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Abstract. We study a central economic problem for peer-to-peer online marketplaces:

how to create successful matches when demand and supply are highly variable. To do

this, we develop a parsimonious model of a frictional matching market for services, which

lets us derive the elasticity of labor demand and supply, the split of surplus between

buyers and sellers, and the efficiency with which requests and offers for services are

successfully matched. We estimate the model using data from TaskRabbit, a rapidly

expanding platform for domestic tasks, and report three main findings. First, supply

is highly elastic: in periods when demand doubles, sellers work almost twice as hard,

prices hardly increase and the probability of requested tasks being matched only slightly

falls. Second, we estimate average gains from each trade to be $37. Because of the

matching frictions and search costs needed to find potential matches, the ex-ante gains

are more modest, but are maximized by the elastic labor supply: if the number of hours

worked were held constant, there would be 15 percent fewer matches in equilibrium.

Third, we find that platform success varies greatly across cities. The cities which grow

fast in the number of users are also those where the market fundamentals promote

efficient matching of buyers and sellers. This heterogeneity in matching efficiency is

not attributable to scale economies, but is instead related to two measures of market

thickness: geographic density (buyers and sellers living close together), and level of task

standardization (buyers requesting homogeneous tasks).
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1 Introduction

The Internet has facilitated the growth of peer-to-peer marketplaces for the exchange of underuti-

lized goods and services. Users rent rooms on Airbnb, arrange rides on Uber, and find cleaning and

moving help on TaskRabbit. These platforms, which may compete with more traditional service

providers, act as marketplaces for decentralized buyers and sellers to meet up and transact. This

paper studies a basic economic problem for peer-to-peer marketplaces: how to equilibrate highly

variable demand and supply when matches often need to be made locally and rapidly.

One obvious answer is that a decentralized market should equilibrate on price. Prices should rise

when sellers are in short supply, causing buyers to pull back demand and sellers to expand supply.

Of course, this leaves open the question of which side adjusts more: are peer-to-peer markets

characterized by elastic demand or elastic labor supply? The theoretical literature (Rochet and

Tirole, 2006, Parker and Van Alstyne, 2005, Armstrong, 2006, and Weyl, 2010) confirms that these

elasticities are critical for platform design, and affect choices such as where to focus advertising

or how to structure platform fees. Moreover, recent empirical research emphasizes that peer-to-

peer markets are inherently frictional (Fradkin, 2014, and Horton, 2014). Perhaps when sellers are

scarce, prices do not adjust and buyers simply fail to find matches, as in theories of frictional labor

markets (Diamond, 1982, Mortensen, 1982, and Pissarides, 1985, among many).

In this paper, we use an analytical framework to analyze the possible mechanisms contributing to

market equilibration when demand and supply fluctuate. We develop a simple but fully specified

static model of a frictional matching market for services. Conditional on parameter values, the

model lets us derive the elasticity of labor demand and supply, the split of surplus between buyers

and sellers, and the efficiency with which requests and offers for services are successfully matched.

All these results combined allow us to measure the aggregate value created by the peer-to-peer

platform where these exchanges take place. Our framework can easily be applied to a variety of

online peer-to-peer platforms for local services.

We apply our model to data from TaskRabbit, an online marketplace where buyers (posters) can

hire sellers (rabbits) to perform a wide range of domestic tasks and errands. We work with internal

data from the company that allows visibility into all posted tasks, offers, and transactions. The

setting allows us to think about the efficiency and benefits of online marketplaces because successful

matches must happen rapidly and locally, so we can divide the activity on the platform into separate

sub-markets by time and geography, and use the large and plausibly exogenous fluctuations in
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buyers and sellers to estimate the demand and supply parameters of our model.1

We establish that seller effort, or labor supply, is the key equilibrating factor. When demand

is high relative to the number of sellers, the latter sharply expand their effort with very little price

adjustment and little reduction in the ability of buyers to consummate trades. Our estimates imply

that average gains from trade are $37 for each successful match. Because of matching frictions and

search costs needed to find potential matches, the ex-ante gains are more modest. But so long as

there are a lot of requests for tasks, the market can still be successful if matching frictions can be

reduced and labor supply is elastic, as in this case. Specifically, the elastic supply leads to a 15

percent increase in the value of matches created relative to a setting in which seller effort does not

adjust to equilibrate the market. Both the platform and the buyers equally benefit from this elastic

supply. We discuss our results in light of the recent platform change on TaskRabbit, which reduced

both matching and search frictions, while efficiently making use of sellers’ slack capacity. We also

explain why on TaskRabbit some cities are more successful than others using our model estimates.

Successful cities attract and retain demand at higher rates, and are more efficient in converting

requests and offers for tasks into productive matches. We relate matching efficiency to two measures

of market thickness: geographic density (buyers and sellers leaving close together), and level of task

standardization (buyers requesting homogeneous tasks). We conclude by combining our results to

estimate the aggregate value created by peer-to-peer platforms for domestic tasks.

We start in Section 2 by describing TaskRabbit, in particular how buyers post tasks such as

cleaning or grocery shopping, and how sellers submit offers to perform those tasks. We then

introduce the key economic problem faced by the platform, which is to balance demand and supply

to create valuable matches when these matches need to be found quickly and locally. Section

3 provides preliminary evidence that when demand is high relative to supply, sellers adjust the

number of offers they submit, without significant adjustments on the buyer side. We also show

that price does not adjust very much, and that the fraction of posted tasks that are completed

stays relatively constant.

We then propose a simple economic model that captures the labor demand and supply decisions

1The opportunity to observe multiple spot markets where variable numbers of buyers and sellers match while
using the same platform technology is empirically relevant. A common challenge that economists face in studies of
online platforms is that it can be difficult to define and compare separate markets. In studying eBay, for example,
it is hard to divide buyers and sellers into geographically segregated markets given the prevalence of cross-state and
cross-country transactions. There also can be a selection problem related to the fact that only platforms which have
achieved a certain level of success are in use and can be studied. The fact that TaskRabbit operates essentially
separate markets in different cities, and that we can observe these markets as they grow over time creates useful
variation for understanding demand and supply decisions and how scale economies might or might not arise.
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of buyers and sellers. In the model of Section 4, buyers choose how many tasks to post, sellers

choose how intensively to search for possible jobs, and these choices determine the number of

matches and the price at which trade occurs. In the model, matching frictions prevent some offers

from being accepted and some tasks from being filled. We allow for scale effects, both in the

matching technology and in the seller cost of search. We use comparative statics to discuss the

response of buyers and sellers’ individual choices to changes in the aggregate number of buyers and

sellers, and discuss how the size of this response depends on the model parameters.

In Section 5, we take our model to the data. The model offers a set of moment conditions:

matching and pricing technologies, individual choices to post tasks and submit offers. Estimation

is carried out in two steps by method of moments. First, price and number of matches are estimated

as a function of the total number of offers and tasks. We allow for city heterogeneity in the efficiency

with which each city is able to match tasks and offers. Second, the utility parameters of buyers

and sellers are estimated from their choices to post tasks and submit offers as functions of expected

match rates and prices.

Our estimates rely on variation across cities and over time in the number of buyers, both in

absolute levels and relative to the number of sellers. Our key assumption is that the decision to

join or leave the platform is not affected by the anticipation of unobserved match effectiveness or

price shocks, nor by the expectation on others’ adoption or attrition decisions. Roughly, we assume

that prospective buyers and sellers have access to the same historical data on the market that we

have. In Section 5 we discuss this assumption and provide supporting evidence.

Section 6 answers our first two questions. First, we quantify the high labor supply elasticity

that allows the market to equilibrate in response to supply and demand shocks. We find that seller

search costs are low in general ($7 for each accepted offer in the median market) and that sellers,

paid $48.5 for each completed task, work at close to their opportunity cost, $33. The highly elastic

supply curve, together with an average cost of listing tasks equal to 50c, implies that buyers do not

need to adjust their rate of posting tasks when they are abundant relative to sellers. Buyers are

neither rationed - i.e. they still match with similar probability - nor are they charged considerably

higher prices. Second, we estimate the gains from trade and the surplus created by TaskRabbit.

Gains from each successful match, excluding seller search costs, are equal to $37, and are shared

similarly among the buyer, the seller, and the platform. However, matching frictions and seller

search costs considerably affect the aggregate surplus generated by the platform. We also find

that the surplus does not increase considerably with market scale: the matching technology does
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not display increasing returns to scale, although a larger market size moderately lowers sellers’

search costs. The existence of an elastic supply curve, however, allows the market to efficiently

accommodate variable demand and to create 15 percent higher value from aggregate matches. In

the conclusion, we come back to this feature and our estimates of search and matching frictions to

support the recent platform change.

Section 7 focuses on our third question, related to city heterogeneity. The biggest reason why

some cities are more successful than others on TaskRabbit seems to be that in those cities demand is

higher and the matching of buyers and sellers is more efficient. We find that buyers are somewhat

sensitive to recent outcomes: the higher the probability that their task is completed today, the

higher their probability to post again in the future. The general matching efficiency of the city’s

platform thus affects buyer retention, which together with adoption is the crucial ingredient to

growth given the elasticity of existing sellers’ labor supply. The geography of the city seems to be

an important determinant of matching efficiency, as well as the level of task standardization. There

is little evidence for economies of scale leading to increasingly larger heterogeneity across cities

after small initial differences in platform success, but it is possible that more experienced buyers

learn to post tasks better, i.e. in homogeneous categories, and that makes matching more efficient.

We conclude our work by discussing some implications of our findings for platform design, and for

other peer-to-peer markets in Section 8.

Our research contributes to a growing literature studying the economics of online marketplaces

and especially peer-to-peer platforms. Recent work in this area has focused on the micro-structure of

specific marketplaces, estimating search inefficiencies (Fradkin, 2014), heterogeneity in the match-

ing process and problems of congestion (Horton, 2014), the consequences of search frictions and

platform design for price competition (Dinerstein et al., 2014), the differences between distinct

types of pricing mechanisms (Einav et al., 2014). There is also a large literature on trust and

reputation systems (e.g. Nosko and Tadelis, 2014, and Pallais, 2014), which dates back to early

work by Resnick and Zeckhauser (2002) and Bajari and Hortaçsu (2003).

Our work is complementary to this literature in that we present an explicit model of market

equilibrium and use it to study the effects of platform design and how market efficiency depends on

fundamentals at the city level. Our approach abstracts from many forms of individual heterogeneity

and asymmetric information that are emphasized in other papers, and from issues of strategic

pricing and reputation. Instead, we offer a framework that enables us to examine in detail the

particular problem, which we view as both important and common, of balancing highly variable
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demand and supply, and the process of market equilibration. The model we propose is in principle

applicable to other peer-to-peer marketplaces that match buyers and sellers of local and time-

sensitive services.

In studying the balancing of demand and supply on TaskRabbit, our modeling approach draws

on the literature on frictional search and matching in labor markets (Petrongolo and Pissarides,

2001). In particular, Pissarides (2000, ch.5) most closely resembles our model. Workers submit

applications to posted vacancies, at a cost, and employers select among applications received.

In equilibrium, the number of applications submitted reflects the expectation of matching. Most

theoretical work assumes constant returns to scale in the functional form of the matching technology,

supported in part by results in the empirical literature - for example, in Anderson and Burgess

(2000). The are two differences in our setup. First, ours is a market for services in the spirit of

Michaillat and Saez (2013), where each buyer (resp. seller) can be matched to multiple sellers

(buyers). Second, we allow for economies of scale in the costly search process.

Our analysis of scale economies and platform growth and success touches on two additional

areas of research. First, papers such as Ellison and Fudenberg (2003) have emphasized that an

important issue when marketplaces compete for buyers and sellers is whether increasing scale makes

a marketplace more efficient. We find that scale economies per se are not a major determinant of

market efficiency, for instance compared to basic fixed features such as the geography of a given

city. In modeling platform growth, through adoption and attrition decisions, we also connect to a

large literature on innovation diffusion and how the speed of growth of new technologies can depend

on information flows, technology improvements, and network effects (Young, 2009). We mention

other related papers in Section 7.

2 Setting and Data

This section describes the TaskRabbit platform, the data, and some salient facts that are important

for our analysis. We first describe how the platform operates, how tasks are posted, and how offers

are made and accepted. We then show that matches are either made quickly and locally, or not

at all. As a result, a central problem for the platform is to balance supply and demand, which

are highly variable, on a local high-frequency basis. In the next section we provide some initial

evidence that the market equilibrates mainly through variation in seller effort, with only minimal

price responsiveness. We tailor our model in Section 4 to capture this feature. Finally, we provide
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a first look at differences in market success across cities, an issue we return to in Section 7.

2.1 The TaskRabbit Platform

TaskRabbit is an online platform that allows “posters” to outsource domestic tasks to “rabbits”.

Between 2009 and mid-2014, it operated in 18 major cities in the United States, and London, UK.2

Posters post a description of the requested task in a flexible manner. Rabbits can search through

posted tasks on city-specific lists and respond with offers (Fig. 1). We will refer to posters as buyers

and rabbits as sellers of services.3

Buyers on TaskRabbit can post virtually any sort of domestic tasks or errand (e.g. pet sitting

for a goldfish), but the majority of tasks are relatively standard and generic. The five largest

categories are shopping and delivery (24%), moving help (12%), cleaning (9%), home repairs (6%),

and furniture assembly (4%). These tasks typically do not require sellers with highly specialized

skills. The nature of the tasks implies that services generally are provided locally and on relatively

short notice. Almost all users (93.6 percent of them) participate in just one city. At the same time,

of the 48.5 percent of tasks that are matched, 97 percent are filled within one or two days.4

The matching process can work in two ways. A buyer can post a task-specific price and then

accept the first offer, or ask for bids and review the prices offered by sellers. Fixed price tasks

are slightly more standardized (65 percent of them are in the top 5 categories versus 48 percent of

auctions), and prices are lower ($49 versus $63), but their share on the platform, at 41 percent, has

not changed considerably over time or across cities. About 78 percent of tasks receive an offer, and

of them 63 percent result in a match. Matches can fail because the buyer finds a better alternative

and does not select any of the bids received, or because the buyer and seller cannot coordinate on

specific task details.

Platform users tend to be either buyers or sellers, but not both. Indeed, 80.3 percent of users

have only ever posted task requests, and 16.3 percent have only ever submitted offers. The buyers

2The active cities in the US are, in order of entry: Boston (2008), San Francisco (June 2010), Los Angeles (June
2011), New York (July 2011), Chicago (September 2011), Seattle (December 2011), Portland (January 2012), Austin
(February 2012), San Antonio (August 2012), Philadelphia and Washington DC (July 2012), Atlanta, Dallas and
Houston (August 2013), Miami and San Diego (October 2010) Phoenix and Denver (November 2011).

3Leah Busque first formulated her idea for TaskRabbit when one evening she realized she had ran out of dog food.
With her husband she started contemplating the idea of “a place online where we could say we needed dog food, name
the price we’d be willing to pay, and see if there was someone in our neighborhood who would be willing to help us
out” (http://www.fatbit.com/fab/young-self-made-millionaires-women-entrepreneurs-making-difference-us-economy-
part-1/).

4To add to the local and urgent nature of tasks, the platform’s ranking algorithm prioritizes newly posted tasks
within each city. Indeed, to every seller searching through posted tasks, the platform shows a list of local tasks,
ranked according to their posting time (most recent at the top).
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on the site are predominantly female (55 percent of buyers) and relatively affluent. The modal

buyer is a woman between the age of 35 and 44 with a household income between $150,000 and

$175,000. The sellers are younger and not surprisingly have lower income. The modal seller is

25-34 years old and has a household income between $50,000 and $75,000.

