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Abstract

We assess the employment and wage effects minimum wage increases between 1979 and

2013 by pooling 29 synthetic control case studies. Using the mean percentile rank, a simple,

distribution-free method, we find a sizable, positive and statistically significant effect on the

average teen wage. We also test for heterogeneous treatment effects using the distribution of

estimated ranks, which has a known form, and detect heterogeneity in the wage elasticities,

consistent with differential bites in the policy. In contrast, the employment estimates suggest a

small constant effect not distinguishable from zero.
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1 Introduction

The synthetic control offers a data driven method for choosing control groups that is valuable

for individual case studies (Abadie, Diamond and Hainmueller, 2010). This increasingly popular

technique generalizes the difference-in-difference estimator offering a factor-based approach to

control for time-varying confounders. For a single state that receives a policy treatment, the

synthetic control is the weighted average of untreated units that best predicts the treated state in the

pre-treatment period, and the estimator is the post-treatment difference between the treated state and

its synthetic control. Whereas conventional regression designs equally weight all units (conditional

on covariates), units comprising the synthetic control typically receive unequal weights. Matching

on pre-treatment outcomes allows the synthetic control approach to provide unbiased estimates

for case studies even when there are multiple unobserved time factors, unlike the conventional

difference-in-difference model which imposes a single factor assumption.

In this paper, we present a method for pooling synthetic control estimates to study the effect of

state-level minimum wage changes on teen employment and wages. Because the intensity of the

treatment varies across cases, we convert the estimates to elasticities by scaling them by the size of

the minimum wage changes, and then aggregate these elasticities across events. One methodological

contribution of the paper is to show how the mean of the percentile ranks of the effects in the treated

states vis-à-vis donor (or potential control) states can be used to judge the statistical significance

for the pooled Hodges Jr. and Lehmann (1963) point estimate. Pooling the estimates using their

ranks is particularly useful since the exact distribution of the sum (or mean) of the ranks under the

null is known, enabling us to perform exact inference that is valid for small samples. Additionally,

we invert the mean rank statistic to construct the confidence interval for the pooled estimate. Our

approach of pooling across treated units is closely related to the van Elteren (1960) stratified rank

sum test. It is also a natural extension of the placebo-based inference used by Abadie et al. (2010)

for a single case study, where the distribution of a test statistic under the null is constructed by

randomly permuting the treatment status of the donor units. Our inferential procedure has some

similarity to Conley and Taber (2011); operating under the classic difference-in-difference context,
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they also use information from control units to form an empirical distribution under the null, and

invert the test statistic to construct confidence intervals that are valid with a small number of treated

cases. Finally, Dube et al. (2011) also use a average rank-based test that is valid for small samples

in the context of financial market event studies.

Since percentile ranks of the estimates have a known distribution under the null hypothesis, exact

inference is feasible not only for the mean but also distributional statistics as well. In this paper we

use the Kolmogorov-Smirnov and Anderson-Darling tests to determine whether the distribution of

ranked effects indicates heterogeneous treatment effects. One concern when pooling across events

is that the quality of the match between the treated and synthetic control unit may be poor in some

instances. We assess the role of match quality by trimming on pre-intervention goodness of fit as

determined by the mean squared prediction error (MSPE). A final contribution of the paper concerns

the choice of predictor variables, since there is little guidance on this issue in the existing literature.

We use a cross-validation criterion of minimizing MSPE among donor units to choose between

alternative sets of predictors.

The minimum wage offers an interesting setting for applying the synthetic control estimator,

since states receiving treatment have important differences that appear to vary over time, thereby

confounding the canonical two-way fixed effects panel estimator (Allegretto et al., 2015). Since

the synthetic control method depends on isolated treatment events with well-defined pre- and

post-treatment periods, the approach can only utilize a limited amount of minimum wage variation

available to conventional regression techniques. We select those events with no minimum wage

changes two years prior to treatment and with at least one year of post-treatment data, which

we consider to be the minimal requirement for measuring the policy’s impact. Of the 215 state

minimum wage changes during our 1979-2013 study period, only 29 meet our minimal criteria; on

average these events have a 19 quarters of data prior to the intervention and 10 quarters afterward.

While this is a limited number of events, we show that pooling across these 29 cases provides us

with sufficient statistical power to detect economically relevant effects posited in the literature.

Our results show that the minimum wage changes were binding: 25 out of the 19 cases have
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positive effects on average teen wage, with a median elasticity of 0.24 and mean of 0.37. The

pooled Hodges-Lehman elasticity of 0.266 is statistically significant at the one percent level using

our mean rank test. Turning to teen employment, we find 12 positive elasticities and 17 negative

ones. Both the median (-0.051) and mean (-0.058) estimates are small in magnitude. The mean

percentile rank is 0.497 and the associated pooled Hodges-Lehman elasticity is -0.036. With a 95

percent confidence interval, we rule out a pooled employment elasticity more negative than -0.170.

The distribution of the ranked wage estimates indicate a heterogeneity in the impact, consistent with

some minimum wage increases having more “bite,” affecting a larger share of the teen workforce.

In contrast, the distribution of the ranked employment estimates is consistent with the sharp null

of a small (possibly zero) effect everywhere, as opposed to an averaging of true positive and true

negative effects across events. To address concerns about match quality, we show that our results

are similar when we limit our case studies to those with better pre-treatment fit. We do note that

the treated states are generally some of the highest wage areas, making it difficult to find a convex

combination of donors to very closely match the average wage level in the pre-intervention period.

However, this does not affect our ability to match their overall employment dynamics prior to the

intervention.

Three papers in the minimum wage literature have particular relevance to the application of

synthetic controls. An early precursor to synthetic controls is the study of California’s 1988

minimum wage change by Card (1992). Card compares California with an aggregated control

comprised of four southern states and one metro area that failed to raise their minimum wages

during the 1987-1989 period. Similar to the synthetic control approach, the aggregated control in

Card (1992) roughly matches California on several pre-treatment labor market and demographic

characteristics. However, Card’s selection of the donor states is heuristic and not based on a solution

to the explicit optimization problem underlying the contemporary synthetic control approach.

The 1988 minimum wage increase in California studied by Card (1992) is one of our 29 events.

We find a positive wage and employment point estimates for teens, which is broadly consistent with

Card (1992)’s findings. However, both the employment and wage elasticities are highly imprecise,
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with wide confidence intervals containing positive and negative values. This highlights the difficulty

in learning very much from an individual case study—a point also stressed by Dube et al. (2010) in

the context of pooling across case studies using contiguous area controls. More recently, Sabia et al.

(2012) uses the synthetic control approach to study the impact of the 2005 New York minimum

wage increase. They ignore four other candidate treatment events that also began the same year in

Florida, Minnesota, New Jersey, and Wisconsin. It is not clear what guided the authors’ selection of

New York as the sole case; in our results for these five states, we find that the New York event is

associated with a negative and sizable employment estimate. Sabia et al. (2012) also crucially fail

to use any pre-treatment outcomes as predictors. Although any characteristics unaffected by the

policy treatment are valid predictors under the synthetic control approach, some combination of

pre-intervention outcomes should be included. Intuitively, if the synthetic control fits a sufficiently

large set of pre-intervention outcomes, it is able to account for any number of time-varying factors.1

As a result of omitting pre-intervention outcomes, Sabia et al. (2012) obtain a likely unreliable

counterfactual: specifically, employment paths for actual and synthetic New York never coincide

during the entire 2000-2004 pre-treatment period.2

Neumark et al. (2014) use a panel estimator loosely based on the synthetic control method.

Allegretto et al. (2015) discusses in detail the problems with this approach. First, they do not

actually pool individual synthetic control estimates. Instead, they stack the treated units and the

synthetic controls and estimate a two-way fixed effect model using the stacked data with log

minimum wage as the main independent variable. Unlike a standard synthetic control study, their

estimator does not limit identifying variation to be within a matched pair of treated state and its

synthetic control. Rather, it also uses variation in the minimum wage between all treated and

synthetic control units, which is difficult to justify within a synthetic control approach. Second,

1Formally, the unbiasedness of the synthetic control estimator relies specifically on pre-treatment outcome balance
between the treated unit and the weighted combination of donors (see Appendix B of Abadie et al. (2010)). The choice
of exactly which pre-treatment outcomes and other characteristics to select as predictor variables is not obvious, a
priori. We provide guidance for these decisions in section 3.2.

2See Figure 3 of Sabia et al. (2012). Relatedly, the authors try to account for the poor pre-intervention fit by using a
difference-in-difference with respect to the synthetic control. While this has a heuristic appeal, it is quite different from
the synthetic control estimator, which requires the pre-intervention values in the treated and synthetic control units to be
close.
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in their setup both treatment and potential control units are experiencing minimum wage changes,

making the distinction between treatment and control units somewhat meaningless. Moreover,

they experience minimum wage changes both before and after “treatment,” making the before/after

distinction somewhat meaningless as well. Since the synthetic control approach requires a clean

pre-intervention period and untreated donors to correctly estimate the donor weights, the violation of

these assumptions makes the donor weights they estimate unreliable. Finally, they use a very short

pre-intervention window (4 quarters) to calculate synthetic control matches, which makes finding

a good match difficult. As shown in Allegretto et al. (2015), the treated and the synthetic control

units constructed by Neumark et al. (2014) did not follow parallel trends prior to the treatment.

Perhaps as a result of these problems with their sample construction and research design, Allegretto

et al. (2015) also note that there is no reduction in employment for the subset of the events used by

Neumark et al. (2014) with the most sizable relative minimum wage increases.

In contrast to these prior applications, we select 29 different events using clear and reasonable

criteria for case selection, estimate synthetic controls for each treatment using a data-driven choice

of predictors, and pool across these estimates using rigorous statistical procedures that are valid for

small samples.

A growing number of papers have used the synthetic control approach to study topics as

diverse as the impacts of anti-smoking legislation (Abadie et al., 2010), immigration laws (Bohn

et al. 2014), and minimum wages (Sabia et al. 2012). However, to date the applications have

largely been restricted to estimating the effect of individual treated cases or to presenting numerous

such estimates separately. For example, Billmeier and Nannicini (2013) use synthetic controls to

investigate the effects of 30 country-level episodes of trade liberalization on their GDP. While the

authors helpfully organize their presentation of synthetic and actual GDP trends by region and time

period, the presentation of 30 individual pictures obscures their argument that later episodes of

liberalization failed to boost GDP. Some episodes appear to raise, lower, or have no effect on growth,

and it becomes difficult for the reader to gauge the magnitude of estimates or to draw statistical

inference. Using synthetic controls, Campos et al. (2014) estimate a mean effect of EU integration
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on GDP, but the authors do not perform statistical inference on either the mean or individual case

study estimates.

