

no statistically significant covariance between carry-trade profits and conventional risk factors.

Verdelhan (2010) develops a rational model with time-varying risk premiums along the lines of

Campbell and Cochrane (1999). The model implies that rational domestic investors will expect

low future returns on risky foreign bonds in good times (due to an expected appreciation of

the domestic currency) when risk premia are low and domestic interest rates are high relative

to foreign interest rates. Hence, the model delivers the prediction that the domestic currency

will appreciate, on average, when domestic interest rates are high– thus violating the UIP

condition, as in the data. Unfortunately, the idea that investors expect low future returns

on risky assets in good times is strongly contradicted by a wide variety of survey evidence

from both stock and real estate markets. The survey evidence shows that investors typically

expect high future returns on risky assets in good times, not low future returns.7 Overall, the

evidence suggests that rationally time-varying risk premiums are not a convincing explanation

for the empirical failure of UIP.

This paper develops a model that can account for numerous quantitative features of real-

world exchange rates, including the three anomalies described above. The key aspect of our

approach is the way in which agents’ expectations are modeled. Starting from a standard

asset-pricing model of the exchange rate, we postulate that agents augment a simple random

4For recent evidence, see Baillie and Chang (2011) and Baillie and Cho (2014).
5See Engel (1996) for a survey of this large literature and Engel (2014) for a review of new developments in

this field.
6See also Lustig et al. (2014).
7For additional details, see Amromin and Sharpe (2014), Greenwood and Shleifer (2014), Jurgilas and

Lansing (2013), and Williams (2013).

2



walk forecast with news about fundamentals. Fundamentals in our model are determined by

cross-country interest rate differentials which, in turn, are described by Taylor-type rules, along

the lines of Engel and West (2005, 2006). We solve for a “consistent expectations equilibrium,”

in which the coeffi cient on fundamental news in the agent’s subjective forecast rule is pinned

down using the observed covariance between exchange rate changes and fundamental news.

This learnable equilibrium delivers the result that the forecast errors observed by an agent are

close to white noise, making it diffi cult to detect any misspecification of the subjective forecast

rule.8

We demonstrate that our consistent expectations model can generate volatility and per-

sistence that is remarkably similar to that observed in monthly bilateral exchange rate data

(relative to the U.S.) for Canada, Japan, and the U.K. over the period 1974 to 2012. We

show that regressions performed on model-generated data can deliver the forward-premium

anomaly, whereby a high interest rate currency tends to appreciate, thus violating the UIP

condition. Moreover, the estimated slope coeffi cient in the model regressions can vary over

a wide range when estimated using a 15-year (180-month) rolling sample period. This result

is consistent with the wide range of coeffi cient estimates observed across countries and time

periods in the data.9

In our model, agents’perceived law of motion (PLM) for the exchange rate is a driftless

random walk that is modified to include an additional term involving fundamental news,

i.e., the innovation to the AR(1) driving process that is implied by the Taylor-rule based

interest rate differential. To maintain generality regarding agents’information sets, we allow a

fraction of market participants to construct the random walk component of the forecast using

contemporaneous information about the exchange rate while the remainder employ lagged

information about the exchange rate. Our setup captures an idea originally put forth in an

informal way by Froot and Thaler (1990), who suggested that the empirical failure of the

UIP condition might be linked to the fact that some investors “may need some time to think

about trades before executing them, or that they simply cannot respond quickly to recent

information.”10

The agents’ PLM has only one parameter that can be estimated within the model by

running a regression of the exchange rate change on fundamental news, both of which are

observable to the agent.11 The agents’subjective forecast rule can be viewed as boundedly-

8The equilibrium concept that we employ was originally put forth by Hommes and Sorger (1998). A closely-
related concept is the “restricted perceptions equilibrium”described by Evans and Honkopohja (2001, Chapter
13). For other applications of consistent expectations to asset pricing or inflation, see Sögner and Mitlöhner
(2002), Branch and McGough (2005), Evans and Ramey (2006), Lansing (2009, 2010), Hommes (2013), and
Hommes and Zhu (2014).

9For evidence of variability in estimated UIP slope coeffi cients, see Bansal (1997), Flood and Rose (2002),
Baillie and Chang (2011), Baillie and Cho (2014), and Ding and Ma (2013).
10A somewhat similar information structure has been successfully employed in “sticky information”models

of U.S. inflation dynamics. See Mankiw and Reis (2002) and Carroll (2003).
11Lansing (2010) employs a similar random walk plus fundamentals forecast rule in a standard Lucas-type

asset pricing model to account for numerous quantitative features of long-run U.S. stock market data.
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rational because the resulting actual law of motion (ALM) for the exchange rate exhibits a

near-unit root with innovations that depend on Taylor-rule fundamentals.

We show that regardless of the starting value for the coeffi cient on fundamental news in

the subjective forecast rule, a standard real-time learning algorithm will converge to the vicin-

ity of the fixed point which defines the unique consistent expectations (CE) equilibrium. The

backward-looking nature of the agent’s forecast rule when using lagged exchange rate informa-

tion is the crucial element needed to generate the forward-premium anomaly. By introducing

a modest forecast weight on the lagged exchange rate, the CE model shifts the temporal re-

lationship between the expected exchange rate change and the interest rate differential, thus

flipping the sign of the slope coeffi cient in the UIP regression.

Our setup is motivated by two important features of the data: (1) real-world exchange rates

exhibit near-random walk behavior, and (2) exchange rates and fundamentals do exhibit some

tenuous empirical links. For example, Andersen, Bollerslev, and Diebold (2003) employ high

frequency data to show that fundamental macroeconomic news surprises induce shifts in the

exchange rate. When we apply the CE model’s forecast rule to exchange rate data for Canada,

Japan, and the U.K. (relative to the U.S. dollar), we find that the inclusion of fundamental

news together with the lagged exchange rate can typically improve forecast accuracy relative

to an otherwise similar random walk forecast that omits the fundamental news term.

Using consensus survey data of a large number of financial institutions that report 3-month

ahead forecasts of exchange rates (relative to the U.S.) for Canada, Japan, and the U.K., we

show that changes in the interest rate differential (a proxy for fundamental news) are helpful

in explaining the forecasted changes in the exchange rates– a result that is consistent with

the CE model’s forecast rule. In particular, the data shows that survey respondents tend to

forecast a currency appreciation during periods when the change of interest rate differential is

positive. The CE model’s forecast rule is also consistent with survey data which shows that

the vast majority of professional forecasters use both technical analysis (chart patterns of past

exchange rate movements) and fundamental economic data to construct their exchange rate

forecasts (Dick and Menkhoff 2013 and Ter Ellen, Verschoor, and Zwinkels 2013).

1.1 Related Literature

This paper relates to some previous literature that has employed models with distorted beliefs

to account for the behavior of exchange rates. Gourinchas and Tornell (2004) postulate that

agents have distorted beliefs about the law of motion for fundamentals. Related mechanisms

are proposed by Burnside et al. (2011), Ilut (2012), and Yu (2013). In contrast, we postulate

that agents have distorted beliefs about the law of motion for exchange rates, not fundamentals.

The distorted beliefs in our model affect not only the dynamics of the exchange rate, but also

the dynamics of the equilibrium interest rate differential via the Taylor-type rule.

Bacchetta and Van Wincoop (2007) introduce “random walk expectations” into an ex-

change rate model with risk aversion and infrequent portfolio adjustments. Unlike our setup,
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Figure 1: The slope of the fitted relationship between the observed exchange rate change and the prior
month’s interest rate differential is negative, confirming the forward-premium anomaly.

the agent’s subjective forecast in their model completely ignores fundamentals. While their

model can account for the forward-premium anomaly, it relies on exogenous shocks from ad

hoc noise traders to account for the observed volatility of exchange rate changes.

