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Abstract

We model the saving problem of retired couples and singles facing
uncertain longevity and medical expenses in presence of means-tested
social insurance. Households can save to self-insure against uncertain
longevity and medical expenses, and to leave bequests. Individuals in
a couple can be altruistic towards their spouse and other heirs and split
bequests optimally. Single people can care about leaving bequests to
children and others. Using AHEAD data, we first estimate the model
and we then evaluate the relative importance of the various savings
motives and the risk exposure of couples’ vs. singles.
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1 Introduction

In the Assets and Health Dynamics of the Oldest Old (AHEAD) dataset,
about 50% of individuals aged 70 or older are in a couple, while about 50%
are single. Being in a couple during retirement allows its members to pool
their longevity and medical expense risks, but also exposes each member
to their spouse’s risks, including the income loss that often accompanies a
spouse’s death.

Much of the previous literature, including our own work, only studies
singles. In a previous paper (De Nardi, French, and Jones [20]) we show
that post-retirement medical expenses and government-provided insurance
are important to explaining the saving patterns of U.S. single retirees at all
income levels, including high permanent-income individuals who keep large
amounts of assets until very late in life. These savings patterns are due to two
important features of out-of-pocket medical expenses. First, out-of-pocket
medical and nursing-home expenses can be large. Second, average medical
expenditures rise very rapidly with age and permanent income. Medical
expenses that rise with age provide the elderly with a strong incentive to
save, and medical expenses that rise with permanent income encourage the
rich to be more frugal. In other work, we showed that heterogeneous life
expectancy is important to matching the savings patterns of retired elderly
singles (De Nardi, French and Jones [19]).

In this paper, we build on these previous contributions by studying the
determinants of retirement saving for both couples and singles, in a frame-
work that incorporates observed heterogeneity in life expectancy and medical
expenses, and that explicitly models means-tested social insurance.

Our first goal is to match important facts about savings, medical ex-
penses, and longevity, for both singles and couples. Our second goal is to
estimate couples’ bequest motives toward the surviving spouse and other
heirs, and compare them to the bequest motives of single people. Our third
goal is to evaluate the extent to which medical risk affects retired couples,
compared to singles, and whether couples can better insure such risks due
to intra-household risk-sharing and economies of scale. Our fourth goal is to
evaluate the potentially different responses of the saving of couples, compared
to that of singles, to changes in publicly-provided health insurance.

Using data from the AHEAD survey, we begin by documenting asset
growth at each age for members of different cohorts, for both couples and
singles. We also estimate the data generating process for shocks faced by
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post-retirement households. These first-step estimates of annuitized income,
mortality, health transitions, and medical expenses provide new evidence on
how these risks compare for singles and couples. Making accurate compar-
isons requires that we control for the retirees’ permanent income, which in
turn requires a measure of permanent income that is invariant to age and
family structure. One contribution of this paper is that we construct such a
measure. Our approach is to estimate a model expressing annuitized income
as a function of an age polynomial, family structure (households are classified
as couples, single men or single women), family structure interacted with an
age trend, and a household fixed effect. The fixed effect captures the notion of
permanent income, because it measures the component of retirement income
not affected by age or changes in household structure. Because annuitized
retirement income is mostly from Social Security and private pensions, and
income from these sources is monotonically rising in lifetime income, this is
a good measure of permanent income (PI). Another important benefit of our
methodology is that our model can be used to infer the effects of changing
age or family structure on annuitized income for the same household. For
example, our estimates imply that couples in which the male spouse dies at
age 80 suffer a 40% decline in income, while couples in which the female
spouse dies at age 80 suffer a 30% decline. These income losses are consis-
tent with the fact that the spousal benefits associated with Social Security
and defined benefit pensions typically replace only a fraction of the deceased
spouses income.

We estimate health transitions and mortality rates simultaneously by
fitting the transitions observed in the HRS to a multinomial logit model. We
allow the transition probabilities to depend on age, sex, current health status,
marital status, permanent income, and interactions of these variables. Using
the estimated transition probabilities, we simulate demographic histories,
beginning at age 70, for different gender-PI-health combinations. We find
that rich people, women, married people, and healthy people live much longer
than their poor, male, single, and sick counterparts. For example, a single
70-year-old male at the 10th permanent income percentile in a nursing home
expects to live only 2.9 more years, while a single female at the 90th percentile
in good health expects to live 16.5 more years. A 70-year-old married female
at the 90th percentile in good health (married to a 73 year old man in the
same health state) expects to live 18.6 more years. These large differences
in life expectancy can have a significant effect on asset holdings over the
retirement period (De Nardi, French and Jones, 2009).
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Despite having shorter lifetimes than people who are part of a couple,
people who are singles at age 70 are more likely to end up in a nursing
home than their counterparts who are members of a couple. For that reason,
singles also have higher medical spending, per person, than people who are
part of a couple, at any given age. We also find that the strongest predictor
for nursing home entry is gender: men are less likely to end up in a nursing
home than women. Single men and women face on average a 21% and 36%
chance, respectively, of being in a nursing home for an extended stay. The
corresponding odds for married individuals are 19% and 36%.

We also find that assets drop sharply during the period before death. By
the time the second spouse dies, a large fraction of the wealth of the original
couple has vanished, with wealth falls at the time of death of each spouse
explaining most of the decline. Depending on the specification, assets decline
$30,000-$60,000 at the time of an individual’s death. A large share of this
drop, but not all of it, is explained by the high medical expenses at the time of
death. For example, out of pocket medical spending plus death expenses are
approximately $20,000 during the year of death (whereas medical spending
is $6,000 per year for similarly aged people who do not die).

We then estimate the preference parameters of the model with the method
of simulated moments. In particular, we compare the simulated asset profiles
generated by the model to the empirical asset profiles generated by the data,
and find the parameter vector that yields the closest match. In matching
the model to the data, we take particular care to control for cohort effects.
Moreover, by explicitly modeling demographic transitions, we account for
mortality bias.

Our second-step estimates will allow us to evaluate to what extent the risk
sharing and economies of scale of a couple help insure against longevity and
medical-expense risk and to what extent couples get a better or worse deal
from publicly provided health insurance. They will also allow us to estimate
bequest motives towards the surviving spouse, in contrast to bequests to
children or others. Finally, it will enable us to study in what ways the
responses of a couple will differ from the responses of a single person when,
for example, public health insurance becomes more limited, or its quality
worsens, or some of its means-testing criteria become tighter.

The rest of the paper is organized as follows. In section 2 we describe the
key previous papers on which our paper builds on. In section 3 we introduce
our model and in section 4 we discuss our estimation procedure. In section 5
we describe some key features of the data and the estimated shock processes
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that households face. We discuss our results in section 6 and we and conclude
in section 7.

2 Related Literature

Poterba et al. ([43]) show that relatively little dissaving occurs amongst
retirees whose family composition does not change, but that assets fall signif-
icantly when households lose a spouse. We find similar results. Furthermore,
as in French et al.( [26]), we document significant drops in assets when the
last member of the household passes away.

Previous literature had shown that high income individuals live longer
than low income individuals (see Attanasio and Emmerson [4] and Deaton
and Paxon [17]). This means that high income households must save a larger
share of their lifetime wealth if they are to smooth consumption over their
retirement. Differential mortality rates thus provide a potential explanation
for why high income households have higher savings rates than low income
households. We extend the analysis along this dimension by explicitly mod-
eling the interaction of life expectancy for individuals in couples and the
differential life expectancy for couples and singles.

Even in presence of social insurance such as Medicare and Medicaid,
households face potentially large out-of-pocket medical and nursing home
expenses (see French and Jones [28, 27], Palumbo [41], Feenberg and Skin-
ner [25], and Marshall et al. [36]). The risk of incurring such expenses might
generate precautionary savings, over and above those accumulated against
the risk of living a very long life ([35]).

Hubbard, Skinner and Zeldes [32] argue that means-tested social insur-
ance programs such as Supplemental Security Income and Medicaid provide
strong incentives for low income individuals not to save. De Nardi et al. [21]
finds that these effects extend to singles in higher permanent income quin-
tiles as well. In this paper, to allow for these important effects, we model
means-tested social insurance explicitly for both singles and couples.

Bequest motives could be another reason why households, and especially
those with high permanent income, retain high levels of assets at very old ages
(Dynan, Skinner and Zeldes [23] and Americks et al. [2]). De Nardi [15] and
Castañeda et al. [13] argue that bequest motives are necessary to explain
why the observed distribution of wealth is more skewed and concentrated
than the distribution of income (Quadrini et al. [18]). De Nardi et al [21]
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shows that bequest motives help fit both assets and Medicaid recipiency
profiles for singles. We allow for a richer structure of bequest motives, in
that couples might want to leave resources to the surviving spouse, children
and other heirs, while singles might want to leave bequests to children and
other heirs.