Two papers conduct statistical inference on the mean treatment effect of multiple synthetic

control case studies using a permutation-based test. Cavallo et al. (2013) use synthetic controls to

calculate the mean effect of multiple country-specific natural disasters on GDP per capita. With

randomization inference on the mean effect, the authors show that there is a statistically significant

fall in GDP for the group of the four most fatal disasters events in their data, although the authors find

that this may be driven by two of the four events, which also experienced political revolutions near

the time of their respective natural disasters. Gobillon and Magnac (2015) pools synthetic control

estimates in a Monte Carlo simulation to evaluate several estimators and also uses randomization

inference on the mean effect. In contrast, our rank-based inference is less susceptible to outliers, is

exact using a known distribution, and also allows for easy assessment of heterogenous treatment

effects. In the Appendix we compare our rank-based method of inference to randomization inference

on the mean effect and also use rank-based methods to account for serial correlation and the overlap

of donors across treatment events.

The synthetic control estimator assumes that the data generating process follows a factor model.

Consequently, this paper also relates to a growing literature that use linear factor models to account

for time-varying heterogeneity in program evaluation, e.g., Bai (2009). Gobillon and Magnac

(2015) provide evidence comparing the performance of alternative estimators using Monte Carlo

simulation. In work carried out contemporaneously with our own, a recent working paper by Totty

(2015) applies linear factor models such as Bai (2009) to estimate minimum wage effects and finds

results that are broadly similar to those we estimate here using a pooled synthetic control approach.

Focusing on the subset of events that have a longer post-treatment period, we are able to

investigate the presence of lagged employment effects. Meer and West (2015) find significant

lagged effects of state-level minimum wages on overall private-sector employment. In contrast,

in our study of teens—a group of workers far more likely to have wages near the minimum than

workers generally in the overall private sector—we are unable to detect significant lagged effects
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three years after a minimum wage increase. Although the three year estimates are somewhat

imprecise, they are consistent with the lack of medium-run employment effects for teens found in

other work (Allegretto et al. 2015).

The rest of the paper is structured as follows. Section 2 reviews the synthetic control method and

explains our proposed rank-based inference for the pooled estimate. Section 3 discuss our sample

and the choice of predictor variables. Section 4 presents our findings, including the mean effect and

the test of heterogeneity, as well as issues of match quality. Section 5 concludes.

2 Synthetic controls and multiple case studies

2.1 Synthetic control estimator

Consider the case of a single treated state (i = 1) that raises its minimum wage at time t = t ′, where

the outcome of interest Yit is teen employment. Denoting the intervention as D, the synthetic control

approach assumes a data generating process such that the observed outcome Yit is a sum of the

effect from the treatment, α1tDit , and the counterfactual outcome, Y N
it :

Yit = αitDit +Y N
it = αitDit +θ tZi +λ t µ i +δ t + εit .

Here δ t is an unknown common factor with constant factor loadings across units, Zi is a (1× r)

vector of observed covariates unaffected by the intervention, and θ t is a vector of unknown

parameters. Like the standard fixed effects model, there is a common time factor δ t . However,

there is an additional λ t µ i term as well. Here λ t is a vector of unobserved time-varying factors

and µ i are the unknown factor loadings. Since the factor loadings can vary across states, treatment

and control states need not follow parallel trends, conditional on observables. If we knew the true

factor loadings µ1 for the treated state, we could construct an unbiased control by taking untreated

donor states whose factor loadings average to µ1. Since we do not observe the factor loadings,

the synthetic control procedure constructs a vector of weights W over J donor states such that the
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weighted combination of donor states closely matches the treated state in pre-intervention outcomes.

This weighted combination of donors is called the synthetic control; as shown in Abadie et al.

(2010), the average factor loadings of the synthetic control thus constructed matches the loadings of

the treated state.

Formally, for the treated state, define the (k× 1) vector of pre-treatment characteristics as

X1 =
(

Z′1,Y
K1
i , . . . ,Y KL

i

)
, where k = r + L and Y Kl

i are L linear combinations of pre-treatment

outcomes. Analogously, define the k× J matrix X0 containing the same characteristics for the J

donor states. The synthetic control procedure chooses donor weights W to minimize the distance

between pre-treatment characteristics X1 and X0 of the treated state and untreated states. The

distance equals the mean square prediction error (MSPE)

k

∑
m=1

vm(X1m−X0mW)2

over k pre-treatment characteristics, and where vm measures relative importance of the m-th predictor.

Given the optimal weights w∗j for each of the j = 2, . . . ,N donors, the synthetic control at any time

t is simply the weighted combination of donor employment ∑
N
j=2 w∗jYjt . The estimate of the

employment impact α1t is therefore the difference between employment in the treated state Y1t and

the synthetic state ∑ j w∗jYjt at any post-treatment time t > t ′:

α̂1t = Y1t−
N

∑
j=2

w∗jYjt .

When the intensity of treatment varies across events, elasticities offer a simple way of comparing

across events. Moreover, the use of elasticities also connects our findings with other estimates in the

minimum wage literature. For this reason, our key estimates of interest are the employment or wage

elasticities of the minimum wage, defined as follows. For a single treatment event, we construct the

synthetic control ∑ j w∗jYjt for the treated outcome Y1t . In the post-intervention period t = t ′, . . . ,T ,
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the average percent difference between the treated and synthetic control outcomes is given by

β̂1 =

1
T ∑

T
t=t ′

(
Y1t−∑ j w∗jYjt

)
1
T ∑

T
t=t ′∑ j w∗jYjt

.

Writing the percent minimum wage increase over the full post-treatment period as

∆MW =
MWT −MWt ′−1

MWt ′−1

we define the post-treatment elasticity η1 to be the ratio

η̂1 =
β̂1

∆MW
.

As we describe below, it will be useful for placebo-based inference to construct analogous elasticities

η j for each of the donor states. Specifically, for each of the donor states j = 2, . . . ,N we calculate

the post-treatment difference β j, this time using the remaining N− 2 donor states as donors for

the synthetic control of state j. The placebo elasticity η j is scaled by the actual minimum wage

increase in treated state: η j = β j/∆MW .3

When there are multiple treatment events, we calculate separate event-specific elasticities

ηe1 = βe j/∆MWe for the events e = 1, . . . ,E. Note that this construction of elasticities allows us

to incorporate the fact that treated states vary both in their outcome levels and in their minimum

wage treatment intensities. To aggregate across events we calculate the mean or median of these

estimated elasticities, or calculate the Hodges-Lehman pooled estimate as described in detail below.

The mean treatment effect, for example, is equal to the mean elasticity

η =
∑e η̂e1

E
.

3As we discuss in Section 3, since some states change their minimum wage multiple times during the post-treatment
period, we simply define the minimum wage change to be the largest percent change between the post- and pre-
treatment periods. We define the elasticity η1 using the ratio of means in β1 rather than the post-treatment mean of the

percent changes 1
T ∑

T
t=t ′

(Y1t−∑ j w∗jY jt

∑ j w∗jY jt

)
to avoid the possibility that the resulting elasticity has a different sign than the

post-treatment mean of level changes in the numerator of β1.
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2.2 Inference using the rank test with single and multiple events

We follow Abadie et al. (2010) in using placebo-based inference from permuting the treatment

status of donor states in order to assess the statistical significance of a single treated state’s estimated

elasticity. For each event, we estimate ηe j for every donor state j (excluding the actually treated

state but using the same minimum wage change) and determine whether the elasticity ηe1 for the

treated state lies in the tails of the resulting placebo distribution formed by η̂e j for j = 2, . . . ,Ne. Like

Abadie et al. (2010), we assume exchangeability of units for the purpose of conducting statistical

inference throughout the paper.

Equivalently, we summarize the relative position of the treated state’s elasticity among the

placebo distribution by using the percentile rank statistic pe1 = F̂e(ηe1), where F̂e is the empirical

CDF of the elasticities η̂e j from event e.4 Since the percentile rank is (approximately) uniformly

distributed on the unit interval, we determine whether the rank of the treated state pe1 lies in the tails

of the uniform distribution. Using a statistical significance level of five percent, we reject the null of

ηe1 = 0 precisely when pe1 < 0.025 or pe1 > 0.975. We note that the number of available donors

limits the range of confidence levels we can implement for a single treated event. For example,

many of our events have only twenty donors; in these cases we can only assess a ten percent level

of significance. Using multiple events allows us to assess stronger levels of statistical confidence.

The above approach suggests a natural way of conducting inference when pooling across cases

by constructing a test statistic p which is the the mean of the percentile ranks of individual events:

p =
∑

E
e=1 pe

E
.

The exact distribution of p can be calculated using the Irwin-Hall distribution of the sum of E

independent uniform random variables. The sum of the ranks, s = E · p, has the the CDF

4To calculate the percentile pei of the ranked position rei of the estimated elasticity ηe j for state i in event e, we use
the Weibull-Gumbel rule (see Hyndman and Fan, 1996): pe = re1/(Ne +1), where Ne equals one plus the number of
donor states, ensuring that the median effect within an event receives the rank 0.50 when the total number of states Ne is
odd.
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Γ(s;E) =
1

E!

bsc

∑
k=0

(−1)k
(

E
k

)
(s− k)E−1

where b.c is the floor function.5 Under the sharp null hypothesis of zero effect everywhere, the

average of E ranks, p, is distributed with mean 0.5. If G(x;E) = Γ(x ·E;E) denotes the CDF of

the mean of E uniformly distributed variables random variables, then for a statistical significance

level of five percent, we reject the null hypothesis η = 0 precisely when G(p;E) < 0.025 or

G(p;E)> 0.975.

While the central limit theorem tells us that the distribution of the mean rank will converge to an

appropriately scaled normal distribution, for small E we should prefer to use the exact distribution.

Table A1 shows various percentiles of this distribution for E = 1, . . . ,30. At 29 treatment events—

the maximum number of case studies we will have in our study—a two-sided 5% significance test

requires the mean rank to fall below 0.395 or above 0.605. We note that this method is closely related

to the van Elteren (1960) stratified rank sum test, where the rank of each treatment is estimated

using placebos associated with the stratum (i.e., event). The only substantive difference is that we

use the percentile ranks of each treatment from each stratum, pe1, instead of the ranked position

re1, for transparency of the calculations; this choice potentially impacts the critical values when

the number of observations (states) varies across strata (events) and the number of observations is

also small. However, as we show in the Appendix, there is very little difference if we calculate the

critical values taking into account the number of observations in each stratum used to calculate the

ranks. For concision, in the rest of this paper we will often we refer to the percentile rank as simply

the “rank.”

While there are alternative ways of doing pooled inference, we note some advantages to our

approach. First, the rank-based pooling is a natural generalization of the single-case study based

inference in Abadie et al. (2010), who use the rank of the treatment effect for individual events.

Second, the mean (or sum of) ranks has a known distribution under the sharp null, allowing for

exact inference. This avoids reliance on large sample properties, and also avoids the empirical

5See http://en.wikipedia.org/wiki/Irwin-Hall_distribution.
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estimation of distribution of the statistic under the null—as would be the case were we, for example,

to conduct inference for the mean elasticity. Third, and relatedly, the use of the mean rank p

diminishes the impact of outliers as compared to the mean elasticity η , which may be a particular

concern given a small number of events. Fourth, within the class of rank sum tests, the ranks could

be estimated without regard to strata, as in the case of the Wilcoxon (1945) rank sum test. However,

stratification accounts for event-wise heteroscedasticity, which may be of particular concern given

varying window lengths across events. One limitation of the rank-based pooling is that we are

testing the sharp null that effect is zero everywhere, as opposed to the average effect being zero.