Chakraborty and Evans (2008) introduce constant-gain learning about the reduced-form

law of motion for the exchange rate. The agent in their model employs the correct (i.e., ra-

tional) form for the law of motion, but the estimated parameters are perpetually updated

using recent data. They show that statistical variation in the estimated parameters may

cause the UIP condition to be violated, particularly in small samples. However, their model

does not account for excess volatility of the exchange rate. Mark (2009) develops a model

with perpetual learning about the Taylor-rule coeffi cients that govern the cross-country in-

terest rate differential. He shows that the model can account for major swings in the real

deutschemark/euro-dollar exchange rate over the period 1976 to 2007.

The subjective forecast rules in our model can be interpreted as being comprised of both

chartist and fundamentalist elements. In that sense, our setup is related to a large litera-

ture on forecast switching models with heterogenous interacting agents, i.e., chartist versus

fundamentalist-type traders.12

12For examples applied to exchange rates, see Frankel and Froot (1990), De Grauwe and Grimaldi (2006),
and Markiewicz (2012), among others.
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Figure 2: The volatility of exchange rate changes is 10 to 40 times higher than the volatility of the
cross-country interest rate differential (relative to the U.S).

2 Data on Exchange Rates and Fundamentals

According to UIP theory, the cross-country interest rate differential should be a key ex-

planatory variable for subsequent exchange rate changes. Figure 1 plots scatter diagrams

of monthly bilateral exchange rate changes (in annualized percent) versus the prior month’s

average short-term nominal interest rate differential (in percent) for three pairs of countries,

namely, Canada/U.S., Japan/U.S. and U.K./U.S. The data covers the period from January

1974 through October 2012.13 The bottom right panel of Figure 1 shows a scatter diagram

of the pooled data. Figure 2 shows time series plots of the same data, with the bottom right

panel depicting the relative volatility of exchange rate changes to interest rate differentials,

where volatilities are computed using a 15-year rolling sample period.

Three aspects of Figures 1 and 2 stand out. First, there is no tight systematic relation-

ship between monthly exchange rate changes and the prior month’s interest rate differential

(exchange rate disconnect puzzle). Second, the volatility of exchange rate changes is 10 to 40

times higher than the volatility of the interest rate differential (excess volatility puzzle). Third,

the dashed lines in Figure 1 show a negative slope in the fitted relationship between the ob-

13Exchange rate changes are computed as the log difference of sequential end-of-month values and then
annualized. Interest rates are annualized 3-month government bond yields. All data are from the IMF’s
International Financial Statistics database.

6



Figure 3: Estimated UIP slope coeffi cients lie mostly in mostly in negative territory and exhibit
substantial time variation.

served exchange rate change and the prior month’s interest rate differential (forward-premium

anomaly).

The top left panel of Figure 3 plots the interest rate differentials that are used to predict

exchange rate changes via a standard UIP regression that takes the form:

∆st+1 = β0 + β1(it − i∗t ) + εt+1, (1)

where st ≡ log (St) is the logarithm of the nominal exchange rate (home currency per US

dollar) and ∆st+1 ≡ st+1 − st is the monthly percent change (annualized) from period t to

t+ 1. The short-term nominal interest rate differential is it− i∗t , where it is the rate for either
Canada, Japan, or the U.K. and i∗t is the U.S. interest rate. Under UIP (which assumes

rational expectations and risk-neutral investors), we have β0 = 0 and β1 = 1, with the error

term εt+1 reflecting white-noise rational forecast errors.

The remaining panels of Figure 3 plot the estimated slope coeffi cients β1 for each country

together with the associated standard error bands using a 15-year rolling sample period. The

horizontal dashed lines mark the values β1 = 1 and β1 = 0. For all three countries, the rolling

estimates of β1 lie mostly in negative territory, thus violating the UIP condition. Table 1

provides the full-sample estimates for β1. The point estimates are all negative, consistent with

fitted lines shown in Figure 1. Moreover, the 95 percent confidence intervals based on the
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reported standard errors exclude the theoretical prediction of β1 = 1 in their coverages.14

Table 1. Full-Sample UIP Slope Coeffi cients

Canada Japan U.K.
Pooled
Data

β̂1 −0.29 −1.86 −1.21 −0.16
Std. Error (0.65) (0.75) (0.76) (0.29)
Note: Sample period is 1974.m1 to 2012.m10.

The consistently negative estimates for β1 reported here and elsewhere in the literature have

interesting economic implications. In practice, the results imply that a carry-trade strategy

(taking a long position in high-interest currency while shorting a low-interest currency) can

deliver substantial excess returns, where excess returns are measured by (it−i∗t )−∆st+1.When

β1 < 1, the future excess return can be predicted using the current interest rate differential

it− i∗t , which raises doubts about market effi ciency.15 Efforts to account for the predictability
of excess returns in the data can be classified into two main approaches: (1) linking excess

returns to some form of compensation for bearing risk, or (2) allowing for departures from

fully-rational expectations. Empirical evidence using conventional risk factors argues against

the first approach (Burnside, Eichenbaum, and Rebelo 2011). In this paper, we follow the

second approach.

Another notable feature of the UIP regressions, evident in Figure 3, is the substantial time

variation in the estimated slope coeffi cient for a given country. Baillie and Chang (2011) and

Baillie and Cho (2014) employ time-varying parameter regressions to capture this feature of

the data. Bansal (1997) shows that the sign of β1 appears to be correlated with the sign

of the interest rate differential, but his results do not generalize to other sample periods or

countries. Ding and Ma (2013) develop a model of cross-border portfolio reallocation that can

help explain a time-varying β1 estimate. Our model can deliver a negative and statistically

significant estimate of β1 in long-sample regressions as well as substantial time-variation in the

estimated slope coeffi cient in 15-year rolling regressions. The time variation in the estimated

slope coeffi cient arises for two reasons: (1) the actual law of motion that governs ∆st+1

in the consistent expectations equilibrium turns out to differ in significant ways from the

UIP regression equation (1), and (2) the volatility of ∆st+1 in the consistent expectations

equilibrium is much higher than the volatility of it − i∗t .
14Using a dataset of 23 countries for the sample period of the 1990s, Flood and Rose (2002) obtain positive

estimated values of β1 using pooled data. However, they acknowledge (p. 257) that “pooling is a dubious
procedure”given the heterogeneity in the individual country estimates of β1.
15Cochrane (2001, p. 394) points out that return predictability is directly related to the phenomenon of

excess volatility.
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3 Model

The framework for our analysis is a standard asset-pricing model of the exchange rate. Fun-

damentals are given by cross-country interest rate differentials which, in turn, are described

by Taylor-type rules, in the spirit of Engel and West (2005, 2006). Given our data, the home

country in the model represents either Canada, Japan, or the U.K. while the foreign country

represents the United States (denoted by ∗ variables).
We postulate that the home country central bank sets the short-term nominal interest rate

according to the following Taylor-type rule

it = θit−1 + (1− θ){ gππt + gyyt + gs[st − κst−1 − (1− κ)st]} + ηt, (2)

where it is the short term nominal interest rate, πt is the inflation rate (log difference of the

price level), yt is the output gap (log deviation of actual output from potential output), st
is the log of the nominal exchange rate (home currency per U.S. dollar), st−1 is the lagged

exchange rate, and st ≡ pt−p∗t is a benchmark exchange rate implied by the purchasing power
parity (PPP) condition, where pt is the domestic price level and p∗t is the foreign price level.

16

When κ = 0, the central bank reacts to st−st which is the deviation of the exchange rate from
the PPP benchmark, consistent with the models employed by Engel and West (2005, 2006).

When κ = 1, the central bank reacts to the exchange rate change ∆st = st − st−1, consistent
with the empirical policy rule estimates of Lubik and Schorfheide (2007) and Justiniano and

Preston (2010) for a variety of industrial countries. Motivated by the empirical evidence, we

set κ ' 1.17 The term ηt represents an exogenous monetary policy shock. In contrast to

Engel and West (2005, 2006), we allow for interest-rate smoothing on the part of the central

bank, as governed by the parameter θ > 0. For the remaining reaction function parameters, we

follow standard practice in assuming gπ > 1, and gy, gs > 0. In other words, the central bank

responds more than one-for-one to movements in inflation and raises the nominal interest rate

in response to a larger output gap or a depreciating home currency (∆st > 0).

