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Abstract

We study the stabilizing properties of interest rate rules that grant an explicit response to

stock prices in a New Keynesian framework where imperfect knowledge and incomplete markets

generate wealth e¤ects from equity holdings. Boundedly-rational agents need to form in�nite-

horizon forecast about pay-o¤ relevant variable in order to solve their intertemporal optimization

problems, as in Preston (2005, 2006). In this context, we �nd that, when the central bank

adopts a forecast-based Taylor rule, granting an explicit response to stock prices can facilitate

the attainment of a determinate rational expectations equilibrium which is also stable under

learning dynamics.

Keywords: Interest Rate Rules; Multiple Equilibria; Determinacy; Multiple Sectors; Learning;
Expectational Stability;

JEL Classi�cations: C62, D83, E32, E52.

1 Introduction

Since burst of the dot.com bubble in early 2000 � and even more after the 2007-8 global �nancial

crisis � policy-makers and academic economists have lively debated whether central banks should

move the policy rate in response to asset price �uctuations. Advocates of such policy argue that,
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because of frictions in credit and/or �nancial markets, asset prices exert distortionary e¤ects on

individual decisions.1 By raising interest rates during a �nancial booms (and cutting them during a

downturn), a learning-against-the-wind policy could smooth those �uctuations and therefore tame

their undesired consequences on the macroeconomy. Opponents of it claim instead that the costs

might outweigh the gains as i) part of those �uctuations might be e¢ cient reactions to market

conditions, and ii) a policy strictly targeting price stability might be su¢ cient to stabilize also

asset prices. 2

In this paper, we assess the desirability of interest rate rules granting an explicit response to

stock prices for what concerns the determinacy of an equilibrium under rational expectations, and

its stability under learning dynamics. We consider a small-scale New Keynesian DSGE model

where boundedly-rational agents trade risky equity shares - issues by monopolistically competitive

pro�t-maximizing �rms - and form expectations about future variables using simple adaptive rules.

In this respect, we adopt the in�nite horizon learning approach proposed by Preston (2005, 2006):

agents and �rms are internally rational, in the sense that they take optimal decision subject to

known individual objectives and constraints, understanding the mapping betweeen own actions

and expected pay-o¤s, given subjective beliefs about aggregate variables beyond their control.

However, they do not have any knowledge about other agents�objectives, constraints and beliefs.

As in Preston�s work, for arbitrary beliefs satisfying standard probability laws, the solutions to

intertemporal optimization problems requires agents to make in�nite horizon forecasts about their

pay-o¤ relevant variables.

We show that in�nite-horizon-learning (henceforth, IHL) induces wealth e¤ects of equity shares

holdings on consumption via households�Euler equation. We therefore study the determinacy and

expectational stability properties of forward-looking Taylor rules granting an explicit response to

stock prices. Our main �ndings are the followings. First, we �nd that, in the context of our

model, forward-looking rules which exclusively respond to in�ation and output perform better

than in Preston (2006). The latter shows that i) no determinate equilibrium is learnable, and ii)

learnability of the fundamental REE requires an implausibly large response coe¢ cient to in�ation

(larger than 100!). A key di¤erence with respect to ours, is that in Preston�s set-up there is no

1Case, Quigley and Shiller (2005) and Carrol, Otsuka and Slacalek (2011) provide statistical evidence for housing
and �nancial wealth e¤ects on consumption.

2The debate between Bernanke and Gertler (1999, 2001) and Cecchetti et al. (2000, 2002) is the most prominent.
Dupor (2005) discusses optimal monetary policy in a New-Keynesian model subject to exuberance shocks.
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�nancial market for equity shares: dividends are equally distributed across all households, as lump-

sum transfers. The key source of instability under learning dynamics lies in the fact that agents have

to form in�nite horizon forecasts on future nominal interest rates (and in�ation). Under learning

and without full knowledge of the policy rule adopted by the central bank, those forecasts do not

have to be in line with those implied by the underlying policy rule under RE. Namely, agents

are not necessarily expecting higher future real interest rates following higher future in�ation -

which makes the standard aggregate demand channel of monetary policy transmission weaker. By

including a market for equity shares, our framework gives rise to a no-arbitrage condition between

investing in risky equity and a riskless bond, whose return is tied to the policy rate. We show that

by taking advantage of such condition agents do not need to form forecasts about future policy

rates. This improves the stability properties of forward-looking rules by lowering the minimum

response to in�ation leading to E-stability. Moreover, we �nd that there exists parameterizations

for which a determinate equilibrium is also E-stable. Nevertheless, even in the best scenario, this

still requires a rather aggressive response to in�ation (around 8).

Second, in the context of our model, for what concerns equilibrium determinacy, there should be

no explicit response to stock prices. A policy rule that responds exclusively and actively to in�ation

(the Taylor principle) is necessary and de facto su¢ cient to guarantee a unique REE. Interestingly,

we �nd that an explicit positive (but not excessive) response to stock prices by monetary policy

can make the determinate equilibrium stable under learning while keeping the responsivenss to

in�ation at standard values (below 2). This result contrasts with what one would obtain under

the Euler equation learning approach (henceforth, EEL) of Evans and Honkapohja (2001): in the

context of our model, a determinate equilibrium is always E-stable under Euler equation learning.

Some sensitivity analysis shows that the size of the policy space for which the equilibrium is both

determinate and E-stable is increasing with respect to the elasticity of labor supply and the degree

of (real) wage rigidity, but decreasing with respect to the degree of price rigidity, risk aversion, and

the elasticity of substitution across goods varieties.

Third, we show that the instability due to learning can be eliminated by either one of the

following two alternative policies: a transparent forward-looking interest rate rule (i.e., a policy

whose details are fully communicated to the public), or a contemporaneous interest rate rule (for

which the degree of transparency is irrelevant).

This paper relates to two separate lines of work in the literature. On the one hand, it is related
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to papers that have studies the determinacy properties of rules responding to stock prices in the

baseline New Keynesian models under rational expectations. Bullard and Schaling (2002) and

Carlstrom and Fuerst (2007) show that including a positive response to stock prices in interest rate

rules restricts the policy space where the rational expectations equilibrium (REE) is determinate

and, therefore, can be a source of sunspot-driven self-ful�lling expectations �uctuations.3 As a

result, rules that respond to stock prices also require a su¢ ciently active response to in�ation� a

reinforced Taylor principle� to ensure determinacy. To some extent, this result is not surprising.

The benchmark New Keynesian model, which is typically based on an in�nitely-lived representative

agent, does not foresee any structural linkage between �nancial markets and real activity, making

stock prices completely redundant for consumption decisions and, consequently, the business cycle.

Hence, there is no speci�c rationale for why the central bank should move the interest rate in

response to stock price changes. Airaudo et al. (2015) extend the analysis to a model with

a Blanchard-Yaari�s OLG structure They show that, because of the presence of non-Ricardian

households, there are wealth e¤ects coming from holdings of risky equity, such that stock prices are

non-redundant for business cycle �uctuations. In particular, the wedge between the current and

the expected level of aggregate consumption is driven not only by the ex ante real interest rate,

as in the standard New Keynesian model, but also by the market value of �nancial wealth. Their

analysis shows that, responding to stock prices enlarges the determinacy space. They also study

the stability under Euler equation learning of both fundamental and sunspot equilibria.

On the other hand, our work clearly builds on the seminal contributions by Preston (2005,

2006), and further extensions/applications. For instance, the wealth e¤ects in our paper are similar

to those in Eusepi and Preston (2012) who show that under learning households may treat gov-

ernment bonds as net wealth if they are uncertain about the �scal policy regime. Absent rational

expectations, household could in fact believe that outstanding public debt di¤ers from the present

discounted value of expected future surpluses (hence, a failure of Ricardian equivalence). They

�nd that E-stability might require some modi�cation of Leeper (1991) stabilizing conditions for

�scal-monetary interaction. Eusepi and Preston (2010, 2011) extend the analysis to the case of

multiple maturities, while Eusepi et al. (2012) highlight the role of no-arbitrage as an instrument

to forecast future policy rates.

3For a general discussion on determinacy versus indeterminacy in the benchmark New Keynesian model see, for
instance, Bullard and Mitra (2002).
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The rest of the paper is organized as follows. Section 2 lays out the model, with a detailed

description of the optimization problems faced by households and �rms, and the monetary policy

rule. Section 3 described the methodology used for equilibrium determinacy and stability under

learning. Section 4 provides analytical and numerical results for equilibrium determinacy and sta-

bility under EEL. Section 5 analyzes the case of stability under IHL. Section 6 consider alternative

policy speci�cations. Section 7 concludes.

2 The Model

2.1 Households

The economy is populated by a continuum of in�nitely-lived households, indexed by i 2 [0; 1] : Each

household seeks to maximize his expected lifetime utility:

~Eit

1X
T=t

�T�t

"�
CiT
�1��

1� � �  
�
H i
T

�1+�
1 + �

#
; (1)

where �;  ; � > 0; and

Cit �

24 1Z
0

�
Cij;t

� ��1
� dj

35
�

��1

(2)

is a Dixit-Stiglitz�s consumption aggregate, bundling together a continuum of di¤erentiated �nal

consumption goods, indexed by j 2 [0; 1] ; with � > 1 denoting the intratemporal elasticity of

substitution between any two varieties. Given the j-th variety�s price Pj;t; household�s expenditure

minimization across goods gives standard relative demand schedules,

Cij;t =

�
Pj;t
Pt

���
Cit ; for j 2 [0; 1] ; (3)

where Pt �

24 1Z
0

P 1��j;t dj

35
1
1��

is the aggregate price index.

The expectation operator ~Eit denote household i subjective beliefs about aggregate pay-o¤

relevant variables that the household cannot control directly with its decisions. As in Preston

(2005, 2006), household�s beliefs satisfy standard probability laws (such as the law of iterated

expectations, for which ~Eit
~EiTxT+1 =

~EitxT+1 for a generic variable x; and for any T � t) so that
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standard solution methods apply here.

