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Abstract

Rothschild and Stiglitz (1970) introduce a way to represent random variables as convex functions
(integrals of the cumulative distribution function). Combining their result with Blackwell’s
Theorem (1953), we characterize the set of distributions of posterior means that can be induced
by a signal. This characterization provides a novel way to analyze a class of Bayesian persuasion
problems.
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1 Introduction

Consider a situation where one person, call him Sender, generates information in order to persuade

another person, call her Receiver, to change her action. Sender and Receiver share a common prior

about the state of the world. Sender can publicly generate any signal about the state and Receiver

observes the signal realization before she takes her action.1

Kamenica and Gentzkow (2011) analyze a general version of this ‘Bayesian persuasion’ problem.2

They draw on an insight from Aumann and Maschler (1995) to develop a geometric approach to

Sender’s optimization problem. They derive a value function over beliefs and then construct the

optimal signal from the concavification of that value function.3 This approach provides ample

intuition about the structure of the optimal signal, but has limited applicability when the state

space is large. The dimensionality of the space of beliefs is roughly the same as the cardinality of

the state space,4 so the value function and its concavification can be visualized easily only when

there are two or three states of the world. When the state space is infinite, the concavification

approach requires working in an infinite-dimensional space.

In this paper we analyze a class of Bayesian persuasion problems where the state space may be

large but Sender and Receiver’s preferences take a simple form: the state ω is a random variable,

Receiver’s optimal action (taken from a finite set) depends only on E [ω], and Sender’s preferences

over Receiver’s action are independent of the state.

This environment captures a number of economically relevant settings. For example, it might

be the case that Sender is a firm, Receiver is a consumer, and ω is the match quality between the

attributes of firm’s product and the consumer’s preferences. Since the latter are unknown to the

firm, the common prior assumption is palatable. The interpretation of the signal in this case is the

firm’s choice of what information about the product to provide to the consumer. For example, a

software company can decide how many features to provide in the trial version of its product.

Kamenica and Gentzkow (2011) also examine this environment, but do not characterize the

1A signal, in our terminology, is a map from the true state of the world to a distribution over some signal realization
space. Others terms for a signal include experiment and signal structure.

2Gentzkow and Kamenica (2014) extend the analysis to the case of costly signals and Gentzkow and Kamenica
(2015) to a situation with multiple senders.

3A concavification of a function f is the smallest concave function that is everywhere weakly greater than f .
4When the state space Ω is finite, the space of beliefs has |Ω| − 1 dimensions.
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optimal signal. They show that if one considers the value function over Receiver’s posterior mean,

the concavification of that value function pins down whether Sender can benefit from generating

information but does not determine the optimal signal.

The problem is that it is difficult to characterize the set of feasible distributions of the posterior

mean. Any distribution of posterior beliefs whose expectation is the prior can be induced by some

signal; but, it is not possible to induce every distribution of posterior means whose expectation is

the prior mean.

In this paper, we combine insights from Blackwell (1953) and Rothschild and Stiglitz (1970)

to derive the characterization of all feasible distributions of the posterior mean. We then use this

characterization to analyze the aforementioned class of Bayesian persuasion problems.

Kolotilin (2014) and Kolotilin et al. (2015) examine closely related environments. They make

the same assumptions on preferences but allow for Receiver to have private information. They

focus exclusively on the case with a binary action. Kolotilin (2014) shows that neither Sender’s

nor Receiver’s payoff is necessarily monotone in the precision of Receiver’s private information.

Kolotilin et al. (2015) consider “private persuasion” where Receiver reports his private type before

Sender generates information. They show that Sender never strictly benefits by allowing for private

persuasion.5 While the focus of these papers is somewhat different, our proof draws on a result in

Kolotilin (2014).

2 The model

The state of nature is a random variable ω on [0, 1]. Sender and Receiver share a common prior

F0 on ω. Throughout the paper we denote any distribution over real numbers by its cumulative

distribution function (CDF); hence, under the prior Pr (ω ≤ x) = F0 (x). Let m0 denote the mean

of F0. A signal π consists of a signal realization space S and a family of distributions {πω} over S.

Sender chooses a signal. Receiver observes the choice of the signal π and the signal realization s.

