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Rationality and exuberance in land prices  

and the supply of new housing1  

 
Alex Anas and Debarshi Indra 

 

1. Introduction 
 

          We introduce a new microeconomic and microeconometric approach for modeling single-

family housing construction decisions under uncertainty. An investor in land will build in a given 

year, if he expects doing so to be more profitable than postponing the construction. Profit 

expectations are based on forward estimates of land and housing prices that vary stochastically 

according to unobserved attributes of the investor and the land parcel; and on the noisy perceived 

opportunity cost of starting the construction. To treat these aspects, we specify the probability that 

a land parcel will become developed in a given year as a mixed logit model.  

         Theoretical microeconomic models of land development under rational expectations assume 

that all rents on buildings grow with random motion around an exponential trend, and that all land 

investors have identical expectations about the future. In such an idealized environment, it would 

be plausible that investors in land can see deep into the future and act confidently with rational 

expectations. Using such assumptions, Capozza and Helsley (1990) modeled when in the future it 

is optimal for the land to be developed; and Capozza and Li (2002) examined at what structural 

density it is optimal to develop the land. Earlier, in a model with just two periods, Titman (1985) 

treated one investor who constructs in period 1 and faces either a high or a low building price in 

period 2. Using such a model, he examined the effect of uncertainty in the building price on the 

price of land. 

        The ideal conditions assumed in the theoretical models are not reflected in our data which 

consists of a large panel of land parcels zoned for single family housing spanning the years from 

1988 to 2012 in Los Angeles County. During this long time span, the markets had large cyclical 

price and quantity fluctuations that included a boom followed by the savings and loan crisis and 

its aftermath through the nineties, then the speculative house price bubble of 2000-2007, followed 

by the crash in prices and then the mortgage crisis. In addition to these temporal cycles, the data 

                                                           
1 Support of the Multi-campus Research Project Initiative via award 142934 from the University of California is acknowledged. 

An earlier version was presented at the international conference on Advancing Metropolitan Modeling for the Analysis of Urban 

Sustainability Policies held in Riverside, California, January 16-17, 2015. The authors thank David Brownstone, Dennis 

Capozza, David Geltner and Kerry Vandell for helpful comments. 
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reflects the wide spatial heterogeneity in parcel attributes, and in housing and land prices within 

LA County which includes 85 local jurisdictions. 

           These highly non-stationary market price fluctuations from 1988 to 2012 were impossible 

for market agents to foresee, and it is not plausible to treat profit maximizing land developers as 

looking deep into the future with rational expectations. Pesaran (1987; page 2) observed that the 

rational expectations hypothesis “is based on extreme assumptions and cannot be maintained 

outside the tranquility of a long-period steady state”, and our data exhibits no tranquility. Manski 

(2004), in his study of expectations, concluded that “rational expectations assumptions are often 

implausible in the extreme.” (page1335). Case and Shiller (1989) found that housing and real estate 

markets are not efficient. More recent observations by Shiller (2005), Akerlof and Shiller (2009; 

chapter 12) and Shiller (2014; section E, pp. 1501-1504) strongly support the view that exuberance 

and animal spirits rather than rational expectations are common not only in stock and other 

financial asset markets but also in housing and real estate markets. Recent surveys have 

emphasized the roles of heterogeneous beliefs in the formation of financial bubbles (Xiong, 2013; 

Brunnermeier and Oehmke, 2013). Armed with this perspective, our econometric formulation 

allows for profit maximizing behavior, but one that is buffeted by investor exuberance that arises 

from both systematic factors common to all investors and from idiosyncratic heterogeneity among 

investors. To achieve such a model formulation, we confront and resolve three modeling issues 

about the behavior of land investor-developers.  

        The first issue is that of an appropriate time horizon. Housing developers construct housing 

and expect to sell soon after construction. Almost all single family housing takes a year or less 

from permit issuance to completion and to sale.2 In our benchmark model we assume that investors 

rationally forecast – albeit within considerable uncertainty which we model – the year-ahead 

expected market price of their land parcel that would hold should they choose not to construct, and 

the year-ahead housing market price at which they would sell if they choose to construct housing 

at a particular structural density. In our variations of the benchmark model we consider two 

alternative expectations behavior: investors are backward looking and forecast the year-ahead 

housing price as the moving average of past prices; or investors are forward-looking and forecast 

the year-ahead housing price as the moving average of several future prices, which we assume 

                                                           
2 The Census reports that 25% of houses are sold on completion, the rest evenly split as “not yet started” or “under construction” 

(U.S. Census, 2015). The National Association of  Home Builders (2013) reports that construction takes 7 months on average, 

and in the West Coast, 8 months from permit issuance to completion. 
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they can somehow perceive. We find that, between these two, the backward looking assumption 

gives more satisfactory results.  

        The second issue concerns the well-known fact that houses and land sell infrequently on 

average. Because of this, investors must infer the expected market prices for their land and for the 

prospective housing they might build by valuing the observable attributes of similar properties that 

sold, and from stochastic idiosyncratic attributes that are their private knowledge or expectation 

but are not observed in the market. It is widely held that land and housing are indeed valued by 

reference to comparable properties that sold, from which implicit prices for attribute can be 

inferred. Rosen (1974) developed such a theory of implicit prices for competitive markets of highly 

differentiated products such as housing, and this is how we model year-ahead expected prices.  

       The third issue is modeling the opportunity cost of starting a construction project, which we 

treat as a fixed cost, not to be confused with the cost of the construction itself which is a variable 

cost that increases with structural density. This startup cost includes unobservable up-front 

pecuniary and non-pecuniary costs of dealing with regulations and complying with local codes 

that vary by jurisdiction. A temporally varying part of the startup cost includes such things as 

assessing the post-construction economy and overcoming the psychological resistance to 

committing to the construction project, given that the deeper future is not clearly visible. A third 

component of the startup cost varies idiosyncratically among the investors, and we treat it as a 

white-noise random variable.  

       Concerning the inter-jurisdictional component of the startup cost, the extant literature 

recognizes that local geographic features and land use regulations can raise development costs, 

limiting supply and driving up house prices. Rose (1989) has modeled geographic constraints, 

while Glaeser, Gyourko and Saks (2005) emphasized the role of regulations in raising real estate 

prices. Quigley and Raphael (2005) showed that California cities have strong powers to regulate 

land use, and some cities do restrict new development to various degrees, causing higher 

development costs and higher house prices. The “home-voter hypothesis” of Fischel (2001), 

provides an explanation for why regulations arise in the first place and how they vary by 

jurisdiction. Fischel claimed that local jurisdictions with high house prices politically choose 

stricter land use regulation, because incumbent residents seek to protect their home investments 

from losing value. In our empirical results we will present evidence that restrictive regulatory 
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policies may be causing higher startup costs; and that, controlling for the effect of these 

regulations, the startup cost of development is indeed associated with higher house values.  

       The commonly held temporal component of land investors’ startup costs is explained by 

strong trends in housing prices that can influence developer expectations. As Shiller (2014) has 

reemphasized recently and Case and Shiller (1989) had demonstrated, average house prices in 

many markets do not follow a random walk, but tend to go up or down in the same direction for 

many years in a manner that is not related to fundamentals. In LA County, for example, prices rose 

consistently and sharply year after year from 1997 through 2005. If developers operating in such 

markets learn to demand returns bigger than a normal hurdle rate, they could postpone construction 

and speculate by keeping the land undeveloped which drives up house prices even higher. We refer 

to temporally increasing average startup costs as evidence of animal spirits.3 We find that both the 

time trend of house prices and the annual percentage change in house prices may play significant 

roles in influencing the rise and fall of animal spirits in speculative land investing. This explains 

in part a relatively slow rise in construction from 2000-2005, during rapidly rising house prices.  

       The rise and fall in commonly held animal spirits is accompanied by a concomitant rise and 

fall in the variance of the noisy part of the startup cost, which reduces the sensitivity of the 

construction probability to financial profit during the years of booming house prices. To show the 

consequences of this on investing, we calculate an investor’s reservation price for holding onto 

land, and decompose this into parts explained by the year-ahead expected profit from construction, 

a probability-weighted expectation of profit, plus a measure of entropy explained by the noise in 

the startup cost. We show that during the booms, the share of entropy in the reservation price rose 

to between 16%-38% from negligible levels in normal periods. But entropy receded sharply before 

prices peaked. In our benchmark model, during the exuberance of the 2000-2007 price boom, 

reservation prices for land ran ahead of market prices by 6.21% per year on average, and trailed 

by about 2.06% per year during the subsequent price crash, when zero excess economic returns 

held on average over the longer span from 1988 to 2012. Over this long period, a 1% per year 

excess of reservation over market land prices was associated with a 1.08% increase in next year’s 

land prices, but had no significant association with next year’s house prices.   

         A benefit of our microeconomic model of new housing supply is that it provides a basis for 

the rigorous determination of elasticity. Our mixed logit model combines the intensive and 

                                                           
3  We will see that our term animal spirits is similar to that of Shiller (2014).  
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extensive margins of housing supply, studied separately in the literature. The former group of 

studies has relied on micro data to estimate the weights of land and non-land inputs in a housing 

production function. The approach is traceable to Muth (1969) and the early work was surveyed 

by McDonald (1981). A difficulty with this approach was the absence of reliable data on land 

prices and on the quantity of housing services. But recently Epple, Gordon and Sieg (2010) used 

nonparametric methods to treat housing services and prices as latent variables.   

         The latter group of studies has relied on aggregative approaches to measure housing market 

responsiveness in the extensive margin. In Topel and Rosen (1988) and DiPasquale and Wheaton 

(1994), a time series of the national housing stock is related to average housing prices, taking care 

to identify demand and supply schedules. Mayer and Somerville (2000) showed that if changes in 

housing stocks are related to changes in average housing prices, then doing so gives lower but 

more reasonable estimates of the construction and supply elasticity. Green, Malpezzi and Mayo 

(2005) showed that the price elasticity of housing supply is higher in fast growing, less land use 

regulated and smaller metropolitan areas. Using long term aggregated data, Saiz (2010) showed 

that supply elasticity can be lower due to land use regulations and geographic limitations on 

developable land. 

