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Abstract

Emission standards are one of the major policy tools to reduce greenhouse gas

emissions from transportation. The welfare e¤ects from this type of regulation depend

on how �rms choose to abate emissions: by sales-mixing (changing prices), by down-

sizing (releasing smaller cars) or by technology adoption. Using panel data covering

1998-2011 I �nd that a new emission standard in the European car market induces tech-

nology adoption. I estimate and validate a structural model to �nd that welfare e¤ects

with technology adoption are very di¤erent from welfare e¤ects with sales-mixing or

downsizing. The design of the regulation matters to induce technology adoption.
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1 Introduction

Transportation accounts for 20% of global greenhouse gas emissions and policy makers are

taking up the challenge to reduce the use of polluting petroleum liquids. The major policy

tool used to control emissions in transportation are regulations that set mandatory limits on

average emission rates (or fuel economy) across the �eet. These policies are simple to pre-

scribe but di¢ cult to evaluate because their welfare impact depends on which strategies �rms

use to abate emissions. A �rst strategy is sales-mixing: shifting relative prices of vehicles

with di¤erent CO2 emissions. A second strategy is downsizing: releasing smaller but more

fuel e¢ cient vehicles. A third strategy is adopting new technology. This paper studies the

roll out of the �rst European emission regulation regime to �nd that the emission standard

induces technology adoption and to show that welfare e¤ects with technology adoption are

very di¤erent from welfare e¤ects with sales-mixing or downsizing.

This is the �rst paper providing a detailed study of the EU regulation using a rich panel

data set on 7 countries for the period 1998-2011. The EU emission standard requires au-

tomakers to limit average CO2 emissions across their yearly new vehicle sales. The regulation

aimed to reduce CO2 emissions from passenger cars by 18% and was announced in 2007 and

is fully binding from 2015, after a phase-in period that started in 2012. The regulation tar-

gets CO2 emissions which is equivalent to targeting fuel consumption or fuel e¢ ciency.1 The

EU standard is thus very similar to the Corporate Average Fuel E¢ ciency (CAFE) standard

in the US. However, the EU standard is signi�cantly more demanding with a target of 130g

CO2/km. This translates into about 42 miles per gallon (mpg) for gasoline engines, whereas

the US standard requires only 36 mpg in 2016. The EU regulation is also particular because

the standard is attribute-based: the target for each �rm depends on average vehicle weight.

This means that �rms producing heavier (lighter) vehicles face a less (more) stringent target.

In recent years most governments have decided on, or are discussing a further tightening of

emission standards and an introduction of attribute-basing.2 The observed response to the

EU standard can thus be regarded as an important signal for future responses to this type

of regulation in other markets across the world.

The paper makes three contributions. First, I �nd that the EU emission standard induces

1CO2 cannot be �ltered during the combustion process. Fuel consumption translates proportionally into
grams of CO2 per km, with a di¤erent CO2 content per liter for diesel and gasoline. Fuel consumption (liters
per kilometer) and CO2 emissions per kilometer are the inverse of fuel economy (miles per gallon).

2The International Council on Clean Transportation (2014) compares di¤erent regulations between coun-
tries. The EU has the goal of decreasing emissions to 95g/km by 2021, the US has communicated a goal
of 103 g/km by 2025, Japan 105g/km by 2020 and China 117g/km by 2020. The US and Japan have also
introduced attribute-basing in their regulations.
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technology adoption by �rms, an abatement strategy not fully considered in the previous

literature. Second, by estimating a structural model of demand and supply I show that the

incidence and welfare e¤ects of the regulation are very di¤erent with technology adoption

than with sales-mixing or downsizing. Third, I study the impact of the attribute-based

design of the regulation and �nd that it increases the costs of abating by sales-mixing. The

attribute-basing is thus important to induce abatement by technology adoption as �rms will

choose the abatement strategy with the lowest cost. The analysis proceeds in four steps.

In a �rst step I explain the trend in sales weighted CO2 emission between 1998 and

2011. Following the approach of Knittel (2011), I estimate technological improvements in

the trade-o¤ that �rms face between emissions and other vehicle characteristics. I �nd that

the 14% reduction in emissions after the regulatory announcement is fully explained by

increases in technology adoption. The decrease in emissions from technology adoption is so

strong that almost all of the �rms reach the emission target before it becomes partly binding

in 2012.3 The literature studying the CAFE standard in the US treats changes in the level

of technology as a possible longer run e¤ect of emission standards and has focused on the

welfare e¤ects from sales-mixing and downsizing.

In a second step I estimate and validate a structural model that allows me to simulate

the welfare e¤ects from technology adoption and sales-mixing. Holland, Hughes and Knittel

(2009) show that none of the welfare e¤ects of emission standards are theoretically deter-

mined. Emissions from new vehicles might decrease or increase because of the regulation

depending on price elasticities of products below and above the target. To recover price

elasticities, I follow the framework of Berry, Levinsohn and Pakes (1995) that allows for

heterogenous tastes of consumers for several characteristics, including fuel costs. Marginal

costs are backed out from the �rst order conditions assuming an oligopoly Nash-Bertrand

game on the supply side. I estimate the model using recent methodological advances, as

described in Reynaert and Verboven (2014). Exploiting the long time frame of the panel I

test the ability of the model to explain prices and quantities out of the estimation sample. I

�nd that the model is able to replicate sales weighted characteristics and prices reasonably

well.

In a third step I use the estimated model to simulate the welfare e¤ects of the regulation

under di¤erent abatement strategies. I �nd that if �rms respond by technology adoption,

marginal costs and prices increase. However, overall consumer surplus increases by e8.8

3The e¤ect of the regulation cannot be seperated from other market changes which explains why the
response is so strong and early. Changes in local regulation and taxes in EU member states after 2007
clearly contribute to the downward trend in emisisons.

2



billion because consumers gain from lower fuel consumption. The indirect utility from new

vehicles is thus higher and total sales increase. Because of this extensive margin e¤ect emis-

sions decrease only moderately (by 6%) and other externalities from tra¢ c, such as accident

risk and congestion increase starkly. The cost of the regulation fully falls on producers who

have to make �xed costs for technology adoption. Overall, I estimate that the regulation

improves welfare with at most e5.8 billion before �xed costs are subtracted. This is in sharp

contrast with the e¤ects under sales-mixing: total sales, consumer surplus and variable prof-

its strongly decrease. Despite larger gains from externality savings the regulation decreases

welfare by e17 billion.

In a fourth step, I look at the attribute-based design of the regulation. This design,

that makes the emission target vary with average weight, makes sales-mix abatement much

more costly for �rms and thus increases the likelihood that �rms will abate by technology

adoption. In general, the di¤erence in welfare e¤ects between sales-mix abatement and

technology adoption shows that policy makers should design the regulation such that the

latter strategy is chosen. Additionaly, I show that the attribute-basing causes a redistribution

of compliance costs between �rms which matches reported lobbying e¤orts during the design

of the regulation.

This paper contributes to a literature that studies the impact of emission standards.

Goldberg (1998) was the �rst to consider the e¤ect of standards on price setting and the

composition of the vehicle �eet. Jacobsen (2013) builds on this analysis by incorporating het-

erogenous responses from both consumers and producers. He �nds that the CAFE standard

imposes a large shadow cost on the domestic US �rms. This result is somewhat in contrast

with Anderson and Sallee (2011) who, using a loophole in the regulation, show that the stan-

dard is hardly binding in recent years. Both Klier and Linn (2012) and Whitefoot, Fowlie

and Skerlos (2013) extend the analysis by considering endogenous product characteristics in

the model. Both papers estimate a model that allows car makers to respond in the short run

by sales-mixing prices and in the medium run with downsizing. This softens pro�t losses as

�rms have greater �exibility on how to react to the standard. The analysis presented here

con�rms that in the EU sales-mixing would reduce welfare drastically but adds the insight

that technology adoption should be considered as a short-term response with very di¤erent

welfare e¤ects. The economic e¤ects of attribute-based regulations are previously discussed

in Ito and Sallee (2014) who focus on distortions in the market for the attribute. The analysis

here is complementary as I study di¤erent e¤ects of attribute-basing: the marginal cost of

di¤erent abatement strategies, redistribution of compliance costs between �rms and lobbying

by �rms.
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Technology adoption increased both variable pro�ts and consumer surplus which raises

the question why �rms did not adopt the technology before 2007. The answer might be a

combination of signi�cant �xed costs and market failures in the technology market. The

estimation results, in line with recent research4, rule out severe investment ine¢ ciencies on

the side of the consumer. Ja¤e, Newell and Stavins (2005) discuss knowledge and adoption

externalities and incomplete information as market failures. When �xed costs are important,

these failures combined might result in a socially suboptimal equilibrium with none or too

little investments.5 Testing this hypothesis and getting more insight in the technology adop-

tion of �rms is important to further understand how regulations and technology adoption

interact.6

Despite the rich and long panel on the EU car market the data limits the analysis in

at least two important ways. First, I only focus on new vehicle sales as second hand sales

across di¤erent countries are unavailable. Jacobsen and van Benthem (2015) study the

e¤ect of emission standards on vehicle scrappage rates. They �nd that emission standards

with sales-mixing increase vehicle lifetime because of changes in relative prices between new

and second-hand vehicles. Technology adoption might reverse this as new vehicles become

more attractive in comparison to the existing �eet, potentially decreasing vehicle lifetimes. A

second limitation of the data is that emission measures are o¢ cial numbers from standardized

tests while recently Volkswagen admitted cheating on these tests. Errors in the emission

numbers will change the results presented here in two ways. First, the estimated technology

adoption will contain both false improvements as well as actual improvements. Second, the

welfare e¤ects from technology adoption will change because emission savings and consumer

gains are not attained with false improvements. In the analysis I will carefully discuss this

issue and the impact on the results in more detail. The �nding that attribute-basing induces

technology adoption carries over to cheating, which can be regarded as technology adoption

speci�c to the testing procedure. In current work (joint with James Sallee) we are quantifying

the degree and the economic e¤ects of cheating.

The paper is structured as follows. Section 2 presents emission standards in a model of

4Grigolon, Reynaert and Verboven (2014) �nd that, using similar data, consumer investment ine¢ ciencies
in the EU are not large. Allcott and Wozny (2014); Busse, Knittel and Zettelmeyer (2013) and Sallee, West
and Fan (2015) �nd at most moderate undervaluation of future fuel savings for US consumers.

5It is perhaps striking that the industry itself agreed to step into a nonbinding agreement in 1998 but
failed to reach the targets. The voluntary agreement aimed to bring each producer�s sales weighted emissions
down to 140 g CO2/km by 2008. The agreement is considered a failure (only the small car makers Fiat, PSA
and Renault came close to the goal) and we see strong reductions in emissions only taking place after 2007.

6Recent work, such as Hashmi and Van Biesebroeck (2012) and Aghion, Dechezleprêtre, Hemous, Martin
and Van Reenen (2015) , has looked at R&D patterns in the automobile industry through patents.
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supply and demand and discusses the possible e¤ects of the di¤erent abatement strategies.

Section 3 describes the policy and the available data. Section 4 explains the changes in the

automobile market between 2007 and 2011 and shows the technology adoption. Section 5

presents estimation results and the out of sample test. Section 6 presents the results of policy

simulations and Section 7 concludes.

2 Model

This section introduces an emission standard in a structural model of supply and demand.

