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subsidy had a high social rate of return, and spillovers accounted for a substantial

fraction of its impact. A requirement to serve rural areas lowered the operator’s profits
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1. Introduction

Many modern goods are network goods, whose benefits depend on the network of

other users. These include technologies for communication (such as telephones, e-

mail, and social networks), payment (digital wallets, mobile money), platforms (office

productivity software), and systems that learn from their users (recommendation sys-

tems, crowdsourcing). While these goods can generate large efficiency gains (Jensen,

2007; Jack and Suri, 2014), their allocations are likely to be inefficient. Individuals are

unlikely to internalize all the benefits their adoption generates, so adoption is likely to

be suboptimal unless the firms operating the network use sophisticated pricing mech-

anisms.1 Also, if markets are competitive and standards are compatible, any single

firm will internalize only a small share of the benefits it generates. If instead a market

is so concentrated that these benefits are internalized by a small number of firms, the

ability of these firms to exert market power raises standard welfare concerns.

Firms and governments use many different policies to guide the provision and adop-

tion of network goods. While theoretical work provides intuition about network ef-

fects, there is little empirical work to guide policy choices.2 Empirical work has been

limited for three reasons. It is costly to measure an entire network using traditional

data sources. It is also difficult to identify network effects: one individual may adopt

after a contact adopts because the contact provides network benefits, or because con-

nected individuals share similar traits or are exposed to similar environments. And

even if these two issues are overcome, it is difficult to evaluate policies, which can

cause effects to ripple through the entire network. As a result, there remain open

access to data. This work was supported by the Stanford Institute for Economic Policy Research
through the Shultz Fellowship in Economic Policy. Supplemental Appendix available from the author
upon request.
1An individual’s adoption benefits immediate contacts because it makes it possible for them to
interact using the good. Adoption also makes these contacts more likely to adopt, and thus benefits
the contacts of contacts. These benefits ripple through the entire network of potential users, and
are unlikely to be internalized by the initial adopter.
2Early theoretical work includes Rohlfs (1974), Katz and Shapiro (1985), and Farrell and Saloner
(1985). Most empirical work on network goods measures the extent of network effects; see for example
Saloner and Shepard (1995), Goolsbee and Klenow (2002), and Tucker (2008). The paper closest in
spirit to this one is Ryan and Tucker (2012), which estimates the adoption of a videoconferencing
system over a small corporate network, and evaluates policies of seeding adoption.
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questions about how to design policies that better capture the spillover benefits as-

sociated with network effects, as well as policies that overcome suboptimal provision

arising from high concentrations in industries providing network goods.

This paper overcomes these limitations by combining a new empirical approach

with rich data from nearly an entire country’s remote communication system. I use

5.3 billion transaction records from Rwanda’s dominant mobile phone operator, which

held over 88% of the market, during a period of dramatic expansion.3 I estimate a

structural model of demand for mobile phones, and then demonstrate how this model

can be used to simulate the effects of policies.

My empirical approach has three parts:

First, acknowledging that the utility of owning a mobile phone is derived from its us-

age, I model the utility of using a phone. In the data I use, I observe every connection

between subscribers, as well as the calls placed across each connection. This allows

me to overcome two fundamental identification problems associated with network ef-

fects. I overcome simultaneity in consumer adoption decisions by inferring the value

generated by each connection from subsequent interaction across that connection.

This is similar to Ryan and Tucker (2012) who infer the value of a videoconferencing

link by the number of calls placed across it. However, in that setting individuals bear

no monetary cost, while in the Rwandan system I study, 99% of accounts are prepaid:

the person placing a call pays for it on the margin, by the second.4 This provides a

direct measure of value: a subscriber must value a connection at least as much as the

cost of calls placed across it.5 I also overcome simultaneity between consumer and

firm decisions. In Ryan and Tucker (2012) firm policies are static, but in practice and

in many models, firm policies change as the network expands. For instance, as the

Rwandan network expanded, the marginal adopter became poorer and more remote,

and the firm lowered prices and increased the quality of rural service. This varia-

tion makes it possible to identify the underlying demand curve for communication
3This concentration appears to result from a regulator restriction on entry to two firms rather than
other features of this setting: the regulator has since allocated more licenses and the dominant
operator’s market share has declined to 54% (RURA, 2013).
4In the first 14 months of the data, calls are billed by the first minute and every following 30 seconds.
5In contrast, most empirical studies of network goods use coarse measures of the value of joining
the network; exceptions that use individuals’ local network are Tucker (2008) and Birke and Swann
(2010).
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across each link as a function of prices and coverage, but introduces a simultaneity

problem: consumer responses to changing firm policies tend to be confounded with

the changing composition of consumers. My method separates these effects by using

within-link variation, tractably estimating 415 million link fixed effects.

Second, I model the decision to adopt a mobile phone. The utility of having a

phone in a given period is given by the utility of communicating with contacts that

have phones. Consumers choose when to adopt by weighing the increasing stream of

utility from communicating with the network against the declining cost of purchasing

a handset.6 This model allows me to compute the utility an individual would have

obtained if he had adopted at a different time under the observed adoption sequence,

but also the utility he would have obtained had the rest of the network adopted in a

different order.

Third, to evaluate the impact of policies, I use a simulation method that allows each

individual to react directly to a policy change, and to each other’s responses, capturing

effects that ripple through the network and across physical space. An equilibrium in

this context must reconcile nearly 1 million interconnected adoption decisions. I

make simulation tractable by defining an equilibrium in publicly announced adoption

dates; I then bound the full set of equilibria by exploiting the supermodularity of the

adoption decision, in a manner similar to Jia (2008). I turn this method to policy

questions facing developing countries.

The spread of mobile phones across the developing world has been dramatic:

between 2000 and 2011, the number of mobile phone subscriptions in developing

economies increased from 250 million to 4.5 billion (ITU, 2011). Improvements in

communication, through mobile phones as well as associated services such as mobile

money and mobile internet, have the potential to knit even remote villages into the

global economy. But in addition, these technologies are easily taxed and thus repre-

sent a public finance opportunity: the mobile industry contributed an average of 7%

of government revenues in sub-Saharan Africa as early as 2007 (GSMA, 2012). Devel-

oping countries thus face a tension between generating revenue and extending service,

particularly to rural and low income areas (‘a paramount concern’ in the words of
6The utility of having a phone increases as coverage improves, calling prices are reduced, and contacts
join the network.
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former World Bank ICT Director Mohsen Khalil). Governments typically manage

this tension with a set of telecom-specific taxes, and regulations and programs that

encourage access to the rural poor. However, there is little evidence to guide the

design of these policies, and standard approaches that do not account for network

effects can give misleading estimates.

I use my approach to evaluate three policies.

Because individuals tend not to internalize adoption spillovers, it is common for

firms or governments to subsidize adoption of network goods. I analyze a rural adop-

tion subsidy program implemented by the Rwandan government in 2008, using the

simulation method to determine how the policy affected the entire network. I find

that a substantial fraction of the subsidy’s impact arises from its impact on nonrecip-

ients, who account for more than 63% of the effect on revenue. Although the bounds

are wide, the subsidy improved welfare, in a low case by $301,980 (representing a

social return of 53%), and in a high case by $4.9 million (a social return of 855%).7

I also analyze the welfare implications of providing coverage to rural areas. A

social planner would expand coverage until the point where building any marginal

set of towers would not improve welfare. Firms may stop building before reaching

this point: in a competitive market, some of the benefits of expanding coverage will

spill over into competitors’ networks.8 And regardless of market structure, firms are

unlikely to internalize all of the value generated for consumers: price discrimination

is limited practically, and often also by regulation. Depending on the shape of private

and social benefits from expansion, it may be optimal for a government to require the

provision of coverage to areas that are unprofitable to serve. I find that in Rwanda, a

government coverage obligation led to the building of roughly 6% more rural towers

that were unprofitable for the firm but slightly welfare improving for the country.

Finally, I use my model to evaluate the potential of telecom taxation to generate

government revenue. I compute a social welfare improving tax policy in a class of

instruments that includes dynamic (time-varying) taxes on adoption and usage, for a
7Due to the cost of computing an equilibrium with interdependent demand, I report impacts as
changes in the bounds of outcomes rather than bounds on the changes. I discuss this further in
Section 7.
8A fraction of these benefits can be internalized using interconnection fees, but some will spill into
the interiors of competitor networks.
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given revenue requirement. I find that baseline tax regime had a substantial welfare

cost that would be underestimated if network effects were ignored. I find that had

the government shifted taxes to usage rather than adoption it could have more than

doubled the consumer surplus accruing to the bulk of users, while raising the same

amount of government revenue. The previous two policy simulations make conditions

for adoption less favorable, so that the individuals adopting in my simulations will

be a subset of those I observe in the data. The taxation simulation makes conditions

more favorable, so that the true benefits of switching policies will be larger than what

I estimate.

Although the method I present uses network structure revealed by adoption and

usage, it can also be applied to goods that have yet to diffuse. An analyst can gather

data about the adoption of a good from a context where exogenous factors have

induced adoption to be high, simulate the effects of policies, and use the conclusions

to inform policy in a context with lower adoption. As an example of this strategy, I

exploit the fact that Rwandan government regulations resulted in most of the country

receiving cellular coverage to predict the effects of expanding coverage as a function

of population density. An analyst can also gather data about a good that has already

diffused on a network of interest, and then simulate the adoption of a good that has

yet to diffuse. As an example of this strategy, I describe how the adoption of mobile

phones can inform policy for mobile internet service.

This paper connects with several literatures:

This paper studies classic network goods, whose value depends directly on the

network of other users. Several empirical studies have measured the existence or

extent of network effects in various environments (for example, Brynjolfsson and

Kemerer (1996); Goolsbee and Klenow (2002); Ackerberg and Gowrisankaran (2006);

Tucker (2008)). Conceptually related are goods with indirect network effects, whose

value may increase with additional users not because they provide direct benefits, but

because they induce a response from the other side of the market. There has been

more substantial empirical work on indirect network effects; related papers include

Ohashi (2003) on video cassette recorders, Lee (2013) on video game platforms, and

Gowrisankaran et al. (2010) on DVD players.
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The diffusion of technologies is essential for the productivity of developing economies.

While many studies have explored aggregate trends in adoption or individual adoption

for a sample of users, this study models how nearly an entire network of users adopts

a technology with rich data on how the technology is ultimately used.9 The paper also

connects to a literature analyzing the rapid spread of information and communication

technologies (ICTs) across developing countries (Aker and Mbiti, 2010).

A growing literature analyzes the impact of social networks on economic behavior

(see Jackson, 2009). My paper is conceptually related to Banerjee et al. (2013),

which estimates and simulates the diffusion of microfinance over a network following

an injection of information. While the authors primarily model the transmission of

information about a good over a social network, I model the adoption and subsequent

usage of a good whose benefits are derived from the network itself.

This paper also contributes to an emerging literature that uses passively collected

transaction records to analyze developing economies. These records overcome some

limitations of traditional sources of data (e.g., Zwane et al., 2011), and can also

answer questions that could not be answered with equivalent data from a developed

country. In developed economies, transaction data from any one source typically

represents only a small slice of an agent’s economic activities because agents generally

face many alternatives.10 Within a developing economy, a single data source can be

comprehensive: in Rwanda during the period of interest, records from a single mobile

phone operator represent the vast majority of remote communication.

The next section describes the expansion of mobile phone networks worldwide and

in Rwanda. Section 3 describes the data. Section 4 presents stylized facts about

mobile phone usage in Rwanda. Section 5 introduces a model of phone adoption and

usage. Section 6 describes the procedure I use to estimate the parameters of this

model and the country’s communication graph. Section 7 introduces a method that

is used to simulate the effects of two counterfactual policies: Section 8 analyzes the

9See, for example: Griliches (1957); Foster and Rosenzweig (1995); Conley and Udry (2010); Comin
and Hobijn (2010).
10For example, the full remote communication behavior of a consumer in the U.S. may be spread
over mail, home e-mail, work e-mail, a work phone, a personal mobile phone, fax, chat, Skype,
Facebook, and other more specialized channels. Even complete data from any one of these channels
will be heavily selected and difficult to interpret.
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effect of an adoption subsidy, and Section 9 analyzes operator incentives to provide

service in rural areas. Section 11 concludes.

2. Context

The expansion of mobile phone networks across the developing world has had sev-

eral common features. Initial networks were built in cities and served elites. Handset

prices were initially expensive, but fell dramatically with reductions in component

costs and economies of scale, making phones accessible to poor consumers. Operators

adapted to this broader base of potential subscribers by expanding coverage beyond

urban centers and reducing usage prices. The empirical strategy presented in this

paper will disentangle the impact of these factors for the spread of mobile phones in

Rwanda, and simulate the spread under alternate scenarios.

Rwanda between 2005-2009 is an attractive setting to study the spread of mobile

phones in developing countries. Because the Rwandan regulator restricted entry, the

market during this period was extremely concentrated: the mobile operator whose

data I use held above 88% of the market, and its records reveal nearly the entirety

of the country’s remote communication. There are few alternatives for remote com-

munication: the fixed line network is small (with penetration below 0.4%), and mail

service is insignificant.11 The data on which this project is based is long enough to

capture both adoption and use decisions for a substantial fraction of the population,

as well as substantial variation in prices and provision of service.

Rwanda. Rwanda is a small, landlocked country in East Africa. It is predominantly

rural; most households live off of subsistence farming. The country’s experience with

mobile phones is similar to that of other sub-Saharan African countries, apart from

three main differences. First, Rwanda is less developed than the African average and

most of its neighbors: per capita consumption in 2005 was $265, while the World

Bank reported a sub-Saharan African average of $545 (WDI, 2013). Second, it has

two opposing features that affect the profitability of building a mobile phone network:

11The average mail volume per person was 0.2 pieces per year in Rwanda, relative to 2.4 pieces in
Kenya and 538.8 pieces in the US (Sources: National Institute of Statistics Report 2008, Communi-
cations Commission of Kenya, U.S. Postal Service 2011, U.S. Census).
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it is very hilly, which interferes with signal propagation, but it also has a high pop-

ulation density, which allows each tower to cover more potential subscribers. Third,

the Rwandan market was slow to develop competition, due to fewer licenses being

allocated by the regulator and initial snags in the performance of the second licensee.

During the period of limited competition, prices were relatively high and penetration

was relatively low.

Network Rollout. In combination with other reconstruction efforts after the 1994

Rwandan Genocide, the new government spurred the development of a mobile phone

network. An exclusive license was given to a multinational operator, which started

operations in the capital, Kigali, in 1998. Service quickly spread from Kigali to other

urban centers. Two changes influenced further rollout.