         Using our model, the responsiveness of construction to house prices, construction costs and 

interest rates is obtained by aggregating over the micro decisions of land developers. This yields a 

clear path from the housing price elasticity of new construction on each land parcel to the short 

term and long term price elasticity of the housing stock. Our housing stock elasticity increases as 

the time horizon into the future lengthens, slowly approaching perfect elasticity over time. This 

clears up the ambiguity in the literature about the relationship between construction and the long 

run stock elasticity. During 1988 - 2012, our annual construction elasticity in LA County varied 

between 2 and 4 with a mean of 2.89 while the annual stock elasticity varied between almost zero 

and 0.053 with a mean of 0.026. The long run stock elasticity can be calculated for a time horizon 

of any length by compounding the effect of either a changing-in-time or a constant-in-time annual 

stock elasticity. Such a long run stock elasticity measures the percent by which the aggregate stock 

of housing over a period would be larger had housing prices been a percent higher each year. In 

our benchmark model and its variations, the long run stock elasticity over our study period for LA 

County lies between 0.45 and 0.63, somewhat below the estimate for the entire LA metropolitan 

area over 1970-2000 and which Saiz (2010) obtained from aggregated data.            



7 
 

       The paper is organized as follows. In section 2 we explain our modeling framework, and its 

consistency with the real option theory of land investment. We show how the model detects 

commonly held animal spirits and noisy departures from pure profit maximization as two sources 

of exuberant market behavior. Section 3 derives the mixed logit model of the probability of 

construction and the reservation price for land; and section 4 derives the construction and stock 

elasticity. Section 5 describes our panel data set and surveys the fluctuation of prices and quantities 

from 1988 to 2012. Section 6 is on how structural density and year-ahead price expectations and 

their covariance structure are estimated, and section 7 is on the estimation of the mixed logit model. 

Section 8 presents the benchmark model and a number of variations of it demonstrating robustness 

of the empirical results. Section 9 concludes. 

2. Modeling year-ahead profit expectations and exuberance 
 

2.1 Year-ahead state-dependent profits 

        As explained in the Introduction, our developer-investors are able to see rationally as far as 

the year-ahead. For conceptual clarity suppose that a year t  is divided into two stages as shown in 

Figure 1. In stage 1, the developer i knows the information necessary to forecast next year’s 

expected market prices and prospective structural density for his parcel ,i  and knows the 

probability distributions of the random variables that would affect the parcel. Based on this 

information, the developer can calculate in stage 1, ,i tL , the reservation price under uncertainty for 

the land parcel, which is the minimum price at which the developer would sell the parcel and the 

maximum he would pay to buy it. In stage 2, draws of the random variables are realized for each 

parcel, and based on these each developer decides whether to construct on his parcel in year t  for 

sale in 1t   (the d  state) or to postpone the decision to 1t  (the nd  state).  

[FIGURE 1 HERE] 

         Year-ahead cash flows are discounted at a risk-adjusted normal rate of return tr  , where 

tr  is the risk-free one-year T-bill rate and   is a time-invariant risk-premium appropriate to a 

long run internal rate of return for single family housing development.4  We specify the full 

economic profits of nd and d  states as follows:  

                                                           
4 We will discuss  in more detail in the empirical results in section 8. 
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,

nd

i t and 
,

d

i t will be used later to abbreviate some equations. In (1a) 
, 1i tL 

is the year-ahead market 

price of land per unit land area of parcel i if it remains undeveloped in year t.  In (1b), 
, 1i tP 

is the 

year-ahead market price of housing per unit floor area if the parcel is developed in year t, and
,i tf  

is the prospective structural density (floor to land area ratio or FAR) that would be built. 

Construction cost exclusive of land costs is tk per unit of floor area.
,i tL , the market price of the 

parcel’s land in year t, is subtracted in (1a) and (1b) to calculate the full economic profit of each 

state, but it is a sunk cost and plays no role in the decision of whether to construct or not. 

        We assume that the year-ahead expected market price of land and housing, and the 

prospective FAR are imputed to each parcel, by the stochastic functions  , 1 , 1 , 1, ,L L

i t i t i tL L     Z  

, 1,i tP   , 1 , 1,P P

i t i tP    Z ,  , , ,,f f

i t i t i tf f   Z , where
, 1i tZ , 

,i tZ are observed attributes of the 

parcels, and  , , 1 , 1 ,, ,L P f

i t i t i t i t      0,   is a random vector with
,i tE     1 , that depends on 

idiosyncratic and unobservable attributes of the parcel and the investor.  , 1 , 1, ,L

i t i tE L L  
    Z

 , 1 , 1, ,P

i t i tE P P  
    Z  , ,,f

i t i tE f f     Z  are the expected market price and prospective FAR 

functions, to be estimated in section 6; and we will see there that   ,ln 1 varj j

i t    for

, ,j L P f . Provided these functions are well specified, as we shall see in section 6, the ,i t will 

be uncorrelated with
, 1i tZ , 

,i tZ . The reason FAR,  is subscripted by t and depends on 
,i tZ , but 

prices are subscripted by 1t  and depend on 
, 1i tZ  is because of our assumption that the developer 

commits to an FAR in stage 2 of year t , but plans for construction and sale to be completed in 

year 1.t  The 
,i t are drawn in stage 2 of each year from a time-invariant joint cumulative 
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distribution  ,i tG  . In section 6 we will see how to empirically infer and numerically generate 

it.  

         ( ), ,

d

c i t i tF u  in (1b) is the perceived opportunity cost of starting construction which includes 

both monetary and the monetary-equivalent of nonmonetary costs. This is a fixed cost because – 

unlike the construction cost 
,t i tk f  – it does not increase with the FAR. Note that this fixed cost has 

two components, ( ),c i tF , which is common across investors in the same city ( )c i  where parcel i  is 

located, and ,

d

i tu which varies across investors.  For the nd  state, the corresponding perceived cost 

of holding land is just ,

nd

i tu . We will assume that  , , ,
,

nd d

i t i t i t
u uu  ,    with

,i tE    u 0 are 

additive random components of the state-dependent costs that vary by parcel each year and are 

i.i.d. While the
( ),c i t

F capture the spatiotemporal commonly held trend of the startup costs, the 
,i tu

capture the stochastic variation around the trend.  2

,i t tW u  is the cumulative distribution of 
,i tu  

to be specified later. We will discuss the econometric implications of our model in section 6 and 

7. In particular, we will explain how we deal both with endogeneity issues and with possible serial 

correlation in 
,i t and in the

,i tu . 

2.2 Land investment as a real option and exuberance 

      Investing in land is analogous to buying a perpetual call option where the option’s strike price 

is the cost of constructing a building. In the case of our model, an investor can see the year-ahead 

post-construction future, and once the ,i t and the ,i tu are revealed, the call option to build is 

exercised if , , 0d nd

i t i t   , that is if:   
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.       (2a) 

On the left side is the present value of the housing created by exercising the option to build. The 

right side is the total present value cost of exercising the option: the first term is the construction 

cost that increases with the FAR and the second term is the opportunity cost of starting the project, 

consisting of the mean cost ( ),c i tF and the noisy additive deviation, , , ,
ˆ .nd d

i t i t i tu u u  The first two 
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terms on the right comprise the strike price while the third is the value of the land, that is the market 

value of the option contract itself. Exercise of the option is triggered by a high enough expected 

housing market price  , 1,P

i tP ν Z ; or a high enough random deviation,
, 1

P

i t 
, from the expected 

price; or  a highly negative 
,

ˆ
i tu  (a highly positive ,

nd

i tu ) that reduces the startup cost. We now 

decompose the ( ),c i tF into year and time effects as explained in the Introduction. More precisely, 

,, c t tc tF   , where 
,c t

is the component that depends on the regulations of city c and other 

time-invariant city characteristics such as geo-physical features, and t is the temporal component. 

Under certain market conditions, developers will perceive a high opportunity cost of committing 

to develop in the current year perhaps in expectation of even better house prices later, although 

they are unable or unwilling to forecast that far with any precision. Thus a high t  indicates a 

willingness to keep holding land as a speculative investment beyond year .t  t will be our measure 

of commonly held animal spirits. Shiller refers to a valuation of stocks in excess of the expected 

present value of their future dividend stream as animal spirits (Shiller (2014), eq. (4), p. 1498). We 

similarly define animal spirits to be an excess expected return from holding on to a land investment 

after accounting for a normal risk premium .   

         The marginal investor who builds draws such a value of , , ,
ˆ nd d

i t i t i tu u u  that he makes zero 

profit from exercising the option to build, whereas infra-marginal investors make positive profit. 

The value of the house built by the marginal investor is then  ˆ(1 )Pf L kf r u      , 

where subscripts are removed for simplicity. Pf  equals the sum of the cost of the land, ,L   the 

construction cost, ,kf the startup cost û , and the return on it. Thus the house buyer pays 

an exuberance premium of (1 )r    to satisfy the animal spirits of land investors. Rearranging 

(2a) in abbreviated notation, we see below in (2b), that construction occurs when the financial 

profit from construction, after satisfying animal spirits yields a rate of return that exceeds the 

hurdle rate: 
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         The model is applicable to periods with bubbles because it can help detect several types of 

market exuberance:  

(i) If too many investors contagiously believe in high upward deviations,
, 1

P

i t 
, from  

the expected market prices  , 1,P

i tP ν Z , then more construction would occur. This would be 

deemed an exuberant market because it may be statistically implausible that such expectations 

would be sustained by many rational investors at the same time;  

(ii) If the variance of the noisy part of the start-up cost becomes higher, more investors  

draw a negative enough ,
ˆ

i tu reducing the startup cost and causing the hurdle rate to be exceeded 

resulting in more construction. Such behavior would be deemed exuberant because decisions to 

construct would show high sensitivity to the white noise, ,
ˆ

i tu , and reduced sensitivity to the 

financial profit from construction,  , 1 , , 1i t t i t i tP k f L   ;  

(iii) If investors are possessed by animal spirits, that is by high ,t  then – on average – 

higher year-ahead financial profit is required to develop the land. Such animal spirits can arise 

over extended periods of sharply rising housing prices and begin to recede once investors realize 

that prices are topping out. In this case, the exuberance in land speculation results in less 

construction which can drive up house prices even more. This is analogous to the exuberance of 

stock investors not selling overvalued stocks, expecting even higher returns in the future.      

