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Abstract

A rapidly growing literature shows that consumers can be inattentive to complex or not-
fully-salient financial incentives. This literature typically estimates “the average mistake,” and
uses representative agent models to analyze the economic implications. This paper shows, the-
oretically and empirically, that accounting for heterogeneity in mistakes is crucial in positive
and normative analysis. Focusing on consumer underreaction to not-fully-salient sales taxes,
we show theoretically that 1) individual differences in underreaction generate inefficiency in the
resulting allocation of the taxed good, 2) the variation of underreaction across the income dis-
tribution affects the regressivity of the tax burden, and 3) the variation of underreaction across
different tax rates affects the distortions to demand resulting from tax changes. To empirically
assess the importance of these issues, we implement an online shopping experiment in which
3000 consumers—matching the U.S. adult population on key demographics—purchase common
household products, facing tax rates that vary in size and salience. We find that: 1) there are
significant individual differences in underreaction to taxes. Accounting for this heterogeneity
increases the efficiency cost of taxation estimates by at least 200%, as compared to estimates
generated from a representative agent model. 2) High income earners are less likely to un-
derreact to taxes than low income earners, and thus the financial burden of misoptimization
falls disproportionately on the poor. 3) Tripling existing sales tax rates roughly doubles con-
sumers’ attention to taxes, which implies that raising taxes increases deadweight loss through
an additional “debiasing channel.” Our results provide new insights into the mechanisms and
determinants of boundedly rational processing of not-fully-salient incentives, and our general
approach provides a framework for robust behavioral welfare analysis in other domains.
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1 Introduction

When incentive schemes are complex, or when certain attributes of a decision are not fully salient,
consumers may make mistakes. A growing body of work documents inattention to, or incorrect
beliefs about, financial incentives such as sales taxes (Chetty, Looney and Kroft, 2009), shipping
and handling charges (Hossain and Morgan, 2006), energy prices (Allcott, 2014), and out-of-pocket
insurance costs (Abaluck and Gruber, 2011). Such studies typically estimate the “average mistake,”
usually because inferring mistakes at the individual level is difficult or impossible with available
data. Correspondingly, quantitative analysis demonstrating the implications of consumer mistakes
for policy design typically relies on representative agent models.

Relatively little is known about how mistakes vary across consumers and across economic incen-
tives, and how this variation impacts economic and policy analysis. We argue that understanding
this variation is crucial. The magnitude of individual differences in the propensity to misoptimize
matters: the greater the individual differences, the lower the allocational efficiency of the market,
because these differences drive a wedge between who buys the product and who benefits from it
the most. When there are individual differences in mistakes, whether the rich or the poor are most
likely to make the mistakes matters: the more the financial burden of misoptimization falls on the
low-income consumers, the more it hinders redistributive goals. And in addition to how mistakes
vary between consumers, how they vary with economic incentives matters: this variation creates a
new “debiasing” channel by which incentives shape consumer choice and its economic efficiency.

Focusing on the concrete setting of consumers underreacting1 to not-fully-salient sales taxes,
this paper combines a theoretical framework with a new experimental design to study the variation
in consumers’ mistakes and the implications for tax policy. We present new evidence that there is
significant heterogeneity in people’s underreaction to sales taxes, and that this heterogeneity has
striking implications for the welfare consequences of taxation.

To formalize our arguments about the importance of variation in mistakes for policy calculations,
we begin with a model—building on and generalizing Chetty (2009a) and Chetty, Looney and
Kroft (2009, henceforth CLK)—of consumers who choose whether or not to purchase a good in
the presence of a sales tax. The sales tax is potentially non-salient, and consumers may not fully
incorporate its presence into their purchasing decisions. Allowing for arbitrary heterogeneity in both
consumers’ valuations for the products and consumers’ underreaction to the tax, our first theoretical
result is a generalization of the canonical Harberger (1964) formula. As in CLK, we find that the
efficiency cost of imposing a small tax in a previously untaxed market is decreasing in the mean of
consumer underreaction to sales tax. However, we additionally show that inefficiency is increasing
in the variance of underreactions, to a degree of equal quantitative importance. The result arises
because heterogeneity in underreactions generates misallocation of products to consumers. When

1For expositional clarity, we use the term “underreaction” to refer to consumers’ mistakes, because both previous
work as well the evidence in this paper show that this is the most common mistake. However, our formal model
allows for both under- and over-reaction to sales taxes.
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underreaction to the tax is homogeneous, the product is always purchased by those consumers
who value it the most, and thus the market preserves the efficient sorting that is obtained with
fully optimizing consumers. However, when consumers are heterogeneous in their underreaction,
purchasing decisions depend on both their valuation of the good and on their propensity to ignore
the tax. This misallocation induced by sorting on behavioral types thus creates a new inefficiency
that offsets the gains from underreaction that are obtained in the absence of heterogeneity. The
consequences of misallocation are particularly stark when supply is inelastic relative to demand and
thus the equilibrium quantity purchased is relatively unaffected by taxation—a situation in which
efficiency costs are low when consumers optimize perfectly, but can be substantial when there is
misallocation due heterogeneity in underreaction.

Next, we extend our analysis to study the efficiency costs of increasing pre-existing taxes. We
show that in addition to the mean and variance of underreaction, the new key determinant of
efficiency costs is the change in underreaction that occurs when taxes are increased. If increases
in the tax rate “debias” consumers, the distortionary effects of tax increases can be substantially
higher than would otherwise be expected. Intuitively, this is because consumers act as if prices have
increased not only by the salient portion of the new tax, but also by a portion of the existing tax
that they had previously ignored, but now do not.

Of course, policymakers may also be concerned with how the financial burden of a tax is shared
between high- and low-income households. Moving beyond efficiency cost calculations, we extend
our cost of taxation framework to consider a simple variation of the models in Lockwood and
Taubinsky (2015) and Farhi and Gabaix (2015), in which the policymaker also has redistributive
preferences. We show that with redistributive concerns, welfare is decreasing in the extent to which
low-income households are most prone to tax mistakes. Intuitively, overall welfare is lower when
the financial burden of mistakes falls more heavily on the lower-income households.

Taken together, these theoretical results show that empirical estimates of the variation in mis-
takes are crucial for welfare analysis. Our final theoretical results show, however, that addressing
these questions about variation in mistakes requires datasets containing richer information than
simple aggregate demand responses. This motivates our experimental design.

Our experiment studies the behavior of 3000 consumers—approximately matching the US adult
population on household income, gender, age, and educational attainment—drawn from the forty-
five US states with positive sales taxes. The experiment utilizes an online pricing task with twenty
different non-tax-exempt household products (such as cleaning supplies), and with between- and
within-subject variation of three different decision environments. The decision environments induce
exogenous variation in the tax applied to purchases, featuring either 1) no sales taxes, 2) standard
sales taxes identical to the consumers’ city of residence, or 3) high sales taxes that are triple those
in the consumers’ city of residence. Decisions in the experiment are incentive compatible: study
participants use a $20 budget to potentially buy one of the randomly chosen products, and purchased
products are shipped to their homes. The design affords us greater statistical power to estimate
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underreaction to taxes than existing datasets, as well as new richness—both within subject and
across demographic groups— for studying variation in underreaction.

We begin our empirical analysis by estimating the average amount by which study participants
underreact to taxes—a statistic, previously estimated in CLK, that is sufficient for welfare analysis
when there is no variation in underreaction. We find that in the standard tax condition study
participants react to the taxes as if they are only 25% of their size. That is, a 1 dollar increase in
the tax produces approximately the same change in demand as a 25 cent increase in the posted price
of a product. In the triple tax condition, in contrast, study participants react to the taxes as if they
are just under 50% of their actual size. Across specifications, this difference in the relative weights
that study participants place on taxes in the two conditions is significant at at least the 5% level,
and provides initial evidence that consumers are more attentive to higher taxes. Complementing
this evidence, we also show that consumers are on average more likely to underreact to taxes on
particularly cheap products (posted prices below $5), than they are to taxes on more expensive
products (posted prices above $5).

We next move on to study how underreaction to the tax covaries with income. We find a negative
association between household income and underreaction to the sales taxes, with consumers in the
fourth quartile of the income distribution approximately twice as attentive to taxes as consumers in
the first quartile of the income distribution.2 This difference is partially explained by differences in
numeracy and financial savvy between the high and low income consumers, but persists even when
controlling for (proxies for) these variables.3 At the same time, we also establish that incorrect
beliefs are only a minor sources of the mistakes we measure: on average, consumers’ beliefs are not
biased, and 73% of consumers know their sales tax rate within 0.5 percentage points.

Our results about observable covariates of underreaction establish, qualitatively, the existence
of individual differences. In the last part of our empirical analysis, we quantify these individual
differences by computing a lower bound for the variance of underreaction.4 This analysis is directly
motivated by the efficiency cost formulas that we derive, which show that the efficiency cost of a
small tax t on a product sold at price p depends on the variance of underreaction by consumers
who are on the margin at p and t. The corresponding statistic of interest is thus the average—
computed with respect to the distribution of p and t in the experiment—of V ar[θ|p, t], where θ
measures underreaction to the tax. We bound this statistic through a novel combination of a “self-

2See Campbell (2006), Beshears et al. (2012), Stango and Zinman (2014) for similar findings of how lower household
income is predictive of mistakes in mortgage refinancing, 401(k) allocations, and incurring overdraft fees.

3Our result about numeracy is consistent with, e.g., Brown et al. (2013), who show that numeracy leads less biased
annuity valuations, and Gerardi et al. (2013), who show that low numeracy leads to mortgage defaults. See Lusardi
and Mitchell (2014) for a further review. Lack of financial literacy has been shown to predict mistakes in other
domains, including incurring overdraft fees (Stango and Zinman, 2014), incorrectly valuing annuities (Brown et al.,
2013), and not saving for retirement (Lusardi and Mitchell, 2007a,b). For previous work establishing this relationship
between financial literacy and household income, see, e.g., van Rooij et al. (2012), as well as Lusardi and Mitchell
(2014) for a review.

4We compute a bound, rather than a point estimate, because as we discuss, the noise distribution in the data
unfortunately precludes precise estimates of second or higher order moments.
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classifying” survey question and experimental behavior, in a way that requires no assumptions about
truth-telling or metacognition. We utilize multiple-choice survey questions asking study participants
whether they would be willing to buy at higher posted prices if there were no taxes in the experiment.
We find that their responses—“Yes”, “Somewhat”, “No”—are highly predictive of underreaction to
taxes. On average, the approximately 10% of consumers answering “Yes” do not underreact to the
taxes, the approximately 55% answering “Somewhat” react to taxes as if they were only half their
true size, and those answering “No” do not react to the taxes at all. Building on the fact that the
true distribution of θ must be a mean-preserving spread of the distribution of conditional averages
by survey response,5 we derive an econometrically tractable lower-bound for Ep,t[V ar[θ|p, t]] that
uses moments of θ associated with the different self-classified groups. Our estimates of the bound
imply that for taxes that are the size of those observed in the US, the variance of consumer mistakes
increases the efficiency cost estimate by over 200% relative to what would be inferred under the
assumption that consumers are homogeneous in their mistakes.

This paper relates to a few literatures. At a broad level, the paper contributes to a growing
theoretical and empirical literature in “behavioral public economics” (see Mullainathan et al. 2012
and Chetty 2015 for reviews, and Farhi and Gabaix 2015 for a general theoretical framework).
Our contribution to this literature is to emphasize the importance of studying heterogeneity in
mistakes for obtaining empirically grounded, robust welfare estimates. In our own recent and
concurrent work, we have touched on the identification challenges posed by individual differences in
mistakes (Allcott and Taubinsky, 2015), the need to measure whether the mistakes are more or less
likely to be made by the poor (Lockwood and Taubinsky, 2015), and the challenges of relying on
locally-estimated elasticities when consumers are boundedly rational and attention is endogenous to
incentives (Allcott, Mullainathan and Taubinsky, 2014).6 This paper is the first, to our knowledge,
to combine a theoretical framework with an integrated experiment to explicitly bring all three facets
of variation in mistakes to the forefront, and to demonstrate the significant quantitative importance
of these issues. As we further discuss in section 7, our framework for analyzing variation in mistakes
can serve as a template for empirical analysis for other psychological biases and domains of behavior.

More concretely, our work relates to the nascent literature on tax salience and tax misunder-
standing. Building on Chetty, Looney, and Kroft (2009) and Finkelstein (2009)—who study average
underreaction in a representative agent framework—we theoretically and empirically extend the lit-
erature on tax salience by showing that the variation in mistakes implies that the efficiency cost of
not-fully-salient taxes may be significantly higher than previously thought. Together with our con-

5This general idea behind this approach is not unique to our setting. See Hendren (2013) for an application of
this approach to classifying private information in the health insurance market. In conceptually similar approaches
to sorting respondents into “behavioral types,” Handel and Kolstad (2015) combine survey questions with insurance
choice data, and Rees-Jones (2015) combines self-classifying survey questions with forecasts of estimated utility
models.

6See also Farhi and Gabaix (2015) for further results relating to these issues, including the importance of attention
heterogeneity for Pigouvian taxation, and the implications of misperceptions of and inattention to taxes for income
taxation.
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current work on income tax misperceptions (Rees-Jones and Taubinsky, 2015), our results about
the association of tax mistakes with numeracy and financial literacy also contribute to a deeper
understanding of the mechanisms and characteristics leading to these mistakes, and suggest a role
for financial savvy as a measurable characteristic that predicts responses to tax incentives.7

Third, our experimental findings are also relevant to the growing literature on firm and con-
sumer interactions in markets with shrouded attributes (Gabaix and Laibson, 2006; Heidhues et al.,
2014; Veiga and Weyl, Forthcoming), as the predictions of these models rely on assumptions about
heterogeneity, as well as how imperfect processing depends on the size of the shrouded attribute.
Veiga and Weyl (Forthcoming), for example, show that a monopolist’s shrouded attribute strategy
will depend on the covariance between inattention to the shrouded attribute and household income.
Our estimates can thus help guide the quantitative predictions of these models.

Fourth, our work contributes to the literature on boundedly rational value computation (see,
e.g.,Woodford, 2012; Gabaix, 2014; Caplin and Dean, 2015a; Chetty, 2012). To the best of our
knowledge, our result that consumers underreact less to higher tax rates provides one of the first
clean demonstrations in a naturalistic setting of imperfect processing of a financial attribute re-
sponding to economic incentives.8

The paper proceeds as follows. Section 2 presents our theoretical framework. Section 3 presents
our experimental design. Section 4 empirically studies the economic and demographic determinants
of underreaction to taxes, and section 5 quantifies the variance of this underreaction. Section 6
utilizes our theoretical framework to discuss the welfare implications of our empirical estimates.
Section 7 concludes.

2 Theory

Here we present a simple model for analyzing the welfare impacts of taxation when consumers
under- (or over-) react to not-fully-salient sales taxes. The theoretical results in this section directly

7For work documenting tax misperceptions see, e.g., Chetty et al. (2013), Chetty and Saez (2013), Bhargava
and Manoli (2015) on misunderstanding of the EITC; Abeler and Jäger (2015) for lab experimental evidence about
the impacts of complexity; de Bartolome (1995), Liebman and Zeckhauser (2004), Feldman, Katuscak and Kawano
(2013) for work related to income tax misperceptions. See Lusardi and Mitchell (2014) for a review of the many other
domains of behavior in which financial literacy has been shown to play an important role.

8Results on this general topic are mixed. In a lab experiment studying simple vs. complex tax codes, Abeler and
Jager (2015) find that study participants underreact to complex changes in the tax code, but that this underreaction
does not depend on the magnitude of the change. Chetty et al. (2014) do not find that people’s savings decisions
do not become less passive with respect to larger employer contributions. Hoopes et al. (2015), however, find that
taxpayers pay more attention to capital-gains information when the payoffs to doing so are higher. In tests of
boundedly rational decision-making more broadly, Caplin and Dean (2015b) and Caplin and Dean (2013) find that
study participants pay more attention to stimuli when given higher incentives, in accordance with a general class of
rational inattention models; Allcott (2011) and Allcott (2014) show that consumers pay more attention to energy
costs when gasoline prices are higher; Charness et al. (2010) show that study participants are less likely to exhibit the
conjunction fallacy with higher incentives; but Zimmermann and Enke (2015) do not find that higher incentives reduce
correlation neglect; and Brocas et al. (2014) do not find higher incentives increase subjects’ “depth of reasoning.”
Also similar in spirit is the work by Andersen et al. (2011), who show that higher stakes lead to more profit-seeking
behavior in ultimatum games.
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motivate our empirical research questions about attention variation.
First, we show that in a market with no pre-existing taxes, the efficiency cost of introducing a

small tax is increasing in the variance of mistakes. At the same time, we also show that aggregate
demand responses, such as those analyzed in CLK, cannot identify this key statistic. This motivates
our empirical research question about the variance of the magnitude of consumer mistakes.

Second, we generalize to a market with pre-existing taxes, and show that in this case it is also
necessary to take into account how under- (or over-) reaction to taxes changes with the tax rate.
The more salient higher taxes are, the higher the efficiency costs of increasing taxes. However, we
show that this relationship cannot be inferred from locally estimated elasticities, motivating our
investigation of how attention depends on the tax rate.

Third, we generalize to a richer welfare framework in which the policymaker has redistributive
motives, and show that in this case it is also necessary to determine how underreaction to the sales
tax covaries with household income. This shows that in addition to knowing how much variation
there is in underreaction, it is also necessary to know who is most prone to underracting to taxes.

2.1 Set-up

Consumers: There is a unit mass of consumers who have unit demand for a good x and spend their
remaining income on a numeraire good y. A person’s utility is given by u(y) + vx, where x ∈ {0, 1}
denotes whether or not the good is purchased, and v is the person’s utility from x. Let Z denote
the budget, p the posted price of the product, and t the tax set by the policymaker.9

A fully optimizing consumer would choose x = 1 if and only if u(Z − p − t) + v ≥ u(Z).
However, we allow consumers to not process the tax fully. Instead, a consumer chooses x = 1 where
u(Z − p− θt) + v ≥ u(Z), where θ—which may covary with v or be endogenous to t—denotes how
much the consumer under- (or over-) reacts to the tax. Because we make no assumption about the
distribution of θ, this modeling approach encompasses a number of psychological biases that may
lead consumers to make mistakes in incorporating the sales tax into their decisions. These include:

1. Exogenous inattention to the tax, so that consumers always react to the tax as if it’s only θ
as big (DellaVigna, 2009; Gabaix and Laibson, 2006).

2. Endogenous inattention to the tax, or boundedly rational processing more broadly, so that
consumers pay more attention to higher taxes (Chetty et al., 2007; Gabaix, 2014).

3. Incorrect beliefs, where a person perceives a tax t as t̂. In this case, θ = t/t̂.
9Note that we are assuming here that the policymaker is using a tax instrument with only one level of salience.

See Goldin (Forthcoming) for a model (of otherwise optimizing consumers and no redistributive concerns) in which
the policymaker can combine tax instruments of differing salience to raise revenue in the least distortionary way
possible. Although our analysis could be generalized to consider an optimal mix of more and less salient sales taxes,
we suspect that our starting is a reasonable one because of political economy constraints—a politician may have
trouble explaining to the public why he chose to break up an otherwise simple tax into shrouded and unshrouded
subcomponents.
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4. Rounding heuristics.

5. Forgetting about the tax.

6. Any combination of the above biases.

In practice, multiple mechanisms are likely to be in play, and existing data does not shed light on
which mechanisms are the most important (CLK). Because of this, we develop our theoretical and
empirical framework to be robust to all of these possible mechanisms. Formally, we define θ in terms
of consumer behavior. For a given consumer, define pmax(t) to be the highest posted price at which
the consumer would purchase x at a tax t. Then θ := pmax(0)−pmax(t)

t . We make no assumptions
about the relation between θ and v other than that F generates smooth, downward-sloping demand
curves, and that θ ≥ 0. With minor abuse of notation, we let F (θ|p, t) denote the distribution of
θ for consumers who are indifferent between purchasing the product or not at posted price p and
sales tax t. We define E(θ|p, t) and V ar(θ|p, t) to be the mean and variance θ of consumers who
are indifferent between purchasing the product or not at (p, t).

Different theories of consumer mistakes have different implications for the shape of F . Gabaix’s
(2014) anchoring and adjustment model of attention, for example, predicts that each consumer will
have a θ ∈ [0, 1), with that value depending on the size of the tax. Other theories of inattention
may predict binary attention θ ∈ {0, 1}. Incorrect beliefs and rounding heuristics can generate a
variety of different values of θ, with instances in which θ > 1. Moreover, the bias parameter θ may
vary between individuals due to persistent individual differences like cognitive ability, or it may vary
over time for a given individual due to changes in stimuli (see, e.g., DellaVigna and Pollet 2009).

We let D(p, t) denote demand for x as a function of posted price p and sales tax t. We let Dp

and Dt denote partial derivatives, and we let εD,p =
Dp(p,t)

(p+t)/D(p,t) and εD,t = Dt(p,t)
(p+t)/D(p,t) denote the

elasticities with respect to the posted price p and sales tax t, respectively.
To focus our analysis on mistakes arising solely from incorrect reactions to the sales tax, we

assume that 1) in the absence of taxes, consumers optimize perfectly and 2) consumers’ utility
depends only on the final consumption bundle (x, y).10 We relax the first assumption in Appendix
B, following models such as those in Lockwood and Taubinsky (2015) and Farhi and Gabaix (2015).11

Welfare analysis under these two assumptions and our choice-based definition of θ is an application
Bernheim and Rangel’s (2009) approach to welfare analysis: we view choice in the presence of taxes
as provisionally suspect, and we use consumer choice in the absence of taxes as the welfare-relevant
frame.

Producers: We define production identically to CLK: price-taking firms use c(S) units of the
10Assumption 2 implies that we leave out cognitive costs from our efficiency costs and welfare analysis. Although

there may be some cognitive costs associated with attention, we do not feel that we have enough evidence to confidently
specify a theory of what they should be. Our welfare formulas can be readily extended by including an additional
term corresponding to cognitive costs. For small taxes, however, cognitive costs should be negligible for a variety of
models (Chetty et al., 2007).