Global handset prices began to decline, making mobile phones accessible to larger

segments of the population. In 2005, the cheapest mainstream handset in Rwanda

cost roughly $70, or three and a half months of the mean person’s consumption; by

2009 handsets were available for $20.

Regulatory changes induced a change in market structure. In 2003, the government

announced it would provide a license to a second operator, which entered the market

in 2005. This second operator was not very successful: it reached a maximum of 20%

of market share for a brief period after the end of my data, and in 2011 its license

was revoked for failure to meet obligations. In combination with providing a second

license, the government attached minimum coverage obligations to the first operator’s

license.12

The dominant operator changed pricing structures to accommodate lower income

users and expanded into rural areas. At the beginning of 2005, holding an account

on the dominant operator in Rwanda entailed paying a monthly access fee of roughly

$2, paying a minimum of $0.27 per call, and topping up a minimum of $4.53 when

credit ran low.13 By the middle of 2008, essentially all nonmarginal charges had

been removed, talk time was billed by the second, and the minimum top up amount

12A third operator entered the market at the end of 2009 and has been quite successful, taking a
third of the market by 2012.
13Prepaid balances must be refilled or ‘topped up’ when are depleted in order to continue making
calls.
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Table 1. Household Characteristics (Nationally Representative)

All Households
Households with
Mobile Phones

2005 2010 2005 2010

Consumption per capita (real) $264.81 $288.06 $925.14 $429.77
Monthly spending on airtime - $2.65 - $5.75

Rural 0.85 0.86 0.23 0.75
Has electricity 0.05 0.10 0.62 0.22
Owns fixed line phone 0.008 0.003 0.14 0.007
Owns mobile phone 0.05 0.40 1.00 1.00
Owns radio 0.46 0.63 0.93 0.84
Owns television 0.02 0.05 0.41 0.12

Proportion of households 1.00 1.00 0.05 0.40

Sources: consumption: EICV 2005-2006 (N=6,900), 2010-2011 (N=7,354), National Institute of
Statistics Rwanda; remainder of rows: DHS 2005 (N=10,272) and 2010 (N=12,540). Nationally
representative sampling weights applied. Consumption per capita deflated to January 2006 prices;
the deflator in 2010 was 1.42. Dash indicates that that question was not asked.

was reduced to $0.90. From 2005 to 2009, the number of cell towers tripled, and

the fraction of the country’s land area with coverage increased from 60% to 95%, as

shown in Figure 1. Reduced prices and improved coverage induced rural and poor

households to adopt. Although 85% of Rwandan households live in rural areas, in

2005 only 23% of households with mobile phones were rural; by 2010, 75% were. In

2005 households with mobile phones had a mean consumption per capita of 3.5 times

the average; by 2010 the mean consumption of phone owning households was 1.5 times

the average. Table 1 shows the baseline characteristics of the Rwandan population

and these changing demographics of phone owners, and Table 2 shows usage patterns.

Figure 2 shows the trend of mobile and fixed line telephone subscriptions. Figure 3

shows the changes in prices, coverage, and network adoption.
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Figure 1. Coverage

Kigali

2005

Kigali

2009

Locations with coverage are shaded. Cities are denoted by points sized by population.

3. Data

This project uses several data sources:14

Call detail records: As a side effect of providing service, mobile phone operators

record data about each transaction, called Call Detail Records (CDRs). This project

uses anonymous call records from the dominant Rwandan operator, which held above

14More details about measurement are described in the Supplemental Appendix.

Table 2. Usage Profile (1.2005-7.2008)

Monthly Usage Charge per Transaction
Median Mean S.D. Median

Calls 9.4 56.5 114.7 $0.10
Missed calls 40.8 187.0 381.6 $0.00
SMS 1.0 10.2 91.8 $0.09
Balance inquiries 5.3 40.3 65.0 $0.00
Balance recharges 0.5 3.6 7.1 $0.83

Calling charges $1.93 $4.34 $9.33

Calling charges exclude SMS, international calls, and service fees. Computed using the billing
data, is available January 2005 - July 2008.
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Figure 2. Telephone Subscriptions in Rwanda

Popula'on	  

Mobile	  Phones	  

Fixed	  Lines	  
0	  m	  

5	  m	  

10	  m	  

1998	   2002	   2006	   2010	  

88% of the market during this period. This data includes nearly every call, SMS, and

top up made over 4.5 years by the operator’s mobile phone subscribers, numbering

approximately 300,000 in January 2005 and growing to 1.5 million in May 2009. For

each transaction, the data reports: anonymous identifiers for sender and receiver,

corresponding to the phone number and handset, time stamps, call duration, the

incurred charge (for transactions before August 2008), and the location of the cell

towers used.15

Coverage: I create coverage maps by computing the areas within line of sight

of the towers operational in each month. I use a method suggested by the opera-

tor’s network engineer. Elevation maps are derived from satellite imagery recorded

by NASA’s Shuttle Radar Topography Mission and processed by the Consortium for

Spatial Information (Jarvis et al., 2008; Farr et al., 2007). I also compute two instru-

ments for coverage, incidental coverage from the placement of the electric grid and

the slope of the surface.

Individual locations and coverage: I infer each subscriber’s set of most used

geographical locations using an algorithm analogous to triangulation, a version of

Isaacman et al. (2011)’s ‘important places’ algorithm that I have modified to improve

performance in rural areas. Around each individual’s most used locations, I compute

15Some months of data are missing; from the call records: May 2005, February 2009, and part of
March 2009, and from the billing records: October 2006 and the months following August 2008.
The records of some tower identifiers are missing from this data. I infer the location of missing
towers based on call handoffs with known towers using a procedure I have developed, described in
the Supplemental Appendix.
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Figure 3. Variation in Data
Handset Prices (top 5 retail models)
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the fraction of area receiving coverage in a given month using a two-dimensional

Gaussian kernel with radius 2.25 km. I then compute the coverage available to each

individual during each month by averaging this fraction over the individual’s locations,

weighting each location by the number of days calls were placed from that location.

Handset prices: I create a monthly handset price index phandsett based on 160

popular models in Rwanda, weighting each model by the quantity activated on the

network. I account for the introduction of new handsets by filling in missing prices

with prices from handsets of comparable quality.

Household surveys: I use several nationally representative household surveys to

provide background information: DHS and government surveys (EICV) from 2005

and 2010, and a technology usage survey (Stork and Stork, 2008).

4. Patterns of mobile phone use

Subscribers use the network creatively to relay information at low cost. Calls are

extremely short: 58% of accounts have never placed a call longer than five minutes,

and the mean length is 37.5 seconds. According to a representative household survey,

92% of subscribers report that the main purpose of the last 10 calls was social (Stork

and Stork, 2008).

The primary unit of observation is an account, which corresponds to a phone num-

ber. Although accounts are prepaid and not explicitly linked to individuals, few

individuals had more than one account in Rwanda during this period.16 I assume

that each account is associated with a unitary entity such as an individual, firm, or

household. This assumption would be violated if the composition of people sharing

a handset changed over time.17 For ease of exposition in the rest of the paper I will

refer to accounts as individuals or nodes.

16There are an average of 1.03 accounts per user (Gillwald and Stork, 2008). There was little reason
to change accounts: there was one majority operator, opening an account cost roughly $1, and the
asymmetry in billing increased the hassle of changing your phone number. Prepaid accounts are not
explicitly closed; if unused, they become inactive and are reactivated when credit is next added.
17I expect most changes in sharing to be across households, because much of expansion represents
new households adopting phones rather than households purchasing additional phones. Among
Rwandan households with mobile phones in 2010, 60% had one phone and 27% had two (EICV).
For more discussion of this assumption, see Appendix A.
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Calls reveal a social network. A call from one individual to another reveals a

desire to communicate. Taken together, observed calls trace out the links of a latent

social network for remote communication, which I refer to as the communication

graph. I model the utility of communicating with a fixed potential set of contacts,

which may represent family, friends, or business contacts. I assume that by the end

of the data I have observed the full communication subgraph for the individuals who

subscribe by May 2009: that the contacts I observe an individual call represent all of

the contacts they would like to call among those who subscribe by this date.18

The prepaid billing structure is empirically convenient in that the calling party

always pays on the margin for a call, so that the calling decision reflects willingness

to pay for communication with a given contact. Due to the asymmetry in billing, the

direction of the call is important: in the absence of a side contract, a call from i to j

reveals that i is willing to pay at least the cost of the call, but does not reveal how

much j would be willing to pay. Because of the potential importance of direction, I

take the communication graph to be a fixed, directed network. I will present results

under different assumptions of the value of incoming calls.

Dependence between links. A typical demand model would suggest links are substi-

tutable: when my friend Jacques buys a phone, I may call him more and my brother

less. An information sharing model would suggest complementarities: Jacques and

my brother may share additional information, and as a result I may call both more.

One simple test of dependence is whether the volume of calls across a link changes as

more of the sender’s and receiver’s contacts join the network. To test this, I estimate

a simple gravity model, regressing each link’s monthly call volume on the sender’s and

receiver’s number of subscribing contacts, controlling for price changes and coverage,

and including fixed effects for each link. If links were substitutable, as new contacts

join the network a subscriber would reduce calls to existing contacts; barring any

confounds this would result in a negative coefficient on number of contacts. Com-

plementarity would result in a positive coefficient. As shown in the first two rows

of Table 3, results are consistent with dependence between links being small, and on

18For this project, the call graph is exactly the object of interest; it may differ from a social network
revealed through survey methods. For more discussion see Appendix A.
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Table 3. Determinants of Calling

Dependent Variable: Duration I II III IV V
(seconds per month, outgoing)
Price USD/minute -48.10 -46.17 -46.86 -46.00 -46.19
(event study) (0.63) (0.63) (0.63) (0.63) (0.63)
Sender’s Coverage 15.99 12.42 14.75 12.39 0.20

(0.37) (0.38) (0.37) (0.38) (0.69)
Receiver’s Coverage 24.67 22.54 22.21 22.07 10.17

(0.38) (0.38) (0.39) (0.39) (0.69)
Sender’s × Receiver’s Coverage 19.63

(0.94)
# Sender’s Subscribed Contacts 0.025 0.022 0.022

(0.001) (0.001) (0.001)
# Receiver’s Subscribed Contacts 0.016 0.004 0.004

(0.001) (0.001) (0.001)
Nobservations 44,108,852 44,108,852 44,108,852 44,108,852 44,108,852
Nlinks 1,663,018 1,663,018 1,663,018 1,663,018 1,663,018
R2 0.0011 0.0011 0.0011 0.0011 0.0012

All regressions include link, month, and price regime fixed effects. Estimates computed using
incremental least squares, on a 1% sample of nodes and all their links. The price coefficient is
estimated based on an event study around the two price changes, in February 2006 and February
2008, using a two month window before and after. Dummies are included for the other months
within each price regime. The top 1% degree nodes have been omitted; their inclusion attenuates
the contact coefficients. Standard errors reported in parentheses. R2’s omit contributions of fixed
effects.

net complementary. The change in call volume along a given link associated with 10

other contacts joining the network is the same as that associated with a calling price

decrease of $0.005 per minute. For comparison, the median number of contacts is 61,

and the final peak calling rate is $0.23 per minute.19 To simplify the model, I assume

the utility obtained from a contact is independent of the state of other contacts on

the network.

Adoption. In Rwanda as in many developing countries it would be difficult to enforce

service contracts at scale, so nearly all accounts are prepaid. Joining the network

entails opening an account, which was easy and cheap (about $1), and investing in

19Several factors could lead to low substitutability in this setting. Subscribers spend little time on
the phone (the median usage is 25 minutes per month), so phone use is unlikely to crowd out other
activities.
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a handset, which was expensive (offered at retail price; about $70 in 2005). Most

handsets were mainstream, imported models, with little differentiation in terms of

features. Handsets could be purchased from the operator or independent sellers; local

price trends are consistent with global trends. I treat the handset market as perfectly

competitive and handset prices as exogenous.

The data covers a period of continual declines in handset and calling prices, and

continual improvements in coverage and network size, as shown in Figure 3. Indi-

viduals appear to plan ahead when considering adoption: when asked in 2007, 89%

of individuals without phones planned to purchase a phone in the future (Stork and

Stork, 2008). I model adoption as a dynamic decision, where individuals incorporate

expectations of future improvements into the adoption decision.

Additional Simplifications. I make a number of simplifications for tractability

and due to data limitations. During this period, there were two operators licensed in

Rwanda. My partner operator always had the vast majority of the market, with over

88% of subscriptions during the first 4 years of data; I ignore the other operator.20

I focus on voice calls and do not explicitly model the utility from nonvoice trans-

actions. To the extent these transactions are important, when I estimate a model of

the utility from calls, it will represent a proxy for total communication utility. I will

still be able to estimate this total utility by considering the adoption decision. Usage

and availability of mobile internet during the period of interest was negligible, and

mobile money was not available on the Rwandan network until 2010. Though impor-

tant in other contexts, in Rwanda text messaging or SMS was high priced ($0.10 per

message) and represents less than 13% of revenue and 16% of transactions.21 From

the data it is not possible to match the sender and receiver of a given SMS; for this

reason I do not explicitly model SMS. I also omit any utility from missed calls. Only

calls that are answered incur a charge; subscribers may exploit this feature of billing,

communicating simple information by leaving missed calls (‘beeps’ or ‘flashes’, see

Donner 2007). Because it is difficult to distinguish between missed calls that provide

utility (communicating information) and those that provide disutility (due to network

20See Supplemental Appendix for details on the evolution of the market.
21Revenue statistic based on the period of data where charges are reported, which covers January
2005-August 2008. The price of sending an SMS did not change from 2005-2009 for standard plans.
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problems or inability to connect), I do not explicitly model missed calls.22 Since I

have no information about foreign subscribers, I will not model the small fraction of

international calls. I also omit calls from payphones.23 An individual may learn about

the benefits of using a phone from observing the usage of others; I do not model this.

For more discussion about these simplifications, see Appendix A.

5. Model

In this section I describe a model of handset adoption. The utility of owning a

phone is derived from making calls, so I begin with a model of usage. The model

of usage will also account for changes that improved communication across links,

specifically the expansion of coverage and reduction of calling prices.

Let G be the communication graph (a directed social network). The nodes of the

graph, N , represent individuals who eventually adopt phones. At each period, each

individual i ∈ N may have a phone or not; let St ⊆ N be the set of individuals with

phones in month t. A directed link ij ∈ G indicates that i has a potential desire

to call j over the phone network; I assume this link exists if i has ever called j. I

assume these links are fixed over time. As shorthand let Gi = {j |ij ∈ G} be i’s set
of contacts.