Buyers go through a basic verification process that checks their identity on social networks

and their payment method. There is a more rigorous screening process for sellers. Until March

2013, applicants received a background check, a digitized survey of their motivations, skills, and

availability, and were interviewed by TaskRabbit employees to determine their fit. Acceptance rates

of sellers’ applications varied widely. They ranged between 7 and 49 percent in different months,

and on average they were very low - only 13.6 percent. In the spring of 2013 TaskRabbit reduced

the amount of screening in a successful attempt to add more sellers. The current process involves

simpler background checks and social controls - Facebook or Linkedin verification - paired with a

system of users’ reviews.

2.2 Data

Our study uses internal data from TaskRabbit. We focus on the period from June 2010 to May

2014. During this period, TaskRabbit operated in 18 cities, although entry in these cities was

staggered over time. Since we have no record of the actual entry date, we define the month of entry

into a city as the first calendar month in which 20 or more local tasks were posted.5

The data include all posted tasks, offers, and matches that occurred on the platform during the

study period. We exclude virtual tasks6 (10.4%) and tasks posted in not yet active cities (0.23%).

We also drop 10.3 percent of tasks that use other assignment mechanisms and keep only auction

and posted price tasks. We merge the tasks with the corresponding offers, and we drop extreme

price outliers (top and bottom 1 percent in bids or charged prices). To deal with the fact that

posted price tasks occasionally receive multiple offers (6.04 percent of them did), we only keep the

matched offer in case of success, or select one of the received offers at random. This simplification

restricts posted price tasks to receive either one or no offers. Finally, for much of the paper we will

aggregate activity at the city-month level, and drop city-months with less than 50 buyers posting

tasks or less than 20 sellers making offers.

5We verified the accuracy of our definition through media coverage of the platform and by talking with TaskRabbit
employees.

6A task is classified as virtual if the service does not require the seller to be at a specific location. Examples
include writing and editing, or usability testing of mobile applications.
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Table 1 shows summary statistics for the data. In the first panel, an observation is a posted

task. Out of all posted tasks 78 percent receive offers, and those tasks receive 2.8 offers on average.

Of the tasks receiving offers, 63 percent are successfully completed at an average price of $57. The

platform charges a 20% commission fee on successful tasks.7

In the second panel of Table 1, an observation is a city-month. We define a buyer to be active

in a city-month if she posts at least one task in that city-month. Analogously, a seller is active

if he submits an offer to a task posted within the city-month. On average, there are 708 active

buyers and 255 sellers in a city-month, but there is large variation across cities and months. Each

buyer posts 1.6 tasks, and each seller submits 6.4 offers. The task success rate is 46 percent and

the average price paid is $56. Of these four variables (tasks per buyer, offers per seller, task match

rate, and prices), the number of offers per sellers varies the most across city-month observations,

with limited variation in tasks per buyer, matches, and prices.

During the 4-year period we study, the platform was growing in all cities, and quite rapidly in

some. Figure 2 plots the number of successful matches for the 10 oldest cities.8 Over the period

considered, some cities grew from a few monthly matches to thousands of exchanges, like San

Francisco and New York, while some others grew at a reduced pace, like Portland and Seattle. We

will use the cross-city and over time variation in market size in our empirical section to study the

effect of scale. We will also examine the dynamic forces underlying the platform growth in Section

7.

3 Descriptive Evidence

A key feature of the platform is that there are large fluctuations in demand and supply. Since

matches must be made quickly and locally, this raises the question of what happens when demand

is especially high or low relative to the number of sellers. Here we provide some initial evidence. In

the next section we develop a theoretical model of market equilibration which allows us to analyze

labor demand, labor supply, and market clearing in more detail.

Figure 3 shows the variability of demand relative to supply in the 10 oldest cities at a monthly

level. Specifically the figure plots the number of active buyers in the city-month divided by the

number of active sellers. As before, activity is defined as posting at least one task (for buyers) or

7The commission fee can sometimes depart from 20 percent, for example in the case of coupons, referral bonuses,
or other credits that reduce the price paid by buyers without affecting the price received by sellers.

8Similar patterns to those in Figure 2 are found in the 8 youngest cities.
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submitting at least one offer (for sellers). There are sizable fluctuations in the ratio of active buyers

to active sellers, both within a city over time, and across cities within a month. In San Francisco,

for example, certain months have two buyers per seller, while other months have six buyers. During

the same calendar month, some cities may have only one buyer per seller, while other cities have

five. The variability is not due to a single time trend. Month-to-month changes in the buyer

to seller ratio are both positive and negative in no particular order. Finally, we emphasize some

persistent heterogeneity across cities and across months. For instance, San Francisco has many

more buyers per seller than Los Angeles.

In principle, there are several ways in which the market might function given this variability.

One possibility is that with fewer sellers, buyers may not be able to have tasks performed, either

because of higher prices which deter them, or because a smaller fraction of posted tasks receive

offers. Another possibility is that seller labor supply expands. We show that the latter occurs, and

that labor supply is sufficiently elastic that the level of price increase needed to generate a supply

response is small.

Figure 4 first shows that the number of posts per buyer does not adjust when sellers are in short

supply. Here, we divide the 336 city-months into four groups, corresponding to the four quartiles

of the distribution of the buyer to seller ratio. For each group we compute the average number of

tasks per buyer and offers per seller. The figure shows that regardless of the number of buyers per

seller, buyers always post 1.6 tasks each.

In contrast, Figure 4 shows that sellers submit many more offers when they are scarce relative

to demand. For the city-months in the lowest quartile of the buyer to seller ratio (1.5 buyers per

seller on average) sellers submit 4.4 offers on average. For the city-months at the other extreme

(3.8 buyers per seller) sellers each submit twice as many offers, 9.1. Offers do not fully double as

buyers double relative to sellers, so the match rate of tasks slightly declines (Figure 5). However,

the sellers’ intensive margin response, together with buyers’ constant rate of task posting, translate

into a large expansion in the number of trades as the number of buyers per seller increases.

Perhaps surprisingly, transacted prices move very little when sellers are scarce or abundant.

Figure 5 shows the average price of completed tasks for the city-months sorted by the buyer to

seller quartiles. Average transacted price is always between $52 and $59, even if the number of

buyers per seller doubles and each seller chooses to work harder. Putting aside possible issues of

task composition and seller heterogeneity, an apparent implication is that not much price increase

is needed to generate a large intensive margin increase in labor supply.
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So far we have not ruled out the possibility that there might be something special about certain

cities or certain months that leads to sellers making more offers when they are scarce for reasons

that are not causal. For example, San Francisco tends to have a higher number of buyers per seller

than other cities, so San Francisco city-months are disproportionately represented in the upper

quartiles of the buyer to seller ratio distribution in Figure 4. If sellers in San Francisco submit

more offers for reasons unrelated to the number of buyers per seller - for example because they can

find tasks that are closer to them - from Figure 4 we might wrongly conclude that a higher number

of buyers per seller leads sellers to work harder.

A first step towards establishing causality is to consider a simple difference in differences spec-

ification that includes city and time fixed effects, and therefore controls for factors leading certain

cities or months to have more buyers, and to focus instead on idiosyncratic time variation in de-

mand conditions within cities and within months. Specifically, we estimate OLS regressions of the

following type:

log(ytc) = θ1 log

(
Btc
Stc

)
+ θ2 log

(√
StcBtc

)
+ ηc + ηt + νtc , (1)

where c, t denote city c and month t (January 2010 is different from January 2011), Btc
Stc

is the

buyer to seller ratio,
√
StcBtc is the geometric average of buyers and sellers, and ytc is one of the

four relevant variables: users’ choices (tasks per buyer, offers per seller), and outcomes (task match

rate, prices). ηc controls for city-specific propensities to use TaskRabbit which are time invariant.

Similarly, ηt captures time-specific adjustments to usage intensities that are common across all

active cities. Standard errors are clustered at the city level.

The results are shown in Table 2.9 The top panel shows the regression results without fixed

effects, the bottom panel shows those with fixed effects. We first call attention to the comparison

of the coefficients between the two panels: adding fixed effects does not change the response of

9Given the log-specification, we can transform the right-hand side to be a function of the number of buyers and
sellers: log(ytc) = θ̂1 logBtc + θ̂2 logStc + ηc + ηt + νtc, where θ̂1 = θ1 + 0.5θ2 and θ̂2 = −θ1 + 0.5θ2. The results
in Table 2 imply that buyers post the same number of tasks, regardless of how many users are active. Each seller
submits more offers when there are more buyers, holding constant the number of sellers, but submits fewer offers
when there are more sellers. The task match rate goes down as more buyers post tasks, but goes up when there are
more sellers. Finally the price stays relatively constant as a function of buyers and sellers. The specification of the
regression in terms of number of buyers and sellers helps interpret the effects of the number and composition of users
in terms of network externalities: the utility a user derives from participating in a city-month depends on the number
and type of other active users. We do still prefer the specification from equation 1 because of the particular nature
of network externalities on TaskRabbit: users benefit from the platform insofar as it allows them to trade services,
and users’ participation affects the terms of trade. A seller benefits from a market with relatively more buyers, where
his services are highly demanded, but is hurt in a market with relatively more sellers, where his services face fierce
competition. At the same time, holding the relative number of buyers and sellers constant, a seller can like a large
market more or less than a small market. A preference for larger markets can arise because of scale economies, while
one for smaller markets may be due to congestion.
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sellers to fluctuations in the buyer to seller ratio, not in sign, size, or significance. The same can

be said for the task match rate. While the coefficients on price and tasks per buyers are one or two

orders of magnitude smaller when controlling for city and time characteristics, they are in both

cases quantitatively small and statistically insignificant. This provides some confidence that the

platform is used by buyers and sellers in a similar way both over time and across cities.

The size of the coefficients confirm what was shown in the plots. We discuss those from the

bottom panel of Table 2, obtained controlling for potential city and month differences. An increase

in the number of buyers per seller has virtually no effect on how many tasks each buyer posts.

On the other hand, doubling the number of buyers per seller of the median city-month, where the

median is selected according to the distribution in the buyer to seller ratio and holding everything

else constant, increases the number of offers submitted by each seller from 5.6 to 7.5. The effect on

the task match rate is negative, but smaller in percentage terms: doubling the median number of

buyers per seller decreases the match rate of tasks from 65.6 to 56.2 percent. Finally, buyers pay

just a few cents more for completed tasks when they are twice as prevalent relative to sellers.

The regressions also estimate the effect of market size, previewing possible mechanisms for

economies of scale. A city-month with more active participants significantly increases the number

of offers submitted by sellers, holding constant the relative number of active buyers and sellers. In

particular, holding the ratio of buyers to sellers fixed and doubling the number of participants of

the median sized city-month increases the number of offers submitted from 5.5 to 6.5. More active

participants also seem to raise buyers’ rate of task posting and the task match rate, but the effect is

not statistically significant when including city and month fixed effects. Finally, the price appears

invariant to the number of participants, consistently across the two panels. We will capture each

of these features in our model.

4 Model of a Market for Services

We now propose a model of how the TaskRabbit marketplace matches tasks and offers, and how

buyers and sellers make decisions about whether to post tasks and how much effort to put into

making offers. We then use the model to explain what happens when there is variation in the

number of active buyers and sellers, and explain how this variation can be used to identify the

elasticity of labor demand and supply, the division of surplus in the market, the effects of increased

market size, and the efficiency of matching in different cities and different market conditions.
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We assume for simplicity that buyers are all identical and in equilibrium choose the same number

of tasks to post. Similarly, sellers are identical and choose the same intensity with which to search

and submit offers. We also treat tasks as homogeneous. Obviously, this is a large simplification,

but it does correspond to our earlier observations that most tasks on the platform are relatively

standard and generic, and that they do not require specialized skills. More importantly, it allows

us to focus on the problem of widely fluctuating supply and demand, without being bogged down

by a complicated heterogeneous matching framework.

Market Technology. There is a measure B of identical buyers and a measure S of identical

sellers. Each buyer will choose a number of tasks, β, to post. Each seller chooses a number of

offers, σ, to make. The total number of services requested in a market is b ≡ Bβ, while the total

number of offers submitted is s ≡ Sσ.

The number of trades between buyers and sellers is given by the matching function:

m = M(s, b). (2)

M(s, b) is continuous and differentiable, and increasing in both its arguments. Each request is

matched with probability qb = m
b and each offer is successful with probability qs = m

s . We assume

that M(s, b) ≤ b and M(s, b) ≤ s to guarantee that matches are never larger than total requests

or offers. In each match, the buyer pays price p = P (s, b), the seller receives (1 − τ)p, and the

platform keeps τp as commission fee. In particular, price is determined as a function of services

requested and offered, and is assumed to be a continuous and differentiable function, increasing in

b and decreasing in s.10 Later we will estimate the matching and price functions from the data, but

we will not provide a more micro-level model of price determination - e.g. by modeling the posted

pricing decision or the bidding game between sellers.

Buyers and sellers choose how many requests to post and how many offers to submit with full

knowledge of the matching and price determination processes, but without the possibility to affect

either of those with their individual choices because each participant is small relative to the market.

Buyer’s Choice to Post Requests for Services. Each buyer randomly receives a number

10In fact, several matching models of the labor market assume that the wage is either a parameter altogether or
pinned down by other parameters. See, for example, Montgomery (1991), Hall (2005), Blanchard and Gali (2010),
Michaillat (2012), and Michaillat and Saez (2013).
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of potential needs to outsource. We assume that the number of service needs is a random draw

from a Poisson distribution, iid across buyers, with mean arrival µ.11 Each service is worth v−p to

its buyer, where v is the fixed value of having the task completed and p is the price paid. There is

a cost ξ of posting each task, drawn from an exponential distribution, iid across needs and buyers:

ξ ∼ exp(η). The average cost of posting a task is therefore equal to 1
η .

The buyer’s problem is to choose whether to post each needed service. The decision is separable

across service needs. If a buyer makes a request for a need, she pays cost ξ and expects payoff

qb(v − p). She optimally chooses to submit a request whenever the listing cost is small enough:

ξ ≤ qb(v − p). The expected number of requests posted by a representative buyer is:

β = µPr
(
ξ ≤ qb(v − p)

)
= µ

(
1− e−ηqb(v−p)

)
. (3)

Seller’s Choice to Submit Offers for Services. Each seller chooses a level of effort σ

spent searching through buyers’ requests. An effort level σ corresponds to a discovery process of

profitable requests, to which the seller submits offers. Higher effort σ makes it more likely to find

a higher number of profitable submissions.12 Specifically, we assume that the number of suitable

tasks identified and offers submitted is a random draw from a Poisson distribution Poi(σ), with

mean equal to the chosen effort level and independent across sellers. Given this assumption, we will

interchangeably refer to σ as the level of search effort or the expected number of offers submitted by

a representative seller. Search effort is costly, and its cost rises at an increasing rate. In particular,

we assume that the cost of search effort is equal to 1
2γ(b)σ

2, with γ(b) being a continuous and

increasing function of the total number of tasks posted.13 Conditional on matching a submitted

offer, the seller’s profit is (1 − τ)p − c, where τ is the platform commission fee and c is the fixed

cost of completing the task.

The problem of a representative seller is to choose the optimal level of search intensity subject

11For the conditions under which a continuum of independent and identically distributed random variables sum to
a nonrandom quantity in large economies, see Judd (1985), and Duffie and Sun (2012).

12Specifically, we assume that the distribution of application arrivals for a given σ first order stochastically domi-
nates the distribution for any σ′ ≤ σ.