11Farhi and Gabaix (2015) also explore a general framework that doesn’t rely on the second assumption.
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numeraire y to produce S units of x. The marginal cost of production is weakly increasing: c′(S) > 0

and c′′(S) ≥ 0. The representative firm’s profit at pretax price p and level of supply S is pS− c(S).
Producers optimize perfectly so that the supply function for good x is implicitly defined by the
marginal condition p = c′(S(p)). Let εS,p = ∂S/∂p

p/S(p) denote the price elasticity of supply.

2.2 Efficiency Cost

We follow Auerbach (1985) in defining the efficiency cost of a tax for a heterogeneous economy by
first defining excess burden for a given consumer and then aggregating. For a given consumer i, we
define excess burden EBi using equivalent variation. We let x∗i (p, t) denote consumer i’s choice of
x ∈ {0, 1} and we let Vi(p, t, Z) = u(y−px∗(p, t, z)−tx∗(p, t, z))+vix

∗(p, t, z) denote the consumer’s
indirect utility function.

We denote the consumer’s expenditure function by ei(p, t, V ), which is the minimum wealth
necessary to attain utility V under a price p and tax t. Let Ri(t, Z) = tx∗i denote the revenue
collected from this consumer. For a given consumer i, the excess burden of introducing a tax t

in a previously untaxed market is EBi(t) = Z − ei(p, 0, Vi(p, t, Z)) − Ri(t, Z). And the overall
excess burden is defined to be EB(t) =

´
iEBi(t). Roughly, the excess burden is the loss in surplus

accruing from consumers whose value for the product is above its price no longer purchasing it
because of the tax.

We begin by studying the illustrative case in which there are no pre-existing taxes, producer
prices are fixed, and u is linear (i.e., no income effects). Under these assumptions, the excess burden
is simply

´
p≤v≤p+θt(v − p)dF (v, θ): it is the average value of the product, net of its price, to those

consumers who no longer purchase it because of the tax. Analogous to Harberger (1964) and CLK,
we derive a quadratic approximation, assuming that third and higher-order terms are negligible.

Proposition 1. Suppose that producer prices are fixed (εS,p = ∞) and that there are no income
effects (u is linear). For a smooth demand curve D(p, t), and a small tax t, the dead-weight loss
corresponding to that tax is approximately

EB(t) ≈ 1

2
t2[E(θ|p, t)2 + V ar(θ|p, t)]Dp(p, t)

=
1

2
t2[E(θ|p, t)2 + V ar(θ|p, t)]D(p, t)

εD,p
p+ t

(1)

=
1

2
t2
[
E(θ|p, t) +

V ar(θ|p, t)
E(θ|p, t)

]
D(p, t)

εD,t
p+ t

(2)

Proposition 1 provides a general formula for the excess burden of a small tax t when consumers
are arbitrarily heterogeneous. When V ar(θ|p, t) = 0, the formula reduces to the formula provided in
CLK, which shows that the excess burden of the tax is proportional to E(θ). In the simple framework
without income effects, the more consumers ignore the tax, the less consumers are discouraged from
purchasing the product because of the tax, and thus the smaller the excess burden.
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The general formula illustrates that it is not just how much people underreact to the tax on
average that matters, but also the variance of (marginal) consumers’ underreactions. To take a stark
example, suppose that E(θ) = 0.25. When all consumers are homogeneous and have a θ = 0.25,
equation (2) shows that the excess burden is (0.25)12 t

2D(p, t)
εD,t
p+t ; that is, the true excess burden

is one quarter of what the neoclassical analyst would compute using the tax elasticity of demand.
Now suppose that 25% of the consumers have θ = 1 while 75% have θ = 0. In this case, we still
have E(θ) = 0.25, but (2) implies that the excess burden is approximately 1

2 t
2D(p, t)

εD,t
p+t , which

is exactly identical to the inference that would be made by an analyst assuming that consumers
optimize perfectly, and using the tax elasticity of demand.

Figure 1 provides a graphical representation of the formula. The green line represents demand
as a function of t, keeping the initial price p0 fixed. The blue line represents what demand would
look like if all consumers reacted to the tax correctly. An analist assuming perfect optimization and
observing only the green demand curve would conclude that the excess burden is given by a triangle
under the green line. An analyst who knows the average θ, but assumes that it is homogeneous,
would conclude that the excess burden is given by the area of the red triangle. The red triangle
corresponds to the excess burden calculation given in CLK. However, as Proposition 1 shows, the
more heterogeneous consumers are, the greater the excess burden. This additional distortion is
captured by the orange triangle, the height of which is given by tV ar(θ|p,t)E(θ|p,t) .

In fact, equation (2) shows that even if consumers underreact to the tax on average (E(θ) < 1),
the excess burden could still be greater than the inference that would be made under the assumption
of perfect optimization. This occurs when the variance is sufficiently large due to some consumers
overreacting to the tax (θ > 1). Similarly, equation (1) shows that even when consumers underreact
to the tax on average, a sufficiently large variance can make the excess burden greater than what it
would be if all consumers reacted to the tax fully (or if posted prices were tax-inclusive).

The intuition for this result is that heterogeneity in consumers’ mistakes creates a market failure
that is conceptually distinct from the effect of a homogeneous mistake. If consumers are homoge-
neous in their underreaction to the tax, then for any quantity of products purchased, the allocation
of products to consumers is efficient: the product is still purchased by consumers who derive the
most value from it. When consumers are heterogeneous in their underreaction, however, there is
misallocation: the consumers purchasing the product are now not just the consumers who derive
the most value from it, but also consumers who underreact to taxes the most. There is thus an ad-
ditional efficiency cost from an inefficient match between consumers and products.12 This intuition
comes out most starkly when supply is not perfectly elastic, a case which we treat below.

12Glaeser and Luttmer (2003) study a neoclassical analog to this departure from traditional deadweight loss analysis:
they show that rent control not only distorts the equilibrium quantity purchased, but also creates an allocational
failure whereby properties are no longer purchased by the consumers who value them the most.

9



2.2.1 Endogenous Producer Prices

We now generalize Proposition 1 to the case in which producer prices are endogenous. In this case,
assume that firm profits are paid back to the consumers using the numeraire y. Excess burden is
now given by EBi(t) = Z − e(p, 0, Vi(p, t, Z)) − R(t, Z) + π0 − π1, where π0 − π1 is the change in
producer profits. We let p(t) denote the equilibrium price as a function of t.

Proposition 2. Suppose that utility is quasilinear (u(y) = y). Then the excess burden of introducing
a small tax t in a previously untaxed market is approximately

EB(t) ≈ −1

2
t2
[
E(θ|p, t) d

dt
D(p(t), t) + V ar(θ|p, t)Dp(p(t), t)

]
where the total derivative d

dtD(p(t), t) is evaluated at (p(t), t), and Dp(p, t) denotes the partial deriva-
tive of demand with respect to price evaluated at (p(t), t).

When V ar(θ|p, t) = 0, Proposition 2 shows that the excess burden calculation is nearly identical
to the case of fixed producer prices, except with the partial derivative of demand replaced with
the total derivative of the equilibrium quantity purchased. In contrast, when there is variation in
θ, excess burden depends on both the total derivative and the partial derivative of demand. This
is because the extent to which dispersion in θ generates misallocation depends on how sensitive
consumer choices are to differences in the perceived final price, p+θt, of the product. A particularly
stark and illustrative case arises when supply is inelastic:

Corollary 1. Suppose that supply is inelastic (εS,p = 0). Then with quasilinear utility, the excess
burden of introducing a small tax t in a previously untaxed market is approximately

EB(t) ≈ −1

2
t2V ar(θ|p, t)Dp(p, t)

Corollary 1 shows that when supply is inelastic—and thus the equilibrium quantity produced
by the market does not change—the efficiency cost of a small tax t depends only on the variance
of bias and the change in demand. This is because when the equilibrium quantity does not change,
all of the efficiency cost is generated by misallocation, the extent of which is proportional to the
variance of θ. Thus when supply is inelastic and consumers are heterogeneous in θ, excess burden
would be smaller if the tax was made perfectly salient to all consumers.

Corollary 2. Suppose that V ar(θ|p, t) > 0. Then there exists a small enough εS,p/εD,p such that
excess burden would be smaller if the tax was perfectly salient to all consumers.

Building on the stark result in Corollary 1, Corollary 2 shows more generally that in the presence
of heterogeneity, whether making a tax less salient is good or bad depends on how elastic supply
is relative to demand. When producers bear the incidence of the tax, the total change in quantity
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demanded, d
dtD, will be small, and thus efficiency costs will be small in the presence of salient

taxes. However, excess burden may still be large with non salient taxes, because the efficiency cost
of mis-sorting, which is proportional to V ar(θ)Dp, may still be substantial.

2.2.2 Pre-existing Taxes and Endogenous Underreaction

We now study a case in which there are moderate pre-existing taxes, such as those in the US, but
attention increases by a non-negligible amount when the taxes are increased to, e.g,. triple their
value. Even though a tripling of US sales taxes would correspond to an average increase of only
14 percentage points, our experimental results show that this can have a substantial impact on
attention.

Proposition 3. Suppose that u is linear and that the pre-existing tax t is of the same order as ∆t.
Then the excess burden of a small increase ∆t on top of the pre-existing tax t is

EB(t+ ∆t)− EB(t) ≈
(
t∆t+

∆t2

2

)
E[θ2|p, t+ ∆t]Dp (3)

+

(
t2

2

)(
E[θ2|p, t+ ∆t)− E[θ2|p, t]

)
Dp (4)

The main insight of Proposition 3 is that when increasing a pre-existing tax has a non-negligible
impact—given by ∆E[θ2] = E[θ2|p, t + ∆t) − E[θ2|p, t]—on consumer bias, it is necessary to ac-
count for that in the computation of excess burden. Intuitively, increasing a tax increases excess
burden through two channels. First, raising the tax decreases demand for x holding underreaction
constant—this effect corresponds to the right-hand side term in line (3) of the formula. Second,
increasing the tax may decrease underreaction. This decrease in underreaction in turn creates addi-
tional excess burden by making consumers more attentive to the tax, and thus less likely to purchase
the product—this is captured by the term in line (4).13

2.2.3 Income Effects

We have thus far assumed that u(y) is linear, so that there are no income effects. This is a reasonable
assumption for small ticket items for which p and t are small relative to income. The analysis of
income effects is more complicated, but follows the same principals as the baseline excess burden
formula without income effects, and thus we relegate this to Appendix A.2. In the appendix, we
show that with income effects there is an additional efficiency when consumers underreact to taxes,
because they consume too much y relative to x. Thus even when E[θ] = 0 and Dt = 0, there can
still be deadweight loss.

13In a representative consumer model, Reck (2014) shows that if attention is “sufficiently endogenous” in the sense
that consumers are fully debiased for a high enough tax, then there must exists a sales tax t such that the marginal
impact on excess burden from increasing t is higher than the marginal impact on excess burden from increasing a
salient tax.
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2.3 Welfare with Redistributive Motives

We now consider a policymaker who aims not only to minimize effificiency costs, but also wishes to
equalize wealth. We model this setting as simply as possible in this paper, but we refer the interested
reader to Lockwood and Taubinsky (2015) and Farhi and Gabaix (2015) for richer models of tax
salience with redistributive concerns. Lockwood and Taubinsky (2015), for example, consider a
policymaker who has access to both a non-linear income tax and a (non)-salient commodity tax
that he can apply to a sin good such as cigarette consumption. Analogous to the results in this
section, Lockwood and Taubinsky (2015) also show that the welfare consequences of the less salient
commodity tax depend on how attention to the tax covaries with income.14

We consider an economy in which consumers start with different levels of wealth Z1, . . . ZN ,
indexed by ω. We let F denote the joint distribution of (v, θ, ω), and we let Dω(p, t) denote the
demand curve of consumers with endowment Zω. We assume for simplicity that Dω(p, 0) and
Dω
p (p, 0) do not depend on i. We let F denote the joint distribution of θ, v, ω and we let H denote

the marginal distribution of i. We continue assuming that consumers choose x if v ≥ p+ θt.
The government maximizesW =

´
gω(Zω+(v−p−t)1x)dF +λD, where λ is the marginal value

of public funds (used for production of a public good, for example), and gω is the weight on the
utility of consumers with wealth Zw. Redistributive preferences are captured by gω decreasing in Zω.
Similar results can be obtained by endowing consumers with utility functions U(Zω + (v− p− t)1x)

instead of assuming exogenous given weights gω.

Proposition 4. Set ḡ :=
´
gω. For a small tax t,

W (t)−W (0) ≈

Welfare implications of misoptimization︷ ︸︸ ︷
t2

2

(
ḡ
(
E[θ|p, t]2 + V ar[θ|p, t]

)
Dp(p, t) + Cov[gω, (θ − 1)2|p, t]Dp(p, t)− ḡDt(p, t)

)
+ t(λ− ḡ)D(p, t) +

1

2
t2λDt(p, t)︸ ︷︷ ︸

Impact on public funds net of mechanical income effect

Proposition 4 shows that just as excess burden is decreasing in E[θ2] and V ar[θ], welfare is
similarly decreasing in these two terms. Because the welfare formula reduces to the formula in
Proposition 1 when gω = λ = 1 for all ω, Proposition 4 is a generalization of our baseline result to
the case in which the equalities gω = λ = 1 do not hold.

The new insight that the more general welfare framework generates is that welfare is also increas-
ing in the covariance between gω and the size of the mistake in computing bias. Because (θ − 1)2

attains its minimum at θ = 1, welfare is decreasing in the extent to which the deviation from full
14We remind the reader that while the Atkinson-Stiglitz theorem shows that commodity taxation should not be

used with neoclassical consumers in the presence of nonlinear income taxation, this theorem does not hold when the
income tax and the commodity tax are not equally salient, or when there are other biases that cause consumers to
over- or under-consume the good in question (Lockwood and Taubinsky 2015).
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rationality, either due to over- or underreaction to taxes, is concentrated on the low income earners.
In short, conditional on E[θ|p, t] and V ar[θ|p, t], and knowledge of Dp, inferred welfare is lower

when the mistake is concentrated on the poor. If consumers are over-spending on x because they
are underreacting to the tax, the policymaker prefers that this over-spending is concentrated on
consumers with low marginal social benefit from income.

2.4 Extensions and Optimal Tax Implications

The formulas we present for quantifying how changes in the tax affect welfare or excess burden have
direct implications for optimal taxes. In Appendix B we derive optimal tax formulas in a Ramsey
framework, using a more general model that allows for other market frictions arising from either
externalities or other imperfections in consumer choice.

In formalizing the implications of our excess burden calculations for optimal taxes, the results
in the appendix generate several new insights. First, when there are no other market frictions and
taxes are used only to meet a fixed revenue requirement, the optimal tax system may deviate from
the canonical Ramsey inverse elasticity rule in several ways. If people underreact less to taxes on
more expensive products, that implies that other things equal, the tax rates on bigger ticket items
should be smaller. Holding product prices constant, the inverse elasticity rule is also dampened if
θ is on average increasing in the tax. This is because increasing taxes increases deadweight loss
through the additional “debiasing” channel.

Second, we characterize how taxes depend on other market imperfections, and consider whether
a less salient tax is optimal for the policymaker, building on the analysis in Farhi and Gabaix (2015).
When there is no variation in θ, underreaction to the tax is always beneficial, even in the presence of
externalities (or internalities). Because the consumers who buy the product are still those who value
it the most, any not-fully-salient tax can still be set high enough to achieve the socially optimal
consumption of x. With variation in θ, however, the more salient tax is better if the externality is
sufficiently large relative to the value of public funds. This is because introducing a not-fully-salient
tax causes misallocation, and thus cannot achieve the socially optimal consumption of x.

2.5 Identification from Aggregate Demand Data

What kinds of datasets identify the statistics necessary for welfare analysis? CLK and Chetty
(2009) show that for a representative consumer, the generalized demand curve D(p, t) identifies
excess burden when pre-existing taxes are small. Under these assumptions, θ is identified by the
degree of underreaction to taxes relative to prices, Dt(p, t)/Dp(p, t).

We provide more general results about the conditions under which excess burden can be inferred
from D(p, t).15 First, we ask under what conditions knowledge of the whole demand curve D can

15We focus here on the question of when excess burden can be identified, because the conditions under which welfare
with redistributive concerns is identified are the same as the conditions under which excess burden is identified,
combined with the requirement that it is possible to estimate the covariance between bias and welfare weights.
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identify efficiency costs. Second, we ask under what conditions local knowledge of D is sufficient
to identify the efficiency costs of a small change in the tax. The question about local knowledge
corresponds to the typical implementation of the sufficient statistics approach (Chetty, 2009b) that
relies only on locally estimated elasticities.

In Appendix A.1 we prove two main results. First, we focus on the case in which F (θ|p, t)
is degenerate for all p, t, and show that when θ is endogenous to the tax rate, locally-estimated
elasticities no longer identify θ or excess burden, although full knowledge of D(p, t) does. Intuitively,
this is because the ratio of demand responses Dt/Dp is equal to E[θ|p, t] + d

dtE[θ|p, t]t, and thus
identifies E[θ|p, t] only when the distribution of θ does not depend on t. Thus datasets containing
only local variation in t are not sufficient for questions about the efficiency costs of non-negligible
increases in sales taxes.

Second, we show that if θ can be heterogeneous, conditional on p, t, then D(p, t) can never
identify the dispersion, and thus welfare. This is particularly intuitive for efficiency costs arising
from a small tax t. In this case, the average θ is identified by Dt/Dp, but the variance of θ is left
completely unidentified.

These results show that key questions about the variation of underreaction to taxes cannot be
identified from common data sources. This motivates our experimental design.

3 Experimental Design

Platform The experiment was implemented through ClearVoice Research, a market research firm
that maintains a large and demographically diverse panel of participants over the age of 18. This
platform is frequently used by firms who ship products to consumers to elicit product ratings, and
has also been previously used by Benjamin et al. (2014) as well as in our own work reported in
Rees-Jones and Taubinsky (2015). Two key features of this platform make it appropriate for our
experimental design. First, ClearVoice provides samples that match the US population on basic
demographic characteristics. Second, ClearVoice maintains an infrastructure for easily shipping
products to consumers, which facilitates an incentive-compatible online-shopping experiment.

Overview Figure 2 provides a synopsis of the experimental design. The design had four parts: 1)
residential information, 2) module 1 shopping decisions, 3) module 2 shopping decisions, and 4) end-
of-study survey questions. The design is both within-subject—we vary tax rates for a given consumer
between modules 1 and 2—and between-subject—consumers face different tax rates in module 1.
Decisions are incentivized: study participants receive a $20 shopping budget, and ClearVoice ships
any products purchased. The between-subject aspect of the design allows us to test for anchoring
or demand effects, while the within-subject aspect of the design increases statistical power and

Because the main goal of this analysis is to illustrate the difficulty in obtaining welfare estimates from aggregate
demand data with heterogeneous biases, we focus here on the simplest case of identifying excess burden.
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provides identification that is not possible from between-subject aggregate data.
Each consumer was randomly assigned to one of three arms: 1) the “No Tax Arm,” which we

sometimes denote by C=0x for shorthand 2) the “Standard Tax Arm,” which we sometimes denote
by C=1x for shorthand and 3) the “Triple Tax Arm,” which we sometimes denote by C=3x for
shorthand. The purpose of the no tax arm was to identify any order effects on valuations over the
course of the experiment and to help test for demand or anchoring effects.16

Each module consisted of a series of shopping decisions involving 20 common household products.
In module 1, consumers made shopping decisions with either a zero tax rate (no tax arm), a standard
tax rate corresponding to their city of residence (standard tax arm), or a tax rate equal to triple
their standard tax rate (triple tax arm). In module 2, consumers in all three arms made decisions
in the absence of any sales taxes. The same 20 products were used in each module and in each arm
of the experiment. The order in which the 20 products were presented was randomly determined,
and independent between the two modules.

Because our experimental design involves language about the sales tax rate that study partic-
ipants pay in their city of residence, to avoid confusion we asked ClearVoice to only recruit panel
members from states that have a positive sales tax. This excluded panel members from Alaska,
Montana, Delaware, New Hampshire, and Oregon. The remaining 45 states are all represented in
our final sample. Prior to learning the details of the experiment, consumers were asked to state their
state, county, and city of residence. To correctly determine the money spent in the experiment, this
information was matched to a dataset of tax rates in all cities in the United States.17

Purchasing decisions Each product appeared on a separate screen. For each product, consumers
saw a picture and a product description drawn from Amazon.com. Consumers then used a slider to
select the highest tag price at which they would be willing to purchase the product. It was explained
that “The tag price is the price that you would find posted on an item as you walk down the aisle
of the store; this is different from the final amount that you would pay when you check out at the
register, which would be the tag price, plus any relevant sales taxes.” Figure 3 shows examples of
the decision screen.

If a study participant selected the highest price on the slider, $15, he was directed to an additional
screen where he was asked a hypothetical free-response question about the highest tag price at which
they would be willing to buy the product.

The no tax, standard tax, and triple tax decision environments In the no tax decisions
consumers were told that “In contrast to what shopping is like at your local store, no sales tax will

16An additional goal was to identify the distribution of random shocks to valuations between module 1 and module
2, and to combine this with the other two arms to deconvolute the distribution of individual θ parameters from the
distribution of measurement error. Ultimately, the variance of the measurement error we encountered was too high
to permit a well-powered deconvolution of this type.

17Local tax rate data is drawn from the April, 2015 update of the “zip2tax” tax calculator.
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be added to the tag price at which you purchase a product.” It was explained that “You can imagine
this to be like the case if there were no sales tax, or if sales tax were already included in the prices
posted at a store.” As depicted in Figure 2, the no tax decisions constituted the second module
that consumers encountered in each experimental arm, and also the first module that consumers
encountered in the no tax arm.

For the standard tax decisions the instructions prior to decisions were that “The sales tax in this
section of the study is the same as the standard sales tax that you pay (for standard nonexempt
items) in your city of residence, [city], [state].” The standard tax decisions constituted the first
module of the standard tax arm.

For the triple tax decisions the instructions prior to decisions were that “The sales tax in this
section of the study is equal to triple the standard sales tax that you pay (for standard nonexempt
items) in your city of residence, [city], [state].” The triple tax decisions constituted the first module
that consumers encountered in the triple tax arm.

To make the shopping experience as close as possible to the normal shopping experience, and
to enable tests for incorrect beliefs, consumers were not told what tax rate applies in their city
of residence. Once consumers read the instructions (and answered the comprehension questions),
they were never reminded of the taxes again in the tax modules. In contrast, the no tax modules
emphasized the absence of taxes to ensure that choices in those models reflect consumers’ true
willingness to pay for the produces. Example decision screens are shown in Figure 3.