Calling Decision. At each period t where he has a phone, individual i can call any

contact j that currently subscribes, j ∈ Gi ∩ St, to receive utility uijt. Each month,

i draws a communication shock εijt representing a desire to call contact j; this desire

might be high after an important event or to coordinate a meeting, or low if there

is little information to share. The shock is drawn from a link-specific distribution,

εijt
iid∼ Fij that will be specified later.24

22An early iteration of the usage model included missed calls; however, it was difficult to estimate
as changes in the price of calls induce little substitution between calls and missed calls.
23Payphones place approximately 12% of call durations but receive only 0.8%. Because payphones
receive so few outgoing calls from the rest of the network, omitting them would have little effect
on the preferred usage model which uses outgoing calls. However, their presence would affect the
adoption decision, in a manner similar to handset sharing—see Appendix A.
24In the true data generating process, communication shocks are likely correlated across time and
across links: e.g., while organizing a business deal I may call a set of contacts intensively for a few
months. As long as this correlation structure does not have a time trend, it will simply be smoothed
out in the adoption decision.
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Given the shock, i chooses a total duration dijt ≥ 0 for that month, earning utility:

uijt = max
d≥0

vij(d, εijt)− cijtd

where v(d, ε) represents the benefit of making calls of total duration of d given

communication shock ε, and cijt represents the per-second cost.

I model the benefit of making calls as:

vij(d, ε) = d− 1

ε

[
dγ

γ
+ αd

]
where the first term represents a linear benefit and the second introduces decreasing

marginal returns. γ > 1 controls how quickly marginal returns decline. α is a cost-

dependent censoring parameter that controls the intercept of marginal utility, and

thus affects the fraction of months for which no call is placed.25

The marginal cost includes the per second price as well as a hassle cost of obtaining

coverage:

cijt = βpricept + h(φit, φjt)

where βprice represents call price sensitivity, pt is the per-second calling price (in-

cluding any tax), and h(φit, φjt) represents the hassle cost when the caller or receiver

have imperfect coverage. An individual’s coverage φit ∈ [0, 1] is derived from the

fraction of the area surrounding his most used locations receiving cellular coverage in

month t. The reduced form evidence suggests that the hassle depends primarily on

the interaction of caller and receiver’s coverage, so I parameterize the hassle cost as:

h(φit, φjt) = βcoverageφitφjt.26

25There is little in the data to differentiate between the distribution of shocks and the precise shape
of the utility function. My strategy is to impose restrictions from theory and intuition on the utility
function, and then select a distribution that matches the data well. I specify 8 properties that a
reasonable functional form of utility from telephone calls should satisfy (see Appendix B), which led
to the selected form.
26Rwanda is geographically small enough that, even at the beginning of the data, the signal from
urban towers extends into even remote areas, but it is also hilly, so that the resulting coverage is
quite spotty. When coverage is poor it is often possible to walk to a nearby hilltop to make a call;
this hassle cost is reduced as coverage improves. In principle the caller and receiver’s coverage could
enter the hassle cost asymmetrically, but because it proved to be difficult to estimate a more complex
specification, I include only the strongest term, which is the interaction (see Table 3).
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Given this functional form, calling prices, and coverage of both sender and receiver

affect both the frequency and duration of calls. The marginal benefit of an additional

second of duration across a link is decreasing, so i will call j until the marginal benefit

equals the marginal cost. This implies an optimal duration of:

d(ε, pt, φit, φjt) = [ε (1− βpricept − βcoverageφitφjt)− α]
1

γ−1

which is larger when the desire to communicate that month (ε) is larger. If the

desire to communicate is not strong enough, the individual would prefer not placing

a call across that link: dijt = 0 when εijt ≤ εijt := α
1−βpricept−βcoverageφitφjt .

Then, the expected utility i receives from being able to call j in period t is:

Euij(pt,φt) =

ˆ ∞
εijt

[
d(ε, pt,φt) ·

(
1− βpricept − βcoverageφitφjt −

α

ε

)
− 1

ε

d(ε, pt,φt)
γ

γ

]
dFij(ε)

where φt represents the vector of coverage for all individuals.

Adoption Decision. Each month i is on the network, he receives expected utility

from each contact who is also on the network:

Euit(pt,φt,xGi) =
∑

j∈Gi and xj≤t

Euij(pt,φt) + w · Euji(pt,φt)

where xj represents j’s adoption time, uij represents the utility of calls from i to j

(which i pays for), uji represents calls from j to i (which j pays for), and w ∈ [0, 1]

specifies how much recipients value incoming calls. Each month that i is not on the

network he receives utility zero.

Conditional on the adoption decisions of others, an individual’s adoption decision

represents an optimal stopping problem. Individual i chooses when to adopt by

weighing the discounted stream of benefits against the price of a handset, represented

by index phandsett (including any tax). Then, if i believes that his contacts will adopt

at times x̂Gi , he will consider the utility of adopting at time xi to be:

Uxi
i (x̂Gi) = δxi

[
∞∑
s=0

δsEuixi+s(pxi+s,φxi+s, x̂Gi)− βpricep
handset
xi

+ ηi

]
where an individual’s type ηi captures heterogeneity in the utility of adoption that

is unobserved to the econometrician. While I explicitly model key determinants of

adoption, there remains important heterogeneity between individuals that I do not
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observe. Particular individuals may obtain more or less utility from using a handset

than that suggested by the usage model, or individuals may receive direct utility

from owning a handset from features like the clock or flashlight. At the point of

adoption, individuals may forecast their per-period utility with heterogeneous error.

And individuals may face different fixed costs of adoption: some may purchase a

cheaper, used handset; others may have to learn new skills to operate a handset. I

incorporate these three forms of heterogeneity in a manner that will prove tractable

for estimation and simulation. Since I am unable to differentiate between the three

sources, an individual’s type refers to their sum: ηi := 1
1−δ

[
ηutilityi + ηforecasti

]
+

ηadoptioni . I do not restrict the distribution of ηi (specifically, it need not be mean zero),

but do require that each individual’s type is constant over time to make simulation

tractable. This assumption would be violated if, for example, a person who was

pessimistic about improvements in the network later became optimistic, a handset

provided status value that changed over time, or a person preferred to purchase a

handset in a certain month because he was flush with cash or had more calling needs.

I expect any changes in the value of status to be dwarfed by the large changes in

fundamentals over this period (prices, coverage, and individuals on the network).

Since individuals are likely to face idiosyncratic shocks, I evaluate the performance

of the model in their presence using Monte Carlo simulations in the Supplemental

Appendix, and find that it performs well for up to moderate shocks.

Network Adoption Equilibrium. The model of individual decisions presented

thus far, and the estimation procedure introduced in the next section, are compatible

with many definitions of equilibrium. However, counterfactual simulations will require

a specific, tractable definition of equilibrium.

Initial adopters (S0) are held fixed. Each other individual i decides on an adoption

time xi ∈
[
1, ..., T̄

]
to maximize his payoff Uxi

i (xGi), which depends on his contacts’

adoption decisions (xGi). The number of potential states of the network is large

(2|S\S0| > 21,000,000); I maintain tractability with a simplified concept of equilibrium:

First, I simplify individuals’ expectations about the future. I avoid populating and

managing a vast tree of potential states of the world by assuming that in equilibrium,
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individuals compute payoffs based on a correct anticipation of the dates their contacts

adopt (x̂Gi = xGi), with any forecast error fully captured in the constant term ηi.27

Second, I simplify the strategies individuals can employ: individuals choose only

one action, their adoption time xi; they may not condition their strategy on the

actions of others in prior periods. This will result in a form of naiveté: individuals

do not anticipate how the rest of the network will respond to their actions.28

An equilibrium corresponds with a Nash equilibrium of the game where each indi-

vidual simultaneously announces their adoption date xi at the beginning of time (a

complete information static game). An equilibrium Γ is defined by adoption dates

x = [xi]i∈S such that the adoption date of each individual i ∈ S\S0 is optimal given

their contacts’ adoption dates: xi = arg maxt U
t
i (xGi).

Despite the simplicity of this definition, it will allow for rich behavior. In simula-

tions, a perturbation of utility that causes one individual to change their adoption

date can shift the equilibrium, inducing ripple effects through potentially the entire

network. There are also likely to be multiple equilibria. In a stylized theoretical

model of network adoption, the structure of equilibria can range from an equilibrium

where no individuals ever adopt, to one where all individuals adopt immediately. In

this setting, equilibria will not include this full range. First, the lowest equilibrium

tends to include at least some adoption, because there is a stock of initial adopters

and the net benefit of connecting to them increases over time, as prices decline and

coverage improves. Second, coordinating on immediate adoption is unlikely to be

optimal, because the economic costs of producing handsets decline over time. If over

a period the decline in handset cost exceeds the social benefits a potential adoptee

27These adoption dates can be derived from the perceived adoption utility Uxi
i (·) for each individual

in the network; if there are multiple equilibria, individuals would also need to know the method
by which one is selected. (The perceived adoption utilities can be further decomposed into model
primitives that include link utilities {uijt} and individual types {ηi}. However, while it is conceivable
that a person might know how another perceives the benefits of adopting (Uxi

i (·)), it would be
unreasonable for individuals to decompose this object into primitives, as type ηi includes forecast
error.)
28In the Supplemental Appendix I test how an individual’s adoption decision would differ if it took
into account others’ responses; I find differences in this setting are minor.
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would generate, it is socially optimal for them to delay adoption.29 The social ben-

efits generated by an individual’s adoption are themselves nontrivial, because they

can depend on the decisions of all other nodes.

The next section describes how the parameters of the model are estimated, and

Section 7 describes a simulation procedure that identifies equilibria.

6. Estimation

Individuals choose when to adopt a mobile phone and, if they adopt, how to use

the phone. I work backwards, starting with the model of usage. The usage decision

identifies the expected duration of voice calls across each link of the communica-

tion graph, Edij(pt,φt), the associated expected utility, Euij(pt,φt), and the price

coefficient βprice that maps utility to valuation in dollars. In the adoption decision,

individuals weigh the price of a handset against the discounted stream of call utility it

provides. This decision overidentifies the price coefficient; I use plausibly exogenous

variation affecting the utility of adoption to check the first estimate.

Calling Decision. I use data on phone calls to estimate the country’s latent commu-

nication graph (the parameters of the call shock distributions Fij), the shape of the

utility function (γ and α), and how usage responds to prices and coverage (βprice and

βcoverage). I estimate responsiveness to prices and coverage using time series variation

in both quantities.

Identification. It is generally difficult to disentangle peer effects across social net-

work links from nonpeer effects that are correlated among network neighbors. I am

able to overcome this problem because I observe the actual behavior of interest across

links: the communication I observe represents the source of utility derived from the

network.

I determine the value of this communication by estimating its elasticity to price.

The operator steadily reduces calling prices and improves coverage over time, while

29Some of these changes, the increase in coverage and reduction in calling prices, arise as the operator
encourages and adapts to the growth of the network. In a richer definition of equilibrium that
included operator decisions, these changes may be attenuated in a low equilibrium. However, even
in the absence of these changes, consumers would still face dramatically declining global handset
prices, so that the lowest equilibrium would tend to include some adoption.
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the network expands.30 The changing composition of the network would bias a simple

time series estimate of the response of duration to prices and coverage: less talkative

individuals subscribe later, causing average durations to decrease as communication

costs are reduced. Supply is also endogenous: the operator adjusts prices and expands

coverage in response to the changing composition of active links. I address both of

these concerns by measuring the response of durations to costs using within-link

variation: how usage between pairs of nodes change as coverage improves and prices

decline. I do this in a manner analogous to using fixed effects, by estimating link

specific call shock distribution parameters.31

Estimation Procedure. First, I specify a distribution for call shocks εijt. To account

for the large fraction of months on a given link without a call, I use a mixture of a

lognormal distribution, lnN(µij, σ
2
i ), and a mass point at negative infinity with prob-

ability 1− qi. Thus, across each link some censoring is explained by cost (controlled

by α in the utility function), and some would occur regardless of cost (controlled by

the individual parameter qi).32

The calling decision has 7 types of parameters. I allow the means of the shock

distribution to vary at the link level (µij), I allow the standard deviation of the shock

distribution and cost-independent censoring parameter to vary at the individual level

30Prior to February 2006, calls were billed by the first minute and each subsequent half minute;
after, subscribers could opt in to per second billing (and most quickly did). Modeling the per-
minute charges would add significant complexity, so instead I assume these calls were billed at an
equivalent per second price, selected to approximate both marginal and average prices. I set the per
second price to the equivalent charge under the per minute rate when calls are of length 30 seconds.
31In contrast, Ryan and Tucker (2012) group nodes into 64 different types based on characteristics,
and groups links by which types they connect. This more aggregated approach works in a context
with static firm policies; however, when firm policies change over time, it would confound the
response to the policy with unobserved heterogeneity within types. For example, if within one type
half adopts before an increase in quality and half after, it is unclear how much of usage is explained
by the level of quality and how much by fundamental differences between early and late adopters.
To disentangle this heterogeneity one could include fixed effects. Fixed effects based on date of
adoption would have a manageable number (52 in my context) but this would entail partitioning
the parameter space based on an endogenous agent decision. More disaggregated fixed effects avoid
this. The subsample approach I develop tractably estimates a nonlinear model with 415 million fixed
effects (and would remain tractable with orders of magnitude more). This allows me to separately
identify network parameters and consumer sensitivity to firm policies (price and quality: coverage).
32On average, there is a call across a given link only 12% of months. If I used only a familiar
continuous distribution, most of the mass of the distribution would be to the left of the censoring
point, and distribution parameters would be estimated primarily off of this censoring point.
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(qi, σi), and I assume that the shape and sensitivity parameters are common to

all links (γ, α, βprice, βcoverage). I assume that both individuals i and j know the

parameters of link ij at the beginning of time. I estimate these parameters using

maximum likelihood.

In each period t, for each pair of contacts i and j, I observe a duration dijt ≥ 0.