The foreign (i.e., U.S.) central bank sets the short-term nominal interest rate according to

i∗t = θi∗t−1 + (1− θ)[ gππ∗t + gyy
∗
t ] + η∗t , (3)

where we assume that the reaction function parameters θ, gπ, and gy are the same across

countries. Subtracting equation (3) from equation (2) yields the following expression for the

cross-country interest rate differential

it − i∗t = θ(it−1 − i∗t−1) + (1− θ) { gπ(πt − π∗t ) + gy(yt − y∗t ) + gs [st − κst−1 − (1− κ)st] }
+ ηt − η∗t . (4)

16We omit constant terms from equation (2) because our empirical application of the central bank reaction
function makes use of demeaned data.
17As noted below, we impose the parameter restriction 0 ≤ κ < 1 to ensure the existence of a unique rational

expectations solution of the model.
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Assuming risk-neutral, rational investors, the uncovered interest rate parity condition im-

plies

Etst+1 − st = it − i∗t , (5)

where Etst+1 is the rational forecast of next period’s log exchange rate.18 The UIP condition

says that a negative interest rate differential it−i∗t < 0 will exist when rational investors expect

a home currency appreciation, i.e., when Etst+1 < st. The expected appreciation compensates

investors for the opportunity cost of holding a low interest rate domestic bond rather than

a high interest rate foreign bond. Rational expectations implies Etst+1 = st+1 − εt+1, where
εt+1 is a white-noise forecast error. Hence, theory predicts that, on average, a low interest rate

currency should appreciate relative to a high interest rate currency such that E (st+1 − st) < 0.

Substituting the cross-country interest rate differential (4) into the UIP condition (5)

and solving for st yields the following no-arbitrage condition that determines the equilibrium

exchange rate

st = bEtst+1 + κ(1− b)st−1 + xt, b ≡ 1

1 + (1− θ)gs
< 1 (6)

where b is the effective discount factor and xt is the fundamental driving variable defined as

xt ≡ −bθ(it−1−i∗t−1) − b(1−θ)[ gπ(πt−π∗t )+gy(yt−y∗t )−gs(1−κ)(pt−p∗t )] − b (ηt − η∗t ) , (7)

where we have made the substitution st = pt − p∗t .19

The no-arbitrage condition (6) shows that the equilibrium exchange rate st depends on

the agent’s conditional forecast Etst+1, the lagged exchange rate st−1, and the fundamental

driving variable xt. When 0 ≤ κ < 1, the sum of the coeffi cients on Etst+1 and st−1 is less

than unity which ensures the existence of a unique rational expectations solution. The general

form of equation (6), whereby the current value of an endogenous variable depends in part on

its own expected value and a lagged value appears in a wide variety of economic models, such

as the hybrid New Keynesian Phillips Curve (Galí, et al. 2005).

The macroeconomic variables that enter the definition of xt exhibit a high degree of persis-

tence in the data. We therefore model the behavior of the fundamental driving variable using

the following stationary AR(1) process

xt = ρxt−1 + ut, ut ∼ N
(
0, σ2u

)
, |ρ| < 1, (8)

where the parameter ρ governs the degree of persistence. While some studies allow for a unit

root in the law of motion for fundamentals, we maintain the assumption of stationarity for

consistency with most of the literature. In practice, it is nearly impossible to distinguish
18More precisely, the UIP condition is EtSt+1/St = (1 + it) / (1 + i∗t ) . Following standard practice, we take

logs of both sides and ignore the Jensen’s inequality term such that log (EtSt+1) ' Et log (St+1) .
19The basic form of equations (6) and (7) will remain unchanged if we assume that the foreign central bank

also reacts to the exchange rate, but with a smaller reaction coeffi cient g∗s < gs. In this case, the effective
discount factor becomes b = 1/ [1 + (1− θ) (gs − g∗s )] .
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between a unit root process and one that is stationary but highly persistent given a finite

sample size (Cochrane 1991).

Given values for xt and st, we can recover the current-period interest rate differential as

follows

it − i∗t = −1

b
xt +

(
1− b
b

)
(st − κst−1) . (9)

Empirical estimates of central bank reaction functions typically imply θ values in the range of

0.8-0.9 together with small values for gs such that b ' 1. In this case, the equilibrium dynamics

for it − i∗t will be very similar to the equilibrium dynamics for −xt. We will make use of the
inverse relationship between the interest rate differential and the fundamental driving variable

xt in our discussion of the results.

3.1 Rational Expectations

Proposition 1 shows that the no-arbitrage condition (6) delivers a unique rational expectation

solution.

Proposition 1. When fundamentals are governed by equation (8), there is unique solution to
the no-arbitrage condition (6) under rational expectations (RE), as given by

st = asst−1 + axxt,

as =
1−

√
1− 4κb(1− b)

2b
, ax =

1

1− b(as + ρ)

Proof : See Appendix A.

Our parameter restriction 0 ≤ κ < 1 implies the result 0 ≤ as < (1− b) /b. When b ' 1,

the equilibrium coeffi cient on the lagged exchange rate must be a small positive number such

that as ' 0. The result 0 ≤ as < (1− b) /b further implies (1− bρ)−1 < ax < [b(1− ρ)]−1.

When b and ρ are both close to unity, the equilibrium coeffi cient ax will turn out to be a

relatively large positive number. Since as ' 0, the equilibrium exchange rate approximately

inherits the persistence properties of the fundamental driving variable xt. Since xt is very

persistent in the data, the RE model predicts a persistent exchange rate level.20

The unconditional moments for st and ∆st implied by the RE model are contained in

Appendix B. The UIP condition (5) together with the assumption of rational expectations

implies V ar (it − i∗t ) = Cov (∆st+1, it − i∗t ) . Hence, the RE model predicts the following

slope coeffi cient from a UIP regression

β1 =
Cov (∆st+1, it − i∗t )

V ar (it − i∗t )
= 1. (10)

20For the baseline model calibration, the equilibrium coeffi cients turn out to be as = 0.0196 and ax = 20.23.
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3.2 Consistent Expectations

Real-world exchange rates exhibit near-random walk behavior. A naive forecast rule that uses

only the most recently-observed exchange rate almost always outperforms a fundamentals-

based forecast (Rossi 2013). In addition to its predictive accuracy, a random walk forecast has

the advantage of economizing on computational and informational resources. As described

many years ago by Nerlove (1983), “Purposeful economic agents have incentives to eliminate

errors up to a point justified by the costs of obtaining the information necessary to do so...The

most readily available and least costly information about the future value of a variable is its

past value”(p. 1255).

Still, there is evidence that market participants pay attention to fundamentals. A recent

study by Dick and Menkhoff (2013) uses survey data to analyze the methods of nearly 400

professional exchange rate forecasters. The data shows that the vast majority of forecasters

use both technical analysis (chart patterns of past exchange rate movements) and fundamental

economic data to construct their forecasts. Another study of survey data by ter Ellen, et al.

(2014) finds evidence that large wholesale investors in the foreign exchange market employ

both chartist and fundamentals-based forecasting strategies.

To capture the above ideas, we postulate that agents’perceived law of motion (PLM) for

the exchange rate is given by

st = st−1 + αut, (11)

where ut represents “fundamental news,”as measured by the innovation to the AR(1) funda-

mental driving process (8). There is only one parameter α that agents in the model can readily

estimate by running a regression of ∆st on ut. The PLM can be interpreted as being comprised

of both chartist and fundamentalist elements. The presence of the lagged exchange rate st−1
reflects the chartist element while the news term αut reflects the fundamentalist element. The

PLM also captures the idea that a fundamental news shock ut can induce a significant and

immediate jump in the exchange rate, consistent with the findings of Andersen, Bollerslev,

and Diebold (2003) who employ high frequency data.