Incentive compatibility Decisions in the experiment were incentive compatible. Study partici-
pants had a 1/3 chance of being selected to receive a $20 budget. Participants were informed of this
prior to making any decisions, but they did not know if they received the budget or not until they
completed the experiment. If they did not receive the budget, they simply received a compensation
of $1.50 and no products from the study. Consumers who were selected to receive the $20 budget
had one of their decisions implemented. To avoid confounds arising from income effects, only one
out of the forty decisions (from modules 1 and 2 combined) was selected to be played out. For the
decisions that were selected, outcomes were determined using the Becker-DeGroot-Marshak (BDM)
mechanism. A random tag price was drawn between 0 and 15, and if it was below the maximum
tag price the consumer was willing to pay, then the product was sold to the consumer. In the event
that the product was sold to the consumer at tag price p, a final amount of p(1 + τ) (where τ is cor-
responding the tax rate) was subtracted from this consumer’s budget, and the product was shipped
to the consumer by ClearVoice. Participants received a full explanation of the BDM mechanism,
and were also told that it was in their best interest to always be honest about the highest tag price
at which they would buy the product.

Comprehension questions As we will discuss in Section 4.7, it is important to ensure that
study participants read the instructions explaining what tax rate applies to their decisions, so that
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our results are not confounded by subjects simply ignoring or misreading the instructions. In both
module 1 and module 2, we thus gave study participants a multiple choice comprehension question
asking them about the final amount they would pay if they purchased a product at a particular tag
price. The possible answers were 0, the tag price, the tag price plus the standard sales tax, and the
tag price plus triple the sales tax. In both modules, the quiz question appeared on the same screen
as the instructions for that module.

Product selection To arrive at the final list of 20 household products, we began with a list of
75 potential items in the $0 to $15 price range compiled by a research assistant. From this list, we
eliminated items that were tax exempt in at least one state. We then ran a pre-test with ClearVoice
to elicit (hypothetical) willingness to pay for the items. We selected 20 items that had unimodal
distributions of valuations and had the least censoring at $0 and $15. Appendix G lists the products,
prices, and Amazon.com product descriptions that were displayed to study participants.

Survey questions After completing the main part of the experiment, study participants received
a short set of questions eliciting household income, marital status, financial literacy, ability to
compute taxes, and health habits. We discuss these questions in further detail in the analysis.

ClearVoice also collects and shares various demographic information on its panel members,
including educational attainment, occupation, age, sex, and ethnicity. We report these basic demo-
graphics in Section 4.1.

4 Economic and Demographic Determinants of Underreaction to

Taxes

4.1 Sample Selection, Demographics, and Balance

4.1.1 Sample

A total of 4,329 consumers completed the experiment. For this sample, 3,068 correctly answered
instruction-comprehension questions in both module 1 and module 2. For our primary analysis, we
exclude those who did not correctly answer both comprehension questions correctly. Out of the
remaining 3068 consumers, 30 consumers were not willing to buy at a positive price in at least one
of their decisions. Because our primary estimates are formed using the logarithm of the ratio of
module 1 and module 2 prices, we cannot use at least one observation for each of these 30 consumers.
We thus exclude them from analysis as well. Out of the remaining 3038 consumers, 10 consumers
reported living in a state with no sales tax. We exclude these consumers as well, because our
recruitment criteria for ClearVoice specifically asked to select panel members only from states with
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a positive sales tax.18

In part due to our pretest for product selection, only 0.9% of all responses were censored at
$15. For responses that were censored, we use consumers’ uncensored responses to the hypothetical
question about the maximum tag price. However, this question did not force a response, and 28
consumers did not provide an answer to this question upon encountering it. We exclude these
consumers as well, leaving us with a final sample size of 3000.

Unsurprisingly, the 29% of consumers who did not pass the comprehension questions do not
react to the differences in taxes in our conditions. We exclude these consumers from our main
sample, because the misoptimization these consumers exhibit is due to not (carefully) reading the
instructions. This is a mistake that is at best imperfectly correlated with how they would respond
to taxes if they were to read the instructions, and is thus a potentially serious confound for the
questions about underreaction to taxes that our study is about. We discuss this in more detail
in Section 4.7, and we address any potential confounds created by selection on comprehension in
two ways. First, in Appendix C, we provide econometric results and bounding approaches for
guaranteeing the robustness of our results to selection on comprehension. Second, in Appendix E.9,
we show that all of our key results are robust to the using the full sample.19

4.1.2 Demographics and Balance

Table 1 presents a summary of the demographics of our final sample. All participants in the final
sample are over the age of 18, and all but thirty-one participants are over the age of 21. Our final
sample—which is 49% male, has a median income of $50,000, average age of 50, and is 40% college-
educated—is similar to the US population on these basic demographics. There are no significant
differences in demographics between Arm 1 vs. Arm 2 (F -test p = 0.38), Arm 2 vs. Arm 3 (F -test
p = 0.36) or Arm 1 vs. Arm 3 (F -test p = 0.44), and as the table also shows.

There are, however, small but statistically significant differences in the likelihood that consumers
pass the comprehension questions in the different arms of the study.20 A possible reason is that
consumers in the no tax arm answer the same comprehension question twice because the decision
environment is identical in both modules. Consumers in the tax arms, however, answer two different
comprehension questions, and are thus more likely to incorrectly answer at least one. Moreover,

18These 10 consumers were erroneously recruited for the study because they had recently changed residence and
that information was not yet updated in ClearVoice’s records.

19We also included questions to check if participants understood the BDM. 78% of participants passed those
comprehension questions, and we show in Appendix E.11 that our results are robust to restricting to this sample.
We are far less concerned about potential misunderstanding of the BDM for two reasons. First, participants were
clearly instructed that it was in their best interest to always truthfully report the maximum tag price at which they
would be willing to buy the product. Second, most forms of systematic misundersanding do not confound estimates
of θ (only estimates of true valuations): even if participants scale their answers up or down because of systematic
misperceptions of the mechanism, the ratio of the bids will still be 1 + θτ (in expectation).

20The likelihood of correctly answering both comprehension questions are 78%, 70%, and 65% in the no-tax,
standard-tax, and triple-tax arms, respectively. The null of equal pass rates is rejected for any pair of arms at the
5% significance level.

18



consumers in the triple tax arm might be especially likely to incorrectly answer the quiz question if
they simply assume that any sales tax would be the standard one they face in their city of residence.
As we already noted, we will show in Section 4.7, as well as in appendices C and E.9, that our results
are robust to both worst-case assumptions about differential selection and the inclusion of the full
sample.

4.2 Summary of Behavior

We begin with a graphical summary of the data. Figure 4 provides a summary of the demand curves
as functions of before-tax price. To construct the figure, we start with demand curves DC ,m

k (p)

for each product k, where C ∈{0x, 1x, 3x} denotes the experimental arm, m denotes the module,
and p the before-tax price. Because there are 20 products, we summarize the data by plotting the
average demand curves DC,m

avg (p) := 1
20

∑
kD

C,m
k (p) for each arm C and module m. The demand

curves have a “zig-zag” pattern because a significant portion of consumers choose tag prices that
are near whole dollar amounts.

Panel (a) of figure 4 shows that consumers do react to sales taxes in module 1, as their willingness
to buy at a given before-tax price is decreasing in the size of the sales tax. But while consumers
in the different arms behave differently in module 1, panel (b) of figure 4 shows that there is no
evidence of anchoring or demand effects in module 2, where all consumers face the same no tax
environment. The panel shows that the average demand curves are nearly identical in module 2,
which is confirmed by several statistical tests. For our first test, we compute an average pre-tax
price p̄i = 1

20

∑
k p

ik for each consumer i, and then compare the distributions of p̄i. Kolmogorov-
Smirnov tests find no differences in the p̄i between the no tax and standard tax arms (p = 0.734),
between the no tax and triple tax arms (p = 0.302), and between the standard tax and triple tax
arms (p = 0.500). In Appendix E.1, we also show OLS and quantile regressions comparing the
average willingness to pay in module 2, which similarly detect no differences.21

While consumers react to taxes, they do not react to taxes as much as perfect optimization
would imply, as we show in figure 5. Panel (a) of figure 5 is identical to panel (a) of figure 4, while
panel (b) shows average demand as a function of total, tax-inclusive price. If consumers reacted to
the taxes fully, the demand curves in panel (b) of figure 5 would be identical. However, the figure
shows that consumers do not react to taxes fully, and are willing to buy at higher final prices in the
presence of taxes, particularly large ones.

Consumers’ valuations of the products reflect market prices. The average Amazon.com price
for the products was approximately $10,22 while consumers’ average valuation for the products was
approximately $6. An OLS regression (clustering standard errors by subject) of module 2 valuations

21The standard and triple arms have average tag prices that are, respectively, 8.7 cents (p = 0.392) and 3 cents
(p = 0.765) lower than the average tag prices in the no tax arm. We thus find no evidence for anchoring or demand
effects.

22Prices were recorded by our research assistant in February 2015. See Appendix G for the products, prices, and
descriptions.
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on Amazon prices obtains a regression coefficient of 0.36 (t-stat = 82).23

4.3 Econometric Framework for Quantifying (Differences in) Underreaction

We now present our baseline econometric framework for studying how underreaction to taxes varies
by experimental condition and by observable demographics—which we employ in Sections 4.4 and
4.6. Let pik1 be the highest tag price a subject i is willing to pay in module 1 for product k, and define
pik2 analogously for module 2. Note that in the absence of noise or order effects, pik2 /pik1 = 1 + θikτi,
where 1 − θik is the degree of underreaction to the tax on product k by consumer i. Thus for a
consumer i in either the standard or triple tax arms, yikτi ≈ θik, where τi is the tax rate faced by the
consumer in module 1 and yik = log(pik2 )− log(pik1 ).

Of course, yikτi may depend on the order in which product k appears in the experiment—what we
will refer to as order effects—and even after controlling for order, it is only a noisy estimate of θik
because study participants’ reported values for the product fluctuate. Let Γik denote a 40×1 vector
of decision order dummies that contains a 1 in the entries corresponding to the decision numbers
(1-40) in which product k appears for participant i. Let X denote the vector of covariates of θ, and
let Z = (Γ, X). We assume that order effects do not vary by experimental arm in our final sample,
which allows us to identify order effects from behavior in the “no tax” treatment arm:

A1 For any vector of covariates Xik, E[yik − log(1 + θikτi)|Xik,Γik] does not depend on τi.

For a vector of attention covariates Xik we will estimate the following model:

E[yik|Γik, Xik] = log(1 + θikτi) + βZik

E[θik|Xik] ≈ E
[

log(1 + θikτi)

τi
|Xik

]
= αXik

The model above implies the following moment conditions:

E[Z ′ikyik] = Z ′ikβZik if C=0x (5)

E

[
X ′ik

(
yik − βZik

τi

)]
= X ′ikαXik if C=1x or C=3x (6)

Equation (5) identifies any order effects in the data using the no tax arm. These order effects
are partialed out from yik in the standard and triple tax arms in equation (6), which allows us to
estimate E[θik] as a linear function of covariates Xik. When estimating (5) and (6) for either the
standard or triple tax arm separately, the system of equations is exactly identified. When pooling
the data, we will assume that the coefficient on a demographic covariate such as, e.g., an income

23Given that Amazon.com prices fluctuate over time and across consumers, and that consumers on average valued
the products at 60% of their price, the 0.36 coefficient is substantial. Overall, consumer valuations were typically
below the Amazon.com prices. Consumers were willing to pay more than the Amazon.com price only 13% of the
time.
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quartile, is the same in each arm, but use a separate moment equation (6) for each arm (i.e, assume
(6) holds independently in both the standard and triple tax arm). In our pooled analysis, the system
is thus over-identified, and we use the two-step GMM estimator to obtain an approximation to the
efficient weighting matrix.

Three notes are in order about our estimation procedure. First, using OLS to simply estimate
the linear model (7) below would not yield consistent estimates of average θ.

E[y|X,Γ] = α1τ + α2τX + β1X + β2Γ. (7)

Suppose that we are interested in calculating the average parameter θ across all study participants.
Because the linear model is misspecified when underreaction is endogenous to the tax rate, an
estimate α̂1 obtained from equation (7) is not a consistent estimate of E[θik]. In particular, the
OLS estimate α̂1 will depend on how much less consumers underreact to large taxes than to small
taxes.24 While these endogeneity concerns lead us to prefer the GMM approach as a primary
specification, we note that all of our qualitative results about demographic and economic covariates
are also obtained when estimating (7) using OLS, as shown in Appendix E.10.

Second, we will often condition on pik2 ≥ p (typically pik2 ≥ 1)—i.e., focusing analysis on those
with non-negligible willingness to pay—as a means of increasing precision. Because most of our
analysis takes p2/p1 as an object of interest, noisiness in responses can generate dramatic variation
in this quantity when valuations approach zero. All of our point estimates are robust to the inclusion
of all data.

Third, note that in principle, we could have used 1− pik2 /(τipik1 ) instead of yik as the dependent
variable. We don’t do this because using the raw ratio pik2 /pik1 gives more weight to outliers, and
thus the estimates are unduly influenced by the inclusion or exclusion of the top 1% of values of
pik2 /p

ik
1 . Because of this extreme right tail of the distribution of pik2 /pik1 , a strategy for decreasing

the weight on extreme realizations is necessary to stabilize the estimates. Estimates in our preferred
specification using the log transformation are very similar to the estimates that are obtained after
winsorizing at least the top 1% of values of 1− pik2 /(τipik1 ) for each arm.

4.4 Average Underreaction to Taxes by Experimental Arm

Table 2 presents our estimates of average θ in each arm, approximated by E
[
log(1+θτ)

τ

]
, using the

econometric framework presented in Section 4.3. We provide estimates using all data, as well after
conditioning on pik2 ≥ 1 and pik2 ≥ 5 (as in Section 4.3, pikm denotes the highest before-tax price at
which a consumer i will buy product k in module m). The table shows that across all specifications,
we estimate an average θ of just over 0.25 in the standard tax arm, and an average θ of just under

24To take a concrete illustration from the next section, we estimate an average θ of approximately 0.25 and 0.48
in the standard and triple tax arms, respectively, and thus obtain an average θ of 0.37 in the pooled sample. If we
simply estimate (7) using the OLS estimator, however, we get an α̂1 of 0.49—an estimate that is higher than either
average and does not have a clear economic interpretation.

21



0.5 in the triple tax arm. The standard errors on these estimates are sufficiently tight to reject both
that consumers completely neglect taxes and to reject that consumers react to the taxes fully. All
the estimates are more precise in the second and third columns than in the first column, as the ratio
pik2 /p

ik
1 is naturally most noisy when a consumer attaches low value to the product. We will thus

continue conditioning on pik2 ≥ 1 throughout the rest of our analysis.
The difference in average θ between the arms is significant at the 5% level when using all data or

when conditioning on pik2 ≥ 1, and it is significant at the 0.1% level when conditioning on pik2 ≥ 5.
In section 4.7 we show that the results are robust to worst-case assumptions about which subjects
get excluded for not passing the comprehension questions.

4.5 Further Tests of Endogenous Attention

Our baseline results suggest that consumers attend more to higher taxes, though there are several
caveats. First, consumers might over-react to the triple tax if they are surprised by the unusual
scenario in which taxes are three times the size of what they usually are (Bordalo, Gennaioli, and
Shleifer 2015). Second, our estimates of average θ in the triple tax arm may be biased downward
because it may take time for people to develop new heuristics for how they respond to the larger
taxes.

A complementary analysis that addresses these caveats would be to estimate whether consumers
attend more to taxes in states with larger sales taxes. As we show in Table A2 in Appendix E.2,
however, we are underpowered for such an analysis, because there is too little variation in state tax
rates—we can neither reject the null hypothesis of no effect nor the effect sizes in table 2.25

We can, however, ask a different complementary question about whether consumers attend more
to taxes on higher priced products, since the total tax t = τp is increasing in the posted price p.
In the context of our experiment, the question we ask is whether θ is higher when the module 2
valuation is higher. We operationalize this by dividing all consumers (from all three arms) into
three bins corresponding to pik2 < 5, pik2 ∈ [5, 10), and pik2 ≥ 10, and then estimating an average θ
for each of the three bins.

Columns (1)-(3) of table 3 report the results of this estimation. Column 1 presents estimates for
the standard tax arm; column 2 presents estimates for the triple tax arm; and column 3 presents
estimates for the pooled data. When pooling data, we allow for different baselines of average θ for
the different arms but, to maximize power, we assume that the impact of moving to a higher bin is
the same across the arms. Although we are underpowered for this analysis in the standard tax arm,
the table shows that when pooling the data, or when restricting to the triple tax arm, consumers in
the second and third bin have a higher average θ than consumers in the first bin. The differences
in average θ are approximately 0.12 for second vs. first bin in the pooled analysis and 0.15 for
third vs. first bin in the triple tax arm or pooled analysis. We do not detect a difference (although

25As table 1 shows, the average tax rate in our experiment is 7.32%, with a standard deviation of only 1.15%, and
a maximum tax rate of 10.6%.
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we also cannot reject a modest one) for average θ between the second and third bin—this suggests
that attention may not increase linearly with price and that consumers employ different attention
strategies for very low price products below $5 vs. moderate price products above $5.

This analysis is consistent with average θ increasing in the absolute tax pτ , but it does not
rule out that our estimates are driven by the possibility that consumers who are willing to pay the
most for the products are also the consumers who have the highest θ. Whether this is a “confound”
depends on the question of interest: for welfare computations such as those in Section 2.2, for
example, it does not matter which of these mechanisms is driving the relationship between average
θ and price. Columns (4)-(6), however, report a more robust test of whether consumers are more
attentive to taxes on more expensive products. The model estimated in these columns controls for
person-specific fixed effects in θ in measuring how θ varies with module 2 price p2. The test thus
identifies only off of how θ varies by p2 bin within each consumer. Appendix E.3 formally documents
how we modify the strategy in Section 4.3 to implement this estimation. While estimates are slightly
attenuated toward zero as compared to the estimates in the first three columns, we again see the
similar pattern that on average θ appears to be somewhat smaller when pik2 < 5 than when pik2 ≥ 5.

4.6 Sources and Correlates of Consumer Mistakes

4.6.1 Do Consumers Know the Tax Rates?

To assess consumers’ knowledge of the sales tax rates, and whether underestimation of the tax
rates generates some of the underreaction, we included the following survey question at the end of
the study: “What percent is the sales tax rate in your city of residence, [city], [state]? If your city
exempts some goods from the full sales tax, please indicate the rate for a standard nonexempt good.
If you’re not sure, please make your best guess.”26

Although the question asked participants to enter their answer as a percent, a small minority of
participants appears to not have read the instructions and entered their answer as a decimal (e.g.
0.07 instead of 7%). For the 6% of participants who entered an answer below 0.1, we assume that
they did not enter their answer as a percent, and thus we convert their answer by multiplying it by
100.

On average, consumers’ beliefs are very accurate. 51% of consumers know their tax rate exactly,
about 73% are within 0.5 percentage points, and about 85% are within 1 percentage point. The
average of beliefs is 7.32%, while the average actual tax rate of consumers in the study is 7.22%,
indicating almost no mean bias. The lack of any significant mean bias shows that incorrect beliefs
cannot explain the average underreaction we see in our data. To provide a graphical summary
of how perceived beliefs vary with the actual tax rate, we construct Figure 8 in Appendix E.8,
which shows a near-perfect 45-degree line relationship between perceived and actual tax rates. We

26If a small minority of participants misreported their city of residence, then our results are a lower bound on how
well participants know their actual sales tax rate.
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conclude that incorrect beliefs are a negligible source of consumer mistakes on average, consistent
with CLK’s survey results from consumers in a California store.

4.6.2 Numeracy, Financial Literacy and Income

We now demonstrate that the ability to compute taxes, financial literacy, and household income
are all predictive of underreaction to taxes. We first describe these three key covariates, and then
present the results.

Numeracy. Immediately after the survey question about the sales tax rate, consumers were asked
to compute the sales tax (in absolute terms) on an $8 (non-tax-exempt) item. We code answers as
correct if consumers provide the correct answer using their perceived sales tax rate. For example,
if the true sales tax rate is 6%, but the consumer thinks that it is 7%, then an answer is coded as
being correct if it is less than 1 cent from $0.56. Consumers were asked to answer this question
in the format of $0.56. However, as with the question about sales tax beliefs, not all consumers
followed the instructions. Some consumers seemed to have entered their answers in the format of
$8.56 instead of $0.56. Other consumers seem to have entered their answers as 56 instead of $0.56.
For consumers whose answers are between 8 and 12 (about 10% of consumers), we recode answers
by subtracting 8, as we think it is implausible that anyone would think that the tax on an $8 item
would be greater than $8. For consumers whose answers are above 20, we recode their answers by
dividing by 100, as these consumers most likely entered their answers in number of cents rather
than dollars. Our results are robust to simply excluding consumers with answers above 8. Overall,
accuracy was very high, with 73% of consumers giving the right answer.

Financial Sophistication. We use the “Big Three” financial literacy questions (Lusardi and
Mitchell, 2008, 2014). The three multiple choice questions test for understanding of interest rates,
inflation, and risk diversification.27 For completeness, we include these questions in Appendix F. We
code participants as financially sophisticated if they answer all three questions correctly. Overall,
49% of consumers in our final sample answered all three questions correctly.28

Household Income. Participants were also asked to state their household income. We analyze
the data by income quartiles, the cutoffs for which are 28k, 50k, and 82k, which match almost
exactly to the 2010 US census data.29

To provide a graphical summary of how θ varies by income, we construct Figure 6. The figure
plots estimates of average θ by income deciles, and also provides a local polynomial estimate of the
relationship between θ and income. Particularly for the triple tax arm, where we have the most
statistical power, the figure shows that average θ is steeply increasing with household income.

27Previous work has shown that financial literacy is associated with mistakes in other domains, including incurring
overdraft fees (Stango and Zinman, 2014), incorrectly valuing annuities (Brown et al., 2013), and not saving enough
for retirement (Lusardi and Mitchell, 2007a,b).

28Our measure of tax numeracy and financial sophistication are also correlated. Financially sophisticated consumers
have a 12 percentage point grater likelihood of correctly answering the tax computation question (p < 0.01).