         In our empirical results, we will see evidence of both (ii) and (iii), especially during the 

period from 2000 to 2005 when average house prices were sharply rising year after year on a 

sustained basis. We will show that the two effects worked against each other: the commonly held 

animal spirits, t , which were rising restrained construction by inducing more land speculation, 

                                                           

5 If 
,

ˆ
i t

u is viewed as noise around ,
t

 (2b) can also be written as
   , 1 , , 1 ,
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i t t i t i t t t i t

t

c t

P k f L r u
r




 
      

   .  
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but the growing noise in ,
ˆ

i tu idiosyncratically caused more land investors to build, offsetting some 

of the effect of t .  

2.3 The reservation price for investing in land  

       Of interest is the reservation price for investing in land (or buying the option-to-build). This 

is the maximum price the investor would bid for the land or the minimum price at which he would 

sell it, when the investor faces uncertainty. Suppose that 
,i t  is revealed, but ,i tu is not yet revealed, 

we denote the reservation price conditional on 
,i t as  ,,

ˆ
i ti tL  : 

                  
,

, , , , , , , , ,,max , 0,ˆ
i t

nd nd d d

i t i t i t i t i t i t i t i t i ti tu u L    u u du                            (3a) 

where  ,i t u  is the probability density. Before ,i tu  and 
,i t  are revealed, the reservation price 

is denoted ,i tL , the weighted average of  ,,
ˆ

i ti tL  given the joint probability density  ,g i t : 

                                           ,, , , ,
,

g .0ˆ
i ti t i t i t i t

i t

L L  d


                                                  (3b) 

(3a) and (3b) are zero-expected-profit conditions. They generalize the conventional fact in land 

economics that – in the absence of uncertainty – the price of land is the residual value remaining 

after all costs have been subtracted from the price of housing. In our setting, since there is 

uncertainty, the residual value condition holds ex-ante:  the reservation price for land from the zero 

profit condition (3b) is the expected residual value that remains after costs in each state of the 

world have been subtracted from value in that state. The market and reservation price on land are 

not equal and either one can be higher as we see next. 

2.4 Excess expected returns 

       Recall that in stage 1 of year t, the investor does not yet know the draws of the random 

variables (Figure 1). The expected market price of land parcel i  will be  , ,,L

i t i tE L L     Z . 

Meanwhile, the reservation price is , .i tL  If 
, ,i t i tL E L    the investor is better off to sell the parcel 

in the market, but if
, ,i t i tL E L    , then the investor is better off to buy or keep the land parcel and 

to wait for the random variables to be revealed in stage 2, at which time he would decide whether 

to build or not (Figure 1). In order to use the model to evaluate the efficiency of the land market, 

we are interested in quantifying the excess expected economic returns predicted by the model. Let
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iA  be the land area of parcel i for all ( )i B t , where ( )B t  is the set of parcels that got built on in 

year .t  Then, we calculate the area-weighted average expected excess return in year t  as 

 , ,

( )

,

( )

.

i i t i t

i B t

t

i i t

i B t

A L E L

EER
A E L





   


  




 We take how little this deviates from zero as an indication of the 

market’s aggregate efficiency in year t . In our empirical work we set the long term average risk 

premium,  , over the period 1988-2012 so that 
24

1

/ 24 0t

t

EER


 
 

 
 , and we then examine the 

deviation from zero in different sub periods. We will see in the empirical results that during years 

of booming house prices, the reservation prices for land reflected the exuberance by running ahead 

of the market prices, and in the subsequent crashes by trailing the market prices.      

 2.5 The probability of construction 

     The data tell us in which year a lot was constructed on and at what FAR, but our model predicts,

,

d

i tQ , the probability that a particular lot will be built on in a given year and its FAR.  This 

probability conditional on a draw of 
,i t is defined from stochastic profit maximization: 

            , , ,, , , , , , , ,0i t i t i t

d d nd d nd nd d
i t i t i t i t i t i t i tQ Prob Prob u u   

   
                        (4a) 

   , ,, ,1 .i t i t

nd d
i t i tQ Q    And when both 

,i t and 
,i tu are not yet revealed, then the probability of 

construction is a weighted average of the (4a) probabilities: 

                              
,

, ,, , , ,,g , 1 .

i t

i t i t
d d nd d
i t i t i t i ti tQ Q Q Q   d  


                                 (4b) 

3. A mixed logit model of the decision to construct 

      The mixed logit model is a flexible specification because any random choice model can  

be approximated by a mixed logit  as explained by McFadden and Train (2000).  Below, we specify 

(3a), the reservation price, and (4a), the construction probability as those of a binary logit model 

and then our mixed binary logit model is obtained by integrating over the ,i t as in (3b) and (4b).6  

                                                           
6 Barry, Levinsohn, Pakes (1995) estimated a mixed logit model by integrating over consumer income which entered utility 

nonlinearly. We integrate over developers’ expected prices and the FAR which enter profit nonlinearly. 
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     The logit model does not permit non-additive random effects. Therefore, we get the logit 

either by assuming that 
,i t are known to the investors and are constants; or by setting all 

,i t  1

meaning that year-ahead prices do not deviate from their expected values.  , , ,,i t

nd d
i t i tu u=u is still 

uncertain, and the binary logit model is derived by assuming that the ,i tu are i.i.d. type I extreme 

value with variance 2

t  or dispersion  6 0tt   . Since , ,,nd d

i t i tu u are i.i.d. extreme 

value, , , ,ˆ nd d
i t i t i tu u u  is logistic and the model can also be derived by assuming this directly 

which is nearly equivalent to assuming that the ,i tu are i.i.d. normal (Train (2009), p. 35). The 

derivation of the model by McFadden (1974) or Train (2009) for a consumer, transfers to the 

setting of profit maximization. Then, the reservation price and probability of the binary logit 

from (3a) and (4a) are:  

                                                 , , , , ,,

1
ln exp expˆ d nd

i t t i t i t t i t i t

t

i tL  


    ,                        (5) 

   
 

   
    
    

, , , ,, ,

, ,

, , , , , , , ,

expexp
.

exp exp 1 exp

d ndd
t i t i t i t i tt i t i td

i t i t d nd d nd
t i t i t t i t i t t i t i t i t i t

Q
  

    


 

  

 


   

7           (6)   

To abbreviate, we write ,

d

i tQ . (6) is a sigmoid curve asymptotic to zero as , ,

d nd

i t i t     and to 

one as , ,

d nd

i t i t    . Note that (6) is the expected supply function conditional on ,i t .  The 

path integral of (6) with respect to , ,,d nd

i t i t  is unique and the producer surplus is (5), same as the 

reservation price. 8 The mixed logit model is obtained by applying (3b) to (5) and (4b) to (6). 

Since properties of the mixed logit flow largely from the logit, we discuss properties of the logit 

that are important in our context: 

         (i) The construction probability is homogeneous of degree zero in lot area: economists treat 

housing production as constant returns to scale as in Muth (1969), or Epple, Gordon and Sieg 

(2010), which allows us to model housing production on a unit-sized land parcel. In part A of the 

                                                           
7 A logit model of probabilistic real estate transitions was proposed in Anas and Arnott (1991). 
8 Small and Rosen (1981) proved that the consumer’s choice probability is the expected demand function, and the consumer 

surplus is the integral of the logit probability.   
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Appendix, we prove that the construction probability 
,

d

i tQ  is homogeneous of degree zero in land 

area i
A . The expected constructed land area is ,

d

i i t
AQ  and is homogeneous of degree one in i

A .   

         (ii) Construction becomes inelastic to prices as profits become noisier: The elasticity, 
,
d
i t

 , 

of ,

d

i tQ with respect to ,
d
i t  is as follows:  

                             ,

, ,

,

1 0

d

i t d d

t i t i td

i t

Q
Q Q




  


, and  

,
, ,1 0d

i t

d d
t i t i tQ


    .                           (7) 

Note that as t    , 0,
t
 

, 0.5d
i tQ  and

,

0.d
i t

  Investors appear irrational as their 

choices become uncorrelated with the financial profit and highly sensitive to the noise.  

        (iii) The entropy or noise premium in the reservation price: In part B of the Appendix we 

prove that the reservation price given by (5) decomposes into two parts:                                                                                            

           , , , ,

, , , , , ,,

( )

ln ln1
ln exp expˆ

d d nd nd

i t i t i t i td nd nd nd d d

t i t t i t i t i t i t i t

t t

       

i t

Return due to
Reservation price systematic profit Return due to noisy

cost reduction entropy

Q Q Q Q
Q QL    

 


    .                  (8)                                                                                                                                     

Note that on the right side of (8) the average profit from systematic factors is augmented by the 

return due to the random ,
ˆ

i tu in the startup cost. This second term is the expected information of 

Theil (1967) or entropy, normalized by the dispersion parameter .t  Keynes famously observed 

that “…our decisions to do something positive … can only be taken as the result of … a 

spontaneous urge to action rather than inaction, and not as the outcome of a weighted average 

of quantitative benefits multiplied by quantitative probabilities.” (Keynes, 1936] pp. 161-162). In 

equation (8) while the first term on the right side is a probability-weighted expected return, the 

second term is an additional expected return from unobservable factors, a possible quantification 

of the psychic return that Keynes termed “spontaneous urge”.    

          (iv) Uncertainty in year-ahead prices raises the reservation price for investing in land: 

Differentiating (5), and using (8) to simplify the derivative:   

   , , , , ,

, , , , , , 2

ˆ ln ln1 1
ln exp exp 0

d d nd nd

i t i t i t i t i tnd nd d d d nd

i t i t i t i t t i t t i t

t t t t

L Q Q Q Q
Q Q   

   

  
      

  

.              (9) 

Since investors are maximizing, noisier profits (smaller t ) offer more chance to draw a highly 

favorable startup cost shock
,i tu and realize a bigger profit ,

d

i t . The reservation price (8) also 
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increases in the variance of the year-ahead price expectations , 1i tP   or , 1i tL  that is in

  ,ln 1 varj j

i t    , for ,j P L  as we shall see in section 6. A higher variance of the FAR 

distribution, 
f , increases the reservation price on land as long as , 1 0.i t tP k   Thus higher levels 

of all the uncertainties in the model make land more valuable for investors, a result found also in 

the simple model by Titman (1985). 

        (v) “Sell now not later” rule: Part C of the Appendix proves that 
, 1

,
ˆ ,

1

i t

i t

t

L
L

r 




 
 which means 

that if , ,
ˆ ,i t i tL L  then 

, 1

, .
1

i t

i t

t

L
L

r 




 
 Hence, if it is preferable to sell the land in stage 1 of year t  

(see Figure 1) because the expected market price exceeds the reservation price, then it is never 

preferable to postpone the sale to 1.t   In a perfectly efficient market, sellers would be indifferent 

between selling and not selling, or between selling this year versus next. The inefficiency comes 

from our assumption that investors can only look one year ahead. 