The individual household is subject to the following budget constraint:

PtC
i
t + PB;tB

i
t + Pt

1R
0

Qj;tS
i
j;tdj = Bit�1 + Pt

1R
0

(Qj;t +Dj;t)S
i
j;t�1dj +WtH

i
t � T it (4)

The household employs its resources by purchasing the consumption bundle Cit (at price Pt), B
i
t

units of a risk free bond at price PB;t (markets are incomplete), and a portfolio of equity shares

issued by a continuum of �rms, with Sij;t denoting the j-th �rm�s shares with (real) market price

Qj;t, for j 2 [0; 1] Resources are given by payments on previously purchased bonds Bit�1 and

previously purchased shares (with Dj;t denoting real dividends per share of the j-th �rm), as well

as labor income, WtH
i
t ; net of taxes, T

i
t .

First order conditions with respect to Cit ; H
i
t ; B

i
t and S

i
j;t for j 2 [0; 1] give, respectively:

�
Cit
���

= �itPt (5)

 
�
H i
t

��
= �itWt (6)

�itPB;t = � ~Eit�
i
t+1 (7)

�itPtQj;t = � ~Eit
�
�it+1Pt+1 (Qj;t+1 +Dj;t+1)

�
; for j 2 [0; 1] (8)

Let F it;T � �T�t
�
CiT
Cit

���
Pt
PT
denote the i-th household�s stochastic discount factor between period

t and T � t: From equations (5) and (7), the unit price of a riskless bond PB;t is

PB;t = ~EitF it;t+1; (9)

while equations (5) and (8), together with the de�nition of F it;t+1; give an expression for the j-th

�rm�s share price Qj;t;

Qj;t = ~Eit

�
F it;t+1

Pt+1
Pt

(Qj;t+1 +Dj;t+1)

�
; for j 2 [0; 1] : (10)

Letting Rt � P�1B;t and �t �
Pt
Pt�1

denote, respectively, the gross nominal interest rate and gross

price in�ation, equations (5) and (7) combined give a Euler equation for individual consumption:
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�
Cit
���

= �Rt ~E
i
t

�
Cit+1

���
�t+1

(11)

Finally, the combination of (5) and (6) yields a standard labor supply equation:

 
�
Cit
�� �

H i
t

��
= wt (12)

where wt � Wt
Pt
is the real wage.

Let Ait � Bit�1+Pt
1R
0

(Qj;t +Dj;t)S
i
j;t�1dj denote beginning-of-period individual nominal wealth.

We can then write end-of-period wealth PB;tBit + Pt
1R
0

Qj;tS
i
j;tdj as follows:

PB;tB
i
t + Pt

1R
0

Qj;tS
i
j;tdj = ~EitF it;t+1Bit +

1R
0

Sij;t
~Eit
�
F it;t+1Pt+1 (Qj;t+1 +Dj;t+1)

�
dj

= ~EitF it;t+1Ait+1 (13)

where the �rst equality makes use of equations (9) and (10), while the second one obtains from the

de�nition of Ait. We can then write the household�s budget constraint (4) more compactly:

PtC
i
t +A

i
t =

~EitF it;t+1Ait+1 + PtIit ; (14)

where Iit � Wt
Pt
H i
t �

T it
Pt
denotes net real labor income. Forward iteration of equation (14) yields

household i�s intertemporal budget constraint:

~Eit

1X
T=t

F it;TPTCiT = Ait + ~Eit

1X
T=t

F it;TPT IiT ; (15)

which states that the expected present discounted value of consumption equals the present dis-

counted value of labor income, plus initial wealth. After dividing both sides of (15) by Pt and

letting �it;T � �T�t
�
CiT
Cit

���
; we obtain

~Eit

1X
T=t

�it;TC
i
T = ait +

~Eit

1X
T=t

�it;T I
i
T (16)

where ait �
Ait
Pt
is real individual wealth at the beginning of period t:

As shown in Appendix A.2, the log-linearization of (16) around a symmetric steady state (where
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�Ci = �C, �Iit = �It and ��it;T = �T�t) gives an in�nite-horizon Euler equation for individual consump-

tion:4

�C

1� � Ĉ
i
t = �aâ

i
t + �I ~E

i
t

1X
T=t

�T�tÎiT �
�

1� �
�
�I �

�
1� ��1

�
�C
�
~Eit

1X
T=t

�T�tr̂T (17)

where r̂t � R̂t � ~Eit �̂t+1 is the (log) ex ante real interest rate at time t: Equation (17) states

that individual optimal consumption depends on the present discounted values of future labor

income and real interest rates, as well as current individual real wealth âit. By log-linearizing

ait �
Ait
Pt
= bit+Pt

1R
0

(Qj;t +Dj;t)S
i
j;t�1dj (for b

i
t �

Bit�1
Pt
) around a symmetric steady state equilibrium

where �ai = �a for every i; �Qj = �Q and �Dj = �D for every j; and �Sij = 1 (normalizing, without loss of

generality, to unity the supply of equity share by each �rm j), the term �aâit entering (17) is given

by the following expression:

�aâit =
�bb̂it +

1R
0

h�
�Q+ �D

�
Ŝij;t�1 + �QQ̂j;t + �DD̂j;t

i
dj: (18)

2.2 Firms

A continuum of monopolistically competitive �rms, indexed by j 2 [0; 1] ; supplies di¤erentiated

�nal products. Each �rm is subject to a Calvo-style nominal rigidities, with # 2 (0; 1) denoting the

per-period probability that the �rm will not be able to re-optimize its price. The j-th �rm solves

the following pro�t maximization problem:

max
P �j;t

~Ejt

1X
T=t

(#�)T�t
Uc (YT )

Uc (Yt)

Pt
PT

�
P �j;tYj;T �WTHj;T

�
subject to Yj;T =

�
P �j;t
PT

���
YT ; and technology Yj;T = zTHj;T ; taking as given the aggregate price

PT and aggregate output YT :5 Aggregate TFP zt is stochastic: its log-deviation from steady state

(without loss of generality �xed to unity) follows a standard AR(1) process, i.e. ẑt = �ẑt�1+ "̂t for

� 2 (0; 1) and "̂t a zero mean iid disturbance.

Letting � � �
��1 > 1 be the gross (steady state) price mark-up and mct �

wt
zt
be real marginal

costs, after taking �rst order condition with respect to P �j;t, simple algebraic manipulation gives the

4From now on, hatted variables will denote log-deviations of variables from their respective steady state value
(denoted with a bar).

5As in Preston (2006), �rms are assumed to value future pro�ts using the aggregate marginal rate of substitution
between current and future income.
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optimal pricing rule:

P �j;t
Pt

= �

~Ejt

1X
T=t

#T�t�t;T
�
PT
Pt

��
YTmcT

~Ejt

1X
T=t

#T�t�t;T
�
PT
Pt

���1
YT

: (19)

Let p�j;t �
P �j;t
Pt
denote the optimal relative price. The log-linearization of (19) gives:

p̂�j;t = (1� �#) ~E
j
t

1X
T=t

(�#)T�t (cmcT + �̂t;T ) (20)

where �̂t;T � P̂T � P̂t: Since they face the same decision problem, under the assumption of homo-

geneous beliefs - i.e., ~Ejt = ~Et - all �rms allowed to re-set their price will choose it according to the

following price-setting rule:

p̂�t = (1� �#) ~Et
1X
T=t

(�#)T�t (cmcT + �̂t;T ) (21)

With the aggregate price index Pt evolving according to P 1��t = (1� #) (P �t )
1�� + #P 1��t�1 ; such

that p�t �
P �t
Pt
=
�
1�#���1t
1�#

� 1
1�#

and therefore p̂�t =
#
1�# �̂t, equation (21) implies an in�nite-horizon

Phillips curve:

�̂t = �cmct + ~Et

1X
T=t

(�#)T�t [��#cmcT+1 + (1� #)��̂T+1] (22)

where � � (1�#)(1�#�)
# :

2.3 Monetary Policy

The government/central bank sets the short-term nominal interest rate according to a forward-

looking Taylor-type interest rate rule. In log-linearized terms, the rule takes the following form:

R̂t = �� ~E
cb
t �̂t+1 + �y ~E

cb
t Ŷt+1 + �q ~E

cb
t Q̂t+1; (23)

namely, the central bank responds to expected future log-deviations of in�ation, output and the

stock price index - de�ned as Q̂t �
1R
0

Q̂j;tdj - from their respective steady state (target) values. It is
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assumed that the central bank responds to household�s expectations, with the operator ~Ecbt de�ned

as the average expectation across households: ~Ecbt �
1Z
0

~Ejt dj: There are two main reasons for why

our main analysis will focus on an expectation-based policy rule. First, these types of rules seem

to �nd stronger support in the empirical literature, with respect to rules that respond to past or

currently observed variables.6 Second, this will allows us to compare our results to those of Preston

(2006) who highlights the instability problems of expectation-based rules in a New Keynesian model

without equity trading. Later, we will also consider the case of contemporaneous rules.

A distinguishing element of the analysis under IHL with respect to the care of RE or EEL is that

households need to forecast real interest rates into the in�nite future. In particular, to determine

its optimal level of consumption, the household needs to forecast the term ~Et

1X
T=t

�T�tr̂T entering

his Euler equation (17), which constitutes the main channel through which monetary policy a¤ects

aggregate demand. By the de�nition of r̂T this term can be written as follows:

~Et

1X
T=t

�T�tr̂T = R̂T + � ~Et

1X
T=t

�T�tR̂T+1 � ~Et

1X
T=t

�T�t�̂T+1 (24)

Since forecasting future real interest rates requires the agents to form expectations about future

nominal interest rate and future in�ation, the degree of knowledge agents possess about the mon-

etary policy rule adopted by the central bank is crucial.

