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Abstract

Several school districts use assignment systems in which students have a strategic

incentive to misrepresent their preferences. Indeed, we find evidence suggesting that

reported rank-order lists in Cambridge, MA respond to these incentives. Such strate-

gizing can complicate the analysis of preferences. This paper develops a new method

for estimating random utility models in such environments. Our approach views the

report made by a student as a choice of a probability distribution over assignment to

various schools. We introduce a large class of mechanisms for which consistent estima-

tion is feasible and study identification of a latent utility model assuming equilibrium

behavior. Preferences are non-parametrically identified under either sufficient variation

in choice environments or sufficient variation in a special regressor. We then propose

a tractable estimation procedure for a parametric model based on Gibbs’ sampling.

Estimates from Cambridge suggest that while 84% of students are assigned to their

stated first choice, only 75% are assigned to their true first choice. The difference

occurs because students avoid ranking competitive schools in favor of less competitive

schools. Assuming that ranking behavior is described by a Bayesian Nash Equilibrium,

the Cambridge mechanism produces an assignment that is preferred by the average stu-

dent to that under the Deferred Acceptance mechanism by an equivalent of 0.07 miles.

This difference is smaller if beliefs are biased, and for näıve students.
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1 Introduction

Admissions to public schools in the United States and abroad commonly use assignment

mechanisms based on student priorities, a random tie-breaker, and importantly, reported

ranking of various school options (Abdulkadiroglu and Sonmez, 2003; Pathak and Sonmez,

2008). Data on reported rankings generated by these mechanisms promise several opportu-

nities for academic research and for directing school reforms. However, with rare exceptions,

mechanisms used in the real world are susceptible to gaming (Pathak and Sonmez, 2008),

making it difficult to directly interpret reported lists as true preference orderings. Table 1

presents a partial list of mechanisms in use at school districts around the world. To our

knowledge, only Boston currently employs a mechanism that is not manipulable.1

Previous empirical work has typically assumed that observed rank order lists are a truth-

ful representation of the students’ preferences (Hastings et al., 2009; Abdulkadiroglu et al.,

2014; Ayaji, 2013), allowing a direct extension of discrete choice demand methods with such

data (c.f. McFadden, 1973; Beggs et al., 1981; Berry et al., 1995, 2004).2 The assumption is

usually motivated by properties of the mechanism or by arguing that strategic behavior may

be limited under a sudden change in the choice environment. This standard approach may

not be valid if students have a strategic incentives to manipulate their reports. Anecdotal

evidence from Boston suggests that parent groups and forums for exchanging information

about the competitiveness of various schools and discussing ranking strategies are fairly

active (Pathak and Sonmez, 2008). Laboratory experiments also suggest that agents par-

ticipating in manipulable mechanisms are more likely to engage in strategic behavior (Chen

and Sonmez, 2006; Calsamiglia et al., 2010).

This paper proposes a general method for estimating the underlying distribution of stu-

dent preferences for schools using data from manipulable mechanisms. We make several

methodological and empirical contributions. Our empirical results use data from elementary

school admissions in Cambridge, MA to document strategic behavior, estimate the distribu-

tion of preferences, and analyze the welfare effects of using a counterfactual school choice

mechanism. The methodological contributions include defining a new class of mechanisms

for which preference parameters can be consistently estimated, studying non-parametric

identification in such an environment, and proposing a computationally tractable estimator.

1The Student Proposing Deferred Acceptance mechanism is strategy-proof if students are not restricted
to list fewer schools than are available. To the best of our knowledge, with the exception of Boston Public
Schools, all public schools currently using this mechanism restrict the length of the rank-order list. Abdulka-
diroglu et al. (2009) and Haeringer and Klijn (2009) show that with this restriction, the mechanism provides
incentives for students to drop competitive schools from their rank-order list.