Receiver then chooses an action from a finite set. Her optimal action depends on her expectation

of the state, E [ω]. Without loss of generality we label the actions so that action ai is optimal

5Gupta (2014) and Wang (2015) also contrast public and private persuasion but they have a different notion of
private persuasion. Specifically, they consider a case with multiple receivers and contrast the case where all of them
observe the same signal realization with the case where they observe independent draws of the signal.
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Figure 1: Signals as convex functions

(a) CDFs of posterior means
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if γi ≤ E [ω] ≤ γi+1 given some set of cutoffs γ0 ≤ γ1 ≤ ... ≤ γn ∈ [0, 1]. Sender has some

state-independent utility function over Receiver’s action.

3 Signals as convex functions

Given a signal π, a signal realization s induces a posterior Fs. For each signal realization, let ms

denote the mean of Fs. A signal induces a distribution of posteriors and hence a distribution of

posterior means. Let Gπ : R → [0, 1] denote the distribution of posterior means induced by signal

π. Then, for each signal π, let cπ denote the integral of Gπ, i.e., cπ (x) =
´ x
0
Gπ (t) dt. If cπ is thus

obtained from π we say that π induces cπ.

We illustrate this definition with some examples. Suppose that F0 is uniform. Consider a

totally uninformative signal π. This signal induces a degenerate distribution of posterior means

always equal to m0 = 1
2 . Hence, Gπ is a step function equal to 0 below 1

2 and equal to 1 above

1
2 . The convex function cπ induced in turn is thus flat on

[
0, 12
]

and then linearly increasing from

1
2 to 1. At the other extreme, consider a fully informative signal π that fully reveals the state.

In that case, each posterior has a degenerate distribution with all the mass on the true state and

thus Gπ = F0. Since F0 is uniform, Gπ is linear, and thus cπ is quadratic: cπ (x) = 1
2x

2. Finally,

consider a “partitional” signal P that gives a distinct signal realization depending on whether the

state is in
[
0, 12
]
, or

(
1

4=2 , 1
]
. Then, GP is a step function and cP is piecewise-linear. Figure 1

depicts these CDFs and functions.

If we consider an arbitrary signal π, what can we say about cπ? Since Gπ is a CDF and thus

increasing, cπ as its integral must be convex. Moreover, since any signal π is a garbling of π, we must
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have that Gπ is a mean-preserving spread of Gπ (Blackwell 1953); hence, cπ ≥ cπ by Rothschild

and Stiglitz (1970). Similarly, since π is a garbling of π, Gπ is a mean-preserving spread of Gπ and

thus cπ ≥ cπ. Putting these observations together, we obtain:

Remark 1. Given any signal π, the induced function cπ is convex. Moreover, cπ (x) ≥ cπ (x) ≥ cπ (x)

∀x ∈ [0, 1].

Note that this result applies for any prior, not just for the uniform example depicted in Figure

1. In general, functions cπ and cπ are determined by the prior with cπ flat to the left of m0 and

then increasing with a slope of 1, and cπ equal to the integral of F0.

4 Convex functions as signals

Now suppose that we are given some function that satisfies the properties from Remark 1. Is it

always the case that there is some signal that induces this function? The answer to this question

turns out to be affirmative:

Proposition 1. Given any convex function c : [0, 1] → R such that cπ (x) ≥ c (x) ≥ cπ (x) ∀x ∈

[0, 1], there exists a signal that induces it.

Proof. Consider some function c satisfying the given properties. Define a function

G (x) =


0 : x < 0

c′ (x) : 0 ≤ x < 1

1 : x ≥ 1

where c′ (x) denotes the right derivative of c at x. Since c is convex, its right derivative must exist.

Moreover, since c is convex and 0 ≤ c′ (x) ≤ 1 for all x (cf: Lemma 1 in the Appendix), G is

increasing and right-continuous. We also clearly have that limx→−∞G (x) = 0 and limx→∞G (x) =

1. Hence, G is a CDF. Now, since
´ x
0 F0 (t) dt = cπ (x) ≥ c (x) =

´ x
0 G (t) dt, we know that F0 is a

mean-preserving spread of G. By Proposition 1 in Kolotilin (2014), this in turn implies that there

must exist a signal that induces G as the distribution of posterior means.