For most of the analysis we will assume that the policy rule is not public information. Agents will

have then to forecasts future interest rates. This lack of transparency will make private expectations

about future monetary policy unanchored as private forecasts of interest rates will not necessarily

coincide with those implied by the actual policy rule followed by the central bank. We will then

show how full communication of policy can eliminate the instability of equilibria due to learning.7

3 Methodology

As discussed in the Introduction, we are interested in studying the determinacy and E-stability

properties of interest rate rules which include an explicit response to stock prices. We proceed with

a brief description of our methodology.

6See, for instance, Clarida et al. (2000), or the more recent study by Boivin and Giannoni (2006).
7See Eusepi and Preston (2010) on the issue of communication and stability under learning.
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3.1 Equilibrium Determinacy

The equilibrium determinacy analysis employs the standard procedure of Blanchard and Khan

(1980). Once linearized around the unique non-stochastic steady state, the model�s equilibrium

dynamics under Rational Expectations (RE) are described by the reduced form system

x̂t = 
Etx̂t+1 +�ẑt; (25)

where x̂t � [Ŷt; �̂t; Q̂t]0; and 
 and � are conformable matrices, whose entries depend on structural

and policy parameters. Since none of the three endogenous variables is predetermined, the Rational

Expectations Equilibrium (henceforth, REE) is locally determinate if and only if all eigenvalues of

the Jacobian 
 lie inside the unit circle in the complex plane.

3.2 Expectational Stability under Learning Dynamics

There exists two main approaches in the literature to study the stability under learning dynamics

(expectational stability, or E-stability) of REE. Probably, the most common is the so called Euler

Equation Learning (henceforth, EEL) paradigm proposed by Evans and Honkapohja (2001), where

the subjective expectation operator de�ning agents�beliefs, ~Et; replaces the RE operator, Et; only

in the reduced form linearized system (25). Under this approach, adaptively learning agents do not

solve a dynamic optimization problem, but rather use simple decision rules capturing intertemporal

trade-o¤s across two subsequent periods, which are assumed to coincide with the reduced form

intertemporal conditions derived under RE. In such set-up, agents are rather myopic as they need

to form expectations only about the next period.

Preston (2005, 2006) proposes an alternative approach, which he de�nes In�nite Horizon Learn-

ing (henceforth, IHL). In his enviroment, agents are internally rational, in the sense that they take

optimal decision subject to known individual objectives and constraints, understanding the map-

ping betweeen own actions and expected pay-o¤s, given subjective beliefs about aggregate variables

beyond their control. However, they do not have any knowledge about other agents�objectives,

constraints and beliefs. He shows that, for arbitrary beliefs satisfying standard probability laws, the

solutions to intertemporal optimization problems requires agents to make in�nite horizon forecasts

about their pay-o¤ relevant variables. In particular, he argues that since, in general, long-horizon

forecasts cannot be reduced to simple one-period-ahead expectations, EEL can lead to misleading
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results about the stability of REE.8

Despite this fundamental di¤erence, both approaches assume that, when forming expectations,

agents use the functional form implied by the minimum state variable representation of the under-

lying REE (henceforth, MSV-REE). In the context of our model, the MSV-REE solution looks as

follows:

x̂t = aRE + bRE ẑt

where x̂t is a vector of endogenous variables, ẑt is the unique (exogenous) state variable, with

vectors of coe¢ cients aRE and bRE known to the agents. Under learning, agents instead estimate

the linear regression

x̂t = at + btẑt + ût; (26)

where ût is the error term, and fat; btg are estimated vectors of parameters, which are updated via

RLS as new data/information becomes available. More speci�cally, letting !t � fa0t; b0tg ; we have

that:

!t = !t�1 + t
�1��1t

�
x̂t�1 � !0t�1n̂t�1

�
(27)

�t = �t�1 + t
�1 �n̂t�1n̂0t�1 � �t�1� (28)

where (27) describes the updating algorithm for the regressor coe¢ cients, and (28) the law of

motion of the matrix of second moments for the stacked regressors n̂t � f1; ẑtg :

At any point in time t; agents compute T periods ahead forecasts using the perceived law of

motion (26), given their knowledge of the stochastic process driving ẑt:

~Etx̂T = at + �
T�tbtẑt (29)

for T � t: Under EEL, agents are required to forecast only one period ahead, such that T = t+ 1

in (29). After substituting the forecast (29) into the reduced form structural equations describing

the model, either under EEL or IHL, after collecting terms, one obtains the actual law of motion

(ALM)

x̂t = �at +�btẑt (30)

8See also Honkapohja et al. (2012) for a discussion on the di¤erences between the EEL and the IHL approach.
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where
n
�at;�bt

o
are vectors, whose elements are functions of the estimated forecast parameters

fat; btg : This RLS learning procedure de�nes a T mapping from estimated (or, perceived) to actual

forecast coe¢ cients:9

T (at; bt) =
�
�at;�bt

�
:

A REE is a �xed point of this mapping, such that T
�
aRE ; bRE

�
=
�
aRE ; bRE

�
: Following Evans

and Honkapohja (2001), a REE is learnable/E-stable when the di¤erential equation associated with

the mapping T; namely

@

@�
(a; b) = T (a; b)� (a; b) ;

is locally stable around the REE. This simply requires that all eigenvalues of the Jacobian matrix

associated with the �rst order linear approximation of this di¤erential equation around the REE

have all negative real parts.

Most of the analysis to follow will adopt Preston�s approach. We will show that under IHL there

exist a direct feedback from households��nancial wealth to real activity through the Euler equation,

and therefore some potential bene�ts from having monetary policy granting an explicit response to

stock prices. On the contrary, this feedback is absent under EEL, making such response a potential

source of non-fundamental �uctuations and instability under learning. We start by highlighting

this result in the next section.

4 Equilibrium Determinacy and E-Stability under Euler Equation

Learning

Under RE, households and �rms have complete knowledge of the objectives, constraints, decisions

and beliefs by all economic agents in the economy (including themselves), as well as of all market

clearing conditions. Hence, they can form expectations according to the true probability distribu-

tions prevaling in equilibrium. We can then study under what conditions on the response coe¢ cients

entering the policy rule (23) the REE is locally determinate, i.e., the equilibrium dynamics around

the unique non-stochastic steady state do not depend on extrinsic uncertainty (e.g. sunspot shocks)

9This notation might be a little misleading, as we have used T also as an index of time.
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but are exclusively driven by fundamentals.

Consider the individual household�s Euler equation (17), and let �IC �
�I
�C
and �aC � �a

�C
denote,

respectively, the (steady state) income-to-consumption and wealth-to-consumption ratios. Given

that, under full knowledge, households are identical - as they face identical decision problems and

share the same beliefs - we can drop the superscript i from (17) to �nd an expression for consumption

by the representative household:

Ĉt = (1� �) �aC ât + (1� �) �ICEt
1X
T=t

�T�tÎT � �
�
�IC �

�
1� ��1

��
Et

1X
T=t

�T�tr̂T ; (31)

where Et now denotes the RE operator. With bonds in zero net supply and after normalizing to

unity the equity shares issued by each �rm in every period (Sj;t = 1 for j 2 [0; 1]), the representative

household�s beginning-of-period nominal wealth is At = Pt (Qt +Dt), where Qt �
1R
0

Qj;tdj and

Dt �
1R
0

Dj;tdj are, respectively, the aggregate stock price index and aggregate dividends. Letting

�QC �
�Q
�C
and �DC �

�D
�C
be, respectively, the (steady state) stock price-to-consumption and dividends-

to-consumption ratios, the term �aC ât entering (31) is then given by

�aC ât = �QCQ̂t + �DCD̂t; (32)

Integrating the pricing equation (10) over j and log-linearizing it around the steady state, we

�nd an expression for the stock price index Q̂t:

Q̂t = �EtQ̂t+1 + (1� �)EtD̂t+1 �
�
R̂t � Et�̂t+1

�
(33)

After iterating this equation forward and imposing transversality, Q̂t is determined by the present

discounted value of future aggregate dividends and real interest rates:

Q̂t = Et

1X
T=t

�T�t
h
(1� �) D̂T+1 � r̂T

i
; (34)

Real dividends generated by the j-th wholesale �rm are Dj;t = Yj;t (1�mct). Letting Yt �
1R
0

Yj;tdj be aggregate output, we therefore have that Dt = Yt (1�mct) ; whose log-linearization

gives D̂t = Ŷt� (�� 1)�1 cmct since in steady state real marginal costs are the inverse of the steady
state price mark-up (mc = ��1): This expression for D̂t can be then combined with the aggregate

14



production function, Ŷt = ẑt + Ĥt; and real marginal costs, cmct = ŵt � ẑt; to give an expression

for labor income Ît: namely, Ît = ŵt+ Ĥt = �Ŷt� (�� 1) D̂t: Since in equilibrium Ĉt = Ŷt; we can

then write the in�nite-horizon Euler equation (31) as follows:

Ŷt =
�� 1
�

�Q̂t +
�� 1
�

(1� �) D̂t + (1� �)Et
1X
T=t

�T�tŶT

��� 1
�

(1� �)Et
1X
T=t

�T�tD̂T � �
�
�IC �

�
1� ��1

��
Et

1X
T=t

�T�tr̂T

=
�� 1
�

�

"
Q̂t � (1� �)Et

1X
T=t

�T�tD̂T+1 + Et

1X
T=t

�T�tr̂T

#
(35)

+(1� �)Et
1X
T=t

�T�tŶT �
�

�
Et

1X
T=t

�T�tr̂T

= Et

1X
T=t

�T�t
�
(1� �) ŶT �

�

�
r̂T

�

where the �rst equality follows from the fact that �QC =
�(��1)
(1��)� ;

�DC =
��1
� ; and makes use of the

equilibrium expression for Ît; the second equality from a simple re-arrangement of term; and the

third equality from the equilibrium condition (34). We can futher rearrange the last expression to

obtain the following key relationship:

Ŷt = Et

1X
T=t

�T�t
h
(1� �) ŶT+1 � ��1r̂T

i
(36)

Equation (36) states that current ouput depends on the expected discounted stream of its future

realizations, and future real interest rates. In particular, notice that households�holdings of equity

shares does not generate any direct wealth e¤ect on real activity. As we will show below, this will

not be the case under IHL.