Previous quantitative papers on savings have used simpler models that
omit one or more of these features. Hurd [33] estimates a structural model
of bequest behavior in which the time of death is the only source of uncer-
tainty. Palumbo [41] focuses on the effect of medical expenses and uncertain
lifetimes, but omits bequests. Dynan, Skinner and Zeldes [23, 24] consider
the interaction of mortality risk, medical expense risk and bequests, but use a
stylized two-period model. Moreover, none of these papers model household
survival dynamics, assuming instead that households (while “alive”) always
have the same composition. In contrast, we explicitly model household sur-
vival dynamics: when the first household member dies, assets are optimally
split among the surviving spouse and other heirs. Although Hurd [34] extends
his earlier model to include household survival dynamics, he omits medical
expense risk, and, in contrast to his earlier work, he does not estimate his
model.

Our work also complements the one on retirement behaviour by couples
by Blau and Gilleskie [8], Casanova [12], and Gallipoli and Turner [30].

Including couples and simultaneously considering bequest motives, social
insurance, uncertain medical expenses, and uncertain life expectancy is im-
portant for at least two reasons. First, Dynan, Skinner and Zeldes [24] argue
that explaining why the rich have high savings rates requires a model with
precautionary motives, bequest motives and social insurance. Second, si-
multaneously considering multiple savings motives allows us to identify their
relative strengths. This is essential for policy analysis. For example, the
effects of estate taxes depend critically on whether rich elderly households
save mainly for precautionary reasons, or mainly to leave bequests (see for
example Gale and Perozek [29]).

3 The Model

Consider a retired household with family structure ft (either a single per-
son or a couple), seeking to maximize its expected lifetime utility at household
head age t, t = tr, tr + 1..., T + 1, where tr is the retirement age, while T is
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the maximum potential lifespan.
We use w to denote women and h to denote men. Each person’s health

status, hsg, g ∈ {h, w}, can vary over time. The person is either in a nursing
home (hsg = 1), in bad health (hsg = 2), or in good health (hsg = 3).

For tractability, we assume a fixed age gap between the husband and the
wife in a couple, so that one age is sufficient to characterize the household.
To be consistent with the data frequency, and to reduce computation time,
our time period is two years long.

3.1 Preferences

Households maximize their utility by choosing savings, bequests and cur-
rent and future consumption. The annual discount factor is given by β. Each
period, the household’s utility depends on its total consumption, c, and the
health status of each member. The within-period utility function for a single
is given by

u(c, hs) = (1 + δ(hs))
c1−ν

1− ν
, (1)

with ν ≥ 0. When δ(.) = 0, health status does not affect utility.
We assume that the preferences of couples can be represented by the

following utility function:1

uc(c, hsh, hsw) = [1 + δ(hsh) + 1 + δ(hsw)]
(c/η)1−ν

1− ν
, (2)

where 1 < η ≤ 2 determines the extent to which couples enjoy economies of
scale in the transformation of consumption goods to consumption services.

When a household member dies, the estate can be left to the surviving
spouse (if there is one) or to other heirs, including the household’s children.
Estates are subject to estate taxes, but the exemption level during the time
period in our sample is above the actual assets of the vast majority of the
households in our sample. For this reason, we abstract from explicitly mod-
eling estate taxation.

We indicate with b the part of the estate, that does not go to the surviving
spouse, and assume that the deceased member of the household derives utility

1Mazzocco [37] shows that under full commitment, the behavior of a couple can be
characterized by a unique utility function if the husband and wife share identical discount
factors, identical beliefs and Harmonic Absolute Risk Aversion utility functions with iden-
tical curvature parameters.
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θj(b) from leaving that part of the estate to heirs other than the spouse. The
subscript j indicates whether there is a surviving spouse or not, and whether
one or two people have just died. In particular, θ0(b) gives the utility from
bequests for a single person with no surviving spouse, θ1(b) gives the utility
from bequests when there is a surviving spouse, and that θ2(b) gives the utility
from bequests when both spouses die at the same time. More specifically,
the bequest function takes the form

θj(b) = φj

(b+ kj)
(1−ν)

1− ν
, (3)

where kj determines the curvature of the bequest function, and φj deter-
mines its intensity. Our formulation can support several interpretations of
the “bequest motive”: dynastic or “warm glow” altruism (as in Becker and
Tomes [6] or Andreoni [3]); strategic motives (as in Bernheim, Schleifer and
Summers [7] or Brown [9]); or some form of utility from wealth itself, as in
(Carroll [11] and Hurd [33]).

3.2 Technology and Sources of Uncertainty

We assume that non-asset income at time t, yt, is a deterministic function
of the household’s permanent income, I, age, family structure, and gender if
single.

yt(·) = y(I, t, ft, gt). (4)

There are several sources of uncertainty:
1) Health status uncertainty. The transition probabilities for the health

status of a person depend on one’s current health status, permanent income,
age, and gender and marital status. Hence the elements of the health status
transition matrix for a person of gender g are given by

πg
t (·) = Pr(hsgt+1|I, t, g, hsgt , ft). (5)

2) Survival uncertainty. Let sgt (·) = s(I, t, g, hsgt , ft) denote the probabil-
ity that an individual of gender g is alive at age t + 1, conditional on being
alive at age t, having time-t health status hsg, enjoying household permanent
income I, and having family structure ft.

3) Medical expense uncertainty at the household level. We define mt as
the sum of all out-of-pocket medical expenses, including insurance premia,
and medical expenses covered by the consumption floor. We assume that
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medical expenses depend upon the health status of each family member,
household permanent income, family structure, gender if single, age, and an
idiosyncratic component, ψt:

lnmt = m(hsht , hs
w
t , I, g, t, ft, ft−1) + σ(hsht , hs

w
t , I, g, t, ft, ft−1)× ψt. (6)

For medical spending, we also include last period’s household status, to cap-
ture the jump in medical spending that occurs in the period a family member
dies.

Following Feenberg and Skinner [25] and French and Jones [27], we assume
that ψt can be decomposed as

ψt = ζt + ξt, ξt ∼ N(0, σ2
ξ ), (7)

ζt = ρmζt−1 + ǫt, ǫt ∼ N(0, σ2
ǫ ), (8)

where ξt and ǫt are serially and mutually independent. In practice, we
discretize ξ and ζ , using quadrature methods described in Tauchen and
Hussey [46].

The timing is the following: at the beginning of the period the health
shock and the medical cost shocks are realized, income is received, and if
the household qualifies, means-tested transfers are also received. Then the
household consumes and saves. Finally the survival shock hits. Household
members who die leave assets to their heirs. Bequests are included in the
heirs’ assets at the beginning of next period.

Let us denote assets at the beginning of the period with at. Assets have to
satisfy a borrowing constraint at ≥ 0. Let us indicate the constant and risk-
free, rate of return with r, and total post-tax income with y(r at + yt(·), τ),
with the vector τ describing the tax structure.

3.3 Recursive Formulation

To save on state variables we follow Deaton [16] and redefine the problem
in terms of cash-on-hand:

xt = at + y(r at + yt(·), τ)−mt + trt(·), (9)

The law of motion for cash on hand next period is given by

xt+1 = xt − ct − bt + y
(
r (xt − ct) + yt+1(·), τ

)
−mt+1 + trt(·) (10)
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where bt ≥ 0 is positive only when one spouse from a couple dies during the
current period and leaves bequests to other heirs (e.g., children). We do not
include received bequests as a source of income, because very few households
aged 65 or older receive them. When all household members die their assets
are bequeathed to the remaining heirs.

Following Hubbard et al. [31, 32], we assume that the government pro-
vides means-tested transfers, trt(·), that bridge the gap between a minimum
consumption floor and the household’s resources, net of an asset disregard
amount. Define the resources available next period before government trans-
fers with

x̃t+1 = xt − ct − bt + y
(
r (xt − ct) + yt+1(·), τ

)
−mt+1, (11)

Consistently with the main Medicaid and SSI rules, we can express govern-
ment transfers next period as

trt+1(x̃t+1, hst+1) = max
{
0, cmin(ft+1)−max{0, x̃t+1 − ad(ft+1)}

}
, (12)

We allow both the guaranteed consumption level cmin and the asset disregard
ad to vary with family structure. We impose that if transfers are positive,
ct = cmin(ft).