However, we address this concern in Section 4.3 by testing for heterogeneous treatment effects.

In the Appendix, we relax the approximation that the event ranks are independently and

uniformly distribution by accounting for the finite number of donors, some of which overlap across

events. We show that in our case this makes little difference to the calculation of the critical values,

or the resulting confidence intervals for the treatment effect. For comparison, we also calculate the

confidence interval using randomization inference on the mean effect (elasticity), as opposed to

using the mean rank. This too produces similar conclusions, though the confidence intervals are

somewhat wider—consistent with the impact of outliers when evaluating the mean (as opposed to

the ranked) effect.

2.3 Inverting the rank test to form confidence intervals

We also invert the individual-event and mean rank statistic to estimate confidence sets.6 These

confidence sets show values of the elasticities which imposed as the null cannot be rejected as being

equal to the estimated effect. For a single treatment event with estimated elasticity η̂e1, we use the

percentile rank pe1 = F̂e(η̂e1) as the test statistic to determine statistical significance: we cannot

reject the null hypothesis ηe1 = 0 at the five percent level precisely when 0.025≤ F̂e(ηe1)≤ 0.975.

Inverting this test, we ask for what values of τ does the adjusted response ηe1− τ appear free from

6Although Abadie et al. (2010) do not explicitly construct these confidence sets in the case of their single treatment
event, they follow directly from their inferential procedure.
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treatment: when does 0.025≤ F̂e(η̂e1− τ)≤ 0.975? The 95 percent confidence interval is the set

of τ not rejected using the critical values 0.025 and 0.0975.

In the framework of multiple treatment events, we can apply a similar procedure to construct

Hodges Jr. and Lehmann (1963) confidence intervals for the pooled effect, using the mean rank p

as the test statistic to be inverted. We first calculate the adjusted responses ηe1− τ for all events

e = 1, ...,E, and re-calculate event-specific ranks F̂e(η̂e1− τ). Define the mean adjusted rank

p(τ) =
∑e F̂e(ηe1− τ)

E
.

The 95 percent confidence interval for the pooled effect is the set of τ such the mean adjusted rank

p(τ) lies within the critical values given by the mean of E uniform distributions. In other words,

we find values τ such that 0.025 < G(p(τ);E)< 0.975. Figure 1 illustrates this procedure for the

estimated mean elasticity η = c. The confidence interval is (c− b,c+ a) because G(p(c− (c+

a));E) = 0.05 and G(p(c− (c−b));E) = 0.95.

Collapsing these confidence intervals yields the Hodges-Lehman point estimate, which we also

refer to as the pooled estimate in this paper. In the case of a single event, the mean, median, and

Hodges-Lehman point estimates are trivially the same, and so are the confidence intervals. In the

case of multiple events, the mean, median and Hodges-Lehman point estimate and confidence

intervals need not correspond. This is especially the case when outlying estimates of individual

treatment events heavily influence the mean estimate. The robustness to outliers is one reason we

prefer using the Hodges-Lehman confidence interval, as it is ultimately based on ranked location.

Throughout the paper, we report the mean percentile rank, the pooled Hodges-Lehman point

estimate, and the Hodges-Lehmann confidence intervals. We also report the median and mean

estimates because of their natural interpretations.

Our inference assumes that the ranks of the treated states across events are independent draws.

There are two potential concerns with this assumption, but overall we do not believe they represent

major problems in our case. First, some events are from the same state, which may bring up a
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concern that the ranks of the events are not independent draws. However, while Yit may be serially

correlated, the same need not be true for η̂eit across two events e′ and e′′ from the same state i in

time periods t ′ and t ′′. If the synthetic control estimator is unbiased, and it successfully matches

pre-treatment outcomes of both events, the post-treatment gap would from the two events are (by

construction) uncorrelated: E(η̂e′1, η̂e′′1) = 0. Moreover, this can be verified empirically.

The second and more serious concern is that the because the minimum wage increases often

occur around the same time, two states with minimum wage increases may share many of the

same potential donors. As a result, the ranks determined by the placebo distributions are not truly

independent across treatment events. For two events e′ and e′′, the set of placebo estimates η̂e′qt ′ and

η̂e′qt ′′ from donor q may be correlated, in particular when t ′ = t ′′. In the extreme case, the donors

and hence the placebo estimates α̂e′qt ′ may be identical. This may induce a correlation in the ranks

F̂e′(η̂e′1) and F̂e′′(η̂e′′1) even though E(η̂e′1, η̂e′′1) = 0 . In reality the overlap in donor pool is only

partial, which mitigates this problem. However, since this may be a concern in other applications,

we provide a more computationally intensive (but more accurate) method of constructing the critical

values for hypothesis testing in the Appendix. As described further in that section, we draw sets

of 29 placebo-law interventions that match the timing and donor overlap patterns of the actual 29

treatments in our sample. The results suggest that accounting for donor overlap has little impact on

the estimated critical values, justifying our use of the mean of independent uniform distributions.

Relatedly, one reason to prefer conducting inference using the mean rank is that under the

independence assumption, we know its exact distribution under the sharp null. This virtue cannot

be claimed by the sample mean elasticity, whose distribution under the null is unknown. We must

empirically estimate the mean elasticity under the null using the mean of donor elasticities. A

second, and related, reason to prefer rank-based inference is that it allows for conceptually simple

tests of heterogeneity in the treatment effects, as described in section 4.5.

15



3 Minimum wage treatment events and empirical specification

3.1 Sample periods and timing of treatment

The synthetic control estimator requires a set of untreated or donor units for each treatment event.

Since the vast majority of states were affected by the federal minimum wage increases, federal

increases are not suitable for use with the synthetic control method: there are very few untreated

donors that can be drawn from to construct a synthetic control for affected states. For example, 45

states changed their minimum wage at some point during the year of the 2007 federal minimum

wage increase, leaving only 5 states as potential donors to form synthetic controls.

To maximize the number of treatment events, we consider the entire 1979-2013 period available

using Current Population Survey (CPS) data. We focus on teen employment and wages, as many

16- to 19-year olds have wages near the minimum. During this period, almost 38 percent of teens

received wages within 10% of the statutory minimum wage, compared with about 5 percent of

workers aged 20 to 64. While there is considerable debate regarding the size of teen employment

effects, we expect to find significantly positive effects on teen wages. The high incidence of

minimum wage workers among teens makes them the most frequently studied group in the minimum

wage literature (e.g., Neumark et al. 2014, Allegretto et al. 2015). For outcome variables we

calculate quarterly state-level teen employment-to-population ratios and average wages using the

CPS.7 Although annual state means would contain less noise, they would correspondingly limit the

number of pre- and post-treatment observations; moreover, not all minimum wage increases occur

during the same part of the calendar year.

The top panel of Figure 2 shows all quarterly minimum wage changes during the study period.

During this period the federal minimum wage increased nine times, indicated by the vertical lines

in the Figure. Aside from federal minimum wage changes, 33 states in this period raised their

7For employment outcomes we use the Unicon CPS extracts for the monthly Basic Survey (http://unicon.com).
Wage data is only available in the outgoing rotation group subset of these data; for wage data, we use the NBER Merged
Outgoing Rotation Group extracts (http://www.nber.org/morg/annual/). We calculate wages as hourly earnings
or, if these are not reported, weekly earnings divided by usual weekly hours. State-quarter-level averages use the
sampling weights.
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minimum wage 215 times. Many states increase their minimum wage frequently, often on an

annual basis. To utilize the synthetic control method, we limit the sample of usable treatment

events to those with well-defined pre- and post-treatment periods. We select those events with no

minimum wage changes two-to-eight years prior to treatment, and we require at least one year of

post-treatment data (eliminating from consideration very recent minimum wage changes in Rhode

Island and Missouri).We also limit the sample to minimum wage increases of at least 5 percent,

which discards states with small increases indexed to inflation. Finally, we only consider treatment

events with at least 5 untreated states so that there are a sufficient number of potential donor states to

form synthetic controls. These restrictions reduce the pool of state-level minimum wage increases

by more than 88 percent and yield the 29 treatment events in the top panel of Figure 2 labeled in

dark text.

The eligible 29 events have valid pre- and post-treatment periods of varying length. West

Virginia, for example, has many years of data prior to its minimum wage change in 2006q3 available

but only one year of post-treatment data. By contrast, California’s treatment in 2001q1 allows only

two years of clean pre-treatment data but many years of post-treatment data. Also, California’s

post-treatment period includes an additional minimum wage increase in 2002q1. To simplify

choices, for each event we select its “maximal” pre-treatment period available from 8-32 quarters;

having done so, we then select each event’s maximal post-treatment window from 4-12 quarters.

The bottom panel of Figure 2 illustrates these pre- and post-treatment selections in blue and red,

respectively, with red circles indicating the times of treatment. Two features stand out. First, while

the pre-treatment period contains no minimum wage increases by definition, the post-treatment

period includes multiple minimum wage changes—states that raise their minimum wage often do

so again within the next year or two. Table 1, which lists all 29 treatment event configurations that

form the basis for our primary specifications, shows that most events include multiple minimum

wage increases. There are four events whose post-treatment period includes four minimum wage

increases. For this reason our treatment intensity definition incorporates the maximum minimum

wage in the post-treatment period.

17



Second, Figure 2 there are three states in the 2000s with recurring minimum wage changes where

the post-treatment period of one minimum wage change overlaps with the pre-treatment period

of a later minimum wage change: Hawaii, Rhode Island, and Vermont. For example, Hawaii’s

post-treatment period for its 2002q1 treatment overlaps with the pre-treatment period of Hawaii’s

2006q1 treatment. Delayed effects from the former 2002q1 treatment could in principle violate the

assumption that, for the latter 2006q1 event, Hawaii’s pre-treatment period is absent from treatment.

On the other hand, the pre-treatment period of Hawaii’s 2006q1 is absent from treatment using our

original definition that it contains no minimum wage changes. For our primary specifications we

will include all 29 events, but we will also describe results excluding the three events of Hawaii

2006q1, Rhode Island 2006q1, and Vermont 2004q1.

There is a trade-off between window length and the number of events and donors. Allowing

relatively short pre- and post-treatment periods maximizes the number of treatment events but, at

the same time, may reduce the quality of the estimated counterfactual, as there is less pre-treatment

data informing the selection of synthetic controls. On the other hand, lengthy pre-treatment periods

limit both the number of events and potential donors, thereby reducing the credibility the resulting

estimates. When we limit our treatment events to those with more restrictive pre- and post-treatment

window lengths, we sharply reduce the number of case studies, as Table 2 illustrates. The first line

in Table 2 is our primary configuration: 29 events with at least 8 and 4 quarters of respective pre-

and post-treatment data. Requiring pre-treatment and post-treatment windows of at least 16 and 8

quarters, respectively, curtails the number of case studies to 14, and there is only a single treatment

event with the most restrictive window configuration of 32 pre-treatment quarters. In terms of the

potential for alternative window configurations to affect donor availability, the configurations in

Table 2 show only a small amount of variation. As we limit the pool of case studies to the most

restrictive window configurations, the mean minimum wage treatment rises a small amount, from

about a 19 percent increase to an increase of about 24 percent when we require 6 years and 2

years of pre- and post-treatment data, respectively. Our primary results use the maximal window

configuration with 29 events, but we explore how the alternate window configurations affect our
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results in Section 4.3.