The assumption of RE allows us to retrive from (36) the standard Euler equation appearing in

the baseline New Keynesian framework. Leading (36) one period into the future and applying the

RE operator Et; we have that

EtŶt+1 = (1� �)Et
1X

T=t+1

�T�t�1ŶT+1 � ��1Et
1X

T=t+1

�T�t�1r̂T ;
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Plugging the latter into (36), after simple algebra we obtain:

Ŷt = Et

h
(1� �) Ŷt+1 � ��1r̂t

i
+ Et

1X
T=t+1

�T�t
h
(1� �) ŶT+1 � ��1r̂T

i
= Et

h
(1� �) Ŷt+1 � ��1r̂t

i
+ �EtŶt+1

= EtŶt+1 � ��1
�
R̂t � Et�̂t+1

�
(37)

Namely, under RE, current economic activity depends solely on household�s expectations of next

period activity and the ex-ante real interest rate. As the household recognizes the recursive structure

of the Euler equation, he does not need to form expectations about the in�nite future.

Following a similar procedure, we can use (22) to �nd the Phillips curve. After replacing ~Et

with Et; we can lead that expression one period forward, take expectations and plug the result

back into (22), to �nd the standard New Keynesian Phillips curve relating current in�ation to its

own future expectations and current real marginal costs:

�̂t = �cmct + �Et�̂T+1 (38)

where, from the labor supply equation (12) and the production technology, real marginal costs

equal cmct = (� + �) Ŷt � (1 + ') ẑt: Finally, under RE, the policy rule reads
R̂t = ��Et�̂t+1 + �yEtŶt+1 + �qEtQ̂t+1: (39)

What are the implications of having monetary policy granting an explicit response to the stock

price index in the Taylor rule, i.e. �q > 0; for the local determinacy of a REE? Around the steady

state, the equilibrium dynamics are described by a linear system made of equations (37)-(39)

together with the stock price equation (33) where D̂t =
�
1� �+�

��1

�
Ŷt � �

��1 ẑt.

Proposition 1 Let  � (1� �)
�
�+�
��1 � 1

�
: Moreover, assume that �y < �(1+�)

� : The REE is
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locally determinate if and only if the following conditions are satis�ed:

i) �q < �� � (1 + �)�

� + 
� �

� + 
�y (40)

ii) �� > �L � 1 + 

� (� + �)
�q �

(1� �)
� (� + �)

�y (41)

iii) �� < �H � 1 + 2� (1 + �)
� (� + �)

� 2� + 

� (� + �)
�q �

(1 + �)

� (� + �)
�y (42)

Proof. Under RE, the local dynamics around the steady state are described by the linear

system x̂t = 
Etx̂t+1 +�ẑt; where x̂t � [Ŷt; �̂t; Q̂t]0; with the Jacobian matrix 
 de�ned as


 �

26664
1� �y

�
1���
� ��q

�

� (� + �)
�
1� �y

�

�
� + � (� + �) 1���� �� (� + �) �q�

� � �y 1� �� � � �q

37775 ; (43)

while � is a conformable matrix whose speci�cation is not needed for the analysis. Since all

variables in xt = [Ŷt; �̂t; Q̂t]0 are non-predetermined, the REE is locally determinate if and only if

all eigenvalues of 
 are within the unit circle in the complex plane. The characteristic polynomial

of 
 is P (e) = e3 � tr (
) e2 + S2 (
) e � det (
) = 0 where tr (
) ; S2 (
) and det (
) denote,

respectively, the trace, the sum of the 2x2 principal minors, and the determinant of matrix 
. By

simple algebra we have that:

tr (
) = 2� + 1�
�y
�
+ � (� + �)

1� ��
�

� �q

S2 (
) = � (1 + �) + �

�
1� 2

�y
�

�
�
�
1 + � +



�

�
�q + �� (� + �)

1� ��
�

det (
) = �

�
�

�
1�

�y
�

�
�
�q
�
(� + )

�

It is straightforward to check that one root of P (e) = 0 is real and equal to � 2 (0; 1) : This allows us

to write the characteristic polynomial as P (e) = (e� �) ~P (e) = 0 where ~P (e) �
�
e2 + a1e+ a2

�
=

0; with a1 � �q+
�y
� �1���� (� + �)

1���
� and a2 � �

�
1� �y

�

�
� �q

� (� + ) : All roots of
~P (e) = 0

are then within the unit circle if and only if a) ~P (1) = 1+ a1+ a2 > 0; b) ~P (�1) = 1� a1+ a2 > 0

and c) ja2j < 1: Simple manipulation shows that these conditions are equivalent to those spelled in

equations (40)-(42) in the proposition. The assumption �y <
�(1+�)
� guarantees that �H > �L for

�q = 0; so that the determinacy space is non-empty. Notice that it also implies that �
� > 0:
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According to the conditions stated in Proposition 1, equilibrium determinacy has two key re-

quirements. First, it requires the response coe¢ cient to the stock prices to be below a certain upper

bound ��. Second, provided �q < �
� holds, it requires the response coe¢ cient to in�ation, ��; to

be two-sided constrained, with the lower bound �L and the upper bound �H being, respectively,

strictly increasing and strictly decreasing functions of the response coe¢ cient �q; for given value

of �y: In particular, notice that for �q > 0; the lower bound �
L becomes larger than unity, which

is to say that a central bank granting a positive response to stock prices should also guarantee

a su¢ ciently active response to in�ation (re-inforced Taylor principle). For �q = ��; the upper

bound �H and the lower bound �L collide, making the determinacy region empty. The assumption

�y <
�(1+�)
� guarantees that �� > 0; such that the determinacy region is non-empty for �q < �

�:

We then move to the learnability of the MSV representation of a REE according to the EEL

criterion proposed by Evans and Honkapohja (2001).10

Proposition 2 The Minimal State Variable (MSV) representation of a REE is E-stable under

EEL if and only if the following condition holds

�� > �
L � 1 + 

� (� + �)
�q �

(1� �)
� (� + �)

�y (44)

Proof. Consider 
 de�ned in (43). From the discussion in Section 3.2, for the MSV-FE to be

E-stable all eigenvalues of the matrix M � 
� I need to have negative real parts. Simple algebra

shows that one of the eigenvalues ofM is real and equal to ��1 < 0: The characteristic polynomial

of M can then be written as P (e) = (� � 1) ~P (e) = 0 where ~P (e) = e2 + a1e + a2 = 0; while

a1 and a2 are again functions of the policy coe¢ cients ��; �y; and �q: Applying standard results

from matrix algebra, all roots of M have then negative real parts if and only if a2 > 0 and a1 > 0:

Simple algebra yields that all roots have negative real parts - hence, the MSV-FE is E-stable - if

and only if 1 + 
�(�+�)�q �

(1��)
�(�+�)�y:

Once we combine the results of Propositions 1 and 2, we can conclude the followings. First, if

our expectational stability creterion was EEL, then the policy-maker should just make sure that

the adopted policy pins down a locally unique REE, as the latter will always be attainable under

learning. In this sense, the learnability requirement based on EEL does not add any additional

restriction to those required by determinacy.
10One could also show that, within the policy space where the equilibrium is indeterminate, there exists Common

Factor (CF) representations of sunspot equilibria which are stable under EEL. See Airaudo et al. (2015).
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Second, since granting an explicit response to stock prices shrinks the region - namely, the range

of values for �� - where the REE is both determinate and learnable, the central bank should not

respond to them, but rather keep its focus on in�ation. Third, since, for realistic calibrations of the

model and for �q = 0, the upper bound �
H is rather large (indeed much larger than any empirical

estimate of �� in the literature), the simple Taylor principle is necessary and de facto su¢ cient for

the REE to be both determinate and learnable.

To get a quantitative sense for these analytical results, we parametrize the model as follows.

Taking one period in the model to correspond to a quarter, we set the discount factor � equal to

0:99: The risk aversion coe¢ cient � is set equal to unity. The inverse Frisch labor elasticity, �;

is equal to 0:25� i.e., an elasticity equal to 4� as common in the macro-labor literature.11 Our

baseline value for the price rigidity parameter # is 0.75, giving an expected price duration of one

year. The parameterization of the elasticity of substitution across di¤erentiated goods is based on

the micro-evidence by Broda and Weinstein (2006). They report median elasticity values equal

to, respectively, 2:5 and 2:1. for their pre-1990 and post-1990 samples on sectoral U.S. data. We

therefore set � equal to 2:3, their mid-point estimate. This implies that monopolistically competitive

�rms enjoy a considerable degree of market power, which, in our set-up, is necessary to generate

su¢ ciently large pro�ts/dividends and, as a result, su¢ ciently large gains from equity holdings.

Finally, we allow for a positive response to output in the Taylor rule by setting �y equal to 0.5, a

standard value in the literature.12

The results are displayed in Figure 1. Notice that, although from a theoretical perspective

an explicit response to stock prices in the policy rule is detrimental for both determinacy and E-

stability, in practice, as long as the response to the stock price is not excessive, it is su¢ cient to set

�� to standard values to guarantee a unique REE stable under EEL. For instance, assuming that

�q remains below unity, equilibrium determinacy obtains for �� smaller than 10. With the lower

bound �L essentially �at, the Taylor principle is all that is needed for determinacy and E-stability.