4. Construction and stock elasticity 

     The logit’s elasticity of the construction probability with respect to year-ahead house price is:  

                                        
,

, ,, 1 , 1
,

, , 1

/
1

1/i t

d
i t i ti t i t d

t i tQ d
ti t i t

Q P P f
Q

rQ P
 


 



 
  

 
.                                  (10) 

And in the case of the mixed binary logit, the elasticity of ,

d

i tQ , given by (4b), with respect to the 

expected price  , 1 , 1 , 1,P
i t i t i tP E P P   

    Z is as follows, since , 1i tP   , 1i tP  , 1

P

i t  : 

                            
,

,

, 1 ,, , 1
, , , ,

, 1 , ,

1
1 g

1i t
i t

d
i t i ti t i t d d

t i t i t i t i tQ d d
ti t i t i t

P fQ P
Q Q

rQ QP
 



 




  

   ξ dξ


.             (11) 

        Construction is an annual flow of floor space. The stock of housing grows by the 

accumulation of the construction flows. Let tS be the stock of housing at the start of year t, then 

the stock expected in year 1t   is tS plus the expected floor space to be added by construction 

during t on parcels that are undeveloped at the start of t. iA is the lot area of parcel i, and ,i tf  is the 

FAR constructed on i  in year .t  Then, 
, , , ,

d d

i i t i t i i t i tE A f Q A f Q    , where  , ,,f

i t i tf f  Z is the 

expected FAR. Let ( )U t  be the set of parcels undeveloped at the start of t. Then,     
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                                                 , ,1
( )

d
t i i t i tt

i U t

S S A f Q
 

   .                                                    (12) 

The price elasticity of the aggregate stock is the expected expansion of that stock by construction 

when all floor prices rise proportionally. Writing prices as , 1 , 1
ˆ
i t i tP P  , where  is the constant of 

proportionality, the stock elasticity in year t is 1
,

1 1

/

/
t

S t

t

dS d

S








 

 :  

               

   ,, 1
, , , , , , ,

( ) ( )

,

1, ,
( )

,1 g
1

i ti t d d d
i i t t i t i t i t i i t i t Qi t

i U t i U tt
S t d

tt i i t i t
i U t

i t

P f
A f Q Q A f Q

r

SS A f Q

 






   



 


 

 


 



d


 

,     (13)  

by noting that the integral in the numerator is
,, i t

d

i t QQ  . Define weights: 

                                                      , ,
,

, ,
( )

d
i i t i t

i t d
t t

U t

A f Q
w

A f Q
 




.                                                   (14) 

Suppose tentatively that the stock t
S , in the beginning of the period, is negligibly small. Then, with

0
t

S   in the denominator of (13), the stock elasticity collapses to the weighted average value of 

the construction elasticity over all the parcels:  

                                                       
,,, 0

( )

.
i t

t
i tS t QS

i U t

w 




                                                        (15) 

But as,
t

S , the stock inherited from the past becomes bigger, the stock elasticity (13) becomes 

smaller diverging from the weighted average construction elasticity. This reveals that there is an 

initial-condition-bias in the computation of the stock elasticity in the conventional literature. 

Ceteris paribus, for larger markets with higher inherited stocks, the stock elasticity would be lower 

than for markets with a smaller inherited stock even if the construction elasticity under current 

economic conditions were the same in the two markets. That is, new construction but not the entire 

stock can be explained by current economic conditions. 

      There is yet another way of writing the annual stock elasticity (13): 

                                             
,

1
,,

( ) 1
i t

tt
i tS t Q

i U t t

S S
w

S
  

  

  
   

  


  .                                               (16)   
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To see this, we plug into (16) the weights,
,i tw , from (14) and 1t t

S S

 from (12) and cancel terms 

getting the right side of (13). From (16), the stock elasticity for any year is the weighted average 

of the parcel-specific construction elasticity multiplied by the fraction of the year t+1 stock added 

during year .t  Thus, the annual stock elasticity increases with higher weighted average 

construction elasticity, but this effect is weakened by a low stock growth rate, due to a high initial 

stock tS .                          

      We define the long run stock elasticity (LRSE) over any period t T  as the percent increase 

in stock over the period when prices in each year during that period are set one percent higher. 

This LRSE is calculated by compounding the annual stock elasticity over t T : 

                                               
,100 1 1

100

T
SLRSE

t T
t






 



   
  
   

                                                  (17a) 

Consider the special case where the annual stock elasticity is S and constant over time. The long 

run elasticity over a time span of   years is:  

                                                 100 1 1
100

LRSE S





   
  
   

    .                                              (17b)               

lim LRSE


  , and the supply becomes infinitely house price elastic asymptotically. 

5. Data 

      Our data are from the property records for Los Angeles County in 2012.9 The County is 

represented by 85 cities (LA being the biggest) and all unincorporated parts comprise an 86th 

geographic area. The observations are separately titled land parcels zoned for single family 

housing and are either undeveloped at the start of 1988, or are houses built earlier. A parcel in the 

data which is undeveloped in 1988 may become developed until the end of 2012. If, during 1988-

2012, an undeveloped parcel was subdivided into separately titled parcels or if undeveloped 

parcels were merged, then the subdivisions or the merged parcel appear in our data as individual 

parcels from 2012 back to 1988. The data contains the sales year and sale value for parcels with 

single family housing or for undeveloped land parcels if such parcels sold in 1988-2012. For land 

                                                           
9 Records originally obtained from SCAG (Southern California Association of Governments), were later supplemented with 

records from Dataquick© . The two data sets are mutually consistent, include the same attributes and originate from the same 

publicly available property assessments. Pre 1988 data are not reliable due to many missing observations. 
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parcels that were constructed on in 1988-2012, the data includes the year of construction and the 

floor space built. All our variables are in nominal dollars. Notably, as is common with publicly 

available real estate data, the data set does not contain information on the owners, hence no 

information on investor characteristics.  

[FIGURE 2 AND 3 HERE] 

        The six panels of Figure 2 illustrate the temporal structure of the key variables. We refer to 

the 12 years from 1988-1999 as the S & L Crisis and Recovery. The middle 8 years from 2000 

through 2007 saw a huge spike in housing prices and, inspired by Shiller (2005), we call it the 

period of Irrational Exuberance. In Figure 2 this period is shaded for easy visual identification. 

To the last five years from the price top in 2008 we refer as the Mortgage Crisis and Recovery. 

        Panel (a) of Figure 2 shows the S&P/Case-Shiller index of housing price for the Los Angeles 

MSA, derived from repeat sales of houses, juxtaposed against our yearly average house sales 

prices. The fit of these two series is remarkably close. The average of the sale price of a house 

divided by its floor area more than tripled from 1988 to the end of 2007, then crashing by 41% to 

2009. The average of the sales price of an undeveloped land parcel in panel (b), increased 8.11 

times from 1988 to 2012, but included a big correction of 53% from 2002 to 2005 ahead of the 

crisis followed by a steep recovery, increasing 160% from 2005 to 2012. Notably, from panel (b) 

during the period of irrational exuberance, average house prices increased 2.39 times, but average 

land prices made a big fluctuation with little net change. 

        From panel (c), the number of houses sold increased six fold from a bottom in 1990 to a peak 

in 2006, corrected sharply to the 2008 bottom, recovering to the 2007 peak by 2012. New 

construction in panel (c) fell steeply from 1989 to 1994 in the savings and loans crisis, increased 

steadily to 2006, collapsing during the mortgage crisis. From panel (d), undeveloped land sales 

followed a similar pattern peaking in 2004, earlier than house sales, then recovering sharply from 

the 2008 bottom. Panel (e) shows the average structural density of newly constructed homes: the 

ratio of the floor area to the area of the parcel, or FAR. It increased by 33% from 0.27 in 1988 to 

0.36 in 2004, subsequently declining to 0.30. Construction costs in panel (f) are computed from 

the RSMeans Building Construction Cost Data handbooks for1988-2012 by scaling the 

construction cost of low-rise buildings by the Los Angeles index.  From 1988 to the peak in 2009, 

construction cost doubled. Meanwhile, the one year seasonally unadjusted T-bill rate had a huge 

downward trend with cyclical fluctuations. Figure 3 shows the geographic distribution of the 
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undeveloped land parcels at the starts of 1988 and 2012. In all years, these are evenly distributed 

both north and south of the mountain ranges. 

6. Estimating expected market prices and the FAR 

        From the data that we have described above, we will estimate  , 1 , 1 , 1, , ,L L

i t i t i tL L     Z , 1i tP 

 , 1 , 1,P P

i t i tP    Z ,  , , ,,f f

i t i t i tf f   Z .This involves two steps: (i) to estimate  , 1,L

i tL  Z , 

 , 1,P

i tP  Z and  ,,f

i tf  Z that will be used to impute the year-ahead expected market prices and 

FAR to the undeveloped parcels; and (ii) to estimate the joint cumulative distribution  ,i tG 

from which the random vector
,i t  will be sampled to generate fluctuations around the expected 

market prices and the FAR.   

 

6.1 Land and housing prices and the FAR 

        The data for a year t includes , ,H

i tV the sales value for houses sold; , ,L

i tV  the sales value for 

undeveloped land parcels sold;10 and ,i t
f , the FAR if housing is constructed. Our attribute vector is

 , ,
, ,

i t i t i i
A HZ X where iA is the parcel’s land area (or lot size), iH is the observed or prospective 

floor space on the lot, and 
,i t

X  all other attributes which we will see shortly. We specify three 

regressions and assume normally distributed residuals , , ,, ,L P f
i t i t i t   : 

                                                  , , ,ln ,lnL L L
i t i t i tiV A   a X                                          (18a) 

                                                 , , ,ln ln ln ,H P P
i t i t i ti iV H A     a X                          (18b) 

                                                             ,, , .ln f

i t

f

i t i tf  a X                                                    (18c) 

       Land values from (18a), and house values from (18b) vary spatially due to the landscape of 

natural amenities and of public goods and services, and they vary over time due to national, 

regional and local factors influencing the demand for or supply of housing. The FAR from (18c) 

varies due to economic considerations of capital for land substitution, but also due to regulation 

and zoning. To control for the spatiotemporal variations in the three regressions, our independent 

                                                           
10 Note that these are not unit prices but sales values for entire houses and lots. 
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exogenous variables 
,i tX include 85 city-specific and 24 year-specific fixed effects. The city fixed 

effects pick up the influences of public services and regulations that vary spatially, while the year 

fixed effects pick up the national, regional and local factors that affect sales values or FAR, 

reducing or eliminating the correlation between the regression residuals and the independent 

variables. The
,i tX include location attributes measured by geo-coding methods as the shortest 

distances for each parcel: to downtown LA which is also the region’s largest job center; to the 

nearest job sub-center in the region;11 to the nearest highway; and to the Pacific coastline. For 

undeveloped parcels, (18a) includes the lot size, i
A , and – for built parcels – regression (18b) 

includes i
A  and iH , the floor space.  