The PLM is used by agents to construct a subjective forecast Êt st+1 which takes the

place of the rational forecast Et st+1 in the no-arbitrage condition (6). Following Yu (2013),

p. 476. our solution procedure implies that the no-arbitrage condition “holds ex ante under

investors’perception.”But ex post, the exchange rate evolves according to the actual law of

motion (ALM) to be derived below.21 Since the no-arbitrage condition implies that st depends

on the agent’s own subjective forecast, it is questionable whether an agent could make use

of the contemporaneous value st when constructing a forecast in real-time. To deal with

this timing issue, models that employ adaptive learning or other forms of boundedly-rational

expectations typically assume that agents can only make use of the lagged realization of the

21 Ilut (2012) develops a rational model where the UIP condition holds ex ante under agents’endogenously
pessimistic beliefs, but the UIP condition fails ex post.
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forecast variable (in this case st−1) when constructing their subjective forecast at time t.22 A

lagged-information setup avoids simultaneity in the determination of the actual and expected

values of the forecast variable.

Here we wish to maintain generality regarding agents’ information. Motivated by the

discussion in Froot and Thaler (1990), we postulate that a fraction λ of market participants

(labeled Type-1 agents) employ contemporaneous information about the exchange rate while

the remaining fraction 1 − λ (labeled Type-2 agents) employ lagged information, where 0 ≤
λ < 1.23 As in the RE solution, we assume that both Type-1 and Type-2 agents have access

to contemporaneous information about the fundamental driving variable xt. According to the

definition (7), xt does not not depend on st and hence there is no controversy about including it

in the information sets of both Type-1 and Type-2 agents. A long history of observations of xt
would allow both types of agents to discover the stochastic process (8). Given this knowledge,

both types of agents could infer the fundamental news ut from sequential observations of xt
and xt−1.

From the PLM (11), the subjective forecast of Type-1 agents is given by

Ê 1,t st+1 = st, (12)

which coincides with a random walk forecast because the Type-1 agents’knowledge of fun-

damentals implies Ê 1,t ut+1 = 0. Since Type-2 agents employ lagged information about the

exchange rate, their PLM must be iterated ahead two periods to obtain

Ê 2,t st+1 = Ê 2,t [st + αut+1] ,

= Ê 2,t [st−1 + αut + αut+1] ,

= st−1 + αut, (13)

which makes use of the lagged exchange rate st−1. Finally, we assume that the aggregate

market forecast is given by the following population-weighted average of the two agent types:

Êt st+1 = λ Ê 1,t st+1 + (1− λ)Ê 2,t,

= λ st + (1− λ) (st−1 + αut) ,

= st−1 + λ∆st + (1− λ)αut, (14)

where λ∆st is a momentum term that derives from aggregating across agents with different

information sets.

Substituting the aggregate market forecast (14) into the no-arbitrage condition (6) and

solving for st yields the following actual law of motion for the exchange rate

st =

[
1− (1− κ)(1− b)

1− bλ

]
st−1 +

b(1− λ)α

1− bλ ut +
xt

1− bλ, (15)

22For an overview of these methods, see Evans and Honkapohja (2001), Hommes (2013), and Hommes and
Zhu (2014).
23Adam, Evans and Honkapohja (2006) employ a similar generalization of agents’information sets in a model

of adaptive learning applied to hyperinflation.
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where xt is governed by (8). Notice that the form of the ALM is similar, but not identical,

to the RE model solution from Proposition 1. Recall that we previously showed that the

equilibrium coeffi cient on the lagged exchange rate in the RE model must be a small positive

number such that as ' 0. In the CE model, the parameter restriction 0 ≤ κ < 1 implies that

the equilibrium coeffi cient on the lagged exchange rate has a lower bound of b (1− λ) / (1− bλ)

when κ = 0. This lower bound is close to unity when b ' 1. Since the equilibrium coeffi cient

on st−1 in the CE model is near unity, the agents’perception of a unit root in the exchange

rate via the PLM (11) turns out to be close to self-fulfilling. Hence we can say that agents are

forecasting in a way that, ex post, appears to be near-rational.

3.2.1 Defining the Consistent Expectations Equilibrium

We now define a “consistent expectations equilibrium”along the lines of Hommes and Sorger

(1998) and Hommes and Zhu (2014). Specifically, the parameter α in the agents’PLM (11) is

pinned down using the moments of observable data. Since the PLM presumes that st exhibits

a unit root, agents in the model can readily estimate α as follows

α =
Cov (∆st, ut)

σ2u
, (16)

where Cov (∆st, ut) and σ2u = V ar (ut) can be computed from observable data. An analytical

expression for the observable covariance can be derived from the ALM (15) which implies:

∆st = − (1− κ)(1− b)
1− bλ st−1 +

b(1− λ)α

1− bλ ut +
xt

1− bλ, (17)

Cov (∆st, ut) =

[
b(1− λ)α+ 1

1− bλ

]
σ2u. (18)

Equations (16) and (18) can be combined to form the following definition of equilibrium.

Definition 1. A consistent expectations (CE) equilibrium is defined as a perceived law of

motion (11), an aggregate market forecast (14), an actual law of motion (15), and a subjective

forecast parameter α, such that the equilibrium value α∗ is given by the unique fixed point of

the linear map

α = T (α) ≡ b(1− λ)α+ 1

1− bλ ,

α∗ =
1

1− b ,

where b ≡ 1/ [1 + (1− θ)gs] < 1 is the effective discount factor and λ is the fraction of agents

who employ contemporaneous information about the exchange rate.

Interestingly, the fixed point value α∗ depends only on the effective discount factor b

and not on λ which measures the fraction of Type-1 agents who employ contemporaneous
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information about st. But as we shall see, λ does influence other results, such as the theoretical

slope coeffi cient from a UIP regression. The slope of the T (α) map determines whether the

equilibrium is stable under learning. The slope is given by T ′ (α) = b(1− λ)/ (1− bλ) . Since

0 < T ′ (α) < 1, the CE equilibrium is globally stable. In Section 4, we demonstrate that a

real-time learning algorithm always converges to the vicinity of the theoretical fixed point α∗

regardless of the shock sequences or the starting value for α.

3.2.2 Implications for the Forward-Premium Anomaly

The unconditional moments implied by the actual laws of motion (15) and (17) turn out to

be quite complicated, as shown in Appendix C. It is useful to consider what happens to these

moments when the effective discount factor approaches unity. When b → 1 the equilibrium

exchange rate exhibits a unit root. From equation (17), the actual law of motion becomes

∆st = αut + xt/ (1− λ) where xt = − (it − i∗t ) from equation (9). In this case, the analytical

slope coeffi cient from a UIP regression is given by

β1 = lim
b→ 1

Cov (∆st+1, it − i∗t )
V ar (it − i∗t )

= − ρ

1− λ, (19)

which demonstrates that the CE model can deliver a negative slope coeffi cient, thus repro-

ducing the well-documented forward-premium anomaly. When all agents are Type-2 (employ

lagged information), we have λ = 0 and the slope coeffi cient equals −ρ. However, when some
agents are Type-1 (employ contemporaneous information), we have 0 < λ < 1 and the slope

coeffi cient can become more negative than −ρ. When 0 < b < 1, the slope coeffi cient remains

negative, but is smaller in magnitude than in the limiting case of b→ 1. Two out of the three

empirical slope coeffi cients reported in Table 1 are below −1 which would suggest a calibration

with λ > 0. We will confirm these results numerically in the quantitative analysis presented

in Section 5.

The intuition for the forward-premium anomaly in the CE model is not complicated. For

simplicity, let us consider the case where all agents are Type-2 such that λ = 0. From equation

(14), the aggregate market forecast becomes Êtst+1 = st−1 + αut. Subtracting st from both

sides of this expression yields Êtst+1−st = −∆st+αut. In contrast, any rational expectations

model implies Etst+1 = st+1−εt+1, where εt+1 is the white noise rational forecast error. Again
subtracting st from both sides yields Etst+1−st = ∆st+1−εt+1. The UIP condition (5) relates
the forecasted change in the exchange rate to the prior interest rate differential it − i∗t . By
introducing positive weight on st−1 in the aggregate market forecast, the CE model shifts the

temporal relationship between the forecasted change of the exchange rate and the interest rate

differential, thus flipping the sign of the slope coeffi cient in the UIP regression.