29According to the 2010 census, the quartile thresholds are 25k, 50k, 90k.
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Table 4 presents the results for all three of our covariates, pooling data across the standard and
triple tax arms for power. Column (1) of the table shows that consumers who were able to correctly
compute the tax have a significantly higher θ, on average. This result suggests a bounded-rationality
model in which people ignore attributes of a financial decision that they do not fully understand.

Column (2) of table 4 shows that financially sophisticated consumers underreact less to the sales
tax. This suggests that incorporating sales taxes into one’s decision requires financial skill, and thus
that consumers who are more financially literate are more likely to correctly react to the sales tax.

Column (3) shows that consumers in the first quartile of the income distribution underreact to
taxes twice as much as consumers in the fourth quartile of the income distribution. This difference is
significant at p < 0.01 in both the pooled and triple tax samples. The table shows that consumers in
the third quartile also attend more to taxes than consumers in the first quartile (p < 0.05), though
we do not detect a difference between the first and second quartile.30

Column (4) shows that when we include all three covariates, all of the coefficients are dampened,
but they remain significant at at least the 10% significance level. The coefficients are dampened
because all three of the variables are strongly correlated with each other, suggesting that at least
some of the relationship between θ and income is likely due to the fact that higher-income consumers
are more financially sophisticated and numerate. Indeed, Figure 7, which plots the ability to
compute taxes and financial literacy by income deciles, shows that financial sophistication and
the ability to compute taxes increase dramatically with income.

In appendix E.5, we replicate Table 4 with the inclusion of demographic controls such gender,
age, educational attainment, and race. The three key covariates studied in this section remain
significant. Of all the other demographic covariates, only age is significantly associated with θ, with
older people underreacting more to the sales taxes. We also replicate Table 4 for each experimental
arm in Appendix E.7.

4.7 Robustness to Selection on Comprehension Questions

A limitation of any experiment other than a natural field experiment is the possibility that study
participants don’t fully understand the experimental environment.31 In our context, if some study
participants behave as if there is a sales tax even though they are in an experimental condition
without a sales tax, while other study participants behave as if there is no sales tax even though
they are in an experimental condition with a sales tax, then that amplifies our estimates of how much

30We can also estimate an elasticity of attention θ by income z: εθ,z := dE[θ|z]
dz

z
θ
. Veiga and Weyl (2015) study a

monopolist offering products with shrouded attributes to heterogeneously misoptimizing consumers, and show that
this elasticity is the key statistic for determining the monopolists’ incentive to increase or decrease the shrouded
add-on price. To estimate an average elasticity, we estimate the model log(θ̄) = θ̄0 + εθ,z log(z), or θ̄ = eθ̄0+εθ,z log(z).
We estimate this using the method of moments, controlling for order effects as before, and excluding the extreme
income observations below $1000 and above $250,000. In the pooled date, we estimate ε̂θ,z = 0.37, with a standard
error of 0.12. Although it is hard to extrapolate from our setting to other settings such as, e.g., overdraft fees, our
results nevertheless provide an initial data point for calibrations such as those in Veiga and Weyl (2015).

31To be more specific, we mean that participants don’t read the instructions, or don’t fully understand the param-
eters that are specific to the particular experimental environment, but don’t map on to natural settings.
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study participants underreact to sales taxes. Perhaps more importantly, confusion is a confound of
any analysis of individual differences: for any potential covariate of underreaction, it is important
to ensure that it is indeed a covariate of underreaction, rather than a covariate of the propensity
to read instructions carefully.32 For this reason, our final sample includes only study participants
who correctly answered the tax comprehension questions in both module 1 and module 2 of the
experiment.

Selecting on comprehension, however, may introduce differences in the final samples across the
three arms. While our samples do not appear to differ on observable demographic characteristics,
we cannot rule out that they differ on unobservable characteristics that are correlated with θ. In
fact, there are slight but statistically significant differences in the likelihood of correctly answering
the comprehension questions. However, we show in Appendix C that under mild assumptions, 1)
the possibility of selection on unobservables does not bias our analysis of heterogeneity and 2) we
provide a lower bound for the difference between average θ in the triple and standard tax arms.

Using the lower bound in part 3 of Proposition 10 in Appendix C, we address the concern that
some of the difference in average θ may be due to the final samples in the standard and triple tax arms
not being comparable because of the different rates at which consumers passed the comprehension
questions. When implementing the lower bound, we find that we can reject no difference between
the triple and standard tax conditions at the 10% significance level (p = 0.085) when using all data,
at the 5% significance level (p = 0.041) when conditioning on module 2 price pik2 ≥ 1, and at the
1% significance level (p = 0.005) when conditioning on pik2 ≥ 5.

4.8 Comparison to Related Studies

While our study is unique in its theoretical framework and the experiment designed to estimate
the sufficient statistic formulas we derive, several existing studies have addressed elements of our
empirical investigation. Feldman, Goldin and Homonoff (2015, henceforth FGH) run a lab experi-
ment with 227 Princeton students to study purchasing behavior at a 8% vs. a 22% sales tax rate,
similar to our standard vs. triple tax conditions. The three arms of the FGH experiment are similar
in structure to ours, although there are important differences that prevent direct comparability.
While the FGH experiment was not designed to identify average θ by experimental condition (or by
demographic covariates), the statistic that the FGH design does allow estimation of is 1−E[θ|8%]

1−E[θ|22%] ,
where E[θ|x%] is the average θ in the condition with an x% tax rate. This statistic is estimated
to be 0.4 with a standard error of 0.75, and a 95% confidence interval of [0,1.86]. By comparison,
we estimate 1−E[θ|standard]

1−E[θ|triple] to be 1.42 with a standard error of 0.175 and a 95% confidence interval
of [1.08, 1.77]. Thus, while our 95% confidence interval is nested within the FGH 95% confidence

32These concerns about comprehension are of course a concern not just for our experiment, but for any experiment
studying individual differences. For example, any experiment studying gender differences must ensure that differences
in behavior between men and women are due to actual economically relevant differences, and not differences arising
from the possibility that men and women have different levels of comprehending experimental instructions.
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interval, the significantly greater power of our design allows us to reject the null hypothesis that
the ratio equals 1.33

Interestingly, our result about the covariance of θ and income contrasts with Goldin and Homonoff
(2013), who find that low-income cigarette smokers over -react by a factor of four to the sales taxes
(specifically, they find that they are four times more elastic to sales taxes than excise taxes), and that
this overreaction is significantly smaller for higher-income smokers. It is hard to directly compare
these results to ours, because the relationship between θ and income may be different for smokers
than for the general population, and it may also be different for cigarettes than for other goods if
consumers are particularly attentive to cigarette taxes.34 On the other hand, the ClearVoice panel
may also not be representative of the general population. In our data, we do not have enough power
to estimate a relationship between θ and income for the smoker subsample35 (though we can reject
that average θ is greater than 1 for each income quartile of the smoker subsample).36

5 The Variance of Consumer Underreaction

Having established that underreaction varies across both economic and demographic conditions, we
now return to our first theoretical question: the extent of individual differences in θ. We present
our methodology in Section 5.1 and implement an estimate of the lower bound in Section 5.2. We
discuss the advantages of our approach over other possible approaches in Section 5.3.

5.1 A Lower-Bound for the Variance of Mistakes: Theory

As the results in Section 2.2 show, the statistic needed for welfare analysis is V ar[θ|p, τ ]—the
variance of θ of consumers who are indifferent between buying the product or not at a given posted
price p and tax rate τ . The statistic we estimate is thus Ep1,τ [V ar[θ|p1, τ ]]; that is, the average, over
all pairs (p1, τ), of the variance of θ of consumers who are marginal at each price-tax pair (p1, τ).
Note that Ep1,τ [V ar[θ|p1, τ ]] ≤ V ar[θ], and that this inequality is strict if θ varies with τ and p1.
Simply estimating the variance of θ would produce upward-biased estimates of how much variance
is coming from individual differences, because this statistic would also include variation in θ due to
differences in p1 and τ .

33Controlling for subject comprehension is crucial, however, because confusion creates unresponsiveness to stakes
and thus attenuates the ratio; we would find the ratio to be only 1.26 if we did not exclude study participants who
did not correctly answer the comprehension questions. FGH do not have an explicit test for comprehension. In our
data, while most participants report that the experimental instructions were very clear, many still do not correctly
answer the comprehension questions.

34A second potential reason for the different results is that identification strategies differ. If it is the case that low-
income consumers tend to spend a higher fraction of their income on tax-exempt goods than high-income consumers,
then comparing the excise tax vs. sales tax elasticity ratio for low- vs. high-income consumers can yield biased
estimates.

35Just over 20% identify as smoking cigarettes, and just under 30% identify as smokers more generally
36We do have enough power, however, to confirm that financial literacy is increasing with income in the smoker

subsample. To the extent that financial literacy is a covariate of θ and that carries over to the smoker subsample,
this would suggest that θ is increasing in income in the smoker subsample as well.
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Roughly, the idea behind our lower bound is to use survey question responses to partition study
participants into subgroups with different average θ’s, and to then compute the variance of the sub-
group means. The approach can be applied to any survey question or observable characteristic that
is correlated with θ. In our empirical implementation, however, we will rely on our “self-classifying”
survey question, which we ex ante selected as most promising to be predictive of underreaction,
and which indeed turned out to be our most predictive measure ex post. The self-classifying survey
question, which we describe in more detail in Section 5.2, asks study participants in the standard
and triple tax arms how they would behave if there were no taxes in those conditions.

Formally, let R be the random variable of study participants’ responses to the survey question,
which can take on the values R = H, R = M or R = L. Our technique can be immediately
generalized to any observable characteristic R that can take on any number of finite values. We set
φ := log(1+θτ)

τ , µ(p, τ) := E[φ|p, τ ], φ̄(r, p, τ) := E[φ|r, p, τ ]. For short-hand, we let θ̄r := E[φ̄|R = r];
that is, θ̄r is the (approximately) average θ of consumers with survey response R = r.

Proposition 5.

Ep1,τ [V ar[θ|p1, τ ]] ≥ E
[
V ar[φ̄|τ, p1]

]
(8)

≥ Pr(R = H)
(
E[φ̄|R = H]− E(µ|R = H)

)2 (9)

+ Pr(R = M)
(
E[φ̄|R = M ]− E(µ|R = M)

)2 (10)

+ Pr(R = L)
(
E[φ̄|R = L]− E(µ|R = L)

)2 (11)

Proposition 5 shows that Ep1,τ [V ar[θ|p1, τ ]] can be bounded from below by the significantly
easier to estimate expression in (9)-(11). The expression in (9)-(11) is similar to V ar[θR]; that is,
to the variance of the three-point distribution that puts mass Pr(R = H) on θ̄H , mass Pr(R = M)

on θ̄M , and the remaining mass on θ̄L. The difference is that the conditional means E[µ|R] are
not necessarily equal to the mean of the three-point distribution, which is the unconditional mean
E[µ] = E[θ]. By using the conditional means E[µ|R] in each term in (9)-(11), the expression corrects
for the fact that V ar[θR] would overestimate Ep1,τ [V ar[θ|p1, τ ]] if all individual differences in θ were
due simply to variation in (p1, τ).

In words, the conditional mean E[µ|R] is constructed as follows: 1) compute the average φ ≈ θ
for each pair (p1, τ), call it µ(p1, τ) and then 2) compute the average µ with respect to the conditional
distribution of (p1, τ) given R = r. As an example, suppose that R = H was associated only with
value p1 ≥ 10, R = M was only associated with values p1 ∈ [5, 10), and R = L was only associated
with values p1 < 5. This corresponds to a case in which all variation in survey answers is captured
by variation in p1. In this case, we would have that E[µ|R = r] = θ̄r for each r, and thus the lower
bound in (9)-(11) would be zero.

The idea behind the proof, which is contained in the appendix, is as follows. First, we show that
Ep1,τ [V ar[θ|p1, τ ]] ≥ E

[
V ar[ log(1+θτ)τ |τ, p1]

]
, which follows because the concave log transformation
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is a contraction and thus reduces variance. Second, we use the fact that conditional on each
(p1, τ), the distribution of φ is a mean-preserving spread of the distribution of φ̄. This establishes
V ar[φ|p1, τ ] ≥ V ar[φ̄|p1, τ ] for each (p1, τ), and thus that Ep1,τ [V ar[θ|p1, τ ]] ≥ E

[
V ar[φ̄|τ, p1]

]
.

Third, we arrive at the final quantity in (9)-(11) through an application of the Cauchy-Schwarz
inequality. In Section 5.3 we explain why the statistic in (9)-(11) is econometrically a significantly
more tractable statistic to estimate than the statistic in (8).

5.2 A Lower Bound for the Variance of Mistakes: Estimation

5.2.1 The Survey Instrument

The self-classifying survey question asked consumers in the standard and triple tax arms the follow-
ing: “Think back to Section 1, where you made your first twenty decisions about tag prices. In that
section, there was a sales tax that you would have to pay if you bought an item from that section.
If there was no sales tax in Section 1, would you choose higher tag prices for the products?” The
possible answers to the question were “Yes,” which we code as R = H; “Maybe a little,” which we
code as R = M ; and “No,” which we code as R = L. Table A4 in the appendix summarizes partici-
pants’ responses to the survey question. Overall, approximately 10% of participants answered “Yes,”
approximately 55% answered “Maybe a little,” and approximately 35% answered “No.” Participants
in the triple tax arms were more likely to say “Yes” or “Maybe” than participants in the standard
tax arm (Ranksum test p < 0.01).37

Responses to this question are highly predictive of experimental behavior. To estimate an
average θ for each survey response, we employ the same methodology as in Section 4.3, with the
exception that because this survey question was not asked in the no tax arm, we cannot estimate
any order effects associated with the survey responses. We thus make the additional assumption A2
that if survey responses R are predictive of behavior, it is solely because they are correlated with θ:

A2 E[yik|θik,Γik, R] = E[yik|θik,Γik], where Γik is the vector of order dummies

A2 implies that for both arms,

E

[
yik − βΓik

τi
|R = r

]
= E

[
log(1 + θikτi)

τi
|R = r

]
, (12)

where as before β is identified from the no tax arm. Thus E
[
log(1+θikτi)

τi
|R = r

]
can now be estimated

as in Section 4.3.
Table 5 shows that this survey question has a striking degree of predictive power. The table

shows that roughly, the average θ is not statistically different from 0 for consumers who answer “No,”
37However, the difference is not large in magnitude, despite being statistically significant. One possible reason for

the minor difference is “relative thinking” ((Bushong et al., 2015): because taxes were much larger in the triple tax
arm, what participants in the triple tax arm considered a large response to the tax was likely different than what
participants in the standard tax arm considered a large response to the tax.
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is in the neighborhood of 0.5 for consumers who answer “Maybe a little”, and is in a neighborhood
of 1 for consumers who answer “Yes.” Table 5 thus shows that under assumption A2, there are
stark differences in θ between different consumers. Moreover, the remarkable predictive power of
the survey question suggests that, consistent with models of bounded rationality and deliberate
attention, people are aware of the mistakes they make in responding to sales taxes.

However, these results do not yet prove that there are individual differences conditional on a
price-tax pair (p1, τ). Given our results about how the distribution of θ covaries with the tax size, it
is possible that some of these differences may be driven by variation in θ across the pairs (p1, τ). To
quantify individual differences conditional on a price-tax pair (p1, τ), we estimate the lower bound
in Proposition 5.

5.2.2 Lower Bound Estimation

A challenge in estimating the lower bound from Proposition 5 is estimating the terms E(µ|R = r).
Because our dataset is finite, we cannot obtain an accurate estimate of each µ(p1, τ) for each pair
(p1, τ). Instead, we partition the price-tax space into small cells of positive measure, and estimate
an average value of log(1+θikτi)

τi
within each cell. Formally, let {pj}15j=1 denote the fifteen cells

[0, 1], [1, 2], . . . , [14,∞) and let {τ j}5j=1 denote the five cells (0, 6%], [6%, 7%], . . . [9%,∞). Because
only 0.5% of all prices are above $15, and only 0.1% of all taxes are above 10%, we simply include
these observations in the last cells without much loss of precision. Denote by p(p) the cell containing
p, and denote by τ (τ) the cell containing τ. We approximate µ(p1, τ) by

µ̃(p1, τ) = E

[
log(1 + θikτi)

τi
|pik

1
∈ p(p1), τi ∈ τ (τ)

]
. (13)

As the cell sizes converge to zero, µ̃ will converge to µ. The statistic with which we approximate
the lower bound from Proposition 5 is now∑

r∈{L,M,H}

Pr(R = r)(θ̄r − E[µ̃|R = r])2 (14)

To estimate (14), we estimate each θ̄r using the empirical moment version of the left-hand-side of
(12). We estimate µ̃(p1, τ) using the empirical moment counterpart of

E

[
yik − E[yik|C = 0x, pik1 ∈ p(p1), τi ∈ τ (τ)]

τi
|pik1 ∈ p(p1), τi ∈ τ (τ)

]
(15)

where E[yik|C = 0x] denotes the average change in valuations that occurs between module 1 and
module 2, and is identified from the no tax arm. We estimate E[µ̃|R = r] by computing the
empirical average over all pairs (p, τ) associated with R = r in the dataset. See Appendix E.4 for
further details.

Table 6 presents the results. The top row, in bold, displays our estimates of (14) for both the
standard and triple tax arms. The point estimates are 0.133 for the standard tax arm, and 0.094
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for the triple tax arm. To benchmark these estimates, consider what the variances would be if all
consumers either processed the tax fully (θ = 1) or completely neglected it (θ = 0). Given a mean
of 0.25 in the standard tax arm, the variance would then be 0.25− 0.252 = 0.19 in that arm. Given
a mean of approximately 0.5 in the triple tax arm, the variance would be 0.5− 0.52 = 0.25 in that
arm. Thus our lower bound estimates are approximately 70% and 37% of what the variances would
be in the perfectly binary cases of the single- and triple-tax arms, respectively.

To compute standard errors and the mean bias of our estimator, we use the percentile block
bootstrap (with 1000 iterations), sampling at the consumer level. As the second row shows, there is
a small mean bias of approximately 0.01 for the standard tax arm, implying that a bias-corrected
estimate is 0.124.38 The bias is nine times smaller in the triple tax arm because all effect sizes are
three times larger, and thus the relative variance of noise is nine times smaller.

We compute approximate 95% confidence intervals in two ways: 1) using the standard percentile
method, and 2) using the (median-) bias-corrected percentile method. As with mean bias, the
median bias is reassuringly small, and thus both methods produce similar approximations to the
95% confidence intervals. Importantly, we find that even the 5% confidence bounds are large enough
to produce substantial implications for the efficiency costs of taxation, as we show in Section 6.1.

5.3 Discussion of our Approach

Our approach vs. “direct” approaches for estimating the variance A common summary
statistic presented in experiments studying structural parameters is to provide a summary of the
distribution of individual-level estimates of the parameters. However, because each point estimate is
only a noisy measure of the true parameter, as the number of participants increase, the distribution
of point estimates approximates the convolution of the distribution of true parameters and noise. In
our experiment, note that while νik := 1− pik2 /(τipik1 ) provides a noisy estimate of θik, the variance
of νik vastly overestimates the variance of θik because of the randomness in study participants’
decision-making that this variable picks up.

This approach could be modified, however, by first estimating the variance of noise using the no
tax arm of the experiment, and then subtracting that variance from the variance of νik estimated
in the standard and triple tax arms. Theoretically, this approach provides unbiased estimates of
the variance of θik, and can be extended to estimate higher order moments. However, while our
experiment is well powered to estimate first moments, our data is unfortunately too noisy to provide
well-powered estimates of higher order moments.39

38The source of the bias is that any noise in our estimates of θ̄r or E[µ|R = r] amplifies the statistic in (14) because
it involves squares of noisily estimated moments. For example, even if the true value of the statistic in (1) was zero,
our estimates would still be positive simply because of noisiness in yik.

39An additional advantage of our approach is that we do not need to assume that the second or higher order
moments of the distribution of noise are identical across the arms.
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Other possible lower bounds Estimating the seemingly simpler and tighter bound in (8) is far
less econometrically tractable. Doing so would require estimating the variance of µ(p, t) within each
of 75 cells {pj × τ j}, and then taking the average of those variances. This computation involves
the average of many squares of terms, with each term measured with noise. In contrast, the bound
in (9)-(11) first collapses the first moments from (8) into only three averages, and then takes the
squares of those averages. Thus the bound in (9)-(11) can be estimated much more precisely for the
same reason that the variance of an average of two random variables is smaller than the average of
the variance of those two random variables.40

As a final note, we reiterate that the methodology used in this section is not limited to the self-
classifying survey question. For example, a similar kind of analysis could be performed by sorting
consumers into groups based on financial literacy or tax numeracy. The reason we focus on the
self-sorting survey question is because it is by far the most predictive, and expanding the number
of categories would reduce statistical power.41

6 From Empirical Magnitudes to Welfare Implications

We now use the theoretical results from Section 2 to translate the experimental results from Sections
4 and 5 into the welfare estimates that those empirical magnitudes would imply. The benchmark that
we consider throughout is inferences assuming exogenous and homogeneous θ, and we translate all
of our empirical estimates into how much they change welfare inferences relative to this benchmark.
We summarize the results from this section in Table 7.

6.1 Individual Differences

To translate the estimates from Section 5.2 into excess burden estimates, we use the formula in
Proposition 1, which expresses excess burden in terms of the mean and variance of θ. We consider
a case in which there are no income effects and supply is perfectly elastic, because as shown in
Proposition 2, the relative importance of individual differences increases as the elasticity of supply
decreases.42 For the illustrative calculations here, we assume that for the price p and tax t in
question, we set E[θ|p, t] to equal our estimate of average θ, and we bound V ar[θ|p, t] with our
lower-bound estimate of Ep,t[V ar[θ|p, t]].

40To expand on the intuition, consider i.i.d. nuisance parameters ε1, . . . εn. Now consider the following two statistics:
1) 1

n

∑
ε2i and 2)

(
1
n

∑
εi
)2. The first statistic has mean and variance given by 1

n
E[ε2i ] and 1

n
V ar[ε2i ], respectively,

while the second statistic has mean and variance given by 1
n2E[ε2i ] and 1

n2 V ar[ε
2
i ], respectively. Thus, the second

statistic has an order of magnitude smaller mean and variance. This difference between the two statistics is essentially
the reason for why the second bound we derive can be estimated with tighter standard errors and a smaller mean
bias.