5 E-Stability under In�nite-Horizon Learning

As previously discussed, without RE, the in�nite-horizon forecasts that households and �rms need

to form about their pay-o¤ relevant variables cannot be reduced to simple one-period-ahead expec-

11See, for instance, Imai and Keane (2004).
12See Sections 5.2 and 5.3 for alternative parameterizations of �:
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Figure 1: Equilibrium Determinacy and E-Stability under EEL.

tations as obtained in Section 3.1.13

Under IHL, �rms�pricing behavior is still described by the in�nite-horizon Phillips curve (22)

derived in Section 2.2:

�̂t = � (ŵt � ẑt) + ~Et

1X
T=t

(�#)T�t [��# (ŵT+1 � ẑT+1) + (1� #)��̂T+1] (45)

For what concerns the households, according to the Euler equation (17), they have to forecast

the in�nite future streams of own labor income and the ex-ante real interest rate. Assuming no

taxes/transfers, from the de�nition of labor income Iit ; we have that:

Îit = ŵt + Ĥ
i
t =

1 + �

�
ŵt �

�

�
Ĉit (46)

where the second equality follows from the consumption-leisure trade-o¤ equation (12).14 This

allows us to write the present discount value of the future stream of labor incomes as follows:

13See Preston (2005) for a detailed discussion on this.
14The individual labor supply equation is part of the household�s information set, as it describes how much labor

he is willing to supply, at any point in time, for given real wage and given individual consumption.
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~Eit

1X
T=t

�T�tÎiT =
1 + �

�
~Eit

1X
T=t

�T�tŵT �
�

�
~Eit

1X
T=t

�T�tĈiT

=
1 + �

�
~Eit

1X
T=t

�T�tŵT �
�

�

Ĉit
1� � �

�

(1� �)�
~Eit

1X
T=t

�T�tr̂T ; (47)

where the second equality follows from making use of the linearized Euler equation

Ĉit =
~EitĈ

i
t+1 �

1

�

�
R̂t � ~Eit �̂t+1

�
(48)

with r̂T � R̂T � ~EiT �̂T+1:

Plugging (47) into the in�nite-horizon Euler equation (17), while letting �IC � �I
�C
; �aC � �a

�C
;

sC � 1 + �
�
�IC ; and � � �

�
�IC
1+�
� + ��1 � 1

�
; after simple rearrangement of terms we obtain the

following expression for individual consumption:

Ĉit = s�1C �aC (1� �) â
i
t + s

�1
C (1� �) �IC

1 + �

�
~Eit

1X
T=t

�T�tŵT � s�1C � ~Eit

1X
T=t

�T�tr̂T ; (49)

Once again, let Q̂t �
1R
0

Q̂j;tdj; and D̂t �
1R
0

D̂j;tdj denote, respectively, the aggregate stock price in-

dex and aggregate dividends. Since
1R
0

b̂itdi = 0 (as bonds are in zero net supply) and
1R
0

1R
0

Ŝij;t�1didj =

0 (as equity shares are in �xed supply), the integration of equation (18) - which de�nes (log) indi-

vidual wealth âit - over all households yields an expression for aggregate �nancial wealth ât �
1R
0

âitdi:

�aât = �QQ̂t + �DD̂t (50)

Using the latter, together with the fact that, in the steady state equilibrium �a = �Q + �D; and

de�ning the average expectation operator ~Et �
1R
0

~Eitdi, we can integrate (49) over all households

to �nd aggregate consumption Ĉt �
1R
0

Ĉitdi:

Ĉt = s�1C (1� �)
�
�QCQ̂t + �DCD̂t

�
+ s�1C (1� �) �IC

1 + �

�
~Et

1X
T=t

�T�tŵT � s�1C � ~Et

1X
T=t

�T�tr̂T (51)

where, as in the previous section, �QC �
�Q
�C
and �DC �

�D
�C
:
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To �nd an expression for Q̂t; we start from the linearization of the stock price equation (10),

from which we have:

Q̂j;t = � ~EitQ̂j;t+1 + (1� �) ~EitD̂j;t+1 �
�
R̂t � ~Eit �̂t+1

�
; for i; j 2 [0; 1]

We can then integrate the latter over the j-indexed �rms to obtain the aggregate stock price index:

Q̂t = � ~EitQ̂t+1 + (1� �) ~EitD̂t+1 �
�
R̂t � ~Eit �̂t+1

�
(52)

Notice that equation (52) corresponds to a no-arbitrage condition for the individual agent i to hold

the riskless asset and the equally weighted risky equity portfolio: the expected real return from the

riskless bond, R̂t� ~Eit �̂t+1; should equal the expected real return from investing in the risky equity

portfolio, � ~EitQ̂t+1 + (1� �) ~EitD̂t+1 � Q̂t:

Despite the fact that (52) has to hold at all times, and for any speci�cation of individual beliefs

~Eit ; in general, it is not possible to iterate it forward, and, after imposing transversality, recover

an equation having the stock price index equal to the present discounted value of future aggregate

dividends. Following Adam and Marcet (2011), suppose the i-th household is the marginal agent

pricing the risky portfolio at time t; and let mT 2 [0; 1] denote the marginal agent in period T > t

(since this will not necessarily be agent i). By forward iteration of (52) till period T; we obtain:

Q̂t = (1� �)
h
~EitD̂t+1 + � ~E

i
t
~E
mt+1

t+1 D̂t+2 + �
2 ~Eit ~E

mt+1

t+1
~E
mt+2

t+2 D̂t+3 + :::
i

�
h
R̂t � ~Eit �̂t+1 + � ~E

i
t

�
R̂t+1 � ~E

mt+1

t+1 �̂t+2

�
+ �2 ~Eit ~E

mt+1

t+1

�
R̂t+2 � ~E

mt+2

t+2 �̂t+3

�
+ :::

i
+�T ~Eit

~Eit+1::
~EiT�1Q̂T

For this equation to collapse to Q̂t = ~Eit

1X
T=t

�T�t
h
(1� �) D̂T+1 �

�
R̂T � �̂T+1

�i
we have to apply

the law of iterated expectations to its right hand side, and then impose transversality. While this

can certainly be done under RE - as in that case all households are identical, and the representative

agent is always the marginal investor - in our learning framework, it would require the i-th household

to believe he will remain forever the marginal investor, or to believe that future marginal investors

will have the same beliefs he has. Since we are considering arbitrary beliefs, even if the no arbitrage

condition implied by (52) has to hold at all times, there is no reason to expect the stock price index
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to equal the present discounted value of dividends. We therefore take (52) as the relevant asset

pricing equation.

Integrating it over all i-indexed households, with ~Et �
1R
0

~Eitdi; yields:

Q̂t = � ~EtQ̂t+1 + (1� �) ~EtD̂t+1 �
�
R̂t � ~Et�̂t+1

�
(53)

The stock price index Q̂t is then simply a convex combination of its future expectation and future

expected dividends, discounted by the ex-ante real interest rate. Although household do not possess

any knowledge about the policy rule adopted by the central bank, they can forecast future nominal

interest rates by exploiting the non-arbitrage condition (53), which can be rearranged to give an

expression for the nominal interest rate R̂t:

R̂t = � ~EtQ̂t+1 + (1� �) ~EtD̂t+1 + ~Et�̂t+1 � Q̂t (54)

Using the latter the present discounted value of expected future nominal interest rates can be

written as follows:

~Et

1X
T=t

�T�tR̂T+1 = ~Et

1X
T=t

�T�t
h
�Q̂T+2 + (1� �) D̂T+2 + �̂T+2 � Q̂T+1

i
= (1� �) ~Et

1X
T=t

�T�tD̂T+2 + ~Et

1X
T=t

�T�t�̂T+2 � ~EtQ̂T+1 (55)

After combining equations (24) and (55) with (51), and making use of the market clearing

condition Ĉt = Ŷt; we obtain a �nal expression for the in�nite-horizon Euler equation (or IS curve)

describing aggregate activity:

Ŷt = s�1C (1� �)
�
�QCQ̂t + �DCD̂t

�
+ s�1C (1� �) �IC

1 + �

�
ŵt

�s�1C �
�
R̂t � ~Et�̂t+1

�
+ s�1C �� ~EtQ̂t+1

+s�1C
�IC
1 + �

�
� ~Et

1X
T=t

�T�t (1� �) ŵT+1 � s�1C �� ~Et

1X
T=t

�T�t (1� �) D̂T+2 (56)

where �QC =
�(��1)
(1��)� ;

�DC =
��1
� and �IC = ��1; while Q̂t is determined by (53), and current real
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dividends D̂t and the real wage ŵt are given by

ŵt = (� + �) Ŷt � �ẑt (57)

D̂t =

�
1� � + �

�� 1

�
Ŷt +

1 + �

�� 1 ẑt (58)

Notice that the Euler equation (56) does not include expectations about future nominal interest

rates.15

Following the discussion in Section 3.2, households and �rms form beliefs about their pay-o¤

relevant variables using simple linear rules, which share the same functional form of the MSV

representation of the underlying RE solution. In particular, according to the structural equations

describing the behavior of households, �rms and the central bank - that is, respectively, equations

(56), (45) and (23) - households and �rms need to forecast future wages, in�ation, output, the stock

price index and dividends. They will do that using their PLMs:

x̂t = a+ bẑt (59)

for x̂t � [Ŷt; �̂t; Q̂t; ŵt; D̂t]
0; a � [ay; a�; aq; aw; ad]

0 and b � [by; b�; bq; bw; bd]
0: In particular, for

a generic variable m̂t = am + bmẑt; for m = w; �; Y;Q;D; and known AR(1) process for ẑt; we

have that ~Et
1X
T=t

�T�tm̂T+n =
am
1�� +

�nbm
1��� ẑt: Plugging these expectations back into the structural

equations (23), (45), and (56)-(58), we have a system of ALMs

F1x̂t = F2a+ (F3b+ F4) ẑt (60)

where Fi; for i = 1; ::4 are 5x5 matrices containing structural parameters.16 The implied T -mapping

is then T (a; b) =
�
F�11 F2a; F

�1
1 (F3b+ F4)

�
; with associated di¤erential equation, in notional time

� , given by

15This is an important element of di¤erentiation between our model and Preston (2006), and, as discussed below,
a reason why expectation-based rule perform better in our set-up.
16See Appendix A.3 for a detailed derivation.
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@

@�
(a; b) = T (a; b)� (a; b)

=
�
F�11 F2a; F

�1
1 (F3b+ F4)

�
� (a; b)

The related Jacobian matrices with respect to the vector of coe¢ cients a and b are, respectively

DTa = F�11 F2 � I5 (61)

DTb = F�11 F3 � I5 (62)

As discussed in Section 3.2, E-stability for the REE requires all eigenvalues of the matrices DTa

and DTb to have negative real parts.