2He (2012) and Calsamiglia et al. (2014) are notable exceptions that allows for agents to be strategic. We
compare our results with this paper in further detail below.
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These innovations allow us to estimate preferences in manipulable school choice mechanism

while accounting for strategic behavior.

Accounting for strategic behavior is important for several reasons. First, school account-

ability and improvement programs, or district-wide reforms, are liable to using stated rank

order lists as direct indicators of school desirability or student preferences. For instance,

Boston’s Controlled Choice Plan used the number of applications to a school as a formal

indicator of school performance in a school improvement program. Several manipulable

mechanisms provide students incentives to avoid reporting competitive schools. Using re-

ported rank lists to inform policy in such settings can misdirect resources. Second, recent

empirical studies in economics have used estimates of student preferences to evaluate stu-

dent welfare under alternative matching mechanisms (see Abdulkadiroglu et al., 2014, for

example). Accounting for strategic behavior becomes necessary if the data are taken from a

manipulable mechanism. Third, recent studies have used preference estimates for studying

implications for student achievement (Hastings et al., 2009), and school competition (Niel-

son, 2013). These approaches may not be suitable for data from manipulable assignment

mechanisms if strategic behavior is widespread.

Indeed, our analysis of ranking behavior for admissions into public elementary schools

in Cambridge indicates significant gaming. The school district uses a variant of the Boston

Mechanism that is highly manipulable. We find large strategic incentives in this school

system: some schools are rarely assigned to students that rank it second, while others are

have spare capacity after all students have been considered. Students therefore risk losing

their priority at a competitive school if they do not rank it first. We investigate whether

students appear to respond to these incentives using a regression discontinuity design. The

design leverages the fact that students receive proximity priority at the two closest schools.

We find that student ranking behavior changes discontinuously with the change in priority.

This finding is not consistent with a model in which students state their true preferences if

the distribution of preferences is continuous with respect to distance.

Therefore, instead of interpreting stated rank order lists as true preferences, our empirical

approach is based on interpreting a student’s choice of a report as a choice of a probability

distribution over assignments. Each rank-order list results in a probability of getting assigned

to each of the schools on that list. This probability depends on the student’s priority type

and report, a randomly generated tie-breaker, as well as the reports and priorities of the

other students. If agents have correct beliefs about this probability and are expected utility

maximizers, then the expected utility from the chosen report must be greater than other

reports the agent could have chosen. Formally, our baseline model assumes that student

behavior is described by a Bayesian Nash Equilibrium. This assumption implies sophisticated
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agent behavior and is an important baseline model for accounting the strategic behavior

observed. In extensions, we allow for alternative models with biases in behavior and beliefs.

Specifically, we consider a model in which agents are unaware of the fine distinctions in the

mechanism between various priority and student types, a model with expectations based on

the previous year, and a mixture model with both näıve and sophisticated players.

In order to learn about preferences from the observed reports, our approach first requires

estimates for the probabilities of assignment associated with each report and priority type.

Constructing consistent estimates of these probabilities requires a consideration of potentially

dependent data since the assignment of an individual agent depends on the reports of all

other agents in the economy. We present a general convergence condition on the mechanism

under which data from a large market can be used to consistently estimate these probabilities

without directly estimating preferences or solving for an equilibrium. The ability to do this

circumvents difficulties that may arise due to the computational burden of solving for an

equilibrium or issues that arise from multiplicity of equilibria.

A priori, this convergence condition can be hard to verify because assignment mecha-

nisms are usually described in terms of algorithms rather than functions with well-known

properties such as continuity. We therefore introduce a new class of mechanisms called

Report-Specific Priority + Cutoff (RSP+C) mechanisms for which we prove that this

condition is satisfied. RSP+C mechanisms assign students based on a cutoff and a priority

that may depend on the report submitted. These mechanisms may be easier to manipulate

because agents merely need to have beliefs about equilibrium cutoffs. All mechanisms in

table 1, except the Top Trading Cycles mechanism, can be represented as report-specific

priority + cutoff mechanisms. Our results additionally require that coarsely defined priority

types and a random tie-breaker is used in assignments. This rules out admissions in some

school districts for exam schools or other programs that only use test scores to determine

admissions.