41To obtain intuition for this, note that if we had as many bins as consumers in our experiment, then our estimates
of the lower-bound would mostly be reflecting the noise in consumers’ decisions, and thus would be very imprecise
and biased. Increasing the number of bins increases the lower bound in expectation, but it also lowers statistical
precision and increases bias.

42And as discussed in Section 2.2.3 and further in Appendix A.2, income effects exacerbate excess burden, with
that additional effect also increasing in the variance of the bias.
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Let EBneoclasical denote the excess burden that would be calculated by a neoclassical analyst
who assumes that consumers are not biased, and who relies on the elasticity of demand with respect
to the tax.43 Let EBhomogeneous be the excess burden that would be computed by an analyst who
assumes that θ is homogeneous, and knows the mean θ from, say, estimating Dt/Dp.44 Finally, let
EB denote the actual excess burden.

Consider now the implications of heterogeneity for welfare inferences. For the standard tax arm,
EBhomogeneous ≈ (0.25)EBneoclassical. However, by equation (2) in Proposition 1, the actual excess
burden is EB ≥ (0.25 + 0.124/0.25)EBneoclassical = (0.75)EBneoclassical. Using the 5% confidence
bound for the lower-bound statistic, we have EB ≥ (0.45)EBneoclassical.

For the triple tax arm, EBhomogeneous ≈ (0.48)EBneoclassical. However, by equation (2) in Propo-
sition 1, the actual excess burden is EB ≥ (0.48 + 0.094/0.48)EBneoclassica = (0.68)EBneoclassical.
Using the 5% confidence bound for the lower-bound statistic, we have EB ≥ (0.61)EBneoclassical.

Thus for the standard tax arm, individual differences inflate excess burden by over 200% com-
pared to a representative agent calculation, and actually bring the overall estimates closer to the
neoclassical case. For the triple tax arm, individual differences inflate excess burden by over 40%
as compared to a representative agent calculation. Moreover, the 5% confidence bounds produce
meaningful estimates as well. We stress that these estimates are lower bounds, and that the actual
impact of individual differences is likely to be much greater.

6.2 Endogenous Attention

Continuing with the excess burden formulas in Section 2.2, we now turn to the implications of
endogenous attention that we formalize in Proposition 3. For the calibration, we take ∆t = 2t,
and we set E[θ|t] = 0.25 and E[θ|t + ∆t] = 0.5, consistent with the experimental results. To
maintain the same benchmark and units throughout the whole section, we again compute the
impact of endogenous attention against the benchmark of homogeneous and exogenous θ. Under
the assumption that F (θ|p, t) is degenerate, Proposition 3 implies that

EB(t+ ∆t)− EB(t) ≈ ≈ (t∆t+ (∆t)2/2)(0.5)2Dp +
t2

2
(0.52 − 0.252) ≈ 0.84t2

Consider now inferences under the assumption of homogeneous and exogenous θ. First, suppose
that the analyst computes E[θ] = 0.25 by studying responses to standard taxes. Then assuming
exogenous (and homogeneous) θ, the analyst would infer the excess burden of tripling the tax to
be 3t2(.25)2 = 0.19t2. In this case, the endogeneity of θ with respect to t implies that the correct
estimate is 300% higher.

Second, suppose that the analyst computes E[θ] = 0.5 by studying responses to high taxes.
43That is, EBneoclassical = 1

2
t2D(p, t)

εD,t
p+t

44As shown CLK (and replicated in Proposition 6 for unit demand), the ratio Dt/Dp identifies θ for homogeneous
consumers. As shown in the proof of Proposition 7 and implicitly used in the result, it is more generally true that
Dt/Dp = E[θ|p, t] for small t.
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Then assuming exogeneity of θ, the analyst would compute the excess burden of tripling the tax to
be 3t2(.5)2 = 0.75t2. In this case, endogeneity of θ implies that the correct excess burden estimate
is 20% higher.

6.3 Covariance of Underreaction and Income

Finally, we perform a rough calibration of how the covariance between income and θ affects welfare.
To maintain the same benchmark that we have with deadweight loss estimates, we assume that
λ =

´
gi = 1. Under this assumption, the welfare impact of a small tax t is exactly equal to the

efficiency loss of a small tax t when the covariance term Cov[gi, 2θ − θ2] equals zero.
To estimate the covariance, we begin with a noisy estimate θ̃ik = θik + εik for each person-

product pair. Then assuming E[εik] = 0 and Cov[gi, V ar[εik]] = 0, it follows that Cov[gi, 2θ− θ2] =

Cov[gi, 2θ̃− θ̃2]. We compute the θ̃ik as we did in Section 4.6 by first estimating order effects, then
partialing those out from yik, and then dividing by τi. Because the θik are measured with noise, for
this rough calculation we drop all observation of θ̃ik that are greater in absolute value than 5, which
roughly corresponds to dropping the top and bottom 5% of the θ̃ik estimates.

As a final step, we specify the welfare weights gi. Roughly consistent with Saez (2001), we
set g(Zi) ∝ 1/(10000 + Zi). We add the constant 10000 to the denominator because without the
constant consumers with zero (or close) to zero household income receive infinite weight. Under
these assumptions, the covariance term is -0.18 when pooling the standard and triple tax arms.

Assuming homogeneous θ and using the estimate E[θ] ≈ 0.25 from the standard tax arm,
W (t) − W (0) ≈ 1

2 t
2E[θ]2Dp ≈ 0.03t2Dp. The covariance adds a welfare loss of 1

2 t
2(0.18)Dp =

0.09t2Dp, which thus increases the welfare loss by 300%.

7 Discussion

In this paper, we have shown that in addition to measuring the “average mistake,” measuring
the variation in mistakes is crucial for questions about policy design. When there are individual
differences in underreaction to a not-fully-salient sales tax, this increases the efficiency costs arising
from that tax’s distortionary effect on demand. When underreaction is greatest amongst low-income
consumers, this increases the regressivity of the tax burden and hinders redistributive goals. When
underreaction varies with economic incentives, this affects the demand response to new policies
and introduces a new channel by which taxes distort behavior. Estimates from our experimental
population suggest that these dimensions of variation exist, are sizable in magnitude, and can starkly
affect the welfare analysis of tax policies.

These issues are of course not unique to sales taxes, and arise in any question about tax policy.
And more broadly, these issues arise in any setting where the true price of a good is divided into
different components of differing salience. The theoretical framework we develop in section 2 can
accommodate any such settings with only minimal modification. This framework can thus serve as
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a template for robust behavioral welfare analysis in the presence disaggregated pricing or shrouded
attributes. As a concrete example, in future work we aim to directly implement this framework in
an experimental study of the impact of heterogeneous inattention to shipping costs.

While we believe our theoretical framework is broadly portable, caution is needed when using our
experimental estimates to assess welfare in external settings. When implementing our experiment,
we devoted significant effort and resources to recruiting a broad and diverse subject population, and
to making our experiment as natural as possible while still providing the necessary within-subject
measurements. However, as with any experiment, important external-validity concerns remain. We
discuss our two main concerns below.

First, we emphasize that our experiment relied on the use of the Becker-DeGroot-Marshak
procedure to measure willingness to pay. While useful for precise, incentive-compatible elicitations
of demand curves, we worry that this mechanism could trigger a different psychology than simply
deciding whether or not to purchase a given item. Within our experimental framework, we plan
on conducting future work to establish the robustness of our results to potentially more natural
mechanisms, such as multiple price lists or individual purchasing decisions.

Second, the population used in our study is likely non-representative. Despite matching the
US population on several key observable demographics, unobserved characteristics could influence
selection into our online survey platform. Furthermore, our decision to exclude participants who
fail comprehension checks—done in order to exclude confounds of our measures of underreaction to
taxes driven by participants not (carefully) reading the instruction—could drive additional selective
processes.45 In general, were heterogeneity in mistakes not present in the general population, it
would not be found in arbitrary subsamples; as such, we do not view these issues as a hindrance to
a demonstration that meaningful heterogeneity exists. However, we caution that the magnitude of
this variation, and particularly its covariation with demographic characteristics, could vary across
different populations. We view our measurement of these statistics as an initial step, and proof of
concept, of a necessary empirical agenda working toward robustly incorporating heterogeneity into
behavioral welfare analysis.

As this agenda progresses, it will both benefit from, and inform, the explicit modeling of the
psychology of bounded-rationality. In principal, refined and vetted models of attention would place
useful structure on our forecasts of heterogeneity in mistakes, and thus the corresponding impli-
cations for welfare. Some of our results—e.g., the debiasing that occurs with increased incentives,
and the association between tax numeracy and tax mistakes—are consistent with existing models of
bounded rationality (e.g., Gabaix 2014). Some of our results—e.g., that the poor are most suscep-
tible to tax mistakes even after controlling for proxies of tax numeracy and financial literacy—are
less consistent with existing rational-attention models, and demonstrate the need for further re-
finement. In future work, we aim to focus on the economic and psychological determinants of this

45However, we do show that our main results are robust to alternative manners of defining our sample for analysis,
and to controlling for selection induced by this requirement. See section 4.7.
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type of underreaction to shrouded attributes, working towards the ultimate goal of a systematic
understanding of the mechanisms in play. This can provide a direct channel linking individual-level
modeling of consumer psychology to the measurement of welfare.
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Figures

Figure 1: Illustration of efficiency cost computation

Notes: This figure provides a graphical representation of the basic efficiency cost of taxation formula in
Proposition 1. If consumers optimize perfectly, excess burden is given by the triangle under the demand
curve in green. If consumers underreact to taxes but are homogeneous in their misoptimization, excess
burden is given by the red triangle, the height of which is E[θ]t. Heterogeneity creates additional excess
burden, represented by the orange triangle, whose height is tV ar[θ]/E[θ].
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Figure 2: Experimental Design
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Figure 3: Decision format

(a) Tax Module
(b) No Tax Module

Notes: Panel a shows an example of a pricing decision from modules where taxes apply. Con-
sumers indicate the highest tag price at which they would buy the product. As in typical shopping
environments—and as was explained in the experimental instructions—the final price that applies
at "check out" is the tag price plus sales taxes. Panel b shows an example of a pricing decision
from modules where taxes do not apply. As can be seen in the prompt, respondents are instructed
to consider the case where no sales tax is added at the register.
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Figure 4: Average demand curves in the first and second stages of the experiment

(a) Demand as a function of before-tax price in the first stage of
the experiment, where consumers face different tax rates

(b) Demand in the second stage, where there are no additional
sales taxes in any arm

Notes: This figure plots demand curves from the first and second modules of the experiment, averaging
across all 20 products.. In the first stage, consumers face either no (additional) taxes, standard taxes, or
triple their standard taxes. In the second stage, consumers in all three arms face no additional taxes. For
the first stage, we plot demand curves as functions of the before-tax prices. To construct the figure, we start
with demand curves DC,m

k (p) for each product k, where C ∈{0x, 1x, 3x} denotes the no-tax, standard-tax or
triple-tax experimental arm, m denotes the module (stage), and p the before-tax price. The average demand
curves are DC,m

avg (p) := 1
20

∑
kD

C,m
k (p) .

40



Figure 5: Average demand curves in the first stage of the experiment, as functions of before- vs.
after-tax price

(a) Demand as a function of before-tax price in the first stage of
the experiment

(b) Demand as a function of after-tax price in the first stage of
the experiment

Notes: This figure plots the average of the demand curves for the 20 products in the first stage of the
experiment. In the first stage, consumers face either no (additional) taxes, standard taxes, or triple the
standard taxes. In the second stage, consumers in all three arms face no additional taxes. We plot demand
curves as functions of the before-tax prices in panel (a), and as a functions of the after-tax prices in panel (b).
To construct the figure, we start with demand curves DC,m

k (p) for each product k, where C ∈{0x, 1x, 3x}
denotes the no-tax, standard-tax or triple-tax experimental arm, m denotes the module, and p the before-
or after-tax price. The average demand curves are DC,m

avg (p) := 1
20

∑
kD

C,m
k (p) .
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Figure 6: Average θ (weight placed on tax) by income, by experimental arm

Notes: This figure provides a graphical summary of how θ (weight placed on tax) varies by household income.
The top panel presents analysis pooling across treatment arms, while the bottom two panels restrict the data
to the standard tax and triple tax arms, respectively. Our measure of θ is calculated for each consumer-
product pair, and given by log(pik2 )−log(pik1 )−β̂Γ

τi
, where β̂ is our estimate of order effects identified from the no

tax arm. We fit a local polynomial regression (of degree 0) weighted by the Epanechnikov kernel. For each
income decile, we also plot our estimate of average θ against the average income in that decile.
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Figure 7: Differences in numeracy and financial literacy across income levels

(a) Ability to compute tax by income (b) Financial literacy by income

Notes: These figures provide a graphical summary of how tax numeracy and financial literacy vary across
income levels. Panel a displays the probability that the respondent correctly calculated the tax on an $8 item
(using his subjective belief about their sales tax rate). Panel b displays the probability that the respondent
correctly answered all of the Lusardi and Mitchell “big three” financial literacy questions (question text
available in appendix F). In each figure, we present the average of the dependent variable in each income
decile, as well as 0th order local polynomial regressions (using the Epanechnikov kernel).
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Tables

Table 1: Demographics by experimental arm

All
data

No
tax
arm

Standard
tax
arm

Triple
tax
arm

p-value of F-test
for equality
across arms

Age 50.49 50.81 50.41 50.20
p =0.648(14.63) (14.27) (14.85) (14.82)

Household Income 61.48 60.71 61.72 62.16
p =0.668(47.79) (48.65) (47.28) (47.32)

Household size 2.40 2.40 2.38 2.42
p =0.881(1.53) (1.60) (1.50) (1.46)

Male 0.48 0.47 0.51 0.47 p = 0.193
Married or 0.61 0.61 0.60 0.61 p = 0.353
domestic partnership

Education
Highschool degree or higher 0.96 0.96 0.96 0.96 p =0.843
College degree or higher 0.41 0.41 0.40 0.40 p = 0.863
Postgraduate education 0.17 0.17 0.16 0.16 p = 0.410
Ethnicity
Asian 0.03 0.03 0.04 0.03 p = 0.862
Caucasian 0.77 0.76 0.77 0.78 p = 0.549
Hispanic 0.03 0.04 0.03 0.03 p = 0.476
African American 0.07 0.08 0.07 0.08 p = 0.826
Other 0.02 0.03 0.02 0.02 p = 0.393
Tax rate in city 7.32 7.36 7.31 7.30

p = 0.376of residence (1.15) (1.16) ( 1.13) (1.15)
N 3000 1103 983 914

Notes: This table summarizes the demographics in each of the three arms in our final sample for analysis. To
test whether each characteristic is equally distributed across arms, we regress that characteristic on dummies
for arms of the study, using OLS with robust standard errors, and report the F-test p-value for equality of
accross arms. Omnibus tests also show that here are no significant differences in demographics between Arm
1 vs. Arm 2 (F -test p = 0.38), Arm 2 vs. Arm 3 (F -test p = 0.36) or Arm 1 vs. Arm 3 (F -test p = 0.44)
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Table 2: Estimates of average θ (weight placed on tax) by condition

(1)
All

(2)
p2 ≥ 1

(3)
p2 ≥ 5

Std. tax avg. θ 0.265** 0.252*** 0.227**
(0.111) (0.095) (0.093)

Triple tax avg. θ 0.482*** 0.475*** 0.535***
(0.045) (0.039) (0.041)

Observations 60000 58517 32816
Difference p-val 0.033 0.013 < 0.001

Notes: This table displays method of moments estimates of average θ by experimental arm. θ is defined
as the “weight” that consumers place on the sales tax, with θ = 0 corresponding to complete neglect of
the tax and θ = 1 corresponding to full optimization. Column (1) uses all data, Column (2) conditions on
module 2 price (p2) being greater than 1, Column (3) conditions on module 2 price (p2) being greater than
5. Cluster-robust standard errors (at the subject level) in parentheses. All specifications include order-effect
dummies. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 3: Average θ (weight placed on tax) for different ranges of module 2 price p2

Without individual θ
fixed effects

With individual θ
fixed effects

(1)
Standard

(2)
Triple

(3)
Pooled

(4)
Standard

(5)
Triple

(6)
Pooled

High p2 bin 0.113 0.148** 0.155** 0.166 0.069 0.072
(0.185) (0.074) (0.074) (0.152) (0.053) (0.053)

Middle p2 bin –0.098 0.118** 0.124** –0.078 0.097** 0.105***
(0.147) (0.054) (0.054) (0.101) (0.038) (0.038)

Std. tax cons. 0.269* 0.156
(0.140) (0.098)

Triple tax cons. 0.401*** 0.394***
(0.054) (0.054)

Observations 40690 39397 58517 40690 39397 58517

Notes: This table displays method of moments estimates of differences in average θ between 1) choices for
which the module 2 price p2 is in the [5, 10] range (“Middle bin”) versus the [1, 5] range, and 2) choices for
which the module 2 price p2 is in the [10, 15] range (“High bin”) versus the [1, 5] range. θ is defined as the
“weight” that consumers place on the sales tax, with θ = 0 corresponding to complete neglect of the tax and
θ = 1 corresponding to full optimization.

Columns (1)-(3) estimate the model θ̄ = α1x0 11x + α3x0 13x + αp2∈[5,10)1p2∈[5,10) + αp2≥101p2≥10, where θ̄ :=

E
[

log(1+θτ)
τ

]
. We assume that αp2∈[5,10) and αp2≥10 do not change across the standard and triple tax arms,

but we allow for different baseline values α1x0 and α3x0 . Columns (4)-(6) control for individual θ fixed effects,
estimating the model θik = θi + αp2∈[5,10)1p2∈[5,10) + αp2≥101p2≥10. We assume that αp2∈[5,10) and αp2≥10

do not change across the standard and triple tax arms.

All specifications condition on module 2 price (p2) being greater than 1, and include a second estimating
equation that controls for order effects (see section 4.3 for details). We set up the two moment conditions for
each arm separately, and we use the two-step GMM estimator to approximate the efficient weighting matrix
for the over-identified model. Cluster-robust standard errors (at the subject level) in parentheses. * p < 0.1,
** p < 0.05, *** p < 0.01.
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Table 4: Average θ (weight placed on tax) by ability to correctly compute tax, financial sophistica-
tion, and household income quartiles

(1) (2) (3) (4)
Compute tax correctly 0.218** 0.168*

(0.087) (0.088)
Financially sophisticated 0.243*** 0.160**

(0.078) (0.081)
Inc. quartile 2 0.038 0.013

(0.109) (0.110)
Inc. quartile 3 0.234** 0.180

(0.113) (0.114)
Inc. quartile 4 0.338*** 0.272**

(0.111) (0.115)
Std. tax cons. 0.105 0.124 0.091 –0.068

(0.115) (0.102) (0.115) (0.133)
Triple tax cons. 0.318*** 0.358*** 0.320*** 0.161

(0.074) (0.052) (0.080) (0.103)
Observations 58005 58517 58517 58005

Notes: This table shows how average θ varies by ability to compute the tax correctly, financial sophistication,
and income quartiles. θ is defined as the “weight” that consumers place on the sales tax, with θ = 0
corresponding to complete neglect of the tax and θ = 1 corresponding to full optimization. Data is pooled
from both the standard and triple tax conditions.

The model estimated in column (4) is θ̄ = α1x0 11x + α3x0 13x +
∑
j∈{2,3,4} αQj1Qj +

αcompute correctly1compute correctly + αsophisticated1sophisticated, where θ̄ := E
[

log(1+θτ)
τ

]
. The models es-

timates in columns (1)-(3) are analogous but include only the subset of covariates described in those
columns.

All specifications condition on module 2 price (p2) being greater than 1, and include a second estimating
equation that controls for order effects (see section 4.3 for details). We set up the two moment conditions for
each arm separately, and we use the two-step GMM estimator to approximate the efficient weighting matrix
for the over-identified model. Cluster-robust standard errors (at the subject level) in parentheses. * p < 0.1,
** p < 0.05, *** p < 0.01.
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Table 5: Predictiveness of self-classifying survey responses

(1)
Standard

(2)
Triple

“Yes” average θ 1.103*** 0.936***
(0.277) (0.103)

“A little” average θ 0.439*** 0.622***
(0.110) (0.048)

“No” average θ –0.172 0.047
(0.138) (0.056)

Observations 40690 39397

Notes: This table displays method of moments estimates of average θ by consumers’ responses to the self-
classifying survey questions. θ is defined as the “weight” that consumers place on the sales tax, with θ = 0
corresponding to complete neglect of the tax and θ = 1 corresponding to full optimization. Column (1)
provides estimates for the standard tax arm and Column (2) provides estimates for the triple tax arm.
Cluster-robust standard errors (at the subject level) in parentheses. All specifications include order-effect
dummies and condition on module 2 price (p2) being greater than 1. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 6: Lower bound estimates for the expected conditional variance of θ (weight placed on tax)

Standard Triple
Lower bound estimate 0.133 0.094
Bias (mean) 0.009 0.001
Standard Error 0.051 0.019
95% Conf. Int. (0.054,0.251) (0.063, 0.135)
Bias-corrected Conf. Int. (0.049, 0.237) (0.064, 0.136)

Notes: This table estimates lower bounds for Ep1,τ [V ar[θ|p1τ ]] in both the standard and triple tax arms.
θ is defined as the “weight” that consumers place on the sales tax, with θ = 0 corresponding to complete
neglect of the tax and θ = 1 corresponding to full optimization. The statistic we estimate is (14), via the
empirical moments described in Appendix E.4. We compute standard errors and mean bias (Efron 1982)
using the percentile (non-accelerated) bootstrap (with 1000 iterations), blocking by consumers. We compute
approximate 95% confidence intervals using the unadjusted bootstrap, as well as the median bias correcting
bootstrap (Efron 1987).
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Table 7: Summary of illustrative welfare calculations from Section 6

Increase in welfare costs

Type of Welfare Calculation Type of Variation Standard US
sales taxes Triple taxes

Excess burden from tax Variance of θ due to
individual differences

>200% >40%

Welfare with redistributive
motives, with welfare weights
g(Z) ∝ 1

10000+Z , and λ = 1

Covariance of θ and
household income

300% 75%

Excess burden from increasing
tax to triple its value

Variation in θ due to
changes in tax rate:
standard tax baseline.