      The regressions were estimated by Ordinary Least Squares (OLS) from separate samples each 

spanning 1988-2012. For (18a) there are 13,903 undeveloped land parcel sales, 3,504 of which are 

in the City of LA. For such parcels, ,

L

i tV , the land’s sales value is in the data, but house value or the 

FAR do not exist since there is no building. The observations for (18b) are the 610,440 houses 

sold, 179,040 of which are in the City of LA. For such parcels, ,

H

i tV , the house value and the FAR 

are in the data, but land value is not observable since the land under the building is not separately 

valued by the market, and if the land was sold before the house was built it was, in most cases, 

many years ago.  For the FAR regression (18c) there are 124,134 parcels on which houses got 

constructed during 1988-2012, 18,067 in the City of LA. For these parcels the data gives
,i tf , the 

FAR, but not land value in the same year unless the land was also sold in the year of construction, 

which is rare.  

[TABLE 1 ABOUT HERE] 

       All independent variables in Table 1 are significant at 1% or better. FAR decreases with the 

distances from the CBD, the nearest sub-center, the nearest road and the coast.12 House and land 

sales values fall with distance from downtown LA, confirming that the market values accessibility 

                                                           
11 Subcenter definitions for the LA region are from Arnott and Ban (2012). 
12 The California Coastal Commission, created in the 1970s, regulates development within a mile of the coast. In a variation of the 

regressions of Table 1, we specified distance to the coast as, 1
 (ONE)(COAST) + 2

 (1-ONE)(COAST) where  (ONE =1 if 

COAST < 1 mile, ONE=0 otherwise). All results and the
2

R estimates are essentially unchanged, but FAR increases slightly for 

COAST < 1 mile, that is 
1

0  , 
2

0.   The commissioners likely exercise their control more strictly closer to the coastline, 

which explains the lower FAR near the coast. We are grateful to David Brownstone who helped us interpret this result. 
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to the biggest jobs center. But downtown LA had only about 4-5% of metropolitan area jobs in 

2000. Hence distance from downtown LA is not very powerful. Land value decreases about four 

times as fast as house value because at any location land is normally scarcer than is floor space, 

since the supply of floor space at a dear location is elastic because it can be increased by building 

at a higher FAR, whereas the land quantity at the same location cannot be increased. In the case of 

distance to the nearest job sub-center we find that house prices decrease with such distance, but 

the variable was insignificant for land value and was dropped from that regression.  Both values 

decrease with distance from the Pacific coastline, reflecting the amenity value attributed to 

proximity to the coast. Both values increase with distance from the nearest highway, reflecting the 

nuisance effects of highway congestion, pollution and noise. Note that since (dis)amenities are 

capitalized into land value, the slope coefficients of the nearest-distance variables are larger in the 

land value than in the house value regression. The elasticity of land value with respect to lot size 

is 0.37 ( in (18a)).  House value elasticity with respect to floor space is 0.7 (  in (18b)) and 0.17 

with respect to lot size (  in (18b)). 

       Since the regressions are based on different samples of land parcels, we do not have a 

covariance matrix among the residuals.  But covariance may exist because an unobserved attribute 

that affects land value is also likely to affect the house value or the FAR of a parcel thus creating 

correlation in the residuals. To estimate the covariance in  , we used a much smaller common 

sample for which land value, house value and FAR observations are available for the same parcel. 

There are only 5,421 such parcels for which the time between the sale of the housing after 

construction and the sale of the land before construction does not exceed two years and none of 

the three events is missing. Jointly estimating (18a)-(18c) from this smaller sample by the 

Seemingly Unrelated Regressions (SUR) procedure gives less reliable results for the regression 

coefficients because of the much smaller sample size. To estimate  , we fixed the regression 

coefficients of (18a)-(18c), except the city and year constants, to their OLS values from the larger 

samples reported in Table 1. Then, the Seemingly Unrelated Regressions procedure was run on 

the smaller common sample to estimate the covariance of the residuals, and the city-year constants, 

obtaining   , ,cov , 0.17,L P

i t i t     , ,cov , 0.05,P f

i t i t    , ,cov , 0.23.L f

i t i t    Variances in   are the 

squares of the standard errors of the separately estimated regressions reported in Table 1. For our 
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benchmark mixed logit model reported in section 8, we will assume that the off-diagonals of   

are zero. Then, we will re-estimate a variation of the benchmark that includes the covariance. 

6.2 Imputing FAR and prices to undeveloped parcels  

      The estimated regressions (18a)-(18c) are used to impute year-ahead land value, prospective 

FAR and prospective house value for any undeveloped parcel in any year. Each regression is 

transformed by taking the exponential of both sides. If the residuals ,
j

i t  are multivariate normal 

with zero means, variance j , and covariance
,j k , for j k ; then  the multiplicative residuals

,

, /2j j

i t

j
i te e


  are multivariate lognormal with means ,
j

i tE e
 

 
 


/2j

e /2
,

jj
i tE e     because 

,
j

i tE  
  =1; var    

2

,

, /2 var
j j

i t

j
i t ee 

 


  
=  1

j j

e e   , and therefore    ,var 1
j

j

i t e   ;  

cov    
,

, ,

, ,
2 2cov , 1,

j j j k
i t i t j k

i t i t

j jk k

e e ee e
  

   

 
 

    
  

, and therefore    , ,

,

cov , 1j k

i t i t

j k

e     

for j k .  

        The functions that forecast land and housing price and FAR, are now defined as follows from 

the transformed regressions (18a)-(18c):    

                                       

 

, 1 1

, 1 , 1 , 1

, , 1

exp
2

L

L L
i t L L

i t i t i i t

i

i tL

V
L A

A






 

  



 
   

 

Z

+ a X ,                                       (19a) 

                                   

 

, 1 1

, 1 , 1 , 1

, , 1

exp
2

P

H P
i t P P

i t i t i i i t

i

i tP

V
P A H

H

 




 

  



 
   

 

Z

+ a X ,                                   (19b) 

                                                 

 

, , ,

, ,

exp .
2

f

f
f f

i t i t i t

i tf

f








 
  

 

Z

+ a X                                                    (19c) 

(19c) is used to impute the prospective FAR to each undeveloped land parcel i in year t .  Then, the 

prospective floor area is , ,i t ii tiH H f A . Prospective housing floor prices and land prices for the 

year ahead are then imputed from (19b) and (19a) respectively. 
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        Why do we impute FAR from (19c) instead of calculating the FAR that maximizes the 

developer’s profit? From (19b), the profit from 
,i t

H square feet of floor space built in year t is

 , 1 , , ,i t i t i t t i tP H H k H  , where  , 1 ,i t i tP H
 given by (19b).  This is maximized by: 

                        

 

1

1

, 1 ,

*

,

exp ,
2

P
P f

i i t i t

i t

t

A f

H
k


 

 




  
  

   
 
 
 

a X Z

    

*

,*

, .
i t

i t

i

H
f

A
                 (20) 

For each parcel that underwent construction, we calculated *

,i tf  from (20). This had a substantially 

higher median and mean than both the data FAR and the regression-imputed FAR from (19c). The 

discrepancy is explained by zoning and building regulations which favor lower FAR, especially in 

the City of LA, or by the need felt by developers to conform to the established FAR of the 

neighborhood in order to add value to their housing. Both factors cause a departure from 

unconstrained profit maximization. In the absence of the zoning regulations and the need to 

conform, developers might build multiple family housing with higher FAR. Given these realities, 

we use (19c) the regression-imputed FAR in our empirical work.                              

7. Mixed logit estimation  
 

         The data for the mixed logit estimation takes the form of a panel with attrition. For any year 

t, the set ( )U t  includes all undeveloped parcels at the start of t. During t, construction occurs on a 

set of parcels in ( ) ( )B t U t , which are removed from ( )U t  to get ( 1)U t   .The data starts with 

158,412 LA County parcels in U(1988) and 13,068 of these transition into B(1988), so in 1989 

there are 145,344 parcels available for construction and so on. At the end of 2011, 19,350 parcels 

remain in U(2011) of which 669 became constructed on in that year. Pooling the parcels in the sets 

available for construction at the start of each year, we get 1,825,252 observations.  

           The behavioral model described in section 2 has attractive features for econometric 

estimation. Firstly, the development start-up costs, ( ),c i tF , mitigate endogeneity concerns by 

capturing year and city specific effects, ( ),c i tF , making the correlation between ,i tu  and , , 1,i t i tZ Z

zero; and provided the profits , ,,nd d

i t i t   (the latter of which includes the ( ),c i tF ) are well specified, 

the idiosyncratic ,i tu
 

become white noise. Secondly, our behavioral model describes the 
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probability of land development by an investor in a particular year, and not the entire joint 

multivariate distribution of the decision vector
,1 ,2 ,, ,...,i i i Ty y y where

, 1i ty  if construction occurs 

on parcel ( ) ( )i B t U t   in year t, otherwise
, 0i ty  . This means that we are spared from 

specifying a complete inter-temporal covariance matrix for the
,i tu , 1,2,...,t T which would make 

estimation computationally difficult and our results less robust. We instead use the Partial 

Maximum Simulated Likelihood Estimator (PMSLE) to find the model parameters. The PMSLE 

requires only the specification of the marginal probability of the dependent variable and is 

consistent and asymptotically normal even in the presence of arbitrarily serial correlation in the 

errors. The existence of any serial correlation in the 
,i tu only requires that the standard errors of the 

estimated parameters be adjusted by using the robust asymptotic variance matrix estimator. Hess 

and Train (2011; pp. 4-6) test the application of partial maximum likelihood methods in a panel 

data setting; while Woolridge (2010, pp. 401-412) provides a general discussion. Berry, Levinsohn 

and Pakes (1995; pp. 862-863) deal with serial correlation in their panel data set by a robust 

covariance matrix estimator as we do here. 