The law of motion for cash on hand next period can thus be rewritten as

xt+1 = x̃t+1 + trt+1(x̃t+1, hst+1). (13)

To ensure that cash on hand is always non-negative, we require

ct ≤ xt, ∀t. (14)

Using the definition of cash-on-hand, the value function for a single indi-
vidual of gender g can be written as

V g
t (xt, hst, I, ζt) = max

ct,xt+1

{
u(ct, hst) + βs(I, t, g, hsgt , ft)Et

(
V g
t+1(xt+1, hst+1, I, ζt+1)

)

+ β(1− s(I, t, g, hsgt , ft)θ0(xt − ct)

}
, (15)

subject to equations (4)-(8) and(11)-(14).
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The value function for couples can be written as

V c
t (xt, hs

h
t ,hs

w
t , I, ζt) = max

ct,xt+1,bw,bh

{
uc(ct, hs

h
t , hs

w
t )

+ βs(I, t, w, hsgt , 1)s(I, t, h, hs
g
t , 1)Et

(
V c
t+1(xt+1, hs

h
t+1, hs

w
t+1, I, ζt+1)

)

+ βs(I, t, w, hsgt , 1)(1− s(I, t, h, hsgt , 1))
[
Et

(
V w
t+1(x

w
t+1, hs

w
t+1, I, ζt+1)

)
+ θ1(b

h
t )
]

+ β(1− s(I, t, w, hsgt , 1))s(I, t, h, hs
g
t , 1)

[
Et

(
V h
t+1(x

h
t+1, hs

h
t+1, I, ζt+1)

)
+ θ1(b

w
t )
]
+

β(1− s(I, t, w, hsgt , 1)(1− s(I, t, h, hsgt , 1)θ2(xt − ct)

}
, (16)

where the value function is subject to equations subject to equations (4)-(8)
and (11)-(17), with ft = 1 since we are referring to couples, and bequests are
constrained by

bt ≤ xt − ct. (17)

4 Estimation Procedure

We adopt a two-step strategy to estimate the model. In the first step,
we estimate or calibrate those parameters that, given our assumptions, can
be cleanly identified outside our model. In particular, we estimate health
transitions, out-of-pocket medical expenses, and mortality rates from raw
demographic data. We calibrate the household economies of scale parameter
and the minimum consumption floor for singles and couples based on previous
work.

In the second step, we estimate the rest of the model’s parameters (dis-
count factor, risk aversion, health preference shifter, and bequest parameters)

∆ = (β, ν, δ, ω, φ0, φ1, φ2, k0, k1, k2)

with the method of simulated moments (MSM), taking as given the param-
eters that were estimated in the first step. In particular, we find the param-
eter values that allow simulated life-cycle decision profiles to “best match”
(as measured by a GMM criterion function) the profiles from the data.

Because our underlying motivations are to explain why elderly individuals
retain so many assets and to explain why individuals with high income save
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at a higher rate, we match median assets by cohort, age, and permanent
income. Because we wish to study differences in savings patterns of couples
and singles, we match profiles for the singles and couples separately. Finally,
to help identify bequest motives towards’ one spouse, we also match the
fraction of assets (net worth) left to the surviving spouse in a couple affected
by death.

In particular, the moment conditions that comprise our estimator are
given by

1. Median asset holdings by PI-cohort-year for the singles who are still
alive when observed.

2. Median asset holdings by PI-cohort-year for those who were initially
couples with both members currently alive.

When there is a death in a couple, the surviving spouse is included
in the singles’ profile of the appropriate age, cohort, and permanent
income cell; in keeping with our assumption that all singles differ only
in their state variables.

3. For estates of positive value, the median fraction of the estate left to the
surviving spouse by PI and age. We do not condition this moment by
cohort for two reasons. First, the sample size is too small, and second
there does not seem to be a discernible cohort effect in this moment.

The cells are computed as follows.2 Household i has family structure ft;
which indexes households that are initially couples and those that either are
initially singles (both men and women), or become singles through death
of their spouse. We sort type-f households in cohort c by their permanent
income levels, separating them into Q = 5 quintiles. Suppose that household
i’s permanent income level falls in the qth permanent income interval of
households in its cohort and family structure.

Let acfqt(∆, χ) be the model-predicted median observed asset level in
calendar year t for a household that was in the qth permanent income interval
of cohort c. Assuming that observed assets have a continuous density, at the
“true” parameter vector (∆0, χ0) exactly half of the households in group

2As was done when constructing the figures from the HRS data, we drop cells with less
than 10 observations from the moment conditions. Simulated agents are endowed with
asset levels drawn from the 1996 data distribution, and thus we only match asset data
1998-2010.
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cfqt will have asset levels of acfqt(∆0, χ0) or less. This leads to the following
moment condition:

E
(
1{ãit ≤ acfqt(∆0, χ0)} − 1/2 |c, f, q, t, household alive at t

)
= 0, (18)

for all c, f , q and t. In other words, for each permanent income-family
structure-cohort grouping, the model and the data have the same median
asset levels.

The mechanics of our MSM approach are as follows. We compute life-
cycle histories for a large number of artificial households. Each of these
households is endowed with a value of the state vector (t, ft, xt, I, hs

h
t , hs

w
t , ζt)

drawn from the data distribution for 1996, and each is assigned the entire
health and mortality history realized by the household in the AHEAD data
with the same initial conditions. This way we generate attrition in our simu-
lations that mimics precisely the attrition relationships in the data (including
the relationship between initial wealth and mortality).

We discretize the asset grid and, using value function iteration, we solve
the model numerically. This yields a set of decision rules, which, in combina-
tion with the simulated endowments and shocks, allows us to simulate each
individual’s assets, medical expenditures, health, and mortality. We compute
assets from the artificial histories in the same way as we compute them from
the real data. We use these profiles to construct moment conditions, and
evaluate the match using our GMM criterion. We search over the parame-
ter space for the values that minimize the criterion. Appendix E contains a
detailed description of our moment conditions, the weighting matrix in our
GMM criterion function, and the asymptotic distribution of our parameter
estimates.

When estimating the life-cycle profiles, and subsequently fitting the model
to those profiles, we face two well-known problems. First, in a cross-section,
older households were born in an earlier year than younger households and
thus have different lifetime incomes. Because lifetime incomes of households
in older cohorts will likely be lower than the lifetime incomes of younger
cohorts, the asset levels of households in older cohorts will likely be lower
also. Therefore, comparing older households born in earlier years to younger
households in later years leads to understate asset growth. Second, house-
holds with lower income and wealth tend to die at younger ages than richer
households. Therefore, the average survivor in a cohort has higher lifetime
income than the average deceased member of the cohort. As a result, “mor-
tality bias” leads the econometrician to overstate the average lifetime income
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of members of a cohort. This bias is more severe at older ages, when a greater
share of the cohort members are dead. Therefore, “mortality bias” leads to
overstate asset growth.

We use panel data to overcome these first two problems. Because we are
tracking the same households over time, we are obviously tracking members
of the same cohort over time. Similarly, we do separate sets of simulations
for each cohort, so that the (initial) wealth and income endowments behind
the simulated profiles are consistent with the endowments behind the empir-
ical profiles. As for the second problem, we explicitly simulate demographic
transitions so that the simulated profiles incorporate mortality effects in the
same way as the data, both for couples and singles.

5 Data

We use data from the Asset and Health Dynamics Among the Oldest
Old (AHEAD) dataset. The AHEAD is a sample of non-institutionalized
individuals, aged 70 or older in 1993. These individuals were interviewed
in late 1993/early 1994, and again in 1996, 1998, 2000, 2002, 2004, 2006,
2008, and 2010. We do not use 1994 assets, nor medical expenses, due to
underreporting (Rohwedder et al. [45]).

We only consider retired households to abstract from the retirement de-
cisions and focus on the determinants of savings and consumption. Because
we only allow for household composition changes through death, we drop
households where an individual enters a household or an individual leaves
the household for reasons other than death. Fortunately, attrition for rea-
sons other than death is a minor concern in our data.

To keep the dynamic programming problem manageable, we assume a
fixed difference in age between spouses, and we take the average age difference
from our data. In our sample, husbands are on average 3 years older than
their wives. To keep the data consistent with this assumption, we drop all
households where the wife is more than 4 years older or 10 years younger
than her husband.

We begin with 6047 households. After dropping 401 households who
get married, divorced, were same sex couples, or who report making other
transitions not consistent with the model, 753 households who report earning
at least $3,000 in any period, 171 households with a large difference in the age
of husband and wife, and 87 households with no information on the spouse
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in a household, we are left with 4,634 households, of whom 1,388 are couples
and 3,246 are singles. This represents 24,274 household-year observations
where at least one household member was alive.

We break the data into 5 cohorts. The first cohort consists of individuals
that were ages 72-76 in 1996; the second cohort contains ages 77-81; the
third ages 82-86; the fourth ages 87-91; and the final cohort, for sample
size reasons, contains ages 92-102. Even with the longer age interval, the
final cohort contains relatively few observations. In the interest of clarity,
we exclude this cohort from our graphs, but we use all cells with at least 10
observations when estimating the model.

We use data for 8 different years; 1996, 1998, 2000, 2002, 2004, 2006, 2008,
and 2010. We calculate summary statistics (e.g., medians), cohort-by-cohort,
for surviving individuals in each calendar year—we use an unbalanced panel.
We then construct life-cycle profiles by ordering the summary statistics by
cohort and age at each year of observation. Moving from the left-hand-side
to the right-hand-side of our graphs, we thus show data for four cohorts, with
each cohort’s data starting out at the cohort’s average age in 1996.

Since we want to understand the role of income, we further stratify the
data by post-retirement permanent income (PI). Hence, for each cohort our
graphs usually display several horizontal lines showing, for example, median
assets in each PI group in each calendar year. These lines also identify the
moment conditions we use when estimating the model.