Since the assignment probabilities (as a function of reports and priority types) can be

consistently estimated, we study identification of preferences treating these probabilities as

known to the econometrician. The problem is then equivalent to identifying the distribution

over preferences over discrete objects with choice data on lotteries over these objects. In-

deed, the classical discrete choice demand model is a special case with degenerate lotteries.

We follow the discrete choice literature in specifying preferences using a flexible random

utility model that allows for student and school unobservables (see Block and Marshak,

1960; McFadden, 1973; Manski, 1977). We show conditions under which the distribution of

preferences is non-parametrically identified.

We exploit two types of variation to identify the distribution of preferences. First, we use
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variation in choice environments (as defined by the lotteries available to the agents). Such

variation may arise from differences in agent priorities that are excludable from preferences,

or if the researcher observed data from two identical populations of agents facing different

mechanisms or availability of seats. We characterize the identified set of preference distribu-

tions under such variation. Although sufficient variation in choice environments can point

identify the preference distribution, we should typically expect set identification. Our second

set of identification results relies on the availability of a special regressor that is additively

separable in the indirect utility function (Lewbel, 2000). The assumption is commonly made

to identify preferences in discrete choice models (Berry and Haile, 2010, for example). In our

application, we use distance to school as a shifter in preferences for schools. Our empirical

specification therefore rules out within-district residential sorting based on unobserved deter-

minants of school preferences.3 We show that when such a shifter in preferences is available,

local variation in this regressor can be used to identify the density of distribution of utility

in a corresponding region. A special regressor with full support can be used to identify the

full distribution of preferences.

We propose an estimation procedure for the distribution of preferences using a Gibbs’

sampler adapted from McCulloch and Rossi (1994).4 The estimator lends itself naturally

to our setting because the set of utility vectors for which a given report is optimal can

be expressed as a convex cone. This allows us to implement an estimation procedure that

does not involve computing or simulating the probability that a report is optimal given a

parameter vector.

We apply this two-step method to estimate student preferences in Cambridge. The

estimated preferences can be used to address a wide range of issues. We investigate the

extent to which students avoid ranking competitive schools in order to increase their chances

of assignment at less competitive options. Prevalence of such behavior can result in mis-

estimating the attractiveness of certain schools if stated ranks are interpreted on face value.

Ignoring strategic behavior may therefore result in inefficient allocation of public resources

for improving school quality. Further, a large number of students assigned to their first

choice may not be an indication of student satisfaction or heterogeneity in preferences. We

therefore investigate if strategic behavior results in fewer students being assigned to their

true first choice as compared to their stated first choice.

Finally, we study the welfare effects of a switch to the student proposing Deferred Ac-

ceptance mechanism. The theoretical literature supports strategy-proof mechanisms on the

3We are currently working on a model of joint residential and school choice. Such an extension requires
consideration of neighborhood unobservables and housing prices, and is beyond the scope of this paper.

4We view our non-parametric identification results as justifying that parametric assumptions are not
essential for learning about the primitives of interest but are made to assist estimation in finite samples.
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basis of their simplicity, robustness to information available to participants and fairness (see

Azevedo and Budish, 2013, and references therein). However, it is possible that ordinal

strategy-proof mechanisms compromise student welfare by not screening students based on

the intensity of their preferences (Miralles, 2009; Abdulkadiroglu et al., 2011). We quantify

student welfare from the assignment under these two mechanisms under alternative models

of agent beliefs and behavior. This approach abstracts away from potential costs of strate-

gizing and acquiring information, which are difficult to quantify given the available data.