Because of the dimensions of matrices (61)-(62), it is hard to obtain meaningful analytical

conditions for E-stability. We therefore resort to numerical approximation methods under the

benchmark parameterization used in the previous section.

Figure 2 displays the results. As we had in Figure (1), under RE, the equilibrium is locally

determinate for combinations of �� and �q falling within the regions labeled with a D (the white

and the very dark gray areas), with boundaries given by the straight lines �L and �H ; crossing

at the upper-bound �� � 1:5. As stated in Proposition 2, under EEL, a determinate REE is also

E-stable. Suppose the central bank set �� = 1:5; the most common value used in the literature.

By the results of Proposition 2, as displayed in the �gure, the REE would be both determinate and

E-stable as long as the policy response to the stock price was not too large, i.e., �q smaller than,

roughly, 1.42.

The key result occuring under IHL is that a policy parameterization that leads to equilibrium

determinacy does not necessarily guarantee its learnability. In particular, notice that we now have

to distinguish between the case of a determinate REE which is stable under IHL (the white area,

labeled D-ES), and one where it is not stable under IHL (the dark gray areas, labeled D-EU). For

instance, consider the case of a central bank that does not respond to stock prices, �q = 0: For

the REE to be both determinate and E-stable under IHL, the central bank needs to ensure a very

aggressive response to in�ation (larger than 8!). This is a policy which a central bank would to
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Figure 2: Equilibrium Determinacy and E-Stability under IHL. D = determinacy; I =
indeterminacy; ES = E-stable; EU = E-unstable. �H ; �L and �� correspond to the de�nitions in
Proposition 1.
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be very unlikely to commit. How can we restore learnability then? As the �gure shows, for given

plausible response to in�ation, E-stability requires a su¢ ciently positive (but still not too large)

response to stock prices. For instance, for �� = 2; a determinate REE is ensured by setting �q

slightly above 0.6, while having �q around 0.2 seems enough for �� = 1:2.

5.1 Some Intuition

To build some intuition, it is useful to compare our results to those obtained by Preston (2005,

2006) who also considers the stability properties of forward-looking policy rules under IHL. A key

di¤erence with respect to ours, is that in his set-up households do not trade in �rms�equity shares,

so that dividends are equally distributed across all households, as lump-sum transfers. As shown

in the Appendix, without equity trading, the in�nite-horizon Euler equation (56) is substituted by

the following:17

Ŷt = s�1C (1� �) �� 1
�

D̂t + s
�1
C (1� �) 1 + �

��
ŵT � s�1C

�
� + �

�� 1
�

�
R̂t

+s�1C (1� �) 1 + �
��

� ~Et

1X
T=t

�T�tŵT+1 + s
�1
C (1� �) �� 1

�
� ~Et

1X
T=t

�T�tD̂T+1 (63)

�s�1C
�
� + �

�� 1
�

�
� ~Et

1X
T=t

�T�tR̂T+1 + s
�1
C

�
� + �

�� 1
�

�
~Et

1X
T=t

�T�t�̂T+1

The remaining structural equations are the Phillips curve (22), the wage equation (57), the divi-

dends equation (58), and the policy rule (23), with �q = 0 since, with agents not trading in equity

shares, there is no pricing equation for equilibrium stock prices.

Consider the Euler equation (63). Notice that, missing the no arbitrage condition (54), agents

have to form in�nite horizon forecasts not only about future wages and dividends, as in (56), but

also about future nominal interest rates and in�ation. As Preston (2006) argues, this is the key

source of instability under learning dynamics for forward-looking rules. Agents�forecasts of future

nominal interest rates do not have to be in line with those implied by the underlying policy rule

under RE - that is, agents are not necessarily expecting higher future real interest rates following

17 In Preston (2005, 2006), household are assumed to form forecast of total income Iit which now corresponds
to wage income, Wt

Pt
Hi
t ; plus dividends income, Dt: We mantain instead the assumption that households use their

consumption-leisure trade-o¤ equation (12) to forecast their future labor supply. For what concerns E-stability, our
results do not depend on whether households forecast total labor income, or wages and dividends separately.
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higher future in�ation - which makes the standard aggregate demand channel of monetary policy

transmission weaker.

The results displayed in Figure 3 highlight the key role played by equity share trading for the

E-stability of the MSV-REE. Under Preston�s set-up (panel a), when the central bank adopts a

forward-looking rule, we have that 1) a determinate REE is never E-stable (dark gray area), and

2) the MSV-REE can be learned only if the central bank grants an unrealistically high response

to in�ation, of an order of magnitude around 125 (light gray area).18 However, in this case,

the learnable MSV-REE coexists with a continuum of sunspot-driven equilibria. As the �gure

shows, the determinacy/indeterminacy and E-stability/instability regions with respect to the policy

coe¢ cient �� are insensitive to the intertemporal elasticity of substitution �:

Panel b. corresponds to our set-up where equity shares trading is allowed, assuming that the

central bank does not grant any explicit response to stock prices, i.e., �q = 0: The �rst thing

to notice is that, while the determinacy area still does not depend on � (i.e., the REE is locally

determinate for values of �� below, about, 28, for any value of �; as in Preston�s model), the E-

stability/instability frontier is strictly increasing in it. In other words, the value range for �� giving

E-stability is wider when � is lower. For instance, for the benchmark calibration of � = 2:3; the

minimum response to in�ation for E-stability drops from 125 to, about, 8.25. The second (more

important) element of di¤erentiation is that, for values of � falling between 2 and 4; it is now

possible to have a REE which is both determinate and E-stable (white area).

Why is our model model more prone to E-stability than Preston�s? And why an explicit response

to the stock price index can ensure E-stability (and determinacy) without requiring unrealistically

large responses to in�ation? As argued above, under Presont�s set-up, the standard aggregate de-

mand channel of monetary policy transmission is rather weak as agents have to form in�nite-horizon

forecasts about future in�ation and interest rates. If, for whatever reason, agents�expectations de-

viate from the RE solution, monetary policy will have a hard time bringing them back, even if it

follows the Taylor principle. As we can see by comparing (56) and (63), such source of aggregate

instability is less prominent in our set-up since, by taking advantage of the no-arbitrage condition

between risky equity and riskless bonds, households do not need to forecast future interest rates.

To better see that, for analytical simplicity, let � = 1; as in our benchmark parameterization.

Combining the Euler equation (56) with the stock price equation (53), the policy rule (23), the real

18We have �xed the response to output �y = 0:5; as in our benchmark model.
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Figure 3: Equilibrium Determinacy and E-Stability under IHL: Comparrison with Pre-
ston (2006). The results displays in Panel a) are for Preston (2006) set-up without equity share
trading. Those in Panel b) are for our set-up. D = determinacy; I = indeterminacy; ES = E-stable;
EU = E-unstable.

wage (57) and dividends (58), after simple manipulation, current output Ŷt is determined by the

following expression:

Ŷt = �
h
(�� � 1) ~Et�̂t+1 +

�
�q � �

�
~EtQ̂t+1

i
| {z }

�̂t

(64)

+s�1C �
�� 1
�

(1� �) ~EtD̂t+1 + �
1 + �

1 + ��
�w;D

For given expectations on future wages and dividends, contained in the residual term �w;D, current

output Ŷt depends negatively on the term �̂t � (�� � 1) ~Et�̂t+1 +
�
�q � �

�
~EtQ̂t+1: The latter

includes the ex-ante real interest rate, R̂t � ~Et�̂t+1 = (�� � 1) ~Et�̂t+1 + �q ~EtQ̂t+1; and a term

�� ~EtQ̂t+1 coming from the direct wealth e¤ect of equity holding on consumption. Following

an increase in household�s expectations of next period in�ation and stock prices, a central bank

responding actively but exclusively to in�ation - i.e., �� > 1 and �q = 0 - will not necessarily

put downward pressure on aggregate demand and therefore bring those expectations down (via,
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respectively, the Phillips curve and the stock price equation) since the increase in ~EtQ̂t+1 creates

a wealth e¤ect that may counter-act the current increase in the real interest rate (�� � 1) ~Et�̂t+1;

leading to a decrease (rather than an increase) in �̂t: To increase the latter, the central bank has

to generate a large real interest rate hike by picking a su¢ ciently large value for ��. This e¤ect

is further exacerbated by the fact that current consumption still depends on beyond-next-period

future expectations of wages and divideds, on which the central bank has weaker in�uence. With

a positive response to stock prices, �q > 0; following the initial changes in expectations, the term

�̂t is more likely to increase without requiring a large response coe¢ cient to in�ation.

Equation (64) is also helpful to explain why a lower elasticity of substitution � facilitates E-

stability. As a lower elasticity � implies a larger �; the coe¢ cient multiplying �w;D gets smaller,

making the in�nite-horizon forecasts of wages and dividends less important for the determination

of current output. Since those long-term forecast are a source of instability, a lower � makes the

term �̂t relatively more important, thus strenghtening the e¤ectiveness of monetary policy.

5.2 Sensitivity Analysis

We now consider alternative calibrations for some of the key parameters of the model, such as the

degree of nominal price rigidity, the Frisch elasticity of labor sypply, risk aversion, and the elasticity

of substitution across varieties. We change one parameter at a time, keeping the remaining ones at

baseline values. Figure 4 displays the results. As shown by the four panels, the size of the policy

space for which the equilibrium is both determinate and E�stable (white area) is inversely related

to risk aversion (panel c) and the elasticity of substitution across di¤erentiated goods (panel d),

while is positively related to the Frisch elasticity of labor supply (panel b). Its relationship with

the degree of price rigidity is more ambigous (panel a).