Our PI measure can be thought of as the level of income if there were two
people in the household at age 70. We measure post-retirement PI using non-
asset non-social insurance annuitized income and the methods described in
appendix A . The method maps the relationship between current income and
PI, adjusted for age and household structure. The income measure includes
the value of Social Security benefits, defined benefit pension benefits, veterans
benefits and annuities. Since we model means-tested social insurance from
SSI and Medicaid explicitly through our consumption floor, we do not include
SSI transfers. Because there is a roughly monotonic relationship between
lifetime earnings and the income variables that we use, our measure of post-
retirement PI is also a good measure of lifetime permanent income.

The AHEAD has information on the value of housing and real estate,
autos, liquid assets (which include money market accounts, savings accounts,
T-bills, etc.), IRAs, Keoghs, stocks, the value of a farm or business, mutual
funds, bonds, “other” assets and investment trusts less mortgages and other
debts.
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We do not include pension and Social Security wealth for four reasons.
First, we wish to to maintain comparability with other studies (Hurd [33],
Attanasio and Hoynes [5] for example). Second, because it is illegal to borrow
against Social security wealth pension and difficult to borrow against most
forms of pension wealth, Social Security and pension wealth are much more
illiquid than other assets. Third, their tax treatment is different from other
assets. Finally, differences in Social Security and pension are captured in
our model by differences in the permanent income measure we use to predict
annual income.

One important problem with our asset data is that the wealthy tend
to underreport their wealth in virtually all household surveys (Davies and
Shorrocks [14]). This will lead us to understate asset levels at all ages. How-
ever, Juster et al. (1999) show that the wealth distribution of the AHEAD
matches up well with aggregate values for all but the richest 1 % of house-
holds. Given that we match medians (conditional on permanent income),
underreporting at the very top of the wealth distribution should not seri-
ously affect our results.

6 Results

6.1 Health and Mortality

We estimate health transitions and mortality rates simultaneously by
fitting the transitions observed in the HRS to a multinomial logit model. We
allow the transition probabilities to depend on age, sex, current health status,
marital status, permanent income, as well as polynomials and interactions of
these variables.

Using the estimated transition probabilities, we simulate demographic
histories, beginning at age 70, for different gender-PI-health combinations.
Tables 1 and 2 show life expectancies for singles and couples at age 70,
respectively. All tables use the appropriate distribution of people over state
variables to compute the number which is object of interest. We find that
rich people, women, married people, and healthy people live much longer
than their poor, male, single, and sick counterparts.

Table 1 shows that a single male at the 10th permanent income percentile
in a nursing home expects to live only 2.9 more years, while a single female
at the 90th percentile in good health expects to live 16.5 more years. The
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Males Females
Income Nursing Bad Good Nursing Bad Good
Percentile Home Health Health Home Health Health All

10 2.86 6.72 8.45 3.79 11.13 13.21 11.46
30 2.86 7.30 9.36 3.78 11.78 14.03 12.20
50 2.86 7.99 10.34 3.78 12.48 14.89 13.01
70 2.88 8.83 11.37 3.78 13.33 15.76 13.85
90 2.90 9.76 12.44 3.85 14.14 16.54 14.73

By gender:
Men 9.97
Women 13.72

By health status:
Bad Health 11.11
Good Health 14.20

Table 1: Life expectancy in years for singles, conditional on reaching age 70.

far right column shows average life expectancy conditional on permanent
income, averaging over both genders all health states. It shows that singles
at the 10th percentile of the permanent income distribution live on average
11.5 years, whereas singles at the 90th percentile live on average 14.7 years.

Table 2 shows that a 70 year old male married to a 67 year old woman
with the same health as himself, at the 10th permanent income percentile in a
nursing home expects to live only 2.7 more years, while a 70 year old married
female at the 90th percentile in good health (married to a 73 year old man in
the same health state as herself) expects to live 18.6 more years. Averaging
over both genders and all health states, married 70 year old people at the
10th percentile of the income distribution live on average 10.5 years, while
those at the 90th percentile live 15.7 years. Singles at the 10th percentile
live longer than members of couples at the same percentile. The reason
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Males Females
Income Nursing Bad Good Nursing Bad Good
Percentile Home Health Health Home Health Health All

10 2.65 6.88 8.46 3.59 11.47 13.49 10.48
30 2.69 7.77 9.74 3.67 12.46 14.68 11.59
50 2.76 8.87 11.12 3.76 13.55 15.98 12.86
70 2.85 10.19 12.62 3.90 14.89 17.29 14.23
90 2.98 11.69 14.22 4.06 16.26 18.55 15.67

By gender:
Men 12.24
Women 16.93

By health status:
Bad Health 11.88
Good Health 15.60

Oldest Survivor 18.78
Prob Oldest Survivor is Woman 67.5%

Table 2: Life expectancy in years for couples, conditional on reaching age 70.

for this is that singles at the 10th percentile of the income distribution are
are overwhelmingly women who live longer, whereas 50% of the members of
couples are male. Conditional on gender, those in either good or bad health
at the 10th percentile live longer if in a couple. Conditional only on gender,
members of couples live almost 3 years longer than singles: single 70 year
old women live on average 13.8 years versus 16.9 for married women But a
comparison of tables 1 and 2 reveals that, conditional on PI and health,
the differences in longevity are much smaller. Married people live longer
than singles, but much of the difference is explained by the fact that married
people tend to have higher PI.

18



Males Females
Income Bad Good Bad Good
Percentile Health Health Health Health All

10 20.8 21.5 34.0 35.6 32.2
30 20.5 21.6 34.1 36.1 32.7
50 20.3 21.7 34.1 36.8 32.8
70 20.1 21.6 34.1 36.9 33.1
90 19.5 21.5 33.9 36.9 33.0

By gender:
Men 21.0
Women 35.7

By health status:
Bad Health 31.2
Good Health 33.2

Table 3: Probability of ever entering a nursing home, singles alive at age 70.

The bottom part of table 2 shows the number of years of remaining life
of the oldest survivor in a household when the man is 70 and the woman is
67. On overage the last survivor lives and additional 18.8 years. The woman
is the oldest survivor 68% of the time.

The strongest predictor for nursing home entry is gender: men are less
likely to end up in a nursing home than women. Although married people
tend to live longer than singles, they are slightly less likely to end up in a
nursing home.

Table 3 shows that single men and women face on average a 21% and
36% chance of being in a nursing home for an extended stay, respectively.
Table 4 shows that married men and women face on average a 19% and 36%
chance of being in a nursing home for an extended stay. Married people are
much less likely to transition into a nursing home at any age , but married

19



Males Females
Income Bad Good Bad Good
Percentile Health Health Health Health All

10 16.1 16.6 31.8 33.0 24.6
30 16.6 17.5 32.3 34.3 25.7
50 17.3 18.6 33.0 35.7 26.5
70 17.8 19.4 34.0 36.4 27.5
90 18.5 20.6 34.9 37.3 28.3

By gender:
Men 19.0
Women 36.3

By health status:
Bad Health 25.6
Good Health 28.4

Table 4: Probability of ever entering a nursing home, married alive at age
70.

people often become single as their partner dies and a they age. Furthermore,
married people tend to live longer than singles, so they have more years of
life to potentially enter a nursing home. Permanent income has only a small
effect on ever being in a nursing home. Those with a high permanent income
are less likely to be in a nursing home at each age, but they tend to live
longer.

6.2 Income

We model income as a function of a third order polynomial in age, dum-
mies for family structure, family structure interacted with an age trend, and
a fifth order polynomial in permanent income. The estimates use a fixed
effects estimation procedures, where the fixed effect is a transformation of
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initial permanent income. Hence the regression results can be interpreted as
the effect of changing age or family structure for the same household: see
appendix A for details of the procedure.
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Figure 1: Income, conditional on permanent income and family structure.
Figure assumes all households begin as couples, then potentially change to a
single male or single female at age 80.

Figure 1 presents predicted income profiles for those at the 20th and
80th percentiles of the permanent income distribution. For each permanent
income level, we display three scenarios, all commencing from the income of
a couple. Under the first scenario, the household remains a couple until age
100. Under the second one, the man dies at age 80. Under the third one, the
woman dies at age 80.

Figure 1 shows that average annual income ranges from about $14,000
per year for couples in the 20th percentile of the PI distribution to over
$30,000 for couples in the 80th percentile of the PI distribution. As a point
of comparison, median wealth holdings for the two groups are $70,000 and
$330,000 at age 74, respectively. Our estimates suggest that couples in which
the male spouse dies at age 80 suffer a 40% decline in income, while couples
in which the female spouse dies at 80 suffer a 30% decline in income.

21



These income losses at the death of a spouse reflect the fact that although
both Social Security and defined benefit pensions have spousal benefits, these
benefits replace only a fraction of the deceased spouse’s income. More specif-
ically, people can receive benefits either based on their own history of Social
security contributions (in which case they are a “retired worker”), or based
on their spouse’s or former spouse’s history (in which case they receive the
“spouse’s” or “widows” benefit).