3.2 Specifying predictor variables

Any characteristics unaffected by the policy intervention are valid predictors under the synthetic

control approach, including demographic and industrial compositions or other economic attributes

of the region. However, the unbiasedness of the estimator relies on the predictors including some

linear combination of the pre-treatment values of the outcome of interest. There are two related

questions when it comes to these predictors. First, exactly which variables should one include in

the set of predictors? Second, what weight should one place on each of those predictor variables

when estimating the donor weights? Abadie et al. (2010) provides a simple answer to the second

question of how best to determine the weights on specific predictors within a set, which we describe

first. Then we tackle the more challenging question of what predictors—and specifically what

pre-treatment outcomes—one should include in this set.

For a given event e, the optimal donor weights are defined as

W∗e(Ve) = argmin
We

k

∑
m

vm (Xe1m−Xe0mWe)
2 . (1)

The optimal weights depend on the predictor importance matrix Ve = {vem} selected by the

researcher. For example, V might weight each predictor equally. Instead we follow the suggestion

in Abadie et al. (2010) to select V∗e such that the resulting synthetic control best fits pre-treatment

outcomes. We therefore solve the joint (nested) optimization problem given by equation 1 and the

equation

V∗e = argmin
Ve

∑
t<t ′e

(Ye1t−Ye0tW(Ve))
2

which minimizes pre-treatment fit. Our results use the “optimal” choice of weights W∗e(V∗e) instead

of alternatives such as manually specifying weights for predictors, or using the computationally less

intensive methods available to users.8

8We implement the synthetic control approach in Stata using the synth package with nested optimization and
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But exactly which sets of pre-treatment outcomes and other characteristics should the researcher

choose as predictors? When computationally feasible, perhaps the simplest strategy is to include

every pre-treatment outcome in the predictor set X. In their study of the effects of Arizona’s 2007

Legal Arizona Workers Act, Bohn et al. (2014) employ this strategy with annual CPS data, using

every pre-treatment value of the 1998-2006 non-citizen Hispanic share of the population, in addition

to other industrial and demographic shares.

Within the pre-intervention sample, one cannot do any better in terms of pre-intervention MSPE

than to include every pre-intervention outcome. However, this will not be true when predicting

out of the pre-intervention sample, which is ultimately the object of interest. Matching on higher

frequency pre-intervention data may actually produce less reliable synthetic controls. For example,

our study uses quarterly CPS data, we risk matching on noise when using as predictors every

quarterly pre-treatment value of teen employment-to-population ratios or average wages. As a

result, we also consider the predictor set X consisting of annualized averages of the pre-treatment

outcome.9

Different sets of predictors may result in different synthetic controls, and there is little explicit

guidance in the synthetic control literature to assess predictor choice. We consider four different

predictor sets X, which vary according to whether we include every quarterly or annualized

pre-treatment outcome, and whether we include other pre-treatment average demographic, labor

market, industry shares.10 These predictor sets are summarized at the bottom of Table 3. Using teen

employment as an example outcome, predictor set 1 is composed of all quarterly pre-treatment values

of teen employment-to-population ratios. Predictor set 2 is composed of all annualized pre-treatment

allopt starting point checks for robustness: http://www.mit.edu/~jhainm/synthpage.html. There is a option for
using a less computationally intensive but less reliable “regression-based” predictor weights. In our experience, the
regression-based weights can produce worse fit, and the nested optimization uses regression-based weights as an initial
set of values for optimization.

9Here, annualized averages refer to the mean of the first through fourth quarter before treatment, the mean of
the fifth through the eighth quarter before treatment, etc. For Minnesota’s 2005q3 treatment, say, these refer to the
2004q3-2005q2 mean, the 2003q3-2004q2 mean, etc.

10The demographic and labor market variables are the pre-treatment means of white, black, female, and married
shares of the teen population, the teen population share, the share of the overall population with a college degree, and
the overall unemployment rate. Industry variables are the employment shares in agriculture & mining, construction,
manufacturing, wholesale & retail trade, transportation & utilities, information/finance/professional/business services,
education & health services, leisure/hospitality/personal services, and public administration.
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employment-to-population ratios. Predictor set 3 includes all annualized pre-treatment employment

and wage outcomes. Predictor set 4 adds to predictor set 3 the pre-treatment demographic, labor

market, and industry shares described above. We note that when every quarterly pre-intervention

outcome is included in the predictor set, inclusion of other predictor variables is redundant when

weights on those predictors are calculated optimally using nested optimization. For this reason, it

only makes sense to include variables such as industry or demographic shares when using annualized

and not quarterly pre-treatment outcomes.

To identify the “best” choice for X, we use a cross-validation procedure to choose from different

sets of predictors. Recall that in creating synthetic controls for each event, the pre-intervention

observations form a “training sample” used to estimate synthetic control donor weights as well

as predictor weights for a given set of predictors. Here, when choosing the most reliable set of

predictors, we use the post-intervention observations of the donors as our “validation” sample to

evaluate prediction error associated with a given set of predictors. For a given predictor set X, we

calculate the post-treatment mean-squared prediction error (MSPE) for each donor j given by

MSPEe j =
1
Te

Te

∑
t=t ′e

(
Yjte−∑

q
w∗eqYeqt

)2

where t ′e begins the post-treatment period in event e, and where q indexes the available N−2 donors

for (untreated) state j. We define the average RMSPE to be the square root of the mean of this

quantity across all donors for all 29 events. The optimal model will yield the smallest post-treatment

RMSPE, so predictor sets X with higher average RMSPE in the post-treatment period indicate

models with worse performance in the sample of untreated donors.11

Table 3 reports the average donor RMSPE for both the post-treatment (validation) and pre-

treatment (training) samples across four candidate specifications for predictors. Predictor set 1,

which uses quarterly pre-treatment outcomes, naturally obtains the best pre-treatment fit to quarterly

employment or wages when compared to predictor sets 2 through 4, which try to fit quarterly

11We do not use the treated states for this cross-validation exercise because use of the post-treatment period in these
states would require us to also have a valid estimate of the treatment effect.
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frequency data using annualized pre-treatment outcomes. Incorporating both annualized outcomes

and additional controls improves pre-treatment fit relative to using only one annualized outcome:

for employment, pre-treatment RMSPE falls from about 0.040 in specification 2 to about 0.035 in

specifications 3 and 4.

While using every pre-treatment outcome by definition maximizes goodness-of-fit in the pre-

intervention sample, the same need not hold out of sample. In terms of post-treatment fit, the

specification 4 is actually mildly preferable to specification 1. Using both annualized outcomes and

demographic, labor market, and industry shares in specification 4, the post-treatment RMSPE for

teen employment is about 0.0472, compared to the RMSPE of about 0.0478 for quarterly predictors.

For wages, post-treatment RMSPE falls more—from 0.7911, when using quarterly outcomes in

specification 1, to about 0.7758 in specification 4. The observed reduction in RMSPE—although

admittedly small—is consistent with our a priori concerns about noise in the aggregations of

quarterly CPS data, leading us to select specification 4 as the preferred one. Yet because the small

measured reduction in RMSPE makes our preference for this model somewhat weak, we explore

the robustness of estimates across all sets of predictors in section 4.3.

4 Synthetic control estimates of minimum wage effects

4.1 Donors selected by synthetic control

Conditional on other covariates, conventional regression effectively assigns equal weights to the

states the researcher selects as potential controls. By contrast, the synthetic control approach selects

a convex combination of donor states based on that combination’s pre-intervention fit to the treated

state. For our sample of treatment events, we observe that the synthetic control procedure on

average assigns greater weights for nearby donors, suggesting that nearby states generally form

better counterfactuals than do distant states. To illustrate this, Table 4 compares average per donor

weights for those donors near to and further away from the treated state. For each treated state,

some donors reside within the same Census region as the treatment, whereas other donors lie
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outside that region. We first calculate the sum, across events, of all weights for these within-region

donors, and then we divide this sum by the total number of within-region donors. The first entry

in Table 4 is the resulting within-region per donor weight, 0.050, when the outcome of interest is

the teen employment-to-population ratio. For outside-region donors, the per donor weight is 0.027.

Calculating per donor weights in this way adjusts for the fact that the number of potential donors

within or outside a given area varies across treatments.

The primary statistic of interest in Table 5 is the ratio of within-area to outside-area per donor

weights. For the employment-to-population ratio, the relative weight is 1.836, indicating that donors

within the same Census region as the treated state are, on average, assigned weights almost twice as

high as donors from outside the the same Census region. Relative weights tend to increase as we

restrict the relative distance band. Same-Census-division donors—a finer aggregation level—receive

even more weight, with relative weights of about 3.0 and 2.5, for teen employment and wages,

respectively.12 Donors within 1000 miles receive 1.3 to 1.5 times as much weight, and donors

within 500 miles receive about 2.0 times as much weight. On the whole, the evidence suggests

that nearby donors are more likely to be included in a synthetic control, consistent with spatial

correlation in the factor loadings underlying the data generating process.

4.2 Primary results

We begin with reporting the estimates for each of the 29 treatment events in Table 5. First, the results

appear to indicate a positive impact of minimum wage increases on average teen wages. While the

wage elasticity estimates range from -0.188 to 1.969, we find that 25 out of the 29 estimates are

positive and more than half (16) are strictly greater than 0.20. As described earlier, the reported

rank is the percentile rank of the treated state’s elasticity relative to the placebo distribution. Seven

of the 29 estimated wage effects are statistically significant at the 10 percent level.

Turning to teen employment, the estimated elasticities range between -1.199 and 0.769, although

12The US Census Bureau partitions the country into four Census regions and nine Census divisions:
https://www.census.gov/geo/www/us_regdiv.pdf.
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14 of the 29 events have elasticities no greater than than 0.2 in magnitude. Consistent with a

small treatment effect, 12 out of the 29 employment estimates are positive. Only a single event,

Massachusetts in 2000q1, has an elasticity (-0.456) that is statistically significant at the 10 percent

level. Highlighting the imprecision of individual case studies, we find that the confidence intervals

are wide, with an average spread of 1.474 (1.762) for employment (wage) elasticities.

The presence of occasionally very large estimates is partly due to the non-normality of the

distribution of synthetic control estimates. To show this, Figure 5 compares probability densities of

the donor employment and wage elasticities to normal probability densities. For both employment

and wage outcomes, the placebo distribution formed by the donors is clearly non-normal: although

centered close to zero (about -0.01 and 0.01 in employment and wages, respectively), extreme

values give the placebo distribution fatter tails. The estimated kurtosis is 5.82 for donor employment

elasticities and 58.37 for wage elasticities, compared to the value of 3.0 for any normally distributed

sample. The especially severe departure from normality in wage estimates is partly due to extreme

estimates in this space with poor pre-intervention fit, as discussed in Section 4.3. Shapiro-Wilk tests

clearly reject the null of normality in both cases, with p-values close to zero. In the presence of such

fatter tails, the placebo-based confidence intervals are more appropriate than those formed under

large sample assumptions.