First I discuss the framework with demand, marginal costs and pro�ts with the constraint

from the regulation. In this framework I compare the e¤ects of each abatement strategy

and I argue that there are no clear theoretical predictions for the welfare e¤ects.7 Lastly, I

compare the impact of an attribute-based and �at regulation.

Demand There are M geographic markets, indexed by m = 1; : : : ;M , each market is

observed t times. I suppress the subscript t. In each market m there are Am potential

consumers. Consumers are assumed to purchase only in the market where they are located.

Each consumer i chooses one alternative j, which is either the outside good, j = 0, or one

of the J di¤erentiated products, j = 1; : : : ; J . Consumer i�s conditional indirect utility for

the outside good is ui0m = "i0m, and for products j = 1; : : : ; J it is:

uijm = xjm�
x
i � �eigjmejm � �ipjm + �jm + "ijm; (1)

where xjm is a vector of observed product characteristics, gjmejm are fuel costs (fuel prices gjm
times fuel consumption ejm), pjm is the vehicle price and �jm is an unobserved characteristic

of vehicle j in market m, unobserved by the researcher but observed by consumers and �rms.

The parameter vector (�ei ; �
x
i ) consists of random coe¢ cients, capturing individual-speci�c

valuations for fuel costs and vehicle characteristics, �i is the marginal utility of income or

price valuation and "ijm is a remaining individual-speci�c valuation for product j (assumed

to be i.i.d. type I extreme value). The random coe¢ cient for characteristic k is given by

�ki = �
k + �k�ki , where �

k
i is a random variable with zero mean and unit variance, so that

�k represents the mean valuation for characteristic k and �k is its standard deviation across

7The abatement strategies discussed do not need to happen mutually exclusive. Firms will choose their
abatement strategies such that the marginal abatement costs of each strategy is equal. When �rms abate by
choosing only one strategy the marginal cost of that strategy must be lower than that of the other strategies.
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consumers. Notice that the coe¢ cient �ei measures the response of consumers to shifts in

fuel costs.8

Each consumer i in market m chooses the alternative j = 0; : : : ; J that maximizes her

utility. The predicted market share of vehicle j in market m is the probability that product

j yields the highest utility across all available products (including the outside good 0). This

is given by the logit choice probabilities, integrated over the individual-speci�c valuations

for the continuous characteristics:

sjm(�m; �) =

Z
exp

�
�jm + �jm(�)

�
1 +

PJ
l=1 exp (�lm + �lm(�))

dP�(�); (2)

where �m is the J � 1 mean utility vector in market m (containing the mean valuation

parameters �e; �x and �), and �jm is the individual speci�c utility (containing the vector

of standard deviations �). To complete the demand side, I set the observed market share

sjm = qjm=Am equal to the predicted market share (2). In vector notation, the demand side

in market m can then be described by the market share system: sm = sm(�m; �):

Marginal costs Marginal costs are assumed to be log-linear:

log(cjm) = 

eejm + zjm


z + !jm; (3)

in which zjm is a 1 � L vector of observed product characteristics, market controls and
cost shifters and !jm is unobserved. Emissions enter marginal cost as all else equal it is

more expensive to produce engines with lower fuel consumption. This is con�rmed in the

estimation (
e < 0) and in several other engineering studies, see for example Whitefoot,

Fowlie and Skerlos (2013). Marginal costs cjm are not observed but will be backed out from

the �rst order conditions of the pro�t maximization.

Pro�ts Firms maximize pro�ts by setting prices in all countries m for all of their products

j in their �eet Ff . Price setting is assumed to happen independently in each market. Total
pro�t per year t is the sum of pro�ts from each country m. The emission standard is a

8The speci�cation does not allow the mean consumers to care about emissions seperately from fuel costs
(a �green glow�e¤ect). These preferences might be captured by the standard deviation in tastes for fuel costs
as green consumers will care more about fuel costs than others. A more �exible speci�cation including a
taste for emissions/fuel consumption gives very similar results.
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constraint on total sales over all countries in a given year t:

max
p

X
m

[�fm(p; e)] s:t:

P
m

P
j�Ff qjm(ejm � f(wjm))P

m

P
j�Ff qjm

� �; (4)

in which � is the level of the standard and f(wjm) is the attribute-basing on weight wj. For

a �at standard f(wj) = 0, when f(wj) 6= 0 vehicles with di¤erent weight will get reductions
or penalties on their emissions.9 I follow Goldberg (1998) and Jacobsen (2013) and rewrite

the Lagrangian of the problem. Pro�ts of �rm f in year t are then given by:

�f =
X
m

X
j2Ff

f[pjm � cjm(ejm)� �fLjm] sjm(p; e)Amg ; (5)

Ljm = [ejm � f(wjm)� �] (6)

in which �f is the shadow cost of the regulation and Ljm is the distance of each product from

the target. When Ljm < 0 (> 0) an additional sale of vehicle j will bring the average sales

weighted emissions closer to (further away) from the target. The per vehicle shadow cost �f
gives the cost of deviating one unit from the standard. If the standard is binding �f > 0.

If the standard is non-binding �f = 0 and (5) reduces to a standard multiproduct pro�t

function. The shadow cost �f is �rm speci�c because trading of excess emission between

�rms is not allowed. The shadow cost takes the same value for each vehicle in the �eet Ff
because �rms equalize shadow costs over their vehicles to be cost e¢ cient.

Next, I discuss how equilibrium outcomes change when we move from a market without

a standard (or a nonbinding standard), �f = 0 to a market with a binding standard, �f > 0.

The changes in the market will depend on the abatement strategy of �rms: sales mixing,

downsizing or technology adoption.

Abatement by sales-mixing A �rst mechanism to abate emissions is to change relative

prices of high and low emission vehicles. Figure 1 shows �rms can decrease prices of vehicles

in B and C (Ljm < 0) and increase prices of vehicles in A and D (Ljm > 0) to shift market

shares towards vehicles that comply with the attribute-based regulation. The set of products

available to each producer is assumed to be �xed and the set is bounded by the production

possibility frontier given the current level of technology � . I assume a pure Nash equilibrium

9Here I specify the attribute-basing as a simple additive penalty or reduction but one could design a
regulation where the target is any function g(ejm; wjm) of emissions and the attribute.
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in prices exists and write the �rst-order conditions of (5) with respect to prices as:8<:sj(p; e) + X
k2Ff

@sk(p; e)

@pj
fpk � ck � �fLk)g

9=; = 0 (7)

I denote the Nash equilibrium as p = p�(e). When introducing an emission standard the

shadow cost becomes positive �f > 0. The FOC�s show that prices will be higher for vehicles

that are more polluting than the target (Ljm > 0). Prices will be lower for a fuel e¢ cient

vehicle that helps to comply with the standard (Ljm < 0). The regulation thus implicitly

taxes vehicles with Ljm > 0 and implicitly subsidizes vehicles with Ljm < 0. The change

in relative prices of products will shift sales towards vehicles with lower fuel consumption

resulting in a di¤erent sales-mix.

The incidence and e¤ectiveness of this abatement strategy largely depends on the re-

sponsiveness of consumers to these price changes. Holland, Hughes and Knittel (2009) show

that when the price elasticities of the subsidized products di¤er from those of the taxed

products total sales, as well as total emissions, might increase or decrease. Before knowing

the price elasticities of the full set of products we cannot make statements on the e¤ect of the

regulation on total sales, emissions or consumer surplus. The e¤ects on pro�ts will depend

on consumers responses to the price changes and also on the share of the �eet that is under

the target. Firms with a �eet that is better adapted to the standard might increase pro�ts

as their prices will need less distortion compared to other �rms. The empirical model will

allow me to identify own and cross price elasticities for all products to simulate the shifts in

sales when we introduce a binding regulation.

Abatement by downsizing In the medium run �rms can abate emissions by designing

new vehicles with Ljm < 0 and by phasing out vehicles with Ljm > 0. In Figure 1 �rms abate

by downsizing if they design new vehicles in B and C given the current level of technology

� and stop o¤ering vehicles in A and D. The share of vehicles that have Ljm > 0 increases

and this mitigates the need of changing relative pricing as more vehicles comply with the

standard. For consumers, the e¤ects of downsizing will be similar to those of sales-mixing.

Some products with Ljm < 0 that were priced in�nitely high are now implicitly subsidized

and made available while the prices of some products with Ljm > 0 increase to in�nity.

Depending on the price elasticities of consumers the regulation can again have any e¤ect on

emissions, sales and consumer surplus.

Firms will choose for downsizing especially when they have a low share of vehicles with
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Figure 1: Emission Standards and Abatement Strategies

Flat and Attribute-based Regulation Production Possibility Frontier

Panel I plots the target function for a �at and attribute-based regulation. Panel II adds a production
possibility frontier for di¤erent technology levels � and e� . The area above the production possibility

frontier de�nes possible products.

Ljm < 0. To make this new products available, �rms will have to pay �xed costs. This makes

it challenging to empirically model downsizing. First, one needs a realistic model of how �rms

choose product designs that are technically possible. Klier and Linn (2012) exploit observed

relations between product characteristics and Whitefoot et al. (2013) use an engineering

model. Second, the model needs to allow �rms to make strategic decisions on both prices

and product characteristics, which complicates solving the Nash equilibrium. Third, one

needs to account for the fact that these design decisions will be correlated with unobservables

such that instruments are needed to identify consumer tastes for endogenous characteristics.

Both Klier and Linn (2012) and Whitefoot et al. (2013) simulate that this strategy would be

used to a considerable amount if the CAFE standards were to be tightened. Klier and Linn

(2012) �nd that compliance costs for �rms decrease by about 40% per year while consumer

loss is similar to a full sales-mix scenario. Because of the empirical challenges and similarity

in welfare e¤ects between downsizing and sales-mixing I will focus on a comparison between

sales-mixing and technology adoption in this paper.

Abatement by technology adoption Firms can reduce emissions of existing vehicles by

adapting engines, the combustion process or features that only a¤ect the fuel consumption.10

10Knittel (2011) gives several examples of speci�c technologies that are implemented. The In-
ternational Energy Agency reported a possible 40% improvement in fuel e¢ ciency from avail-
able technologies in 2005. These include low rolling resistance of tires, reduced drive-
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Consider a technology shift over time from � to e� , shown in Panel II of Figure 1. This shifty
will decrease the emissions each vehicle as ejm1(�) > ejm2(e�). When emissions decrease the
value of Ljm shrinks such that more vehicles will contribute to compliance (these vehicle

shift from A and D into B and C). As a larger part of the �eet helps with compliance �rms

require less and less changes in relative prices in order to reach the target. Increases in �

lead to reductions in the shadow cost of the regulation �f . Eventually, for strong shifts in

� , the �rm can choose its preferred price scheme once �f = 0.

The welfare e¤ects of this strategy are once again undetermined. This time there are two

o¤setting e¤ects for consumers. There is upward pressure on prices as marginal costs de�ned

in (3) increase. These higher prices will reduce consumer surplus. But vehicles come with

lower fuel consumption, decreasing the cost of operating a vehicle. This increases consumer

surplus. The sum of purchase price and operating costs might thus increase or decrease.

The changes in marginal costs and the degree of pass through will determine the overall

e¤ect. Given the shift in technology �rms will reach a new Nash equilibrium in prices, from

p�(e(� )) to p�(e(e� )). I assume the �xed cost of developing and adopting the technology to
be sunk and thus not to impact the equilibrium prices. Firms however have to make these

�xed costs in order to increase the technology. The e¤ects on total pro�ts depend on the

changes in demand, the new price equilibrium and the amount of �xed costs.