A married person who never worked can receive 50% of their spouse’s
benefit if their spouse is alive and is a “retired worker”. The same person
can receive up to 100% of their spouse’s benefit if their “retired worker”
spouse has died. Thus the household benefit can receive 100%+50%=150%
of the former worker spouse’s benefit when alive and 100% of the former
worker spouse’s benefit when either spouse has died. Thus, after the death
of a household member the household would maintain (100%/150%)=67%
of the original Social Security benefit and would experience a 33% drop in
benefits.

In contrast, a person who earned the same amount as their spouse will
not receive a spousal or widow’s benefit. In this case, both spouses in the
couple will receive 100% of their own “retired worker” benefit, which is based
off of their own earnings history. After the death of a spouse, the household
benefit will be (100%/(100%+100%)= 50% of its level when both were alive.

To perform our calculations, we make several assumptions, including that
both spouses begin receiving benefits at the normal retirement age. In prac-
tice, there are many modifications to this rule, including those to account for
the age at which the beneficiary and spouse begin drawing benefits.3 Our re-
gression estimates capture the average drop in income at the time of death of
a spouse, averaging over those who retire at different ages and have different
claiming histories.

6.3 Medical Spending

One drawback of the AHEAD data is that it contains information only
on out of pocket medical spending and not on the portion of medical spend-
ing covered by Medicaid. To be consistent with the model, in which the
consumption floor is explicitly modeled, we need to include both Medicaid

3See https://socialsecurity.gov/planners/retire/yourspouse.html for more details of cal-
culation of spousal benefits.
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payments and out of pocket medical spending in our measure of out-of-pocket
medical spending.

Fortunately, the Medicare Current Beneficiary Survey (MCBS) has ex-
tremely high quality information on Medicaid payments and out of pocket
medical spending. It uses a mixture of both administrative and survey data.
One drawback of the MCBS, however, is that although it has information
on marital status and household income, but does not have information on
the medical spending or health of the spouse. To exploit the best of both
datasets, we use the procedures described in Appendix C to obtain our mea-
sured out-of-pocket medical expenditures, including those paid for by Medi-
caid.

We model the logarithm of medical spending as a fourth order polynomial
in age, dummies for family structure, the health of each family member
(including whether that family member just died), family structure interacted
with an age trend, and a fifth order polynomial in permanent income. As
with the income estimate, we use fixed effects estimation procedures, so the
regression results can be interpreted as the effect of changing age or family
structure for the same household.
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Figure 2: Mean out-of-pocket medical expenditures by age, conditional on
permanent income and family structure. Figure assumes all households begin
as couples, then potentially change to a single male or single female at age
80.

Figure 2 displays our predicted medical expense profiles for those at the
20th (left panel) and 80th (right panel) percentiles of the permanent income
distribution for those in bad health. For each permanent income level, we
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present three scenarios, all of which start out with a couple. Under the first
scenario, the household remains a couple until age 100. Under the second
one, the man dies at age 80. Under the third one, the woman dies at age
80. The jump in medical spending shown at age 80 represents the elevated
medical spending during the year of death of a family member and amounts
to almost $5,000 on average. Both average medical spending and the jump
at time of death are larger for those with higher permanent income.

The figure shows that, before age 80, average annual medical spending
hoover around $4,000 per year for the couples in both income groups. For
those at the 20th percentile of the PI distribution, medical expenses change
little with age. However, for couples in the 80th percentile, medical expenses
rise to well over $10,000 per year by age 95.

In order to estimate the variability of medical spending, we take medi-
cal expense residuals (the difference between actual and predicted medical
spending) and we regress the squared residuals on the same covariates we
used for the regression for the logarithm of medical spending.

6.4 Life Cycle Asset Profiles

The following figures display median assets, conditional on birth cohort
and income quintile, for couples and singles that are classified by permanent
income quintile based on the permanent incomes of that same subpopulation
(couples of singles). We choose to classify profiles in this fashion because cou-
ples are richer than singles and classifying a subpopulation according to the
permanent income of the entire population would create cells that in some
cases contain a large fraction of the population, while in other they generate
a much smaller cell. The graphs based on the classification of permanent
income by the whole population are in appendix B and display similar pat-
terns.

Figure 3 displays the asset profiles for the unbalanced panel of singles,
classified according to the PI of the singles. Median assets are increasing
in permanent income, with the 74-year-olds in the highest PI income of the
singles holding about $200,000 in median assets, while those at the lowest PI
quintiles holding essentially no assets. Over time, those with the highest PI
tend to hold onto significant wealth well into their nineties, those with the
lower PIs never save much, while those in the middle PIs display quite some
asset decumulation as they age.

Figure 4 reports median assets for the population of those who are ini-

24



Figure 3: Median assets for singles, PI percentiles computed using singles
only. Each line represents median assets for a cohort-income cell, traced over
the time period 1996-2010. Thicker lines refer to higher permanent income
groups. Solid lines: cohorts ages 72-76 and 82-86 in 1996. Dashed lines: ages
82-86 and 92-96 in 1996.

tially in a couple. The first thing to notice is that couples are richer than
singles. The younger couples in the highest PI quintile for couples hold over
$340,000, compared to $200,000 for singles, and even the couples in the low-
est PI quintile bin hold over $60,000 in the earlier years of their retirement,
compared to zero for the singles. As for the singles, the couples in the highest
PI quintile hold on to large amount of assets well into their nineties, while
those in the lowest income PIs display more asset decumulation. Some of
these couples lose one spouse during the period in which we observe them,
in which case we report the assets of the surviving spouse, hence some of the
decumulation that we observe in this graph is due to the death of one spouse
and consequent disappearance of some of the couple’s assets.

Figure 5 Displays median assets for those who initially are in couples
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Figure 4: Median assets for initially couples, PI percentiles computed using
couples only. Each line represents median assets for a cohort-income cell,
traced over the time period 1996-2010. Thicker lines refer to higher per-
manent income groups. Solid lines: cohorts ages 72-76 and 82-86 in 1996.
Dashed lines: ages 82-86 and 92-96 in 1996.

and remain in a couple during our sample period. That is, they do not
experience the death of a partner. Interestingly, these graphs display flat to
increasing asset profiles, going from low to high permanent income. This is
consistent with the observation that much of the asset decumulation for a
couple happens at death of one spouse.

To formalize and quantify this observation, we perform regression anal-
ysis. We regress assets on a household fixed effect, dummies for household
status (couple, single man, single woman, everyone dead), a polynomial in
age, and interactions between these and permanent income. Including the
household specific fixed effect means that we can track wealth of the same
households, when one member of the household dies. The fixed effect in-
cludes all time invariant factors, including permanent income, so we cannot
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Figure 5: Median assets for intact couples, PI percentiles computed using
couples only. Each line represents median assets for a cohort-income cell,
traced over the time period 1996-2010. Thicker lines refer to higher per-
manent income groups. Solid lines: cohorts ages 72-76 and 82-86 in 1996.
Dashed lines: ages 82-86 and 92-96 in 1996.

include permanent income directly. To include permanent income directly,
we then regress the estimated fixed effect on the permanent income of that
household.

Figure 6 reports the predicted assets of a couple starting out, respectively,
in the top PI income quintile, and in the bottom one, and display the assets
under three scenarios. Under the first one, the couple remains intact until
age 90. Under the second one, the male dies at age 80, while under the
third one, the female dies at age 80. For both PI levels, assets stay roughly
constant if both partners are alive. In contrast, assets display a significant
drop at death of one of the spouses for the higher PI couples. The results
show that on average, wealth declines approximately $60,000 at the time of
death of a household member. Interestingly, assets experience a large drop
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Figure 6: Assets, conditional on permanent income and family structure.
Figure assumes all households begin as couples, then potentially change to a
single male or single female at age 80, then everyone dies at age 90.

when the male dies also for the lowest PI quintile, but not much of a drop
when the female dies first.

A simpler exercise of merely tabulating the wealth decline when one mem-
ber of the household dies suggests smaller estimates of the wealth decline at
the time of death of a spouse. This procedure suggests a decline of wealth
of $30,000 at the death of a spouse. A large share of this drop, but not all
of it, is explained by the high medical expenses at the time of death. For
example, out of pocket medical spending plus death expenses are approxi-
mately $20,000 during the year of death (whereas medical spending is $6,000
per year for similarly aged people who do not die).

To measure the decline in wealth at the time of death of the final member
of the family, we exploit the exit surveys, which include information on the
heirs’ reports of the value of the estate. In addition, we also use data from
post-exit interviews, which are follow up surveys of heirs, to better measure
wealth held in the estate. The results suggest even larger declines in wealth
when the final member of the household dies. For those at the top of the
income distribution, the death of a single person results in a wealth decline
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of approximately $110,000, whereas the decline is closer to $70,000 for those
at the bottom of the income distribution.