300%

Excess burden from increasing
tax to triple its value

Variation in θ due to
changes in tax rate:
triple tax baseline.

20%

Notes: This table summarizes the illustrative welfare calculations in Section 6. The benchmark for all of
these computation is the estimates that would be obtained under the assumption that θ is homogeneous and
does not vary with tax rates. The first row computes efficiency costs of the taxes, under the assumption of
quasilinear utility and perfectly elastic supply.

The second row computes the welfare impact of the covariance between θ and household income. Welfare is
given by W =

´
gω(Zω + (v − p− t)1x)dF + λD, where λ is the marginal value of public funds and

gω is the weight on consumers with wealth Zw (see Section 2.3 for details). In the second row, the
welfare weight corresponding to a consumer with income Z is g = 1

10000+Z . The marginal value of public
funds is set equal to λ = 1, to increase comparability to the excess burden calculations.

The last row of the table presents calculations for computing the excess burden of increasing standard US
sales taxes to triple their current size. We again assume quasilinear utility and perfectly elastic supply.
The two different effects presented arise from assuming that underreaction is fixed at the levels seen under
standard taxes, or from assuming that underreaction is fixed at the levels seen under triple taxes.
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Appendices (not for publication)
A Appendix to Section 2: Further Results

A.1 Identification from Aggregate Demand Data

Definition 1. Let Bε(p, t) := [p− ε, p+ ε]× [t− ε, t+ ε]. We say that local knowledge of D(p, t) is sufficient
to identify the efficiency cost of a small tax change at a pre-existing tax t if for each sequence of {∆i}∞i=1

converging to zero there is a sequence of {εi}∞i=1 converging to zero with the property that knowledge of
Bεi(p, t) is sufficient to identify EB(t+ ∆i)− EB(t).

Proposition 6. Consider ∆EB(∆t|t) := EB(t + ∆t) − EB(t). Suppose that F (θ|p, t) is degenerate and
suppose for simplicity that utility is quasilinear.

1. (CLK and Chetty 2009) Suppose that either i) F (θ|p, t) does not depend on t or that ii) t = 0. Then
local knowledge of D(p, t) is sufficient to identify ∆EB for a small ∆t.

2. Suppose that F (θ|p, t) depends on t, and that t > 0. Then local knowledge of D(p, t) is not sufficient
to identify excess burden or F (θ|p, t). However, full knowledge of D(p, t) is sufficient to identify ∆EB

for a small ∆t.

Proposition 6 shows that when F (θ|p, t) is degenerate, the demand curve D(p, t) identifies welfare. In
fact, when attention does not vary with the tax, the proposition shows that local knowledge of the demand
curve is sufficient—a replication of CLK and Chetty et al. (2009) for the case of binary demand. The reason
is that when θ is exogenous, it is given by Dt

Dp
: the extent to which consumers underreact to a change in the

tax relative to a change in the posted price.
When θ can depend on t, the ratio Dt

Dp
no longer identifies θ. The reason is that a change in the tax also

change attention: the ratio Dt
Dp

now gives θ(t) + θ′(t). To calculate welfare, however, it is necessary to know
both θ(t) and θ′(t), as shown in Proposition 3. However, full knowledge of D(p, t) is still sufficient to calculate
θ(t). Intuitively, to calculate θ(t), we simply need to find the value ∆p such that D(p + ∆p, 0) = D(p, t).
Then θ(t) = ∆p/t, and θ′(t) can then be backed out from the demand response.

Proposition 7. Suppose for simplicity that utility is quasilinear. Consider∆EB(∆t|t) := EB(t + ∆t) −
EB(t), and let ∆EB0 be the value of ∆EB that would be inferred from D(p, t) under the assumption that
F (θ|p, t) is degenerate. Then there exist d ≤ ∆EB0 < d̄ such that D(p, t) can be consistent with any value
of ∆EB(∆t|t) in [d, d̄]. When t = 0, and when θ̄ is an upper bound on the possible realizations of θ,

d =
1

2

(
Dt(p,∆t)

Dp(p,∆t)

)2

(∆t)2Dp (16)

d̄ =
1

2

(
Dt(p,∆t)

Dp(p,∆t)

)
θ̄(∆t)2Dp (17)

Proposition 7 shows that when there is heterogeneity in θ, knowledge of the demand curve D(p, t) is not
sufficient to calculate the welfare implications of taxation. To see the intuition for this result, consider the case
in which t = 0. In this case, welfare is proportional to E[θ|p, t]2 +V ar[θ|p, t]. The mean E[θ|p, t] is identified
by Dt/Dp. However, V ar[θ|p, t] cannot be identified at all from the demand curve D, as aggregate demands
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do not provide information on the dispersion of the bias, only the extent to which it mutes the response to
taxation on average. The variance is smallest when consumers are homogeneous, which corresponds to d in
(16), and it is largest when all consumers either have θ = θ̄ or θ = 0, which corresponds to d̄ in (17).

A.2 Income Effects

To generate results for income effects in the presence of bias heterogeneity, we will temporarily focus on
a continuous demand model, as modeling large income effects in a discrete choice model is a somewhat
awkward an not a standard analysis even the standard model of full tax salience. We consider with utility
functions Uω(x, y) = uω(x) + vω(y), where ω ∈ Ω. Individuals choose xto maximize U(x, Z − (p + θt)x).
Our definition of θ here is analogous to the definition of θ for the binary demand model: it is the amount
by which a person underreacts to the tax. Again, θ has an immediate choice-based interpretation. If
x∗i (p, t) is an individual’s choice of x given a tax t and a price p, and if q∗(t) is the value of p for which
x∗i (q

∗, 0) = x∗i (p, t), then θi(p, t) = (q∗(t) − p)/t. It is straightforward to see that θi =
(
dx∗i
dt

)
/
(
dx∗i
dp

)
.

Analogously, we can define, as in CLK, a “compensated θ” as a ratio of compensated demand elasticities:
θci =

(
dx∗i
dt + x∗i

dx∗i
dZ

)
/
(
dx∗i
dp + x∗i

dx∗i
dZ

)
. CLK show that

EBi(t) ≈ −
1

2
t2θci

(
dx∗i
dt

+ x
dx∗i
dZ

)
Assuming for simplicity that θci is not correlated with the compensated demand response dx∗i

dp +
dx∗i
dZ (which

occurs, for example, if the true utility function is the same for all consumers), we have that

EB(t) ≈ −1

2
t2
(
E[θci |p, t]2 + V ar[θci |p, t]

)
εcp

D

p+ t
(18)

More generally, the formula in (18) will include an additional term given by − 1
2 t

2Cov
[
(θci )

2
,
dx∗i
dp + x

dx∗i
dZ

]
.

B A More General Framework for Optimal Taxes

B.1 Welfare and Optimal Tax Formulas

We now suppose that while a consumer’s perceived value from the good x is v, the actual social value from
the consumer getting the good is v − γ. The wedge γ represents either externalities or internalities. For
example, γ could correspond to consumers misperceiving the price of the good. We make several simplifying
assumptions. First, we assume that we can partition consumers into θ types j = 1, . . . J such that type j
consumers reacts to a tax t as if it was θ(t)t. Second, we assume that γ is independently distributed of v
and θ.

The policymaker’s objective function is to maximize

W (t) =

ˆ
[y − (p+ t)1x + (v − b)1x] + λtD

We now characterize optimal taxes in this more general model.

Proposition 8. Normalize p = 1, and define γ̄ := E[γ], a(t) := E[θ|t] and b(t) := E[θ2|t] = E[θ|t]2 +

V ar[θ|t]. Then
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1. W ′(t) = (λ− 1)D + [(λ− 1)t− γ̄]Dt + b(t)+b′(t)t
a(t)+a′(t)t tDp

2. The optimal tax t is implicitly defined by

t = − (λ− 1)(a(t) + a′(t)t)D − γ̄(a(t) + a′(t))Dt

(λ− 1)(a(t) + a′(t)t)Dt + (b(t) + b′(t)t)Dt

(λ− 1)(a(t) + a′(t)t) + γ̄(a(t) + a′(t)t)εD,t
(λ− 1)(a(t) + a′(t)t)εD,t + (b(t) + b′(t)t)εD,t − (λ− 1)(a(t) + a′(t))

The general formula in part 1 of Proposition 8, which is an analogue of the kinds of general results derived
in Farhi and Gabaix (2015) for continuous demand, is a more general manifestation of the forces discussed
in our excess burden analysis in Section 2. Keeping in mind that a(t) := E[θ|t] and b(t) := E[θ2|t] =

E[θ|t]2 + V ar[θ|t], the formula shows that there are four key statistics: the mean, the variance, and how
both of those change with respect to the tax. The frictions γ̄ enter into the formula additively. The higher
is γ̄, the higher is the optimal tax t, and thus the larger the impact that the variance component of b(t) has
on welfare.

Part 2 of the proposition partially solves for the optimal tax to present formulas generalizing the usual
“inverse elasticity” result from Ramsey taxation. To obtain intuition for the main result, we first focus on
a simple case in which γ̄ = 0 and optimal taxes are not large. In this case, the optimal tax formula simply
trades off the deadweight loss computed in Proposition 1 with the revenue gain (net of the mechanical effect
on consumers’ incomes).

Corollary 3. When λ is close to 1 and γ̄ = 0,

t

1 + t
=

(λ− 1)E[θ|t]
(E[θ|t]2 + V ar[θ|t]) εD,t

t ≈ (λ− 1)E[θ|t]
(E[θ|t]2 + V ar[θ|t]) εD,t

Just as Proposition 1 shows that the deadweight loss is increasing in both the mean and the variance of
θ, Corollary 3 shows that the size of the optimal tax is decreasing in both the mean and the variance of θ.

In the presence of other (small) frictions, the tax must be adjusted to offset the other internalities and/or
externalities captured by γ̄. The extent to which the tax is adjusted depends on both average θ and on the
variance. The lower is the average θ, the more the tax needs to be adjusted, as reflected by the E[θ|t] term
in the numerator and the E[θ|t]2 in the denominator. On the other hand, the higher is the variance in θ,
the greater the misallocation form increasing the tax, and thus the lower is the optimal tax.

Corollary 4. When λ is close to 1 and F (θ|t) does not depend on t,

t ≈ (λ− 1)E[θ|t]
(E[θ|t]2 + V ar[θ|t]) εD,t

+ γ̄
E[θ|t]

(E[θ|t]2 + V ar[θ|t])

As a last special case for obtaining intuition, we focus on the case in which V ar[θ|t] = 0 for all t.

Corollary 5. Suppose that V ar[θ|t] = 0 . Then

t =
λ− 1 + γ̄εD,t

(λ− 1)(εD,t − 1) + E[θ|t]εD,t
(19)
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and when γ̄ = 0,

t

1 + t
=

λ− 1

(λ− (1− E[θ|t]))εD,t
(20)

In this last special case, equation (20) provides a simple analog to the standard inverse elasticity rule of
Ramsey taxation, showing that the rule is simply modified by the bias term (1− E[θ|t]).

B.2 Implications for Ramsey Taxation

The formulas derived so far are immediately transferable to the canonical Ramsey taxation models. In
particular, let y be untaxed leisure, and let x1, . . . xK be the possible products consumers can purchase, and
that, for simplicity, utility is separable in the consumption of these goods. Suppose that the government
sets taxes t1, . . . tK on the k goods to meet a revenue target R. In this case, the value of public funds λ is
determined endogenously. Set τi = ti/pi to be the tax rate.

In the standard Ramsey model, the taxes are determined by the inverse elasticity rule

τi/(1 + τi)

τj/(1 + τj)
=
εDj ,tj
εDi,ti

What are the implications of tax salience? For simple intuition, suppose first that V ar[θ|t] = 0 and that
γ̄ = 0. Suppose, moreover, that θ depends only on the size of the tax, so that with uniform taxes tk, it would
be identical for across the K goods. In this case, equation (20) implies that

τi/(1 + τi)

τj/(1 + τj)
=
εDj ,tj
εDi,ti

· λ− (1− E[θ|pj , τj ])
λ− (1− E[θ|pj,τj ])

.

A key implication here is that if E[θ|p, τ ] does not depend on p or τ , then the standard inverse elasticity
rule continues to hold, and thus with a fixed revenue requirement R, taxes are identical to what they are in
the standard model. Matters are different, however, if θ is endogenous to the tax. In particular, if E[θ|p, τ ]

is increasing in p and/or τ , then the inverse elasticity rule becomes dampened toward uniform taxation, as
consumers will be more attentive to higher taxes, and thus higher taxes generate relatively higher efficiency
costs. Additionally, if E[θ|p, τ ] is increasing in p (because taxes are higher on more expensive items keeping
the tax rate constant), then tax rates should be lower on more expensive products. More generally, the
inverse elasticity rule is modified by how both the mean and the variance change with respect to the tax.

B.3 Salient vs. Not-Fully Salient Sales Taxes

We now consider how inattention to taxes impacts the highest attainable welfare. Building on Farhi and
Gabaix (2015), we compare welfare under the not-fully salient tax t to welfare under a fully salient tax s.

Proposition 9. 1. Suppose that λ > 1, that γ̄ ≥ 0, and that θ is homogeneous. Then the highest possible
welfare attainable with t is strictly higher than the highest welfare attainable with s.

2. Suppose that γ̄ > 0 and that θ is heterogeneous. For λ sufficiently close to 1, the highest possible
welfare attainable with s is strictly higher than the highest possible welfare attainable with t.

The intuition is as follows. When γ̄ = 0 so that the purpose of taxes is to only raise revenue, less salient
taxes are better because they can raise revenue in a less distortionary way. On the other hand, when γ̄ = 1
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and λ = 1, fully salient taxes can achieve the first best, while not-fully-salient taxes cannot because different
consumers will react to taxes differently.

B.3.1 An Example

Suppose that a fraction ρ have θ = 1 and the rest have θ = 0. Suppose also that θ is independent of v.
Finally, suppose that the distribution of v is uniform in the range of taxes considered, so that the demand
curve is linear in the range of taxes considered. Letting m denote the slope of the demand curve with respect
to p, we now have that

t∗ = − (λ− 1)D − γ̄ρm
(λ− 1)ρm+ ρm

Now W ′(t) = (λ− 1)D + ρ(λ− 1)tm− γ̄ρm+ ρtm = (λ− 1)D + ρλmt− γ̄m. Thus

W (t∗)−W (0) =

ˆ
[(λ− 1)(D0 + ρmt) + ρλmt− γ̄ρm]

=

ˆ
[(λ− 1)D0 + (2λ− 1)ρmt− γ̄m]

= (λ− 1)D0t
∗ +

2λ− 1

2
ρm(t∗)2 − γ̄ρmt∗

By the envelope theorem, d
dρW (t∗) = 2λ−1

2 m(t∗)2 − γ̄mt∗, and is thus positive if and only if

γ̄ > (λ− 1/2)t∗

= (λ− 1/2)
−(λ− 1)D + γ̄ρm

(λ− 1)ρm+ ρm

From this it follows that d
dρW (t∗) > 0 if γ̄[(λ− 1)ρm+ ρm] > (λ− 1/2)(1− λ)D + γ̄(λ− 1/2)ρm or

γ̄ >
(2λ− 1)(1− λ)

ρm
. (21)

Equation (21) provides conditions under which welfare is increasing in ρ, the fraction of consumers with
θ = 1. When γ̄ is sufficiently large relative to λ − 1, it is better if more consumers are paying attention to
the tax, as that reduces the inefficiencies created from some consumers over-purchasing the x and others
under-purchasing it.

C Appendix to Section 4.3: Robustness to Selection on Subject

Comprehension

Let π ∈ {0, 1} denote whether the person passes the quiz question or not. Let η denote the characteristics
associated with passing. Continue letting Γ denote the vector or order dummies andX the vector of covariates
of θ.
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Proposition 10. 1. Assume that for both the standard and triple tax arms (C=1x or C=3x), E[yik|π =

1, C,Γ, X] = E[yik|π = 1, C,Γ]. Then for the standard and triple tax arms (C=1x or C=3x),

E[yik|π = 1, C,Γ, X] = E[yik|π = 1, C,Γ, θik = 0] + E
[
θ̃|π = 1, C,Γ, X

]
2. Assume A1 and set m(Γ, X) = E[yik|π = 1,C=0x,Γ,X]. Then for C=1x or C=3x,

E[yik|π = 1,C,Γ, X]−m(Γ, X)

τi
= E[θ̃|π = 1,C, X]

3. Assume that Pr(π = 1|η,C=3x) ≤ Pr(π = 1|η,C=1x) ∀ η. Then

ˆ
E[θ̃|η, π = 1,C=3x, X]dF (η|π = 1,C=1x, X)−

ˆ
E[θ̃|η, π = 1,C=1x, X]dF (η|π = 1,C=1x, X)

≥Pr(π = 1|C=3x)
Pr(π = 1|C=1x)

E[θ̃|π = 1,C=3x, X]− E[θ̃|π = 1,C=1x, X] (22)

Part 1 of the proposition shows that when order effects do not interact with the θ covariates X, no
further assumptions are necessary to study how θ changes with some vector of covariates X. For example,
no assumptions are necessary to measure the averages differences in θ across the self-sorting survey questions.
Of course, our estimates are for the subgroup generated by π = 1 in condition C=1x or 3x. This is analogous
to the local average treatment effect in an IV regression.

Part 2 of the proposition says that under assumption A1, selection on quiz questions does not confound
questions about the average value of θ conditional on covariates X and an experimental condition C. In
particular, our analysis of individual differences is not confounded by differential pass rates between the no
tax and tax arms. Roughly, A1 holds when 1) Characteristics η associated with passing do not interact
with order effects and 2) conditional on characteristics, different experimental conditions do not generate
differences in order effects. Again, the estimates are for the subgroups generated by π = 1 in condition C=1x
or 3x, rather than for the full group of study participants taking part in the experiment.

Both parts 1 and 2 of the proposition derive results for average θ conditional on an experimental condition.
Part 3 of the proposition—which is a slight extension of the approach taken by Jones and Mahajan (2015)
and Behaghel et al. (2009) to bound treatment effects in experiments with attrition—deals with the question
of how to compare average θ across conditions. Here, we use an additional monotonicity condition to derive a
lower bound for the difference in average θ between conditions C=3x and C=1x. In essence, the monotonicity
condition states that

Intuitively, the “worst case scenario” for the lower bound is when the study participants who pass in
condition C=1x but not in condition C=3x have θ = 0. The lower bound corresponds to this scenario, in
which case E[θ|π = 1,C=3x,X] must be deflated by the ratio Pr(π=1|C=3x)

Pr(π=1|C=1x) to derive the treatment effect
of higher taxes for the types of study participants who pass in condition 1x. Again, the treatment effect
here is the average treatment effect on the types of study participants who pass in condition C=1x in the
experiment, rather than the average treatment effect on all types in the experiment. We implement this
approach in Section 4.4.
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Implementation:

To implement the lower-bound estimate (22), we estimate three moment conditions: The first two are the
moment conditions (5) and (6) for study participants who pass the comprehension questions—these give us
estimates of E[θ|π = 1,C=3x] and E[θ|π = 1,C=1x]. The third moment condition employs the full sample
to estimate Pr(π=1|C=3x)

Pr(π=1|C=1x) . We use these estimate to derive the lower-bound (22), and we use the delta method
to obtain standard errors.

D Proofs of Propositions

We introduce one new piece of notation for the proofs. We let ẼB(t, F̃ ) denote the excess burden of a tax
t, given a distribution F (θ, v) that does not depend on the tax. Thus ẼB is defined as a function of the tax
t and an exogenous distribution of F̃ .

Proof of Proposition 1 Follows from Proposition 2.