Flat and attribute-based standards In the counterfactual I will consider two designs of

the regulation. First, I exactly replicate the EU policy resulting in the upsloping attribute-

based regulation (ABR) depicted in Figure 1. Second, I specify a �at standard so that in

equilibrium the same sales weighted emission are attained. For the �at standard L0jm =

[ejm � �0] and f(wjm) = 0. The target function is a horizontal line at �0 and all �rms need
to reach exactly the same level of CO2 emissions.

Both the shadow costs, amount of downsizing and the level of technology needed to

comply with the regulation will di¤er between the �at standard and the attribute-based

standard as a di¤erent set of vehicles has Ljm < 0 than L0jm < 0. This can be seen clearly

in Figure 1: vehicles in B and C have Ljm < 0 and comply with the ABR, while vehicles

in C and D have L0jm < 0 and comply with the �at regulation. I will discuss three possible

consequences of the attribute-basing.

First, the ABR might shift the costs of the di¤erent abatement strategies, making it more

line friction, combustion improvements, thermal management, variable valve actuation and lift,
auxiliary systems improvement, thermodynamic cycle improvements and dual clutch transmis-
sion. See http://www.iea.org/publications/freepublications/publication/technology-roadmap-fuel-economy-
of-road-vehicles.html.
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costly to choose for sales-mixing, downsizing or technology adoption. Decreasing the prices or

designing vehicles in zone D in Figure 1 is possible for the �at standard but not for the ABR.

Given the current level of technology � the ABR severely limits the possibilities from sales-

mixing and downsizing and makes these strategies potentially much more costly. Second,

the amount of e¤ort required from �rms with di¤erent average vehicle weight changes with

the slope of the ABR. Third, the ABR might increase the cost e¢ ciency of the regulation

by equalizing abatement costs. If producers of heavier vehicles �nd it more di¢ cult to abate

emissions a slope in the target function can equalize the marginal cost of compliance across

�rms. In this sense attribute-basing can be a replacement for emission trading between �rms

which would fully equalize abatement costs.

The attribute-based regulation might have other economic consequences. Ito and Sallee

(2014) point out that attribute-based standards create a distortion in the demand and supply

of the attribute itself. If heavier cars help with attaining the target, weight is indirectly

subsidized and producers will choose to add more weight to their vehicles.11 In this exercise

I keep weight, and other characteristics, �xed and assume there are no distortions in the

attribute itself. I will compare the welfare e¤ects of a �at standard with that of an ABR

and will look to which degree marginal abatement costs of the di¤erent strategies change, to

which degree �rm pro�ts change and to which degree I �nd evidence of cost equalization.

3 The EU emission standard and data

The EU emission standard The European regulation on emission standards for new

passenger cars, Regulation (EC) No. 443/2009, sets a mandatory �eet average � =130

grams CO2 per kilometer. The target is set for each producer�s �eet of new vehicles sold

in a calendar year and trading of excess emissions between producers is not allowed.12 The

standard and �rm distance from the regulation in 2007 and 2011 are plotted in Figure 2.

The attribute basing f(wjm) = a(wj �w0) adjusts emissions of each vehicle by the distance
in weight wj from a shifting point w0 (the pivotal weight point). The shifting point w0 is a

mass of 1370 kg and the di¤erence in weight from that point is multiplied by a = 0:046.13

11This creates distortions, which might be signi�cant if weight is associated with other external costs. See
for example the analysis by Anderson and Au¤hammer (2014) who relate weight to accident risk.
12Manufacturers can obtain lower average emissions by gathering super credits. These credits are given

for vehicles that emit less than 50g/km. There are also seperate standards for small manufacturers making
less than 30 000 vehicles per year. Both of these exceptions are ignored in the analysis since they count for
a very small share of the total market.
13The emissions of an average SUV of 1650kg will count for less in the sales weighted sum and the emissions

of a compact car of 1250 kg will count for more.
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Figure 2: Compliance of Firms in 2007 and 2011

The starting point of each arrow gives the sales weighted CO2 and mass for each producer in 2007
as observed in the data. The end of each arrow gives the same point in 2011. The dashed diagonal

line is the regulation, fully binding in 2015.

When producers exceed the standard they have to pay premiums for excess emissions. The

premium is e5 per unit sold for the �rst excess g/km and increases to e95 per unit above

134 g/km. A manufacturer obtaining a sales weighted emission of 146 g/km, the average in

2007, would face a signi�cant penalty of e1280 per vehicle (the average price of a vehicle in

the sample is e22,250). The regulation was proposed by the European Commission in 2007

and became a European law in 2009. Deters (2010) gives an overview of the full legislative

process and the political background. In 2012, 65% of manufacturer�s sales had to comply

with the emission standard. This rose to 75% in 2013, 80% in 2014 and the standard is fully

binding from 2015 onwards.

The speci�cs of the regulation were heavily debated during the drafting of the law. Several

newspaper reports discuss lobbying e¤orts by EU member states, �rms and environmental
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groups.14 France and Italy were strongly in favor of a �at standard, while Germany wanted an

upward sloping target function in either weight or footprint (the rectangular area in between

the wheels of the vehicle). The German �rms BMW, Daimler and Volkswagen on average

make heavier vehicles than Fiat (Italian), Renault and PSA (French). The production of

each of these �rms mostly takes place within the boundaries of the home country and the

car sector is an important source for employment.

It is instructive to compare the EU policy with the US CAFE standard since this policy

has been the subject of several studies. The CAFE standard came into place in 1978 and

after a gradual phase-in has been constant at 27.5 mpg since 1990 (this corresponds to 198 g

CO2/km). From 2009 onwards CAFE standards are tightened towards 36 mpg in 2016 (this

corresponds to 152 g CO2/km). Contrary to the EU standard, light trucks (SUV�s) face a

di¤erent less demanding target than passenger cars. Also, �rms are allowed to trade excess

emissions over time and with other �rms.15 From 2012 onwards the CAFE standard also has

an attribute-based part: the target varies with footprint.

Data The main data set is obtained from a market research �rm (JATO dynamics) and

contains sales and product characteristics for each passenger car sold during 1998-2011 in

seven European countries: Belgium, France, Germany, Italy, Great Britain, The Netherlands

and Spain.16 Characteristics and sales are given for several engine variants of a car model.

A model is de�ned as a brand/model/body type combination (e.g., Volkswagen Golf Hatch-

back). The engine variants di¤er in fuel type (gasoline or diesel) and engine performance.

Accounting for fuel type is important in the EU market as diesel variants have a considerable

market share (56% in 2011) and the emissions of diesel variants are lower; a diesel engine

emits about 20% less C02 per kilometer.17

Sales are de�ned as new vehicle registrations in each of the countries. Prices are sug-

gested retail prices (including registration taxes and VAT as obtained from the European

Automobile Association). The product characteristics included in the analysis are measures

of fuel consumption (liters per 100 km and CO2 emissions per km)18, vehicle size (footprint

14See for example "EU unveils tough emissions curbs for cars" - Financial Times, February 7 2007 and
"France battles Germany over car emissions" - Financial Times, November 15 2007.
15Contrary to the CAFE standards in the US there is also no banking system for excess emissions over

time. The penalties in the EU are lower for low excess emissions but increase to higher levels than the
penalties for breaking the US CAFE standards.
16These markets represent around 90% of the total EU market.
17The combustion process and di¤erent energy content of the fuel make diesel engines more e¢ cient per

kilometer. Diesel cars emit less CO2 per kilometer, but more other pollutants such as NOX.
18CO2 emmisions and fuel consumption are obtained from the New European Driving Cycle (NEDC).

This is a standardized driving cycle to assess the emission levels of car engines. The cycle simulates both
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de�ned as length by width, weight and height) and engine performance (horsepower and

displacement). The data on sales are supplemented with production data from PriceWater-

houseCoopers (PWC) and contain the country and plant of production for each model. I

match this with a producer price index and a unit labor cost measure obtained from the

OECD. Finally, data on fuel prices (from DataStream), GDP/capita and number of house-

holds in each country (from Eurostat) are used to construct fuel costs for consumers, real

prices and the number of potential buyers in each year.

To reduce the size of the data and complexity of the analysis, I leave out �rms, brands and

models with very low sales. The analysis will focus on the largest producers and their best

selling brands on the EU market. The included �rms are BMW, Daimler, Fiat, Ford, General

Motors, PSA, Renault and Volkswagen. I treat the largest Asian car makers as one decision

maker. This includes the �rms Honda, Hyundai, Mitsubishi, Nissan, Suzuki and Toyota.

The list of included brands and a detailed description of the model selection and data ma-

nipulations can be found in the appendix. In total I keep 40,239 market/year/model/engine

variants in 98 year/countries, or about 400 model engine variants per market. The �nal data

contains 80% of total reported sales in the sample.

Throughout the paper, the full dataset is partitioned over time and markets in several

ways. In Section 4, I collapse the data towards a unique model engine variant in each year and

leave out the variation over markets. This data is used to make statements on the evolution

of the supply of engine characteristics over time and contains 12,659 unique observations.

To estimate the structural model I will rely only on data prior to the policy announcement

and use the years 1998-2007. This exploits 30,000 year/market/model-engine observations.

I will use the last year of data (2011) to test the validity of the structural model. Finally,

the data from year 2007 will be used as the benchmark for the simulations in Section 6.

Summary Statistics Figure 2 plots each producer�s distance from the emission stan-

dard in 2007 and 2011. Each �rm needs to move below the dotted line which presents the

attribute-based emission standard. In 2007 each �rm is far above the target and has three

options to reach the standard: reduce emissions, increase weight or combine both. The Asian

�rms, BMW, Daimler and Ford decrease weight and reduce emissions. Volkswagen reduces

emissions keeping weight constant. Fiat, GM, PSA and Renault all increase average weight

slightly while decreasing emissions strongly. A strong downward trend in emissions towards

the standard is observed for all �rms. The decrease in emissions is so strong that most of the

urban and extra-urban driving patterns and excludes the use of auxiliary features like air conditioning. Real
world emissions thus di¤erentiate from these test values. I will come back to this point below.
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Table 1: Sales weighted vehicle characteristics in 2007 and 2011
Characteristics 2007 2011 % Change

CO2 (in g/km) 147 126 -14%
Horsepower (in kW) 77 80 3%
Footprint (in m2) 7.2 7.4 2%
Weight (in kg) 1271 1280 1%
Diesel 56% 56% 0%

The Table presents sales weighted vehicle characteristics in the EU in 2007 and 2011.

�rms comply with the emission standard four years before it is fully binding.19 Table 1 shows

the change in sales weighted vehicle characteristics between 2007 and 2011. CO2 emissions

decrease by 14% while there is moderate growth in other sales weighted characteristics. The

decrease in emissions is observed in all car size classes and is largest among SUV�s (-25%)

and smallest among subcompact cars (-12%).