Additional insight can obtained by substituting the ALM for ∆st (17) into the Taylor-

rule based interest rate differential (9) to obtain the following equilibrium expression for the
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interest rate differential:

it − i∗t = −1

b
xt +

(
1− b
b

){[
1− (1−κ)(1−b)

1−bλ − κ
]
st−1 +

b(1− λ)α

1− bλ ut +
xt

1− bλ

}
︸ ︷︷ ︸

st−κst−1

,

= (1− λ)

[
(1− b)(1− κ)

1− bλ st−1 +
(1− b)α
1− bλ ut −

xt
1− bλ

]
,

= (1− λ) (−∆st + αut) (CE model), (20)

where the last expression again makes use of (17). From equation (1), the sign of the UIP

slope coeffi cient β1 is governed by the sign of Cov (∆st+1, it − i∗t ) . Iterating equation (20)
ahead one period and then solving for ∆st+1 yields ∆st+1 = −

(
it+1 − i∗t+1

)
/ (1− λ) + αut+1

which in turn implies

Cov (∆st+1, it − i∗t ) =
−1

1− λCov
(
it+1 − i∗t+1, it − i∗t

)
(CE model). (21)

The right-side of the above expression will be negative so long as 0 ≤ λ < 1 and the interest

rate differential exhibits positive serial correlation, as it does in both the model and the data.

Intuitively, since the interest rate differential depends on the exchange rate via the Taylor-type

rule, and the exchange rate depends on agents’expectations via the no-arbitrage condition (6),

a departure from rational expectations that involves lagged information can shift the dynamics

of the variables that appear on both sides of the UIP regression equation (1).

The corresponding derivation for the RE solution is

it − i∗t = −1

b
xt +

(
1− b
b

)
[(as − κ)st−1 + axxt]︸ ︷︷ ︸

st−κst−1

,

=
(1− b)(as − κ)

b
st−1 + (as + ρ− 1)axxt,

= (as − 1)asst−1 + (as − 1)axxt + axρxt

= ∆st+1 − axut+1 (RE model), (22)

where we have made use of the definition of ax in going from line 1 to line 2, the definition of

as in going from line 2 to line 3, and finally the definitions of st from Proposition 1 and of xt+1
to obtain the final result. Solving equation (22) for ∆st+1 yields ∆st+1 = (it − i∗t ) + axut+1

which in turn implies

Cov (∆st+1, it − i∗t ) = V ar (it − i∗t ) (RE model), (23)

such that the right-side is always positive and the slope coeffi cient in the UIP regression is

unity.
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4 Applying the Model’s Methodology to the Data

Using the definition of the fundamental driving variable xt in equation (7), we construct time

series for xt in Canada, Japan, and the U.K. using monthly data on the consumer price

index, industrial production, and the short-term nominal interest rate differential relative to

the U.S. The interest rate differential is computed using 3-month government bond yields.

Our data are from the International Monetary Fund’s International Financial Statistics (IFS)

database and covers the period January 1974 through October 2012. To construct measures

of the output gap for each country, we estimate and remove a quadratic trend from the

logarithm of the industrial production index.24 In constructing the time series for xt, we use

the following calibrated values for the Taylor-rule parameters: θ = 0.9, gπ = 1.5, gy = 0.5,

gs = 0.2, and κ = 0.98. These values are consistent with those typically employed or estimated

in the monetary literature.25 Empirical estimates of the interest rate smoothing parameter

θ typically imply θ ' 0.8 for quarterly data. Since our model employs monthly data, we

choose θ = 0.9. Given the Taylor-rule parameters, the effective discount factor in our model

is b ≡ 1/ [1 + (1− θ)gs] = 0.9804.

Table 2 reports summary statistics for the nominal interest rate differential (relative to the

U.S.) and the constructed time series for xt. As noted earlier in the discussion of equation (9),

the equilibrium dynamics for it − i∗t will be very similar to the equilibrium dynamics for −xt
whenever b ' 1, as is the case here.

Table 2. Summary Statistics of Data Fundamentals

Canada Japan U.K.
Std Dev (it − i∗t ) 1.62% 2.35% 2.18%
Corr (it − i∗t , it−1 − i∗t−1) 0.956 0.972 0.953

Std Dev (xt) 1.64% 2.52% 2.30%
Corr (xt, xt−1) 0.889 0.892 0.871

Corr (it − i∗t , −xt) 0.964 0.957 0.955

Note: Sample period is from 1974.m1 to 2012.m10. The fundamental

driving variable xt is defined by equation (7).

Before proceeding with simulations from the theoretical model, we wish to examine the

performance of the postulated forecast rules (12) and (13) using the exchange rate data for

Canada, Japan, and the U.K. Table 3 reports the average root mean squared forecast errors

(RMSFE) for four different forecast rules. The RMSFE statistics are computed sequentially

using a 15-year rolling sample period and then averaged. The initial sample period is from

1974.m1 to 1988.m1. The first two rows of the table show the results for our postulated forecast
24Similar results are obtained if industrial production is detrended using the Hodrick-Prescott filter. Remov-

ing a stochastic trend defined using the method of Beveridge and Nelson (1981) would result in a less-volatile
output gap (see Cogley 2001) and hence a less-volatile fundamental driving variable, further exacerbating the
excess volatility puzzle.
25See, for example, Lubik and Schorfheide (2007) and Justiniano and Preston (2010). In particular, they

estimate values for the exchange rate response coeffi cient gs in the range of 0.07 to 0.29.
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Figure 4: For Canada, Japan and the U.K., the use of fundamental news can improve forecast per-
formance relative to a random walk forecast with lagged information. In all three countries, exchange
rate changes exhibit low peristence, consistent with the near-random walk behavior of exchange rates.

rules (12) and (13) which are associated with the Type-1 and Type-2 agents, respectively.26

The third row shows the results of a random walk forecast using only lagged-information

about the exchange rate, i.e., no fundamental news. The fourth row shows the results for a

fundamentals-only forecast where the coeffi cients f0,t and f1,t are estimated sequentially for

each rolling sample period using data for each country’s fundamental driving variable xt.

Table 3. Average 15-year Rolling RMSFEs

Forecast Rule Canada Japan UK
Ê 1,t st+1 = st 19.0% 39.8% 36.2%

Ê 2,t st+1 = st−1 + αt−1 ut 25.1% 51.6% 46.9%

Êt st+1 = st−1 26.6% 58.6% 53.3%

Êt st+1 = f0,t + f1,t xt 125% 358% 159%

Notes: Root mean squared forecast errors (RMSFE) are computed

sequentially using a 15-year rolling sample period and then averaged.

The initial sample period is from 1974.m1 to 1988.m1.

Consistent with many previous studies, the top row of Table 3 shows that a random walk
26To construct the Type-2 agent’s forecast, we sequentially estimate the law of motion for fundamentals (8)

for the rolling sample period and use the resulting parameter estimates to identify a sequence of fundamental
innovations ut for that sample period. We then estimate the response coeffi cient to fundamental news using
only lagged information about the exchange rate, i.e., αt−1 = Cov (∆st−1, ut−1) /σ

2
u.
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Figure 5: Top panels: Professional survey forecasts of 3-month ahead exchange rates track well with
the lagged exchange rate, consistent with the Type-2 agents’subjective forecast rule (13) in the CE
model. Bottom panels: Survey forecasts appear to respond to changes in the interest rate differential
(a proxy for fundamental news), again consistent with the Type-2 agents’subjective forecast rule.

forecast using contemporaneous information (Type-1 agent forecast) has the lowest RMSFE

and thus outperforms the other three forecast rules. The fundamentals-only forecast in the

bottom row of the table exhibits the worst performance with the highest RMSFE. For this

exercise, our main interest is asking whether the use of fundamental news can improve the

performance of a random walk forecast that uses lagged information about the exchange rate.