13We model sellers’ search costs as increasing in the intensity of search at an increasing rate. This assumption can
be better understood in terms of time needed before finding a new task to which a seller chooses to make an offer.
Conditional on a level of effort, it is likely that the first profitable task is easier to find than the second, the second
is easier than the third, and so on. If a seller wanted to double the number of profitable tasks found, his level of
effort would then be more than twice as costly. In addition, search costs are decreasing in the number of total tasks
posted. In a market with many posted tasks, a seller is likely to spend less time finding the same number of profitable
applications as in a smaller market. If a seller wanted to send the same expected number of offers in a large market
his level of effort would then be less costly.
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to expectations on matching and prices:

Max
σ̂

σ̂qs [(1− τ)p− c]− 1

2γ(b)
σ̂2,

The optimal level of search effort satisfies:14

σ = γ(b)qs [(1− τ)p− c] . (4)

Equilibrium. Equilibrium in the market is defined as a state in which buyers and sellers

maximize their objective functions subject to the matching and pricing technologies and correct

expectations of other agents’ behavior. The equilibrium requires consistency of individual optimal

choices (β and σ) with expectations on average behavior in the market (β and σ). Given the size

of buyers B and sellers S present in the market, we define the competitive equilibrium as a vector

(β, σ, p,m) such that:

• The transacted price is determined according to p = P (s, b), and the number of matches is

determined according to m = M(s, b), where b = Bβ and s = Sσ.

• Taking qb = m
b and p as given, buyers list the number of service requests to maximize utility.

The number of requests β of the representative buyer is given by equation (3).

• Taking qs = m
s and p as given, sellers choose the level of search intensity to maximize utility.

The level of search intensity σ (i.e. of offers submitted) of the representative seller is given

by equation (4).

• The actual average number of requests posted is β = β and offers submitted is σ = σ.

In equilibrium, all buyers choose the same strategy in terms of the decision to post tasks, which

in turn is consistent with the expected posting rate. The model explains differences in the actual

number of requests across buyers as arising from the Poisson arrival rate of needs and from different

draws of listing costs. Analogously, in equilibrium, all sellers choose the same level of search inten-

sity, which in turn is consistent with the market average intensity. Differences in the rate of offer

14Buyers’ choice to post tasks and sellers’ choice of search effort are not symmetric. On the buy side, there is an
exogenous arrival of tasks, and a decision to post each of them separately conditional on arrival. A buyer in need
of moving help selects whether to post it or find an alternative solution - another service provider or informal help -
as a function of the expected value from each option. On the sell side, the setup is truly a choice of platform usage
intensity. A seller selects his optimal level of search effort, and if he finds profitable tasks he submits offers for sure.
In this case, a seller chooses his time allocation between leisure and searching for services to sell as a function of the
expected benefits from the two activities.
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submission across sellers arise from the Poisson process with which they discover profitable requests.

Assumptions on Matching and Price. The matching technology displays constant returns

to scale if a doubling of the number of tasks b and offers s doubles the number of matches m.

Analogously, the price function is invariant to scale if doubling tasks and offers does not affect the

price p. If the matching technology displays constant returns to scale, the total number of matches

(equation 2) can be rewritten as m = M
(
1, bs
)
s, where b

s is the task to offer ratio, the offer match

rate is equal to qs = M
(
1, bs
)

and the task match rate is qb =
M(1, bs)

b
s

. If the price function is in-

variant to scale, it can also be rewritten just in terms of the task to offer ratio: p = P
(
1, bs
)
. With

a slight abuse of notation, we let m = M
(
b
s

)
s and p = P

(
b
s

)
. This reformulation implies that the

match probabilities of tasks and offers, as well as the price, are just a function of demand relative

to supply, and not on the overall level of demand or supply. If, in addition to these two conditions,

seller search costs γ(b) do not decrease much with market scale, the equilibrium is unique. In

Section 6 we test that these conditions hold on TaskRabbit. Anticipating this, we maintain them

for the rest of our discussion.

Optimal Choices. Figure 6 illustrates the optimal individual choice of a seller. We discuss

the seller side, noting that for buyers the reasoning is analogous. The figure plots the individual

level marginal benefit (solid red line) and marginal cost curves (solid blue line) as a function of

search effort σ. The marginal cost curve σ
γ(b) is increasing in effort, while the marginal benefit curve

qs [(1− τ)p− c] is independent on the single seller’s choice. This is because in a large market the

offer match rate and price depend on the market average effort level σ and posting rate β, which

cannot be affected by any single participant alone. The shaded area in the picture between the

marginal benefit and marginal cost curve is the seller surplus at equilibrium, and can be inferred

knowing the matching and pricing functions, as well as seller costs. The flatter the marginal cost

curve, in the case of low search costs, the smaller is the seller surplus.

In equilibrium, a seller optimal choice of σ must be consistent with the market-average search

effort: σ = σ. We can therefore also draw the market level marginal benefit curve, where every

seller in the market chooses effort level σ, and the buyers’ posting rate is held constant at β (red

dotted line in Figure 6). In this case, both the offer match rate and the price will be affected by σ:

if every seller in the market were to increase his search intensity, each offer would be less likely to

be matched, and sellers would receive a lower price for every trade. Thus the market level marginal
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benefit is decreasing in σ. Consistency of σ with σ requires that the market level and the individual

level marginal benefit curves must cross the marginal cost curve at the same point (Eq1 in Figure

6): each individual seller takes as given the flat marginal benefit curve generated by every other

seller in the market choosing the same effort level as his own.

Changes in the match probabilities and prices affect the best response functions. Holding price

constant, an increase in the offer match rate qs increases search effort. The increase in qs corre-

sponds to an upward shift of the marginal benefit curve (upper red dotted line in Figure 7b). The

size of the increase in search - i.e. the horizontal difference between Eq1 and Eq2 - depends on the

function γ(b) and on the cost of completing the task c. The lower the cost of search, corresponding

to higher γ(b), the flatter is the marginal cost curve in the figure. With an almost flat marginal

cost curve even a small change in qs can lead to a large change in search effort. At the same time,

the smaller the seller profit (1−τ)p−c for each task, the smaller is the upward shift of the marginal

benefit curve, thus the smaller the increase in effort. Holding the offer match rate constant, an

increase in price will raise a seller’s search effort since each task will pay more. As before, the flatter

the marginal cost curve (high γ(b)) the larger the change in σ. Moreover, in percentage terms, the

smaller the seller profit (1− τ)p− c, the higher the change in search effort.

Comparative Statics. The model generates predictions about the effects of both market size

and market composition. We capture these by thinking about changes in B holding B
S fixed, and

changes in B
S holding B fixed. First consider an increase in B holding B

S fixed. This lowers the

cost to sellers of finding tasks, and raises their search effort. This in turn makes it more attractive

to post tasks, raising buyers’ posting rates. The result is an increase in β and σ, with sellers

responding more. Proposition 1 states it formally (proofs are in Appendix A).

Proposition 1. (Effect of scale) An increase in B, holding B
S fixed, leads to an increase in β and

σ, and a decrease in β
σ . This in turn implies lower prices and seller match rates, and higher buyer

match rates.

Now consider an increase in B
S , holding market size B fixed. The direct effect is to make the

market more attractive to sellers, thus raising σ, and less attractive to buyers, lowering β. There

is an indirect effect because once buyers lower β the market contracts, which raises sellers’ costs.

We show that at equilibrium this effect cannot dominate, so that the new equilibrium involves

more seller effort and less buyer posting. However, the endogenous response of buyers and sellers

does not fully compensate for seller scarcity, and the task to offer ratio is still higher at the new
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equilibrium.

Proposition 2. (Effect of user composition) An increase in B
S , holding B fixed, leads to a decrease

in β, an increase in σ, a decrease in β
σ and an increase in b

s . This in turn implies higher prices

and seller match rates, and lower buyer match rates.

These comparative statics predictions are consistent with our empirical results from the previous

section, and will form the basis for our identification strategy. To see how this works, consider the

supply side where the unknown parameters will be (c, δ, γ). The demand side is similar. If the

search cost parameters (γ, δ) were known, and given that p and qs are observable, the choice of σ

in a single market would directly pin down the marginal cost c of performing each task, regardless

of the number and composition of participating users. A low number of offers σ would imply a

low c, holding everything else constant. Next consider adding variation in market size (Figure

7a). We discuss the intuition holding constant buyers’ β, although by increasing their posting rate,

buyers’ response actually amplifies the direct effect. An increase in B pivots the marginal cost curve

downward. If we knew the other parameters affecting seller utility (c, γ), the magnitude of this shift

would only depend on δ, the extent of scale economies in search effort: when δ is large, search costs

decrease considerably with market scale, and this directly translates into a large increase in offer

submission. So roughly speaking the response of seller offers σ to changes in B identifies δ. Finally,

we add variation in the number of buyers relative to sellers B
S (Figure 7b). Again we discuss the

intuition holding constant buyers’ β. An increase in B
S shifts and pivots the marginal benefit curve

upward by increasing the match rate and the price of each additional offer. If c and δ were known,

the magnitude of this shift would only depend on γ, the slope of the marginal cost curve: when γ

is large, the marginal cost curve is flat and an increase in the relative number of buyers translates

into a large increase in offer submission. So effectively changes in B
S and the response of σ allows

us to identify γ.

5 Econometric Model

In this section, we describe how we move from the theoretical model to an econometric model, and

how we apply the model to the TaskRabbit data. We then describe our estimation strategy and

discuss our identification assumptions. Our main assumption is that the number of buyers and

sellers who consider using the platform in any city-month does not depend on contemporaneous

unobserved characteristics that affect the efficiency of matching or price determination, the cost
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of search or posting, or the value of trade. We also present the functional forms of the matching

and pricing functions, and make assumptions about how buyers and sellers form beliefs about them

when making search intensity and posting decisions. Results are presented in the next section.

5.1 Market Definition

Our model envisions a single static market, while trades occur continuously in the data. To create

an empirical analogue to the model, we define distinct markets in the data. Given that 94 percent

of users post or work in a single city, it is natural to treat cities as separate. The fact that 97

percent of successful tasks are matched to offers within 48 hours of posting suggests segmenting

the data in time as well. One option is to treat each city-month (e.g. San Francisco in October

2013) as a separate market. Within a city-month, we treat buyers and sellers, as well as their

tasks and offers, as homogeneous, following the model, and discuss this further in Appendix B.

This definition allows us to consider each participant as small relative to the size of the market,

which is our modeling assumption, and also lets us smooth shorter time variation due to potential

task heterogeneity. Other market definitions do not change our qualitative results, as shown in

Appendix C.

Our market definition is motivated by several additional considerations. First, we do not sepa-

rate markets along the various task categories - cleaning, furniture assembly, and so on - because

sellers do not specialize: of the sellers who submitted 10 offers or more 63.6 percent did so in more

than 10 categories, and of the sellers who were successfully matched to more than 10 tasks, 43 per-

cent did so for tasks in more than 10 categories. Second, we follow TaskRabbit business practice

and do not separate markets into geographic partitions smaller than the metropolitan boundaries.15

Third, we choose the calendar month as the relevant time window as a way to balance the short

time period over which tasks receive offers with the need to have enough offers and tasks in each

market to estimate match probabilities, average prices, and search and posting intensities.

There is one further data issue we must address in moving between the model and the data.

In the model, all buyers choose the same posting threshold, but the distribution of posted tasks

across buyers is Poisson. This means that some participating buyers post zero tasks. Similarly the

distribution of seller offers is Poisson and some participating sellers make zero offers. However, in

the data we cannot distinguish between buyers and sellers who were considering posting tasks and

15We do not observe any sort of clear neighborhood partitioning in the data, although the platform’s setup does
not preclude it.
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submitting offers but did not, and those who were completely disengaged from TaskRabbit.

Our solution is to rely on the Poisson assumption in the model and use it to impute the number

of buyers posting zero tasks and sellers submitting zero offers. Specifically, if the number of buyers

posting at least one task is B̃ and the average number of posts among these buyers is β̃, then

under the Poisson assumption the average number of posts β among all buyers solves β
1−eβ = β̃.

Under the same assumption, the total number of participating buyers B, which is the sum of buyers

posting zero tasks and those posting one task or more, is equal to B = B̃
1−eβ . We perform a parallel

exercise to impute the total number of participating sellers making zero offers, and to appropriately

construct S and σ.16

5.2 Econometric Model

We now describe the econometric model that we take to the data. It has three components:

the aggregate pricing and matching functions that map offers and tasks to market outcomes; the

expectations formed by buyers and sellers about their probability of matching and the market price

(assumed to be rational); and their optimal search and posting decisions.

Throughout, n = (c, t) identifies a market, our unit of observation: c denotes the city, and t

denotes the calendar month. We let Bn and Sn denote the number of participating buyers and

sellers, βn and σn denote the participants’ average posting and offer intensities, and bn and sn

denote the total number of posts and offers in a market. Finally, we let Mn denote the number of

matches, and Pn the average transacted price.

Matching and Pricing Functions. We assume that the total number of matches and average

prices in a market are Cobb-Douglas functions of the number of tasks posted and offers made.17

Specifically,

M(sn, bn) = Ans
α1
n b

α2
n (5)

P (sn, bn) = Kns
ρ1
n b

ρ2
n , (6)

The variables An and Kn are market level productivity and pricing shifters. We assume that each

16This solution is somewhat imperfect as it relies on a relatively strong distributional assumption. However, we
examine the validity of the Poisson assumption, and check the robustness of our results to alternative imputation
strategies in the Appendix, finding that our empirical results are not very sensitive to alternative approaches.

17Petrongolo and Pissarides (2001) summarize the wide empirical support for a Cobb-Douglas matching function
with constant returns to scale. For its micro-foundation, see Stevens (2002).
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has an error component structure. That is,

An = AtAcε
a
n

where At is a month effect, Ac is city-specific match efficiency, and εan is an idiosyncratic shock to

matching, which has expected value 1 and is not anticipated by buyers or sellers. Similarly, we

assume that Kn = KtKcε
k
n, and again assume that εkn is not anticipated by market participants.

In this specification, we expect that the number of matches will be increasing in both inputs, s

and b - i.e. α1 ≥ 0 and α2 ≥ 0. The market exhibits increasing returns in matching if α1 + α2 > 1,

and constant returns if α1 + α2 = 1. Under increasing returns, doubling the number of tasks and

offers more than doubles the number of matches. For pricing, we expect more posted tasks will

drive up prices, and more offers will reduce them, so that ρ1 ≤ 0 ≤ ρ2. If ρ1 + ρ2 = 0 the pricing is

not affected by scale: doubling both the number of offers and tasks has no price effect.

Participants’ Expectations. The expected matching probabilities are qbn = Qn
bn

and qsn = Qn
sn

,

where

Qn = E [Ans
α1
n b

α2
n |sn, bn] = AtAcs

α1
n b

α2
n , (7)

and the expected price is

pn = E [Kns
ρ1
n b

ρ2
n |sn, bn] = KtKcs

ρ1
n b

ρ2
n . (8)

Buyers expect to pay pn, and sellers to receive (1− τ)pn. Given the constant 20 percent platform

commission fee, we fix τ = 0.2.