Figure 3 plots sales weighted characteristics over time from 1998 to 2011 for both the EU

(Panel I) and the US (Panel II). Each characteristic is indexed in 1998. The most remarkable

trend in the EU is the evolution of sales weighted CO2 emissions. The level of emissions

is constant up until 2002, slightly declines about 6% until 2007, and then plunges by 14%

in the last four years of the sample. This shift coincides exactly with the announcement of

the fuel e¢ ciency standard by the European Commission. The CO2 emissions show a very

di¤erent pattern in the US than in the EU. Until 2007 there is a very moderate decline in

emissions of about 3%. Between 2007 and 2009 emissions of newly produced vehicles decline

by 7% but then remain constant at 90% of the 1998 level. In the EU, emissions further

decrease in 2010 and 2011 and by the end of the sample are at 80% of the 1998 level. In both

the EU and the US weight and horsepower grow consistently over time. By 2011, European

consumers choose a vehicle that on average is 23% more powerful and 13% heavier than in

1998. Knittel (2011) already documented these stark increases in characteristics of vehicles

for the US.

4 Market response to the EU emission standard

In this section I decompose the observed decrease in emissions. How much of this drop is

attributable to sales-mixing, downsizing or technology adoption? To answer this question I

19This shows that the emisison standard is probably not the only mechanism driving driving down sales
weighted emissions. Below I comment on complementary explanations.
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Figure 3: Sales Weighted Characteristics over Time
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The �gure shows the evolution of quantity weighted characteristics from 1998 until 2011, indexed
at 1998. The EU trends represent the evolution of sales weighted characteristics as observed in the
data. The US trends represent the evolution of production weighted characteristics as reported by

the EPA (http://www.epa.gov/otaq/fetrends.htm).

estimate isocost functions in emissions and other vehicle characteristics using a reduced form

equation. First I describe estimation of trade-o¤ and technology parameters, then I use the

estimated relation to decompose the downward trend in emissions.

Estimation of trade-o¤ and technology parameters Following Knittel (2011) I esti-

mate the following regression:

log(ejt) = � t + � log(xjt) + �jt; (8)

in which the technology parameter � t is a time �xed e¤ect, the trade-o¤ parameters �

denote how emissions ejt change due to a 1% change in a characteristic xjt and �jt is an error

term. The technology parameter captures shifts over time in the trade-o¤ between emissions

and characteristic and captures engine improvements. Graphically � t captures shifts in the

production possibility frontier (as shown in Figure 1) and � gives the slope of the frontier.

The trade-o¤ parameters � are assumed to be constant over time, such that technology � t
can be seen as input neutral (it enters multiplicative in levels). I assume �jt to be i.i.d. and

estimate (8) by ordinary least squares.

Table 2 presents the trade-o¤ parameters � from estimating (8). Model 1 is the baseline
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speci�cation, close to that of Knittel (2011), and includes trade-o¤ parameters for horse-

power, weight, footprint and height. For Model 1 I �nd that a 10% increase in horsepower

causes a 1.8% increase in emissions. A 10% increase in weight and height increases emissions

by 6.6% and 4.1%, while increasing the footprint reduces emissions by 1.6% (not precisely

estimated). A diesel engine is about 20% more e¢ cient than a gasoline engine which coin-

cides with engineering numbers. These numbers have the same sign and a similar magnitude

as those reported by Knittel (2011) and are almost identical to Klier and Linn (2013) who

use similar European data. Model 2 includes diesel by characteristics interactions and thus

allows a di¤erent functional form for diesel engines (instead of only a di¤erent dummy).

Model 3 and Model 4 address possible biases related to technology expenditures. If un-

observed expenditures on technology are correlated with characteristics on the right hand

side of (8) this would bias the estimated parameters. Expenditures on technology are likely

re�ected in marginal costs so I add prices and marginal costs as controls.20 If biases from

unobserved expenditure would be substantial I would expect parameters to change between

Model 1 and Model 3 or 4, which they do not. Model 5 estimates (8) with frequency weights

for sales. If �rms would increase technology only in speci�c groups of low or high selling ve-

hicles the parameters in Model 1 will be biased. Again, the trade-o¤ parameters are similar

between Model 5 and Model 1. Model 6 allows the trade-o¤ parameters to change over time

(the functional form changes year by year), and Model 7 allows for a �rm speci�c trend in

technology. These last two models should result in di¤erent predictions for the technology

parameters if the technology is not input neutral or is di¤erent between �rms.

The technology parameters � t are derived from the time �xed e¤ects in each regression

and plotted in Table 3 for Model 1-Model 6, and results for Model 7 are in the appendix.

Technology improves over time between 1998 and 2007 by an average pace of between 0.7%

and 1.6% over the di¤erent speci�cations. After 2007 the estimates reveal a signi�cant

increase in the pace of technology improvement with a yearly average increase of more than

4% for all models. The �rm speci�c technology paths reveal similar increases in technological

e¤ort after 2007 for each �rm. These �ndings provide strong suggestive evidence that �rms

speed up the adoption of technology in the period after the policy announcement in order

to comply with the regulation.

A potential problem with these estimated technology residuals is that the estimated

emission decreases might not translate into on-road fuel savings for consumers. The data are

o¢ cial measures stemming from the New European Driving Cycle. The concern is that �rms

over time are getting better at taking the test without improving actual on-road emissions.

20Marginal costs are unobserved so I use the predicted marginal costs from the structural model.
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Table 2: Trade-o¤ Estimates between Emissions and Characteristics
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

ln(Hp) 0.18*** 0.26*** 0.16*** 0.20*** 0.13*** 0.05 0.17***
(0.02) (0.05) (0.03) (0.03) (0.02) (0.05) (0.02)

ln(Weight) 0.66*** 0.54*** 0.63*** 0.70*** 0.63*** 0.81*** 0.80***
(0.09) (0.08) (0.09) (0.09) (0.08) (0.11) (0.08)

ln(Footprint) -0.16* -0.14* -0.16* -0.15 -0.11 -0.16* -0.29***
(0.08) (0.07) (0.08) (0.08) (0.08) (0.07) (0.08)

ln(Height) 0.41*** 0.30** 0.43*** 0.40*** 0.31** 0.42*** 0.29**
(0.11) (0.10) (0.12) (0.12) (0.11) (0.11) (0.09)

Diesel -0.20*** -0.83*** -0.21*** -0.20*** -0.21*** -0.20*** -0.21***
(0.01) (0.20) (0.01) (0.01) (0.01) (0.01) (0.01)

Price 0.03
(0.03)

Marginal Cost -0.02
(0.02)

Year F.E.? Yes Yes Yes Yes Yes Yes Yes
Diesel�Char.? Yes
Year�Char.? Yes
Year�Firm? Yes
Observations 12,659 12,659 12,659 12,659 132�106 12,659 12,659
R2 0,82 0,83 0,84 0,83 0,81 0,83 0,83

This table gives the trade-o¤ parameters � between characteristics and emissions from equation (8).
Robust standard errors are reported between brackets and clustered per �rm, *** p<0.01, ** p<0.05,
*p<0.10. Model 1 is estimated with ols and includes only year �xed e¤ects, Model 2 includes diesel
by characteristic interactions, Model 3 includes price as an explanatory variable, Model 4 includes
marginal costs (as estimated from the structural model), Model 5 is a weighted least square using
sales as frequency weights, Model 6 interacts the time trend with characteristics and Model 7 allows

for a di¤erent time trend for each model.
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Table 3: Technological Progress Estimates
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

1999 2% 1% 1% 2% 2% -1%
2000 -2% 0% -1% -2% -1% -3%
2001 2% 0% 2% 2% 1% -2%
2002 2% 2% 1% 2% 2% -1%
2003 2% 2% 2% 2% 2% 3%
2004 2% 2% 3% 2% 2% 2%
2005 2% 2% 1% 2% 2% 4%
2006 2% 1% 2% 2% 1% 3%
2007 2% 2% 2% 2% 2% 1%
2008 3% 3% 3% 3% 3% 4%
2009 4% 4% 4% 4% 4% 3%
2010 5% 5% 5% 5% 5% 7%
2011 5% 5% 5% 5% 4% 2%

Average Technology Growth

1998-2007 1.6% 1.3% 1.4% 1.6% 1.4% 0.7%
2008-2011 4.3% 4.3% 4.3% 4.3% 4.0% 4.0%

The table gives the estimated yearly change of technology in the CO2 production function as derived
from the year �xed e¤ects in (8). Each of the estimated models corresponds to Table 2, �rm speci�c
technology paths for Model 7 are given in the appendix. The shaded area are years after the policy

announcement.

This could have a large impact on the consumer surplus and externality changes of the

regulation discussed below.

Decomposition of the changes in fuel e¢ ciency The estimated relation (8) can be

used to reveal the compliance strategy of �rms between 2007 and 2011. First, I predict

emissions, bejt, as the �tted values of regression (8).21 Second, I predict ejt using (8) but

�xing the technology at the 2007 level (� t = � 2007). The prediction ejt will thus only depend

on characteristics xjt and not on the time �xed e¤ects. If �rms choose for sales-mixing or

downsizing the average sales weighted values of ejt will decrease over time as these abatement

strategies result in either changes in vehicle characteristics or changes in the market shares

of more fuel e¢ cient vehicles. The trend in average sales weighted values bejt gives the sum
of sales-mix abatement, downsizing and technology adoption.

21I re-scale each of the predicted emissions with the attribute-based target function, such that the numbers
can be read as actual distances from the regulation.
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The results in Table 4 show that between 1998 and 2007 sales weighted emissions without

technology increased slightly from 151 to 154 (an increase of 2%). Technology improvements

were fully responsible for the observed moderate decline in emissions between 1998 and 2007.

After 2007, the sales weighted emissions without technology ejt keep increasing gradually

from 154 to 155. There is thus no evidence of signi�cant changes that could be attributable

to either sales-mixing or downsizing. When I split up the average sales weighted emissions

into vehicle models released after and prior to 2007 the results show that the emissions ejt
of vehicles released prior to 2007 remain constant.22 Vehicle models released after the policy

announcement are on average more polluting than existing vehicle models. The di¤erence

between existing vehicles and vehicles released after the policy decreases over time however.

The observed decline in emissions is thus not in any sense attributable to changes in the

sales mix or to the release of new downsized fuel e¢ cient vehicles.

The sales weighted emissions with technology bejt are decreasing rapidly after 2007 and
this shows that technology adoption is fully responsible for the observed drop in emissions.

Strikingly, the decrease in sales weighted emissions of older vehicles due to technology is as

strong as the decrease in newly released vehicles and the engine improvements are installed

widely across the �eet.23

In sum, this is strong suggestive evidence that technology adoption is the preferred abate-

ment strategy. The observed response is so strong that most �rms already comply with the

emission standard in 2011 as shown in Figure 2, four years before the regulation is fully

binding. Four other explanations for the increase in technology adoption come to mind:

changes in fuel prices, changes in preferences, the economic crisis and local regulation by

EU member states. Fuel prices do not show a strong increasing pattern after or before 2007.

Changes in preferences or an aggregate demand shock from the crisis would cause consumers

to choose less expensive vehicles revealing changes in ejt, but it is unclear how these shocks

would clarify increases in technology. Individual member states do increase emission based

taxation and regulation during the same period.24 This combination of new regulations,

together with the standard, can explain why the response is so strong and why compliance

is attained so early.

22An example of a newly released model is the "Citroen DS3 Hatchback", released in 2009. Note that I
do not treat new engine versions as new models as these directly capture the new technology.
23When I zoom in on vehicle models I �nd (not reported) that the likelihood of releasing an engine version

with lower than existing emissions is signi�cantly much higher after 2007.