Let�s start with the latter. An increase in price �exibility (e.g., # goes from 0.75 to 0.66) appears

to have two opposite e¤ects. On the one hand, it shrinks the policy space leading to a determinate

equilibrium. This is due to the fact that lowering # yields a larger � in the Phillips curve, which in

turn diminishes the upper-bound on �� for determinacy (see condition (42) in Proposition 1). On

the other hand, it lowers the minimum response to �� for which the fundamental REE is stable (in

the speci�c case, from 8.25 to 4). This is because, with more �exible prices, long-horizon in�ation

expectations in the Phillips curve become less important (�rms�pricing decisions depend more on

current marginal costs), which strenghtens the stabilizing role of monetary policy.
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Figure 4: Equilibrium Determinacy and E-Stability under IHL: Alternative Calibration.

A decrease in households�willingness to supply labor (i.e., from 4 to 2, by increasing � from

0.25 to 0.5) a¤ects the household�s Euler equation (56) via two di¤erent channels.19 First, it

increases s�1C ; which in turn increases the wealth elasticity of consumption, thus strenghtening the

wealth e¤ect due to agents� bounded-rationality. Second, the wage elasticity of consumption is

s�1C (1� �) 1+��� = (1� �) 1+�
1+�� ; which, for � > 1; is a decreasing function of �.20 Hence, a less

elastic labor supply has both destabilizing (via the �rst channel) and stabilizing (via the second

channel) e¤ects. As panel b) shows, the former appears to dominate.

Larger risk aversion (e.g., from 1 to 2) leads to a lower intertemporal elasticity of substitution,

which can undermine the demand channel of monetary policy transmission. From the Euler equa-

tion (56) again, the (negative) real interest rate elasticity of output is s�1C � = � �(1+�)+(1��)��(�+��)� :

Simple calculus shows that, for � < 1+�
� (which is the case under our baseline calibration), such

elasticity is strictly decreasing in �:With a weaker transmission channel, monetary policy becomes

less e¤ective at controlling expectations, which then leads to instability (see panel c).

Our benchmark parameterization for the elasticity of substitution � is rather low if compared

19Labor elasticity also a¤ects the slope of the Phillips curve as it determines the responsiveness of the real wage
to aggregate activity.
20More generally, we have that the wage elasticity of consumption is decreasing (respectively, decreasing) in � for

� larger (respectively, smaller) than �:
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to what used in the macro literature, where values typically range between 5 and 11.21 In panel

d), we consider � = 5: A higher elasticity of substitution between di¤erentiated products lowers �:

From equation (64), we can see that this increases the wage elasticity of output, which, as previ-

ously discussed, is a source of instability.22 In particular, we �nd that monetary policy can never

guaranteee determinacy and E-stability at the same time (there is no white area). A determinate

equilibrium is always unstable under IHL (dark gray area), while E-stability can be attained with a

very aggressive response to in�ation. Responding to stock prices does not appear to have signi�cant

bene�cial e¤ects.

5.3 Real Wage Rigidity

One way to allow the model to deliver a determinate and E-stable REE for larger values of � is to

introduce some sluggish adjustment in wages by dampening their sensitivity to market conditions.

The simplest way to do this without a substantial modi�cation of the model is to assume that the

real wage does not fully respond to labor market conditions, as a result of unmodeled imperfections,

similar to Blanchard and Gali (2007). More speci�cally, let the real wage paid to workers be a

weighted average of a notional wage (with weight 1�!) and, using the terminology of Hall (2005),

of a wage norm (with weight !). We set the notional wage equal to the real wage occurring in

a perfectly �exible labor market, i.e., the marginal rate of substitution between consumption and

leisure as given by equation (12). As the wage norm, we consider instead the steady state real

wage.23 The (log) real wage is therefore ŵt = (1� !)
h
(� + �) Ŷt � �ẑt

i
; where the parameter

! 2 [0; 1] indexes the degree of rigidity.24

There are two channels through which sticky wages a¤ect our results. Recall the relationship

between current output Ŷt and the term �̂t from equation (64). On the one hand, as wages respond

less to aggregate activity, so do agents�expectations about their future dynamics, making the model

less susceptible to the instability due to in�nite-horizion learning. On the other hand, for � = 1;

21Such elasticity is often calibrated to give a steady state net price mark-up ranging between 10 and 25%.
22A smaller � lowers the coe¢ cient s�1C � ��1

�
(1� �) multiplying ~EtD̂t+1 in (64). However, since � � 1; this e¤ect

is negligible.
23Other formulations of real wage rigidities assume the wage norm to be equal to the past wage Wt�1

Pt�1
; such that

the (log) real wage corresponds to an exponentially-decaying weighted average of the in�nite stream of past �exible
real wages. See, for instance, Uhlig (2007). Our simpler speci�cation retains the same logic� namely, the current
real wage does not fully respond to current labor market conditions� without requiring any major modi�cation to
the reduced form linear system.
24For ! = 0; the real wage is fully �exible, as in the case studied in the previous section. For ! = 1 instead, ŵt = 0,

i.e., the real wage is constant, as in the canonical model of Hall (2005).
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Figure 5: Equilibrium Determinacy and E-Stability under IHL: In�ation Targeting with
Sticky Real Wages. Plot of E-stability/instability frontier (upward-sloping line) for di¤erent
degrees of real wage stickiness, �:

simple algebra shows that the temporary elasticity of Ŷt to �̂t is equal to
(1+��)�

�(1+��)+(1��)(1+�)! : The

latter is strictly decreasing in !: i.e., stickier wages weaken the impact of current monetary policy

on real activity. While these two channels clearly go in opposite directions, the former dominates

since, for � � 1, the impact of stickier wages on output elasticity appears negligible.

Figure 5 shows how the (upward-sloping) E-stability/instability frontier, displayed with respect

to the elasticity � and the policy coe¢ cient ��; shifts rightward as we consider higher degrees of

wage rigidity. The case of ! = 0 corresponds to what depicted in panel b) of Figure 3. As previously

argued, with fully �exible wages, the D-ES region is non-empty only for � smaller than, about, 4:

This upper-bound on � is strictly increasing in the degree of wage rigidity. For instance, it becomes

5.5 for ! = 0:5; and 8.5 for ! = 0:75.25

Based on these results, we simulate the model assuming larger elasticities and some rigidity

in real wages. Panel a) of Figure 6 has � = 4:3 and � = 0:5; while panel b) has � = 8:3 and

� = 0:75: The results are comparable to those displayed in Figure 2 for the benchmark calibration

25 In their benchmark calibration, Blanchard and Gali (2007) set the wage rigidity parameter (which is their case
is the weight on past real wages) equal to 0:9: Using a similar speci�cation, Uhlig (2007) shows that a high degree
of real wage rigidity is needed to generate both asset pricing and macroeconomic facts with a baseline real business
cycle model.
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Figure 6: Equilibrium Determinacy and E-Stability under IHL: Real Wage Rigidity.

with �exible wages.

6 Alternative Policy Rules

Our analysis could be summarized as follows. If monetary policy takes the form of an expectation-

based interest rate rule (forward-looking Taylor rule) whose functional form is unknown to the

public, stability under learning requires the central bank to either a) grant a su¢ ciently active

response to in�ation, without responding to stock price, or b) grant a mildly active response to

in�ation combined with a positive response to stock prices.

Next, we consider two alternative policy speci�cations which can eliminate the learning-driven

instability. The �rst one simply requires the central bank to be fully transparent, and communicate

to the public all details about the adopted expectation-based rule: namely, its arguments and the

related coe¢ cients. The second one requires the central bank to respond to observed, rather than

expected, endogenous variables (contemporaneous speci�cation).
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6.1 Monetary Policy Transparency

Consider the case of a central bank that fully communicates to the public the monetary policy

rule (23). With this information available, households�forecast of future interest rates will be in

line with what implied by monetary policy, which was not the case in the previous analysis. More

speci�cally, the term ~Et

1X
T=t

�T�tr̂T entering the Euler equation (51) becomes:

~Et

1X
T=t

�T�tr̂T = ~Et

1X
T=t

�T�t
h
(�� � 1) �̂T+1 + �yŶT+1 + �qQ̂T+1

i
The Euler equation (56) is then substituted by the following:

Ŷt = s�1C (1� �)
�
�QCQ̂t + �DCD̂t

�
+ s�1C (1� �) �IC

1 + �

�
ŵt

+s�1C
�IC
1 + �

�
� ~Et

1X
T=t

�T�t (1� �) ŵT+1

�s�1C � ~Et

1X
T=t

�T�t
h
(�� � 1) �̂T+1 + �yŶT+1 + �qQ̂T+1

i
(65)

Under monetary policy transparency, the structural equations describing the equilibrium under

IHL are then (23), (45), (57), (58), and (65). Agents will still need to forecast future wages,

in�ation, output, the stock price index and dividends, using their PLMs x̂t = a + bẑt; for x̂t �

[Ŷt; �̂t; Q̂t; ŵt; D̂t]
0:

As shown in panel a) of Figure 7, full policy communication eliminates the instability of the

REE due to learning. If determinate, the REE is always E-stable, as for the case of EEL discussed

in Section 3.1.

6.2 A Contemporaneous Rule

Suppose now the central bank sets the nominal interest rate in response to changes in current

in�ation, output and the stock price:

R̂t = ���̂t + �yŶt + �qQ̂t (66)
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Figure 7: Equilibrium Determinacy and E-Stability under IHL: Transparency and Con-
temporaneous Rules

It is assumed that the policy rule is not communicated to the public, meaning that households

would still form expectations about future interest rates making use of the no-arbitrage condition

(54). The dynamics under IHL are described by the same structural equations used in Section 5,

although now the interest rate R̂t entering the Euler equation (56) and the stock price equation

(53) is determined by (66) instead of (23). Panel b) in Figure 7 displays the results. As for the case

of a transparent forward-looking rule, a determinate equilibrium appears to be always E-stable,

unless the response to stock prices is excessively large.