Proof of Proposition 2 Set F̃ (θ, v) = F (θ, v|t), and note that by definition, EB(t) = ẼB(t, F̃ ). Let
p0 be the initial price and let p1 be the final price set by producers. Let x∗1 be the equilibrium quantity after
the tax change, and let x∗0 be the equilibrium quantity before the tax change. The formula for excess burden
is given by

ẼB(t, F̃ ) =

Equivalent variation in wealth for consumers︷ ︸︸ ︷[ˆ
v≥p0

(v − p0)dF̃ −
ˆ
v≥p1+θt

(v − p1 − t)dF̃
]
−

Change in government revenue︷ ︸︸ ︷ˆ
v≥p1+θt

tdF̃

+

Change in producer profits︷ ︸︸ ︷
(p0x

∗
0 − C(x∗0))− (p1x

∗
1 − C(x∗1))

=

ˆ
v≥p0

(v − p0)dF̃ −
ˆ
v≥p1+θt

(v − p1)dF̃ + (p0x
∗
0 − C(x∗0))− (p1x

∗
1 − C(x∗1))

Now by the multidimensional Leibniz rule,
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d

dt

ˆ
v≥p1+θt

(v − p1 − t)dF̃ = −
ˆ [

(θt)
d

dt
(θt+ p1)

]
dF̃ (θ, v|v = p1 + θt)

+

ˆ
v≥p1+θt

(
−dp1

dt

)
dF̃

= −
ˆ

(θt)

(
θ +

dp1

dt

)
dF̃ (θ, v|v = p1 + θt)

+

ˆ
v≥p1+θt

(
−dp1

dt

)
dF̃

= − tEF̃

[
θ2 + θ

dp1

dt
|v = p1 + θt

]ˆ
dF̃ (θ, v|v = p1 + θt)− x∗1

dp1

dt

= −tEF̃ [θ]E

[
θ +

dp1

dt
|v = p1 + θt

] ˆ
dF̃ (θ, v|v = p1 + θt)

− tV arF̃ [θ|v = p1 + θt]

ˆ
dF̃ (θ, v|v = p1 + θt)− x∗1

dp1

dt

= tEF̃ [θ|p1, t]
d

dt
x∗1 + tV arF̃ [θ|p1, t]Dp(p1, t)− x∗1

dp1

dt
(23)

To arrive to the final equation in (23) from the preceding equation, we use the fact that

d

dt
x∗1 =

d

dt

ˆ
v≥p1+θt

dF̃

= −
ˆ

d

dt
(p1 + θt)dF̃ (θ, v|v = p1 + θt)

= −
ˆ (

θ +
d

dt
p1

)
dF̃ (θ, v|v = p1 + θt)

Next, the Envelope Theorem implies that

d

dt
(p1x

∗
1 − C(x∗1)) = x1

dp1

dt

Putting this together, we thus have that

d

dt
ẼB(t, F̃ ) = tEF̃ [θ|v = p1 + θt]

d

dt
x∗1 + tV arF̃ [θ|v = p1 + θt]Dp(p1, t) (24)

Assuming that E[θ|p1, t], V ar[θ|p1, t], D, and x∗1 are smooth, it follows that

d2

dt2
ẼB(t, F̃ ) = EF̃ [θ|v = p1 + θt]

d

dt
x∗1 + V arF̃ [θ|v = p1 + θt]Dp(p1, t) +O(t) (25)

where O(t) represents all terms of order t or higher (as t→ 0). A Taylor expansion thus implies that

EB(t) = ẼB(t, F̃ )− ẼB(0, F̃ ) = −1

2
t2
[
EF̃ [θ|v = p1 + θt]

d

dt
x∗1 + V arF̃ [θ|v = p1 + θt]Dp(p1, t)

]
+O(t3)

(26)
where O(t3) represents all terms of t3 or higher (as t→ 0).
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Proof of Proposition 3 Let F̃2(v, θ) = F (θ, v|t+ ∆t) and let F̃1(v, θ) = F (θ, v|t). Now

EB(t+ ∆t)− EB(t) = ẼB(t+ ∆t, F̃2)− ẼB(t, F̃2) + (ẼB(t, F̃2)− ẼB(t, F̃1)). (27)

By (24) and (25), it thus follows that

ẼB(t+ ∆t, F̃2)− ẼB(t, F̃2) = −t∆t
[
EF̃2

[θ|v = p+ θ(t+ ∆t)]Dp + V arF̃2
[θ|v = p+ θ(t+ ∆t)]Dp

]
− (∆t)2

2

[
EF̃2

[θ|v = p+ θ(t+ ∆t)]Dp + V arF̃2
[θ|v = p+ θ(t+ ∆t)]Dp

]
+O(t)O(∆t2)(28)

By (26), it follows that

ẼB(t, F̃2)− ẼB(t, F̃1) = −1

2
t2
(
EF̃2

[θ2|v = p+ θt]− EF̃1
[θ2|v = p+ θt]

)
+O(t3)

= −1

2
t2
(
EF̃2

[θ2|v = p+ θ(t+ ∆t)]− EF̃1
[θ2|v = p+ θt]

)
+O(t3) +O(∆t)O(t2)(29)

where the last line follows from the approximation − 1
2 tE

2
F̃2

(
[θ2|v = p+ θ(t+ ∆t]− EF̃2

[θ2|v = p+ θt]
)

=

O(∆t)O(t2). Inserting the expressions (28) and (29) into (27), and ignoring terms of order O(t3), O(t)O(∆t2),
O(∆t)O(t2) (by the assumption that t is small like ∆t), yields the result.

Proof of Proposition 4

W (t) =

ˆ
v<p+θt

gωZωdF̃ +

ˆ
v≥p+θt

gω(Zω − p− t+ v)dF +

ˆ
v≥p+θt

tλdF

Analogous to the strategy for excess burden, define W̃ (t, F̃ ) to be the welfare at a tax t given a distribution
F̃ (θ, v, ω) that does not depend on t. Let F̃ (θ, v, ω) = F (θ, v, ω|t) here. Then
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d

dt
W̃ =

ˆ
gω [θZω − θ(Zω + θt− t)] dF̃ (v, θ, ω|v = p+ θt)

−
ˆ
v≥p+θt

gωdF̃ − tλDt(p, t) + λD(p, t)

= t

ˆ
gωθ(1− θ)dF̃ (v, θ, ω|v = p+ θt)

−
ˆ
v≥p+θt

gωdF̃ − tλDt(p, t) + λD(p, t)

= −t
∑
ω

gωE[θ(1− θ)|p, t, ω]Dω
p (p, t)

−
ˆ
v≥p

gωdF̃ +

ˆ
p≤v≤p+θt

gωdF̃ + tλDt(p, t) + λD(p, t)

= −t
∑
ω

gωE[θ(1− θ)|p, t, ω]Dω
p (p, t)

−
∑
ω

gωD
ω(p, 0)− t

∑
ω

gωE[θ|p, t, ω]Dω
p (p, t) + tλDt(p, t) + λD(p, t)

= −
∑
ω

gωD
ω(p, 0)− t

∑
ω

gωE[2θ − θ2|p, t, ω]Dω
p (p, t) + tλDt(p, t) + λD(p, t)

= −ḡD(p, 0)− tCov[gω, 2θ − θ2]Dp − 2tḡDω
t + tḡE[θ2]Dp + tλDt + λD

= −ḡD + t(λ− ḡ)Dt + tḡE[θ2|p, t]Dp + λD − tCov[gω, 2θ − θ2]Dp

Thus

d2

dt2
W̃ = (λ− ḡ)Dt + (λ− ḡ)Dt + ḡE[θ2|p, t]Dp − Cov[gω, 2θ − θ2]Dp +O(t)

A second order Taylor expansion thus implies that

W (t)−W (0) = t(λ− ḡ)D(p, 0) +
t2

2
ḡ
(
E[θ|p, t]2 + V ar[θ|p, t]

)
Dp −

t2

2
Cov[gω, 2θ − θ2]Dp + t2(λ− ḡ)Dt +O(t3)

= t(λ− ḡ)D(p, t) +
t2

2
ḡ
(
E[θ|p, t]2 + V ar[θ|p, t]

)
Dp −

t2

2
Cov[gω, 2θ − θ2]Dp +

t2

2
(λ− ḡ)Dt +O(t3)

Proof of Proposition 5 Step 1. We first show that V ar[θ|p, τ ] ≥ V ar [φ|p, τ ], where φ = log(1+θτ)
τ . To

that end, note that d
dθφ = 1

(1+θτ) ≤ 1 for θ ≥ 0. Thus for any θ, θ′, |θ− θ′| ≥ |φ(θ)−φ(θ′)|. Thus for each θ′

(
θ′ −

ˆ
θdF (θ|p, t)

)2

=

(ˆ
(θ′ − θ)dF (θ|p, t)

)2

≥
(ˆ

(φ(θ′)− φ(θ))dF (θ|p, t)
)2

≥
(
φ(θ′)−

ˆ
φ(θ)dF (θ|p, t)

)2
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This immediately implies that E[V ar[θ|p, τ ]] ≥ E[V ar [φ(θ)|p, τ ]].
Step 2. For each consumer marginal at price p and tax τ , and with survey response R = r, define

θ̄(r, p, τ) = E[φ|r, p, τ ]. Note that for each pair (p, τ), the distribution of φ is a mean preserving spread of
the distribution of θ̄. Thus E [V ar [φ|p, τ ]] ≥ E[V ar[φ̄|p, τ ]].

Step 3. Suppose, first, that the distribution G of (p, τ) is differentiable, with a density function g. Let
µ(p, τ) = E[φ(θ)|p, τ ]. Then

E[V ar[θ̄|p, τ ]] =

ˆ [∑
r

Pr(R = r|p, τ)(θ̄(r, p, τ)− µ(p, τ))2

]
g(p, τ)dpdτ

∑
r

ˆ
Pr(R = r|p, τ)(θ̄(r, p, τ)− µ(r, p, τ))2g(p, τ)

The Cauchy-Schwarz inequality implies that

´
(g(p, t)1/2Pr(R = r|p, τ)1/2)2

´
(g(p, t)1/2Pr(R = r|p, τ)1/2)2(θ̄ − µ)2

≥
[´

(θ̄(r, p, τ)− µ(p, τ))g(p, τ)Pr(R = r|p, τ)
]2

= Pr(R = r)2(E[φ(θ)|R = r]− E[µ|R = r])2

This implies

ˆ
(g(p, t)Pr(R = r|p, τ)(θ̄ − µ)2 ≥ Pr(R = r)(E[φ(θ)|R = r]− E[µ|R = r])2

and thus

E[V ar[θ̄|p, τ ]] ≥
∑
r

Pr(R = r)2(E[φ(θ)|R = r]− E[µ|R = r])2. (30)

If the distribution of (p, τ) instead takes on only finitely many values, the bound (30) is established using
identical reasoning. This then also establishes the bound (30) for any distribution that is a mixture of a
differentiable and discrete distribution.

Proof of Proposition 6 With minor abuse of notation, we let θ(t) denote the (homogeneous) θ, as a
function of t.

Part 1. Note that θ = Dt/Dp. Now EB′(t) = (1− θ)tDt =

EB′(t) = (1− θ)tDt(p, t)

= [1−Dt(p, t)/Dp(p, t)]tDt(p, t)

Thus ifD(p, t′) is known for all values t′ ∈ [t, t+∆t], EB(t+∆)−EB(t) is identified by
´ t′=t+∆

t′=t
EB′(t′)dt′.

Part 2. We show that EB′(t) cannot be identified if D(p, t) is known only in a small neighborhood
around (p, t). Because EB′(t) = (1− θ(t))tDt(p, t), it is necessary to identify θ(t). Concretely, suppose that
we observe D in the neighborhood R+× [t1, t2], with t1 > 0. The data is rationalized if there exist functions
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ψ and θ(t) such that D(p, t) = ψ(p+θ(t)t) for all p and t ∈ [t1, t2]. Now consider one such pair of functions ψ
and θ. We show that these are not uniquely determined. This θ(t) is not uniquely determined. In particular,
consider θ̃(t) = θ(t)− εt1/t, and ψ̃(x) = ψ(x+ ε). But ψ(p+ θ(t)t) = ψ̃(p+ θ̃(t)t), and thus θ is not uniquely
identified by the data. In particular, note that while θ̃(t1) < θ(t2), it is also true that θ̃′(t) > θ′(t) for t > t1.
Intuitively, by making the slope of θ(t) steeper while making the base level lower, we are able to imitate the
demand response to the tax. Again, the core principle here is that Dt/Dp = θ(t) + θ′(t), and thus while the
sum of the level and slope is identified, these are not identified separately.

On the other hand, full knowledge of D is sufficient to identify θ(t) for each t. Simply let ∆p(t) be the
value for which D(p+ ∆p, 0) = D(p, t). Then θ(t) = ∆p/t.

Proof of Proposition 7 First, we show that every demand curveD(p, t) can be rationalized by assuming
that F (θ|v, t) is degenerate. In particular, consider a function ψ(p) such that ψ(p) = D(p, 0) for all p. Now
to derive our candidate θ, start with ν(p, t) satisfying ψ(p + ν(p, t)t) = D(p, t) for all p, t. By definition,
p+ θ(v(p, t), t)t = v(p, t) = p+ ν(p, t)t, which implicitly defines the θ(v, t) that, together with ψ, rationalizes
D(p, t). By definition, the valuation of a consumer marginal at (p, t) is given by v = p + ν(p, t)t. Thus the
data is rationalized by ψ and θ satisfying θ(ν(p, t)t+ p, t) = ν(p, t). In this case, EB′(t) = −(θt)Dt.

Alternatively rationalize D(p, t) by a distribution in which a consumer has θ = θ̄ with probability q(v, t),
and θ = 0 with probability 1− q(v, t). Set q̃(p, t) to satisfy q̃(p, t)D(p+ θ̄t, 0) + (1− q̃(p, t))D(p, 0) = D(p, t).
Note that because D(p, 0) ≥ D(p, t) ≥ (p + θ̄t, 0) by definition, q̃(p, t) ∈ [0, 1]. Now a consumer with θ = θ̄

is marginal at (p, t) if v = p + θ̄t. Thus q(v, t) rationalizes D(p, t) if q(p + θ̄t, t)D(p + θ̄t, 0) + (1 − q(p +

θ̄t, t))D(p, 0) = D(p, t). In this case EB′(t) = −θ̄tDt. Now by construction, ν(p, t) < θ̄, and thus EB′(t) is
higher in the case with heterogeneous θ.

Finally, to establish the bounds for t = 0 and ∆t → 0, note that EB(∆t) → − 1
2 t

2(E[θ|p, 0]2 +

V ar[θ|p, 0])Dp as ∆t → 0. Now E[θ|p, 0] is pinned down by Dt(p, 0)/Dp(p, 0). But the variance is highest
when all consumers are either θ = θ̄ or θ = 0.

E Additional Empirical Analyses and Robustness Checks

E.1 Further Tests of Module 2 Differences

Table A1: Testing for Module 2 differences by experimental arm

(1)
OLS

(2)
0.25 Quantile

(3)
0.5 Quantile

(4)
0.75 Quantile

1x Arm –0.09 –0.04 –0.02 –0.08
(0.10) (0.12) (0.08) (0.09)

3x Arm –0.03 –0.05 –0.03 0.22
(0.10) (0.12) (0.08) (0.16)

Adj. R2 60000 60000 60000 60000
* 0.1 ** 0.05 *** 0.01

Notes: This table tests for differences in module 2 willingness to pay for products by experimental arm.
Column 1 reports estimates from an OLS regression. Columns (2)-(4) report 0.25, 0.5, and 0.75 quantile
regressions. Cluster-robust standard errors (at the subject level) in parentheses. * p < 0.1, ** p < 0.05, ***
p < 0.01.
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E.2 Average θ by State Tax Rate

The main implication of the table below is that when we use only the naturally occurring variation in state
tax rates—as in columns (3) and (4) of the table—we do not have enough power to detect how θ̄ changes
with the size of the tax. Column (1) is essentially a replication of the endogenous attention result from
Table 2, with the only difference being that we present the result as an estimate of how θ̄ changes linearly
with the tax rate. The difference between column (1) and column (2) is that while column (1) uses only the
experimental arms as an instrument for differences in state tax rates, column (2) uses full variation in the
state tax rates. As can be seen, our results are robust across columns (1) and (2). It is only when we move
to columns (3) and (4), where we have significantly less variation in tax rates that we lose statistical power.

Table A2: Average θ by state tax rate

Model: θ̄ = α0 + α1τ

(1)
All data

(2)
All data

(3)
Standard

(4)
Triple

α0 0.14 0.18 0.33 0.37
(0.14) (0.11) (0.67) (0.26)

α1 1.53** 1.31*** –1.07 0.46
(0.61) (0.49) (8.69) (1.12)

Observations 58517 58517 40690 39397

Notes: Column (1) uses only the experimental variation between the standard- and triple-tax arms as an
instrument for tax size. Columns (2)-(4) use all available variation in taxes. Columns (1) and (2) use data
from all conditions, Column (3) produces estimates only for the standard tax arm (using data from no-tax
and standard-tax arms), Column (4) produces estimates for the triple tax arm (using data from no-tax and
standard-tax arms). All specifications condition on p2 ≥ 1. All specifications include order-effect dummies.
Cluster-robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

E.3 Within-Subject Estimation of Endogenous Attention

Let X1
ik denote whether p2 ∈ [5, 10) for consumer i’s kth product. Similarly, define X2

ik to be an indicator
for p2 ∈ [5, 10) for consumer i’s kth product. For θ̃ik = log(1+θikτi)

τi
, we model

E[θ̃ik |1p2∈[5,10), αp2≥101p2≥10] = αi + αp2∈[5,10)X
1
ik + αp2≥10X

2
ik

and

E[yik] = βΓik + b1X
1
ik + b2X

2
ik.

We set ¯̃
θi = 1

20

∑
k θ̃ik and similarly define ¯̄yi = 1

20

∑
k yik. From this, it follows that

E[
yik − ¯̄yi

1 + τi1tax
|X,Γ] =

βΓik − βΓi
1 + τi1tax

+ αp2∈[5,10)(X
1
ik −X1

i ) + αp2≥10(X2
ik −X2

i ) (31)

To estimate the parameters, we proceed as before with method of moments, replacing the theoretical moment
in (31) with the empirical moment. Note that equation (31) does not contain any of the terms αi, and

65



simply identifies the terms αp2∈[5,10) and αp2≥10 using only within-consumer variation. This is analogous to
estimating a linear fixed-effects model with the standard demeaning fixed-effects estimator.

E.4 Further Details for the Lower-Bound Estimation

For concreteness, we construct the estimator for the standard tax arm. The estimator for the triple tax arm
is analogous.

We estimate PR(R = r) by ̂Pr(R = r) := 1
N

∑
1Ri=r, where N is the number of participants in the

standard tax arm, and 1Ri=r is an indicator that consumer i’s response was r. We estimate θ̄r by

̂̄θr =
1

Nr

∑
i,k

[
yik − β̂Γik

τi
|Ri = r

]
.

where Nr is the number of consumer-product pairs associated with Ri = r, and β̂ is identified from the no
tax arm. Concretely, β̂ is constructed as the OLS estimate from E[yik|Γik] = βΓik in the no-tax arm of the
experiment.

We estimate E[yik|C = 0x,p× τ ], the average order effect in the no tax arm, by

m(p× τ ) :=
1

|p× τ |no tax

∑
(pik1 ,τi)∈p×τ

yik1no tax

where |p×τ |no tax is the number of observations (p1, τ) in the interval p×τ in the no tax arm. We estimate
µ̃ by

˜̂µ(p1, τ) :=
1

|p(p1)× τ (τ)|
∑

(pik1 ,τi)∈p×τ

yik −m(p× τ )

τi
(32)

Clearly, ˜̂µ(p1, τ) is an unbiased estimate of E
[
yik−E[yik|C=0x,p(p1),τ (τ)]

τi
|p(p1), τ (τ)

]
. We now end by showing

that this is an unbiased estimate of µ̃. To see this, note that assumption A2 implies that in the standard
tax arm,

E [yik|θik, Rj ,p, τ ] = E[yik|C = 0x,p, τ ] + E[log(1 + θikτi)|p, τ ]

from which the conclusion follows by rearrangement.
Finally, to estimate E[µ|R = r], we simply take the average of ̂̃µik over all observations associated with

R = r in the standard tax arm. We will call this ̂E[µ|R = r]. Our estimate of the variance bound is now

∑
r∈{L,M,H}

̂Pr(R = r)
( ̂̄θr − ̂E[µik|R = r]

)2

(33)

By construction, our estimates of Pr(R = r),θ̄r, and µ̃ are all unbiased. Note, however, that (33) is not an
unbiased estimate of the lower bound because any residual noise terms in our estimates of the moments are
squared and then averaged. We estimate this mean bias with the same bootstrap procedure that we use to
compute the standard errors.
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E.5 Robustness of Individual Differences Results to the Inclusion of other De-
mographics

We now replicate Table 4, controlling for other demographic covariates. The demographic variables we
include are age, gender, marital status, education (college degree or higher), household size, and ethnicity.
We calculate effects for both the triple tax arm and the pooled conditions. The only demographic that
appears to relate robustly to θ is age, with older consumers significantly less likely to pay attention to taxes
than younger consumers.

Table A3: Average θ by income, ability to compute taxes correctly, and financial sophistication,
controlling for demographics

(1) (2) (3) (4)
Correct 0.263*** 0.239**

(0.092) (0.093)
Sophisticated 0.255*** 0.199**

(0.089) (0.090)
Quartile 2 0.039 0.015

(0.114) (0.114)
Quartile 3 0.193 0.137

(0.120) (0.120)
Quartile 4 0.294** 0.231*

(0.133) (0.133)
Age –0.008** –0.008** –0.007** –0.009***

(0.003) (0.003) (0.003) (0.003)
Male 0.005 –0.042 –0.010 –0.050

(0.086) (0.086) (0.084) (0.085)
Household size 0.025 0.024 0.005 0.014

(0.030) (0.029) (0.030) (0.031)
Married –0.187** –0.191** –0.124 –0.139

(0.093) (0.092) (0.097) (0.097)
College or higher 0.100 0.056 0.068 0.002

(0.085) (0.091) (0.091) (0.095)
Asian –0.046 –0.077 –0.099 –0.060

(0.247) (0.252) (0.244) (0.249)
Caucasian –0.007 –0.003 –0.007 0.008

(0.146) (0.144) (0.146) (0.143)
Hispanic –0.259 –0.232 –0.315 –0.219

(0.262) (0.259) (0.255) (0.253)
African American –0.056 –0.017 –0.031 0.033

(0.193) (0.191) (0.193) (0.190)
Observations 53181 53615 53615 53181

Notes: This table replicates Table 4, controlling for other demographic covariates.
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E.6 Distribution of Self-Classifying Survey Question Responses

Table A4: Distribution of self-classifying survey responses

Standard Triple
“Yes” 0.06 0.11
“Maybe a little” 0.56 0.56
“No” 0.38 0.32

Ranksum z = 3.80, p < 0.001

Notes: This table summarizes the responses of participants in the standard and triple tax arm to the question
of whether they would buy at higher tag prices if there was no tax in the first module. The answers are
“Yes” (R = H), “Maybe a little” (R = M), or “No” (R = L). The first column summarizes responses in the
standard tax arm and the second column summarizes responses in the triple tax arm.

E.7 Individual Differences Results by Experimental Arm

Table A5: Average θ by income, ability to compute taxes correctly, and financial sophistication, by
experimental arm

(1)
Triple

(2)
Standard

(3)
Triple

(4)
Standard

(5)
Triple

(6)
Standard

(7)
Triple

(8)
Standard

Compute tax correctly 0.219** 0.181 0.170* 0.139
(0.088) (0.216) (0.088) (0.216)

Financially sophisticated 0.240*** 0.321* 0.159* 0.302
(0.078) (0.190) (0.081) (0.199)

Inc. quartile 2 0.042 0.013 0.020 –0.037
(0.109) (0.259) (0.110) (0.262)

Inc. quartile 3 0.238** 0.282 0.181 0.208
(0.113) (0.278) (0.114) (0.280)

Inc. quartile 4 0.350*** 0.133 0.281** 0.016
(0.112) (0.252) (0.116) (0.264)

Std. tax cons. 0.132 0.088 0.144 –0.038
(0.184) (0.130) (0.177) (0.238)

Trile tax cons. 0.317*** 0.358*** 0.317*** 0.156
(0.074) (0.052) (0.080) (0.103)

Observations 39121 40255 39397 40690 39397 40690 39121 40255

Notes: This table replicates Table 4, but breaking down the results by experimental arm.