24Examples are the bonus/malus system in France and low emission zones in Germany as well as various
scrapping schemes.
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Table 4: Decomposing the Decrease in Emissions
All Vehicles Existing Models (2007�) New Models (>2007)

No Tech. Tech. No Tech. Tech. No Tech. Tech.
True ejt bejt ejt bejt ejt bejt

1998 169 151 172 151 172
1999 168 152 170 152 170
2000 169 151 172 151 172
2001 167 152 170 152 170
2002 164 152 168 152 168
2003 161 152 164 152 164
2004 158 153 161 153 161
2005 156 153 158 153 158
2006 154 154 157 154 157
2007 151 154 154 154 154
2008 147 153 148 153 148 161 156
2009 142 154 144 153 143 163 151
2010 135 154 137 154 136 157 138
2011 130 155 131 154 130 157 132

The table reports observed and predicted levels of average sales weighted CO2 emissions. Emis-
sions are corrected with the attribute function f(wj) and represent the actual target values for the
regulation. All predictions use the estimates from Table 2 Model 1. The columns ejt contain sales
weighted predicted emissions keeping technology constant at � t = �2007. The columns bejt contain

sales weighted predicted values for emissions with estimated � t.
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5 Estimation of Demand and Marginal Cost

In this section I estimate the model as set out in Section 2. I explicitly test the ability

of the model to predict prices and market shares out of sample after the large changes in

technology. In this section I make use of the full panel structure of the data and include

variation over countries and time.

Estimation I have a panel of 70 markets, to estimate the taste and marginal cost parame-

ters as de�ned in Section 2. The sample is restricted to markets that are observed before the

policy announcement and contains the data for 7 countries in the period 1998-2007. This

allows me to estimate a model in which �rms choose prices to maximize unconstrained pro�ts

as given in (5) with � = 0. The vector of parameters � to be estimated consists of the taste

parameters �ei ; �
x
i and �i and the cost parameters 


e and 
x. I estimate both a mean and

a standard deviation of the taste for fuel consumption, horsepower, weight, footprint and a

dummy for foreign perceived cars (e.g. a BMW in France). I specify �i to be proportional to

income ymt in market mt, so �i = �=ymt. A set of controls is added for which I only estimate

the mean taste. These include height, brand �xed e¤ects, market �xed e¤ects, diesel by

market interactions, body type dummies, size class dummies, a dummy for 3 doors, months

on market dummies (for vehicles introduced within a calendar year), and a time trend. The

remaining unexplained variation in market shares is �jmt. Marginal costs are explained by

the same set of variables, except that fuel consumption enters instead of fuel costs, the diesel

market interactions are dropped (as these capture tax di¤erences for consumers), a full set of

year dummies is added and labor costs and a production in the country of sales dummy are

added. This captures transportation and distribution costs. The remaining part of marginal

costs !jmt is unobserved.

The parameters are obtained by minimizing the GMM criterion:

min
�
� (�)0 g(z)0A� (�)0 g(z)0 (9)

in which �jmt = (�jmt; !jmt) the matrix of demand and supply unobservables stacked over

all markets, g(z) is the matrix of instruments and A is a weighting matrix. I follow the

estimation algorithm described in Berry, Levinsohn and Pakes (1995) and Nevo (2001). I

take into account recent cautionary warnings and improvements and carefully check the

properties of the obtained minimum.25 For simplicity, I estimate the demand and supply

25More speci�cally I do the following: (i) I use a nested-�xed point (NFP) algorithm, BLP�s contaction
mapping with a very thight convergence criterion (1e-12) to solve for �jmt, (ii) I re-estimate the model with
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separately and do not exploit cross equation restrictions on the price parameter. I instrument

for prices using the production data that gives me the location and plant of production for

every vehicle. I add sums of characteristics per size class for each vehicle as additional

price instruments. A third group of instruments identi�es the nonlinear parameters through

approximations of the optimal instruments following the approach described in Reynaert and

Verboven (2014). I estimate marginal costs under the assumption of perfect and imperfect

competition. Perfect competition serves as a benchmark since price equals marginal costs

estimation is an ols of prices on cost shifters. With the assumption of imperfect competition,

marginal costs are the solution of the system of �rst order conditions as given in (7). As

a benchmark I also present the results from a simpler logit model, ignoring all individual

heterogeneity.

Table 5 presents the estimated parameters and standard errors. The demand parameters

for both the logit and RC logit show that consumers dislike higher prices, higher fuel costs

and foreign cars. Consumers have positive tastes for weight and footprint. In the RC logit,

the standard deviation for both fuel costs and horsepower is estimated to be signi�cant. On

average consumers dislike fuel costs but some consumers �nd this more important than oth-

ers. Grigolon, Reynaert and Verboven (2014) discuss this heterogeneity, related to di¤erences

in mileage among consumers, in more detail. The magnitude of consumers willingness to

pay for fuel savings is similar to that found in our previous work.26 The taste heterogeneity

for horsepower is very strong and it causes the mean parameter to shift sign between the

logit and RC logit speci�cation. Other standard deviations on weight, footprint and foreign

are found to be small or imprecisely estimated.

The marginal cost estimates under perfect competition in Table 5 are identical for both

the logit and RC logit, it is simply a linear regression of prices on cost shifters. These

estimates are useful though as they show that both cost instruments obtained from the pro-

duction data are signi�cant and have the expected sign. Increases in labor cost increase

marginal costs and production in the local market decreases costs. All marginal cost regres-

sions show that increasing the fuel e¢ ciency of the vehicle is costly. A one unit decrease in

the liters per 100km increases cost with 2.5% to 8.7% over the di¤erent speci�cations. All

characteristics also have the expected sign. Adding horsepower, weight, footprint or height,

10 di¤erent starting values for the non linear parameters, (iii) I check �rst and second order conditions at the
obtained minimum, (iv) I use the Interior/Direct algorithm in Knitro. I use a NFP because Mathematical
Programming under Equilibrium Constraints proved to be slower in this application once I parralized the
computation of the contraction mapping. As is shown in Reynaert and Verboven (2014) both estimation
algorithms should give the same results.
26Table 9 will show that consumers are responsive to changes in fuel consumption.
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Table 5: Estimation Results
Demand Estimation

Logit RC logit
Mean Valuation St. Dev. Mean Valuation St. Dev.
Param. St.Err. Param. St.Err. Param. St.Err. Param. St.Err.

Price/Inc. -3.894 0.288 - - -3.690 0.275
Fuel Cons. (e/km) -0.259 0.010 - - -0.342 0.028 0.116 0.049
Horsepower 1.355 0.191 - - -0.928 0.249 2.009 0.191
Weight 1.620 0.163 - - 1.941 0.175 0.169 0.348
Footprint 0.281 0.034 - - 0.283 0.037 0.064 0.045
Height 0.015 0.016 - - 0.004 0.016
Foreign -0.864 0.023 - - -0.904 0.047 0.405 0.260

Marginal Cost Estimation
Logit RC logit

Perfect Comp. Imp. Comp. Perfect Comp. Imp. Comp.
Param. St.Err. Param. St.Err. Param. St.Err. Param. St.Err.

Fuel Cons. (Li/100km) -0.037 0.001 -0.025 0.001 -0.037 0.001 -0.087 0.001
Horsepower 0.574 0.005 0.439 0.005 0.574 0.005 0.973 0.008
Weight 0.595 0.009 0.452 0.009 0.595 0.009 0.980 0.016
Footprint 0.008 0.002 0.001 0.002 0.008 0.002 0.081 0.004
Height 0.003 0.001 0.002 0.001 0.003 0.001 0.003 0.002
Foreign -0.026 0.003 -0.043 0.003 -0.026 0.003 0.045 0.004
Log Labor Cost Proxy 0.169 0.007 0.083 0.007 0.169 0.007 0.417 0.013
Production in market -0.013 0.002 -0.009 0.002 -0.013 0.002 -0.031 0.004

The Table reports estimated parameters for the demand and marginal cost equations. Marginal
Costs are derived and estimated using the �rst order conditions of the pro�t function under the
assumption of perfect competition and a Nash Bertrand game in prices (imperfect competition).
Both the demand and marginal cost equation include market �xed e¤ects, body type dummies, size
class dummies, a dummy for 3 doors, months on market dummies (for vehicles introduced within a
calendar year). The demand includes brand �xed e¤ects, fueltype by market dummies and a time

trend while year dummies are included in marginal costs.
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makes vehicles more costly.

I conclude this section by emphasizing that emissions enter the model through two chan-

nels. First, all else equal, consumers dislike vehicles that have higher emissions because they

are more costly. There is considerable and signi�cant variation in the degree consumers

dislike fuel costs. Second, building vehicles that are more e¢ cient and have lower CO2 emis-

sions is costly for manufacturers. Both of these parameters will be of importance in the

simulations.

Out of sample performance Before proceeding to the simulations and welfare results

I assess the ability of the structural model to predict outcomes. I test the ability of the

estimated model to predict prices and quantities after the observed technology adoption.

Because of the technology adoption, consumers face a di¤erent choice set in 2011 than in

2007, with vehicles being on average 14% more fuel e¢ cient. This large shift in one of the

characteristics of the vehicles provides me with the opportunity to test the �t of the estimated

model to the new choice set. If taste and cost parameters remain constant over time and

are estimated precisely, a correctly speci�ed model should be able to explain observed sales

and prices in 2011. The procedure for the out of sample test is as follows: 1. Set both

the supply !jmt and demand error �jmt in equation (3) and (2) are at their expected level

(E(!jm2011) = E(�jm2011) = 0);27 2. Predict the marginal costs bcjm2011 for each vehicle on
sale in 2011 using the estimated parameters from Table 5; 3. Solve for prices and quantities

under the assumption of perfect or imperfect competition.

Table 6 summarizes the sales weighted characteristics over all countries in 2007 and 2011

for each of the four estimated models.28 The �rst panel of Table 6 gives the results for the

within sample �t of the model by setting !jm2007 = �jm2007 = 0. This shows the cost of

setting the unobservables equal to zero without changes in characteristics out of the sample.

All predicted sales weighted characteristics are within a 5% error margin of the observed

sales weighted characteristics.

The second panel of Table 6 gives the results for the out of sample �t. The model is able

to predict most of the decrease in sales weighted emissions. CO2 emissions are predicted

to be 130 g/km from the logit and 129 g/km from the RC logit estimates, while observed

27Sampling k times from the distributions b!jmt, b�jmt and averaging over the k simulations takes into
account the estimated distribution of the error terms but made almost no di¤erence in practice.
28I focus on sales weighted characteristics instead of individual vehicle sales and prices for two reasons.

First, from a policy perspective I am not interested in which speci�c cars get sold the most but in the overall
emission level of the vehicle �eet. Second, the data is very disaggregated on a version level (similar vehicles
with almost the same characteristics but very di¤erent sales) making it very hard to predict sales of versions
that are very similar.
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Table 6: Out of sample �t of sales weighted characteristics
Perfect Competition Imperfect Competition

Observed Logit RC Logit Logit RC Logit
Sales Weighted: Within Sample Fit (2007)

CO2 (in g/km) 147 149 148 149 149
Price/Income 0.71 0.74 0.73 0.74 0.71
Horsepower (in kW) 78 81 79 81 80
Weight (in kg) 1271 1293 1283 1289 1285
Footprint (in m2) 7.2 7.3 7.2 7.3 7.3
Diesel 56% 54% 53% 54% 52%

Out of Sample Fit (2011)

CO2 (in g/km) 126 130 129 130 129
Price/Income 0.69 0.76 0.75 0.75 0.74
Horsepower (in kW) 80 87 85 87 85
Weight (in kg) 1280 1319 1314 1317 1307
Footprint (in m2) 7.4 7.5 7.5 7.5 7.5
Diesel 56% 57% 56% 57% 56%

This Table gives the sales weighted characteristics using predicted quantities and prices in 2007 and
2011. For each of the estimated models in Table 5 I solve for quantities and prices within and out

of sample given the estimated parameters.
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emissions decreased from 147 g/km to 126 g/km. This means sales weighted emissions di¤er

by only 2.3% from observed emissions, while there was an actual drop of 14%. Also weight,

footprint and the share of diesel are very close to the observed 2011 levels. The prediction of

both the sales weighted level of horsepower and prices has an error margin of 6.2% and 7.2%.