The imprecision of individual estimates highlights the gains from pooling case studies. Table 6

presents our preferred aggregated results as both the mean elasticity and median elasticity across

events. As discussed earlier, we also present the mean ranks, and the associated Hodges-Lehmann

confidence intervals; both the median estimate and the Hodges-Lehman interval are less swayed

by potential outliers, a concern that is highlighted by the presence of fatter tails. The median and

mean employment elasticities for the 29 treatment events are relatively small: -0.051 and -0.058,

respectively. Across treatment events, the mean employment rank is 0.470, close to would be

expected under the null of a zero treatment effect. The pooled Hodges-Lehman effect is small at

-0.036 and is statistically insignificant, as the mean rank falls between the cutoffs (0.395, 0.605)

derived from the 2.5th and 97.5th percentiles of the mean of 29 uniformly distributed variables. The
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associated 95 percent confidence interval is (-0.170, 0.087). Although somewhat wide, pooling

across the 29 events nonetheless allows us to draw economically meaningful inference, and rules

out a substantial portion of the old “consensus” estimate range of -0.1 to -0.3. (Brown 1999).

These small aggregated employment effects contrast sharply with those for wages, where the

median and mean elasticity are 0.237 and 0.368, respectively. The pooled wage elasticity of 0.266

is statistically significant at the 1 percent level, as the mean rank is 0.758. The associated 95 percent

confidence interval rules out wage effects smaller than 0.169 and larger than 0.414.

Figure 3 illustrates these aggregate effects by showing the time path of the mean annualized

employment and wage elasticities, both before and after the minimum wage increase.13 The top

panel shows the mean annualized employment elasticities ranging from 7 years prior to the minimum

wage increase (i.e., quarters -28 through -25) to 3 years afterward (i.e., quarters 8 through 11). The

middle panel shows the analogous estimates for wages. The bottom panel shows the number of

treated states used for the estimation of the elasticity of each 4-quarter bin, as well as the associated

proportionate change in the minimum wage.

For employment, all pre-treatment point estimates are small in magnitude hovering around

zero, adding validity to our research design. After the minimum wage increase, employment

nominally falls, but the elasticity remains less than 0.1 in magnitude. There is no indication of a

more negative effect further out in time: the impact during the third year after treatment (quarters 8

through 11) is close to zero, albeit less precise. For wages, pre-treatment elasticities are centered

around zero until about the first two years prior to treatment (quarters -8 through -5), at which point

we detect a statistically significant elasticity of about 0.1 on employment. Positive pre-treatment

elasticities for wages suggest that the synthetic control research design may not be as reliable for

wage impacts—partly because wages for minimum wage increasing states are generally higher than

13Specifically, we annualize actual treated state and synthetic control outcomes by taking the event-specific mean of
these values at every pre- and post-treatment four-quarter interval. The percent difference between these values, divided
by the actual minimum wage increase, forms the event-specific elasticity at each time interval. The figure displays
the mean elasticity across events at each time interval. Performing the analogous calculation for the donors, we then
construct event-time-specific percentile ranks, which we invert to calculate Hodges-Lehmann point estimates and 95%
confidence intervals, where the latter use mean uniform cutoffs from Appendix Table A1 with the appropriate number
events.
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potential donor states, making it difficult to find a convex combination of donors to very closely

match the treated units.14 At the same time, we do find a sharp increase in teen wages at the time

of and after the minimum wage increase. The Hodges-Lehmann point estimate for the teen wage

elasticity lies between 0.2 and 0.4 in the post-treatment period. Approaching 0.40, the pooled wage

elasticity is high after three years of treatment, but this is not inconsistent with the fact that nearly

38 percent of teens during the 1979-2013 period earned within 10 percent of the minimum wage.

Before exploring match quality and robustness issues, we take stock of our baseline estimates

in Figure 4. The Figure shows all 29 individual employment elasticities (vertical axis) and wage

elasticities, along with the mean and pooled effects. Overall, while the estimates appear noisy,

there is very little relation between the magnitude of the wage elasticity and employment elasticity.

In particular, the dotted line shows the locus of unitary elastic labor demand (ηemp/ηwage =−1),

where the wage effects of the minimum are completely offset by the employment effects, ignoring

any changes in hours. Of the 29 treatment events, 19 lie clearly above this locus, as do the mean

and pooled effects. The point estimates in the Figure seem inconsistent with the idea that negative

employment effects are more likely when there is a more binding minimum wage: of the 10 events

where the employment elasticity lies below the unit-elastic demand locus, in only one case (Oregon

in 2003q1) do we see the wage elasticities exceed the pooled estimate of 0.266. If we drop the

four events with negative wage estimates (or equivalently with wage estimate ranks below 0.5),

the average employment elasticity moves from -0.058 to 0.031. This suggests sampling error and

not more binding minimum wages underlie the spread in the employment elasticity—a conclusion

confirmed in section 4.5 where we test for heterogeneous treatment effects.

4.3 Accounting for match quality

The extent to which a synthetic control matches the treatment unit in the pre-treatment period

indicates how well it accounts for time-varying confounders. For a single case study, the pre-

14The possibility that a treated unit characteristic might not belong to the convex hull of the donor characteristics is
also discussed in Gobillon and Magnac (2015). The wage findings here are an empirical illustration of that possibility.
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treatment match quality is usually apparent: for example, the synthetic control for New York in

in Sabia et al. (2012) never coincides with the actual treated state. However, when pooling across

many cases, it may be difficult to evaluate and account for match quality merely by inspection.

Some of the the synthetic controls for the 29 treatment events in this paper also suffer from poor

pre-treatment fit, but our pooling of estimates does not account for differences in match quality.

To assess this issue more systematically, we progressively exclude events with particularly poor

pre-treatment fit and examine how this affects our post-treatment elasticities. For each treatment

event, we calculate a pre-treatment RMSPE between the synthetic and actual treatment outcomes—

this is our measure of pre-treatment fit. We also calculate an estimated pre-treatment elasticity,

defined just as our conventional treatment effect η1 except calculated over the pre-treatment period

(and scaled by the actual minimum wage increase). Next, we trim our sample of case studies on

pre-treatment fit and examine how the trimming affects the pooled pre-treatment and post-treatment

elasticities.15

Figure 7 shows how pre- and post-treatment elasticities vary after trimming up to 11 events

(about one-third of our sample). The top panel shows that the post-treatment Hodges-Lehmann

point estimate remains relatively for both employment and wages as we progressively drop the

worst matches. The same is true for the mean employment effect. One exception is the mean wage

effect, which rises to 0.43 after removing 11 events with the worst match quality. We discuss how

the mean wage effect is susceptible to three large elasticities (greater than 1.0) in the next section.

In the bottom panel, pre-treatment elasticities for employment remain close to zero. For wages,

as we eliminate events with the worst match quality, pre-treatment elasticities fall slightly toward

zero, reducing the extent of bias. The pooled pre-treatment wage elasticity is always statistically

significant at the 5 percent level, indicating that our research design has a detectable positive bias

when it comes to wages. The size of pre-treatment elasticity, however, is very small, always less

than 0.05.

15Note that a reduction in the pre-treatment RMSPE can occur either from a reduced pre-treatment variance or a
pre treatment bias. Therefore, an improved pre-treatment fit does not automatically guarantee a smaller pre-treatment
elasticity, which is the measure of bias.
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While the trimming of treatment events aims to improve the identification of the pooled treatment

effect, there is also a concern that poor match quality for donor-based (placebo) synthetic controls

biases our inference. In particular, donors whose synthetic controls have poor pre-treatment fit are

not as informative for assessing the post-treatment rank of the treated state. In the context of a single

treatment event, Abadie et al. (2010) address this concern by limiting inference to the subset of

donors with better pre-treatment synthetic control fit relative to the treated state. Specifically, using

the ratio γ j = MSPE j/MSPE1 of donor-to-treated synthetic control fit during the pre-treatment

period, they limit randomization inference to subsets of donors with lower values of this ratio.

Following this guidance, we explore how mean ranks and the associated confidence intervals change

when we limit donors to those with event specific ratios γe j = MSPEe j/MSPEe1 less than 20, 10, 5,

and 2.

Table 7 presents the pooled effects from this exercise. Restricting donors has almost no effect

on the mean rank or Hodges-Lehmann confidence intervals for the pooled employment elasticity,

even when we limit the number of donors to those with MSPE ratios of less than 2, removing

nearly one-quarter of donor states from the full sample. For wages, removing donors with the worst

relative pre-treatment fit has removes some extreme donor elasticities: moving from the full sample

to the subset of donors with a MSPE ratio of less than 20, the maximum donor of elasticity of 6.817

and kurtosis of 41.036 fall to 3.361 and 15.282, respectively. But as with employment, inference for

wages remains relatively unchanged.

4.4 Robustness to window configuration length and predictor sets

Researchers using synthetic controls face choices about the exact length of pre- and post-treatment

windows: more lengthy pre-treatment windows provide more pre-treatment predictor information

but may also reduce the number of available treatment events. Similarly, synthetic control-based

research designs require decisions about the exact set of predictor variables. In this section, we

consider how the aggregated results change when modifying window configuration length and the

predictor variable set.
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We explore two issues using alternative configuration lengths. First, what happens to our

estimates when we consider longer lagged effects? Second, we examine how our estimates vary

when we only consider events with a longer pre-intervention period to fit the model. To consider

lagged effects, Table 8 begins by showing employment effect estimates for the subsets of events

with longer post-treatment periods. When we restrict the sample to those with at least 3 years of

post-treatment data (12 quarters), the mean and Hodges-Lehmann point estimates are very close to

zero (-0.001 and -0.019, respectively). While the estimate is somewhat less precise, we can still

reject employment elasticities greater than -0.21 in magnitude at the five percent level. In short,

although we cannot statistically rule out moderate sized estimates, the point estimates do not point

to lagged effects through the third year of treatment. Table 8 also shows that our employment effect

estimates are similar for events with longer pre-intervention periods. After requiring events to

have longer pre-intervention windows, pooled employment elasticities are positive in sign, small in

magnitude, and range from 0.007 to 0.040.

Table 8 reports suggestive evidence of lagged wage effects, as the pooled elasticity rises

monotonically from 0.266, to 0.288, and then to 0.428, moving from the full sample to events to

those with at least two and then at least three years of post-treatment data, respectively. Mean

elasticities for these subsets seem rather high, and sometimes come close to the upper bound of

the Hodges-Lehmann confidence intervals. These large elasticities are substantially influenced by

three events with wage elasticities greater than 1.0 (MA 1986q3, ME 1985q1, NH 1987q1). The

mean and pooled wage elasticity estimates are fairly stable up to requiring at least five or more

years (20 quarters) of pre-intervention data. Then the wage estimates fall sharply to about 0.158

when requiring at least six years of pre-treatment data; and to 0.108 when requiring at least seven

years of data. These requirements drop the aforementioned extreme elasticities and mechanically

lower our pooled estimates. While the magnitude of the wage effect shifts depending on window

configuration requirements, we find statistically significant teen wage effects of the minimum in all

configurations except the most restrictive pre-treatment configuration of seven years, which reduces

our sample to only eight events.