The model maps each duration d to an underlying call shock ε, conditional on prices

and coverage:

ε (d |pt, φit, φjt ) =
dγ−1 + α

1− βpricept − βcoverageφitφjt
There will be a month without a call (dijt = 0) if the call shock was not high

enough to place a call. i will choose duration zero for the set of epsilons map-

ping just below duration 1 second, so that a month without a call has likelihood

Fij [ε (1 second |pt, φit, φjt )]. If the shock is large enough, i will place a call; the

higher ε, the longer the duration. The likelihood of calls of total duration dijt from i

to j in month t is Fij [ε (dijt + 1 |pt, φit, φjt )]− Fij [ε (dijt |pt, φit, φjt )].
The full sample has 1,525,061 nodes and 414.5 million links (representing a total

of 15 billion link-month observations). I estimate the 4 common parameters and the

distribution parameters defining the communication graph (two for each node and

one for each link, 418 million altogether) using three steps. First, I jointly estimate

common and distribution parameters for a random 2% subset of nodes and their full

set of links.33 Because the number of parameters is large, I find that the maximum

likelihood estimates of the common parameters tend to be biased (α̂ tends to be

biased downwards).34 In the second step, I measure and correct this bias with a

parametric bootstrap, by estimating from data simulated from the model. Third, I

impose the bias-corrected common parameters estimated in the previous two steps to

33The 2% sample is 24,849 nodes with 4,056,654 links. This represents approximately 122 million
link-month observations; 8 million with calls.
34The number of parameters grows with the number of links, so for asymptotics I take the number
of observations to grow in the time dimension. For individuals who adopt late in the data, I have
few observations of usage; and links with few calls have mostly censored observations, which are
less informative (the median number of observations per node is 1,791 and per link is 46; see Table
4 for the quantiles of the observations per link, node, and observation). These links lead to an
incidental parameter problem, affecting the estimate of α in a fairly predictable way. See Monte
Carlo simulations in the Supplemental Appendix.
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estimate the remaining distribution parameters for the full sample.35 The individual

likelihoods are separable conditional on the common parameters, so this last step is

computationally much less demanding than performing a full joint estimation.

I use the estimated model to compute the expected duration and utility along each

link ij, Edij(pt,φt) and Euij(pt,φt), using the common time path of calling prices,

and the paths of coverage specific to caller i and receiver j.36

Adoption Decision. The adoption decision reveals individual types ηi, and provides

a second check of the estimate of βprice. In choosing when to adopt, individuals weigh

the cost of adoption against the discounted stream of benefits from being on the

network. The main cost of adoption is the price of a handset, taken as exogenous.37

I assume that individuals have perfect foresight, apart from additive forecast er-

ror which absorbed into ηi. I also assume that individuals make adoption decisions

independently, without taking into account how others in the network will respond.

Under perfect foresight, i knows that his contacts will adopt at xGi , and he will

adopt at the time xi = arg maxx U
x
i (xGi). If time were modeled as continuous, under

regularity conditions the optimum would be obtained from the first order condition
∂Uxi (xGi)

∂x

∣∣∣∣
x=xi

= 0. I compute a discrete time analogue using differences.

I observe each individual’s month of adoption, xi, and consider the utility he would

have received had he adopted a different month, conditional on the actions of others.

At time xi, i faced the decision of buying a handset and obtaining utility Uxi
i , or

35Extremely long calls can lead to numerical issues because they may result in draws from the
extreme tails of the normal distribution. Because they can hinder convergence, I omit the 1% of
nodes that have talked to a contact longer than one hour in a given month in the first step. In the
third step, convergence is less sensitive so I am able to estimate the parameters of all nodes. The
ratio of links to nodes differs in the first and third steps because nodes that have placed long calls
tend to have more links.
36Integrals are evaluated using Monte Carlo draws. Note that both integrals are nonlinear functions
of estimated parameters, so uncertainty in parameter estimates could bias the estimates of these
expectations; however, I find these biases seem to be small in Monte Carlo simulations (reported in
the Supplemental Appendix).
37Nonmarginal fees associated with using the network did change over this time, but these were
small relative to the price of a handset. Before June 2007, subscribers needed to add roughly $4.53
in credit per month to keep their account open. The lifting of this policy led to a large increase in
account openings. Actually opening an account entails purchasing a SIM card, which cost roughly
$1 itself plus the cost of an initial top up. The initial top up amount changed over time but the cost
of the SIM remained relatively constant. Available top up amounts also changed during this period,
which I do not model.
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postponing adoption by K months for utility Uxi+K
i . Since he adopted at xi, revealed

preference implies Uxi
i ≥ Uxi+K

i . The utility of being on the network during the

following K months must have exceeded the value of the drop in handset prices:38

K−1∑
k=0

δkEuixi+k(pxi+k,φxi+k,xGi) + (1− δK)ηi ≥ βprice(p
handset
xi

− δKphandsetxi+K
)

Similarly, i could have purchased a handset K months earlier. At time xi −K, i

chose to postpone adoption to obtain expected utility Uxi
i instead of buying a handset

and getting utility Uxi−K
i . This implies Uxi

i ≥ Uxi−K
i . Because i chose to postpone

adoption by K months at xi −K, the utility from the K months prior to purchase

must have been worth less than the drop in handset prices:
K∑
k=1

δK−kEuixi−k(pxi−k,φxi−k,xGi) + (1− δK)ηi ≤ βprice(p
handset
xi−K − δKphandsetxi

)

These conditions are necessary for equilibrium and are valid in the presence of

multiple equilibria. If a group of individuals make joint adoption decisions, the bounds

on ηi that I back out are likely higher than the true bounds.39 The results also follow if

individuals forecast future paths of utility with constant amounts of error; for example

if each individual’s level of pessimism or optimism about future utility is persistent.

If a unit of utility in the call model corresponds with a unit in the adoption model,

then individual types ηi can be backed out from the adoption decision and no addi-

tional parameters need be estimated. However, the adoption decision overidentifies

βprice, so as a check I estimate the parameter using an instrumental variables moment

inequalities strategy. I exploit variation in the cost of providing coverage to differ-

ent areas due to Rwanda’s hilly geography, in a manner similar to Yanagizawa-Drott

(2014), as well as in the number of contacts who join in response to a government

adoption subsidy program. (For more details, see Appendix C.)

38Under perfect foresight, i correctly forecasts the first K months of utility and his expectation
of the continuation flow does not change between xi and xi + K. Both options provide the same
continuation flow of utility after xi + K, so they differ only in the utility provided in the first K
months.
39See Supplemental Appendix.
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Given βprice, the adoption inequalities imply bounds for each individual’s realized

type: ηi ≤ ηi ≤ η̄i, where:

ηi = − 1

1− δK

[
K−1∑
k=0

δkE

( ∑
j∈Gi∩Sxi+k

uijxi+k + w · Eujix+k

)
−βprice(phx − δKphx+K)

]

η̄i = − 1

1− δK

[
K∑
k=1

δK−kE

( ∑
j∈Gi∩Sxi−k

uijxi−k + w · Eujix−k

)
−βprice(phx−K − δKphx)

]
for a deviation ofK months.40 During months extra fees were charged, I incorporate

the fee schedule.41 I fix the discount factor δ = 0.9916 ∼ (0.9)1/12.

Results. Parameter estimates are reported in Table 4. The model explains months

that no calls are placed across a link partly with the cost of communication (since the

cost-dependent censoring parameter α is above zero) and partly because there would

have been no communication regardless of cost (since most estimated qi’s are below

1).

Predicted durations are highly correlated with observed durations (correlation by

month is 0.95, by node is 0.91, and by link is 0.67), and levels match closely: total

predicted duration is 3% higher than observed duration.42

40While each individual chose one out of many potential adoption dates, I include only moments for
one pair of comparisons (one value of K) to avoid a selection problem that would otherwise arise
from the finiteness of the data. To balance precision with smoothing, I select K=2 months. Note
that the error structure cannot rationalize all adoption decisions: there are some observed decisions
(28%) for which the inequalities of ηi cross. This suggests that the true adoption model has time-
varying heterogeneity that I do not observe. A seemingly straightforward way to rationalize these
decisions would be to include a second, time-varying error term. However, if this were a random
effect from a distribution, simulation would quickly become intractable. In many other empirical
settings, errors can be sampled independently, but here a shock to individual i’s utility of adopting
at time t can potentially affect the decisions of the entire network. Then, an equilibrium would be
conditioned on the entire set of errors, an object of dimension T̄ · |S\S0| ∼ 89m. Even if this space
were sampled intelligently, it would be difficult to sample a sufficient region given that computing
one equilibrium takes approximately 12 hours on current hardware. However, Monte Carlo results
reported in the Supplemental Appendix suggest that under reasonable parameter values, the model
without time-varying shocks does capture policy impacts quite well even when the underlying model
includes these shocks. When the inequalities for ηi cross, I assume ηi is the mean of the two bounds.
I back out these bounds differently for subsidy recipients; see Supplemental Appendix.
41See Supplemental Appendix.
42There are a small number of nodes with many links and high variation between links for which
the model obtains poor fit. I omit the 10 nodes for which the estimates are most biased; for these
10 nodes the predicted duration is 6506 times too large.
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Table 4. Parameter Estimates

Classification Parameter Estimate
Common Parameters γ 2.310

α 158.294 (bias corrected)
βprice 0.199
βcoverage -0.900

Quantile: 1% 25% 50% 75% 99% Number
Link Parameters µij 0.43 3.59 4.89 5.47 7.59 414.5m

SE(µij)
a 1.22 1.89 1.98 2.74 3.82

N per link 8 19 46 51 51

Node Parameters σi 0.00... 0.34 0.53 0.89 2.03 1.5m

SE(σi)
a 0.16 0.36 0.66 1.06 4.81

qi 0.03 0.10 0.20 0.55 1.00 1.5m

SE(qi)
a 0.00... 0.04 0.07 0.11 0.47

N per node 37 724 1,791 5,985 63,212

Backed out from η̄i/βprice $ -13.86 -0.45 0.69 1.25 11.48 1.5m
adoption decision ηi/βprice $ -17.49 -1.33 0.34 0.99 7.13 1.5m

Overall N per parameter 8 24 41 45 50

Nobservations 15 billion

a: Standard errors reported in this table assume that there is no covariance between common
parameters and communication graph parameters (for computational tractability). Usage decision
parameters are estimated in a three step maximum likelihood procedure. The second panel reports
the quantiles of estimates, quantiles of standard errors, and quantiles of observations per node and
link. Each node has two parameters plus one parameter per link.

The model provides two separate ways of measuring the value of joining the net-

work, the first based on the decision to call a contact and incur a marginal cost per

second, and the second based on the decision incur the price of a handset at the

time of adoption. The calling decision implies a price sensitivity (βprice = 0.199)
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which corresponds with an average price elasticity of -2.16.43 If recipients do not

value incoming calls (w = 0), the adoption decision implies a very similar estimate:

βprice ∈ [0.170, 0.188], and under some treatment of outliers the bounds admit the

estimate from the call model.44 If recipients value incoming calls as much as outgoing

calls (w = 1), the call utility appears to roughly double count the surplus from calls:

I obtain the point estimate βprice = 0.466 which is 2.3 times the estimate of the call

model.45 I proceed using w = 0 as a base specification, and evaluate the case where

w = 1 for robustness in the Supplemental Appendix. I use the more precise estimate

implied by the call model, allowing error to be absorbed into an individual’s type ηi.

I also estimate a coverage sensitivity of (βcoverage = −0.900) which corresponds with

an average elasticity of 1.45 for either sender or receiver’s coverage.

The parameters of the communication graph are shown in the second panel of Table

4; I interpret these parameters using comparative statics in Table 5. I show expected

outcomes for links with the median estimate of shock variance σi and cost-independent

censoring parameter qi, and a range of quantiles of shock means µij. The top panel

shows expected durations, costs, and utility when both parties have full coverage and

prices are the lowest observed in the data. Since coverage is perfect, there is no hassle

43The model implies that elasticities depend on cost and link parameters; average elasticity computed
from a sample of 100,000 random links in a month where both sender and receiver subscribed,
using Monte Carlo integration. This is comparable to developing country estimates of elasticities of
penetration with respect to price, as proxied by average revenue per user: Waverman et al. (2005)
finds a price elasticity of -1.50 for a sample of developing countries from 1996-2003; Kathuria and
Uppal (2009) find -2.12 in India in 2008. As a check, the price sensitivity can be compared against
the results of the OLS regression of the determinants of calling presented in Table 3. It is difficult to
compute elasticities in an OLS specification because most link-months are zero, but I can compare
estimates of the derivative of expected duration with respect to price. Table 3 presents OLS results
from an event study around the two price changes, suggesting an increase of $0.01 in the per minute
price would result in a decline in expected duration of 0.46-0.48 seconds on each link. The structural
model implies a smaller response: an average decline of 0.24 seconds for the months of the price
changes. There are many reasons these estimates could differ. One is that the event study is
unfortunately not as tightly identified as I would like: both price changes each occurred on the first
of February of different years, so it is identified off of how calls in February and March change in
those years relative to the three other years.
44Outlier nodes earning a very high utility would skew the estimate, so my preferred estimate omits
the nodes earning the top 1% utility from the network. The full sample estimate is [0.224, 0.227].
If I instead omit the 151 nodes with the top 0.01% utility, the bounds admit the estimate from the
call decision: [0.197, 0.208].
45Omits the nodes earning the top 1% utility from the network. The full sample estimate is 0.534;
if I instead omit the 151 nodes with the top 0.01% utility, the estimate is 0.507.
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cost. For the median link (middle column), calls would be infrequent: the probability

of making in a given month is 0.13, and durations are short: conditional on making a

call, the expected duration for that month is 37.5 seconds. The expected monthly cost

of communicating across the median link is $0.02 (0.04% of the average monthly per

capita consumption in a phone owning household in 2010), and the link provides an

expected utility of $0.04. Since the median individual has 61 links, the total durations

and utilities for each individual will represent the sum from many links.

The middle panel of Table 5 shows the impact of reducing both parties’ coverage to

70% (near the initial median coverage): optimal durations and probability of calling

decrease, hassle costs increase, and utility is reduced. The bottom panel instead shows

the impact of increasing price to the highest observed in the data, but maintaining

full coverage: durations and probability of calling both reduce, but due to an increase

in price rather than in hassle cost.

Estimates of individual types suggest that the median individual expects to re-

ceive $0.34-0.69 of additional value from a handset each month, beyond the value

represented by the call model (shown in Table 4). However, types are heterogeneous:

the 25th percentile expects to receive $0.45-1.33 less value, and the 75th percentile

$0.99-1.25 more. These values would include any additional utility benefit of owning

a handset, or annualized fixed cost of adoption or forecast error about the value of

joining the network.

7. Simulation of Network Good Adoption

This section outlines a simulation method to compute a new network equilibrium

based on changes to the environment. Since I observe only individuals who were

subscribers between January 2005 and May 2009, I consider the impact of counter-

factuals on this subset.46 Because counterfactuals may induce these individuals to

delay adoption, I set the end date for the simulation three years beyond the limits

46I hold fixed the adoption dates of initial adopters. Since I infer adoption from transactions,
I assume subscribers with transactions between January and March of 2005 are initial adopters.
For simulation results to capture the full impact of a policy, I can only compute counterfactuals
that do not increase the utility provided to individuals that delayed adoption past May 2009. If a
counterfactual does, the results will underestimate adoption.