          Let Φ denote a vector that contains the dispersion parameter 𝜆𝑡 for each t  and the constants 

, ( ),c t c i tF F i c  for each city c, and year t. Given  ,i tG   , the Partial Maximum Simulated 

Likelihood Estimator (PMSLE) of  is denoted by ̂ and is obtained by maximizing the 

simulated log-likelihood function: 

               

 
   , , , , .  ln 1 ln 1Φ̂ d d

t i t i t i t i t
c i c U t

argmax SLL y Q y Q
  

                            (21)  

Φ̂ is consistent and asymptotically normal even if the 
,i tu are arbitrarily serially correlated.  

          Our sample spans 85 cities (plus one unincorporated area) and 24 years13, hence we must 

estimate nearly 2000 city-year constants, less a few city-years for which no construction was 

observed. Estimating so many constants using a gradient based numerical optimization procedure 

is infeasible. The problem is solved by employing the BLP procedure of Berry (1994) and Berry, 

Levinsohn, Pakes (1995) to calibrate these constants so that the model’s predicted land 

                                                           
13 Since regressions for 2013 are not available, 2013 prices expected by 2012 investors cannot be forecast. Therefore, the year 

2012 was not included in the mixed logit model.  
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development matches the land development observed in the data for each city-year combination. 

The PMSLE algorithm which includes the BLP procedure is outlined in part D of the Appendix. 

8. Results: the benchmark model and its variations 

        In our benchmark model, for which we will now report detailed results, the parameter
t is 

separately estimated for each year; the risk-premium is set as 0.07  ; and the covariance terms 

in   are set to zero. We will, however, test the robustness of this benchmark by modifying it in 

four ways by: (i) making 
t constant over 1988-2011, and by making it uniform within each of the 

three historical periods; (ii) seeing how a risk-premium  in the range from 0.01 to 0.17 affects 

the
t estimates and other results; (iii) re-estimating the model with the covariance in ξ

Σ  included; 

(iv) imputing the year-ahead housing prices with alternative backward-looking and forward-

looking assumptions; (v) estimating the logit model which ignores the stochastic variation around 

the year-ahead prices and the FAR. The benchmark model and all these variations are reported in 

Table 2. Table 3 compares in more detail the benchmark yearly- model, to the constant-  and 

three-period-  models. Results discussed in this section, are shown in Figures 4, 5 and 6.  

[TABLES 2, 3 AND FIGURES 4, 5, 6 HERE] 

 8.1 The benchmark model 

 BLP constants, noise, entropy       

       Benchmark estimation results are shown in Table 2 and in the four panels of Figure 4. From 

panel (a), the signs of the t are positive for each year indicating that the probability of construction 

increases with financial profit despite the noisy factors, supporting the hypothesis that developers 

choose the higher profit state and are, therefore, acting rationally on the whole. The BLP city-year 

constants,
,c tF , are positive, reflecting that there is a perceived startup cost of constructing in LA 

County. The BLP constants for LA City are larger each year indicating higher startup costs in the 

City of LA than in the suburbs. The BLP constants and the standard deviation of the noise around 

them, measured by  6t t    , both surged during the Irrational Exuberance period, peaking 

in 2005 before crashing in 2006 and 2007 ahead of the 2007 peak in house prices which we saw 

in panels (a) of Figure 2. A similar peaking occurred before 1988 prior to the 1990 peak in house 
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prices during the speculative years that had led to the S&L Crisis. Although the S&L and Mortgage 

crises differed as to causes, they shared this characteristic.14  

        The surge of the BLP constants suggests that during the 2000-2005 boom in house prices, 

investors became possessed by animal spirits and demanded a sharply growing premium return 

from land development on average because they perceived a rising opportunity cost of not 

postponing construction, perhaps because the rising house prices made them believe that profits 

would be even higher later. During the boom, the noise around the higher opportunity cost also 

increased sharply, becoming critical in investment decisions. This is also confirmed from panel (c) 

of Figure 4 which shows that entropy as a share of investors’ reservation prices for land (see 

equation (8)) climbed to a high, before starting to recede. This happened in 1988 prior to the S&L 

Crisis, when entropy had reached nearly 16% of reservation prices, receding before house prices 

peaked in that cycle. It happened again in 2004-2006 prior to the mortgage crisis when entropy 

eked above 38%, then sharply receded just before the 2007 peak in house prices. The peaking of 

the 
, , ,c t tF   and of entropy ahead of the peaking of housing prices indicates that investors in land, 

although initially possessed by animal spirits, became aware of the limits to their exuberance 

before house prices reached top levels. 

       Quigley and Rafael (2005) document the power of California cities to implement land use 

regulations that restrict growth. The home-voter hypothesis of Fischel (2001) argues that such 

regulations are adopted under pressure by incumbent home owners seeking to support their 

property values. According to these observations the 
,c t

 component of 
,c tF  (our BLP constants) 

should vary systematically across cities. Meanwhile, the t  component of the
,c tF  changes over 

time, due to sustained market conditions that may contribute to animal spirits, the irrational belief 

that house prices will keep rising sharply after the year-ahead hence it is beneficial to postpone the 

development decision. The following regression with an 2R of 60.1% , helps test these hypotheses: 

                                                           
14 Haughwout (2011) and Duca, Muellbauer and Murphy (2011) recognize that the mortgage crisis was caused by the extensive 

and loose growth of mortgages and collateral on the demand-side. Geanakoplos (2009) provides a general equilibrium model of 

the leverage cycle. The S&Ls had to pay higher interest rates on deposits than the rate at which they could borrow which 

eventually led to their bankruptcy affecting real estate prices. 
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    
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                     (22) 

       All variables except GROW are significant at 0.1% or better. GROW is insignificant. EXCL

and GROW from Quigley and Rafael (2005) measure the presence of exclusionary land use and 

of policies favoring growth.15
,c tHP is the floor-space-weighted average housing price in a city after 

removing the time trend. Some temporal variation remains in 
,c tHP  due to compositional changes 

over time. tHPT  is the Countywide time trend in housing prices, and 1% tHPT  is the lagged 

percentage change in tHPT .16 tTBILL  is the one-year T-bill rate. The sign of EXCL confirms 

Quigley and Raphael’s finding that exclusionary land use raises development costs. The positive 

sign of 
,c tHP confirms Fischel’s homevoter hypothesis. Our results should be treated with caution, 

because a potential problem of reverse causality may exist: since higher BLP constants indirectly 

cause higher house values by deterring construction, then values could be endogenous. But since 

the Raphael and Quigley data was based on a 1992 survey which is near the beginning of our study 

period, we can probably treat land use regulations as exogenous since they could not possibly be 

influenced by our BLP constants. We did not apply panel data fixed effects or first-differences, 

since then we would not be able to identify the effects of the time invariant land use measures on 

the BLP constants. 

       In (22), the variables in t  decompose the Countywide time trend. Both the trend and the 

lagged rate of change in Countywide housing prices are important. The trend itself is responsible 

for 48% of 2R . Adding 
,c tHP  raises it to 55%, adding 1% tHPT  to 59% and adding tTBILL  to 

                                                           
15 EXCL is the unweighted sum of several exclusion measures. GROW is the un-weighted number of hospitality measures having 

Likard scale 1-5, ranked by the city in increasing "importance" , and receiving at least a 3.  
16  To separate the time trend in housing prices from intercity differences we use the regression  , ,1,...,24

ln e
i t i t

P b
 

   

where the 
t

b are estimated year constants and 
,

e
i t

the residual.  
, ,

exp(e ) /
c t i i t ii c i c

HP H H
 

  , where 
i

H is the floor 

space weight, are the de-trended house prices, and  1,...,
expt t

HPT b 
  , is the house price trend. 
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60%.17 House prices are often positively auto-correlated as in the period 1997-2006 and in 2007-

2011. This may foster a belief among developers that when house prices go up (or down), they are 

more likely to keep going up (or down), which could lead to animal spirits (or excessive 

pessimism) on the way up (down). The sign of 
1% tHPT   captures this simply. The sign of tTBILL  

suggests that lower rates may also contribute to animal spirits perhaps because they signal future 

increases in home buying.     

Elasticity    

       Panel (d) of Figure 4 shows that the annual construction elasticity of the benchmark model 

varied from 2 to 4 while the annual stock elasticity ranged from zero to 0.053. A huge spike in 

construction elasticity occurred after house prices bottomed following the mortgage crisis. At that 

point new construction reached a point of sharp sensitivity to house price increases, because the 

entropy caused by noise had already receded as we saw earlier. The annual stock elasticity peaked 

in 2000 and 2003 and then fell dramatically as new construction dried up. 

       The early studies of the housing supply elasticity, surveyed by Blackley (1999) and Di 

Pasquale (1999), used reduced form equations that could not clearly distinguish between demand 

and supply. They yielded estimates of the long run supply elasticity above one, and as high as 4. 

Among the more recent work, using their national macro model, Mayer and Somerville (2000) 

distinguished between construction and supply elasticity, by changes in the price level, rather than 

the level of prices. They estimated the former at about 6 and the national annual supply elasticity 

at 0.08 about three times higher than ours. The difference is explainable by our equation (17a). LA 

County having more housing than the average county in the nation, the denominator of (16) is 

lower for the average county hence similar construction elasticity in LA and other places would 

result in a higher stock elasticity for the nation. Our stock elasticity for LA County agrees with the 

30-year supply elasticity for the LA metropolitan area estimated by the macro model of Saiz (2010) 

who studies the period 1970-2000.   

         Our equation (17b) brings clarity to the issue of how elastic housing supply is in the long 

run, an issue that has been debated in the literature since the 1960s. The answer crucially depends 

                                                           
17 Correlation coefficients between 

t
TBILL  and  

1
%

t
HPT


 and  

t
LOG HPT are 0.22 and -0.46 respectively. 

1
%

t
HPT


 and 

 
t

LOG HPT have a correlation of 0.19 but all other correlation coefficients among the independent variables are under 0.09.  

Dropping 
t

TBILL from the regression has negligible effect on the results. 
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on how long the long run is. The annual elasticity of 0.026 of the benchmark, if it were to remain 

constant, would compound to 2.63 after 100 years. More precisely what this means is that if, over 

a century, housing prices each year were 1% higher than their actual values in that year, and 

keeping all else constant, then at the end of the century the stock is only 2.63% larger.  