These errors are considerable but one has to take into account that this is a demanding test

for the model as the value of all dummy variables is unchanged while the market changes

considerably in these four years. An example is the entry of lower end SUV�s while the SUV

category dummy stays the same. In general, these numbers show that the out of sample �t

is reasonably well and that the model is able to predict market quantities of interest despite

a large change in one of the characteristics. When we compare the four di¤erent estimation

models it is again the RC logit model with imperfect competition that is closest to the

observed values. This will be the preferred model I will use throughout the simulations.

Note however that the di¤erences between the several models are very limited and probably

statistically insigni�cant.29

6 Welfare e¤ects

In this section I use the structural model to compare the welfare e¤ects of abatement by

sales-mixing with abatement by technology adoption. I will start this section by presenting

the set-up of the simulations. Next, I will show how the impact of the regulation di¤ers with

the chosen abatement strategy. Finally, I will compare the e¤ects of an attribute regulation

with those of a �at regulation.

Simulation set-up I run four di¤erent policy simulations. In the �rst two, I simulate a

policy exactly equal to the EU emission standard and let �rms respond by either sales-mixing

or technology adoption. In the last two simulations, I let �rms comply to a �at standard

instead of the attribute based regulation (ABR). The �at standard is set at a target such

that the sales weighted CO2 emissions are equal to those obtained from the ABR.

For the simulations with sales mixing I jointly solve for the �rm speci�c shadow cost

�f , and the price equilibrium such that each �rm exactly complies with the standard. For

the simulations with technology adoption I jointly solve for the �rm speci�c technology � f ,

29Currently, I don�t give con�dence intervals on the predictions and the counterfactual because of com-
putation time, simulation results will be available upon request. In the appendix I further discuss some of
the �ndings related to testing the performance of the model and I perform a Chi-square diagnostic test.
This test assigns predicted and observed sales to di¤erent groups. The test rejects the null hypothesis that
predicted distributions equal observed distribution in 4/5 group divisions.
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and the price equilibrium such that each �rm exactly complies with the standard.30 The

technological improvement does not vary across vehicles and should be seen as �eet wide %

improvements in the �rms��eet. This is a simpli�cation and avoids modeling the decision

of when to implement the technology. Solving for the shadow costs, technology shocks and

resulting prices in each of the scenarios is done by following a step-wise algorithm. This

algorithm is described in the appendix. In all simulations I use the estimated coe¢ cients

from the RC Logit model with imperfect competition from Table 5. Note that the regulation

is binding over the sum of geographical markets. I therefore solve for the responses in each

of the countries, aggregate the responses and then evaluate the solution.

For each simulation I use the vehicle set of the year 2007 with a technology improvement of

6.4% for all vehicles. This mimics the market in 2011 when emissions would have decreased

by 1.4% per year, the estimated trend before the regulation from Table 3. The market

equilibrium for this hypothetical product set is the reference point of comparison for each

simulation. All welfare changes in the simulations give the total vehicle lifetime changes for

one year of new vehicle sales. I assume a vehicle lifetime of 15 years, a yearly mileage of

14000km and a discount rate of 6% to capitalize the yearly gains/losses in externalities.31

The amount consumers drive is assumed to be constant, ignoring possible rebound e¤ects

on the intensive margin. I value a ton of CO2 at e28.32 Parry, Walls and Harrington (2007)

give an estimate for the total external cost from driving for the US market. The number

Parry et al. (2007) compute is probably not directly applicable to the EU market but at

least gives a sense of the relative importance of these e¤ects. I take this number to be e12

cent per kilometer, at best an approximation.33

Welfare E¤ects The �rst panel of Table 7 shows the e¤ect on market size of abatement

to the ABR. Market size increases with technology adoption (+5%) and decreases with

sales-mixing (-10%). With technology adoption, more consumers buy a vehicle because the

savings from fuel consumption outweigh the losses from price increases. The 5% increase in

sales is thus a rebound e¤ect on the extensive margin: despite increases in fuel e¢ ciency of

30It is important to note that I exactly solve for the level of technology or the shadow cost such that the
regulation is just binding. Each of the �rms�sales weighted emissions will end exactly on the policy lines as
plotted in Figure 1. In reality, this does not need to be the case as �rms may deviate from the standard and
pay �nes or �rms may obtain emission levels lower than the target.
31Yearly mileage and vehicle lifetime are chosen to match statistics reported by Eurostat.
32This number comes from the Interagency Working Group on the Social Cost of Carbon.
33This number is probably an upper bound for the EU since taxes on fuel and driving are on average

higher than in the US.
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10%, total CO2 emissions reduce by only 6%.34 With sales-mixing the subsidized part of the

market gains less sales than the taxed part loses. Therefore, the reduction in emissions is

much larger (-20%) with sales-mixing and close to the policy goal of an 18% reduction.

The second panel of Table 7 shows that market shares of di¤erent size classes do not

change signi�cantly with technology adoption. This �nding is in stark contrast with substi-

tution patterns from sales-mixing. In this case subcompact vehicles and compact vehicles

reach a combined share of 72% (up from 62%). All other classes lose market share.

The �nal panel in Table 7 gives the changes in consumer surplus, pro�ts, and externalities.

Consumer surplus from new vehicles increases by e10 billion per year under technology

adoption. Consumers are bene�ting from lower fuel consumption and this outweighs the

decreases in utility from higher prices. With sales-mix abatement consumer surplus decreases

by more than e20 billion. The price changes push consumers out of the market or towards

vehicles from which they get less utility. These �ndings are important in the sense that

the incidence of the regulation shifts with the di¤erent abatement strategies. This is very

di¤erent than the conclusion that is drawn in the previous literature that stressed the cost

of the regulation for consumers from looking at sales-mixing and downsizing. The �nding

that technology causes increases in consumer surplus might partly explain why this type of

regulation is a popular option for policy makers compared to fuel taxes.

The conclusions on �rm pro�ts are less clear. Variable pro�ts increase by e4 billion under

technology adoption and decrease starkly, by e10 billion, under sales-mixing. The sum of

changes in variable pro�ts hides interesting patterns between the di¤erent �rms on which I

comment below. There are two reasons why we can�t draw �nal conclusions for �rm pro�ts.

First, I do not endogenize the size of the �rm responses, I simply require them to meet the

target. It might be optimal for �rms to either pay �nes, or to do more than the regulation

requires (in fact this is what we observe between 2012 and 2015 for a number of �rms). The

pro�t changes can thus not be interpreted as a steady state for the car market. Second, the

total e¤ect of the regulation on �rms is unclear because I lack information on the �xed costs

of technology adoption. Technology adoption requires adaptation of production lines as well

as investments in R&D, both of which are unobserved. However, from the simulations it

is clear that technology adoption leads to increases in variable pro�ts that are potentially

34See Gillingham, Kotchen, Rapson and Wagner (2013) for an overview on the rebound e¤ect. A second
rebound e¤ect that might be expected is an increase in vehicle usage, a rebound e¤ect on the intensive
margin. A further rebound e¤ect could come from the use of savings on vehicle expenses on other energy
intensive activities. This is known as the indirect rebound e¤ect. Lastly, a decrease in the demand for fuels
might lower the price of oil causing further shocks in the economy,as macro-economic rebound e¤ect. Here
I only focus on the rebound e¤ect on the extensive margin, the reported emission savings are thus an upper
bound on the total savings.
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Table 7: Simulation Outcomes

Technology Adoption Sales Mixing
Market Size

Total Sales +5% -10%
Total CO2 Emissions -6% -20%

Market Structure (�% points)
Subcompact +1 +7
Compact -1 +3
Intermediate 0 -1
Standard -1 -1
Luxury -1 -1
Van 0 -3
SUV 0 -4
Sports 0 -1

Welfare E¤ects (� in billion e�s)
� Consumer Surplus +8.81 -26.61
� Variable Pro�ts +4.39 -9.90
� Fixed Costs ? 0
� CO2 Savings +0.31 +1.07
� Other Externalities -7.67 +17.60
� Total: ]...,5.84] -17.84

The table gives aggregated e¤ects over all markets and �rms for each policy simulation. The table
reports the change in market size, change in welfare in billion e over the total expected lifetime of
the vehicle and the changes in market structure. A vehicle is expected to live for 15 years and to
have an annual mileage of 14 000 km per year, the discount rate is 6%. A ton of CO2 is valued
at e28 (this value is taken from the interagency working group on social cost of carbon). Other
externalities are valued at 12cent per kilometer following Parry et al. (2007). Other externalities

include local pollution, congestion, and accident risk.
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o¤set by increases in �xed costs. Sales-mixing leads to stark decreases in variable pro�ts.

The gains from the reduction in CO2 emissions are small in comparison to other mag-

nitudes, smaller than 10% of gains or losses in consumer surplus or variable pro�ts in all

simulations. With technology adoption a moderate e350 million is gained per year while

sales-mix abatement leads to gains of about e1 billion attributable to lower emissions. Be-

cause of the e¤ects on the size of the market and thus total yearly vehicle miles, the regulation

will change other external costs from tra¢ c such as accident risk, local pollution and con-

gestion. I �nd that with technology adoption the increase in these externalities easily o¤sets

all gains from emissions. Because the external e¤ects from tra¢ c apart from CO2 emissions

are estimated to be much higher a regulation that does not decrease tra¢ c will increase the

amount of total external costs. With sales-mix abatement the amount of vehicles on the

road decreases and this reduce externalities by more than e10 billion.

To conclude, I �nd that the overall e¤ect of the regulation is clearly negative with sales-

mixing and positive before �xed costs with technology adoption. The simulations show

that emission standards are not an e¤ective instrument to reduce externalities from the car

market when �rms respond with technology adoption. The rebound e¤ect on the extensive

margin is considerable and overall externalities increase. The technology scenario can be

regarded as an upper bound on the welfare e¤ects, before deducting the �xed technology

costs and further rebound e¤ects. When �rms respond with sales-mixing total sales and

externalities decrease but the savings do not outweigh the loss in consumer surplus and

pro�ts. The sales-mix abatement scenario can be seen as a lower bound for the pro�t losses

since technology adoption is the preferred revealed strategy by �rms, sales-mixing must

be more costly. Lastly, the incidence of the regulation shifts with the abatement strategy:

consumer surplus increases by a signi�cant amount under technology adoption and decreases

strongly under sales-mixing.

These e¤ects are subject to some limitations. First, I fully count gains in consumer surplus

as welfare gains. A large part of consumer gains comes from reduced fuel consumption and

about 60% of these expenses are fuel taxes paid to the government. Depending on whether

these taxes are e¢ cient, this part of the consumer gains could be seen as a transfer from the

government to consumers and not as a pure welfare gain. Second, if the fuel savings do not

translate into on-road fuel savings for consumers (the �rms only do better on the test), then

the welfare e¤ects will be very di¤erent. If consumers would be perfectly informed about the

gap between tests and on-road there would be hardly any changes in welfare. If consumers

are misled into believing that cars are more e¢ cient while they are not, the regulation will

ex-post not reduce emissions and not decrease fuel consumption. If the technology does
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result in on-road savings a reason why we may underestimate the welfare improvements

from technology adoption could be positive externalities from spillovers into other markets.