29



We additionally consider how alternative predictor sets affect pooled estimates of the teen

employment and wage effects. Testing four candidate models, we found in Section 3.2 a weak

preference for the most saturated model with annualized outcomes, including both annualized wage

and employment outcomes and other labor market controls. This set of predictors provided all of

the above estimates in this paper. Table 9 shows pooled estimates for all of these candidate models

in columns 1 through 4. For both teen employment and teen wages, mean elasticities, ranks, and

pooled elasticities change little across predictor sets. Hodges-Lehmann estimates for employment

range from -0.003 to 0.073; for wages, the pooled elasticities lie between 0.265 and 0.294, all

of which are statistically significant at the one percent level. With predictor set 4 (our preferred

specification), confidence intervals are somewhat tighter in the case of employment.

4.5 Heterogeneity

Thus far we have focused on the average effects of the treatment, and found employment estimates

that are close to zero. However, it is possible that such an average effect is composed of causal effects

of differing signs. For example, if the low wage labor market is characterized by monopsonistic

competition, employment effects there could be positive in some cases and negative in others (Card

and Krueger 1995, Burdett and Mortensen 1989, Manning 2003). Conversely, the spread in the

estimated elasticities could simply be due to sampling error, with a true effect that is constant

everywhere.

Here we take advantage of the fact that the distribution of the percentile ranks is of a known

form under the sharp null hypothesis of a zero effect—it is uniformly distributed over the unit

interval. If the distribution of empirically estimated percentile ranks differs sufficiently from the

theoretical distribution, this constitutes evidence against the sharp null. This possibility can arise

either from a non-zero constant effect everywhere, or heterogeneous effects across events.

We use the Kolmogorov-Smirnov test of equality of distributions to determine both the presence

of any minimum wage effect and heterogeneous minimum wage effects. Under the sharp null of

zero effects everywhere, ηe = 0, the percentile ranks of the nineteen treatment effects should be
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uniformly distributed. The empirical CDF of the actual percentile ranks is given by

Ĥ(x) =
1
E ∑

e
I(pe1 ≤ x)

where I is the indicator function. The one-sample Kolmogorov-Smirnov test of the null hypothesis

Ĥ(x) = x has as its test statistic the maximum distance between the empirical CDF and the uniform

CDF (see Gibbons and Chakraborti 2003):

D = sup
x

∣∣Ĥ(x)− x
∣∣ .

The top panel of Figure 6 shows the uniform CDF and the empirical CDF for employment and

wages. Visually, the percentile ranks of the employment effects are very similar to what would be

expected under the sharp null, whereas the wage effects have a different percentile rank distribution.

The Kolmogorov-Smirnov test p-values confirm this impression with p = 0.911 for employment

and p = 0.000 for wage elasticity percentile ranks, leading us to reject the sharp null of zero effect

only in case of wages.

The above test is against a sharp null of zero effect. To detect heterogeneous effects that average

to something other than zero, we extend the procedure above to test for a constant effect equal to

the mean effect: ηe = η . This is particularly relevant for wage elasticities whose average is positive

and substantial in magnitude. Under this sharp null, after centering the 29 elasticities around the

mean effect, the adjusted percentile ranks p̃e1 = F̂e(ηe1−η) should be uniformly distributed. The

new Kolmogorov-Smirnov test statistic is

D̃ = sup
x

∣∣∣∣∣ 1
E

E

∑
e=1

I(p̃e1 ≤ x)− x

∣∣∣∣∣ .
The bottom panel of Figure 6 shows the distribution of adjusted percentile ranks for employment

and wage elasticities after centering the effects around their means of -0.039 and 0.317, respectively.

For employment, the Kolmogorov-Smirnov p-value is 0.5852; the re-calculated ranks appear to be
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uniformly distributed, revealing no evidence of heterogeneous effects in our sample of treatment

events. In contrast, we find evidence of some heterogeneity in the wage elasticities: the adjusted

percentile ranks have more mass at the bottom of the distribution than would be expected from a

uniform distribution. The Kolmogorov-Smirnov p-value is 0.055, meaning we can reject the null of

a constant effect at the 10 percent level. This heterogeneity in the wage elasticities is consistent

with there being variation in the bite of the minimum wage across different events.

The Kolmogorov-Smirnov test can be relatively insensitive to distributional differences near the

tails, because there, by construction, the distributional deviations converge to zero (as the empirical

distributions converge to 0 and 1). We may expect precisely this kind of heterogeneity if most

minimum wage increases have small employment impacts, but a few sufficiently binding increases

lead to large employment effects. As an alternative test of uniformly distributed ranks p̃e1, we

use the Anderson-Darling test statistic A2, which places relatively more weight on the tails of the

distribution (see Conover 1999):

A2 =−n−
E

∑
e=1

2e−1
E

(
log(p̃e1)+ log(1− p̃(E+1−e)1)

)
.

For completeness we perform this test both for heterogeneous effects (using the de-meaned percentile

ranks p̃e1) and for a constant zero effect (using the original percentile ranks pe1). As shown in Figure

6, the resulting Anderson-Darling tests p-values are very similar to our previous tests, indicating no

heterogeneity in the employment effect while providing some evidence for such heterogeneity in

the case of wages.

In summary, we find that the minimum wage affects average teen wages somewhat heteroge-

neously across events, which is to be expected if the bite in the minimum wage differs across places.

However, there is no indication of heterogeneous treatment effects for teen employment. For the

events analyzed in this paper, the synthetic control-based estimates are consistent with sizable,

positive and somewhat heterogeneous wage elasticities coupled with a small employment elasticity

of the minimum wage that is not very different from zero.
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5 Conclusion

The appeal of using a data-driven method to choose control groups has led to the increased popularity

of the synthetic control method. Since there may be a multitude of case studies one can investigate,

the ability to pool across events is useful in many contexts. In this paper we propose and implement

and way to pool across synthetic control case studies. We use a variant of the rank sum test to

conduct exact inference appropriate for small samples. We also invert the mean rank to provide the

Hodges-Lehman confidence interval for the pooled effect.

Although constructing confidence intervals of estimates using permutation-based inference is

relatively straightforward in the case of a single treatment event, estimates from individual case

studies are often imprecise. Pooling across them allows one to draw economically meaningful

inference with, in our case, 29 events. Our mean employment elasticity is -0.036, and with a 95

percent level of confidence, we reject teen employment elasticities more negative than -0.170. The

Hodges-Lehmann pooled wage elasticity of 0.266 is statistically significant at the 1 percent level.

Consistent with differential bite of the minimum wage in different areas, we find heterogeneity in

the minimum wage elasticities for the average teen wage. However, such differences in bite do not

explain a small employment effect. The employment effects do not covary with the wage effects,

and the distribution of employment estimate ranks is consistent with a small (possibly zero) constant

effect across events. We also do not find evidence of a more negative employment effect when

considering outcomes up to three years after the implementation of the policy.

Within the minimum wage literature, our estimates are similar to those from border discontinuity

designs and estimates controlling for time-varying heterogeneity. Dube et al. (2014) compare

contiguous counties across state borders. Using QWI data between 2000 and 2011, they find a

minimum wage elasticity of 0.26 for teen earnings and and elasticity of -0.06 for teen employment—

which are very close to the estimates in this paper. Using state-level CPS data on teens for 1979-2014,

Allegretto et al. (2015) find an elasticity of 0.253 for the average teen wage, and a small employment

elasticities once spatial controls are included (0.006). While our confidence sets do not rule out a

moderate negative employment effect of the minimum wage (e.g., an elasticity around -0.1), our
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pooled estimates point to small teen employment effects and substantially larger effects on teen

wages. Our results are broadly similar to those of Totty (2015), who contrasts the conventional

two-way fixed effects estimates of minimum wage effects with estimates from the factor models

proposed by Pesaran (2006) and Bai (2009). With CPS-ORG data for 1990-2013, Totty (2015) finds

that three factor models produce small and statistically insignificant employment elasticities for

teens, ranging from -0.065 to -0.036, but with statistically significant earnings elasticities ranging

from 0.097 to 0.158.

Our estimates of the employment effects for teens do differ sharply from large, negative

elasticities from the synthetic control-based analysis in Neumark et al. (2014). As discussed in

section 1, their preferred employment elasticities for teens (about -0.14) are nevertheless based

on a sample where there is a short, four-quarter pre-treatment period, where the potential donors

receive treatment, and where the treated units receive additional minimum wage increases prior to

the assigned treatment date. Allegretto et al. (2015) show that some of the treated events in the

Neumark et al. (2014) sample experience sizable minimum wage increases, and some experience

employment reductions—but typically they are not the same events.

A limitation of pooled synthetic control-based case studies concerns window length. Due to

the nature of minimum wage variation in the United States, increasing the post-treatment window

requirements limits the number of available case studies and potential donors. On average, we find

no lagged employment effects even when we consider up to twelve quarters after the treatment,

though focusing on these events cuts our sample in half. This result contrasts sharply with the

significant and negative lagged effects of the minimum found by Meer and West (2015) for the

overall private-sector workforce. To the extent that there are lagged effects, it is natural to expect

them to be concentrated on groups who are more likely to be earning near the minimum wage, but

we do not find such lagged effects for teens. During our study period of 1979-2013, teens were at

least seven times more likely to earn within 10% of the minimum compared to workers aged 20

to 64. A similar conclusion is reached in Allegretto et al. (2015), who use parametric trends and

geographic area controls, and find small employment effects for teens up to three years following a
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minimum wage increase.