32
T
a
ble

5.
C
allM

odelC
om

parative
Statics

Q
u
antile

of
S
h
ock

M
ean

1%
25%

50%
75%

99%

P
rice

C
overage

E
xp

ected
:

Low
est

100%
D
uration

conditionalon
call

4.2
sec

13.6
sec

37.5
sec

64.1
sec

7.9
m
in

P
robability

of
call

0.00...
0.004

0.13
0.18

0.20
C
allcost

$
0.00...

0.00...
0.02

0.05
0.37

H
assle

cost
$

0
0

0
0

0
N
et

utility
$

0.00...
0.00...

0.02
0.06

0.67

Low
est

70%
D
uration

conditionalon
call

0
11.3

sec
27.1

sec
43.3

sec
5.8

m
in

P
robability

of
call

0
0.001

0.07
0.15

0.20
C
allcost

$
0

0.00...
0.01

0.03
0.27

H
assle

cost
$

0
0.00...

0.01
0.03

0.29
N
et

utility
$

0
0.00...

0.004
0.02

0.34

H
ighest

100%
D
uration

conditionalon
call

0
10.7

sec
24.9

sec
38.7

sec
5.3

m
in

P
robability

of
call

0
0.00...

0.06
0.14

0.20
C
allcost

$
0

0.00...
0.01

0.05
0.57

H
assle

cost
$

0
0

0
0

0
N
et

utility
$

0
0.00...

0.003
0.01

0.27

T
he

shock
variance

σ
i
and

cost-independent
censoring

param
eter

q
i
are

set
to

their
m
edians

(0.53
and

0.20
respectively),and

outcom
es

from
the

m
odelare

show
n
for

the
range

of
shock

distribution
m
eans

µ
ij .

Statistics
com

puted
on

on
1%

random
subsam

ple
of

nodes.



33

of the calling data, using aggregate adoption statistics to scale utility to account for

expansion in the network after my data ends.47

Because individual types ηi are set identified, I consider an equilibrium Γ(η) as a

function of the vector of individual types, η = [ηi]i. To identify an equilibrium, I use

an iterated best response algorithm:

(1) Propose a candidate adoption path x0

(2) Allow each individual to optimize their decision, holding fixed the adoption

path of others:

x1
i = arg max

t
δtU t

i (ηi,x
0
Gi

)

(3) Iterate, using the path from the previous step xk to form the next:

xk+1
i = arg max

t
δtU t

i (ηi,x
k
Gi

)

(4) Stop when the equilibrium converges: xk+1
i = xki for all i48

There tend to be multiple equilibria, for two reasons. Because each individual’s

type is backed out as a set rather than a point, different points in the set of types

{η|ηi ≤ ηi ≤ η̄i} may imply different equilibria. And, even given a vector of types η,

there may be multiple equilibria depending on how optimistic individuals are about

others’ adoption.

I derive bounds for the entire set of equilibria by exploiting its lattice structure.

First, note that there is a monotonic relationship between ηi and i’s optimal adoption

date xi: a higher type ηi weakly decreases i’s optimal adoption date. Second, note

47See Supplemental Appendix for more details. I did not extrapolate future utility in this way
when estimating the adoption decision because estimates would be sensitive to the extrapolation
assumptions; for simulation, these assumptions affect only individuals who end up changing their
adoption month to lie outside of the period I have data. (For individuals receiving adoption subsidies
the extrapolation also affects their lower bound estimates.)
48With the aim of speeding convergence, in practice at each step k I use the path defined by xkj for
individuals j that have reoptimized in this step and xk−1j for individuals who have not yet reoptimized
in this step, in the same manner as the Gauss-Seidel method. The equilibrium identified is likely
to be sensitive to the order that individuals reoptimize when simulating policies with nonmonotonic
effects (shifting some individuals’ adoption forwards and others backwards). In the paper I only
consider policies with monotonic effects, which are less likely to be sensitive. I tested sensitivity by
comparing a solved equilibrium to one solved with agents optimizing in reverse order and found small
changes likely arising from rounding error (0.2% of nodes had different adoption months, averaging
to an average difference in adoption month of -0.0003). The algorithm sometimes reaches a cycle
rather than an equilibrium. These cycles tend to be quite small, involving only a handful of nodes.
If the algorithm reaches a cycle, I break the cycle and note the number of nodes involved.
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that the underlying game has strategic complements: a decrease in i’s adoption date

xi weakly decreases j’s optimal adoption date.49 The lowest possible equilibrium,

Γ, can be identified by setting each individual’s type ηi to its lower bound, and

using a pessimistic candidate adoption path: x0 = T̄ (initially individuals expect

everyone else to completely delay adoption). The highest possible equilibrium, Γ̄,

can be identified by setting each individual’s type to its upper bound and using an

optimistic candidate adoption path: x0 = 0 (initially individuals expect everyone else

to adopt immediately).50 These filter through to provide bounds on the adoption

date for each individual, [xi, x̄i]. I compute a third equilibrium, Γmid, by setting

individual’s types to the mean of the low and high bound estimates (ηi =
ηi+η̄i

2
), and

using the observed adoption path as the candidate path (initially individuals expect

the observed equilibrium).

The state space is large: there are T̄ |S\S0| or on the order of 891,000,000 possible

outcomes. Altogether, I find the algorithm identifies an equilibrium in about 12

hours.51

Revenue and Utility. For each equilibrium I compute the net present value of

revenue and utility, as of January 2005. Given a usage tax rate of τusage,it, the firm

revenue from equilibrium Γ is computed by summing the price times the expected

duration across each link:

RΓ
F =

∑
i∈S

∑
t≥xi

δt
pt

1 + τusage,it

∑
j∈Gi∩St

Edij(pt, φit, φjt)

Total utility from calls is computed analogously:

UΓ
calls =

∑
i∈S

∑
t≥xi

δt

[ ∑
j∈Gi∩St

Euij(pt, φit, φjt) + w · Euji(pt, φjt, φit)

]
where this utility is net of calling and hassle costs incurred.

49This follows from the lattice structure of x and because Uxi(ηi,x−i) has increasing differences in
xi and xj , or is supermodular in x; see Topkis (1978) and Milgrom and Shannon (1994).
50This is analogous to how Jia (2008) uses the lattice structure of an entry game to identify a range
of equilibria.
51One factor that contributes to the algorithm’s performance is that the benefits to individual i of
joining the network at any point in time are bounded, by i’s minimal set of contacts Gi ∩ S0 and
maximal set Gi.
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In order to realize this utility, an individual had to purchase a handset. I assume

handsets are provided by a competitive market at marginal cost. The handsets that

subscribers purchase would last beyond the end of the data, so I calculate the cost of

using the handset during the data by assuming each individual purchases a handset at

their adoption month xi and then sells it back at the end of the data at the prevailing

price. This yields the following cost of handset ownership:

CΓ
handsets =

∑
i∈S

[
δxiphxi − δ

T̄ dataphT̄ data
]

Then, the total net utility in money is given by:

UΓ
net =

1

βprice
UΓ
calls − CΓ

handsets

where I convert the utility from calling into dollars using the price sensitivity. In

welfare calculations I omit the type ηi that enters the individual’s adoption decision,

because this term may pick up a forecast error that does not represent the utility

individuals receive. The government earns revenue from taxes on adoption (τadoption,it)

and usage (τusage,it):

RΓ
G =

∑
i∈S

[
δxi

τadoption,it
1 + τadoption,it

phxi +
∑
t≥xi

δt
τusage,it

1 + τusage,it
pt

∑
j∈Gi∩St

Edij(pt, φit, φjt)

]
Because there is a monotonic relationship between adoption date and utility, the

lower and upper bound equilibria represent upper and lower bounds:

UΓ
calls ≤ Ucalls ≤ U Γ̄

calls

If the usage tax is constant over time then firm revenue is also bounded by the

upper and lower bound equilibria: RΓ
F ≤ RF ≤ RΓ̄

F .

Because the net utility function omits idiosyncratic benefits, it does not match

the utility each individual maximizes; there may be an equilibrium between Γ and Γ̄

that has a net utility lying outside the bounds of UΓ
net and U Γ̄

net. Similarly because

handset prices are decreasing, government revenue may be a nonmonotonic function

of adoption date, and there may be an equilibrium between Γ and Γ̄ that generates

government revenue outside the bounds of RΓ
G and RΓ̄

G.

Baseline Simulation Results. I run the simulation on the same environment as

the data to get a sense of the model’s fit. As shown in Figure 4, the simulation
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Figure 4. Simulation Fit
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matches the general trend of the data. While adoption in the data grows continuously,

the adoption path generated by the model has more discrete jumps, resulting from

individuals coordinating on adoption dates, often at price changes.52 Under mean

shocks the correlation between observed adoption month and simulated adoption

month is 0.87, and the mean deviation is 2.62 months.

In the simulated equilibrium, I estimate the total benefit provided by the mobile

phone system over the 4.5 years I observe to lie between $347m and $380m.53 While

several studies find welfare gains of mobile phones in developing economies in specific

sectors (Jensen, 2007; Aker, 2010; Jack and Suri, 2014), to my knowledge these are

52These jumps could be softened if individuals considered uncertainty about the future, if different
subscribers faced different handset prices, or if subscribers had heterogenous price sensitivities.
53This is net of the hassle cost of obtaining coverage.
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the first micro-identified estimates of the total welfare generated by a developing

country mobile phone network. Of this total, between $193m and $211m accrues

to the operator as revenue (an average of $8-9 per subscriber per month).54 The

government collects $78-84m as tax revenue on calls and handsets. (There is also a

30% tax on firm revenues after deductions; since I do not observe deductions I do

not compute this explicitly, and as a result some additional portion of firm revenues

should be transferred to the government.) Consumers obtain the remaining utility

net of calling and hassle costs, $75-85m (an average of $3.20-3.62 per subscriber per

month). Consumers face an additional cost, the cost of handset ownership, which I

estimate to be between $38-41m (an average of $1.60-1.74 per subscriber per month),

resulting in net utility Unet between $37-44m (an average of $1.60-1.88 per subscriber

per month). Under these estimates the benefits of the phone system are split among

the operator (62-63%), the government (25%), and consumers (13-14%).

Measuring Policy Impacts. For applications of this method in following sections,

I am interested not simply in the levels of revenue and utility, but how revenue and

utility change in response to policies. A natural measure of impact would be bounds

on the changes in revenue and utility across the range of equilibria; however, this

measure is computationally prohibitive because adoption decisions are interlinked.

In many other empirical settings, errors can be sampled independently, but here i’s

type ηi can potentially affect the decisions of the entire network. Even given the η′is

restricted to lie within the realized bounds, the set of potential type vectors is large:

[η0, η̄0]× [η1, η̄1]× · · · × [ηN , η̄N ].

Instead, I measure policy impacts by reporting the change in the lowest and highest

equilibria. These changes in the bounds need not coincide with bounds on the changes.

In particular, the change in the upper bound equilibrium may be less than the change

in the lower bound equilibrium, and there may be larger or smaller changes at type

vectors within the bounds. When a policy change shifts the lower and upper bounds

by similar amounts, I report one number to describe the approximate shift. When

54This is comparable to statistics from the operator’s annual reports: average revenue per user per
month declined from $19 in 2005 to $7 in 2009, as calling prices were reduced and less talkative
subscribers joined.
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the lower and upper bounds shift by different amounts, I report both, and either note

which bound has shifted or describe one as a high case and one as a low case.55

8. Application: Targeting Adoption Subsidies

Adopting a network good benefits not only one’s contacts: by influencing their

adoption, it also benefits others further away in the network. As a result, the adoption

of network goods is likely to be inefficient: there may be nodes that would provide

net social benefit who do not internalize enough private benefit to adopt.

One can imagine two scales for overcoming these inefficiencies:

An individual node is aware of his local network structure, and may find it privately

optimal to subsidize a neighboring node that otherwise would not adopt (say, buying

a phone for a grandparent). However, if an inefficiency is dispersed beyond a handful

of nodes it would be difficult for a region of the graph to coordinate to overcome it.

Firms and governments have objective functions that cover the graph more expan-

sively, and may find it optimal to implement large scale subsidization or price dis-

crimination programs that may improve efficiency (Katz and Shapiro, 1994). These

programs are common: for example, Facebook currently subsidizes data usage in

developing countries. However, global actors are constrained by information. While

selecting an optimal policy may require perfect knowledge of the flows of benefits, they

have only a rough image of the network structure and thus generally rely on intuition

or simple theories to navigate what is a complex web of interconnected benefits.

In this section I demonstrate a method allowing global actors to use empirically

measured network structure to evaluate—and potentially improve—targeting of adop-

tion subsidies. I first evaluate a historical example, an adoption subsidy program

implemented by the Rwandan government in 2008. I then describe how the method

can be used to encourage the adoption of future network goods.

2008 Adoption Subsidy Program. To promote access to telecommunications, the

Rwandan government in 2008 purchased 53,352 handsets (amounting to roughly 8%

of the country’s stock of handsets at the time) and distributed them to individuals

55Monte Carlo simulations in the Supplemental Appendix provide one test of this approach.
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Figure 5. Activations of Subsidized Handset Model
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through local governments at a reduced price. Fifteen of 30 districts participated

in the program. Handsets were generally allocated to rural districts with low base-

line mobile phone adoption (in participating districts, 4% of households had mobile

phones, versus 12% in nonparticipating districts). Allocations varied significantly:

half of the districts were allocated no handsets; those allocated handsets received

enough for between 1% and 15% of households. Each district handled its own distri-

bution; generally, individuals came to the district office to voice interest.

The handsets were all the same model, the Motorola C113, which was chosen

because it was low cost and had a long battery life. This particular model was

otherwise rare in the country at the time, so I am able to identify beneficiaries based

on receiving this model of handset during the dates of distribution. Figure 5 shows

activations of this model over time. I consider an account as subsidized if it was

activated during the first four months of 2008 and its mode handset was the subsidized

model. There are 41,225 such accounts. That I observe fewer subsidized accounts

than handsets allocated per government records could arise from subsidized handsets

being activated later than April 2008, passed between accounts, used on the competing

operator, or not being used within the country.56 Beneficiaries were to pay a fraction

of the full price of the handset ($28) through monthly repayments of $1.81, but few

of these payments were made. I assume that each recipient made an average of 5

payments, so that the program represented a discount of $18.94.