One should take the wealth increase when both members of the household
die for those at the top of the income distribution with some caution, since
very few households have both members die at exactly the same time.

7 Conclusions

Over one-third of total wealth in the United States is held by households
over age 65. This wealth is an important determinant of their consumption
and welfare. As the U.S. population continues to age, the elderlys savings
will only grow in importance.

Retired U.S. households, especially those who are part of a couple and
have high income, decumulate their assets at a slow rate and often die with
large amounts of assets, raising the questions of what drives their savings
behavior and how their savings would respond to policy reforms.

We develop a model of optimal lifetime decision making and estimate key
properties of the model. We find that singles live less long than people who
are part of a couple, but are more likely to end up in a nursing home in
any given year. For that reason, singles also have higher medical spending,
per person, than people who are part of a couple. We also find that assets
drop sharply with the death of a spouse. By the time the second spouse
dies, a large fraction of the wealth of the original couple has vanished, with
the wealth falls at the time of death of each spouse explaining most of the
decline. A large share of these drops in assets is explained by the high medical
expenses at the time of death. This suggests that a large fraction of all assets
held in retirement are used to insure oneself against the risk of high medical
and death expenses.
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Appendix A: Inferring Permanent Income
We assume that log income follows the process

ln yit = κ1(t, fit) + h(Ii) + ωit (19)

where κ1(t, fit) is a flexible functional form of age t and family structure fit
(i.e., couple, single male, or single female) and ωit represents measurement
error. The variable Ii is the household’s percentile rank in the permanent
income distribution. Since it is a summary measure of lifetime income at
retirement, it should not change during retirement and is thus a fixed effect
over our sample period. However, income could change as households age
and potentially lose a family member. Our procedure to estimate equation
(19) is to first estimate the fixed effects model

ln yit = κ1(t, fit) + αi + ωit (20)

which allows us to obtain a consistent estimate of the function κ1(t, fit).
Next, note that as the number of time periods over which we can measure
income and other variables for individual i (denoted Ti) becomes large,

plimTi→∞
1

Ti

Ti∑

t=1

[ln yit − κ1(t, fit)− ωit] =
1

Ti

Ti∑

t=1

[ln yit − κ1(t, fit)] = h(Ii).

(21)
Thus we calculate the percentile ranking of permanent income Ii for every
household in our sample by taking the percentile ranking of 1

Ti

∑Ti

t=1[ln yit −
κ̂1(t, fit)], where κ̂1(t, fit) is the estimated value of κ1(t, fit) from equation
(20). Put differently, we take the mean residual per person from the fixed
effects regression (where the residual includes the estimated fixed effect),
then take the percentile rank of the mean residual per person to construct
Ii. This gives us a measure of the percentile ranking of permanent income Ii.
However, we also need to estimate the function h(Ii), which gives a mapping
from the estimated index Ii back to a predicted level of income that can
be used in the dynamic programming model. To do this we estimate the
function

[ln yit − κ̂1(t, fit)] = h(Ii) + ωit (22)

where the function h(Ii) is a flexible functional form.
In practice we model κ1(t, fit) as a third order polynomial in age, dummies

for family structure, and family structure interacted with an age trend. We
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model h(Ii) as a fifth order polynomial in our measure of permanent income
percentile.

Given that we have for every member of our sample t, fit, and estimates
of Ii and the functions κ1(., .), h(.), we can calculate the predicted value of

ln ŷit = κ̂1(t, fit) + ĥ(Îi). It is ln ŷit that we use when simulating the model
for each household. A regression of ln yit on ln ŷit yields a R

2 statistic of .74,
suggesting that our predictions are accurate.

Appendix B: Asset Profiles Based on PI percentiles
computed on whole population rather than on the sub-
population of interest.

Figure 7: Median assets, whole sample. Each line represents median assets
for a cohort-income cell, traced over the time period 1996-2010. Thicker lines
refer to higher permanent income groups. Solid lines: cohorts ages 72-76 and
82-86 in 1996. Dashed lines: ages 82-86 and 92-96 in 1996.

Appendix C: Imputing Medicaid plus Out of Pocket
Medical Expenses
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Figure 8: Bequests, whole sample. Each line represents the median bequest
for a cohort-income cell, traced over the time period 1996-2010. Thicker lines
refer to higher permanent income groups. Solid lines: cohorts ages 72-76 and
82-86 in 1996. Dashed lines: ages 82-86 and 92-96 in 1996.

Our goal is to measure the data generating process of the sum of Medicaid
payments plus out of pocket expenses: this is the variable ln(mit) in equation
(6) of the main text. If the household is drawing Medicaid benefits, then the
household will spend less than ln(mit) on out of pocket medical spending
(Medicaid picking up the remainder).

The AHEAD data contains information on out of pocket medical spend-
ing, but not on Medicaid payments. Fortunately, the Medicare Current Ben-
eficiary Survey (MCBS) has extremely high quality information on Medicaid
payments plus out of pocket medical spending. One drawback of the MCBS,
however, is that although it has information on marital status and household
income, it does not have information on the medical spending or health of
the spouse. Here we explain how to exploit the best of both datasets.

We use a two step estimation procedure. First, we estimate the process
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Figure 9: Median assets for couples, PI percentiles computed using whole
population. Each line represents median assets for a cohort-income cell,
traced over the time period 1996-2010. Thicker lines refer to higher per-
manent income groups. Solid lines: cohorts ages 72-76 and 82-86 in 1996.
Dashed lines: ages 82-86 and 92-96 in 1996.

for household out of pocket medical spending using the AHEAD. Second,
we estimate the process for Medicaid payments plus out of pocket medical
spending as a function of out of pocket medical spending and other state
variables using the MCBS. Because the MCBS lacks information on spouse’s
medical spending, and because most elderly Medicaid recipients are singles,
we employ the second step estimation procedure only for singles. For couples
we use only the first stage estimates estimated using the AHEAD data.

First Step Estimation Procedure: Define ln(oopit) as the log of out of
pocket medical expenses and Xit = (hsht , hs

w
t , I, g, t, ft, ft−1). Using AHEAD

data, we first use fixed effects estimation procedures to estimate

ln(oopit) = κ2(Xit) + ǫit. (23)

37



Figure 10: Median assets for intact couples, PI percentiles computed us-
ing whole population.Each line represents median assets for a cohort-income
cell, traced over the time period 1996-2010. Thicker lines refer to higher
permanent income groups. Solid lines: cohorts ages 72-76 and 82-86 in 1996.
Dashed lines: ages 82-86 and 92-96 in 1996.

Next we construct the estimated residuals ǫ̂it = ln(oopit)−ĝ(Xit) and estimate
the regression (using OLS and no fixed effects):

ǫ̂it
2 = h(Xit) + ζit. (24)

This allows us to recover the variance of ǫit conditional on Xit.
Second Step Estimation Procedure: Once we estimate equations

(23) and (24) on the AHEAD data, we use the MCBS to estimate the link
between ln(mit) and ln(oopit) for singles using OLS with no fixed effects:

ln(mit) = α ln(oopit) + k(Xit) + uit, (25)

so we can construct ûit = ln(mit) − (α̂ ln(oopit) + k̂(Xit)) and estimate the
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Figure 11: Median assets for singles, PI percentiles computed using whole
population. Each line represents median assets for a cohort-income cell,
traced over the time period 1996-2010. Thicker lines refer to higher per-
manent income groups. Solid lines: cohorts ages 72-76 and 82-86 in 1996.
Dashed lines: ages 82-86 and 92-96 in 1996.

conditional variance of this:

ûit
2 = l̂(Xit) + ξit (26)

Combining equations (23) and (25) yields

ln(mit) = ακ2(Xit) + k(Xit) + (αǫit + uit). (27)

Recall that equation (6) of the main text is given by ln(mit) = m(Xit) +
σ(Xit)× ψt. Equation (27) then implies that m(Xit) = αg(Xit) + k(Xit).

In order to infer the variance of medical expenditures conditional on Xit,
note that from equations (6) and (27)

σ(Xit)× ψit = ln(mit)−m(Xit) = (αǫit + uit). (28)
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so we can obtain the conditional variance by noting that E[ψ2
it] = 1 and

assuming that E[ǫituit] = 0

[σ(Xit)]
2 = E[(αǫit + uit)

2|Xit] = α2E[ǫ2it|Xit] + E[u2it|Xit] (29)

where we estimate E[ǫ2it|Xit] = h(Xit) in equation (24) and E[u2it|Xit] in
equation (26).

40



Appendix D: Outline of the computation of the value
functions and optimal decision rules

We compute the value functions by backward induction. We start from
the singles, find their time T value function and decision rules by maximizing
equation (15) subject to the relevant constraints, and V g

T+1 = θ0(xt − ct),
g = h, w. This yields the value function V g

T and the decision rules for time
T. We then find the decision rules at time T − 1 by solving equation (15)
with V g

T . Continuing this backward induction yields decision rules for time
T − 2, T − 3, ..., 1.