Finally, the method we propose for rank-based inference need not be applied only to synthetic

control studies, but instead can be used in canonical or matched difference-in-difference settings

more generally. Using rank-based exact inference is useful for assessing both mean effects, as

well as heterogeneity in the treatment effects in such contexts, and is especially useful when the

researcher is analyzing a small number of events.
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Figures

Figure 1: Forming confidence intervals by inverting the mean rank statistic
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Figure 2: Quarterly minimum wage changes and usable treatment events during 1979-2013
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of the 29 usable treatment events. The bottom panel shows the pre-treatment (blue) and post-treatment (red) windows
of the 29 treatment events, with red circles showing the minimum wage increases during the post-treatment periods.
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Figure 3: Mean annualized elasticities, minimum wage changes, and number of donors, by time
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Figure 4: Event-specific and aggregated elasticities
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Figure 5: Probability density functions for the employment and wage elasticities of donors
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Notes: The donor employment (wage) elasticity distributions have mean -0.012 (0.012), standard deviation 0.452
(0.565), and kurtosis 5.82 (58.37). For each outcome, the illustrated normal distributions have the same mean and
variance. Shapiro-Wilk normality test p-values are 0.000 for both outcomes.
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Figure 6: Cumulative distribution of estimated percentile ranks
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Figure 7: Employment and wage elasticities, trimming events on pre-treatment match quality
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Tables

Table 1: Event description: window lengths, number of donors, and minimum wage increase

Window length MW increases

Event Pre Post Donors Number Percent

AK 2003q1 16 12 33 1 0.265

CA 1988q3 28 6 36 1 0.269

CA 2001q1 8 12 39 2 0.174

CT 1987q1 20 12 36 3 0.269

FL 2005q2 28 8 21 4 0.295

HI 1988q1 24 8 36 1 0.149

HI 2002q1 16 12 38 2 0.190

HI 2006q1 8 6 21 2 0.160

IL 2004q1 20 12 29 2 0.262

MA 1986q3 20 12 39 4 0.119

MA 2000q1 8 12 40 2 0.286

ME 1985q1 12 12 44 3 0.090

ME 2002q1 12 12 38 3 0.233

MN 1988q1 24 8 36 2 0.149

MN 2005q3 28 8 20 2 0.194

NH 1987q1 20 12 36 3 0.090

NJ 2005q4 28 6 21 2 0.388

NY 2005q1 24 10 20 3 0.388

OR 2003q1 12 12 33 3 0.115

PA 1989q1 28 4 36 2 0.104

RI 1986q3 20 12 39 3 0.194

RI 2004q1 12 12 31 3 0.154

VT 1986q3 20 12 39 4 0.090

VT 1995q1 12 6 44 2 0.118

VT 2004q1 8 12 32 3 0.160

WA 1989q1 28 4 36 1 0.149

WA 1994q1 8 10 44 1 0.153

WI 2005q2 28 8 21 4 0.262

WV 2006q3 32 4 20 1 0.136

Notes: “Pre” and “Post” are the respective pre-treatment and post-treatment window lengths.
Percent minimum wage increase is the percent increase from the pre-treatment minimum to the
maximum post-treatment minimum wage.
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Table 2: Summary of treatment events for more restrictive window configurations

Minimum Window Number of donors Percent MW change

Pre- Post- Events Treated states Min. Mean Max. Min. Mean Max.

8 4 29 19 20 33.0 44 0.090 0.193 0.388

8 8 22 16 20 33.8 44 0.090 0.195 0.388

8 12 15 11 29 36.4 44 0.090 0.179 0.286

16 4 19 17 20 31.2 39 0.090 0.209 0.388

16 8 14 12 20 31.6 39 0.090 0.208 0.388

16 12 8 8 29 36.1 39 0.090 0.185 0.269

24 4 11 10 20 27.5 36 0.104 0.226 0.388

24 8 6 5 20 25.7 36 0.149 0.240 0.388

32 4 1 1 20 20.0 20 0.136 0.136 0.136

Notes: Each row describes the subset of all 29 events in Table 1 with at least the specified number of pre-
and post-treatment quarters.

Table 3: Average pre- and post-treatment RMSPE for donors, by model specification

(1) (2) (3) (4)

Employment

Pre-treatment 0.0311 0.0401 0.0372 0.0342

Post-treatment 0.0477 0.0510 0.0493 0.0466

Wage

Pre-treatment 0.7022 0.7743 0.7563 0.7336

Post-treatment 0.7973 0.7872 0.7878 0.7735

Predictors

Quarterly outcomes Y

Annualized outcomes Y Y Y

Both annualized outcomes Y Y

Industry & Other controls Y

Notes: The average RMSPE is the square root of the mean of all donors’ MSPEs across all treatment events, for either
the pre- or post-treatment period. Predictor categories are either all quarterly pre-treatment outcomes (Quarterly),
annualized pre-treatment outcomes, both annualized employment and wage pre-treatment outcomes, or pre-treatment
means of industry shares and demographic/labor market variables.
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Table 4: Donor weights and distance to treated states

Weights per donor

Donor relation to treatment Inside Outside Relative weight

Employment

Same region 0.052 0.026 1.993

Same division 0.087 0.028 3.127

Within 0 - 500 miles 0.054 0.027 2.004

Within 0 - 1000 miles 0.037 0.026 1.393

Wage

Same region 0.048 0.027 1.788

Same division 0.068 0.029 2.375

Within 0 - 500 miles 0.048 0.028 1.739

Within 0 - 1000 miles 0.037 0.026 1.399

Notes: The inside (outside) weight per donor is equal to the sum across all treatment events of
the weights assigned to donors inside (outside) the specified area, divided by the total number
of inside (outside) donors. Relative weight is the ratio of inside-to-outside weights per donor.
Distance in miles is the distance between population-weighted state centroids.
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Table 5: Employment and wage elasticities, by event

Employment Wages

Event Elasticity Rank 90% CI Elasticity Rank 90% CI

AK 2003q1 –0.035 0.400 (–0.387, 0.319) 0.533 0.971* ( 0.339, 0.882)

CA 1988q3 0.198 0.763 (–0.355, 0.526) 0.083 0.711 (–1.615, 0.594)

CA 2001q1 –0.200 0.268 (–0.768, 0.398) 0.405 0.951* ( 0.053, 0.678)

CT 1987q1 –0.229 0.132 (–0.695, 0.211) 0.342 0.816 (–0.576, 0.871)

FL 2005q2 –0.129 0.435 (–0.637, 0.381) 0.095 0.783 (–0.119, 0.310)

HI 1988q1 0.185 0.579 (–0.811, 0.758) 0.602 0.842 (–1.736, 1.172)

HI 2002q1 0.149 0.775 (–0.415, 0.705) 0.117 0.775 (–0.305, 0.395)

HI 2006q1 –0.272 0.217 (–1.107, 0.715) 0.515 0.913 (–0.595, 0.991)

IL 2004q1 –0.208 0.194 (–0.522, 0.271) 0.027 0.710 (–0.406, 0.312)

MA 1986q3 –0.015 0.512 (–1.149, 0.998) 1.337 0.951* ( 0.394, 2.060)

MA 2000q1 –0.456 0.024* (–0.834,–0.157) 0.215 0.857 (–0.164, 0.505)

ME 1985q1 –0.078 0.522 (–1.230, 1.044) 1.113 0.957* ( 0.184, 2.062)

ME 2002q1 0.097 0.725 (–0.271, 0.544) 0.152 0.800 (–0.119, 0.355)

MN 1988q1 0.369 0.816 (–0.627, 0.942) 0.361 0.789 (–1.978, 0.930)

MN 2005q3 –0.089 0.455 (–0.762, 0.750) 0.036 0.636 (–0.328, 0.577)

NH 1987q1 0.197 0.605 (–1.198, 1.517) 1.969 0.947 (–0.784, 3.555)

NJ 2005q4 –0.071 0.435 (–0.414, 0.315) 0.241 0.957* ( 0.101, 0.444)

NY 2005q1 –0.375 0.136 (–0.781, 0.057) 0.109 0.818 (–0.055, 0.252)

OR 2003q1 –0.827 0.143 (–1.544, 0.200) 0.310 0.857 (–0.227, 1.189)

PA 1989q1 0.257 0.632 (–1.113, 1.368) 0.144 0.632 (–6.674, 1.578)

RI 1986q3 0.218 0.707 (–0.479, 0.842) 0.663 0.951* ( 0.083, 1.108)

RI 2004q1 –0.051 0.515 (–0.727, 0.679) 0.130 0.758 (–0.399, 0.777)

VT 1986q3 0.769 0.854 (–0.742, 2.120) 0.762 0.780 (–0.496, 1.726)

VT 1995q1 –0.689 0.087 (–1.310, 0.216) –0.070 0.435 (–1.262, 0.693)

VT 2004q1 0.661 0.941 (–0.105, 1.363) 0.713 0.971* ( 0.221, 1.433)

WA 1989q1 0.698 0.947 (–0.261, 1.476) 0.237 0.684 (–4.536, 1.241)

WA 1994q1 –0.580 0.065 (–1.393, 0.022) –0.188 0.196 (–0.792, 0.211)

WI 2005q2 0.038 0.652 (–0.533, 0.613) –0.127 0.174 (–0.367, 0.116)

WV 2006q3 –1.199 0.091 (–2.207, 0.166) –0.162 0.364 (–1.118, 0.811)

Notes: * indicates significance at the 10% level using the percentile rank of the elasticity within the event-specific donor-
based placebo distribution. Inverting this rank obtains 90% CIs.
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Table 6: Employment and wage elasticities, pooled

Hodges-Lehmann

Median elasticity Mean elasticity Mean rank Elasticity 95% CI

Employment –0.051 –0.058 0.470 –0.036 (–0.170, 0.087)

Wages 0.237 0.368 0.758*** 0.266 ( 0.169, 0.414)

Notes: Critical values for the mean percentile rank are derived from the mean of 29 uniform distributions.
* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 7: Employment and wage confidence intervals, by pre-treatment donor MSPE ratios

Donor states Donor state elasticities Treated state elasticities

MSPE Ratio Number Fraction Min Max SD Kurtosis Mean rank 95% CI

Employment

. 958 1.000 –1.756 1.640 0.418 4.613 0.470 (–0.170, 0.087)

20 958 1.000 –1.756 1.640 0.418 4.613 0.470 (–0.170, 0.087)

10 950 0.992 –1.756 1.640 0.419 4.608 0.469 (–0.172, 0.087)

5 893 0.932 –1.756 1.640 0.418 4.643 0.470 (–0.175, 0.088)

2 727 0.759 –1.756 1.640 0.428 4.729 0.489 (–0.170, 0.104)

Wages

. 958 1.000 –1.586 6.817 0.536 41.036 0.758*** ( 0.169, 0.414)

20 904 0.944 –1.586 3.351 0.408 12.102 0.770*** ( 0.176, 0.428)

10 879 0.918 –1.586 3.351 0.406 12.433 0.773*** ( 0.174, 0.430)

5 835 0.872 –1.586 3.351 0.398 13.530 0.771*** ( 0.172, 0.425)

2 677 0.707 –1.522 3.351 0.398 15.282 0.752*** ( 0.162, 0.426)

Notes: Rows show results for samples where donors limited to those with donor-to-treated MSPE ratios less than X,
where X=. indicates the full sample.
* p < 0.1, ** p < 0.05, *** p < 0.01.