56I consider handsets as subsidized only if activated during this period because during later months
it is difficult to tell if activations are part of the subsidy program.
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Figure 6. Handset Subsidy: Allocations and Activations
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January 2008 are considered distributed by the subsidy program.

Use of Subsidized Handsets. I observe the ultimate recipient of the handset.57

Handsets appear to be used either where allocated or in urban areas. Figure 6 shows

where handsets were allocated based on government records, and where these hand-

sets were subsequently activated according to phone network records. There is a

clear association between allocation district and location of activation, but also many

handsets were activated in urban areas (the major clusters of activations in regions

with no handsets allocated represent urban areas).

Recipients use handsets in a similar manner as nonrecipients who subscribed around

the same time. One potential concern with a subsidy program is that goods may

be allocated to consumers who do not value them. While I cannot conclude much

about the initial recipient, the ultimate recipients of subsidized handsets use their

phones less than individuals who subscribed earlier, but on par with individuals who

57If there was an exchange I do not observe the associated transfer. In any exchange, I assume that
the subsidy amount is passed through to the ultimate recipient.
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purchased phones around the same time, in terms of calls, durations, and total number

of contacts.58

An optimal subsidy program to overcome dispersed network externalities would

target individuals with particular network structure, but recipients’ network struc-

ture is similar to others who subscribed around the same time. One would want to

target those who provide benefits to others who have yet to subscribe, who would not

subscribe in absence of the target’s adoption. One metric of these benefits is the even-

tual duration spoken with contacts that have yet to subscribe, which is very similar

for recipients and nonrecipients (35% for subsidy recipients, 33% for all subscribing

in the same months).59 I also compute the clustering coefficient (the fraction of a

node’s neighbors who are themselves connected, which is 0.082 for subsidy recipients

and 0.081 for all subscribing in the same months).

The results are suggestive of a program that increased the supply of handsets, with

handsets ultimately being used by relatively typical users. However, the ultimate im-

pact on network adoption depends on the interaction of the recipients’ adoption de-

cision with the network of benefit flows, which I analyze using the simulation method

developed in this paper.

Simulated Impact of Adoption Subsidy. I simulate how equilibrium adoption

would change if the subsidy were not provided, using three assumptions:

• All eligible individuals took up the subsidy. Given the decentralized nature of

the implemented subsidy program, it is difficult to determine the entire set of

individuals who were eligible. Since the subsidy was very attractive, I assume

that all eligible individuals took up the subsidy and that it was valid only in

the month they adopted.

• Recipients did not delay adoption in order to receive a subsidy.

• Recipients preferred taking the subsidy at the point of adoption to purchasing

any time in the following 4 years.60

58See the Supplemental Appendix for a more detailed description of the subsidy targeting.
59Subsidy recipients represent 13% of those subscribing in these months.
60For more details on these last two assumptions, see the simulation details in the Supplemental
Appendix.
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These restrictions on the set of recipients and their preferences allow me to compute

the effect of the subsidy. Results are shown in Table 6. I compute the baseline sim-

ulation (“with subsidy” in the table), as well as two simulations where the subsidy

has been removed. The first captures only the immediate effect of removing the sub-

sidy: I allow each recipient to reoptimize their decision individually, without allowing

those changes to ripple through the network (“no subsidy, only proximal effect of

removal”).61 The second is the equilibrium that results after all nodes have adjusted

their decisions (“no subsidy, proximal and ripple effects”). The first column shows

the results for all nodes; subsequent columns show results for subsidy recipients and

nonrecipients (most of whom are connected to at least one subsidy recipient).

Because the decision to purchase a subsidized good only loosely reveals how much

the recipient values it, the bounds I obtain are wide. The upper bound presents an

optimistic scenario: targeted individuals would have delayed adoption by an average

of only 1.8 months in the absence of the subsidy. The lower bound presents a more

pessimistic scenario: targeted individuals would have delayed adoption by an average

of approximately 2 years. These bounds could be made tighter by either gathering

more information or making more assumptions about the price sensitivity of subsidy

recipients.

As described in Section 7, I measure the impact of the subsidy by reporting changes

in the bounds on revenue and consumer surplus around the set of equilibria, rather

than bounds of the changes. In this application the lower bound equilibrium shifts

more than the upper bound equilibrium because the targeted individuals change their

decision more in the pessimistic scenario.

I find:

The subsidy improved welfare. Factoring in the net present cost of the subsidy

of $569,741, it shifted the bounds on net welfare upward $4,869,961 (lower equilib-

rium) and $301,980 (upper equilibrium).62

61It would be more natural to simulate the direct impact of providing rather than removing the
subsidy, but this is difficult for technical reasons due to the way ηi is backed out for subsidized
nodes. See Supplemental Appendix for a discussion.
62These results consider the portion of the subsidy allocated only to the 41,225 individuals I can
clearly identify as recipients. The subsidy for the other 12,127 handsets would have represented an
additional net present cost of $159,130. In the most extreme case where this value was destroyed
through misallocation, this cost should be subtracted from the welfare gains.
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A substantial fraction of calling benefits accrued to nonrecipients. Recip-

ients’ utility increased by $764,796 (lower) or $554,982 (upper), from the combination

of increased calling and the direct value of the discount. Nonrecipients only received

utility from increased calling, but obtained 62% of all benefits in the lower equilibrium

and 14% in the upper equilibrium.

It may have been profitable for the operator to finance the subsidy itself.

If in absence of the subsidy, the targeted individuals would have substantially delayed

adoption, it would have been profitable for the firm to subsidize their adoption itself.

If the firm had financed the subsidy, the bounds on its profits would shift upward by

$1,652,102 in the lower equilibrium, but downward by $418,513 in the upper equilib-

rium. Similarly, the tax revenue generated from the policy may have been enough to

pay for it; on net the government earned $650,868 in the lower equilibrium, and spent

$496,072 in the upper equilibrium.

Nonrecipients accounted for over 63% of the increase in revenue. In this

setting, the operator has a near monopoly, and so would be able to internalize revenue

generated by nearly all nodes on the network. Financing a subsidy would have been

much less attractive for a competitor that was less able to internalize revenue from

the rest of the network (for example, if interconnection fees were capped).

Most of the effect is a proximal effect of the subsidy. Ripple effects account

for 25% (lower equilibrium) and 36% (upper equilibrium) of the effect on revenue and

26% (lower) and 10% (upper) of the effect on consumer surplus.

In the Supplemental Appendix, as a robustness check I analyze the program under

the assumption that the surplus from calls also accrues to receivers (w = 1); results

are qualitatively similar: the bounds on welfare increase by $6,496,114 (lower) or

$67,075 (upper).

Overall, the impact of the subsidy on network adoption is consistent with what

might have been expected from the descriptive evidence: it induces targeted individ-

uals to subscribe earlier, and has a moderate impact on those further away in the

network. That a substantial fraction of the effect of the subsidy spills over to contacts

of the recipients suggests that subsidies for network goods should be thought of as

benefitting neighborhoods of the graph rather than just individuals.
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In this method, benefits are revealed only for regions that have adopted; but to

guide adoption of a new good, a policymaker would most like to know the benefits

to adoption in ‘dark’ regions of the network that have yet to adopt. An extension

of this method can predict benefits in regions of the network that have yet to adopt

a new good, using network structure revealed by a good that has already diffused:

for example, mobile calling behavior can guide mobile internet policy in developing

countries.63 Since future mobile internet adopters are likely to be current mobile

phone subscribers, their behavior is captured in operator data. Features from this

data can predict unobserved characteristics; for example, Bjorkegren and Grissen

(2015) finds that behavior revealed in mobile phone usage predicts loan repayment.

A predictive mapping between network properties observed in call data and mobile

internet usage can be estimated for early adopters, and then used to predict how

mobile internet would be used in regions of the network that have yet to adopt.

These predicted benefits can be analyzed directly, or can be used with the simulation

method developed in this paper to evaluate policies to guide adoption.64

9. Application: The Provision of Service to Rural Areas

Due to difficulties internalizing network effects, network good industries tend to be

highly concentrated. This tendency towards concentration is strengthened when a

good relies on high fixed costs or scarce resources, such as electromagnetic spectrum

in the case of mobile phones. Because concentration would likely lead to inefficient

provision in absence of regulation, network good industries are often regulated.

For communication services, a key question for regulators is whether—and if so,

how—to ensure service to poor and remote communities. This remains an active ques-

tion: over 1 billion people are not covered by a network providing mobile internet

(3G/4G), and it is expected that even for basic voice service it will not be profitable

for the private sector to serve 2-5% of the world’s population (GSMA, 2006). A

63Mobile phones may be the most convenient modality to deliver internet service to poor and remote
areas. In Rwanda in 2012, only 0.7% of households own a computer with an internet connection,
while 19% of individuals aged 15 and over own a mobile phone capable of browsing the internet.
(RIA, 2012)
64See Supplemental Appendix for an outline of how this could be employed.
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wide variety of policy instruments are currently in use to encourage rural service pro-

vision, including tax-and-transfer schemes, service obligations, and universal service

funds that collect a fraction of operator revenues to spend on government-led projects

(GSMA, 2013).

Whether and how to ensure service to remote areas depends crucially on both the

shape of private benefits that would accrue to a network operator, and the benefits

to consumers. Both are difficult to measure due to spillovers induced by geographical

interconnectedness and network effects. In this section, I use the simulation method

developed in this paper to measure both of these objects. Specifically, I estimate the

effects of an expansion in rural service in Rwanda induced by the introduction of

an expanded coverage requirement. I then demonstrate how results from this model

can be used to predict impacts in other areas that have yet to receive coverage, by

perturbing them to match population density.

Background. A social planner would expand coverage until the point where build-

ing any marginal set of towers would not improve welfare. Firms may stop building

before reaching this point. A firm is likely to internalize only a fraction of the benefits

of expanding the network: in any industry, price discrimination is limited; in network

good industries it is often further limited by regulation. And if the market is com-

petitive, benefits from expansion ripple into competitors’ networks. While in theory

a firm could set interconnection fees to capture the benefits provided to the border

of other networks, these fees are often regulated to be near cost. In cases where it is

not profit maximizing to expand the network to the social optimal, it may be optimal

for a government to regulate the provision of coverage. In this section I evaluate the

social and private benefits from a marginal expansion of coverage in rural areas.

In this context, rural areas are less lucrative because of lower demand and higher

costs. Rural demand tends to be lower due to lower incomes and population densities;

in Rwanda during this period, mean monthly revenue from an urban tower is nearly

twice that of a rural tower. Costs are also higher because infrastructure is lower

quality. The total annualized cost of owning and operating a tower in Rwanda is
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$51,000 per year, plus $29,584 for towers that are far from the electric grid that must

be powered by generators.65

Impact of Rural Expansion in Rwanda. In Rwanda, the regulator required a

rollout plan culminating in near-complete coverage. Although license obligations are

spelled out in the legal code (Rwanda, 2008), they are likely to have been anticipated

by the operator and formed in the course of ongoing discussions, so I do not attempt

to evaluate the direct impact of specific obligations.

Ideally, I would compare the revenue and consumer surplus generated under the

actual rollout to that generated by the rollout that maximizes profits in absence of reg-

ulation. It is computationally infeasible to determine this profit maximizing rollout.

Instead, I simulate a suggestive counterfactual: a counterfactual where the operator

trims back rollout, and does not build marginal, unprofitable towers. Computing this

counterfactual involves three steps. First, I rank each tower by how desirable it is

for the firm to build, using a proxy for desirability. Second, I trim the least desirable

towers from the rollout plan, and simulate the adoption equilibria that would result.

I compute these equilibria for trimming a small number of rural towers (6%) and

a large number (12%). This process identifies a set of towers that the firm could

have trimmed that would have led to an increase in profits, if it were unconstrained

by coverage obligations. My estimate for the effect of the regulation is then given

by the welfare difference between the baseline and the counterfactual where these

unprofitable towers are not built.

I rank constructed towers by the empirical revenue of the transactions that were

transmitted through them (‘direct baseline revenue’). The distribution of monthly

revenue by tower is shown in Figure 7a. This provides a rough gauge of the desirability

of a tower, but does not capture the causal impact of building a tower on revenue: it

omits substitution between towers and the effect of coverage on adoption. I determine

the causal impact using my simulation method.

65Costs based on financial data provided by operators to the Rwandan Utilities Regulatory Agency
(RURA, 2011). Building a tower costs approximately $130,000; I consider the total cost of ownership
to operate a tower, which includes operating expenses, annualized depreciation, and a 15% cost of
capital. Calculated depreciation assumes lifespans of 15 years for towers, 8 years for electric grid
access, and 4 years for generators.
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I trim back the rollout by removing successive low revenue towers until the mar-

ginal revenue generated is approximately zero.66 Figure 7 shows results from two

simulations: removing the last 6% of rural towers, and the last 12% of rural tow-

ers. Direct baseline revenue of these towers are highlighted in Figure 7a, and full

simulation results are presented in 7b. This exercise suggests that the rural towers

constructed between 2005 and January 2009 with direct baseline revenue in the lowest

6-12% were profitable, but those in the last 6% were not profitable. Thus, in absence

of the coverage obligation I would expect the operator to not build the last 6% of

rural towers. I consider the effect on revenue and welfare of building these towers

during the sample period.67 The building and operation of these towers represented

a net present cost of $496,660 in 2005. Two of these low revenue towers cover border

crossing points, for which there was an explicit coverage requirement.

I first compute the progression of coverage omitting this set of rural towers: Figure

7c shows the towers omitted in this counterfactual rollout. I compute each individ-

ual’s time series of coverage and the resulting link utilities and durations. I then

simulate the new equilibrium given this counterfactual progression of coverage, allow-

ing individuals to reoptimize their adoption decisions until an equilibrium is reached.

Table 7 presents the results for adoption months, revenue, and consumer surplus.

The change in coverage has an immediate effect on calls: lower coverage increases

the hassle cost of placing a call, reducing durations and the utility from calling. Con-

sumers who obtain less utility from calling may also change their adoption decision,

which can cause even consumers who were not directly affected by the change in cov-

erage to change their adoption decisions. In the rows of Table 7, I present the baseline

66I consider marginal groups of towers rather than individual towers because (i) there is noise in the
estimation of coverage which is smoothed out when considering groups, and (ii) it is computationally
costly to evaluate the removal of individual towers.
67Although the operator would not know the revenue generated by each tower ex-ante, they would
likely have precise estimates given their experience in other contexts and given that these towers
expand coverage on the margins. Note that based on the data I have I cannot compute revenues and
consumer surplus beyond May 2009. The full impact of tower construction on the path of revenues
could be more positive if demand is dynamic, or there is a first mover advantage in building out
towers in advance of the third operator license being allocated. The full effect on profits could be
more negative if demand does not increase in the affected areas and the unprofitable towers continue
to lose money in the future.
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Figure 7. Rural Expansion
(a) Baseline Tower Revenue
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Revenue includes domestic voice calls originating at that tower, billed by the average basket of
prepaid rates, averaged over all months the tower was operational. For the counterfactual, I drop
the 11 lowest revenue rural towers built during the data. In the map, dropped towers are denoted
by triangles and cities are denoted by circles.