7 Conclusions

In the benchmark New-Keynesian model, an explicit response to stock prices in the interest rate

rule increases the scope for equilibrium indeterminacy. More speci�cally, the larger the response to

stock prices the larger should be the response to in�ation for the equilibrium to be locally unique.

This policy trade-o¤ has been clearly highlighted by Bullard and Schaling (2002) and Carlstrom

and Fuerst (2007) supporting the conventional wisdom that monetary policy should not respond

to stock prices. However, the benchmark model does not include any structural linkage between
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the stock market and real activity, and hence no speci�c reason for why the central bank should

respond to endogenous variables other than in�ation and output.

Following Preston (2005, 2006), we have presented a New Keynesian model where agents are

internally rational - they take optimal decision subject to known individual objectives and con-

straints, understanding the mapping betweeen own actions and expected pay-o¤s, given subjective

beliefs about aggregate variables beyond their control - but do not have any knowledge about other

agents�objectives, constraints and beliefs. We have shown that this form of bounded rationality

generates wealth e¤ects from holding of risky equity shares on consumption.

We have then studied the stability under learning (E-stability) properties of forward-looking

interest rate rules that grant an explicit response to stock prices. We have found that a policy rule

which exclusively and actively responds to in�ation easily guarantees a determinate equilibrium,

but is not su¢ cient to make stable under learning, unless the response is quite large (indeed more

than what supported by empirical evidence). This issue is alleviated by responding to stock prices:

a mild positive response to them can re-establish the Taylor principle as good policy guidance. All

instability issues due to learning disappear if the forward-looking rule is fully communicated to the

public, or if the central bank adopts a contemporaneous speci�cation.

A Appendix

A.1 Steady State

We consider a zero in�ation symmetric steady state. This corresponds to the same steady state

for the benchmark representative agent New Keynesian model under RE. In particular, we have

that �Ci = �C, �H i = �H; and �Ii = �I for all i 2 [0; 1] : Moreover, by market clearing and the linear

technology, thefollowing equality holds: �C = �Y = �HIt therefore follows that �F it;T = �Ft;T = �T�t

and ��it;T = ��t;T = �T�t; from which the real interest rate is �R = �P�1B = ��1:

Real marginal costs are the inverse of the steady state price mark-up, mc = ��1: Imposing

symmetry also across all �rms, real dividends are �Dj = �D = �Y (1�mc) = ��1
�
�Y . From the stock

price equation (10), we have �Q = �
�
�Q+ �D

�
; such that �Q = �

1��
��1
�
�Y : Since �w = mc; using the

de�nition of labor income �I; we have that �I =
�Y
� :
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A.2 Derivation of Euler equation

Consider the term on the left hand side of (16). Its log-linear approximation around a symmetric

steady state (where �Ci = �C and ��it;T = �T�t) gives:

~Eit

1X
T=t

�it;TC
i
T � �CĈit + � �C ~E

i
t

�
�̂it;t+1 + Ĉ

i
t+1

�
+ �2 �C ~Eit

�
�̂it;t+2 + Ĉ

i
t+2

�
+ ::: (A.1)

From the de�nition of �it;T and the Euler equation (11), we have that:

~Eit�̂
i
t;t+1 = � ~Eit

�
Ĉit � Ĉit+1

�
= �

�
R̂t � ~Eit �̂t+1

�
= �r̂t

~Eit�̂
i
t;t+2 = � ~Eit

�
Ĉit � Ĉit+2

�
= �

�
R̂t � ~Eit �̂t+1

�
� ~Eit

�
R̂t+1 � ~Eit �̂t+2

�
= �r̂t � ~Eit r̂t+1

:::

where r̂t � R̂t � ~Eit �̂t+1 is the (log) ex ante real interest rate at time t: After simple algebra,

equation (A.1) is equivalent to

~Eit

1X
T=t

�it;TC
i
T � �C ~Eit

1X
T=t

�T�tĈiT �
� �C

1� �
~Eit

1X
T=t

�T�tr̂T : (A.2)

Following a similar procedure, the log-linearization of ~Eit

1X
T=t

�it;T I
i
T on the right hand side of (16)

gives:

~Eit

1X
T=t

�it;T I
i
T � �I ~Eit

1X
T=t

�T�tÎiT �
� �I

1� �
~Eit

1X
T=t

�T�tr̂T (A.3)

Next, consider the Euler equation (11), whose log-linearization gives:

Ĉit = ~EitĈ
i
t+1 �

1

�

�
R̂t � ~Eit �̂t+1

�
Iterating it forward, we obtain an expression for ~EitĈ

i
T for T � t:

~EitĈ
i
T = Ĉit + �

�1 ~Eit

T�1X
n=T

r̂n
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Using the latter, we can �nd an expression for the summation ~Eit

1X
T=t

�T�tĈiT entering (A.2):

~Eit

1X
T=t

�T�tĈiT = Ĉit + � ~E
i
tĈ

i
t+1 + �

2 ~EitĈ
i
t+2 + :::

= Ĉit + �
�
Ĉit + �

�1r̂t
�
+ �2

h
Ĉit + �

�1 ~Eit (r̂t + r̂t+1)
i
+ :::

=
Ĉit
1� � +

��1�

1� � r̂t +
��1�2

1� �
~Eit r̂t+1 + :::

=
Ĉit
1� � +

��1�

1� �
~Eit

1X
T=t

�T�tr̂T (A.4)

We can then substitute the latter into (A.2), and, together with (A.3), into the log-linearized version

of (16) to obtain the following expression:

�C

1� � Ĉ
i
t +

��1� �C

1� �
~Eit

1X
T=t

�T�tr̂T �
� �C

1� �
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1X
T=t

�T�tr̂T

= �aâit +
�I ~Eit

1X
T=t

�T�tÎiT �
� �I

1� �
~Eit

1X
T=t

�T�tr̂T

A.3 Linear System under IHL

Consider the in�nite horizon Euler equation (56). Expectations of future variables are computed

using the PLMs in equation (59). Namely, we have that

x̂t = a+ bẑt (A.5)

for x̂t � [Ŷt; �̂t; Q̂t; ŵt; D̂t]
0; a � [ay; a�; aq; aw; ad]

0 and b � [by; b�; bq; bw; bd]
0: In particular, for a

generic variable m̂t = am + bmẑt; for m = w; �; Y;Q;D; and known AR(1) process for ẑt; we have

that ~Et
1X
T=t

�T�tm̂T+n =
am
1�� +

�nbm
1��� ẑt:

Making use of the policy rule (23) to substitute for R̂t; we can write (56) as follows:
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Ŷt � s�1C �
�� 1
�

Q̂t � s�1C (1� �) �� 1
�

D̂t � s�1C (1� �) 1 + �
��

ŵt

= s�1C
1 + �

��
�aw � s�1C ��yay � s�1C ��ad + s

�1
C � (1� ��) a� + s�1C �

�
� � �q

�
aq (A.6)

+s�1C
1 + �

��
�
(1� �) �
1� �� bwẑt � s�1C ���yby ẑt � s�1C ��

(1� �) �2
1� �� bdẑt

+s�1C �� (1� ��) b� ẑt + s�1C ��
�
� � �q

�
bq ẑt

Similarly, the Phillips curve (22) becomes:

�̂t � �ŵt = ��ẑt +
��#

1� �#aw +
� (1� #)
1� �# a�

+
��#�

1� �#�bwẑt +
� (1� #) �
1� �#� b� ẑt �

�

1� �#�ẑt (A.7)

The stock price index equation (53) combined with the policy rule (23) gives instead:

Q̂t = (1� ��) a� � �yay + (1� �) ad +
�
� � �q

�
aq

+(1� ��) �b� ẑt � �y�by ẑt + (1� �) �bd +
�
� � �q

�
�bq ẑt (A.8)

We have then a system made of equations (A.6), (A.7), (A.8), together with (57) and (58), which

we can write compactly as F1x̂t = F2a + (F3b+ F4) ẑt, with matrices Fi; for i = 1; 2; 3; 4, de�ned

as follows:

F1 �

26666666664

1 0 �s�1C � ��1� �s�1C (1� �) 1+��� �s�1C (1� �) ��1�
0 1 0 �� 0

0 0 1 0 0

� (� + �) 0 0 1 0

�
�
1� �+�

��1

�
0 0 0 1

37777777775
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A.4 Euler Equation without Equity Trading

Without equity trading, the i-th household�s budget constraint is:

PtC
i
t + PB;tB

i
t = Bit�1 + PtDt +WtH

i
t � T it (A.9)

where Dt �
1R
0

Dj;tdj; as dividends are distributed equally across all households as lump-sum

transfers: By forward iteration of (A.9) and the use of �rst order conditions, it is easy to obtain

the following intertemporal budget constraint:
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1X
T=t

�it;TC
i
T = ait +

~Eit

1X
T=t

�it;T I
i
T (A.10)

where now ait �
Bit�1
Pt

and Iit � Wt
Pt
H i
t + Dt: Following the same logic of Section 2.1, the log-

linearization of (A.10) yields:
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with ÎiT =
�w �H
�I

�
ŵt + Ĥ

i
t

�
+

�D
�I
D̂t: Using the fact that, at the steady state, �I = �Y ; �w = ��1 and

�D
�Y
= ��1

� ; together with the linearized consumption-leisure trade-o¤ equation Ĥ i
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1
� ŵt�

�
� Ĉ

i
t ; we

have that ÎiT =
1
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�
1+�
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i
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� D̂t: It therefore follows that
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After combining the latter with (A.11), rearranging terms, noticing that now
�I
�C
= 1; averaging

across households, and imposing the market clearing condition Ĉt = Ŷt; it is straightforward to

obtain the in�nite-horizion IS curve (63).
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