Optimal Decisions. Finally we can write the buyer and seller optimal decisions. From Section

4, buyers choose a posting intensity βn equal to

βn = εbnµ
[
1− e−ηqbn(vn−pn)

]
. (9)

εbn is a task arrival shock, known to participating buyers and sellers but independent of their (prior)

decisions to participate in the market. It can be thought of as a city-month specific driver of

demand for services among participating buyers. An example might be an increase in requests

for shopping deliveries due to December snowstorms in Chicago, which does not drive buyers’ or
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sellers’ decision to stay or join TaskRabbit in that particular market, but does increase the posting

intensity of participating buyers.18

On the seller side, we specify search costs as 1
εsnγb

δ
n
σ2n - i.e. decreasing in the total number of

posted tasks at rate δ. Each seller chooses a search intensity σn equal to

σn = εsnγb
δ
nq
s
n(0.8pn − cn) . (10)

As for buyers, εsn is a supply shock that reduces the cost of search. It can be interpreted as a

city-month specific increase in time availability among participating sellers.

Recall from equation 8 that price has a time-specific component Kt. In order to homogenize

values and costs over time, we assume that the same time parameter multiplicatively changes buyer

values and seller costs of performing tasks. Specifically, we assume that vn = Ktv and cn = Ktc.

5.3 Identification

We make two key identification assumptions: i) participating buyers and sellers do not anticipate

the idiosyncratic pricing and matching shocks in making their posting and offer decisions, and ii)

the number of participating buyers and sellers in a given market does not depend on these shocks,

nor on the unobserved components of buyer and seller utility. Lastly, we make the additional and

convenient assumption that the unobservable shocks are iid across markets. Formally, we write our

assumptions as follows:

Assumptions: We assume that:

1. Pricing and matching shocks are not anticipated: the vector (εan, ε
k
n) is independent of (σn, βn).

2. Limited predictability for prospective users: the vector (εbn, ε
s
n, ε

a
n, ε

k
n) is independent of (Sn, Bn).

3. IID: the vector (εbn, ε
s
n, ε

a
n, ε

k
n) is independently and identically distributed across markets, with

mean (1, 1, 1, 1) and variance covariance matrix Σ.19

An issue of splitting cities into multiple markets over time is that buyers and sellers might

anticipate the future value of exchanges on the platform and base their decision to stay or leave on

these rational expectations. Two empirical features of TaskRabbit lead us to think that forward-

looking behavior is not prevailing: the low level of retention and its response to future outcomes.

Only a small share of buyers active in a given market (31 percent on average across markets) post

18Note that a large task arrival shock εbn does increase the number of buyers who actively post at least one tasks.
19Given Assumption 1, which implies that (εan, ε

k
n) is independent of (εbn, ε

s
n), Σ is block diagonal.
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again at least once in the subsequent three months. For sellers, this share is 66 percent. Moreover,

in Section 7, we will consider the decision of current buyers and sellers to stay on the platform

and find that there is very little empirical support for forward-looking anticipation of platform

outcomes, although there is evidence that sellers respond to past outcomes.

We are not overly concerned with the possibility that marketing and advertising could affect

both the number of buyers and sellers and their posting and search decisions. This is because,

during the period of our study, the platform did not spend heavily to attract buyers and sellers.

Advertising relied on articles mentioning TaskRabbit in newspapers and blogs. 40 percent of

these articles were not pitched by the platform, but rather made reference to TaskRabbit while

discussing the sharing economy.20 In addition, more than 70 percent of them were on national

media, as opposed to local newspapers. Finally, presence on the media was fairly uniform across

months.21 This media coverage is unlikely to be specifically tied to market conditions affecting

posting or search effort. Marketing targeted at the city level occurred only for a few weeks around

the time of entry into that city: TaskRabbit would start by acquiring some sellers before opening

the platform to buyers, and would train them to perform services by assigning them to a small

number of marketing tasks - e.g. flyer distribution. By only keeping markets with more than 50

active buyers and 20 active sellers, we are fairly confident that the TaskRabbit’s marketing efforts

are not the driving activity within a market.

This leaves us to consider the participation decisions of new buyers and sellers. Our basic

premise is that prospective new buyers and sellers do not have much information about the spe-

cific idiosyncratic conditions on the platform. On the buyer side, there is relatively little cost of

joining the platform, and we believe that during our study period adoption may have been driven

significantly by people simply becoming aware that the platform existed. Our indication is that

buyer sign-ups tended to increase notably after media mention, which we do not believe were tied

to specific market conditions.

On the seller side, a significant source of month to month variation in new participation was

driven by changes in the screening process. For a period, sellers were rigorously screened and

interviewed by TaskRabbit employees. Acceptance rates of received applications depended on

employees’ time to conduct interviews, were usually very low (13.6 percent) and varied greatly

20The sharing economy (or collaborative consumption) is the term often used to refer to online peer-to-peer mar-
ketplaces like Airbnb, Uber, or TaskRabbit. In the sharing economy, owners rent or share something they are not
using (e.g., a car, house) or provide a service themselves to a stranger using peer-to-peer platforms.

21The numbers rely on TaskRabbit’s tracking activity of its media presence in 2012.
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month to month. Further, these interviews introduced a certain delay between the sign-up decision

and the actual participation on the platform. We have no evidence that they varied by city-months

in response to expectations of higher demand or of lower time availability of each seller. In the spring

of 2013 the platform decided to ease sellers’ screening, and started to require simpler background

checks and social controls (Linkedin, Facebook verification). This resulted in an acceleration of

sellers’ acquisitions. Together, the varying screening policies and acceptance rates led to fluctuations

in the relative number of buyers and sellers for reasons arguably unrelated to individuals’ activity

within each city-month.

We have also assumed that pricing and matching shocks (εan, ε
k
n) are not anticipated when buyers

and sellers make their posting and search decisions. These shocks can result from unexpected

concentration of offers among a small number of tasks, for example due to variation in the time

when users access the platform: if all sellers in a market find themselves looking for tasks at the

same time within a month, offers will tend to be sent to the same tasks, more so than if sellers

search for tasks at different times. This could decrease the rate at which offers and tasks are

converted into matches and the price at which matches trade. Our assumption essentially requires

that buyers and sellers cannot anticipate these coordination problems.

5.4 Estimation

The estimation consists of two steps. First, we estimate the pricing and matching functions by

ordinary least squares. To do that, we transform equations 5 and 6 by taking logs to obtain

logQn = logAt + logAc + α1 log sn + α2 log bn + log εan (11)

and

logPn = logKt + logKc + ρ1 log sn + ρ2 log bn + log εkn. (12)

Second, we estimate the utility parameters by method of moments using our assumption of equi-

librium behavior and the orthogonality of Sn and Bn from contemporaneous effort shocks. The

moment conditions are

E

[
xn

(
βn

µ
(
1− e−ηqbn(vn−pn)

) − 1

)]
= 0

and

E

[
xn

(
σn

γbδnq
s
n(0.8pn − cn)

− 1

)]
= 0,
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where xn = (1, Bn/Sn, Bn)′ is the three-element column vector of instruments. The model is

exactly identified.

6 Results

This section presents our empirical estimates of the pricing and matching functions, and the demand

and supply parameters. We use these to derive estimates of the gains from trade, and the role of

labor supply elasticity in promoting efficient matching.

6.1 Matches and Prices

We start by discussing our results on the aggregate pricing and matching functions.

Table 3 presents results from ordinary least square regressions of equations 11 and 12 above.

The coefficients can be interpreted as elasticities, because of the log-log specification. The first

column shows that doubling the number of tasks, holding constant the number of offers, increases

the number of matches by 41 percent (α1). Similarly, doubling the number of offers, holding fixed

the number of tasks, increases the number of matches by 52 percent (α2). The estimates suggest

that scaling up either tasks or offers contributes about equally to the creation of successful matches.

The sum of the two elasticities provides an estimate of the returns to scale in the matching

technology. Work on two-sided platforms has emphasized the importance of increasing returns to

scale for market structure (Ellison and Fudenberg (2003)). The hypothesis is that active and thick

markets may lead to easier matching. In a platform like TaskRabbit where tasks typically require

a buyer and a seller to meet, efficiency can come from matching buyers and sellers who live close

to each other. Our estimates, however, show no evidence of increasing returns to scale. Returns

are slightly (and significantly) less than constant (α1 + α2 < 1) when estimated by ordinary least

squares, and slightly over 1 when the number of buyers and sellers are used as instruments for tasks

and offers.

The absence of increasing returns was perhaps unexpected given the specific nature of the

market. But interestingly it does not seem to be the case that distances between matched buyers

and sellers shrink as a market grows. Figure 13 plots the median distance within a city-month,

where the distance is measured between the zip codes reported by buyers and sellers.22 The blue

22We compute the geodetic distance, i.e. the length of the shortest curve between the two zip codes, where the
input coordinates are assumed to be based on the WGS 1984 datum. The distances are ellipsoidal distances computed
using equations from Vincenty (1975).
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line takes a seller who made an offer at a specific time, and pairs him to every buyer who posted

tasks in the preceding 48 hours. The median distance is computed among all such pairs within

a city-month. The orange line is just the pairing of tasks and their corresponding offers, and the

distance is computed between the zip codes of buyers who posted those tasks and sellers who

submitted those offers. The grey line is the pairing of buyers and sellers from successful matches.

The figure plots the median distance for the six largest cities over time.23 None of these measures

of buyer-seller distance shrinks as a market scales up.

Table 3 reports estimates of the market pricing function, again estimated by ordinary least

squares (second column). Price moves very little with the number of tasks and offers. Doubling

the number of tasks, holding constant the number of offers, increases the average transacted price

by 1.5 percent, while doubling offers decreases it by 1.3 percent. This is perhaps a little surprising

from the standpoint of strategic pricing, especially for the auction tasks where buyers choose from

competing offers, but it holds true even in a restricted sample of auctions. More details are in

Appendix Table A2.

The results further confirm that the average price is invariant to market scale: the sum of the

price elasticity to tasks (1.5) and to offers (-1.3) is virtually zero. The two results of constant

returns to scale in the matching technology and scale invariance of price empirically confirm our

earlier assumptions from Section 4.

Table 3 does not report the city and time fixed effect estimates. We will return to these estimates

in Section 7 where we discuss the differences in platform success across cities.

We conclude this section with two observations. First, our identification assumptions provide

an over-identifying restriction that we can test because we have assumed that both (S,B) and (σ, β)

are independent of the pricing and matching errors (εk, εa). We can test the latter assumption by

running a Hausman specification test where we re-estimate equations 11 and 12 using (S,B) as

instruments and compare the set of OLS and IV estimates, testing for their equality. Both tests

fail to reject that (σ, β) are independent of (εk, εa).24

Our estimation of the matching function leaves very little unexplained. The R-squared of the

regression (first column of Table 3) is 0.996. By construction E(εan) = 1, and its standard deviation

is only 0.08. About 50 percent of the differences between actual and predicted matches across

markets is less than 9. The number of matches formed between tasks and offers is thus very

23Other cities display similar time trends.
24We run the original Hausman test and compare the full set of estimates, rather than just the estimates of the

elasticities to tasks and offers.
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accurately predicted by the Cobb-Douglas matching function. The amount of residual variation

in the pricing function is a little higher, given a R-squared of 0.73 (second column of Table 3).

However it corresponds to a discrepancy of $3 or less in most markets.

6.2 Gains from Trade

We now turn to our estimates of the utility parameters, presented in Table 4. To discuss them, we

consider a market with the median number of buyers (B = 447), the median relative number of

buyers (BS = 3.72), and the price and matching parameters from San Francisco in October 2013.

We consider sellers first. The estimates imply that search costs are relatively low, and, consistent

with our earlier evidence, labor supply is highly elastic. Estimates of γ̂ = 0.41 and δ̂ = 0.25 imply

that the search costs in the median market are 25 cents for one expected application, $1 for two,

and, per our assumption, continue to increase quadratically as a function of the number of expected

applications. The predicted number of offers per seller in that market is 9, corresponding to $21

in individual search costs, and to $4.60 in marginal search costs. We also find that search costs

decrease with market size, but only slightly. Holding constant the buyer to seller ratio, an increase

in the absolute number of buyers from the 25th (B = 220) to the 75th (B = 1, 085) percentile of

the distribution of market size increases the number of offers per seller from just above 8 to 10, a

22 percent increase.

Search effort is much more responsive to price and the expected match rate than it is to market

size (Figure 8). The elasticity of search effort to the offer match rate qs is equal to one by assump-

tion: a doubling in the offer match rate doubles search intensity. Effectively, this implies that the

elasticity of tasks supplied is twice as large. Doubling the offer match rate doubles the number of

offers submitted, and, because now each offer is twice as likely to be accepted, each seller works

fours times as hard. The elasticity of search effort to the price is equal to the inverse of the seller

markup. We estimate the seller cost of performing a task to be ĉ = $33.25 In the median market,

sellers are paid $48.50, so the supply elasticity to price is equal to 3.21. Even a $5 price increase

can raise the number of offers per seller from 9 to 12.

Lastly, we find that sellers receive relatively little surplus from completed tasks. The per-task

profit is $48.50 - 33 = $15.50 in the median market. Given that an offer is expected to match with

25In principle, it can happen that the seller opportunity cost cn in a market be smaller than the realized average
price paid to sellers. However, cn should always be lower than the expected price reduced by the commission fee
0.8pn in order to rationalize a positive number of submitted offers. That is the case in our estimates. Analogously
on the buyer side, pn should always be (and in fact always is) lower than the buyer value for the task vn.
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30 percent probability and each seller submits 9 offers, the search cost per completed task is $7, or

half the task profit. Even if seller search costs are low in absolute dollars, they represent a large

share of the per-task profit, and a seller ex-ante expected surplus from the median market is $21.26

Next we turn to the buyer side.27 We find that the mean arrival rate of tasks is µ̂ = 1.23. Tasks

are cheap to post, with an average cost equal to 1/η̂ = 50 cents, and the buyer value from task

completion is v̂ = $70. Given the small cost of posting tasks, in the median market, all needs are

posted, so β = 1.23. In this market, tasks are successfully matched with 61 percent probability,

and buyers pay $61 for each completed task.

Task demand is inelastic. At equilibrium in the median market, the elasticity of buyers’ posting

rate to the task match rate is basically zero (0.0002), and the elasticity to price is similarly small

(-0.0015). Given the low cost of posting, Figure 9 shows that buyers are going to post all their

needs for most equilibrium values of match rate and prices. In a standard setting, low elasticity of

demand would imply that buyers receive a large share of the surplus. However, a seller willingness

to pay for the average task, at $70, is not much higher than the price she actually pays, and a

buyer ex-ante expected surplus from the median market is $6.

Combining our estimates, we find that the gains from trade for each task are $37, without

factoring in seller search costs ($7 per completed task) and buyer posting costs (less than $1). This

seems quite plausible given the nature of most tasks, and combined with an elastic supply it means

that maintaining a relatively efficient matching process is as crucial for the platform success as

attracting a large number of buyers. We discuss the efficiency of the matching process in the next

subsection, and buyers’ growth in Section 7.

We conclude this section by examining the fit of our model. Figure 10 compares the actual

aggregate number of posted tasks and submitted offers with those predicted by our model for the

city of San Francisco. Other cities are in Appendix E. Overall the model does a good job at

tracking task and offer activity over time for each city, albeit in some cities supply is consistently

underestimated (as in Boston) or overestimated (as in New York). The discrepancies are typically

26This is possibly consistent with a young peer-to-peer platform, where the average seller only performs a few tasks
to fill in his schedule. Because we focus on market averages, we do not consider the more professional sellers, those
who perform tasks on a more regular basis.