        The other annual elasticity estimates of the construction probability, averaged over the period 

1988-2012, are as follows. The elasticity with respect to the year-ahead land price is  0.78 or a 

bit more, in absolute value, one fourth the elasticity with respect to the year-ahead house price; 

1.48 with respect to the unit construction cost; and 0.006 with respect to the risk-free interest 

rate. The elasticity of the logit with respect to the interest rate is:  

                                
 ,

,

: , ( ),

,
0

0

(1 ) ln
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i t t

d

i tdt
Q r i t t c i td

i tt
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 
   

          
  

.                           (23) 

The annual average ,

d

i tQ  has varied from 0.03 to 0.16, and hence the first term in the bracket is 

negative in most cases. Therefore, a positive elasticity occurs when there is sufficiently large 

uncertainty, that is when the variance of the noise in the startup costs is large ( t  is small), which 

as we saw is more likely to happen during booms with rising housing prices. These conditions are 

similar to those expressed in the real option literature (Capozza and Li, 2001). In our data, the 

share of parcels with positive interest rate elasticity reaches as high as 40% in some years.   

Reservation prices, excess returns and stock growth 

        Panels (a) and (b) of Figure 5 provide a visual of how well predicted reservation prices  track 

the expected market prices of land, while panel (c) of Figure 5 shows that the ratio of market 

housing price to market land price doubled during the period of irrational exuberance. Since the 

reservation price of land is the residual expected profit, the divergence between housing and land 

prices is due to the 30% spurt in construction costs in 2000-2007, seen in panel (f) of Figure 2 plus 

the surge in the BLP constants seen in panel (a) of Figure 4, plus the uncertainty premium in 

reservation prices due to the surging noise in panel (b) of Figure 4. Panel (d) of Figure 5 shows 

that average land price changes displayed higher year-to-year volatility than did average house 

prices, but maintained a flat long term trend. Recall panel (b) of Figure 2 which shows that average 

land sale prices in 2000-2007 made a huge round trip. Panel (e) of Figure 5 illustrates how the 

expected excess returns of investors, fluctuated around a mean of 0.60% over the entire period 
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from 1988-2012. Panel (f) of Figure 5 illustrates that the year-by-year stock growth predicted by 

the model tracks closely the path of actual stock growth in the 24-year period. 

 8.2 Less variation in  over time 

        Table 3 shows two modifications of the variation of  over time. In the second model in Table 

3, a single  is estimated for each historical period by pooling the years in that period, and in the 

third,  is estimated as constant over the entire 24-year period, by pooling all the years. In panel 

(b) of Figure 4, the of these three variations are juxtaposed. 

        All three models compared in Table 3 predict that in an environment of strongly rising prices, 

exuberance was causing expectations to run ahead of the market, with the opposite occurring when 

prices were falling sharply.  In the benchmark model the excess expected return was 6.21 

percentage points per year during the Irrational Exuberance period, while during the Mortgage 

Crisis and Recovery period reservation prices trailed market prices by 2.06 percentage points per 

year. How did the exuberance or pessimism in a particular year correlate with the actual land and 

housing price change in the subsequent year? To see this, we separately regressed the percent land 

and housing price changes, that is       1 /t t tE L E L E L   and       1 /t t tE P E P E P  , against 

the expected excess returns     /t t tL E L E L . The effect of the excess returns on housing prices 

is not statistically significant. But we find that a 1% excess return in period t , causes a 1.08% 

increase in the market price of land of the following year and is highly significant. This makes 

sense, since investors would be buyers of land when their expectations are exuberant and sellers 

of land when they are pessimistic, driving land prices up and down accordingly. Nevertheless, 

forward causality is hard to distinguish from backward causality if high expectations in a year are 

caused by investors’ being able to perceive that prices will be rising in the subsequent year. Either 

way, our model shows that there is a strong link between expectations and actual changes in the 

price of land. And the fact that land investors’ expectations had no significant impact on forward 

housing prices suggests along with panels (a)-(c) of Figure 5, that land and housing markets were 

decoupled during the bubble years.  

          With respect to the construction and stock elasticity shown in Table 3, the year-by-year-   

and 3-period-  models are in close agreement and predict a similar long run stock elasticity over 

each sub-period or the entire period of 1988-2012. 

8.3 Sensitivity to the risk premium    
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        Figure 6 shows how the maximum likelihood estimate of  , and the monetary excess 

economic returns, both averaged over the 24 years change depending on the investor’s risk 

premium,  . As the risk premium rises from zero to seventeen percent, the average excess returns 

predicted by the model fall from about +7.5% to -7.5% per year while the average   changes 

mildly from 0.123 to 0.147 affecting other results of the estimated model only marginally as shown 

in Table 2 which juxtaposes 0.07   and 0.10  . There is, therefore, some latitude in deciding 

which value of the risk premium,  , to adopt without much consequence on the model’s results. 

For values of   ranging between 0.07 and 0.10, average excess returns are very close to zero 

percent. It is, however, useful to see how the choice of such a range for   agrees with other sources 

from the literature.    

        Shiller (2014) suggested that the long term risk premium for stock investing could be set in 

such a way that a constant risk-free rate plus a time-invariant   equal the long term average return 

of the stock market. To adapt this to our setting, we can use our land prices. The average annual 

nominal land price growth rate from sales in our data was 15% per year. Netting out the average 

one-year T-bill rate of 4.10% over 1988-2012, we get a risk premium of 10.9%. This is only a little 

higher than our 7%-10% range for   shown in Table 2. On page 250 of their book, Geltner et al. 

(2013) cite a survey of apartment developers who reported a total return expectation of 8.78%-

10.98%, implying risk premiums from 4.78% to 6.98%, not too far from our range.  

8.4 Adding covariance              

        Table 2 shows the effect on the benchmark model when the estimated covariance matrix   

is used to simulate the covariance in   in the maximum likelihood estimation. The average value 

of  increased from 0.13 in the benchmark case to 0.14, the construction elasticity increased by 

25%, while the annual stock elasticity decreased by about 12%. The expected excess returns 

increased from nearly +0.6% to+2.88%, which means that a higher risk premium than  =0.07, 

something around  =0.10 gives near zero percent average excess returns. The model with 

covariance then is not so different from the benchmark. Perturbations of the covariance structure 

had similarly marginal impact on the benchmark. There is therefore little lost by setting to zero the 

off-diagonal elements of  . 

8.5 Alternative expectations of the year-ahead housing price 
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        We experimented with alternative calculations of the year-ahead housing prices: 

                                                , 1 , ,

0

1
, .

1

P P

i t i t k i t k

k

P P  



 


  



 
  

  
 Z                                        (23) 

In a forward-looking variation of the benchmark we set 1  , and the year-ahead housing price 

is then the simple average of the imputed prices of the current and some forward years. This causes 

expected year-ahead prices to run ahead of market prices when prices are continually rising and to 

fall more rapidly when prices are continually falling. This provides an alternative way in which 

the model captures exuberance. In a backward-looking variation we set 1   , and the year-ahead 

housing price is extrapolated as the moving average of the current and several most recent imputed 

prices. This causes the year-ahead expected prices to trail market prices when prices are 

continually rising and to fall less rapidly when prices are continually falling. Table 2 presents a 

backward-looking model with 4   and a forward looking one with 2  . Results are close to 

those of the benchmark. The forward-looking model tends to drive up expected excess returns and 

appears less reasonable than the backward looking one.    

8.6 Binary logit model 

        We also estimated the binary logit model reported in the last column of Table 2. Because the 

logit model does not permit stochastic treatment of the
,i t , we imputed land price, house price and 

FAR by setting all 
, 1.i t  The maximum likelihood estimate of the dispersion parameter

t varies 

by year between 0.001 and 0.05, and 0.004  on average. This turns out to be unacceptably low 

implying a very high standard deviation of the noise in profits of $320 per square foot of land, 

which is about 5-6 times the average market price of land, and about ten times the highest value 

found in the case of the mixed logit models. Expected excess returns, are about 143% per year.  

         Why does the logit model perform so poorly? The reason is that the model attributes all of 

the heterogeneity among developers to the white noise in costs, ignoring the fact that there is 

substantial uncertainty around the future prices of the land they hold, or of the prices of the houses 

they would build, and the floor area they would construct. The mixed logit model, as we saw, 

corrects this misattribution, by shifting the major part of the uncertainty away from the noise, 

placing it on the developers’ expectations of year-ahead prices and the FAR.18  

                                                           
18 Revelt and Train (1998), reach a similar conclusion in their use of the mixed logit versus the logit to model consumer choice of 

household appliances. 
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9. Conclusions 

       We demonstrated that the probability to construct increases with the financial profit from 

constructing. This confirms our a priori belief that developer-investors act rationally. But we also 

discovered that the rationality of investors is weakened by exuberance during long periods of 

booming house prices. During such times noisy factors related to unobserved variables increase 

the probability of constructing while not dominating over the financial profit; and broadly held 

animal spirits favor land speculation, apparently in hope of even higher profits from construction 

in the future, decreasing the probability of constructing currently. The exuberance due to the noisy 

factors shows up as an entropy premium in the reservation price that investors would bid to buy 

the land. During the booms reservation prices run ahead of the market prices for land, and trail 

during crashes. Both the entropy premium and the animal spirits rise sharply but begin to decline 

before house prices peak. These findings suggest the importance of behavioral economics in better 

understanding land market dynamics.   

       The microeconomic nature of our model leads to a better understanding of the relationship 

between the elasticity of construction at the level of a land parcel and the aggregate housing stock 

elasticity. We showed how to derive the latter from the former, something that was neglected in 

the extant literature.  

        Synthesizing complex microscopic models of the demand side with models of the supply side 

such as ours would lead to a microsimulation framework that can be used to study the equilibrium 

dynamics of the housing market. The econometrics of discrete choice that we employed here to 

explain the behavior of land investors can also be used to explain tenure choice in the housing 

market, mortgage choice, the decision to default or not and other aspects of the demand side. 

Recently Geanakoplos et al. (2012) presented a microscopic agent-based model of housing 

consumers’ bounded rational behavior in the presence of systemic risk. 

Appendix 

A. Homogeneity of the logit model 

 

Lemma: Suppose that profit maximization is expressed on a whole parcel basis rather than on a 

per unit area basis. Then, ,
,

d

i t
Q the logit choice probability given by (6), remains unchanged. 