Attribute based versus �at regulation Here I compare the e¤ects of the attribute-based

and �at regulation. The di¤erences in welfare e¤ects between sales-mixing and technology

adoption are very similar with a �at regulation, see Table A2 in the appendix.

In Table 8 I compare the outcomes for di¤erent �rms using sales-mixing towards a �at

and an ABR. I focus on �rm outcomes of sales-mixing because that is where slope of the

regulation matters most.35 The results allow us to look at three possible di¤erences between

the ABR and the �at regulation. First, do the compliance costs of sales-mixing change with

the slope of the regulation? Second, which �rms gain from a �at regulation? Third, does

attribute-basing equalize the compliance costs between �rms?

First, the change in the marginal compliance costs is potentially very important as �rms

will choose to use a strategy as long as the marginal abatement costs of the strategy is lower

than that of any other strategy. The empirical results in Table 8 show that the shadow

cost of doing sales-mixing increases with the slope of the regulation. The mean shadow

cost �
0

f for the �at regulation is 1.06 while for the ABR the mean shadow cost �f is 1.75.

This means that choosing the strategy of sales mixing on average becomes much more costly

with attribute-basing. This is especially clear for Daimler, Fiat, Renault and the Asian

�rms. Because sales-mixing becomes a lot more costly, the incentives to invest in technology

increase with attribute-basing. This might be one of the reasons why we have seen such

a clear choice for technology adoption in response to the EU standard. The upward slope

in the target function makes sales-mix abatement more costly but the results are not so

strong to state that a slope in the target function is a necessary condition to get technology

abatement. With a �at target the pro�t losses for most �rms from sales-mixing are so large

that at least some technology investment is expected.36

Second, the �rms that increase pro�ts with a �at standard are Fiat, PSA and Renault.

This is in line with the strong positions the countries took when bargaining over the regu-

35For completeness Table A4 gives the results for technology adoption towards a �at and ABR. Pro�ts
of �rms are increasing in their technology e¤orts. Firms only lose when they need less technology than
other �rms to reach the target. This illustrates again that the outcome of the simulation is not a long term
equilibrium as some �rms will have an incentive to do more than the regulation.
36Additionally, the attribute-based regulation might also change the costs of compliance from downsizing,

as well as the direction of the downsizing. The attribute-based target clearly gives an incentive not to lower
weight when choosing to downsize the �eet. Whitefoot and Skerlos (2012) simulate this possibility for the
footprint based target in the CAFE standards.
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Table 8: Pro�ts and Emission per �rm
Target Sales Mixing

ABR Flat ABR Flat
CO2 CO2 �f � Pro�t �

0

f � Pro�t

BMW 134 124 0.8 1614 1.4 -350
Daimler 121 124 2.4 -1401 1.0 -655
Fiat 116 124 2.5 -1973 0.4 366
Ford 126 124 1.0 998 1.3 -20
GM 125 124 2.7 -2419 2.2 -2054
PSA 123 124 0.6 1818 0.3 1564
Renault 120 124 1.5 -352 0.6 501
VW 125 124 1.6 -4450 1.4 -5322
Asian 118 124 2.7 -3736 1.0 -756

The table gives sales weighted emissions in grams of CO2 per km for each �rm for both the attribute-
based and the �at standard. The level of technology adoption and the shadow costs �f of the
regulation is given such that each �rm exactly reaches the target. The di¤erence in pro�ts between

estimated 2007 pro�ts and pro�ts obtained in each of the simulations are in million e�s.

lation.37 A steeper target function (the Germans proposed a slope a = 0:06 instead of 0:04)

would have resulted in lower e¤ort needed from the German �rms. The policy debate in

2007 focused mainly on this distributional issues and not on the e¤ect of the slope on the

likelihood of di¤erent abatement strategies.

Third, if the abatement costs are higher for producers of heavier vehicles, a slope in the

target function might equalize abatement costs and bring the market closer to an equilibrium

that would be reached when trading is allowed. This would make the regulation more cost-

e¢ cient as it mimics the outcome of a cap and trading system. When the regulation would

be a cap and trade system all �rms would face exactly the same shadow costs such that

�f = �. The coe¢ cient of variation of �0f with a �at target is 0:55, higher than with an

up-sloping target �f = 0:48. The equalization of abatement costs is thus very limited and

there is still large heterogeneity in the shadow costs with attribute-basing.38 The reason for

the limited equalization of compliance costs is twofold. First, the regulation is binding on

the level of the �rm and not on the level of a single product. Since all �rms sell products

37Deters (2010) describes the legaslation process in detail. He gives the following quote from French
president Nicolas Sarkozy clearly favoring a �at regulation: "There is no legitimate reason to give the buyer
of a heavy vehicle a right to more pollution than any other buyer."
38When we look at the technology e¤orts needed in Table A4 (assuming the technology e¤ort translates

literally into costs), there is almost no equalization. The coe¢ cient of variation for the e¤ort goes from 0:60
to 0:54.
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in the di¤erent size classes �rms are already able to equalize costs between their wide range

of products. Second, a simple linear function of weight is probably not a very good �t to

actual di¤erences in compliance costs between large �rms.

Incentives to invest in fuel e¢ ciency The numbers given above raise the question why

the regulation was necessary to spark investment in fuel e¢ ciency. A �rst reason could be

low demand for fuel e¢ ciency by consumers, a second reason could be market failures in

the supply of technology and R&D or steep �xed costs of investment. In this paragraph I

show that there is little evidence for investment ine¢ ciencies of consumers such that market

failures in the supply or steep costs are probably important.

If consumers do not value future fuel cost savings to the full extent, �rms will not be

able to increase sales after investments in fuel e¢ ciency. Grigolon, Reynaert and Verboven

(2014) �nd that consumer investment ine¢ ciencies in the EU are not large. In Table 9 I

endow each of the �rms with a 5% increase in fuel e¢ ciency. Each column gives the e¤ects

on pro�ts of all �rms after a new Nash equilibrium is reached. The diagonal of the table

gives the yearly return in variable pro�ts from the technology investment (provided that the

other �rms respond only by changing prices). The table shows that each �rm can increase

variable pro�ts compared to the status quo by investing in fuel e¢ ciency. So consumers do

increase demand in response to increases in fuel economy and this channel cannot explain

why �rms hardly invested in fuel e¢ ciency up until 2007.

A second channel might be market failures in the supply and adoption of technology or

steep �xed costs. Ja¤e, Newell and Stavins (2005) point to spillovers in technology, spillovers

in adoption and incomplete information about future returns of the investment as possible

market failures. The result of these market failures could be a socially suboptimal equilibrium

with no or too little investment and technology adoption. If �xed costs are important these

market failures might matter even more. The regulation gives clear and binding e¢ ciency

targets for the whole industry and thus might have succeeded in moving the industry out of

this suboptimal equilibrium and to induce technology adoption.

34



Table 9: Incentives to Invest in Fuel E¢ ciency
Firm increases fuel e¢ ciency by 5%

BMW Daimler Fiat Ford GM PSA Renault VW Asian

BMW 137 -13 -17 -28 -33 -27 -18 -58 -34
Daimler -6 185 -14 -18 -23 -18 -13 -48 -24
Fiat -4 -9 518 -29 -33 -38 -20 -42 -33
Ford -10 -10 -27 511 -42 -40 -23 -64 -46
GM -11 -12 -27 -39 577 -40 -24 -68 -46
PSA -5 -7 -33 -39 -43 709 -58 -69 -52
Renault -2 -4 -17 -21 -23 -50 442 -39 -29
VW -25 -38 -47 -86 -101 -85 -55 1176 -127
Asian -9 -11 -30 -46 -51 -54 -34 -85 670

Total 65 81 306 204 229 357 197 703 278

The table gives the di¤erence in variable pro�ts from the status quo from increasing fuel e¢ ciency
by 5%. Column 1 gives the e¤ect of a fuel e¢ ciency increase for BMW on all other �rms after
reaching a new Nash equilibrium in prices, column 2 gives the e¤ect of an increase in Daimlers fuel
e¢ ciency on all �rms variable pro�ts, etc. Numbers are in e millions. The last row gives the sum

of each column.

7 Conclusion

This paper has evaluated the response to a recent emission standard that was announced for

the European Union in 2007. I �nd that between 2007 and 2011 sales weighted emissions

from new vehicle sales have decreased by more than 14%. Decomposing this decrease I

�nd that �rms do not change their sales-mix or downsize their vehicle �eet but adopt new

technology. The welfare e¤ects of this technology adoption are very di¤erent than the e¤ects

of other abatement strategies. In sum, technology adoption increases consumer welfare and

increases total sales of new vehicles while sales-mixing decreases consumer welfare and sales.

The total welfare e¤ects from technology adoption are positive before �xed costs and very

negative with sales-mixing.

This shows that if governments choose for emission standards the design of the regulation

should aim to induce technology adoption. I �nd that the attribute-based design in the

EU regulation makes sales-mix abatement much more costly for �rms and thus increases

the likelihood that �rms will increase their pace of technology adoption. However, since

technology adoption decreases fuel costs signi�cantly the rebound e¤ect on the extensive

margin has negative e¤ects on externalities from tra¢ c. A more optimal regulation should

try to pice these externalities directly while giving incentives for technology adoption.
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Finally, I would like to end with some cautionary remarks. The numbers derived in

this paper are obtained under strong assumptions. Despite, testing the performance of the

structural model one should keep in mind the limitations of the model and the data. First, I

focus only on sales of new vehicles and assume implicitly there will be no e¤ects on prices and

vehicle lifetimes in the second hand market. I expect the e¤ects of technology adoption on

the existing vehicle �eet to be very di¤erent from those of sales-mixing. Second, all welfare

numbers are obtained ignoring possible rebound e¤ects on driving behavior. Third, I do not

observe any of the �xed costs related to implementing and inventing the new technology

related to fuel e¢ ciency. Fourth, the emission data might contain errors as car makers have

admitted cheating on the tests. The estimated technology parameters will contain these

false improvements and are thus potentially biased. It is an open question to which degree

consumers are aware of the possible cheating when purchasing a vehicle. Each of these issues

could be interesting for further research but require either a di¤erent empirical approach or

additional data.
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Appendix For Online Publication

Details on Data Selection

I focus the analysis on the largest EU �rms that sell more than 50 000 vehicles in each year

of the sample. These are: BMW, Daimler, Fiat, Ford, GM, PSA, Renault and Volkswagen. I

consider the largest Asian manufacturers as being one �rm in the model. This �rm includes:

Honda, Hyundai, Mazda, Mitsubishi, Nissan, Suzuki and Toyota. The following �rms are not

considered in the analysis: Alpina, Aston Martin, Brilliance Auto, Chana, DR Motor, Geely

Group, Great Wall, Isuzu, Jensen, Jiangling, Lada, Mahindra & Mahindra, MG Rover,

Morgan, Perodua, Porsche, Proton, SAIC, Santana, Spyker, Ssangyin, Subaru, Tata, TVR,

Venturi and Wiesmann. Daimler and Chrysler merged during the sample period an I will

treat them as one and the same �rm in the whole sample.