27On the buyer side, the estimation is complicated by the fact that variation in the posting rate is very limited.
This implies that the parameter estimates for the mean task arrival rate µ, the cost distribution parameter η, and
the value for each task v have to be such that the response of β to changes in the task match rate and price have
to be small. Using equation 3, this requires that both ∂β

∂qb
= µf

(
qb(v − p)

)
(v − p) and ∂β

∂p
= µf

(
qb(v − p)

)
(−qb)

be small. The second partial derivative is close to zero only if the density f
(
qb(v − p)

)
is small, given that both the

task arrival rate and the task match rate are not small. The buyer net benefit v − p (divided by qb) is equal to the
ratio of the two partial derivatives, which are both close to zero. This limits our ability to easily estimate v.

27



less than 25 percent relative to the actual value, with the only notable exception being the last

fews months in New York.

6.3 Benefits of an Elastic Labor Supply

When the cost of posting tasks is small, fluctuations in the number of buyers translate in pro-

portional fluctuations in the number of posted tasks, where the coefficient of proportionality is the

mean arrival rate of needs. In addition, when buyers have low willingness to pay for tasks, and gains

from trade are relatively modest, the range of price adjustment is very limited. Together, these two

results imply that the market can clear in only one of two ways: through an elastic labor supply,

or through buyers’ rationing. We found the first to be the dominant equilibrating mechanism on

TaskRabbit, and in order to evaluate its benefits, we compare it to the second alternative.

We start with a simple exercise to illustrate the intuition. Consider a market with 1,000 posted

tasks, and suppose that the number of offers submitted is 1,400. Using our estimates for the

matching function, 488 matches would be created out of these two aggregate inputs. Now assume

that demand doubles to 2,000 posted tasks. A perfectly elastic supply would lead to a doubling of

the number of offers, and would create 930 total matches.28 Analogously, if demand halved to 500

tasks and supply adjusted downward to 700 offers, the number of matches created would be 256.

Regardless of the size of demand, tasks would always match at the same rate.

In the alternative scenario, supply is held fixed at 1,400 offers, and equilibration occurs through

buyers’ rationing: when demand is low, it is easier for buyers to find a match, and when demand

is high it becomes harder to trade. In the low-demand market (500 tasks), the number of matches

created would be 367 and each task would match with a 73 percent probability. In the high-demand

market (2,000 tasks), 649 tasks would be matched, implying a 32 percent match rate.

Overall, if we compare the total number of matches between the two scenarios, the platform

with an elastic labor supply is able to create 11 percent more matches.29 This is evidently optimal

from the platform perspective: since its revenues are a 20% commission on actual matches and

prices barely move, in this simple example having an elastic supply raises its short-term revenue

by 11 percent. Since it also raises retention, it benefits the platform by accelerating its growth.

Equilibration through seller effort is also optimal from the buyers’ perspective. Given that the cost

28Note that doubling the number of tasks and offers does not double the number of matches because of the slightly
decreasing returns to scale estimated for the matching function (shown in Table 3).

29The result comes from the fact that the matching function is concave in both inputs, so that M(b′, s′)+M(b, s) >
M(b′, s) +M(b, s′) where b′ > b and s′ > s.
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of listing a task is low enough that rationing does not prevent them from posting them in the short

run, effectively increasing the number of matches by 11 percent raises buyers’ surplus by the same

percentage. An elastic supply creates more matches but it is also more costly, given that sellers’

costs increase in their search effort at an increasing rate. Again we can use the cost estimates from

our model in the simple example above, assuming that offers come from 200 active sellers (so that

in the market with 1,000 tasks and 1,400 offers each seller submits 7 offers). The total search costs

in the first scenario, where supply fully adjusts to accommodate demand, are 54 percent higher

than in the second scenario, where supply is fixed at 7 offers per seller.

We now apply this intuition to our context. To do so, we consider all 336 markets and simulate

interaction among buyers and sellers under two scenarios: the first considers the labor supply elas-

ticity directly estimated from the model, which implies that the market predominantly equilibrates

through seller effort; the second fixes individual supply at 7.58, the average number of offers per

seller across our markets, which implies that the market will equilibrate through buyer rationing.

We start by measuring the aggregate value of matches created under the two scenarios, which is

given by the following formula:
∑336

n=1M(Bnβ̂n, Snσ̂n)(v̂n−ĉn). A flexible supply allows a 15 percent

increase in the value of matches created. The increase in buyer and platform surplus is analogous

for two reasons: prices do not adjust much, and buyers’ posting costs are small. So measuring the

platform’s aggregate revenue as
∑336

n=1 0.2p̂nM(Bnβ̂n, Snσ̂n) results in a 15.5 percent increase in

revenue relative to an inelastic supply. Buyers’ aggregate surplus, or
∑336

n=1M(Bnβ̂n, Snσ̂n)(v̂n −

p̂n)−E
(
η|η ≤ q̂b(v̂n − p̂n)

)
Bnβ̂n, also increases by the same percentage. Sellers’ aggregate surplus

is however reduced by their elasticity, due to the increasing search costs. Relative to providing a

constant level of effort, sellers’ aggregate surplus, defined as
∑336

n=1M(Bnβ̂n, Snσ̂n)(0.8p̂n − ĉn) −
1

2γ̂(Bnβ̂n)δ̂
Snσ̂

2
n, is reduced by 6 percent.

If the platform were able to reduce, or even eliminate, seller search costs, the benefits of an

elastic supply would be large and positive for sellers as well. We discuss how the platform can

achieve this in the conclusions. We now turn to discuss how market efficiency and growth differ by

city.

7 Platform Growth and City Heterogeneity

A notable feature of the data is that some cities exhibit striking growth in participation, and others

exhibit more moderate growth (Figure 2).
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In principle, two types of theories can explain differences in how cities attract and retain a large

number of users. The first type relies on scale economies and strategic complementarities between

the adoption patterns of buyers and sellers. If market frictions were reduced by market scale,

we would expect that cities which started off with a large user base grew much faster than cities

of modest size, exactly because growth led to more growth. However in Section 6 we estimated

only moderate scale economies. Therefore initial differences in adoption cannot explain increasing

heterogeneity over time.

A second set of hypotheses rely on city differences in facilitating interactions between buyers

and sellers. To develop this idea, we show that user attrition is lower in more efficient markets and

that markets vary greatly in their matching efficiency, summarized by the fixed effects of equation

11. Combining these results, we see a strong relationship between the rate at which tasks and offers

are converted into successful matches and city growth rates. We conclude the section with evidence

that relates match efficiency with measures of market thickness at the city level: geographic distance

between buyers and sellers, and task specificity.

7.1 City Differences in Growth

Platform growth is a combination of adoption and retention of existing users. Given that supply is

so elastic that buyers do not have a considerably harder time finding matches when abundant, and

given that active buyers seem to post on average the same number of tasks every month, growth

depends on buyers’ participating decisions.

Figure 11 plots buyer adoption and retention separately for the 10 largest cities. The left-hand

side panel shows the number of new buyers, in log scale, over time. A buyer is defined as new in a

city-month if she posts her first task in that city during that particular month. Buyers adopt the

platform at a linear rate, different in all cities. At visual inspection, this rate seems to be correlated

with the city-specific retention rate. For every city, the right-hand side of Figure 11 plots the share

of active users in a month who posted again at least once task in the following three months. San

Francisco is successful at both attracting new buyers and retaining current ones, while Philadelphia

has both lower adoption and retention rates.

The literature on innovation diffusion (Young, 2009) has focused on three types of mechanisms

leading users to adopt new technologies: network effects, technology improvements, and information

diffusion. The first two assume that different users adopt at different points in time because of

heterogeneous benefits: early adopters have a large intrinsic value from a new technology, while
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late adopters join because of scale economies or technical upgrades. We have argued that platform

efficiency does not increase with market scale, and for the period under consideration TaskRabbit

did not implement major platform changes. Word of mouth and information diffusion, then, seem

to be the most plausible alternative in this context, and cities can differ both in the rate at which

information spreads and the rate of take-up conditional on receiving that information. For example,

in San Francisco adoption might be fast because people there are eager to experiment with new

technologies and because current users spread the information at a faster rate, with the second

factor possibly driven by a positive experience on the platform. We measure the aggregate effect

by estimating the city-specific growth rate:30

newtc = φcagetc + νtc , (13)

where newtc is the number of new buyers joining city c in calendar month t, and agetc is the age

of the platform in city c at time t. For example, agetc = 1 if month t is the first since TaskRabbit

became active in city c. In Appendix F, Table A11 shows the results, and we verify that deviations

from the linear adoption rate are not driven by contemporaneous market conditions, in support of

our earlier identification assumptions.

We compare adoption rates with retention. Retention can be city-specific and, within each city,

further depend on current outcomes, match rates and prices:

log

(
staytc

1− staytc

)
= θ0Xtc + ηt + ηc + ν ′tc . (14)

staytc is the share of users active in city-month t, c who were active again at least once in the

following three months within the same city. Xtc is two-element vector of relevant outcomes in

city-month t, c: realized buyer match rate and average transacted price. We expect that a high

match rate would increase the odds that a buyer will be active again in the next three months,

while a high price would drive away more buyers. As with equation 13, Table A13 in Appendix

G shows the results, which confirm our hypothesis, and we verify that retention is not driven by

30We assume a linear growth rate different across cities, given Figure 11. It can be rationalized within the Bass
model of new product diffusion (Bass, 1969): newtc = φc + newt−1,c, where newtc is the number of new buyers
joining city c in calendar month t. Two things differ from the standard specification. First, the total number of
potential adopters is assumed to be large relative to the platform size, which is consistent with the population size
of the metropolitan cities relative to the current users on TaskRabbit. Second, we assume that new adopters in the
previous month are the only users spreading information, and not adopters of previous months. Each new adopter
diffuses information so that exactly one extra adopter joins the platform in the following month.
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expectations on future outcomes, in support of our earlier identification assumption.

Figure 14 plots the estimates of φc (city-specific adoption rate) and ηc (retention rate) from

equations 13 and 14. A certain correlation exists between the rate at which a city is able to attract

buyers and the rate at which it can retain them, although it is by no means perfect. San Francisco

and New York are successful on both measures, while Houston, Atlanta and Phoenix lag behind on

both. However, in San Diego buyers adopt at a fast rate but are also likely to leave the platform,

while in Portland new buyers are just a few but they stay longer. Retention is arguably the decision

that is mostly related to the experience on the platform, and indeed in the next section we show

that it is associated with how efficiently the platform matches buyers and sellers in each city.

7.2 City Differences in Match Efficiency and Market Thickness

For tasks like cleaning and delivery, it is obvious to expect that buyers would care about how easy

it is to find a seller willing to provide the service at the desired time and location, and the price to

pay for the service. In this section we explore how differently cities perform in this respect. To do

so, we take advantage of earlier estimates of the matching and pricing functions (equations 11 and

12).

Cities vary widely in the rate at which tasks and offers are converted into successful matches.

Figure 12 plots estimates of Ac from equation 11, ordering cities from the most efficient (San

Francisco) to the least efficient (Miami). San Francisco is 2.37 ( ASF
AMiami

) times as effective as Miami

in creating matches: out of the same number of tasks and offers, 100 matches are created in Miami

while 237 matches are created in San Francisco. Other than San Francisco, among the cities with

the highest match productivity are Boston, Portland, Austin, and New York City. The other

extreme includes Miami, Denver, Phoenix, Philadelphia, and Atlanta.

There is limited heterogeneity in prices across cities, as Figure A3 shows. Here cities are ordered

according to their ranking in the match efficiency parameter from Figure 12, and the plot displays

estimates of Kc from equation 12.31 Most prices range between $54 and $65, with Denver ($42)

and Miami ($68) as outliers.32

31KOct2013 is normalized to 1.
32The two equations 11 and 12 also include time effects, which we briefly discuss here. Over time, there is a limited

decline in match efficiency, but not sizable nor statistically significant. Figure A2 plots estimates of At from the
matching equation. The line is fairly flat between Spring 2011 and Summer 2013, with higher variability before and
a small downward jump afterwards. This variation coincides with the staggered entry of TaskRabbit into the various
cities. Indeed, prior to Spring 2011, only two cities were active, San Francisco and Boston. Around the Summer
of 2013, TaskRabbit became active in the nine youngest cities, which are also those with lower match productivity
estimates. Instead, there is a substantial increase in transacted prices over time. As Figure A4 shows, estimates of Kt
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The most efficient cities are those able to retain the most buyers.33 In Figure 12 the size of the

marker for the match efficiency parameter is proportional to the retention rate ηc estimated from

equation 14. The cities with high match productivity Ac also have high retention rate ηc.

The next step is to try to understand what can explain efficiency differences across geography.

To this purpose we look at two metrics related to market thickness. The first natural candidate is

the proximity of buyers and sellers: cities that more easily match tasks and offers might be those

where buyers and sellers live closer together and can more easily meet and exchange services. This

hypothesis is strongly supported by the data. Figure 15 plots the match efficiency parameter Ac

and the median geographic distance between buyers and sellers of paired tasks and offers.34 In cities

like San Francisco, Boston, Portland, and New York, which convert tasks and offers into matches

at the highest rate, the median distance between buyers and sellers of paired tasks and offers is

around 7 miles. At the other extreme, the distance in Philadelphia and Miami is over 20 miles.

The second candidate measure of market thickness is related to task specificity. The idea is that

an idiosyncratic task, which possibly requires specialized skills on the part of the seller, is harder to

match than a standardized cleaning task, for which all that matters is location and time availability

of one seller out of many good alternatives. To explore this idea, we look at the share of tasks

posted in May 2014 within the top five categories (Shopping and delivery, moving help, cleaning,

minor home repairs, and furniture assembly). Figure 16 plots this share of more “standard” tasks

against the match efficiency parameter Ac. In San Francisco, Boston, and New York over 60 percent

of the tasks are posted within the top five categories, while Dallas, Miami, Atlanta, and Denver all

have shares smaller than 50 percent.

8 Conclusions

In this paper, we have studied the problem of balancing highly variable demand and supply. This

is a basic problem of the recently popular online peer-to-peer marketplaces for local and time-

sensitive services, such as Uber, Airbnb, and TaskRabbit. We have presented a static model of a

monotonically increase, from $30 in June 2010 to just above $60 in May 2014. The increase in price seems to closely
track the task diversification on the platform towards more expensive tasks. Figure A5 presents the share of posted
tasks in the 10 largest categories over time, combining all other categories in an eleventh group. It demonstrates how
the period of fastest diversification, where the cumulative share of the top categories fell considerably, occurred in
the Spring of 2011, exactly when the average price experienced the highest increase.

33The most efficient cities also tend to correspond to those where TaskRabbit entered earlier on, and this still holds
under different specifications of the matching function, as shown in the Appendix.

34The correlation is maintained with the two other pairing definitions: median distance between buyers and sellers
active around the same time window, and median distance between successfully matched buyers and sellers.
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frictional market where buyers and sellers post requests and offers for services. Our model specifies

the possible mechanisms through which the market clears in terms of the elasticity of demand and

supply to price, as in standard product markets, and to rationing, as in frictional labor markets.

We have applied the theoretical model to study TaskRabbit, a growing platform for domestic

tasks. We estimated utility, matching, and pricing parameters using variation in the number of

buyers and sellers across cities and over time. The empirical application has allowed us to measure

the gains from trade facilitated by the platform, the particular mechanism that equilibrates the

market (highly elastic supply), and how market efficiency varies with location and market size.

The natural level of market efficiency is modest, although certain cities, such as San Francisco

and New York, are largely more efficient than others. The efficient cities are also those which grow

the fastest, by attracting new users and retaining existing ones at a higher rate. City differences in

the efficiency with which tasks and offers are converted into successful matches seem to be related to

at least two sources of frictions: geographic distance between buyers and sellers, and task specificity.