We find the decisions for couples by maximizing equation (16), subject
to the relevant constraints and the value function for the singles, and setting
V c
T+1 to the appropriate bequest motive value. This yields the value function
V c
T and the decision rules for time T. We then find the decision rules at

time T − 1 by solving equation (16) using V c
T , V

g
T , g = h, w. Continuing this

backward induction yields decision rules for time T − 2, T − 3, ..., 1.
We discretize the persistent component and the transitory components of

the health shock, and interest rate into Markov Chain following Tauchen and
Hussey (1991). We assume a finite number of permanent income categories.
We take cash-on-hand to lay into a finite number of grid points.

Given each level of permanent income of the household, we solve for de-
cision rules for each possible combination of cash-on-hand, income, health
status, and persistent component of the health shock. We use linear interpo-
lation within the grid and linear extrapolation outside of the grid to evaluate
the value function at points that we do not directly compute.

For the singles, for simplicity of notation, here for the most part we
drop any reference to the missing spousal variables everywhere, and just use
similar notation to the one for couples (except for the number of arguments
in the function). In the code, we have different names, say for example for
the survival of single people and couples.
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The value function for the singles, g = h, w and ft = 0 is given by:

V g
t (xt, hst, I, ζt) = max

ct,xt+1

{
u(ct, hst) + β

(
1− s(hst, I, g, t, 0)

)
θ0
(
xt − ct

)
+

βs(hst, I, g, t, 0)

[ dm∑

k=1

dζ∑

l=1

dξ∑

n=1

Pr(hst+1 = hsk|hst, I, g, t, 0)Pr(ζt+1 = ζl|ζt)Pr(ξt+1 = ξn)

V g
t+1

(
xt+1(k, l, n), hst+1(k), I, ζt+1(l)

)]}
.

Subject to:

zt+1 = xt − ct + y
(
r(xt − ct) + yt+1(I, 0), τ

)

xt > cmin(g), ct ≤ xt, ∀t,
ln(mt+1(k, l, n)) = mg(hst+1(k), I, t+ 1) + σg(hst+1(k), I, t+ 1)ψt+1(l, n)

ψt+1(l, n) = ζt+1(l) + ξt+1(n),

st+1(k, l, n) = zt+1 −mt+1(k, l, n)

trt+1(k, l, n) = max
{
0, cmin(ft)−max(0, st+1 − ad(i))

}

xt+1(k, l, n) = st+1(k, l, n) + trt+1(k, l, n)

∀xt COH level, determine maximum consumption (and hence savings)
∀ct ∈ (cmin, xt), compute ug(c,m) and θ0

(
xt − ct

)
.

∀(g, t, I) For each gender, age, PI, compute savings = zt+1

∀hst, ζt For each health state and pers. medex shock TODAY
∀hst+1(k), ζt+1(l), ξ(n) tomorrow’s shocks

xt+1(k, l, n) compute tomorrow’s COH for each state
Interpolate and extrapolate V g

t+1(xt+1(k, l, n), hst+1(k), I, ζt+1(l))
Compute

βs(hst, I, t)
∑dm

k=1

∑dζ
l=1

∑dξ
n=1Π(k, l, n)V

g
t+1(xt+1(k, l, n), hst+1(k), I, ζt+1(l))

β(1− s(hst, I, t))φ0(xt − ct) + ug(ct, hst)
W (ct, xt, I, hst, ζt) = sum of the two lines just above

maxct W (ct, xt, I, hst, ζt)
cgt (xt, I, hst, ζt) =maximizer
V g
t (xt, I, hst, ζt) =maximum
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The value function for the couples is given by:

V c
t (xt, hs

w
t , hs

h
t , I, ζt) = max

ct,xt+1,b
w
t ,bht

{
uc(ct, hs

h
t , hs

w
t )+

+β
(
1− s(hsw, I, w, t, 1)

)(
1− s(hsh, I, h, t, 1)

)
θ2(xt − ct)+

βs(hsw, I, w, t, 1)(1− s(hsh, I, h, t, 1))

(
θ1(b

h
t ) + ω

dm∑

k=1

dζ∑

l=1

dξ∑

n=1

Pr(ζt+1 = ζl|ζt)

Pr(ξt+1 = ξn)Pr(hs
w
t+1 = hsk|hswt , I, w, t, 1)V w

t+1

(
xwt+1(k, l, n), hs

w
t+1(k), I, ζt+1(l)

)
)
+

β(1− s(hsw, I, w, t, 1))s(hsh, I, h, t, 1)

(
θ1(b

w
t ) + ω

dm∑

k=1

dζ∑

l=1

dξ∑

n=1

Pr(ζt+1 = ζl|ζt)

Pr(ξt+1 = ξn)Pr(hs
h
t+1 = hskh|hsht , I, h, t, 1)V h

t+1

(
xht+1(k, l, n), hs

h
t+1(k), I, ζt+1(l)

)
)
+

βs(hsw, I, w, t, 1)s(hsh, I, h, t, 1)
(

dm∑

kh=1

dm∑

kw=1

dζ∑

l=1

dξ∑

n=1

V c
t+1

(
xt+1(kh, kw, l, n), hs

w
t+1, hs

h
t+1, I, ζt+1(l)

)

Pr(ζt+1 = ζl|ζt)Pr(ξt+1 = ξn)Pr(hs
h
t+1 = hskh|hsht , I, h, t, 1)Pr(hswt+1 = hskw|hswt , I, w, t, 1)

)}

(30)

subject to
xt > cmin(c), ct ≤ xt, ∀t

0 < bt ≤ xt − ct, ∀t, i = h, w,

yct+1 = y(c, I, t+ 1)

yit+1 = y(i, I, t+ 1)

zct+1 = {xt − ct + y
(
r(xt − ct) + yct+1, τ

)
}

zit+1 = {xt − ct + y
(
r(xt − ct) + yit+1, τ

)
}

lnmc
t+1(kh, kw, l, n) = mc(hsht+1(kh), hs

w
t+1(kw), t+ 1, I)

+σc(hsht+1(kh), hs
w
t+1(kw), I, t+ 1)ψt+1(l, n)
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lnmg
t+1(k, l, n) = mg(g, hsit+1(k), t+ 1, I) + σg(g, hsgt+1(k), I, t+ 1)ψt+1(l, n)

ψt+1(l, n) = ζt+1(l) + ξt+1(n),

xct+1(kh, kw, l, n) = max{zct+1 −mc
t+1(kh, kw, l, n), cmin(c)}

xgt+1(j, k, l, n) = max{zit+1 −mi
t+1(k, l, n)− bt, cmin(i)}

Computation
∀(xt)

∀ct ∈ (cmin, xt)
θ2 (xt − ct)
∀(bit ∈ (0, xt))
θ1(bt)
∀(mh

t , m
w
t )

u
(
ct, m

h
t , m

w
t

)

∀t, ζt
sumC: expected value next period in case both survive
sumH: expected value next period in case husband dies
sumW: expected value next period in case wife dies
bequestUCM: utility from bequests when both die
W (ct, xt, I,m

h
t , m

w
t , ζt) = u

(
ct, m

h
t , m

w
t

)
+ βswm,I,ts

h
m,I,t sumC

+βswm,I,t(1− shm,I,t) sumH
+β(1− swm,I,t)s

h
m,I,t sumW+β(1− swm,I,t)(1− shm,I,t)+

β(1− swm,I,t)(1− shm,I,t) bequestUCM
maxct W (ct, xt, I,m

h
t , m

w
t , ζt)

cct(xt, I,m
h
t , m

w
t , ζt) =maximizer

V c
t (xt, I,m

h
t , m

w
t , ζt) =maximum

In the calculation of next period’s expected value in the case in which
one spouse dies (sumH and sumW), we compute the optimal decision rule
for bequests, conditional on each consumption choice. In the end when we get
the decision rule for consumption, we automatically get the optimal decision
rule of bequest corresponding to each state bct(xt, I,m

h
t , m

w
t , ζt)
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Appendix E: Moment Conditions and the Asymptotic
Distribution of Parameter Estimates

Our estimate, ∆̂, of the “true” preference vector ∆0 is the value of ∆ that
minimizes the (weighted) distance between the estimated life cycle profiles for
assets found in the data and the simulated profiles generated by the model.
For each calendar year t ∈ {1, ..., T}, we match median assets for 5 permanent
income quintiles in 5 birth year cohorts, both for singles and couples, leading
to a total of 50T moment conditions. Sorting households into quintiles also
requires us to estimate the 1/5th, 2/5th, 3/5th and 4/5th permanent income
quantiles for each birth year cohort and initial family type. This produces a
total of 40 nuisance parameters, which we collect into the vector γ. Each of
these parameters has its own moment condition.