The answer is yes. Comparing the second and third rows of Table 3 shows that the use of

fundamental news substantially improves forecast performance (lower RMSFE) when averaged

over the entire sequence of rolling sample periods. In addition, Figure 4 also shows that the

use of fundamental news can lower the RMSFE statistics (relative to a random walk forecast

with lagged information) for all three country pairs using a rolling 15-year sample period. This

result is particularly strong for Japan and UK. In the case of Canada, the use of fundamental

news can still improve forecast performance, particularly in the more recent 15-year sample

periods. The weaker results for Canada can be traced to the fact that Canada’s exchange

rate behaves closest to a pure random walk of the three countries. Evidence of this can be

seen in the bottom right panel of Figure 4 where we plot the 15-year rolling autocorrelation

of exchange rate changes Corr (∆st, ∆st−1) . The rolling autocorrelation statistic for Canada

remains closest to zero over the entire sample period, indicating the near-random walk behavior
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of Canada’s exchange rate.

While the preceding exercise showed that the use of fundamental news can improve a

lagged-information random walk forecast, it is interesting to consider some direct evidence on

whether professional forecasters behave in a way that is consistent with the CE model. We

noted earlier that the vast majority of professional forecasters report that they use both chart

patterns and fundamentals when constructing their exchange rate forecasts. Figure 5 provides

some additional evidence that professionals construct exchange rate forecasts in a way that is

consistent with the Type-2 agents in the CE model.

The top panel of Figure 5 plots the 3-month ahead survey forecasts for the three countries’

exchange rates versus the lagged value of the actual exchange rates, i.e., the exchange rate at

time t−1.27 For all three countries, the survey forecasts are clustered along the 45-degree line,

suggesting that a lagged information random walk forecast captures much of the behavior

of the professional forecasters.28 The bottom panel of Figure 5 shows scatter plots of the

forecasted 3-month ahead exchange rate changes from the survey versus the change in the

interest rate differentials– a proxy for fundamental news. Specifically, a positive change in

the interest rate differential it− i∗t is a proxy for −ut since, as shown earlier, the fundamental
driving variable xt is negatively correlated with the interest rate differential. The scatter

plots show that survey respondents tend to forecast a negative change in the exchange rate

(a forecasted appreciation) in response to a positive change in the interest rate differential,

which is a proxy for −ut. When α > 0, the Type-2 agents’subjective forecast rule (13) also

predicts a negative change in the exchange rate in response to a negative realization of ut.

5 Quantitative Analysis

5.1 Numerical Solution for the Equilibrium

We now examine a numerical solution for the consistent expectations equilibrium by plotting

the map T (α) from Definition 1. As noted earlier, the calibrated Tayor-rule parameters imply

an effective discount factor of b = 0.9804. The parameters of the fundamental driving process

(8) are chosen to achieve Std Dev (xt) = 0.02 (i.e., 2%) and Corr (xt, xt−1) = 0.95, which are

close to the values observed in the data (see Table 2). This procedure yields σu = 0.00624

and ρ = 0.95. We calibrate the fraction of Type-1 agents who employ the contemporaneous

observation st to be λ = 0.5. We find that different values of λ primarily influence the size of

the UIP regression slope coeffi cient in the CE model with only minor effects on the model’s

other quantitative properties. From equation (19) with λ = 0.5 and ρ = 0.95, the CE model

predicts a slope coeffi cient of β1 = −1.9 which falls within the range of values obtained from

27The survey forecasts for the Canada/U.S., Japan/U.S., and U.K./U.S. exchange rate are the consensus
values from a monthly survey of a large number of financial institutions, as compiled by FX4casts.com. The
survey dates cover the period 1986.m8 to 2012.m10.
28A similar pattern can be observed when plotting survey forecasts for U.S. inflation versus lagged actual

inflation. See Lansing (2009).
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Figure 6: The T-map for the consistent expectations equilibrium lies very close to the 45-degree
line. At the unique fixed point equilibrium, the volatility of exchange rate changes in the consistent
expectations model (CE) is more than twice that of the solution to the rational expectations (RE)
model. In equilibrium, the forecast errors observed by Type-1 and Type-2 agents in the CE model are
both close to white noise, making it diffi cult for agents to detect any misspecification of their subjective
forecast rules.

the data (see Figure 3). As a point of comparison, Carroll (2003) uses survey data on U.S.

inflation forecasts to estimate a value of 0.27 for the fraction of agents who update their

forecasts to the most recent information. One might expect the fraction of up-to-date agents

to be higher in foreign exchange markets which are characterized by large transaction volumes

and high frequency trading.

The top-left panel of Figure 6 plots the map T (α) from Definition 1 using the calibrated

parameter values. The map crosses the 45-degree line at α∗ = 1/ (1− b) = 51. The slope of

the map is T ′ (α) = b(1−λ)/ (1− bλ) = 0.96. Since the slope is less than unity, the fixed point

is stable under learning, as we demonstrate in the real-time learning simulations below. Still,

convergence to the equilibrium can be slow since the T-map lies very close to the 45-degree

line. The top-right panel of Figure 6 plots the theoretical standard deviation of ∆st in the

CE model as α varies from 0 to 100. The horizontal line shows the corresponding standard

deviation implied by the rational expectation solution. At the equilibrium value of α∗ = 51,

the CE model delivers excess volatility, i.e., the volatility of ∆st in the CE model is nearly

three times higher than the corresponding volatility in the RE model. Recall that the agents’
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subjective forecasts in the CE model embed a unit root assumption. Due to the self-referential

nature of the no-arbitrage condition (6), the agents’subjective forecasts influence the dynamics

of the object that is being forecasted. In equilibrium, the agents’perception of a unit root

becomes close to self-fulfilling.

The bottom-left panel of Figure 6 shows the persistence of the forecast errors for the Type-

1 and Type-2 agents. At the fixed point equilibrium, both subjective forecast rules perform

well in the sense that they produce near-zero autocorrelations, making it extremely diffi cult

for the agents to detect any misspecification errors.

The bottom-right panel of Figure 6 plots the theoretical standard deviation of the interest

rate differential it − i∗t . For all values of α, the volatility of it − i∗t in the CE model is slightly
below the volatility implied by the RE solution. This result is robust to different values of λ.

Hence, the CE model’s excess volatility in ∆st is not being driven by excess volatility in the

interest rate differential but rather is driven solely by agents’expectations.

Table 4 shows the theoretical moments of∆st in the CE model as predicted by the perceived

law of motion (11) and the actual law of motion (15). The actual moments observed by the

agents are very close to those predicted by their perceived law of motion, giving no indication

of any misspecification. In addition, the autocorrelation structure of ∆st remains close to zero

at all lags, reinforcing the agents’perception of unit root in the law of motion for st.

Table 4. Theoretical Moments of ∆st

Rational Expectations Consistent Expectations
Statistic PLM = ALM PLM (predicted) ALM (observed)

Std Dev (∆st) 12.79% 31.85% 32.06%
Corr (∆st,∆st−1) −0.0059 0 0.0478
Corr (∆st,∆st−2) −0.0243 0 0.0454
Corr (∆st,∆st−3) −0.0235 0 0.0430

Notes: Parameter values are b = 0.9804, κ = 0.98, ρ = 0.95, σu = 0.00624, λ = 0.5, α = α∗ = 51.

5.2 Forecast Error Comparison

Proposed departures from rational expectations are often criticized on the grounds that in-

telligent agents would eventually detect the misspecification of their subjective forecast rule.

We counter this criticism in two ways. First, we show that the autocorrelation structure of

the forecast errors observed by the Type-1 and Type-2 agents in the CE model are close to

white noise, making it diffi cult for them to detect any misspecification. Second, we show that

the forecast performance of both types of agents is nearly as good as that of a hypothetical

“Type-3”agent who is endowed with knowledge of the actual law of motion (15). Hence, there

is very little reward available in the model for an individual agent who may wish to expend

resources searching for a better forecast rule.

From equations (12) and (13), the forecast errors observed by the Type-1 and Type-2
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agents in the CE model are given by

err1,t+1 = st+1 − Ê 1,t st+1,

= st+1 − st, (24)

err2,t+1 = st+1 − Ê 2,t st+1,

= st+1 − st−1 − αut, (25)

where the evolution of st is governed by the ALM (15).