The market is able to efficiently accommodate fluctuations in buyers and sellers thanks to a

highly elastic labor supply. When demand is capped by an exogenous arrival process of needs

for cleaning or furniture assembly, and sellers flexibly adjust their effort in response to changes in

relative demand, buyers find it profitable to post all their tasks, and can match at the same rate

and price regardless of the number of sellers present in the market.

On TaskRabbit, the elasticity of supply is likely due to the fact that sellers might be available

to perform tasks only within a defined time window in any given month (say, every Saturday) or

within a few miles from their house. A doubling (resp. halving) of demand would thus imply a

doubling (halving) of the profitable opportunities for each individual seller, thereby affecting their

offer submission. However, it is costly for sellers to search through posted tasks, and with some

probability profitable tasks are not found by any seller and are left unmatched, or are found by

sellers who turned out to be unavailable to perform them. Indeed, 13 percent of the tasks that did

not receive any offers were canceled because the buyer reported having the task done sooner, and

19 percent of the tasks that did receive offers were canceled because one of the parties reported

inability to resolve scheduling conflicts. So, what would happen if instead of having sellers search

for profitable submissions, the platform let sellers directly list their availability on a calendar and

within a specific geographic area? This would eliminate search costs of supply, or at least make

them independent on the size of demand, and would raise seller welfare while benefiting buyers and

the platform by raising task match rates.
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The benefits of reducing sellers’ search costs and improving match efficiency provide a rationale

for a platform re-design, which actually occurred in the Spring of 2014. Figure 17 is a screenshot

of the current platform. Buyers can now select the category, location, and time for a given task

request, and then either choose among the sellers available to perform that task type at the specified

time and location (similar to the auction mechanism prior to the change), or have the platform

automatically choose for them (similar to the posted price mechanism).

We can actually also use our model estimates on TaskRabbit in a broader perspective, and

roughly calculate the value generated by online peer-to-peer markets for domestic tasks. This

includes TaskRabbit, as well as other platforms, such as Craigslist, ThumbTack, or Handy. We

estimated the value created in each match to be $37, and a monthly average number of tasks per

buyer equal to 1.23. Taking the number of households present in the US cities where TaskRabbit

is currently active, and assuming that 20 percent of them will be outsourcing domestic tasks online

in the long run, an industry able to match 80 percent of those tasks would generate $920 million

in value, and this in 18 cities alone.

The advantage of a highly flexible supply is appealing for other peer-to-peer platforms. Consider

Uber for example, the fastest growing ride-sharing marketplace. Matches between people wanting a

ride and drivers are even more local and time-sensitive that on TaskRabbit. A person at the airport

is likely to use alternative transportation if it takes long to find an Uber car (rationing) or the price

is too high. Uber relies on having enough cars on the road to ensure reliability during normal and

busy times, and achieves this by adjusting its price, balancing buyers’ response to use substitute

services and sellers’ willingness to provide more rides. An elastic supply would require a lower

price increase to adjust its effort and accommodate demand, thus limiting the buyers’ response to

request fewer rides.

The same delicate balancing of demand and supply for short-term accommodation occurs on

Airbnb. In this case, in order to satisfy demand for accommodation the platform relies on a wide

inventory of available listings to adapt to normal and high traveling seasons.

Our paper has primarily focused on the short-term balancing of demand and supply. A valuable

avenue for future research, facilitated by the large availability of data, would be to study dynamic

participation decisions of buyers and sellers in more detail than done here. Better understanding the

drivers of user adoption and retention can help explain platform competition, both between multiple

peer-to-peer marketplaces and between the online marketplace model and the more traditional

service providers.
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[5] Olivier Blanchard and Jordi Gaĺı. Labor markets and monetary policy: a new keynesian model

with unemployment. American economic journal: macroeconomics, 2(2):1–30, 2010.

[6] Peter A Diamond. Aggregate demand management in search equilibrium. The Journal of

Political Economy, pages 881–894, 1982.

[7] Michael Dinerstein, Liran Einav, Jonathan Levin, and Neel Sundaresan. Consumer price search

and platform design in internet commerce. NBER Working Paper 20415, 2014.

[8] Darrell Duffie and Yeneng Sun. The exact law of large numbers for independent random

matching. Journal of Economic Theory, 147(3):1105–1139, 2012.

[9] Liran Einav, Chiara Farronato, Jonathan Levin, and Neel Sundaresan. Sales mechanisms in

online markets: What happened to internet auctions? NBER Working Paper 19021, 2013.

[10] Glenn Ellison and Drew Fudenberg. Knife-edge or plateau: When do market models tip? The

Quarterly Journal of Economics, 118(4):1249–1278, 2003.

[11] Andrey Fradkin. Search frictions and the design of online marketplaces. Working Paper, 2014.

[12] Robert E Hall. Employment fluctuations with equilibrium wage stickiness. American Economic

Review, pages 50–65, 2005.

[13] John Joseph Horton. Misdirected search effort in a matching market: causes, consequences and

a partial solution. Proceedings of the fifteenth ACM conference on Economics and computation,

pages 357–357, 2014.

36



[14] Kenneth L Judd. The law of large numbers with a continuum of iid random variables. Journal

of Economic theory, 35(1):19–25, 1985.

[15] Pascal Michaillat. Do matching frictions explain unemployment? not in bad times. The

American Economic Review, 102(4):1721–1750, 2012.

[16] Pascal Michaillat and Emmanuel Saez. A model of aggregate demand and unemployment.

Technical report, CEPR Discussion Paper 1235, 2013.

[17] Paul Milgrom and John Roberts. Comparing equilibria. The American Economic Review,

pages 441–459, 1994.

[18] James D Montgomery. Equilibrium wage dispersion and interindustry wage differentials. The

Quarterly Journal of Economics, pages 163–179, 1991.

[19] Dale T Mortensen. The matching process as a noncooperative bargaining game. In The

economics of information and uncertainty, pages 233–258. University of Chicago Press, 1982.

[20] Chris Nosko and Steven Tadelis. The limits of reputation in platform markets: An empirical

analysis and field experiment. Working Paper, 2014.

[21] Amanda Pallais. Inefficient hiring in entry-level labor markets. American Economic Review,

104(11):3565–99, 2014.

[22] Geoffrey G Parker and Marshall W Van Alstyne. Two-sided network effects: A theory of

information product design. Management Science, 51(10):1494–1504, 2005.

[23] Barbara Petrongolo and Christopher A Pissarides. Looking into the black box: A survey of

the matching function. Journal of Economic Literature, 39(2):390–431, 2001.

[24] Christopher A Pissarides. Short-run equilibrium dynamics of unemployment, vacancies, and

real wages. The American Economic Review, pages 676–690, 1985.

[25] Christopher A Pissarides. Equilibrium Unemployment Theory. The MIT Press, 2000.

[26] Paul Resnick and Richard Zeckhauser. Trust among strangers in internet transactions: Em-

pirical analysis of ebay’s reputation system. Advances in applied microeconomics, 11:127–157,

2002.

37



[27] Jean-Charles Rochet and Jean Tirole. Two-sided markets: a progress report. The RAND

Journal of Economics, 37(3):645–667, 2006.

[28] Margaret Stevens. New microfoundations for the aggregate matching function. International

Economics Review, 48(3):847–868, 2007.

[29] Thaddeus Vincenty. Direct and inverse solutions of geodesics on the ellipsoid with application

of nested equations. Survey review, 23(176):88–93, 1975.

[30] E Glen Weyl. A price theory of multi-sided platforms. The American Economic Review, pages

1642–1672, 2010.

[31] H Peyton Young. Innovation diffusion in heterogeneous populations: Contagion, social influ-

ence, and social learning. The American economic review, pages 1899–1924, 2009.

38



F
ig

u
re

1
:

T
h
e

T
a
sk

R
a
bb

it
P

la
tf

o
rm

be
tw

ee
n

J
a
n

u
a
ry

2
0
0
9

a
n

d
M

a
y

2
0
1
4

(a
)

E
xa

m
p

le
o

f
a

po
st

ed
ta

sk
.

(b
)

C
it

y
li

st
o

f
po

st
ed

ta
sk

s
fo

r
se

ll
er

s
to

se
a

rc
h

.

S
cr

ee
n

sh
o
ts

fr
o
m

T
a
sk

R
a
bb

it
.

T
h
e

sc
re

en
sh

o
ts

d
is

p
la

y
in

fo
rm

a
ti

o
n

a
va

il
a
bl

e
to

se
ll

er
s

a
bo

u
t

po
st

ed
ta

sk
s.

39



F
ig

u
re

2
:

M
a
rk

et
S

iz
e

N
u

m
be

r
o
f

su
cc

es
sf

u
l

m
a
tc

h
es

in
se

le
ct

ed
ci

ti
es

o
ve

r
ti

m
e.

T
h
e

y-
a
xi

s,
in

lo
g

sc
a
le

,
is

n
o
rm

a
li

ze
d

by
th

e
va

lu
e

in
S

a
n

F
ra

n
ci

sc
o

in
M

a
y

2
0
1
4
.

40



F
ig

u
re

3
:

B
u

ye
r

to
S

el
le

r
R

a
ti

o

A
ct

iv
e

bu
ye

r
to

se
ll

er
ra

ti
o

in
se

le
ct

ed
ci

ti
es

o
ve

r
ti

m
e.

A
bu

ye
r

is
a
ct

iv
e

in
a

ci
ty

-m
o
n

th
if

h
e

po
st

s
a
t

le
a
st

o
n

e
ta

sk
w

it
h
in

th
e

ci
ty

-m
o
n

th
.

A
se

ll
er

is
a
ct

iv
e

if
h
e

su
bm

it
s

a
n

o
ff

er
to

o
n

e
o
f

ta
sk

s
po

st
ed

w
it

h
in

th
a
t

ci
ty

-m
o
n

th
.

41



F
ig

u
re

4
:

T
a
sk

s
pe

r
B

u
ye

r
a
n

d
O

ff
er

s
pe

r
S

el
le

r

C
it

y-
m

o
n

th
a
ve

ra
ge

o
f

ta
sk

s
pe

r
bu

ye
r

a
n

d
o
ff

er
s

pe
r

se
ll

er
.

W
e

d
iv

id
e

th
e

3
3

6
ci

ty
-m

o
n

th
s

in
to

fo
u

r
gr

o
u

p
s,

co
rr

es
po

n
d
in

g
to

th
e

fo
u

r
qu

a
rt

il
es

o
f

th
e

d
is

tr
ib

u
ti

o
n

o
f

th
e

bu
ye

r
to

se
ll

er
ra

ti
o
.

F
o
r

ea
ch

gr
o
u

p
w

e
co

m
p
u

te
th

e
a
ve

ra
ge

n
u

m
be

r
o
f

ta
sk

s
pe

r
bu

ye
r

(l
ig

h
t

re
d
)

a
n

d
o
ff

er
s

pe
r

se
ll

er
(d

a
rk

re
d
).

C
o
n

fi
d
en

ce
in

te
rv

a
ls

a
re

d
is

p
la

ye
d

in
li

gh
te

r
co

lo
rs

.

42



F
ig

u
re

5
:

T
a
sk

M
a
tc

h
R

a
te

s
a
n

d
P

ri
ce

s

C
it

y-
m

o
n

th
a
ve

ra
ge

o
f

ta
sk

m
a
tc

h
ra

te
a
n

d
tr

a
n

sa
ct

ed
p
ri

ce
.

W
e

d
iv

id
e

th
e

3
3
6

ci
ty

-m
o
n

th
s

in
to

fo
u

r
gr

o
u

p
s,

co
rr

es
po

n
d
in

g
to

th
e

fo
u

r
qu

a
rt

il
es

o
f

th
e

d
is

tr
ib

u
ti

o
n

o
f

th
e

bu
ye

r
to

se
ll

er
ra

ti
o
.

F
o
r

ea
ch

gr
o
u

p
w

e
co

m
p
u

te
th

e
a
ve

ra
ge

sh
a
re

o
f

co
m

p
le

te
d

ta
sk

s
(d

a
rk

re
d
,

th
e

y-
a
xi

s
is

h
id

d
en

to
p
ro

te
ct

co
m

pa
n

y’
s

in
fo

rm
a
ti

o
n

)
a
n

d
p
ri

ce
pa

id
(l

ig
h
t

re
d
).

C
o
n

fi
d
en

ce
in

te
rv

a
ls

a
re

d
is

p
la

ye
d

in
li

gh
te

r
co

lo
rs

.

43



F
ig

u
re

6
:

S
el

le
r’

s
O

p
ti

m
a
l

C
h
o
ic

e.

T
h
e

fi
gu

re
p
lo

ts
a

se
ll

er
’s

o
p
ti

m
a
l

ch
o
ic

e
o
f

se
a
rc

h
eff

o
rt

,
w

h
ic

h
is

eq
u

iv
a
le

n
t

to
th

e
ex

pe
ct

ed
n

u
m

be
r

o
f

o
ff

er
s

su
bm

it
te

d
.

T
h
e

bl
u

e
li

n
e

co
rr

es
po

n
d
s

to
h
is

m
a
rg

in
a
l

co
st

cu
rv

e
σ
γ
(b
)
.

T
h
e

so
li

d
re

d
li

n
e

is
h
is

in
d
iv

id
u

a
l

le
ve

l
m

a
rg

in
a
l

be
n

efi
t

cu
rv

e
qs

[(
1
−
τ
)p
−
c]

,

w
h
er

e
qs

a
n

d
p

a
re

d
et

er
m

in
ed

by
th

e
a
ve

ra
ge

se
a
rc

h
in

te
n

si
ty
σ

a
n

d
po

st
in

g
ra

te
β

o
f

a
ll

se
ll

er
s

a
n

d
bu

ye
rs

in
th

e
m

a
rk

et
(a

n
d

ca
n

n
o
t

be
a
ff

ec
te

d
by

a
si

n
gl

e
se

ll
er

).
T

h
e

d
o
tt

ed
re

d
li

n
e

co
rr

es
po

n
d
s

to
th

e
m

a
rk

et
le

ve
l

m
a
rg

in
a
l

be
n

efi
t

cu
rv

e:
h
er

e,
th

e
o
ff

er
m

a
tc

h
ra

te
a
n

d
p
ri

ce
s

a
re

d
et

er
m

in
ed

by
th

e
a
ve

ra
ge

po
st

in
g

ra
te
β

,
a
n

d
a
n

a
ve

ra
ge

se
a
rc

h
in

te
n

si
ty

eq
u

a
l

to
σ

(x
-a

xi
s)

.
T

og
et

h
er

,
a
ll

se
ll

er
s

ca
n

a
ff

ec
t

th
e

p
ro

ba
bi

li
ty

th
a
t

ea
ch

o
ff

er
is

m
a
tc

h
ed

a
n

d
th

e
p
ri

ce
th

ey
re

ce
iv

e:
a
n

in
cr

ea
se

in
se

a
rc

h
in

te
n

si
ty

by
a
ll

se
ll

er
s

d
ec

re
a
se

s
bo

th
th

e
p
ro

ba
bi

li
ty

th
a
t

a
n

y
o
n

e
o
ff

er
is

a
cc

ep
te

d
a
n

d
th

e
p
ri

ce
re

ce
iv

ed
.