Proposition 1 thus provides us with a simple characterization of the distributions of posterior
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Figure 2: Feasible distributions of posterior means vs. all random variables with E [m̃] = m0

m0 1

means that can be induced by a signal. Figure 2 contrasts the space of functions induced by all

random variables whose expectation is the prior mean (any convex function in the lightly shaded

area) with the subset of those that represent feasible distributions of the posterior means (any such

function in the darker area in the bottom right).

5 Optimal signals

In the previous section we transformed Sender’s “budget set” of all signals into a “budget set” of

convex functions. Our next step is to analyze how to determine Sender’s payoff for a given function

in this new budget set.

The key observation is that – under the preference structure we have assumed – Sender’s payoff

is entirely determined by the local property of the induced function around the action cutoffs. In

particular, the left derivative of cπ at γi fully determines how often Receiver takes an action in the

set {ai, ai+1, ..., an}. Hence, once we know c′π (γi) for each i – where, from here on, we let c′π denote

the left derivative – we can back out Sender’s payoff.

5.1 Two actions

Consider the simplest case where Receiver takes one of two actions: a0 or a1. To make the problem

non-trivial, we assume that Sender prefers a1, but m0 < γ1.
6 In this case, Sender wants to design a

signal that maximizes the probability of a signal realization s such that EFs [ω] ≥ γ1.7 This simple

problem can also be solved algebraically (Ivanov 2015).8 We nonetheless begin with this simplest

6Otherwise, a completely uninformative signal is clearly optimal.
7It is easy to show that in any equilibrium, Receiver must break her indifference at γ1 in Sender’s favor.
8An optimal signal is a partition that reveals whether ω belongs to [x∗, 1], with x∗ defined by

´ 1
x∗ xdF0 (x) = γ1.
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Figure 3: Optimal signals with binary actions
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example as it illustrates our approach in the most transparent way.

As mentioned above, if Sender induces cπ with c′π (γ1) = k, his payoff will be proportional to

1 − k. Hence, Sender wants to induce a function that minimizes the left derivative at γ1. As we

can see Figure 3, he cannot bring this derivative all the way down to zero. Doing so would violate

the restriction that cπ must be convex, and bounded above by cπ. In fact, looking at Figure 2, it

is easy to see that any optimal cπ – the one that minimizes the left derivative – must satisfy two

features. First, it must coincide with cπ at γ1, as indicated by the “pivot point” labeled P in Figure

3. Second, the “arm” leaving P to the left should be “pivoted up” as much as possible, until it is

tangent to cπ. This identifies the optimal signals since the behavior of the function to the left of

the tangency point is irrelevant. Thus, any convex function within the shaded area of Figure 3 is

optimal. These functions correspond to signals that yield a single, deterministic realization s when

ω is above the tangency point and generate arbitrary (potentially stochastic) realizations (not equal

to s) for other states. The top of the shaded area is induced by a signal that fully reveals all ω

below the tangency point while the bottom of the area is induced by a signal that always generates

a single realization for all those states.

5.2 More actions

Now suppose Receiver can take one of three actions and Sender’s utility is 0 from a0, 1 from a1,

and λ > 1 from a2. Suppose that m0 ∈ (γ1, γ2). Looking at Figure 4, we first note that the optimal

function must go through point P . The only question that remains, therefore, is where the function

should cross γ1 – this point determines the tradeoff between how frequently a1 and a2 are taken.
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Figure 4: Optimal signal with three actions
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At one extreme, we have the blue function that maximizes the probability of a2. This occurs at

the expense of a1 never happening. At the other extreme is the red function that ensures that a0

never happens, but consequently leads to a2 being less frequent than it could be. Finally, the orange

function shows a “compromise” solution where all three actions are taken with positive probability.

As the Figure shows, we can index all potentially optimal functions with a single-dimensional

parameter z that denotes the height at which the function crosses γ1.