E.8 Graphical Summary of Beliefs About Tax Rates

Figure 8 provides a graphical summary of how beliefs about tax rates vary with actual tax rates. The figure
is constructed by partitioning the actual tax rates faced by our consumers into 25 quantiles, and plotting the
mean perceived belief corresponding to each quantile against the average of actual tax rates in that quantile.
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Figure 8: Perceived vs. actual tax sales tax rates
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Notes: This figure plots perceived vs. actual sales tax rates. To construct the figure, we first divide
the actual tax rates of our 3000 consumers into 25 quantiles. We then plot the average belief vs.
the average actual tax rate for each of the quantiles.
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E.9 Replication of Main Results Without Excluding study participants Failing
Comprehension Questions

Table A6: Replication of Table 2: method of moments estimates of average θ by condition

(1)
All

(2)
p2 ≥ 1

(3)
p2 ≥ 5

Std. tax avg. θ 0.073 0.114 0.147*
(0.108) (0.086) (0.085)

Triple tax avg. θ 0.279*** 0.294*** 0.376***
(0.040) (0.032) (0.033)

Observations 84480 82028 44918

Notes: Column (1) uses all data, Column (2) conditions on p2 ≥ 1, Column (3) conditions on p2 ≥ 5.
Cluster-robust standard errors in parentheses. All specifications include order-effect dummies. * p < 0.1, **
p < 0.05, *** p < 0.01.

Table A7: Replication of Table 3: Average θ for different ranges of module 2 price p2

(1)
Standard

(2)
Triple

(3)
Pooled

High p2 bin 0.145 0.191*** 0.197***
(0.168) (0.063) (0.063)

Middle p2 bin –0.016 0.135*** 0.142***
(0.132) (0.047) (0.046)

Std. tax cons. 0.131 0.044
(0.126) (0.087)

Triple tax cons. 0.224*** 0.217***
(0.045) (0.045)

Observations 54522 54987 82028

Notes: This table replicates columns (1)-(3) of Table 3. Column (1) provides estimates for the standard tax
arm, Column (2) provides estimates for the triple tax arm, and Column (3) provides estimates for the pooled
data. For column (3) we include two-sets of moment equations for each arm, and we use the two-step GMM
estimator to construct the weighting matrix since the model is overidentified in this case. Cluster-robust
standard errors (at the subject level) in parentheses. All specifications include order-effect dummies and
condition on p2 ≥ 1. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A8: Replication of table 4: Average θ by ability to correctly compute tax, financial sophisti-
cation, and household income quartiles

(1) (2) (3) (4)
Compute tax correctly 0.218** 0.168*

(0.087) (0.088)
Financially sophisticated 0.243*** 0.160**

(0.078) (0.081)
Inc. quartile 2 0.038 0.013

(0.109) (0.110)
Inc. quartile 3 0.234** 0.180

(0.113) (0.114)
Inc. quartile 4 0.338*** 0.272**

(0.111) (0.115)
Std. tax cons. 0.105 0.124 0.091 –0.068

(0.115) (0.102) (0.115) (0.133)
Triple tax cons. 0.318*** 0.358*** 0.320*** 0.161

(0.074) (0.052) (0.080) (0.103)
Observations 58005 58517 58517 58005

Notes: This table shows how average θ varies by ability to compute tax, financial literacy, and income
quartiles. Data is pooled from both the standard and triple tax conditions.

Column (1) estimates a model with only only computational ability as a covariate; column (2) estimates a
model with only financial literacy as a covariate; column (3) estimates a model with only income quartiles
as covariates; and column (4) estimates a model with all of three types of covariates.

Because we are using the pooled data, we include two-sets of moment equations for each arm, and we use
the two-step GMM estimator to approximate the efficient weighting matrix for the over-identified model.
Cluster-robust standard errors (at the subject level) in parentheses. All specifications include order-effect
dummies and condition on module 2 price (p2) being greater than 1. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A9: Replication of Table 5: Predictiveness of self-classifying survey responses

(1)
C=0x,1x

(2)
C=0x,3x

“Yes” average θ 0.621*** 0.627***
(0.229) (0.081)

“A little” average θ 0.297*** 0.412***
(0.097) (0.040)

“No” average θ –0.241* –0.025
(0.126) (0.045)

Observations 54522 54987

Notes: Column (1) provides estimates for the standard tax arm, Column (2) provides estimates for the triple
tax arm. Cluster-robust standard errors (at the subject level) in parentheses. All specifications include
order-effect dummies and condition on p2 ≥ 1. * p < 0.1, ** p < 0.05, *** p < 0.01.
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E.10 Replication of Main Results with OLS Regressions

Table A10: Replication of Table 2: Estimates of θ by experimental arm

Dependent variable: yik = log(pik2 )− log(pik1 )

(1)
All

(2)
p2 ≥ 1

(3)
p2 ≥ 5

Tax × standard 0.258** 0.254*** 0.203**
(0.105) (0.088) (0.082)

Tax × triple 0.488*** 0.479*** 0.532***
(0.043) (0.038) (0.039)

Observations 60000 58517 32816

Notes: Dependent variable is yik = log(pik2 )− log(pik1 ). Column (1) uses all data, Column (2) conditions on
p2 ≥ 1, Column (3) conditions on p2 ≥ 5. Cluster-robust standard errors in parentheses. All specifications
include order-effect dummies. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A11: Replication of Table 3: Average θ for different ranges of module 2 price p2

Dependent variable: yik = log(pik2 )− log(pik1 )

(1)
Standard

(2)
Triple

(3)
Pooled

Tax × high bin 0.053 0.136* 0.134*
(0.164) (0.070) (0.071)

Tax × middle bin –0.128 0.103** 0.110**
(0.133) (0.051) (0.051)

Tax × standard arm 0.288** 0.179*
(0.133) (0.093)

Tax × triple arm 0.414*** 0.411***
(0.052) (0.051)

Observations 40690 39397 58517

Notes: This table replicates columns (1)-(3) of Table 3. Dependent variable is yik = log(pik2 ) − log(pik1 ).
Column (1) provides estimates for the standard tax arm, Column (2) provides estimates for the triple tax
arm, and Column (3) provides estimates for the pooled data. Cluster-robust standard errors (at the subject
level) in parentheses. All specifications include order-effect dummies and condition on p2 ≥ 1. * p < 0.1, **
p < 0.05, *** p < 0.01.
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Table A12: Replication of Table 4:Average θ by ability to correctly compute tax, financial sophisti-
cation, and household income quartiles

Dependent variable: yik = log(pik2 )− log(pik1 )

(1) (2) (3) (4)
Tax × Quartile 2 0.039 0.029

(0.109) (0.111)
Tax × Quartile 3 0.272** 0.242**

(0.113) (0.115)
Tax × Quartile 4 0.442*** 0.409***

(0.110) (0.114)
Compute tax correctly –0.009 –0.010

(0.009) (0.009)
Financial literacy 0.004 0.008

(0.008) (0.008)
Tax × standard 0.117 0.162* 0.061 –0.069

(0.110) (0.096) (0.112) (0.132)
Tax × triple 0.330*** 0.393*** 0.289*** 0.153

(0.075) (0.053) (0.082) (0.107)
Observations 58005 58517 58517 58005

Notes: Dependent variable is yik = log(pik2 )− log(pik1 ). Cluster-robust standard errors (at the subject level)
in parentheses. All specifications include order-effect dummies and condition module 2 price (p2) being
greater than or equal to 1. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A13: Replication of Table 5: Predictiveness of self-classifying survey responses

Dependent variable: yik = log(pik2 )− log(pik1 )

(1)
Standard

(2)
Triple

Tax × R = H 1.068*** 0.922***
(0.281) (0.096)

Tax × R = M 0.438*** 0.627***
(0.104) (0.047)

Tax × R = L –0.181 0.047
(0.123) (0.052)

Observations 40690 39397

Notes: Dependent variable is yik = log(pik2 )− log(pik1 ). Column (1) provides estimates for the standard tax
arm, Column (2) provides estimates for the triple tax arm. Cluster-robust standard errors (at the subject
level) in parentheses. All specifications include order-effect dummies and condition on p2 ≥ 1. * p < 0.1, **
p < 0.05, *** p < 0.01.
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E.11 Replication of Main Results Excluding study participants not understand-
ing the BDM Mechanism

Table A14: Replication of Table 2: method of moments estimates of θ̄ by condition

(1)
All

(2)
p2 ≥ 1

(3)
p2 ≥ 5

Std. tax avg. θ 0.283** 0.276*** 0.263***
(0.126) (0.103) (0.094)

Triple tax avg. θ 0.525*** 0.512*** 0.595***
(0.052) (0.044) (0.046)

Observations 46580 45411 25664

Notes: Column (1) uses all data, Column (2) conditions on p2 ≥ 1, Column (3) conditions on p2 ≥ 5.
Cluster-robust standard errors in parentheses. All specifications include order-effect dummies. * p < 0.1, **
p < 0.05, *** p < 0.01.

Table A15: Replication of Table 3: Average θ for different ranges of module 2 price p2

Model: θ̄ = α0 + αp2∈[5,10)1p2∈[5,10) + αp2≥101p2≥10

(1)
Standard

(2)
Triple

(3)
Pooled

High p2 bin 0.251 0.230*** 0.257***
(0.206) (0.083) (0.082)

Middle p2 bin –0.154 0.157** 0.173***
(0.155) (0.061) (0.061)

Std. tax cons. 0.299* 0.104
(0.158) (0.105)

Triple tax cons. 0.409*** 0.392***
(0.061) (0.060)

Observations 31358 30382 45411

Notes: This table replicates columns (1)-(3) of Table 3. Column (1) provides estimates for the standard tax
arm, Column (2) provides estimates for the triple tax arm, and Column (3) provides estimates for the pooled
data. For column (3) we include two-sets of moment equations for each arm, and we use the two-step GMM
estimator to construct the weighting matrix since the model is overidentified in this case. Cluster-robust
standard errors (at the subject level) in parentheses. All specifications include order-effect dummies and
condition on p2 ≥ 1. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A16: Replication of Table 4:Average θ by ability to correctly compute tax, financial sophisti-
cation, and household income quartiles

(1) (2) (3) (4)
Compute tax correctly 0.222** 0.172*

(0.098) (0.098)
Financially sophisticated 0.243*** 0.165*

(0.088) (0.091)
Inc. quartile 2 0.080 0.056

(0.124) (0.126)
Inc. quartile 3 0.292** 0.231*

(0.130) (0.132)
Inc. quartile 4 0.394*** 0.328**

(0.126) (0.130)
Std. tax cons. 0.120 0.145 0.074 –0.096

(0.127) (0.113) (0.129) (0.149)
Triple tax cons. 0.347*** 0.390*** 0.313*** 0.141

(0.084) (0.060) (0.093) (0.118)
Observations 45074 45411 45411 45074

Notes: This table shows how average θ varies by ability to compute tax, financial literacy, and income
quartiles. Data is pooled from both the standard and triple tax conditions.

Column (1) estimates a model with only only computational ability as a covariate; column (2) estimates a
model with only financial literacy as a covariate; column (3) estimates a model with only income quartiles
as covariates; and column (4) estimates a model with all of three types of covariates.

Because we are using the pooled data, we include two-sets of moment equations for each arm, and we use
the two-step GMM estimator to approximate the efficient weighting matrix for the over-identified model.
Cluster-robust standard errors (at the subject level) in parentheses. All specifications include order-effect
dummies and condition on module 2 price (p2) being greater than 1. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A17: Replication of Table 5: Predictiveness of self-classifying survey responses

(1)
C=0x,1x

(2)
C=0x,3x

“Yes” avg. θ 0.843*** 0.984***
(0.298) (0.113)

“A little” avg. θ 0.575*** 0.660***
(0.127) (0.054)

“No” avg. θ –0.219* 0.066
(0.131) (0.064)

Observations 31358 30382

Notes: Column (1) provides estimates for the standard tax arm, Column (2) provides estimates for the triple
tax arm. Cluster-robust standard errors (at the subject level) in parentheses. All specifications include
order-effect dummies and condition on p2 ≥ 1. * p < 0.1, ** p < 0.05, *** p < 0.01.
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F Financial Literacy Questions

Suppose you had $100 in a savings account and the interest rate was 2 percent per year. After 5 years, how
much do you think you would have in the account if you left the money to grow? a) More than $102 b)
Exactly $102 c) Less than $102 d) Do not know

Imagine that the interest rate on your savings account was 1 percent per year and inflation was 2 percent
per year. After 1 year, would you be able to buy more than, exactly the same as, or less than today with the
money in this account? a) More than today b) Exactly the same as today c) Less than today d) Do not know

Do you think that the following statement is true or false? “Buying a single company stock usually
provides a safer return than a stock mutual fund.” a) True b) False c) Do not know

G Items Used in the Study

Product Amazon.com
price (as of
Feb 2015)

Amazon.com Product Description

RainStoppers 68-Inch
Oversize Windproof Golf
Umbrella

$12.61 This RainStoppers 68" oversize golf umbrella is large enough to

cover three or more people. Umbrella frame constructed with

fiberglass shaft and ribs for maximum stability. Canopy is made of

190T Nylon fabric. Complete with a foam non slip handle.

Matching sleeve included. Length when closed is 43".

Energizer AA Batteries max
Alkaline 20-Pack

$11.15 energizer AA max alkaline batteries 20 pack super fresh, Expiration

Date: 2024 or better. Packed in original Energizer small box 4

batteries per box x 5 boxes total 20 batteries.

Glad OdorShield Tall Kitchen
Drawstring Trash Bags, Fresh
Clean, 13 Gallon, 80 Count

$12.79 Glad OdorShield Tall Kitchen Drawstring Trash Bags backed by

the power of Febreze are tough, reliable trash bags that neutralize

strong and offensive odors for lasting freshness. These durable bags

are great for use in the kitchen, home office, garage, and laundry

room.

Admiral Blue 100% Cotton
Bath Towel - 27 x 52 Inches

$14.99 There isn’t much that’s better than stepping out of a refreshing

shower and wrapping yourself in the soft, Luxury Bath Towels.

Now you can have that feeling every single day. It won’t just be a

treat anymore; it’ll be your way of life. These extra-absorbent 100%

cotton towels can be just hanging around waiting for you, ready to

fulfill their duty in making you feel pampered. Not only practical

but also stylish, these towels will also add a fashionable and

luxurious touch to your bathroom.

Martex Egyptian Cotton
Hand Towel with Dry-Fast
(French Blue)

$6.79 Martex is one of the oldest and most trusted names in bath

products. This towel is made of loops of 100% Egyptian cotton

which offers the absorbency and quality of this fine

extra-long-staple fiber. The towel offers DryFast Technology. Enjoy

a broad color palette to compliment any bathroom decor.
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Pilot G2 Retractable
Premium Gel Ink Roller Ball
Pens, Fine Point, Black Ink,
Dozen Box (31020)

$11.89 Discover the smooth writing and comfortable G2, America’s #1

Selling Gel Pen*. G2 gel ink writes 2X longer than the average of

branded gel ink pens**. The G2 product line includes four point

sizes, fifteen color options, and multiple barrel styles to suit every

situation and personality. It is the only gel pen that offers this level

of customization–because after all, pens aren’t one size fits all.

Scotch-Brite Heavy Duty
Scrub Sponge 426, 6-Count

$7.73 O-Cel-O™ sponges and Scotch Brite scrubbers are truly a

fashion-meets-function success story. The highly absorbent and

durable sponges come in different sizes and scrub levels for the

various surfaces around the home. Their assorted colors and

patterns follow the current fashion trends to create the perfect

accent in any room.

Febreze Fabric Refresher
Spring & Renewal Air
Freshener, 27 Fluid Ounce

$4.94 When it comes to your home, you should never settle for less than

fresh. Febreze Fabric Refresher is the first step to total freshness in

every room. The fine mist eliminates odors that can linger in fabrics

and air, leaving behind nothing but a light, pleasing scent. With

Febreze Fabric Refresher, uplifting freshness is a simple spray away.

Microban Antimicrobial
Cutting Board Lime Green -
11.5x8 inch

$8.99 The Microban cutting board from Uniware is the perfect cutting

board for the health conscious. The cutting board has a soft grip

with handle and is dishwasher safe. The cutting board can be

reversible, use on both sides, and is non-porous, non absorbent.

The rubber grips prevents slipping on countertop. Doesn’t dull

knives, juice-collecting groove. Microban is the most trusted

antimicrobial product protection in the world. Built-In defense that

inhibits the growth of stain and odor causing bacteria, mold, and

mildew. Always works to keep the cutting board cleaner between

cleanings. Lasts throughout the lifetime of the cutting board. Size:

11.5"x8" Color: Lime Green.

Nordic Ware Natural
Aluminum Commercial
Baker’s Half Sheet

$11.63 Nordic Ware’s line of Natural Commercial Bakeware is designed for

commercial use, and exceeds expectations in the home. The

durable, natural aluminum construction bakes evenly and browns

uniformly, while the light color prevents overbrowning. The

oversized edge also makes getting these pans in and out of the oven

a cinch. Proudly made in the USA by Nordic Ware

Gain with FreshLock HE
Original Liquid Detergent,
100 Fl Oz

$9.97 The scent of Gain Original liquid laundry detergent brings a lively

scent to your laundry room. Powerful Lift & Lock Technology lifts

away dirt and stains so you can lock in the amazing scent you love.

With bursts of citrus, a green twist, and just enough floral

fragrance, you’ll wish laundry day came more often.
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Rubbermaid Configurations
Folding Laundry Hamper,
23-inch, Natural
(FG4D0602NATUR)

$12.99 Rubbermaid Configurations Folding Laundry Hamper, 23-inch,

Natural (FG4D0602NATUR). Makes it easy to add hamper space

to any Rubbermaid Configurations Kit. Collapses for easy storage.

Neutral two-tone canvas is breathable and stylish. Coordinates with

other items in Rubbermaid Configurations collection. For nearly 80

years, Rubbermaid has represented innovative, high-quality

products that help simplify life. Recognized as a “Brand of the

Century” for its impact on the American way of life.

Scotch Precision Scissor,
8-Inches (1448)

$5.44 Scotch Precision 8" Scissors come with the finest quality stainless

steel blades for a sharp edge and long cutting life. These scissors

also comes with a soft grip handles for ease of use. Great for

everyday cutting needs. Comes with a limited lifetime warranty.

Clorox Company 00450 Gw
All Purpose Cleaner,
32-Ounce

$8.09 Cuts through grease, grime and dirt as well as traditional cleaners.

Spray on counters, appliances, stainless steel, sealed granite,

chrome, cook top hoods, sinks and toilets. Made from plants and

minerals, 99 percent natural, so it leaves no harsh chemical fumes

or residue.

Rubbermaid Easy Find Lid
Medium Value Pack Food
Storage Containers

$10.20 The Rubbermaid Easy Find Lids Medium Value Pack includes (2)

3.0 cup Easy Find Lid containers measures 7" x 7" x 2.3"and (1) 5.0

cup Easy Find Lid container measures 7" x 7" x 3.4". The number

one unmet need for food storage is container and lid organization.

With Rubbermaid’s new Easy Find Lids you’ll find storage and

organization a breeze! The Easy Find Lids snap together as well as

snap to the bases for easy storage. The Easy Find Lids and bases

also nest together making storage in a cabinet or a drawer much

more efficient. Easy Find Lids are square in shape and allow for

easy of stacking when placed on shelves or in the refrigerator.

Rubbermaid Easy Find Lids also feature a super clarified base

which takes the guessing out of what’s inside and allows you to see

what’s inside quickly and easily. Rubbermaid Easy Find Lids and

bases are also microwave, freezer, and dishwasher safe.

Rubbermaid Lunch Blox
medium durable bag - Black
Etch

$10.47 The Rubbermaid 1813501 Lunch Blox medium durable bag - Black

Etch is an insulated lunch bag designed to work with the

Rubbermaid Lunch Blox food storage container system. The bag is

insulated to achieve the maximum benefit of Blue Ice blocks and

keep your food cold. The bag features a bottle holder, side pocket,

comfort-grip handle and removable shoulder strap. The lunch Blox

bag is durable and looks good for both the professional bringing

their lunch to work or the kid taking their lunch to school.

Libbey 14-Ounce Classic
White Wine Glass, Clear,
4-Piece

$12.99 Great for any party, this set includes four 14-ounce clear classic

white wine glasses which match perfectly with the classic collection

by libbey. The glasses are dishwasher safe and made in the USA.

Fulcrum 20010-301 Multi-Flex
LED Task Light and Book
Light

$9.47 The Multi Flex Light is an all-purpose book light, task light or

travel light

78



Envision Home Microfiber
Bath Mat with Memory
Foam, 16 by 24-Inch, Espresso

$10.82 Enjoy spa luxury at home with the Envision Home Microfiber Bath

Mat, featuring memory foam! Designed to absorb water like a

sponge and help protect floors from damaging puddles of water,

your feet will love stepping on to this soft cushion of memory foam

encased in super-absorbent microfiber. The Microfiber Bath Mat

starts with fibers that are split down to microscopic level, resulting

in tiny threads that love to absorb every drop of water. Because of

this increased surface area, this microfiber mat can collect more

water than an ordinary bath mat. Plus, it dries unbelievably

fast.The soft memory foam interior provides a comfortable and

warm place to stand, or when kneeling to bathe a child or pet,

preventing aches and pains. The seams across the mat allow for it

to be easily folded for storage, or simply hang it from the

convenient drying loop. It is available in three colors to compliment

your personal décor and style – Cream, Celestial and

Espresso.Caring for your Microfiber Bath Mat is easy; simply toss it

in the washing machine with cold water and a liquid detergent and

then place in the dryer on a low heat setting. The Microfiber Bath

Mat is just one of the many impressive items offered in the Envision

Home Collection. Designed to make it easier to take care of the

home, our innovative, high-value and superior-quality products

provide cleaning, kitchen, bath, laundry and pet solutions to solve

life’s little dilemmas.

Carnation Home Fashions
Hotel Collection 8-Gauge
Vinyl Shower Curtain Liner
with Metal Grommets,
Monaco Blue

$8.99 Protect your favorite shower curtain with our top-of-the-line Hotel

Collection Vinyl Shower Curtain Liner. This standard-sized (72” x

72”) liner is made with an extra heavy (8 gauge), water repellant

vinyl that easily wipes clean. With metal grommets along top of the

liner to prevent tearing. Here in Monaco Blue, this liner is available

in a variety of fashionable colors. With its wonderful features and

fashionable colors, this liner could also make a great shower curtain

Note: These are Amazon.com prices as they were displayed to, and documented by, our research
assistant in February 2015. Prices may vary over time or by geographic region.

79