50

T
a
ble

7.
Im

pact
ofR

uralService
E
xpansion

A
llnodes

N
odes

by
change

in
coverage

>
0.5%

pt
coverage

change
≤

0.5%
pt

coverage
change

N
um

ber
1,503,670

24,761
1,478,909

A
d
op

tion
T
im

e
(m

ean)
...

w
ith

expansion
m
onth

[25.38,22.16]
[29.40,25.79]

[24.74,21.59]
...

no
expansion,only

im
m
ediate

effect
on

calls
m
onth

[25.38,22.16]
[29.40,25.79]

[24.74,21.59]
...

no
expansion,fullim

pact
including

adoption
m
onth

[25.40,22.17]
[29.46,25.83]

[24.75,21.59]
T
otalIm

pact
of

E
xpansion

m
onth

-0.02,-0.01
-0.06,-0.04

-0.01,-0.01

R
evenu

e
(total)

...
w
ith

expansion
m
illion

$
[193.30,210.76]

[13.23,15.09]
[180.07,195.66]

...
no

expansion,only
im

m
ediate

effect
on

calls
m
illion

$
[193.15,210.60]

[13.16,15.02]
[179.99,195.57]

...
no

expansion,fullim
pact

including
adoption

m
illion

$
[193.08,210.53]

[13.14,15.00]
[179.94,195.53]

T
otalIm

pact
of

E
xpansion

m
illion

$
0.22,0.22

0.09,0.09
0.13,0.14

...
im

m
ediate

effect
on

calls
m
illion

$
0.15,0.16

0.06,0.07
0.08,0.09

...
added

effect
through

adoption
m
illion

$
0.07,0.07

0.02,0.02
0.05,0.05

C
on

su
m
er

S
u
rp
lu
s
(total)

...
w
ith

expansion
m
illion

$
[37.37,43.84]

[1.81,2.49]
[35.56,41.35]

...
no

expansion,only
im

m
ediate

effect
on

calls
m
illion

$
[37.12,43.59]

[1.69,2.37]
[35.43,41.21]

...
no

expansion,fullim
pact

including
adoption

m
illion

$
[37.06,43.55]

[1.67,2.36]
[35.39,41.18]

T
otalIm

pact
of

E
xpansion

m
illion

$
0.31,0.29

0.13,0.13
0.17,0.16

...
im

m
ediate

effect
on

calls
m
illion

$
0.25,0.25

0.12,0.12
0.13,0.13

...
added

effect
through

adoption
m
illion

$
0.06,0.04

0.02,0.01
0.04,0.03

G
overn

m
ent

R
evenu

e
(total)

...
w
ith

expansion
m
illion

$
[78.28,84.41]

[6.98,7.70]
[71.29,76.71]

...
no

expansion,only
im

m
ediate

effect
on

calls
m
illion

$
[78.24,84.36]

[6.97,7.68]
[71.27,76.68]

...
no

expansion,fullim
pact

including
adoption

m
illion

$
[78.21,84.34]

[6.95,7.67]
[71.26,76.67]

T
otalIm

pact
of

E
xpansion

m
illion

$
0.07,0.07

0.03,0.03
0.04,0.04

...
im

m
ediate

effect
on

calls
m
illion

$
0.04,0.05

0.02,0.02
0.02,0.03

...
added

effect
through

adoption
m
illion

$
0.03,0.02

0.01,0.01
0.02,0.02

R
esults

in
each

cellreported
for

the
low

er
bound

and
upper

bound
estim

ate
of

the
equilibrium

.
Im

pacts
represent

the
difference

in
these

bounds.
I
hold

fixed
the

adoption
of

the
41,225

subsidized
nodes

(for
details

see
Supplem

entalA
ppendix).

U
tility

and
revenue

reported
in

2005
U
.S.D

ollars,discounted
at

a
rate

of
0.9

annually.
C
onsum

er
surplus

includes
the

surplus
utility

each
individualreceives

from
the

call
m
odelthrough

M
ay

2009,m
inus

the
cost

of
holding

a
handset

from
the

tim
e
of

adoption
untilM

ay
2009.

W
hen

splitting
the

results
by

change
in

coverage
I
use

coverage
in

January
2009.



51

simulation with the expansion, and two counterfactual simulations, one showing only

the immediate impact on calling, and one incorporating the full impact.

The first column of Table 7 presents results for all nodes and the following two

columns break down the effect, on individuals whose coverage was substantially af-

fected and on those whose coverage was minimally affected.68 The expansion moves

the former’s adoption forward by an average of 0.06 months in the lower equilibrium

and 0.04 months in the higher equilibrium, and the latter’s adoption forward by 0.01

months in either equilibrium. I find:

By construction, the building the expansion was unprofitable for the

operator. Building the towers shifted bounds on the operator’s profits downward by

roughly $274,000.

Rural expansion slightly improved welfare. Building the lowest revenue tow-

ers shifts bounds on welfare upward by approximately $31,789 (lower equilibrium)

and $22,271 (upper equilibrium).

The revenue generated by the expansion was dispersed. Over 59% of rev-

enue comes from individuals whose personal coverage was not substantially affected.

The benefits were too low and dispersed for consumers to finance tower

construction themselves. A nationwide consumer group would not realize enough

benefits to finance the tower construction themselves: it would reduce bounds on

overall consumer surplus by $188,899 and $201,932. A related question is whether

citizens would be willing to raise local taxes to finance local infrastructure improve-

ments. However, 55% of the consumer surplus from tower construction accrues to

individuals whose personal coverage was not substantially affected. If the most af-

fected citizens banded together to raise money for the towers, they would incur a

huge utility loss: bounds on their consumer surplus would have declined by $363,269

and $362,755; this despite generating substantial benefits both for consumers in other

locations, the operator, and the government.

In the Supplemental Appendix, as a robustness check I analyze the expansion under

the assumption that the surplus from calls also accrues to receivers (w = 1). I find

68I define an individual as affected if their coverage changes by more than 0.5 percentage points in
the counterfactual, as of January 2009.
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that the expansion still reduced bounds on profits, by $245,365 (lower equilibrium)

and $273,415 (upper equilibrium), and the rollout was socially beneficial, increasing

bounds on welfare by $677,187 (lower) and $548,432 (upper).

While broader rollout appears to be driven largely by private incentives, I find that

a Rwandan coverage obligation led to unprofitable but welfare improving tower con-

struction, because the operator was unable to capture a sufficient amount of the value

it generated. An operator that was able to price in a more sophisticated manner (for

example, by charging nonlinear or location-specific prices) may be able to internalize

sufficient value to serve these marginal areas. If pricing is not sufficiently flexible, it

may be optimal for governments to encourage service in these areas.

Impact by Population Density . Areas with low population density are more costly

to serve because more towers are needed to cover the same number of consumers.

Rwanda’s population density is high at 416 people per square kilometer: it is denser

than Rhode Island, Belgium, or Israel. I compute a simple perturbation of the re-

sults by scaling the country’s population density. Intuitively, the exercise is to keep

Rwanda’s geographic size fixed, but scale the population. When the population is

scaled down, a given tower will cost the same and cover the same geographical area,

but serve fewer potential subscribers. Instead of scaling down the number of people

discretely, for equilibrium Γ, I simply scale down the revenues RΓ and consumer sur-

plus UΓ
net, holding fixed the costs C. If the population density were scaled by a factor

ρ, the predicted impact on revenues and consumer surplus would be:

∆R̃Γ
F = ρ∆RΓ

F − C

∆R̃Γ
G = ρ∆RΓ

G

∆ŨΓ
net = ρ∆UΓ

net

where ∆XΓ is the impact of the tower construction on X in equilibrium Γ.69

For high population densities, with ρ > 2.25, it would have been both socially

and privately optimal in both bounds to expand the network, so an intervention

to encourage coverage would be inframarginal. For low population densities, with

ρ < 0.94, it is both unprofitable and welfare reducing to expand the network in
69As an approximation, I scale R and Unet linearly with population density; the true relationship is
likely nonlinear.
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both bounds, so that a coverage obligation would reduce welfare. However, in the

range 0.96 < ρ < 2.22 expanding the network would be socially optimal but not

be profitable, in both bounds, so an intervention to provide coverage would improve

welfare.70

10. Application: Optimal Telecom Taxation in Developing Countries

Generating public revenue is a perennial challenge for developing countries, where

collection costs are first order. Many governments are confined to a small set of

feasible instruments which can be distortionary (Gordon and Li, 2009). However,

even in countries with very little other capacity to collect revenue, telecom represents

a thriving sector operated by a few formal firms that can easily be taxed. Further,

due to concentration arising from network effects the industry is likely to collect rents.

Developing country governments recognize this convenient source of revenue: the

mobile industry contributed an average of 7% of government revenue in sub-Saharan

Africa as early as 2007 (GSMA, 2012).71 In addition to standard taxes, governments

charge spectrum license fees and specific taxes on telecom equipment, mobile hand-

sets, and airtime. While it is clear that this emerging sector provides a public finance

opportunity for poor countries, it is unclear how to best exploit this opportunity.

There is a widespread concern that countries may continue to tax telecom heavily

in the short term at the expense of long term growth. The former Director of ICT

at the World Bank, Mohsen Khalil, voices this concern: “the indirect benefits to the

economy of having affordable access to telecommunications services far outweigh any

short-term benefit to the budget.”

Two key tax policies affecting adoption are the handset tax and tax on usage

(together with import duties on telecom equipment, these represented 66% of tax

revenue from telecom in sub-Saharan African countries in 2006 (GSMA, 2012)72).

Consumers faced an average adoption tax of 31% and usage tax of 20% (respectively,

48% and 23% in Rwanda) (GSMA, 2012).73

70Values of ρ not covered by these three cases have different effects on the lower and upper equilibria.
71For a sample of 19 countries from which data is available.
72For the 15 countries from which data is available.
73Including VAT, handset import duties, and additional airtime taxes. For a sample of 16 countries
from which data is available in 2007.
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If telecoms could enforce contracts, they could alter how taxes are exposed to con-

sumers by subsidizing handset purchases. When contract enforcement is costly and

consumers use prepaid plans, firms have less flexibility in how taxes are exposed to

consumers. Indeed many telecoms argue that high handset taxes slowed the adoption

of feature phones and are currently inhibiting the adoption of smartphones and thus

the internet. Some argue that the adoption boost driven by lowered handset taxes

would result in higher long term tax revenue, and some countries have tried elim-

inating handset taxes, including Kenya (eliminated 2009, reinstated 2013), Senegal

(eliminated 2009), and Rwanda (eliminated 2010). But overall there is little evidence

guiding how and how much to tax telecom. In particular, the choice of instruments

interacts with network effects: if heavy users provide the most network benefits, a

government may want to tax them less. And, the optimal policy is likely to vary over

time as the network becomes more attractive to consumers with different character-

istics.

This application simulates adoption under a variety of tax policies. I present esti-

mates that are conservative in two respects. First, simulations that make adoption

more attractive will tend to underestimate adoption. The previous two applications

made adoption less attractive, so that the consumers who adopt in a counterfactual

will necessarily be a subset of those who adopted in the data. In this application I

also consider counterfactuals which make adoption more attractive, which may have

induced individuals outside my data to adopt sooner. Because in the data adoption

became more attractive with time, my simulations will cover two periods: a first pe-

riod where the utility of adopting does not exceed that represented in the data, and

a second period in which it may. My simulations will provide the correct estimates

for the first period, and will underestimate adoption for the second period. Second, I

will make conservative assumptions about tax passthrough. Handset taxes are likely

to pass through to consumers, as handsets are offered by a competitive market. I also

evaluate results under the two extremes of complete and no passthrough of airtime

taxes.

Simulation results are presented in Table 8. The first row presents the baseline

tax regime (48% handset tax and 23% airtime tax). The following rows present the
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effects of altering the handset tax, first at the original level of usage tax (23%) and

then at a higher usage tax (30%). For selected counterfactuals I present the immediate

effect of the change in tax policy on individuals, without allowing changes to ripple

through the network (“proximal effect”) as well as the full effect after all nodes have

reoptimized (“proximal and ripple”). The columns present the revenue accruing to

the telecom and government, and the net surplus accruing to consumers in the upper

and lower equilibria. I find:

Handset taxes had a substantial cost to consumer surplus and telecom

revenues. Relative to a counterfactual with no adoption taxes, handset taxes raised

$17m in the lower equilibrium ($19m in the upper equilibrium) at the cost of $27m

($23m) in consumer surplus and $15m ($9m) in telecom revenue. This corresponds

with an average welfare cost of $2.56 ($1.62) for each dollar of government revenue

raised. This is a higher cost than estimates of marginal cost of public funds from the

literature, of 1.21 for sub-Saharan Africa and 1.37 for Rwanda (Auriol and Warlters,

2012), suggesting it would be preferable to use alternative instruments to raise these

revenues. Since in this model telecoms earn no revenue from handset sales, the entire

effect on telecom revenue is driven indirectly, by reduced usage.

Neglecting network effects would substantially underestimate the effects

of adoption taxes on telecom revenue, and overestimate their effect on

tax revenue. Network ripple effects account for up to 45% of the effect of handset

taxation on telecom revenues (45% in the lower equilibrium which is more sensitive to

coordination, and 31% in the upper equilibrium). Additionally, ripple effects generate

additional government revenue and consumer surplus that would be neglected by

a model the only considered individual responses ($0.8m or $2.0m in government

revenue and $0.9m or $4.9m in consumer surplus). Because a naïve estimate would

omit these effects it would suggest the average cost of raising a dollar of government

revenue from handset taxes would be much lower–$1.64 in the lower equilibrium and

$1.37 in the upper. Under these estimates handset taxes would have looked nearly as

attractive as other tax instruments as reported by Auriol and Warlters (2012).