Nonetheless, allocative efficiency is a central consideration in mechanism choice in addition

to other criteria such as differential costs of participating, fairness and strategy-proofness

(Abdulkadiroglu et al., 2009). We empirically quantify the welfare effects of a strategy-proof

alternative to the Cambridge mechanism based on the Deferred Acceptance mechanism.

Our baseline results assuming equilibrium behavior indicate that the average student

prefers the assignments under the Cambridge mechanism to the Deferred Acceptance mech-

anism. Interestingly, this difference is driven by paid-lunch students who face stronger strate-

gic incentives than free-lunch students due to quotas based on free-lunch eligibility. A cost of

improved assignments in Cambridge is that a small fraction of students (4-13% depending on

student group) have justified envy.5 We then evaluate the mechanisms assuming that agents

have biased beliefs about assignment probabilities. These estimates suggest that biased be-

liefs may mitigate the screening benefits of the Cambridge mechanism because mistakes can

be costly in some cases. Since the Deferred Acceptance mechanism is strategy-proof, opti-

mal reports do not depend on the beliefs about which schools are competitive. Our results

therefore shed quantitative light on the value of mechanisms that are robust to information

in the sense of Wilson (1987) and Bergemann and Morris (2005).

Finally, we evaluate a mixture model with näıve and sophisticated agents to assess the

distributional consequences across agents that vary in their ability to game the mechanism.

We estimate that about 30% of paid-lunch and free-lunch students report their prefences

sincerely even if it may not be optimal to do so. Although näıve agents behave subopti-

mally, we find that the average näıve paid-lunch student prefers the assignments under the

Cambridge mechanism. This occurs because the Cambridge mechanism effectively awards

näıve paid-lunch students additional priority at their first choice, and does not constrain stu-

dent welfare by ensuring that no students face justified envy. This conclusion is sensitive to

the choice environment because our estimates suggest that the average welfare for free-lunch

näıve student is higher under the Deferred Acceptance mechanism.

Related Literature

5Student i has justified envy if another student i′ is assigned to a school j that student i prefers to her
assignment and student i has (strictly) higher priority at j than student i′.
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Our empirical approach of considering strategic behavior is similar in spirit to He (2012),

Calsamiglia et al. (2014) and Hwang (2015). He (2012) estimates preferences using data

from the Boston mechanism in Beijing under the assumption that agents’ reports are un-

dominated. The set of undominated reports is derived using a limited number of restrictions

implied by rationality, the specific number of schools and ranks that can be submitted in

Beijing, and that the mechanism treats all agents symmetrically. The approach fully speci-

fies the likelihood of reporting each of the undominated strategies. Hwang (2015) proposes

a subset of restrictions on agent behavior based on simple rules to derive a bounds-based

estimation approach. Calsamiglia et al. (2014) estimates a mixture model with strategic and

non-strategic agents using data from Barcelona’s implementation of the Boston mechanism.

They use a first-step estimate of assignment probabilities that our results show is consistent.

Given the large number of schooling options in Barcelona, Calsamiglia et al. (2014) simplify

computation by modeling a strategic decision-maker that uses ranking heuristics motivated

by common strategic concerns in the Boston mechanism.

Compared to these previous approaches, we allow for a more general class of mecha-

nisms that includes mechanisms with student priority groups. The proposed method does

not require the researcher to analytically derive implications of rationality or pick ranking

heuristics for estimation. Further, our aim is to characterize the identified set or show point

identification under the restrictions imposed on the data and directly study the properties

of an appropriate estimator, aspects which are not considered in these previous studies.

Our approach to studying large sample properties of our estimator and defining a limit

mechanism is motivated by recent theoretical work studying matching markets by Kojima

and Pathak (2009), Azevedo and Leshno (2013) and Azevedo and Budish (2013). Some of

our results rely on and extend the large market results in Azevedo and Leshno (2013). In

large markets, agents act as price-takers but may still be able to manipulate outcomes by

submitting a report that misrepresents their ordinal preferences (Azevedo and Budish, 2013).