T
h
u

s
th

e
m

a
rk

et
-l

ev
el

m
a
rg

in
a
l

be
n

efi
t

cu
rv

e
is

d
ec

re
a
si

n
g

in
σ

.
C

o
n

si
st

en
cy

re
qu

ir
es

th
a
t
σ

=
σ

,
i.

e.
th

a
t

th
e

m
a
rk

et
a
n

d
in

d
iv

id
u

a
l

le
ve

l
m

a
rg

in
a
l

be
n

efi
t

cu
rv

es
cr

o
ss

th
e

m
a
rg

in
a
l

co
st

cu
rv

e
a
t

th
e

sa
m

e
po

in
t

(E
q1

).
T

h
e

sh
a
d
ed

a
re

a
is

th
e

se
ll

er
su

rp
lu

s.

44



F
ig

u
re

7
:

C
o
m

pa
ra

ti
ve

S
ta

ti
cs

.

(a
)

In
cr

ea
se

in
B

h
o

ld
in

g
co

n
st

a
n

t
B S

.
(b

)
In

cr
ea

se
in

B S
h

o
ld

in
g

co
n

st
a

n
t
B

.

T
h
e

fi
gu

re
s

p
lo

t
th

e
d
ir

ec
t

sh
if

ts
(i

.e
.

h
o
ld

in
g
β

co
n

st
a
n

t)
in

th
e

m
a
rk

et
-l

ev
el

m
a
rg

in
a
l

be
n

efi
t

a
n

d
m

a
rg

in
a
l

co
st

cu
rv

es
o
f

se
ll

er
s,

fo
ll

o
w

in
g

ch
a

n
ge

s
in

m
a
rk

et
sc

a
le

a
n

d
u

se
r

co
m

po
si

ti
o
n

.
A

n
in

cr
ea

se
in

th
e

n
u

m
be

r
o
f

bu
ye

rs
B

,
h
o
ld

in
g
B S

co
n

st
a
n

t,
sh

if
ts

th
e

m
a
rg

in
a
l

co
st

cu
rv

e
d
o
w

n
w

a
rd

(l
ef

t
pa

n
el

).
T

h
e

re
d
u

ct
io

n
in

se
a
rc

h
co

st
s

in
d
u

ce
s

m
o
re

se
ll

er
eff

o
rt

.
A

n
in

cr
ea

se
in

th
e

re
la

ti
ve

n
u

m
be

r
o
f

bu
ye

rs
B S

,
h
o
ld

in
g
B

co
n

st
a
n

t,
sh

if
ts

th
e

m
a
rg

in
a
l

be
n

efi
t

cu
rv

e
u

p
w

a
rd

(r
ig

h
t

pa
n

el
)

be
ca

u
se

ea
ch

o
ff

er
is

n
o
w

m
o
re

li
ke

ly
to

be
a
cc

ep
te

d
a
n

d
pa

ys
a

h
ig

h
er

p
ri

ce
.

T
h
e

in
cr

ea
se

in
se

a
rc

h
be

n
efi

ts
in

d
u

ce
s

m
o
re

se
ll

er
eff

o
rt

.

45



Figure 8: Individual Level Offer Supply Curves.

(a) Seller effort as a function of price, holding con-
stant the offer match rate at the equilibrium level in
the median market.

(b) Seller effort as a function of the offer match rate,
holding constant the price at the equilibrium level in
the median market.

The figures plot the individual level supply curves in the median market. Buyers’ behavior is held
constant at their equilibrium levels.

Figure 9: Individual Level Task Demand Curves.

(a) Tasks posted as a function of price, holding con-
stant the task match rate at the equilibrium level in
the median market.

(b) Tasks posted as a function of the task match rate,
holding constant the price at the equilibrium level in
the median market.

The figures plot the individual level demand curves in the median market. Sellers’ behavior is held
constant at their equilibrium levels.
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Figure 13: Geographic Distance Between Buyers and Sellers and Platform Growth

The figure plots the median distance within a city-month between three different pairings of buyers
and sellers, for the six largest cities over time. The distance is measured as the length of the shortest
ellipsoidal curve between the buyer zip code and the seller zip code (Vincenty, 1975, integrated in
Stata). Buyers and sellers are paired in three different ways. The first pairing (blue line) takes a
seller who made an offer at a specific time, and pairs him to every buyer who posted tasks in the
preceding 48 hours. The median distance is computed among all such pairs within a city-month.
In the second pairing (orange line) a buyer is paired with a seller if her task received an offer from
that seller. Each pair is weighted by the number of their task-offer pairs within a city-month, and
the median is computed among all such pairings. In the third pairing (grey line) a buyer is paired
with a seller if they actually exchanged services. As before, each buyer-seller pair is weighted by the
number of their successful matches within a city-month.
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Table 1: Summary Statistics.

N Mean
Standard
Deviation

25th
Percentile

Median
75th

Percentile

Share of Auction Tasks 459,879 0.59 0.49 0 1 1
Share Receiving Offers 459,879 0.78 0.41 1 1 1
Nr. Offers Received (≥ 0) 358,557 2.82 5.1 1 1 3
Share Matched 459,879 0.49 0.50 0 0 1
Price of Successful Tasks ($) 224,877 57 44.24 25 45 75
Commission Fee (%) 224,877 0.19 0.04 0.18 0.2 0.2

(a) Task level summary statistics.

N Mean
Standard
Deviation

25th
Percentile

Median
75th

Percentile

Number of Active Buyers 336 708 1022 132 272 738
Number of Active Sellers 336 255 326 67 124 277
Buyer to Seller Ratio 336 2.52 0.96 1.87 2.36 3
Number of Tasks per Buyer 336 1.63 0.22 1.49 1.62 1.76
Number of Offers per Seller 336 6.45 3.04 4.22 5.62 7.59
Task to Offer Ratio 336 0.70 0.30 0.53 0.64 0.79
Task Match Rate 336 0.46 0.11 0.41 0.48 0.53
Average Price Charged($) 336 56 8.69 52 57 61

(b) City-month level summary statistics.

Summary statistics. Data include posted price and auction tasks, offers submitted to those tasks,
and matches created in the 18 cities between June 2010 and May 2014. In the first panel, an
observation is a posted task. In the bottom panel, an observation is a city-month. We define a
buyer to be active in a city-month if she posts at least one task in that city-month. Analogously, a
seller is active if he submits an offer to a task posted within the city-month.
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Table 2: Tasks per Buyer, Offers per Seller, Match Rates and Prices

Tasks per Buyer Offers per Seller
Task Match

Rate
Prices

Buyer to Seller Ratio -0.035 0.404 -0.154 0.053
[0.027] [0.034]*** [0.062]** [0.032]

Nr. of Participants 0.054 0.314 0.113 0.022
[0.009]*** [0.025]*** [0.040]** [0.018]

Constant (SF Oct ‘13) 0.22 -0.277 -1.282 3.849
[0.041]*** [0.145]* [0.217]*** [0.116]***

City FE No No No No
Month FE No No No No
N Markets 336 336 336 336
R-squared 0.222 0.869 0.155 0.047

(a) Regressions without fixed effects.

Tasks per Buyer Offers per Seller
Task Match

Rate
Prices

Buyer to Seller Ratio -0.0002 0.416 -0.222 0.009
[0.030] [0.043]*** [0.050]*** [0.047]

Nr. of Participants 0.051 0.248 0.025 -0.003
[0.029] [0.034]*** [0.022] [0.015]

Constant (SF Oct ‘13) 0.205 0.111 -0.546 4.131
[0.224] [0.247] [0.168]*** [0.126]***

City FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
N Markets 336 336 336 336
R-squared 0.604 0.939 0.851 0.727

(b) Regressions with city fixed effects and calendar month fixed effects.

The tables show results from OLS regressions of the following type: log(ytc) = θ1 log
(
Btc
Stc

)
+

θ2 log
(√
StcBtc

)
+ ηc + ηt + νtc, where c, t denote city c and calendar month t (January 2010 is

a different fixed effect from January 2011). Btc
Stc

is the active buyer to seller ratio,
√
StcBtc is the

geometric average of the number of active buyers and sellers, and ytc is one of the four relevant
variables: users’ choices (tasks per buyer, offers per seller), and outcomes (task match rate, prices).
The top panel shows estimates without city fixed effects or month fixed effects. The bottom panel
shows estimates with fixed effects. Standard errors are clustered at the city level. *** p < 0.01, **
p < 0.05, * p < 0.1. Robustness checks with alternative market definitions are shown in Appendix
C.
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Table 3: Pricing and Matching Function Parameters

Number of
Matches (log)

Average Price
(log)

Tasks (log) 0.41 0.015
[0.033]*** [0.035]

Offers (log) 0.521 -0.013
[0.028]*** [0.029]

City FE Yes Yes
Month FE Yes Yes
N Markets 336 336
R-squared 0.996 0.727

The table shows results from OLS regressions of the (log-transformed) price and matching functions
from equations 7 and 8. City and time heterogeneity parameters are displayed in figures 12 through
A4.

Table 4: Utility Parameters.

Demand Parameters

Task arrival µ 1.23 [0.480]

Posting cost η 2.01 [0.447]

Task value v $70 [5.286]

Supply Parameters

Search cost γ 0.41 [0.012]

Scale effect in search δ 0.25 [0.040]

Task cost c $33 [2.717]

The table presents the estimates of the buyer and seller utility parameters. They are estimated by
method of moments using our assumption of equilibrium behavior, the orthogonality of S and B
from contemporaneous demand and effort shocks, and with the first-stage estimates of the pricing
and matching functions. Standard errors are block-bootstrapped within cities, with 200 draws.

57



A Appendix: Proofs

Proposition 1. (Effect of scale) An increase in B, holding B
S fixed, leads to an increase in β and

σ, and a decrease in Bβ
Sσ . This in turn implies lower prices and seller match rates, and higher buyer

match rates.

Proof. Given homogeneity of degree one in tasks and offers for the matching function, and

homogeneity of degree zero for the pricing function, the conditions for market equilibrium are the

following:

β = µ
(

1− e−ηqb(v−p)
)

(15a)

σ = γ(Bβ)qs [(1− τ)p− c] (15b)

p = P

(
Bβ

Sσ

)
(15c)

qb =
M
(
Bβ
Sσ

)
Bβ
Sσ

(15d)

qs = M

(
Bβ

Sσ

)
(15e)

where p and qs are increasing in Bβ
Sσ (hence increasing in B

S and β, and decreasing in σ) and qb

is decreasing in Bβ
Sσ . Keeping this in mind, and given that B

S is held constant, we can rewrite:

β = f1 (β, σ)

σ = f2 (σ, β,B) .

Given our assumptions, f1 is continuous and decreasing in β and f2 is continuous and decreasing

in σ. Moreover, f1 is increasing in σ, while f2 is increasing in β. Intuitively, β and σ are strategic

complements: an increase in the number of offers, by reducing price and increasing the task match

rate, increases the number of posted tasks. Analogously, an increase in the number of tasks, by

increasing price and increasing the offer match rate, increases the number of submitted offers.

Finally, f2 is increasing in B. Therefore, by theorem 4 of Milgrom and Roberts (1994), an increase

in B leads to an increase in both β and σ.

In order to prove that Bβ
Sσ decreases in B, assume, by contradiction, that β

σ increases. An

increase in the task to offer ratio implies that p increases and qb decreases, in turn leading to a
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decrease in β. This implication contradicts the earlier result that β increases with B. Therefore it

must be that Bβ
Sσ decreases in B.

Given the reduction in Bβ
Sσ , the effects of B on qb,s , and p follow directly from the assumptions

in the paper, i.e. a matching function which is increasing in both inputs and displays constant

returns to scale, in addition to a pricing function which is increasing in tasks, decreasing in offers,

and invariant to scale. �

Proposition 2. (Effect of user composition) An increase in B
S , holding B fixed, leads to an in-

crease in β and a decrease in Bβ
Sσ . This in turn implies higher prices and seller match rates, and

lower buyer match rates.

Proof. The equilibrium conditions are as in the proof of Proposition 1. We can take the ratio of

equation 15a and 15b β
σ =

µ
(
1−e−ηqb(v−p)

)
γ(Bβ)qs[(1−τ)p−c]

B
S →

Bβ
Sσ

qs[(1−τ)p−c]
µ
(
1−e−ηqb(v−p)

) = 1
γ(Bβ)

B
S . The left hand side is

an increasing function of Bβ
Sσ . We can restate all conditions in terms of B

S , B, and the endogenous

variables β and λ = Bβ
Sσ (and qb, qs, p):

β = µ
(

1− e−ηqb(v−p)
)

(16a)

λ =
µ
(

1− e−ηqb(v−p)
)

qs [(1− τ)p− c]
1

γ(Bβ)

B

S
(16b)

p = P (λ) (16c)

qb =
M (λ)

λ
(16d)

qs = M (λ) (16e)

We can rewrite equations 16a and 16b as:

β = g1 (λ)

σ = g2

(
λ, β,

B

S

)
,

where g1 is decreasing in λ, g2 is decreasing in λ and β and increasing in B
S . Since λ and −β are

strategic complements, by Milgrom and Roberts (1994) an increase in B
S leads to an increase in λ

and a decrease in β. Because the pricing and matching functions are assumed to be increasing in
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λ, and the latter displays diminishing returns, the increase in λ in turn implies higher qs and p,

and lower qb. �
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B Appendix: Homogeneity of Tasks, Offers, Buyers, and Sellers

Homogeneity of tasks seems reasonable because so many of the tasks are relatively standard, not

requiring specialized skills, and most sellers send offers across multiple task categories. However,

we can gain a more nuanced view of search frictions by thinking explicitly about task heterogeneity,

as we show in Section 7.

Homogeneity of buyers and sellers implies that all buyers choose the same task posting strategy,

and all sellers choose the same level of search intensity. Homogeneity of buyers is less of a concern

given that they tend to post few tasks and repeated platform use over time is limited. Sellers, on

the other hand, can build experience and reputation on the platform. In Appendix D we provide

evidence that our main reduced form results do not change when we account for some degree of

seller experience.

This assumption allows us to simplify the space of choices available to buyers and sellers to just

posting tasks and submitting offers. We do not explicitly model the selection of tasks to which a

seller makes offers, nor a buyer’s choice to assign the task to a specific bidder. We assume that

the number of matches formed between buyers and sellers of services, as well as the price at which

they trade, are determined by a matching and a pricing function. Underlying frictions due to

actual task heterogeneity and information asymmetries are not made explicit, but summarized in

a match productivity parameter. In this sense, the paper complements work by Fradkin (2014) on

search inefficiencies on Airbnb, and Horton (2014) on congestion on Odesk. These papers study

their respective platforms and quantify the efficiency losses due to specific types of frictions that

an improved platform design can help alleviate. Our approach takes the platform “natural” level

of frictions as given, and shows that it does not change considerably as more or less buyers, both

in absolute and relative terms, are present in the market.

Our framework also assumes that services are independent of each other, both within a market

and across markets. This implies that there are no externalities to other services from completing

one task with a specific partner. Most buyers only post one task in a city-month, providing some

justification for this assumption. Moreover, matches in one market have no externalities on future

matches. This effectively assumes that the benefit of trading one service with a specific partner

does not carry over to future services. This is because a buyer might receive moving help today

from a specific seller, but for cleaning tomorrow the same seller is unavailable, or does not have

the right supplies. In practice this is true on TaskRabbit: the share of repeated buyer-seller pairs

is only 6 percent of buyer-seller pairs that were ever matched.
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C Appendix: Reduced Form Evidence — Different Market Defi-

nitions

The tables below show that varying the market definition does not change the main qualitative

results of a supply responsive to scale and buyer to seller ratio, and of a fairly inelastic supply.

Prices do not change significantly when buyers are abundant relative to sellers, while match rates

of task are negatively affected. The alternative market definitions we consider are the following:

city-week markets, city-month market with only auction tasks, city-month markets of the six largest

categories — delivery, cleaning, furniture assembly, moving help, minor home repairs, and shopping.