How does Sender’s payoff vary with z? Probability of a2 is one minus the slope of the second

segment, which is linearly increasing in z.9 Probability of a1, on the other hand, is decreasing in

z. This relationship is generally not linear. As can be seen from Figure, it depends on F0. In the

Appendix, we explicitly compute the relationship between z and the probability of a1 for the case

of a uniform prior. It takes the form of A−
√
B − 2z − Cz where A, B, and C are constants that

depend on γ1 and γ2. Because the relationship is not linear, we do not necessarily end up at a

corner solution with either the blue line (zero probability of a1) or the red line (zero probability of

a0) being optimal.10 For example, if the prior is uniform, γ1 = 1
3 , γ2 = 2

3 , and λ = 3, the optimal z

is 1
24 . This function cannot be induced through an interval partition. One signal that that achieves

the optimum is a non-monotone partition that reveals whether the state is in
[
0, 8

48

]
inducing a0,

in
[
11
48 ,

21
48

]
inducing a1, or in

[
8
48 ,

11
48

]
∪
[
21
48 , 1

]
inducing a2.

9Specifically, the probability of a2 is 1− γ2−m0−z
γ2−γ1

.
10Of course if λ is particularly high or particularly low, a corner solution can be optimal. Also, we note that

Sender’s payoff is linear in the induced function, so the optimum is always an extreme point of the feasible set.
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6 Conclusion

Previous work on Bayesian persuasion built on the observation that a distribution of posterior

beliefs is feasible, i.e., can be induced by a signal, if and only if its expectation is the prior. In this

paper, we characterize the set of feasible distributions of posterior means. This provides us with a

novel way to solve an important class of Bayesian persuasion problems.
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7 Appendix

7.1 Additional proofs

Lemma 1. Consider any convex function c : [0, 1]→ R such that cπ (x) ≥ c (x) ≥ cπ (x) ∀x ∈ [0, 1].

Let c′ (x) denote the right derivative of c at x. Then, 0 ≤ c′ (x) ≤ 1 ∀x ∈ [0, 1].

Proof. First note that since c is convex, it must be continuous.

Suppose that c′ (x∗) < 0 for some x∗ ∈ [0, 1]. Since c is convex, this implies that c′ (0) < 0.

Since cπ ≥ c and cπ (0) = 0, we have c (0) ≤ 0. Thus, since c′ (0) < 0, for a small enough x, we

have c (x) < 0. But since cπ ≥ 0, this violates the assumption that c ≥ cπ.

Suppose that c′ (x∗) > 1 for some x∗. Since c is convex, we have that c′ (1) > 1. Since

cπ ≥ c ≥ cπ.and cπ (1) = cπ (1) = 1−m0, we have c (1) = cπ (1). Now we consider two cases. First,

suppose that m0 < 1. In that case, c′π (1) = 1. But then c′ (1) > 1 and c (1) = cπ (1) jointly imply

that there exists an x < 1 s.t. c < cπ so we have reached a contradiction. Alternatively, suppose

that m0 = 1. In that degenerate case, we have that cπ (x) = cπ (x) = 0 for all x, so we must have

c (x) = 0 for all x.

7.2 Optimal signal with three actions

Suppose F0 is uniform on [0, 1]. Consider a function f (x) = a+ bx that is tangent to cπ to the left

of γ1 and crosses through the point (γ1, z). Since F0 is uniform, we know c′π (x) = x. Hence, f must

be tangent to cπ at b and we have f (b) = cπ (b), which means f (x) = − b2

2 + bx. Since f (γ1) = z,

we have −b
2

2 + bγ1 = z. By the quadratic equation, this implies b = γ1 ±
√
γ21 − 2z. From Figure 4

we can clearly see that b is increasing in z, so we know that that the smaller solution is the correct

one: b = γ1 −
√
γ21 − 2z.

Since the probability of a0 is b and the the probability of a2 is 1 − γ2− 1
2
−z

γ2−γ1 , the probability

of a1 is
γ2− 1

2
−z

γ2−γ1 − γ1 +
√
γ21 − 2z. If we have γ1 = 1

3 , γ2 = 2
3 , and λ = 3, the overall payoff is(

γ2− 1
2
−z

γ2−γ1 − γ1 +
√
γ21 − 2z

)
+
(

1− γ2− 1
2
−z

γ2−γ1

)
3 , which is maximized at z = 1

24 .
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