Now consider an atomistic Type-3 agent who understands that the evolution of st is gov-

erned by the ALM. The hypothetical Type-3 agent cannot influence the evolution of st but is

tasked only with making forecasts. The forecast error observed by the Type-3 agent is given

by

err3,t+1 = st+1 −
[
1− (1− κ)(1− b)

1− bλ

]
st −

ρ xt
1− bλ. (26)

Given the forecast error expressions, it is straightforward to compute the associated auto-

correlations and the root mean squared forecast errors, as given byRMSFEi ≡
√
E[(erri,t+1)

2]

for i = 1, 2, 3. In all cases, the forecasts are unbiased such that E (erri,t+1) = 0.

Within the RE model , the forecast errors observed by the fully-rational agent are given

by

errre,t+1 = st+1 − Et st+1

= asst + axxt+1 − (asst + axρxt)

= axut+1, (27)

where have made use of the solution from Proposition 1. The above expression implies

RMSFEre = axσu.

Table 5 compares the moments of the various forecast errors defined above, as computed

from model simulations. In the CE model, the autocorrelations of the forecast errors are

near zero at all lags for both Type-1 and Type-2 agents, giving no significant indication of a

misspecification. A comparison of the RMSFE values shows that the RE model exhibits the

most accurate forecasts (lowest RMSFE), as expected. However, it is important to realize

that an individual agent inhabiting the CE model could never achieve this level of forecast

performance unless all of the other agents decided to switch to the fully-rational forecast rule.

This is because the actual law of motion for the exchange rate in the CE model is permanently

shifted by the presence of the Type-1 and Type-2 agents.

In the last column of Table 5, we see that the the ALM-based forecast of the hypotheti-

cal Type-3 agent has a slightly lower RMSE of 31.8% in comparison to the values of 32.0%

and 32.7% for the Type-1 and Type-2 agents, respectively. Hence, there is little room for an
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Figure 7: The figure plots twenty-four separate real-time learning paths (grouped by starting value)
for the PLM parameter α. The simulations confirm that the consistent expectations equilibrium is
learnable; the estimated value of α eventually converges to the vicinity of the theoretical fixed point
value α∗ = 51, regardless of the shock sequences or the starting value for α.

individual agent in the CE model to improve forecasting performance by employing more so-

phisticated (and presumably more costly) econometric methods to discover the true underlying

law of motion for the exchange rate.

Table 5. Comparison of Forecast Errors

CE Model

RE Model
Type-1
Agent

Type-2
Agent

ALM-based
Forecast

Corr(errt+1, errt) −0.002 0.048 0.084 −0.001
Corr(errt+1, errt−1) 0.012 0.059 0.127 0.010
Corr(errt+1, errt−2) 0.001 0.046 0.111 0.008√
Mean

(
err2t+1

)
12.62% 32.0% 32.7% 31.8%

Notes: Forecast errors are defined by equations (24) through (27). Model statistics are

computed from a 10,000 period simulation. RE = rational expectations, CE = consistent expectations,

ALM = actual law of motion.
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Figure 8: The consistent expectations (CE) model generates much more volatility in the exchange rate
change ∆st than the rational expectation (RE) model . Both model solutions exhibit similar volatility
for the interest rate differential it − i∗t .

5.3 Model Simulations

Using the same baseline parameter values shown in Table 4, Figure 7 plots twenty-four sepa-

rate real-time learning paths (grouped by starting value) for the fundamental news response

parameter α. We employ four separate starting values α0 ∈ {31, 41, 61, 71} that initially
enter the ALM (11), with each learning path subject to a different sequence of draws for the

fundamental innovation ut. Each period, a new value for α is computed from past observable

data using equation (16) and then substituted into the ALM and so on. To speed up the

learning process, we assume that agents in the CE model compute the relevant covariance

in equation (16) using a 30-year (360-month) rolling sample period. The simulations confirm

that the consistent expectations equilibrium is learnable; the estimated value of α eventually

converges to the vicinity of the theoretical fixed point value α∗ = 51, regardless of the starting

value.

Figure 8 plots simulated values for∆st and it−i∗t for both models. The simulations confirm
the theoretical results presented earlier in Table 4; the CE model generates considerably more

volatility in ∆st than the RE model. This is true despite the fact that CE model exhibits

slightly lower volatility for the interest rate differential relative to the RE model, as shown by

the bottom panels of Figure 8.
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Table 6 compares the moments observed in the data to those generated by the model

simulations. The CE model does a remarkably good job of matching all of the data mo-

ments. The CE model and the RE model can both generate near-random walk behavior of

the exchange rate such that Corr (∆st, ∆st−1) ' 0 and Corr (∆2st, ∆2st−1) ' −0.5, where

∆2st ≡ ∆st − ∆st−1 is the second difference of the exchange rate. However, the RE model

generates much lower volatility in ∆st and ∆2st.

The middle rows of Table 6 confirm that the moments of the interest rate differential it− i∗t
in both models are close to those observed in the data. This is true even though we have not

attempted to customize the values of the Taylor rule parameters to each country. Finally,

the bottom row of Table 6 shows that the CE model produces a negative correlation between

∆st+1 and the prior interest rate differential it− i∗t . The negative correlation is consistent with
the data in all three countries and with the typical negative sign of the slope coeffi cient in the

empirical UIP regressions, as discussed further below.

Table 6. Unconditional Moments: Data versus Models

Canada Japan U.K.
CE
Model

RE
Model

Std Dev (∆st) 22.7% 38.3% 35.6% 32.0% 12.76%
Corr (∆st, ∆st−1) −0.054 0.055 0.093 0.048 −0.009

Std Dev
(
∆2st

)
33.0% 52.5% 48.0% 44.2% 18.1%

Corr (∆2st, ∆2st−1) −0.535 −0.493 −0.467 −0.504 −0.496

Std Dev (it − i∗t ) 1.62% 2.35% 2.18% 1.86% 2.04%
Corr (it − i∗t , it−1 − i∗t−1) 0.956 0.972 0.954 0.952 0.975

Corr (∆st+1, it − i∗t ) −0.021 −0.115 −0.074 −0.117 0.153

Notes: Data sample period is from 1974.m1 to 2012.m10. CE = consistent expectations. RE = rational

expectations. Model statistics are computed from a 10,000 period simulation.

5.4 UIP Regressions

Table 7 compares the results of UIP regressions using country data to those using model-

generated data. In addition to the full-sample estimates for Canada, Japan, and the U.K.

reported earlier in Table 1, we now also report the mean results from 15-year rolling regressions

for each country. Figure 9 presents the model-generated analogs to the country data plots that

we showed earlier in Figures 1 and 3. Specifically, the top panels of Figure 9 show scatter

plots of the simulated exchange rate change ∆st+1 versus the prior interest rate differential

it − i∗t in both models. The dashed lines show the fitted relationships from the full-sample

UIP regressions, with details reported in Table 7. The bottom panels of Figure 9 plot the

estimated slope coeffi cients from UIP regressions run over a rolling 15-year sample period

using model-generated data.

Table 7 shows that the estimated UIP slope coeffi cients for Canada, Japan, and the U.K.

are consistently negative, illustrating the forward-premium anomaly. The R2 statistics from

these regressions are all close to zero, illustrating the exchange rate disconnect puzzle. Similar
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Figure 9: The fitted relationship between ∆st+1 and it−i∗t in the consistent expectations (CE)
model exhibits a negative slope coeffi cient, similar to the country data plotted in Figure 1. The
estimated UIP slope coeffi cient in the CE model exhibits considerable time variation, similar
to the data estimates shown in Figure 3. In contrast, the solution to the rational expectations
(RE) model exhibits a positive UIP slope coeffi cient with much less time variation.

to the country data, the CE model produces negative UIP slope coeffi cients in both the full-

sample and rolling regressions. The 95% confidence interval around the full-sample point

estimate of −2.015 would lie entirely in negative territory. The R2 statistics are very low,

similar to those in the data. Another realistic feature of the CE model, evident in the bottom-

left panel of Figure 9, is the considerable time variation in the estimated slope coeffi cient when

the UIP regressions are run using a 15-year rolling sample period. Similar time variation in the

estimated slope coeffi cients can be seen in the country-data UIP regressions plotted earlier in

Figure 3. In contrast, the rolling-regression estimates for the RE model are always in positive

territory, exhibit much smaller time variation, and cluster around unity. Notice that the rolling

regressions all produce larger standard errors in comparison to the corresponding full-sample

regressions. This is partly due to the smaller sample size and partly due to a correction of the

estimation bias that can arise in the presence of a persistent regressor.29

Interestingly, the RE model can account for the exchange rate disconnect puzzle as it

29See Stambaugh (1986) and Nelson and Kim (1993) for detailed discussions of estimation bias in the presence
of a persistent regressor.
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produces a very small R2 statistic in both the full-sample and rolling regressions. This result

is consistent with the arguments put forth by Engel and West (2005, 2006) who show that a

fully-rational model with highly-persistent fundamentals and a discount factor close to unity

can deliver near-random walk behavior of the exchange rate such that changes in the exchange

rate are nearly unpredictable using fundamentals. Still, the RE model fails to account for the

forward premium anomaly and woefully underpredicts the observed volatility of exchange rate

changes in the data (Table 6).