Table A1: City-Week Markets

Tasks per Buyer Offers per Seller
Task Match

Rate
Prices

Buyer to Seller Ratio -0.015 0.254 -0.2 0.027
[0.015] [0.028]*** [0.041]*** [0.034]

Nr. of Participants 0.039 0.233 -0.002 0.033
[0.016]** [0.022]*** [0.022] [0.030]

Constant (SF first
week Oct ‘13)

0.163 -0.059 -0.674 3.925

[0.127] [0.151] [0.161]*** [0.209]***

City FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
N Markets 1,470 1,470 1,469 1,469
R-squared 0.414 0.881 0.688 0.46

Reproduction of Table 2 with a different market definition. The table shows results from OLS
regressions of equation 1, where c, t denote city c and calendar week t.
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Table A2: Auction Tasks

Tasks per Buyer Offers per Seller
Task Match

Rate
Prices

Buyer to Seller Ratio -0.038 0.364 -0.17 -0.006
[0.036] [0.053]*** [0.062]** [0.036]

Nr. of Participants 0.044 0.284 0.066 0.009
[0.027] [0.039]*** [0.034]* [0.017]

Constant (SF Oct ‘13) 0.234 0.003 -1.089 4.231
[0.196] [0.272] [0.231]*** [0.143]***

City FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
N Markets 336 336 336 336
R-squared 0.573 0.932 0.817 0.692

Reproduction of Table 2 with a different market definition. The table shows results from OLS
regressions of equation 1 at the city-level, restricting attention to auction tasks.

Table A3: Delivery Tasks

Tasks per Buyer Offers per Seller
Task Match

Rate
Prices

Buyer to Seller Ratio 0.0005 0.296 -0.291 -0.016
[0.030] [0.067]*** [0.077]*** [0.049]

Nr. of Participants 0.086 0.303 0.094 -0.039
[0.015]*** [0.028]*** [0.029]*** [0.038]

Constant (SF Oct ‘13) -0.117 -0.591 -0.781 4.024
[0.099] [0.179]*** [0.198]*** [0.260]***

City FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
N Markets 336 336 336 336
R-squared 0.551 0.882 0.761 0.477

Reproduction of Table 2 with a different market definition. The table shows results from OLS
regressions of equation 1 at the city-level, restricting attention to delivery tasks.
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Table A4: Cleaning Tasks

Tasks per Buyer Offers per Seller
Task Match

Rate
Prices

Buyer to Seller Ratio 0.012 0.346 -0.075 0.058
[0.024] [0.074]*** [0.078] [0.043]

Nr. of Participants 0.031 0.315 -0.023 0.046
[0.036] [0.063]*** [0.057] [0.038]

Constant (SF Oct ‘13) 0.141 -0.608 -0.528 3.818
[0.221] [0.400] [0.395] [0.222]***

City FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
N Markets 335 335 329 329
R-squared 0.456 0.842 0.622 0.488

Reproduction of Table 2 with a different market definition. The table shows results from OLS
regressions of equation 1 at the city-level, restricting attention to cleaning tasks.

Table A5: Furniture Assembly Tasks

Tasks per Buyer Offers per Seller
Task Match

Rate
Prices

Buyer to Seller Ratio -0.039 0.245 -0.075 0.104
[0.034] [0.051]*** [0.089] [0.068]

Nr. of Participants 0.031 0.308 -0.018 0.043
[0.017]* [0.029]*** [0.075] [0.072]

Constant (SF Oct ‘13) 0.106 -0.181 -0.27 4.089
[0.133] [0.167] [0.445] [0.440]***

City FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
N Markets 326 326 316 316
R-squared 0.399 0.912 0.473 0.337

Reproduction of Table 2 with a different market definition. The table shows results from OLS
regressions of equation 1 at the city-level, restricting attention to furniture assembly tasks.
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Table A6: Moving Help Tasks

Tasks per Buyer Offers per Seller
Task Match

Rate
Prices

Buyer to Seller Ratio -0.01 0.218 -0.366 0.046
[0.031] [0.041]*** [0.063]*** [0.073]

Nr. of Participants 0.064 0.283 -0.026 0.063
[0.030]* [0.058]*** [0.059] [0.036]*

Constant (SF Oct ‘13) -0.023 -0.252 -0.409 3.826
[0.223] [0.309] [0.345] [0.214]***

City FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
N Markets 334 334 329 329
R-squared 0.465 0.882 0.568 0.455

Reproduction of Table 2 with a different market definition. The table shows results from OLS
regressions of equation 1 at the city-level, restricting attention to moving help tasks.

Table A7: Minor Home Repair Tasks

Tasks per Buyer Offers per Seller
Task Match

Rate
Prices

Buyer to Seller Ratio -0.02 0.26 -0.222 0.054
[0.020] [0.033]*** [0.058]*** [0.061]

Nr. of Participants 0.036 0.255 -0.086 0.054
[0.027] [0.049]*** [0.062] [0.065]

Constant (SF Oct ‘13) -0.059 -0.07 0.038 3.954
[0.154] [0.274] [0.424] [0.379]***

City FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
N Markets 330 330 320 320
R-squared 0.332 0.855 0.597 0.278

Reproduction of Table 2 with a different market definition. The table shows results from OLS
regressions of equation 1 at the city-level, restricting attention to minor home repair tasks.
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Table A8: Shopping Tasks

Tasks per Buyer Offers per Seller
Task Match

Rate
Prices

Buyer to Seller Ratio -0.026 0.251 -0.186 0.084
[0.033] [0.037]*** [0.063]*** [0.036]**

Nr. of Participants 0.004 0.231 -0.006 -0.004
[0.032] [0.044]*** [0.036] [0.049]

Constant (SF Oct ‘13) 0.288 -0.288 -0.288 3.795
[0.176] [0.228] [0.221] [0.318]***

City FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
N Markets 335 335 332 332
R-squared 0.322 0.784 0.542 0.413

Reproduction of Table 2 with a different market definition. The table shows results from OLS
regressions of equation 1 at the city-level, restricting attention to shopping tasks.
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D Appendix: Reduced Form Evidence — Old and New Partici-

pants to the Platform

The tables below show that the main conclusions from Table 2 hold when we separate old and new

users on TaskRabbit.

Table A9: Old Users

Tasks per Old
Buyer

Offers per Old
Seller

Task Match
Rate

Prices

Buyer to Seller Ratio 0.025 0.401 -0.281 0.028
[0.056] [0.081]*** [0.059]*** [0.057]

Nr. of Participants 0.106 0.4 0.029 0.007
[0.074] [0.087]*** [0.034] [0.025]

Constant (SF Oct ‘13) 0.027 -0.223 -0.261 3.447
[0.310] [0.346] [0.120]** [0.151]***

City FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
N Markets 334 334 334 334
R-squared 0.51 0.873 0.772 0.601

Reproduction of Table 2 for old users. A buyer (resp. seller) is classified as old if she has posted
tasks (resp. submitted offers) in prior months. Task match rates and prices are averaged across old
buyers active in a given city-month. Standard errors are clustered at the city level.

Table A10: New Users

Tasks per New
Buyer

Offers per New
Seller

Task Match
Rate

Prices

Buyer to Seller Ratio -0.014 0.382 -0.204 0.028
[0.041] [0.111]*** [0.072]** [0.057]

Nr. of Participants 0.006 0.137 0.025 0.007
[0.020] [0.053]** [0.028] [0.025]

Constant (SF Oct ‘13) 0.199 0.078 -0.295 3.447
[0.067]*** [0.240] [0.108]** [0.151]***

City FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
N Markets 334 334 334 334
R-squared 0.405 0.769 0.791 0.601

Reproduction of Table 2 for new users. A buyer (resp. seller) is classified as new if she has never
posted tasks (resp. submitted offers) in prior months. Task match rates and prices are averaged
across new buyers active in a given city-month. Standard errors are clustered at the city level.
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E Appendix: Model Fit for Other Cities

Figure A1: Actual and Predicted Offers and Tasks.
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The figures plot the aggregate number of tasks (left) and offers (right) in cities other than San
Francisco, comparing the actual and the predicted values. For every city, each value is divided by
the maximum number of tasks posted in a given month to protect company’s privacy.
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F Appendix: Adoption

Table A11 shows the coefficients from the estimation of equation 13.

Table A11: Buyer Adoption.

Coefficient
Standard

Error

Boston 8.782 [0.871]***
SF 43.41 [0.871]***
Austin 6.518 [1.482]***
Chicago 10.141 [1.261]***
Seattle 5.9 [1.385]***
Portland 2.885 [1.432]*
LA 21.091 [1.157]***
NY 51.078 [1.190]***
Atlanta 9.364 [4.023]**
Dallas 8.876 [4.023]**
Houston 5.224 [4.023]
Miami 7.336 [4.970]
Philadelphia 10.41 [3.673]**
Phoenix 7.935 [5.632]
San Diego 13.777 [4.970]**
Washington
DC

30.096 [3.673]***

Denver 8.421 [5.632]
Constant 12.43 [28.162]

N Markets 391
R-squared 0.976

The table shows the OLS estimates of equation 13. Standard errors are clustered at the city level.
*** p < 0.01, ** p < 0.05, * p < 0.1.

We also verify that deviations from the linear trend in buyer adoption are not driven by con-

temporaneous market conditions. To do this, we take the residuals from equation 13 and run the

following regression:

ν̂tc = θXtc + ηc + ηt + εtc.

Xtc is two-element vector of relevant outcomes in city-month t, c: realized buyer match rate and

average transacted price. As table shows, the estimates of θ are not statistically significant, and

not even of the expected sign.
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Table A12: Buyer Adoption and Contemporaneous Market Conditions.

Predicted Residual

Task Match Rate*100 -0.879 -1.42
[0.768] [0.817]

Average Transacted Price 0.541 1.126
[0.910] [0.769]

City FE No Yes
Month FE No Yes
N Markets 336 336
R-squared 0.028 0.298

The table shows the OLS estimates of ν̂tc = θXtc+ηc+ηt+ εtc, where ν̂tc are the predicted residuals
from equation 13, and Xtc is two-element vector of relevant outcomes in city-month t, c: realized
buyer match rate and average transacted price. Standard errors are clustered at the city level. ***
p < 0.01, ** p < 0.05, * p < 0.1.
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G Appendix: Retention

To support our main identification assumption, we verify that, conditional on the outcomes (matches

and prices) in a current market, expectations on future outcomes do not affect the propensity to

stay or leave the platform. To do this we run OLS regressions similar to equation 14:

log

(
staytc

1− staytc

)
= θ0Xtc + θ1Xt+1,c + θ2Xt+2,c + θ3Xt+3,c + ηt + ηc + νtc ,

Xtc is defined as in equation 14. The regression is run separately for buyers and sellers, so the

match rate for buyers is the task success probability, while the match rate for sellers is the offer

acceptance rate. The 6-element vector (Xt+1,c, Xt+2,c, Xt+3,c) contains the realized match rates

and prices in the following three months within the same city. If users did not base their decision

to stay or leave the platform on expectations of future outcomes we would expect the 6-element

coefficient vector (θ1, θ2, θ3) to be non significant, both for buyers and for sellers.

Results are presented in Tables A13 (for buyers) and A14 (for sellers). Each table has four

columns, corresponding to four different specifications. The first specification estimates θ0 without

including forward variables. Each other specification sequentially adds the outcomes of the following

month, two-months ahead, and three-months ahead. The final column is the full specification. With

the exception of just one coefficient in the buyers’ regression (the coefficient on the three-month-

ahead transacted price), all other coefficients from (θ1, θ2, θ3) are not statistically different from zero,

and in some cases even have the opposite sign. Despite the small number of observations, another

important observation from the two tables is that users appear to base their decisions to stay on

the platform particularly on the contemporaneous match rate. Adding forward variables does not

change the effect of match rate much nor helps improve the goodness of fit of the estimation.
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Table A13: Buyers’ Retention

Buyer 3-month Retention

Price Paid -0.296 -0.293 -0.286 -0.321
[0.146]* [0.166] [0.185] [0.202]

Task Match Rate 0.341 0.32 0.267 0.215
[0.117]** [0.137]** [0.126]* [0.135]

Price Paid (t+1) 0.162 0.22 0.273
[0.147] [0.159] [0.155]

Task Match Rate (t+1) 0.058 0.041 0.058
[0.086] [0.098] [0.111]

Price Paid (t+2) -0.219 -0.119
[0.147] [0.155]

Task Match Rate (t+2) 0.053 0.122
[0.114] [0.116]

Price Paid (t+3) -0.503
[0.193]**

Task Match Rate (t+3) -0.215
[0.133]

Constant 0.984 -0.332 0.2 1.565
[0.566] [0.729] [0.775] [0.754]*

City FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
N Markets 282 258 246 238
R-squared 0.758 0.75 0.746 0.757

The table shows results from OLS regressions of the following type: log(staytc)− log(1− staytc) =
θ0Xtc + θ1Xt+1,c + θ2Xt+2,c + θ3Xt+3,c + ηt + ηc + νtc, where staytc is the share of buyers active
in city-month t, c who were active again at least once in the following three months within the
same city. Xtc is a two-element vector of relevant outcomes in city-month t, c: realized match rate
and average transacted price (log scale). The match rate for buyers is the task success probability.
Activity is defined as posting a task for buyers. Standard errors are clustered at the city level. ***
p < 0.01, ** p < 0.05, * p < 0.1.
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Table A14: Sellers’ Retention

Seller 3-month Retention

Fee Received -0.079 -0.108 0.028 0.024
[0.215] [0.311] [0.297] [0.302]

Offer Match Rate 0.522 0.588 0.453 0.416
[0.191]** [0.231]** [0.255]* [0.282]

Fee Received (t+1) -0.059 0.037 0.058
[0.305] [0.329] [0.339]

Offer Match Rate (t+1) -0.143 -0.215 -0.215
[0.213] [0.237] [0.254]

Fee Received (t+2) -0.067 -0.1
[0.393] [0.379]

Offer Match Rate (t+2) 0.279 0.33
[0.276] [0.320]

Fee Received (t+3) 0.141
[0.234]

Offer Match Rate (t+3) -0.18
[0.167]

Constant 1.429 1.649 1.175 0.58
[1.012] [1.018] [1.464] [1.907]

City FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
N Markets 282 258 246 238
R-squared 0.725 0.696 0.674 0.664

The table shows results from OLS regressions of the following type: log(staytc)− log(1− staytc) =
θ0Xtc + θ1Xt+1,c + θ2Xt+2,c + θ3Xt+3,c + ηt + ηc + νtc, where staytc is the share of sellers active
in city-month t, c who were active again at least once in the following three months within the
same city. Xtc is a two-element vector of relevant outcomes in city-month t, c: realized match rate
and average transacted price (log scale). The match rate for sellers is the offer acceptance rate.
Activity is defined as sending an offer for sellers. Standard errors are clustered at the city level.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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H Appendix: Estimates of the Pricing and Matching Functions

Figure A2: Time Heterogeneity in Match Efficiency

The figure shows At from the OLS regression logMn = logAt+logAc+α1 log bn+α2 log sn+log εan
of the (log-transformed) matching function from equation 7. Each city-month market is identified
by m = (t, c).
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I Appendix: City Heterogeneity and Market Thickness

Figure A6: City Heterogeneity and Market Thickness.

The figures plot the same market thickness and match efficiency metrics as Figure 15 (left) and
Figure 16 (right). This time, however, the size of each bubble is proportional to the overall platform
growth rate at the city level, which is the combination of buyer adoption and retention decisions.
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