The government could have increased tax revenue and consumer surplus

by shifting from adoption to usage taxes, though this would reduce firm revenue.
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Particularly, I consider eliminating the handset tax in 2006 and raising the usage

tax to 30%. If the increase in usage tax were not passed through to consumers,

social surplus would increase by 8.5% (4%); if completely passed through, social

surplus would increase by 1.9% (decrease by 0.2%). Complete passthrough is unlikely

because conditional on the tax level, the firm earns higher revenues by not passing the

increase through. The welfare cost of increasing the usage tax is similar to that of the

original handset tax, $2.28 ($1.81) per dollar of government revenue. The Rwandan

government ultimately did lower handset taxes and raise usage taxes in 2010; these

estimates suggest it may have been optimal to shift these taxes as early as 2006.

A shift from adoption to usage taxes would more than double the con-

sumer surplus accruing to light users. I explore the distributional implications

of shifting from adoption to usage taxes in Table 9. I present the baseline tax regime

and two alternate tax policies that eliminate handset taxes at the beginning of 2006.

I show revenues and consumer surplus for the entire sample, and then for a subsample

of heavy users (above the 90th quantile of average daily duration) and lighter users

(below the 90th quantile). Under the baseline tax regime, although the top 10% of

users account for roughly 58% of telecom revenues and 72-75% of consumer surplus,

they account for only 45% of government revenue. Since all users must pay the fixed

cost of a handset to join the network regardless of usage, light users end up paying a

substantial portion of tax. If instead handset taxes are eliminated in 2006, light users

pay less tax and obtain nearly triple the consumer surplus. If this lost government

revenue is earned back by raising usage taxes to 30%, the consumer surplus accru-

ing to heavy users is roughly the same as baseline, but that accruing to light users

increases by more than 117%. Since potential adopters who are not in my data are

likely to be light users, these omitted users would likely benefit from the policy as

well in which case these represent underestimates of the full impact of a change in

policy.

One factor driving the success of mobile phones among the poor is that usage

charges are primarily marginal; these simulations suggest that governments can en-

courage adoption of these technologies by the poor by taxing on the margin of usage

rather than adoption. One feature that drives this result is that at this point in time
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the variation in taxable usage was much larger than the variation in taxable handset

purchases. The result could be reversed for technologies like smartphones if variation

in taxable usage were reduced (e.g., if there are substantial quantity discounts to

data usage) or variation in handset purchases increases (e.g., if there is a wider range

of qualities available, and users upgrade at different frequencies). However, even in

this case it is possible to design a tax policy that encourages adoption. Purchasing a

handset only generates network effects if it enables the purchaser to use a new net-

work service. This is the case during the time period I study, as most handsets are

purchased by new subscribers who obtain voice service for the first time. This is also

the case as developing countries transition to smartphones: when a voice subscriber

upgrades from a feature phone to a smartphone they may obtain internet service for

the first time. Thus in the presence of public finance concerns, governments may

want to differentially tax handset purchases that enable new network services. Such

a policy could be implemented in two steps. Products could be categorized by net-

work functionality (e.g., allows voice service, also allows internet service). Individuals’

first purchase of a product within each category could be taxed at a lower rate, and

subsequent purchases could be taxed at a higher rate. It would be feasible to track

this information given that many developing countries now require subscribers to link

their identity to their mobile phone account through SIM registration.74

11. Conclusion

This paper introduces a new method for estimating and simulating the adoption of

network goods. I overcome measurement issues that have limited empirical work on

network goods using a tractable framework and rich data on the adoption and usage

of nearly an entire network of mobile phone users.

I demonstrate this method with three applications. I evaluate a rural adoption

subsidy and find that it improved net welfare, and that a large fraction of its im-

pact results from its effects on nonrecipients. These spillovers suggest that adoption

subsidies for network goods should be thought of not as targeting individual nodes,
74National priorities can determine which network functionalities should be prioritized. While voice
service and mobile internet service are clear categories, countries would have to decide whether to
similarly prioritize features such as Near Field Communication which allows the use of mobile wallet
services like Google Wallet or Apple Pay.
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but as targeting neighborhoods of the graph. I also analyze the expansion of the

mobile phone network into rural areas. I find that while most of the expansion of the

network appears to be driven by private incentives, an obligation to provide coverage

in rural areas led to the building of a handful of otherwise unprofitable towers that

improved welfare. Finally, I simulate the effect of different tax policies and find that

a shift from adoption to usage taxes would have increased consumer surplus as well

as government revenues. Future work can extend the method developed in this paper

to guide the design of other network good policies.
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Appendix A. Assumptions and Simplifications

Handset Sharing. Given the high cost of handsets, sharing is common. 55% of

Rwandan phone owners report they allow others to use their handset regularly (Stork

and Stork, 2008). An individual may open an account but use it with others’ handsets,

by inserting their SIM card, but this practice is rare.75 It is more common that a

person borrows another’s handset and account.76 The model assumes that each node

75This allows them their own phone number and balance, but it is difficult to receive calls. A
representative survey found that fewer than 1% of individuals in 2007 owned SIMs without handsets
(Stork and Stork, 2008), and within the phone data on average there are actually 3% more handsets
than accounts active in a given month.
76This pattern would include the use of payphones that run on the mobile network, which I omit
from this analysis.
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in the network represents a unitary entity such as an individual, firm, or household.

I assume that this entity weighs the communication benefits accruing to the node

against the cost of adoption, and that the communication graph is fixed over time.

If multiple people use a particular phone, then the node whose demand I estimate

will represent their aggregate demand. The model will correctly account for this

demand if the composition of people using a particular phone is fixed over time

and the adoption decision takes into account the utility of all users (for example, if

the owner internalized the benefits of other users’ calls through side payments). If

the composition of people using a particular phone changes in response to adoption

(say, if a couple initially shares a phone but later obtains separate phones and splits

its communication), then the communication graph I estimate will be similar to a

weighted average of the underlying networks. In that case, during simulations the

nodes will not account for changes in usage when borrowers obtain their own phones,

nor coordination of adoption times between the nodes. Modeling changes in phone

sharing would require making assumptions about the set of borrowers for each handset

over time, the allocation of utility between owner and borrower, and the hassle cost

of borrowing a phone to place a call. All of these assumptions would be difficult to

defend.

Call Graph. Since the decision to communicate over the phone depends on whether

it is possible to communicate in person, the measured call graph is conditioned on

individuals’ geographic locations. If there were internal migration, these locations

would change over time, making it difficult to interpret the measured graph. Per-

manent internal migration is low in Rwanda over this time period (Blumenstock,

2012).

Adopting a phone may transform an individual’s social network—they may keep in

touch with friends or family living further away, for example. I uncover the communi-

cation graph after any transformation associated with adoption: the graph conditional

on phone ownership. The inference in this paper remains valid as long as any such

transformation is anticipated and coincides with adoption.

One of the benefits of owning a phone is the option value of being able to place

calls, which is valued even if the option is not realized. An extreme example would



64

be a phone purchased solely for emergency use, which provides expected utility even

though it may never be used. Since the utility computed in this model relies on

realized calls, it necessarily underweights option value for unrealized calls. It would

be possible to include utility from nodes that are on the network but for which no

calls have been realized, but this would require a careful decision about which nodes

provide option value and which do not. This omission is less problematic than in

other settings: the panel is relatively long (4.5 years), so there is time for many

communication shocks to be realized. Also, like many developing countries, Rwanda

has little in the way of formal emergency response; emergency calls are likely to be

directed to close contacts, for whom I’d likely at least observe a link, if not the full

utility that link provides.

SMS and Missed Calls. I do not explicitly model utility from SMS and missed

calls. If different relationships use different modes of communication, this omission

will underweight the importance of SMS and missed-call relationships in the adop-

tion decision. The data suggests that the different modes pick up slightly different

relationships: the correlation between a node’s total calls and total SMS is 0.5377,

and the correlation between calls and call attempts within a link is 0.58.

The omission of nonvoice communication could also affect the estimation of param-

eters based on changes; for example, if subscribers substitute between missed calls

and calls as the price or coverage changes. The price for sending an SMS is constant

and relatively high throughout the period ($0.10, the same as a call of 24 seconds

under the lowest peak price), and there appears to be little substitution between

communication modes as calling prices change. There may be substitution between

SMS and calls as coverage improves.

Other Omissions. I omit the cost of charging a phone (the four most popular

handsets have more than two weeks of battery life on standby). Accounts must be

topped up with a minimum denomination of credit (the minimum was $0.90 by the

middle of the data); I treat these charges as continuous rather than lumpy.

77There are a small number of users who use SMS heavily; to prevent these users from skewing the
statistic, I compute the correlation omitting the top 1% of SMS users.
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Appendix B. Functional Form of Calling Utility

The form of calling utility determines the utility of being on the network, and thus

the adoption decision, and it determines call durations, and thus operator revenue.

Given a call shock εijt, I seek a function describing the utility i obtains from calling

j, of the form:
uij(d, εijt) = v(d, εijt)− cd

where d is the number of seconds called and c represents a per second cost. A

first restriction on the model is that cost enters linearly, so that the duration choice is

separable across contacts. I seek a function satisfying the following properties derived

from theory and intuition:

(1) No utility from no call: zero duration yields zero utility: v(0, ε) = 0

(2) Diminishing returns to duration: v(d, ε) is concave in d

(3) For some values of ε and c, a call is placed. The optimal duration yields

nonnegative utility: v(d∗, ε) ≥ 0 where d∗ solves ∂v
∂d

(d∗, ε) = c or is zero.

(4) Even if calls were free, you wouldn’t talk forever: there is bounded demand

under zero cost: ∂v
∂d

(d̄, ε) = 0 for some d̄.

(5) Changing the cost of a call affects the extensive decision to call: this requires

that marginal utility be finite at zero: ∂v
∂d

(0, ε) <∞
(6) Changing the marginal cost of a call affects longer calls more than short :

∂2d∗

∂c∂ε
< 0

(7) The amount of information maps to duration: given an observed duration d̄,

there is a one to one mapping to underlying parameter ε, ε(d̄), which has an

analytic solution that is efficient to compute.

(8) Relationships with higher information flows provide more utility: the opti-

mized utility is increasing in the optimal duration: ∂
∂d
v(d̄, ε(d̄)) > 0

I use the specification: vij(d, ε) = d− 1
ε

[
dγ

γ
+ αd

]
, which satisfies these properties.

This form results in a marginal benefit of calling as depicted in Figure 8.
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Figure 8. Marginal Benefits and Costs of Calling Based on Shock
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Appendix C. Estimation of Adoption Model

The adoption decision implies a set of inequalities on the utility of adopting at

different times. To obtain a separate estimate of the price coefficient βprice, I form

these relations into moment inequalities (see, for example, Pakes, 2010):

E

[
Zmi

(
K−1∑
k=0

δk

( ∑
j∈Gi∩Sx+k

Euijx+k + w · Eujix+k

)
− βprice(phx − δKphx+K) +(1− δK)ηi

)]
≥0

E

[
Zmi

(
K∑

k=1

δK−k

( ∑
j∈Gi∩Sx−k

Euijx−k + w · Eujix−k

)
− βprice(phx−K − δKphx) +(1− δK)ηi

)]
≤0

for a set of instruments Z. As in the body of the paper I select K = 2. A lower

K results in tighter bounds, while a higher K would better smooth any time-varying

shocks that could cause an individual to shift their adoption date, like an income

shock. (In the two months leading up to adoption, the median consumer gains 3

contacts and the price of a handset declines by $0.94. The median consumer has 34

contacts when they adopt. In the two month following adoption, the median gains 2

more contacts and the price of a handset declines by $0.94.78)

78I identify 41,225 individuals who received subsidized handsets from the government. Because
the time-limited subsidy made it extremely desirable for these individuals to adopt when they
did, including subsidy recipients leads to extremely wide bounds. Instead, I estimate βprice for
all individuals who did not receive a subsidy and who subscribed after the first 2 months of the
data.
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Instruments. I include instruments Zmi that shift the cost of providing service

(including geographic slope, and incidental coverage from the presence of electric

lines of both the individual and the average of his contacts) and the benefit of joining

(the fraction of contacts who received subsidized handsets in the government’s 2008

subsidy program). Instruments need to be orthogonal to the unobserved benefit of

adopting a phone (E [ηi|Zmi] = 0); ηi includes forecast error and deviation from the

utility predicted by the call model.

Hills block the propagation of cellular signal. Because Rwanda’s topography is ex-

tremely hilly, the coverage provided by a given cell tower is highly irregular, leading

to scattered patches of coverage. These scattered patches can be seen in the coverage

maps shown in Figure 1. The interaction of topography and existing infrastructure

creates large cost differentials in providing coverage to adjacent areas that are other-

wise similar. For example, imagine two villages on either side of a hill far from the

electric grid. Since it is much cheaper to operate towers connected to the grid, the

village on the side of the hill that faces the electric grid is likely to receive coverage

earlier. Although a village very close to the grid is likely to differ in unobservable

ways from a village further from the grid, this effect is likely to attenuate quickly

with distance from the grid, while cell towers have a range of up to 35 km. Thus, I

create an instrument for the coverage provided in remote areas using incidental cov-

erage based on the location of the electric grid: the coverage that would result from

building towers along the full network of power lines. These areas of the country had

a higher ex-ante probability of receiving coverage because of the interaction of their

geographic features with the existing electric grid.79 Since factors associated with

close proximity to the electric grid could violate the exclusion restriction (these areas

tend to be more developed), I use only variation in this instrument for individuals

who were at least 5 km from the electric grid.80 I also use a more general instrument

79Since this instrument makes use of the location of the electric grid and not the locations of towers,
endogenous placement is less of a concern than in Yanagizawa-Drott (2014). Endogenous placement
would be a concern if desired tower locations influenced the location of the electric grid. Ideally I
would use the preexisting electric grid prior to the rollout of the phone network, but I only have the
electric grid as of 2008.
80The precise exclusion restriction is that individuals in locations further than 5 km from the electric
grid that would receive coverage had a line of towers been built along the whole of the electric grid
do not in unobservable ways value the network more than those who would not. The instrument
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based on topography: the slope of the terrain. I use both variation in an individual’s

coverage instrument as well as variation in the coverage instrument of their contacts.

I also exploit variation induced by the rural adoption subsidy program. By induc-

ing handset recipients to adopt earlier, the program increased the utility that their

contacts would obtain from joining the network. I use variation in the fraction of an

individual’s contacts who receive subsidies, making the assumption that individuals

with more recipients among their contacts do not obtain unobservably different utility

from being on the network. I analyze this program in more detail in Section 8 and find

that recipients themselves do not appear substantially different from nonrecipients.

I run suggestive tests and find that these instruments have low correlation with

observables that could suggest different unobserved benefits of being on the network,

including the structure of an individual’s communication network and the quality of

handset model purchased (see Supplemental Appendix).

leads to scattered patches of coverage throughout the country; see Supplemental Appendix for maps
and more details.
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