For the included �rms I focus on the most popular brands. I drop the following brands

which mostly include luxurious sports cars and temporary owned brands: Abarth, Bentley,

Buick, Cadillic, Corvette, Daimler, Dodge, Ferrari, Galloper, Hummer, In�niti, Innocenti,

Iveco, Jaguar, Lamborghini, Land Rover, Lincoln, Maserati, Maybach, Pontiac, Rolls-Royce

and Tata.

In total the �rms and brands that are not included account for 3.5% of the sales.

Additionally, to reduce the number of observations I select only the 50% most selling

models which are a combination of a Brand/Model/Body indicator, e.g. "Volkswagen Golf

Hatchback". Of the 50% most popular models I select the engine variants that are sold at

least 20 times. Because of this selection, that is necessary to make the number of market

share equations tractable, I loose another 14% of sales such that the �nal data set includes

81.5% of total reported sales. I lose another 3% of total reported sales due to missing values

and unrealistic outliers in the characteristics.

The de�nition of the variable weight changes throughout the sample from curb weight

before 2010 to gross vehicle weight in the years 2010 and 2011. I transform the gross vehicle

weight to curb weight by matching vehicles that are identical in all characteristics between

2009 and 2010. I regress curb weight on gross vehicle weight, doors and displacement and

use the predicted value of that regression to obtain curb weight in 2010 and 2011. The

R2 of that regression is 0.95. Curb weight is about 72% lower than gross vehicle weight.

Observed and imputed curb weight are then used to compute each vehicles compliance with

the regulation.
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Technology Estimates for Individual Firms

Table A1: Technological Progress Estimates per Firm
BMW Daimler Fiat Ford GM PSA Renault VW Asian

1999 0% 3% 2% 9% 1% 2% 3% 1% -2%
2000 -3% -3% 2% -8% -3% 0% 1% -1% 0%
2001 4% 4% 3% 4% 0% 5% 1% 0% 2%
2002 1% 1% 1% 1% 0% 2% 2% 1% 4%
2003 0% 2% 3% 2% 3% 1% 3% 2% 3%
2004 0% 2% 1% 3% 4% 7% 3% 1% 1%
2005 1% 4% 1% 2% 2% 2% 0% 2% 1%
2006 3% 1% 4% 1% 1% 2% 3% 1% 1%
2007 10% 1% 3% 0% 2% 3% 1% 1% 3%
2008 6% 3% 3% 2% 2% 2% 0% 4% 3%
2009 2% 5% 4% 1% 3% 2% 4% 6% 6%
2010 -1% 3% 7% 7% 8% 4% 4% 6% 4%
2011 3% 6% 6% 7% 6% 5% 3% 4% 3%

Average Technology Growth

1998-2007 1.8% 1.7% 2.2% 1.6% 1.1% 2.7% 1.9% 0.9% 1.4%
2008-2011 2.5% 4.3% 5.0% 4.3% 4.8% 3.3% 2.8% 5.0% 4.0%

The table gives the estimated �rm speci�c yearly change of technology in the CO2 production
function as derived from the year �xed e¤ects in (8). The estimates correspond to Model 7 in Table

2. The shaded area are years after the policy announcement.

Algorithm for Policy Simulations

The algorithm follows these steps:

1. Start with a guess for the shadow costs or technology level

2. Solve the Nash equilibrium in prices given the values in 1

3. Compute the market shares given the price equilibrium and the values in 1

4. Compute the sales weighted emission for each of the �rm

5. Compute the di¤erence between the value in 4 and the required standard
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6. If the di¤erence is smaller than 1e-6 return end, else update the guess return to step 1

The updating is done by a trust-region-dogleg algorithm of the nonlinear equation solver

in matlab (fsolve). Solving for �f and � f with �xed prices is not demanding as the algorithm

only needs few iterations to equal sales weighted emissions of each �rm with the target.

Therefore, I �rst solve for �f and � f keeping prices �xed and use this as the starting value

for the algorithm. However, the scale of the data and the stepwise re-optimizing for prices

in all the markets and �f or � f , makes that �nding a solution to the algorithm takes a

considerable amount of cpu-time.

Further analysis of Out of Sample performance

It is important to give some further attention to some issues and limitations of performing

an out of sample test of the structural model.

First, the out of sample test provides a validation of the demand model but not of

the assumptions regarding price competition. I �nd that both the cost functions under

perfect and imperfect competition are able to predict prices accurately after the product

characteristics change. However, this does not provide any information as to what extent

the divide between markups and costs is realistic. There is no large structural break in the

data that gives me the necessary variation in markups and prices to test several competitive

models against each other. A di¤erent game than Nash Bertrand pricing would change the

divide between marginal costs and markups and thus the simulated e¤ects on pro�ts.

Next, the fact that sales of high priced and high horsepower vehicles are estimated too

high might have at least three reasons. First, if measured fuel e¢ ciency gains from the test

cycle do not fully translate into reduced fuel costs, the model will overpredict the obtained

fuel savings and the shares of high price and performance vehicles. Second, between 2007

and 2011 the price of SUVs dropped by 20% as less luxurious models with similar observables

entered the market. This shows the inherently static features of the estimation method as

the mean quality of an SUV is not assumed to change over time. Despite these dynamic

changes in the market, and the entrance of new and redesigned models the static model

actually provides a surprisingly good �t over a four year period of changes. Third, income

e¤ects are controlled for in a rather rudimentary way (prices relative to year country speci�c

GDP). When income (or expected income) changes this might a¤ect car choice in a more

general and heterogenous way. This is also important for the next insight.

Another remark is related to the role of the outside good and the total size of the car
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market. The model is not able to predict the decrease in total sales in the European market

observed between 2007 and 2011. I use (in line with previous research) the number of

households as a scale for the total possible market. The number of households between 2007

and 2011 did not change while the total number of sales decreased by 20% because of the

2008 crisis. The model is thus not able to predict large macro-economic trends. This is

relevant for the counterfactual analysis as all simulations are made under the assumption

that there will be no changes in the overall demand for vehicles except for those related to

the policy intervention.

A last point of caution is related to the models�ability to predict individual sales and

prices of vehicles. Prices are estimated precisely while market shares are estimated less

precisely. The variance of the demand error is much higher than that of the supply error.

In other words, observables are su¢ cient to make precise predictions of prices but not of

quantities. This is partly due to the very disaggregated level of the data with many vehicles

similar in observables except sales. The model is able to capture the taste for characteristics

precisely and thus correctly estimates the total share of similar vehicles but not their indi-

vidual share. This issue raises concerns when one is interested in predicting the e¤ects of

smaller market interventions (such as the introduction of a new vehicle for example). For this

project it is su¢ cient to see that the model is able to predict changes in aggregate outcomes

in fuel e¢ ciency and other characteristics.
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Additional Figures and Tables

Figure 4: Policy Simulations

Start of policy simulation Attribute standard

The �gure shows each vehicle in a CO2-weight diagram. CO2 is in g/100km and weight is in 1000kg.
The diagonal line represent the attribute-based standard and the horizontal line is the �at standard.
The �rst panel gives the vehicle �eet at the start of the simulation. The second panel gives the set of
vehicles after full technology adoption to the attribute-based standard (the diagonal line is binding).
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Table A2: Simulation Outcomes Flat Standard

Technology Adoption Sales Mixing
Market Size

Total Sales +5% -6%
Total CO2 Emissions -6% -16%

Market Structure (�% points)
Subcompact 0 +17
Compact 0 -1
Intermediate 0 -2
Standard 0 -2
Luxury 0 -2
Van 0 -5
SUV 0 -4
Sports 0 -1

Welfare E¤ects (� in billion e�s)
� Consumer Surplus +8.81 -20.86
� Variable Pro�ts +4.33 -6.72
� Fixed Costs ? 0
� CO2 Savings +0.34 +0.87
� Other Externalities -7.67 +10.88
� Total: ]...,5.81] -15.84

The table is equivalent to Table 7 but gives the results of policy simulations towards a �at standard
instead of the attribute based standard.
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Table A3: Simulation Outcomes Flat Standard

Technology Adoption Sales Mixing
Market Size

Total Sales +3% -5%
Total CO2 Emissions -6% -14%

Market Structure (�% points)
Subcompact 0 2
Compact 1 7
Intermediate 0 0
Standard 0 1
Luxury 0 -2
Van 0 -3
SUV 0 -4
Sports 0 -1

Welfare E¤ects (� in billion e�s)
� Consumer Surplus +5.19 -9.96
� Variable Pro�ts +2.44 -2.87
� Fixed Costs ? 0
� CO2 Savings +0.28 0.70
� Other Externalities -5.04 +8.08
� Total: ]...,2.88] -4.06

The table is equivalent to Table 7 but gives the results of policy simulations when the model is
estimated with a marginal cost function in which characteristics enter much more �exible: log(cjm) =
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Table A5: Chi-square Diagnostic Test
Bounds: CO2 Price Hp Weight Foot
� x x < f bf f bf f bf f bf f bf

x� 1:5�x 0.05 0.05 0.02 0.00 0.00 0.00 0.11 0.04 0.11 0.06
x� 1:5�x x� �x 0.22 0.16 0.17 0.10 0.23 0.16 0.15 0.11 0.10 0.10
x� �x x� 0:75�x 0.09 0.08 0.15 0.11 0.13 0.14 0.09 0.10 0.15 0.16
x� 0:75�x x� 0:25�x 0.21 0.20 0.23 0.26 0.28 0.28 0.14 0.19 0.08 0.13
x� 0:25�x x 0.08 0.06 0.13 0.14 0.09 0.11 0.10 0.11 0.11 0.13
x x+ 0:25�x 0.16 0.17 0.09 0.10 0.06 0.06 0.10 0.11 0.09 0.09
x+ 0:25�x x+ 0:5�x 0.10 0.13 0.11 0.13 0.10 0.11 0.14 0.14 0.22 0.18
x+ 0:5�x x+ �x 0.03 0.05 0.04 0.04 0.05 0.06 0.05 0.06 0.02 0.03
x+ �x x+ 1:5�x 0.04 0.06 0.03 0.04 0.02 0.04 0.08 0.08 0.08 0.09
x+ 1:5�x 0.02 0.03 0.04 0.05 0.03 0.05 0.04 0.05 0.04 0.04
�2 statistic 15.85 19.88 19.18 27.79 19.71
p-value 0.07 0.02 0.02 0.00 0.02
This table divides characteristics x in 10 groups and assigns each observed and predicted sale to a
group. The frequency of observed sales f and predicted sales bf is reported. The �nal lines report
the �2 statistic and p-value of the chi-square diagnostic test. The null hypothesis that the frequency

distributions are equal is rejected at a 5% con�dence value for 4/5 characteristics.

Table A4: Pro�ts and Emission per �rm
Target Technology Adoption

ABR Flat ABR Flat
CO2 CO2 � f � Pro�t �

0

f � Pro�t

BMW 135 124 5 -271 12 -81
Daimler 131 124 11 129 15 290
Fiat 114 124 8 503 2 -215
Ford 125 124 6 106 7 195
GM 124 124 9 566 10 615
PSA 122 124 3 -250 2 -338
Renault 120 124 6 256 4 50
VW 126 124 12 2178 14 2689
Asian 123 124 12 1178 12 1122

The table is equivalent to Table 8 but shows results from abatement with technology adoption. The
level of technology adoption is simulated such that each �rm exactly reaches the target.
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