We use techniques and build on insights from the identification of discrete choice demand

(Matzkin, 1992, 1993; Lewbel, 2000; Berry and Haile, 2010). While the primitives are similar,

unlike discrete choice demand, each report is a risky prospect that determines the probability

of assignment to the schools on the list. Since choices over lotteries depend on expected

utilities, our data contain direct information on cardinal utilities when the lotteries are not

degenerate. In this sense, our paper is similar to Chiappori et al. (2012), although their

paper focuses on risk attitudes rather than the value of underlying prizes.

This paper is related to the large, primarily theoretical, literature that has taken a

mechanism design approach to the student assignment problem (Gale and Shapley, 1962;

Shapley and Scarf, 1974; Abdulkadiroglu and Sonmez, 2003). Theoretical results from this
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literature has been used to guide redesigns of matching markets (Roth and Peranson, 1999;

Abdulkadiroglu et al., 2006, 2009). While preferences are fundamental primitives that influ-

ence mechanism comparisons, prospective analysis of a proposed change in the school choice

mechanism is rare (see Pathak and Shi, 2013, for an exception). A significant barrier is that

the fundamental primitives are difficult to estimate since a large number of school choice

mechanisms are susceptible to manipulation (Pathak and Sonmez, 2008, 2013). Results in

this paper may allow such analysis. For instance, our techniques will allow comparing the

welfare effects of a change to the Deferred Acceptance mechanism for a school district that

uses the Boston mechanism. The relative benefits of these two mechanisms has been de-

bated in the theoretical literature. Ergin and Sonmez (2006) show that full-information

Nash equilibria of the Boston Mechanism are Pareto inferior to outcomes under the De-

ferred Acceptance mechanism. However, when analyzing Bayesian Nash Equilibria, stylized

theoretical models with an assumed distribution of preferences have arrived at ambiguous

conclusions about the welfare comparison between the two mechanisms (Miralles, 2009; Ab-

dulkadiroglu et al., 2011; Featherstone and Niederle, 2011; Troyan, 2012). In the context

of a multi-unit assignment problem, Budish and Cantillon (2012) use preferences solicited

from a strategy-proof mechanism for assigning courses to evaluate average assignment ranks

under a manipulable mechanism.

Our methods may also be useful in extending recent work on measuring the effects of

school assignment on student achievement that jointly specifies the preferences for schools

and test-score gains (Hastings et al., 2009; Walters, 2013; Nielson, 2013). This work has

been motivated by the fact that without data from a randomized assignment of students

to schools, a researcher must account for sorting on unobservable preferences/characteristics

that are also related to achievement gains. Additionally, estimates of preferences may be

useful in extrapolating lottery based achievement designs if there is selection on the types of

students that participate in the lottery (Walters, 2013). Methods for estimating preferences

in a broader class of data-environments may expand our ability to study the effects of school

assignment on student achievement.

This paper also contributes to the growing literature on methods for analyzing prefer-

ences in matching markets. Many recent advances have been made in using pairwise stability

as an equilibrium assumption on the final matches to recover preference parameters (Choo

and Siow, 2006; Fox, 2010b,a; Chiappori et al., 2015; Agarwal, 2013; Agarwal and Diamond,

2014). The data environment considered here is significantly different and pairwise stability

need not be a good approximation for assignments from manipulable mechanisms. Another

strand of the literature directly interprets agent behavior in matching markets in terms of

preferences. For example, Hitsch et al. (2010) estimate preferences in an online dating mar-
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ketplace where agents strategically avoid costs of emailing potential mates that are unlikely

to respond. Similar considerations related to probability of success arise when applying to

colleges and other search environments (Chade and Smith, 2006).