Hence, (6) is homogeneous of degree zero in parcel size, .iA   

Proof: Scaling the profits by parcel size, ,iA profits per parcel become:  
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Then,    2 2 2

, ,var varnd nd

i i t i i t i tAu A u A    and    2 2 2

, ,var var .d d

i i t i i t i tAu A u A    The dispersion 

parameter of the scaled model for parcel i, therefore, is:  

(iii)
/ 6 t

it

i t iA A





  , where t  is the dispersion parameter of the model before scaling. Applying 

the scaling (i) and (ii) and the it  given by (iii) to the logit probability (6) we see that it is not 

changed by the scaling.  

 

B. Derivation of (8)  

We write the two probabilities as: 

, ,

,

, , , ,

exp exp
, .

exp exp exp exp
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Now take the log of both sides of each of these two equations above and divide through by .t   

 
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Next, we multiply the first of the above by ,

d

i tQ  and the second by ,

nd

i tQ . Then, add the two 

resulting equations and apply , , 1d nd

i t i tQ Q   to get (8).  

 

C. Proof of “sell now not later” rule 
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Taking the log of both sides of (6), dividing by t  and rearranging terms: 
, , ,

1ˆ ln .d d

i t i t i t

t

L Q


   

Subtracting, we get  , 1

, ,

1ˆ ln 1 0.
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D. The PMSLE procedure 

 

      The PMSL estimation steps are as follows: 
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Step 1: For each parcel i and year t, sample the additive multivariate normal
,i t , and then take their 

exponentials to generate multivariate lognormal ,i t .Generate one hundred such samples.  [We 

verified that doubling the number of draws to 200 leaves the maximum likelihood estimates 

essentially unchanged.]; 

Step 2:  Impute house values, land values and FARs to each parcel i ( )U t , 1,...,t T for each of 

the 100 generated samples using the procedure discussed in section 6 and the ,i t of that sample; 

Step 3: Guess the initial  1
,...,

T
    and , ( , );,c tF c t  

Step 4: Using the t  and the , ,c tF calculate the binary logit probability ,

d

i tQ for ( , )i t from equation 

(6), for each sampled ,i t , that is 100 times; 

Step 5:  Take the simple average of the 100 logit probabilities ,

d

i tQ for each  ,i t  to get an estimate 

of the mixed logit probability ,

d

i tQ  of equation (4b), an unbiased and asymptotically efficient 

estimator of the true choice probability; 

Step 6: (BLP procedure loop): Given the
t for each year t from step 3, adjust the city-year 

constants so that
,( )1

, ,

,( )

i i ti c U tr r

c t c t r d

i i ti c U t

A y
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A Q
F F l
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


for ( , )c t where iA is the land area of parcel i

and r is the iteration counter. The numerator inside the parenthesis is the aggregate land quantity 

in city c that becomes developed in year t in the data. The denominator is the expected aggregate 

land amount that becomes developed as predicted by the model. We update ,

r

c t
F in this way and 

recalculate ,

r d

i tQ , until at some iteration ,r R   , ,( )

R d

i i t i tU ti c
A y Q tol


 where tol is a very 

small tolerance. Hence observed and predicted city land shares are matched as required by the BLP 

procedure, and 
1

, ,
;

c t c

R R

t
F F tol


    

Step 7: (Maximizing likelihood): Setting , ,c t t

R

c
F F for ,t  we adjust

t according to a numerical 

iterative optimization procedure which maximizes the simulated log-likelihood function for year 

1,..., .t T  The software R implements the robust inverse parabolic method of Brent (1973) which 
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does not require derivatives. [If the inverse parabolic method gives a new implausible guess, the 

algorithm switches to a golden section search];  

Step 8: Given the
t found in step 7 and the ,c tF set in the beginning of step 7, we return to step 4 

and we continue the loop of step 4 through step 7 until the value of
t converges to within a small 

tolerance. 
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TABLE 1 

 

The land value, house value and FAR regressions  

(Standard errors in parenthesis) 

 
NOTES: All estimated coefficients are significant at 1% or better; * 5 cities did not have any land sales 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Independent 

variables 

 

 

LAND VALUE 

Eq.(18a) 

 

HOUSE 

VALUE 

Eq.(18b) 

 

FLOOR 

AREA RATIO 

Eq.(18c) 

Dependent variable  ln
L

V    ln
H

V   ln f  

Samples (1988-2012) 
Land parcels 

sold  

Houses  

sold  

Houses  

built  

Size of sample 13,903 610,440 124,134 

Number of year constants 24 24 24 

Number of city constants      80 (*) 85 85 

CBD   
Distance to downtown L.A. 

-0.04 

(0.0035) 
-0.01 

(0.0001) 

-0.008   

(0.0004) 

JSC Distance to nearest job sub-

center 

 

--- 

-0.01 

(0.0001) 

-0.01   

(0.0005) 

ROAD 
Distance to major road 

0.06 

(0.0054) 

0.01 

(0.0004) 

-0.006  

(0.0009) 

COAST 
Distance to coastline 

-0.03 

(0.0026) 

-0.004 

(0.0001) 

-0.002 

(0.0004) 

log (H) 
log(Floor space) 

 

--- 

0.70 

(0.0011) 

 

--- 

log (A) 
log(Lot size) 

0.37 

(0.0093) 

0.17 

(0.0011) 

 

--- 
 2R   

0.41 0.80 0.22 

Standard error of regression  j
  

1.26 0.28 0.38 
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Mixed logit models
a

  

  
  

Benchmark 

Model 
1988-2011 

 

Benchmark 

with higher 

risk 

premium 
1988-2011 

 

Benchmark 

Model with 

covariance
b

  
1988-2011 

 

Backward 

looking  

( 5-year) 
1992-2011 

 

Forward 

looking  

( 2-year) 
1988-2009 

 

Binary 

logit 

   model
c

 
1988-2011 

Risk premium, above one 

year T-bill rate  100    7% 10% 7% 7% 7% 7% 

Average value of  yearly λ 0.13 0.13 0.14 0.15 0.17 0.004 

Range of  yearly λ 0.03-0.29 0.01-0.30 0.03-0.72 0.03-0.29 0.005-0.79 0.001-0.05 

Expected excess returns
d

  

(average of annual) 
0.60% -0.58% 2.88% -0.15% 8.00% 143.3% 

Construction elasticity
e

  

(average of annual) 
2.89 2.93 3.25 3.10 2.90 0.23 

Stock elasticity
f
  

(average of annual) 
0.0260 0.0256 0.0230 0.0257 0.0219 0.0010 

Long run stock elasticity g 0.63 0.61 0.55 0.46 0.50 0.02 

 Log likelihoodh  
-470,963 -470,791 -476,355 -297,072 -430,127 -477,997 

  

TABLE 2 

 

 The benchmark mixed logit model and variations of it 
 

NOTES: 
a

 (i) For each model, the panel data consist of 1,825,252 observations, comprised of 158,412 parcels that are initially 

undeveloped in 1988 and which appear as observations until they are developed. At the end of 2011, 19,350 parcels remain 

undeveloped; (ii) each model is estimated with 100 independent draws to sample the 
,i t for FAR, House Price and Land Price 

for each parcel and year; (iii) In the benchmark model 


 is diagonal with 1.59, 0.08, 0.14
L P f     ; 

b
Covariance terms , , ,

0.17, 0.23, 0.05
L P L f P f     included in 


; 

c
The logit was estimated by imputing all house and land prices and FARs from the regressions, ignoring stochastic deviations; 

d   100.
t

E EER   See section 2.4.   

 
e

Reported as the average over the years of the simple average of the construction elasticity of each parcel for each year from 

equation (11); 

 
f
From equation (16) or equivalently from (13), reported as the average value over the years; 

 
g

From equation (17a).       
h

 Sum of the likelihoods over all years. 
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1988-

2012 

S & L crisis 

and 

recovery 

1988-1999 

Irrational 

exuberance 

 

2000-2007 

Mortgage 

crisis and 

recovery 

2008-2011 

Year-by-year-  model (benchmark)  

Idiosyncratic dispersion,            

        (standard error) 

0.13 

(0.0004) 

0.18 

(0.0005) 

0.05 

(0.0001) 

0.10 

(0.0006) 

Expected excess return a   0.60% -2.24% 6.21% -2.06% 

Construction elasticity b  2.89 3.11 2.49 3.06 

Annual stock elasticity c    0.026 0.034 0.026 0.002 

Long run stock elasticity d     0.63 0.41 0.21 0.01 

  

Three-period-  model 

 Idiosyncratic dispersion,  

       (standard error) 

--- 0.17 

(0.0001) 

0.04 

(0.00002) 

0.09 

(0.0003) 

Expected excess return a   0.47% -2.72% 6.46% -1.92% 

Construction elasticity b  2.78 3.15 2.19 2.85 

Annual stock elasticity c    0.027 0.039 0.022 0.002 

Long run stock elasticity d     0.66 0.47 0.17 0.01 

  

Constant-  model         

  Idiosyncratic dispersion,  

       (standard error) 

0.06 

(0.00001) 

--- --- --- 

Expected excess return a   1.5% 0.34% 4.70% -0.93% 

Construction elasticity b  2.06 1.39 3.02 2.15 

Annual stock elasticity c    0.018 0.015 0.031 0.009 

Long run stock elasticity d     0.44 0.18 0.25 0.007 

 

TABLE 3 

 The year-by-year-  (benchmark), 3-period-  and constant-  models 
 

NOTES: All models estimated with 0.07;   All   estimates are statistically significant at the 1% level or better; In the 3-

period-  and year-by-year-   models, the  , the standard errors in parentheses, the expected excess returns, the construction 

elasticity and the stock elasticity are reported as the averages over the relevant years; 

 
a   100.

t
E EER   See section 2.4.  

b
Reported as the average over the relevant years of the simple average of the construction elasticity over the parcels for each 

year from equation (11); 
c

From equation (16) or equivalently (13), reported as the average value over the years; 
d

From equation (17a). 
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FIGURE 1  

 

Timing of events and developer's decisions during year t   
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FIGURE 2 

 

 Los Angeles County, 1988-2012 
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FIGURE 3  
 

Undeveloped parcels zoned single family in LA County in 1988 and 2012 
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FIGURE 4 

Estimates, entropy and elasticity in the benchmark model 
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FIGURE 5 

Prices, excess returns and stock growth in the benchmark model 
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FIGURE 6 

 Effect of   on   and predicted excess returns 

 