Table 7. UIP Regressions: Data versus Models

Full-Sample
Estimates Canada Japan U.K.

CE
Model

RE
Model

β̂1 −0.29 −1.86 −1.21 −2.02 0.96
Std Error (0.65) (0.75) (0.76) (0.17) (0.06)

R2 0.007 0.013 0.005 0.014 0.023

Mean 15-year
Rolling Estimates Canada Japan U.K.

CE
Model

RE
Model

β̂1 −1.68 −2.79 −0.78 −1.40 1.21
Std Error (1.08) (1.48) (1.44) (0.99) (0.36)

R2 0.024 0.020 0.020 0.013 0.030

Notes: The table shows the results of an OLS regression in the form of equation (1). The

data covers the period from 1974.m1 to 2012.m10. CE = consistent expectations. RE = rational

expectations. Model statistics are computed from a 10,000 period simulation.

6 Concluding Remarks

A reading of the last three decades of academic research on exchange rates highlights nu-

merous puzzles and anomalies that have stubbornly resisted explanation, particularly in the

context of models where all agents are fully-rational. This paper showed that a plausible

small departure from full rationality– in the form of boundedly-rational agents who augment

a lagged-information random walk forecast with contemporaneous news about Taylor-rule

fundamentals– can account for several empirical exchange rate puzzles, including the apparent

disconnect from fundamentals, the extremely high volatility of exchange rate changes relative

to that of cross-country interest rate differentials, and the failure of exchange rates to satisfy

the UIP condition. Given that real-world exchange rates exhibit near-random walk behavior,

it makes sense that agents would adopt a forecast rule that allows for a unit root. Our model

setup is also consistent with survey data which shows that: (1) professional exchange rate

forecasts track well with the lagged value of the exchange rate, and (2) professional forecasts

respond to movements in fundamental news, as measured by changes in cross-country interest

rate differentials.
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A Appendix: Proof of Proposition 1

The characteristic equation of the stochastic difference equation (6) is given by

f(r) = r2 − 1

b
r +

κ(1− b)
b

= 0, (A.1)

We denote the two roots of equation (A.1) as r1 and r2. Inserting these roots into the equation

and applying some algebra yields the following relationships

r1 r2 =
κ(1− b)

b
> 0 (A.2)

r1 + r2 =
1

b
> 0 (A.3)

(r1 − 1)(r2 − 1) = r1 r2 − (r1 + r2) + 1

=
κ(1− b)

b
− 1

b
+ 1

=
(κ− 1)(1− b)

b
< 0 (A.4)

Since (r1 − 1)(r2 − 1) < 0, one root is greater than one and the other is less than one. Also

because r1 r2 > 0 and r1 + r2 > 0 it must be true that both roots are positive. Therefore we

can conclude that one root is greater than unity and the other root is positive but less than

unity. Since we have one initial condition that pins down st−1, there exists a unique rational

expectation solution (Blanchard and Kahn 1980).

We postulate that the solution to equation (6) takes the form: st = asst−1 + axxt, where

as and ax are undetermined coeffi cients. Iterating the postulated solution ahead one period

and taking the rational expectation yields Etst+1 = asst+axρxt. Substituting this expectation

into (6) and collecting terms yields

st =
κ(1− b)
1− bas︸ ︷︷ ︸
= as

st−1 +
1 + baxρ

1− bas︸ ︷︷ ︸
= ax

xt, (A.5)

which shows that the postulated form is correct. The value of as must satisfy

b (as)
2 − as + κ (1− b) = 0, (A.6)

which has two solutions. The stable solution is the one that delivers |as| < 1. This is

given by as =
[
1−

√
1− 4κb(1− b)

]
/ (2b). Given as, the value of ax must satisfy ax =

1/ [1− b (as + ρ)] . �
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B Appendix: Moments with Rational Expectations

Using the law of motion for st from Proposition 1, straightforward computations yield the

following unconditional moments.

V ar(st)

V ar(xt)
=

a2x
(1− a2s)

[
1 + asρ

1− asρ

]
, (B.1)

V ar(∆st)

V ar(xt)
=

2a2x(1− ρ)

(1 + as)(1− asρ)
, (B.2)

Corr(st, st−1) =
as + ρ

1 + asρ
, (B.3)

Cov (∆st+1, it − i∗t )
V ar(xt)

=
ax
b

{
(as − 1)(1− b)(1− κas)ax(1 + asρ)

(1− a2s)(1− asρ)
− ρ
}

+

ax
b

{
[−ρκax(1− b)− 1] (as − 1) + ρax(1− b)(1− ρκ)

1− asρ

}
, (B.4)

V ar (it − i∗t )
V ar(xt)

=
Cov (∆st+1, it − i∗t )

V ar(xt)
, (B.5)

where V ar(xt) = σ2u/
(
1− ρ2

)
.

C Appendix: Moments with Consistent Expectations

Using the actual laws of motion (15) and (17), straightforward but tedious computations yield

the following unconditional moments.

V ar(st)

V ar(xt)
=

1 +
[
b2(1− λ)α2 + 2bα

]
(1− λ)(1− ρ2) +

2ρ[(1−bλ)−(1−κ)(1−b)][bα(1−λ)(1−ρ2)+1]
(1−ρ)(1−bλ)+ρ(1−κ)(1−b)

2(1− κ)(1− b)(1− bλ)− (1− κ)2(1− b)2
(C.1)

V ar(∆st)

V ar(xt)
=

2
{

1 +
[
b2(1− λ)α2 + 2bα

]
(1− λ)(1− ρ2)

}
(1− bλ) [2(1− bλ)− (1− κ)(1− b)] −

2(1− κ)(1− b)ρ
[
1 + bα(1− λ)(1− ρ2)

]
[2(1− bλ)− (1− κ)(1− b)] (1− bλ) [(1− ρ)(1− bλ) + ρ(1− κ)(1− b)] (C.2)
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Corr(st, st−1) =
(1− bλ)− (1− κ)(1− b)

1− bλ +

ρ
[
1 + bα(1− λ)(1− ρ2)

]
(1− bλ) [(1− ρ)(1− bλ) + ρ(1− κ)(1− b)]

V ar(xt)

V ar(st)
, (C.3)

Cov (∆st+1, it − i∗t )
V ar(st)

= − (1− κ)(1− b)2
b(1− bλ)

[1− κCorr(st, st−1)] +

{
(1− b) [ρ(1− ρκ) + (1− κ)]

[
b(1− λ)α(1− ρ2) + 1

]
b(1− bλ) [(1− ρ)(1− bλ) + ρ(1− κ)(1− b)] − ρ

b(1− bλ)

}
V ar(xt)

V ar(st)
,

(C.4)

V ar (it − i∗t )
V ar(st)

=
(1− b)2
b2

[
1 + κ2 − 2κCorr(st, st−1)

]
+

1

b2

[
1− 2(1− b)(1− ρκ)

b(1− λ)α(1− ρ2) + 1

(1− ρ)(1− bλ) + ρ(1− κ)(1− b)

]
V ar(xt)

V ar(st)
, (C.5)

where α = α∗ = 1/ (1− b) in equilibrium.
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