50



Table 8: Employment and wage elasticities, by minimal window length

Window length Hodges-Lehmann

Pre- Post- Events Mean elasticity Mean rank Elasticity 95% CI

Employment

. 4 29 –0.058 0.470 –0.036 (–0.170, 0.087)

. 6 26 –0.055 0.460 –0.046 (–0.179, 0.070)

. 8 22 –0.027 0.475 –0.039 (–0.182, 0.105)

. 10 17 –0.057 0.442 –0.099 (–0.261, 0.105)

. 12 15 –0.001 0.488 –0.019 (–0.205, 0.160)

8 . 29 –0.058 0.470 –0.036 (–0.170, 0.087)

12 . 24 –0.034 0.505 0.007 (–0.134, 0.122)

16 . 19 0.038 0.533 0.035 (–0.109, 0.172)

20 . 17 0.036 0.526 0.032 (–0.128, 0.184)

24 . 11 –0.011 0.540 0.035 (–0.140, 0.221)

28 . 8 –0.037 0.551 0.040 (–0.161, 0.280)

Wages

. 4 29 0.368 0.758*** 0.266 ( 0.169, 0.414)

. 6 26 0.402 0.781*** 0.272 ( 0.174, 0.430)

. 8 22 0.440 0.786*** 0.288 ( 0.170, 0.489)

. 10 17 0.512 0.827*** 0.354 ( 0.198, 0.554)

. 12 15 0.586 0.870*** 0.428 ( 0.252, 0.633)

8 . 29 0.368 0.758*** 0.266 ( 0.169, 0.414)

12 . 24 0.375 0.754*** 0.240 ( 0.142, 0.408)

16 . 19 0.388 0.752*** 0.252 ( 0.125, 0.458)

20 . 17 0.395 0.738*** 0.227 ( 0.104, 0.473)

24 . 11 0.147 0.672** 0.158 ( 0.001, 0.310)

28 . 8 0.068 0.617 0.108 (–0.091, 0.271)

Notes: Window length of X restricts the events to the subset with a pre- or post-period greater than X quarters,
where X = . is eight pre-treatment or four post-treatment quarters. Critical values for the mean percentile rank are
derived from the mean of appropriate number of uniform distributions.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 9: Employment and wage elasticities, by alternative predictor sets

(1) (2) (3) (4)

Employment

Mean elasticity –0.019 0.001 0.037 –0.058

Mean rank 0.499 0.506 0.537 0.470

HL elasticity –0.001 0.011 0.053 –0.036

HL 95% CI (–0.148, 0.143) (–0.163, 0.157) (–0.096, 0.191) (–0.170, 0.087)

Wage

Mean elasticity 0.358 0.448 0.434 0.368

Mean rank 0.760*** 0.781*** 0.790*** 0.758***

HL elasticity 0.280 0.297 0.314 0.266

HL 95% CI ( 0.183, 0.413) ( 0.199, 0.446) ( 0.213, 0.471) ( 0.169, 0.414)

Predictors

Quarterly outcomes Y

Annualized outcomes Y Y Y

Both annualized outcomes Y Y

Industry & Other controls Y

Notes: Predictor categories are either all quarterly pre-treatment outcomes (Quarterly), annualized pre-treatment
outcomes, both annualized employment and wage pre-treatment outcomes, or pre-treatment means of industry shares
and demographic/labor market variables.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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Appendix: alternative methods of inference

The results presented thus far assume that under the sharp null of zero treatment effects, the mean

percentile rank is distributed as the mean of independent uniform distributions. There are two

potential problems with this assumption. First, because some of our events contain as few as 20

donors, the mean percentile rank might be too discrete to be assumed to be distributed uniformly.

The second and potentially more serious problem is that because some of our events occur at the

same calendar time, they may share some of the same donor observations. This overlap in donors

means that the estimated ranks from two events may be correlated, violating the assumption that the

ranks are independent across events. Moreover, recurring treatments within the same state may also

lead to serial correlation in the ranks across time.

In this section, we compare our primary rank-based inferential procedure with two alternative

rank-based methods of conducting inference on the pooled Hodges-Lehmann employment elasticity

that address the two issues raised above. For each of these three methods, we estimate the Hodges-

Lehman confidence interval. We then consider a fourth method of inference: instead of using rank-

based methods to estimate the Hodges-Lehmann confidence interval, we construct a randomization

inference based confidence interval for the mean effect using means of donor elasticities. These

four methods provide researchers a toolkit of possibilities for conducting inference with synthetic

controls with multiple events. First we describe how we construct three rank-based counterfactual

distributions used to test the sharp null ηe1 = 0 for all N events, along with randomization inference

using the mean elasticity. Then we discuss the results using these four methods.

The first approach is the baseline one used throughout this paper, which assumes that the

percentile ranks pe1 of these elasticities vis-à-vis the donor states are distributed continuously as

independent uniform variables on [0,1]. We use one million simulations of the mean of N uniforms

to calculate the 95% critical values for this Irwin-Hall distribution. Table A1 lists these critical

values for N = 1 . . .30. These are the preferred critical values for the mean percentile rank used

throughout the paper. For the full sample of 29 events, the 5% critical values of this distribution are

0.395 and 0.605.
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The second method recognizes that in practice the percentile ranks are calculated for a finite,

event-specific number Ne of donor states. For this second method, we relax the assumption of

continuous approximation, and calculate percentile ranks with the Weibull-Gumbel rule pe =

re/(Ne + 1) by simulating the uniform integer ranks re ∈ [1,Ne] with the appropriate number of

donor states present in our data. The distribution of the mean of these percentile ranks across 29

treatment events forms the counterfactual of the mean percentile rank.

The third method further relaxes the assumption that the ranks are independently distributed.

The set of placebo elasticities is not independently distributed because some treatments occur around

the same time period. For example, the five states that raise their minimum wages during 2005 share

many of the same donors. Therefore, these treatments are associated with similar donor elasticities,

inducing a correlation in donor ranks across this set of events. To form the distribution of mean

percentile ranks under the null hypothesis accounting for donor overlap, we use a computationally

intensive randomization inference procedure. We permute state identifiers across the sample of 50

states and merge the treatment events to the shuffled sample of states. In this merged dataset, the

“treatment” status is a randomly generated placebo with a mean zero effect on outcomes. However,

the resulting dataset shares the exact timing and structure of donor overlap in our actual sample of 29

events, as well as the actual sample’s event-specific pre- and post-treatment window configurations.

The dataset also retains the same structure of recurring treatments, and hence accounts for serial

correlation in the synthetic control estimates over time within a state. For each event, and for each

“treated” and donor state, we calculate the percentile ranks of the placebo-treatment effects, defined

as the post-treatment percent difference of employment-to-population ratios between the state and

its synthetic control. Finally, we calculate the mean percentile rank of the 29 “treated” states. We

iterate these one million times to estimate the distribution of average ranks under the null using this

rank-based randomization inference. Note that although the placebo-law sample contains actually

treated states, the resulting distribution remains a valid counterfactual because all states have the

same probability of treatment assignment, before permuting state identifiers.

Table A2 describes all three methods of rank-based inference associated with our sample’s 29
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treatment events. The first column of results lists the 2.5 and 97.5 percentiles of each counterfactual

distribution. These 95% critical values are very similar across methods. For example, with the third

method which uses randomization inference on the rank to fully account for donor overlap, the

cutoffs are (0.388,0.611). These are very close to the cutoffs using the first (baseline) method of

(0.395, 0.605) from the Irwin-Hall distribution. In the second column, we calculate the 5% rejection

rates for each counterfactual distribution using the 95% critical values of Irwin-Hall distribution. By

construction, this is exactly 5.0% for the first method using Irwin-Hall distribution. For the second

method, the rejection rate is similar but slightly lower, at about 4.3%. Finally, for the third method

accounting for overlap using rank-based randomization inference, the rejection rate (when using the

Irwin-Hall cutoffs) rises to about 6.6%, suggesting that donor overlap leads to a slight tendency to

over-reject the null when using method 1, although the bias in the size of the test is very small.

To see how these methods affect estimates of the confidence intervals of the aggregate effects,

columns 3-5 show the Hodges-Lehmann point estimate and associated confidence intervals. Here,

we form confidence intervals as described in Section 2.3 by inverting the mean rank, but we use

the critical values from the respective distributions for each method. The 95% Hodges-Lehman

elasticity confidence of (-0.170, 0.087) with the first method remains essentially unchanged when

using the critical values accounting for the discreteness of the ranks. Using the critical values

based on the rank-based randomization inference accounting for donor overlap, the 95% confidence

interval slightly widens to (-0.178, 0.094). The over-statement in precision due to ignoring overlap

therefore appears to be very small in terms of Hodges-Lehmann confidence intervals: about 0.01

in elasticity space. These results validate the choice of using the simpler and computationally less

costly Irwin-Hall distribution for conducting statistical inference.

In the fourth row of Table A2 we compare the above results using the Hodges-Lehmann

pooled effect and rank-based inference to randomization inference for the mean effect. To form

randomization-based confidence intervals around the mean employment elasticity estimate of -0.058,

we first construct the counterfactual distribution of the mean of 29 donor elasticities: we select,

at random, one donor from each of the treatment events, and calculate the mean of the synthetic
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control-based elasticities. Repeating this process one million times, we use the resulting 2.5 and

97.5 percentiles of this distribution to calculate the 95% randomization inference confidence interval.

For the mean effect of -0.058, the 95% randomization confidence interval is (-0.197, 0.100). This is

somewhat wider than than our preferred Hodges-Lehman confidence interval (-0.170, 0.087) . This

is likely because the randomization inference confidence interval for the mean, based on means of

donor elasticities, is somewhat more influenced by large outlier elasticities among donors.
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Appendix Tables

Table A1: Extrema of the distribution of mean of N uniformly distributed random variables

Percentile

N 0.5 2.5 5.0 95.0 97.5 99.5

1 0.005 0.025 0.050 0.950 0.975 0.995

2 0.050 0.111 0.158 0.842 0.888 0.950

3 0.103 0.176 0.223 0.777 0.823 0.896

4 0.147 0.220 0.261 0.738 0.780 0.852

5 0.182 0.249 0.287 0.713 0.751 0.819

6 0.206 0.271 0.305 0.694 0.729 0.793

7 0.227 0.288 0.320 0.680 0.712 0.774

8 0.244 0.301 0.332 0.668 0.699 0.757

9 0.258 0.312 0.341 0.658 0.687 0.743

10 0.269 0.322 0.350 0.650 0.678 0.731

11 0.280 0.330 0.357 0.643 0.670 0.720

12 0.289 0.337 0.363 0.637 0.663 0.711

13 0.297 0.344 0.368 0.632 0.656 0.703

14 0.304 0.349 0.373 0.627 0.651 0.696

15 0.311 0.354 0.377 0.623 0.646 0.689

16 0.317 0.359 0.381 0.619 0.641 0.683

17 0.322 0.363 0.385 0.615 0.637 0.679

18 0.327 0.367 0.388 0.612 0.633 0.673

19 0.331 0.370 0.391 0.609 0.630 0.669

20 0.335 0.374 0.394 0.606 0.626 0.665

21 0.339 0.377 0.396 0.604 0.623 0.660

22 0.343 0.379 0.398 0.601 0.620 0.657

23 0.346 0.382 0.401 0.599 0.618 0.654

24 0.349 0.384 0.403 0.597 0.615 0.650

25 0.352 0.387 0.405 0.595 0.613 0.647

26 0.355 0.389 0.407 0.593 0.611 0.645

27 0.358 0.391 0.408 0.591 0.609 0.642

28 0.360 0.393 0.410 0.590 0.607 0.639

29 0.363 0.395 0.412 0.588 0.605 0.637

30 0.365 0.397 0.413 0.587 0.603 0.635

Notes: Simulated using one million iterations of the mean of N uniformly distributed variables
on [0,1].
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