The proposed two-step estimator leverages insights from the industrial organization lit-

erature, specifically the estimation of empirical auctions (Guerre et al., 2000; Cassola et al.,

2013), single agent dynamic models (Hotz and Miller, 1993; Hotz et al., 1994) and dynamic

games (Bajari et al., 2007; Pakes et al., 2007; Aguirregabiria and Mira, 2007). As in the

methods used in those contexts, we use a two-step estimation procedure where the distribu-

tion of actions from other agents or the uncertainty in the environment is used to construct

probabilities of particular outcome as a function of the agents’ own action and a second step

is used to recover the primitives of interest. However, the nature of primitives, reports, the

mechanism and economic environment are significantly different than in our context.

Overview

Section 2 describes the Cambridge Controlled Choice Plan and presents evidence that stu-

dents are responding to strategic incentives provided by the mechanism. Section 3 sets up

the model and notation for the results on identification and estimation. Section 4 presents

the main insight of the paper on how to interpret submitted rank order lists. Section 5

presents the main convergence condition needed for our analysis, and describes and analyzes

the class of Report-Specific Priority + Cutoff mechanisms. Section 6 studies identification

under varying choice environments and the availability of a special regressor. Section 7

proposes a particular two-step estimator based on Gibbs’ sampling. Section 8 applies our

techniques to the dataset from Cambridge, MA. Section 8.5 considers extensions in which

agents have biased beliefs or exhibit heterogeneity in their sophistication. A reader inter-

ested in the empirical application instead of the econometric techniques may skip Sections

5-7. Section 9 concludes.

2 Evidence on Strategic Behavior

2.1 The Controlled Choice Plan in Cambridge, MA

We use data from the Cambridge Public School’s (CPS) Controlled Choice Plan for the

academic years 2004-2005 to 2008-2009. Elementary schools in the CPS system assigns about

41% of the seats through a partnerships with pre-schools (junior kindergarten or Montessori)

or an appeals process for special needs students. The remaining seats are assigned through
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a school choice system that takes place in January for students entering kindergarten. We

will focus on students and seats that are allocated through this process.

Table 2 summarizes the students and schools. The CPS system has 13 schools and about

400 students participating in it each year. One of the schools, Amigos, was divided into

bilingual Spanish and regular programs in 2005. Bilingual Spanish speaking students are

considered only for the bilingual program, and students that are not bilingual are considered

only for the regular program.6 King Open OLA is a Portuguese immersion school/program

that is open to all students. Tobin, a Montessori school, divided admissions for four and five

year olds starting 2007.

One of the explicit goals of the Controlled Choice Plan is to achieve socio-economic

diversity by maintaining the proportion of students who qualify for the federal free/reduced

lunch program in each school close to the district-wide average. Except Amigos and only

for the purposes of the assignment mechanism, all schools are divided into paid-lunch and

free/reduced lunch programs. Students eligible for federal free or reduced lunch are only

considered for the corresponding program.7 About 34% of the students are on free/reduced

lunch. Each program has a maximum number of seats and the overall school capacity may

be lower than the sum of the seats in the two programs. Our dataset contains both the total

number of seats in the school as well as the seats available in each of the programs.

The Cambridge Controlled Choice Mechanism

We now describe the process used to place students at schools. The process prioritizes

students at a given school based on two criteria:

1. Students with siblings who are attending that school get the highest priority.

2. Students receive priority at the two schools closest to their residence.

Students can submit a ranking of up to three programs at which they are eligible. Cambridge

uses an Immediate Acceptance mechanism (a variant of the Boston mechanism) and assigns

students as follows:

Step 0: Draw a single tie-breaker for each student

Step k = 1,2,3: Each school considers all students that have not been previously assigned

and have listed it in the k-th position and arranges them in order of priority, breaking

6A student voluntarily declares whether she is bilingual on the application form.
7Households with income below 130% (185%) of the Federal Poverty line are eligible for free (reduced)

lunch programs. For a household size of 4, the annual income threshold was approximately $27,500 ($39,000)
in 2008-2009.
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ties using the randomly drawn tie-breaker. Starting from the first student in the list,

students are considered sequentially:

• The student under consideration is assigned to the paid-lunch program if she is

not eligible for a federal lunch subsidy and there is an open seat in both the paid

lunch program and the school. If she is eligible for a federal lunch subsidy, then

she is assigned to the free/subsidized lunch program as long as seats are remaining

in both the free-lunch program and the school.