The way in which we construct these moment conditions builds on the ap-
proach described in French and Jones [28]. Useful references include Buchin-
sky [10] and Powell [44]. Consider first the permanent income quantiles. Let
q ∈ {1, 2, ..., Q − 1} index the quantiles. Assuming that the permanent in-
come distribution is continuous, the πq-th quantile of permanent income for
initial family type f of cohort c, gπq

(c, f), is defined as

Pr
(
Ii ≤ gπq

(c, f)|c, f
)
= πq. (31)

In other words, the fraction of households with less than gπj
in permanent

income is πj . Using the indicator function, the definition of πj-th conditional
quantile can be rewritten as

E
([
1{Ii ≤ gπq

(c, f)} − πj
]
× 1{ci = c} × 1{fi = f}

)
= 0, (32)

for c ∈ {1, 2, ..., C}, f ∈ {single, couple}, q ∈ {1, 2, ..., Q− 1}.
The more important set of moment conditions involves the permanent

income-conditional age-asset profiles. Suppose that household i’s permanent
income level falls in the qth permanent income interval of households in its
cohort, i.e.,

gπq−1
(c, f) ≤ Ii ≤ gπq

(c, f). (33)

We assume that π0 = 0 and πQ = 1, so that gπ0
(c, f) ≡ −∞ and gπQ

(c, f) ≡
∞. Let acfqt(∆, χ) be the model-predicted median observed asset level for
group cfqt. Recall that the median is just the 1/2 quantile. Assuming
that observed assets have a continuous conditional density, we arrive at the
following moment condition:

E
(
1{ãit ≤ acfqt(∆0, χ0)} − 1/2 |c, f, q, t, household observed at t

)
= 0. (34)
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Equation (34) is merely equation (18) in the main text, adjusted to allow
for “missing” as well as deceased households, as in French and Jones [27].
Using indicator function notation, we can convert this conditional moment
equation into an unconditional one:

E
(
[1{ãit ≤ acfqt(∆0, χ0)} − 1/2]× 1{ci = c} × 1{fi = f}

× 1{gπq−1
(c, f) ≤ Ii ≤ gπq

(c, f)} × 1{household observed at t} | t
)
= 0,

(35)

for c ∈ {1, 2, ..., C}, f ∈ {single, couple}, q ∈ {1, 2, ..., Q}, t ∈ {t1, t2..., tT}.
Suppose we have a data set of I independent households that are each

observed at T separate calendar years. Let ϕ(∆, γ;χ0) denote the (50T+40)-
element vector of moment conditions described immediately above, and let
ϕ̂I(.) denote its sample analog. Letting ŴI denote a (50T +40)× (50T +40)
weighting matrix, the MSM estimator (∆̂′, γ̂′)′ is given by

argmin
{∆,γ}

I

1 + τ
ϕ̂I(∆, γ;χ0)

′ŴIϕ̂I(∆, γ;χ0),

where τ is the ratio of the number of observations to the number of simulated
observations.

In practice, we estimate χ0 as well, using the approach described in the
main text. Computational concerns, however, compel us to treat χ0 as known
in the analysis that follows. Under regularity conditions stated in Pakes and
Pollard [40] and Duffie and Singleton [22], the MSM estimator θ̂ is both
consistent and asymptotically normally distributed:

√
I

((
∆̂
γ̂

)
−
(

∆0

γ0

))
 N(0,V),

with the variance-covariance matrix V given by

V = (1 + τ)(D′WD)−1D′WSWD(D′WD)−1,

where: S is the variance-covariance matrix of the data;

D =

[
∂ϕ(∆, γ;χ0)

∂∆′

∣∣∣∣
∆=∆0

∂ϕ(∆, γ;χ0)

∂γ′

∣∣∣∣
γ=γ0

]
(36)
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is the (50T +40)×(9+40) gradient matrix of the population moment vector;

and W = plim→∞{ŴI}. Moreover, Newey [38] shows that if the model is
properly specified,

I

1 + τ
ϕ̂I(∆̂, γ̂;χ0)

′R−1ϕ̂I(∆̂, γ̂;χ0) χ2
50T−9,

where R−1 is the generalized inverse of

R = PSP,

P = I−D(D′WD)−1D′W.

The asymptotically efficient weighting matrix arises when ŴI converges
to S−1, the inverse of the variance-covariance matrix of the data. When
W = S−1, V simplifies to (1+τ)(D′S−1D)−1, and R is replaced with S. But
even though the optimal weighting matrix is asymptotically efficient, it can
be severely biased in small samples. (See, for example, Altonji and Segal [1].)
We thus use a “diagonal” weighting matrix, as suggested by Pischke [42]. The
diagonal weighting scheme uses the inverse of the matrix that is the same as
S along the diagonal and has zeros off the diagonal of the matrix.

We estimate D, S and W with their sample analogs. For example, our
estimate of S is the (50T + 40)× (50T + 40) estimated variance-covariance
matrix of the sample data. When estimating preferences, we use sample
statistics, so that acfqt(∆, χ) is replaced with the sample median for group
cfqt. When computing the chi-square statistic and the standard errors, we
use model predictions, so that the sample medians for group cfqt is replaced
with its simulated counterpart, acfqt(∆̂, χ̂).

One complication in estimating the gradient matrix D is that the func-
tions inside the moment condition ϕ(∆, γ;χ) are non-differentiable at certain
data points; see equations (32) and (35). This means that we cannot con-
sistently estimate D as the numerical derivative of ϕ̂I(.). Our asymptotic
results therefore do not follow from the standard GMM approach, but rather
the approach for non-smooth functions described in Pakes and Pollard [40],
Newey and McFadden [39] (section 7) and Powell [44].

In finding D, it proves useful to partition ϕ(.) into the 50T -element vector
ϕ∆(.), corresponding to the moment conditions described by equation (35)
and the 40− element vector ϕγ(.), corresponding to the moment conditions
described by equation (32). Using this notation, we can rewrite equation
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(36) as

D =

[
∂ϕ∆(∆0,γ0;χ0)

∂∆′

∂ϕ∆(∆0,γ0;χ0)
∂γ′

∂ϕγ(∆0,γ0;χ0)
∂∆′

∂ϕγ(∆0,γ0;χ0)
∂γ′

]
, (37)

and proceed element-by-element.
It immediately follows from equation (32) that

∂ϕγ(∆0, γ0;χ0)

∂∆′
= 0. (38)

To find ∂ϕγ(∆0,γ0;χ0)
∂γ′

, we rewrite equation (32) as

Pr(ci = c & fi = f)×
[
F
(
gπq

(c, f)|c, f
)
− πj

]
= 0, (39)

where F
(
gπq

(c, f)|c, f
)
is the c.d.f. of permanent income for family type-

f members of cohort c evaluated at the πj-th quantile. Differentiating this

equation shows that ∂ϕγ(∆0,γ0;χ0)
∂γ′

is a diagonal matrix whose diagonal elements
are given by

Pr
(
ci = c & fi = f

)
× f

(
gπq

(c, f)|c, f
)
. (40)

In practice we find f
(
gπq

(c, f)|c, f
)
, the conditional p.d.f. of permanent

income evaluated at the πj-th quantile, with a kernel density estimator.

To find ∂ϕ∆(∆0,γ0;χ0)
∂∆′

and ∂ϕ∆(∆0,γ0;χ0)
∂γ′

, it is helpful to rewrite equation (35)
as

Pr
(
ci = c & fi = f & household observed at t

)
×

∫ gπq (c,f)

gπq−1
(c,f)

[∫ acfqt(∆0,χ0)

−∞

f(ãit|c, f, Ii, t)dãit −
1

2

]
f(Ii|c, f)dIi = 0, (41)

It follows that the rows of ∂ϕ∆(∆0,γ0;χ0)
∂∆′

are given by

Pr
(
ci = c & fi = f & gπq−1

(c, f) ≤ Ii ≤ gπq
(c, f) & household observed at t

)
×

f
(
acfqt|c, f, gπq−1

(c, f) ≤ Ii ≤ gπq
(c, f), t

)
× ∂acfqt(∆0, γ0;χ0)

∂∆′
. (42)

Proceeding similarly, it can be shown that each row of ∂ϕ∆(∆0,γ0;χ0)
∂γ′

has the
following two non-zero elements:

Pr
(
ci = c & fi = f & household observed at t

)
×

(
−f
(
gπq−1

(c, f)|c, f
) [
F
(
acfqt|c, f, gπq−1

(c, f), t
)
− 1/2

]

f
(
gπq

(c, f)|c, f
) [
F
(
acfqt|c, f, gπq

(c, f), t
)
− 1/2

]
)′

, (43)
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with

f
(
gπ0

(c, f)|c, f
) [
F
(
acfqt|c, f, gπ0

(c, f), t
)
− 1/2

]
≡ 0, (44)

f
(
gπQ

(c, f)|c, f
) [
F
(
acfqt|c, f, gπQ

(c, f), t
)
− 1/2

]
≡ 0. (45)

In practice, we find F
(
acfqt|c, f, I, t

)
, the conditional c.d.f. of assets evaluated

at the median acfqt by finding kernel estimates of the mean regression of
1{ait ≤ acfqt} on I (holding c,f and, t fixed).

49