2.2 Descriptive Evidence on Ranking Behavior

Panels A and D in table 3 show that over 80% of the students rank the maximum allowed

number of schools and over 80% of the students are assigned to their top ranked choice in a

typical year. Researchers in education have interpreted similar statistics in school districts

as indicators of student satisfaction and heterogeneity in student preferences. For instance,

Glenn (1991) argues that school choice caused improvements in the Boston school system

based on observing an increase in the number of students that were assigned to their top

choice.8 Similarly, Glazerman and Meyer (1994) interpret a high fraction of students getting

assigned to their top choice in Minneapolis as indicative of heterogeneous student preferences.

Conclusions based on interpreting stated preferences as truthful are suspect when a mech-

anism provides strategic incentives for students. It is well understood that students risk

“losing their priority” if a school is not ranked at the top of the list in mechanisms like the

Boston mechanism (Ergin and Sonmez, 2006). Table 3, panel E shows that students tend

to rank schools where they have priority closer to the top. For instance, schools where a

student has sibling priority is ranked first 32% of the time as compared to 35% of the time

anywhere on the list. Likewise, schools where a student has proximity priority are also more

likely to be ranked higher. These statistics do not necessarily indicate that this behavior

is in response to strategic incentives because having priority may be correlated with prefer-

ences. However, given that strategic incentives may also result in similar patterns, it may be

incorrect to estimate preferences by treating stated lists as true preferences. For example,

Panels D and F of tables 2 and 3 show that the top-ranked school is closer than the average

school, and closer than other ranked schools. One may incorrectly conclude that students

have strong preferences for going to school close to home if proximity priority is influencing

this choice.

8The argument is based on ranking and assignment data generated when Boston used a manipulable
assignment system.
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2.3 Strategic Incentives in Cambridge

Table 4 takes a closer look at the strategic incentives for students in Cambridge. Panel A

shows the frequency with which students rank the various school options, the capacity at

the various schools as well as the the rank and priority type of the first rejected student

in a school. Panels B and C present identical statistics, but split by free/reduced lunch

status of students. The table indicates significant heterogeneity in the competitiveness of the

schools. Baldwin, Haggerty, Amigos, Morse, Tobin, Graham & Parks, and Cambridgeport

are competitive schools with many more students ranking them than there is capacity. Panel

A indicates that a typical student would be rejected in these schools if she does not rank it

as her top choice. Indeed, Graham & Parks rejected all non-priority students even if they

had ranked it first in each of the five years. The other schools typically admit all students

that were not assigned to higher ranked schools. Additionally, the competitiveness of schools

differs by paid-lunch status. While Graham & Parks is very competitive for students that

pay for lunch, it did not reject any free/reduced lunch students that applied to it in a typical

year. More generally, a larger number of schools are competitive for paid-lunch students

than for free-lunch students.

There are two other features that are worth highlighting. First, there are few schools that

do not reject students that listed them first but do reject second or third choice students.

Therefore, students must rank competitive school first in order to gain admission but may

rank non-competitive schools at any position. This suggests that, in Cambridge at least,

strategic incentives may be particularly important when considering which school to rank

first. Second, several paid lunch students rank competitive schools as their second or third

choice. This may appear hard to rationalize as optimal behavior. However, it should be

noted that despite the large number of students ranking competitive schools second, these

choices are often not pivotal, as evidenced by the extremely large number of students that

are assigned to their top choice. Another possibility is that students are counting on back-up

schools, either at the third ranked school, a private or a charter school in case they remain

unassigned. Finally, students may simply believe that there is a small chance of assignment

even at competitive schools. We further discuss these issues when we present our estimates.

2.4 Strategic Behavior: A Regression Discontinuity Approach

We now present evidence that students are responding strategically when choosing which

school to rank first. Our empirical strategy is based on the assignment of proximity priority

in Cambridge. A student receives priority at the two closest schools to her residence. We can

therefore compare the ranking behavior of students that are on either side of the boundary
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where the proximity priority changes. If students are not behaving strategically and the

distribution of preferences are continuous in distance to school, we would not expect the

ranking behavior to change discretely at this boundary. On the other hand, the results in

table 4 indicate that a sophisticated student risks losing her proximity priority at competitive

schools if she does not rank it first. We now test whether students are responding to this

strategic incentive.

Figure 1 and table 5 present the results. The figure plots the probability of ranking

a school in a particular position against the distance from a boundary. The vertical lines

represents the boundary of interest where we assess ranking behavior. The black dashed lines

are generated from a local linear regression of the ranking outcome on the distance from this

boundary, estimated separately using data on either side of the boundary. The black points

represent a bin-scatter plot of these data, with a 95% confidence interval depicted with the

bars. The grey points control for school fixed effects. Table 5 presents the estimated size of

the discontinuity using the procedure recommended by Imbens and Kalyanaraman (2011).

We use their estimator to test whether the outcome studied changes discontinuity at the

corresponding boundary discontinuity.

Panels (a) through (d) of figure 1 construct the boundary so that students have proximity

priority at schools to the left of the vertical line. Panel (a) shows that the probability that a

student ranks a school first decreases discontinuously at the proximity boundary. Further, the

response to distance to school is also higher to the left of the boundary, probably reflecting the

preference to attend a school closer to home. The jump at the boundary may be attenuated

because a student can rank only one of the two schools she has priority as her top choice.9 In

contrast to panel (a), panels (b) and (c) do not show a large jump at the proximity boundary

for the probability a school is ranked second or third. This should be expected because we

saw earlier that one’s priority is unlikely to be pivotal in the second or third choices. These

panels also show that the probability of ranking a school that is extremely close to a students

in the second or third choice is low. This is explained by the fact that student instead rank

nearby schools first. Table 5 presents the estimated size of this discontinuity and the standard

errors of these estimates. The first column shows that the probability that a school is ranked

first drops by 5.75% at the boundary where the student loses proximity priority. This effect

is statistically significant at the 1% level. Further, panels B and C of the table show that

this change is larger for paid lunch students than for free lunch students. This is consistent

with the theory that paid lunch students are responding to the stronger strategic incentives

as compared to free lunch students. The next two columns present these estimates for the

9Panel (a) of figure D.1 focuses on the second and third closest schools and shows that the discontinuity
is discernible.
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second and third ranked choices. As indicated by the figures, the estimated effects are smaller

and often not statistically significant.

Strategic pressures to rank a school first may be particularly important if the school is

competitive. Panels (d) and (e) of figure 1 investigates the differential response to proximity

priority by school competitiveness. Specifically, we split the schools based on whether they

rejected some students in a typical year or not as delineated in table 4. Consistent with

strategic behavior, panel (d) shows that the probability of ranking a competitive school first

falls discontinuously at the boundary where proximity priority changes. In contrast, the

discontinuity in panel (e), which focuses on non-competitive schools is smaller. Indeed, the

fourth and fifth columns of table 5 confirm that the estimated drop in the probability of

ranking a competitive schools first is 7.27%, which is larger than the overall estimate. Addi-

tionally, panels B and C of table 5 shows that the estimated response to proximity priority

is larger for paid-lunch students at 11.07% as compared to 1.47% for free-lunch students.10

Non-competitive schools, in stark contrast, have an estimated drop that is only 2.06% and

not statistically significant. Consistent with strategic pressures being less stringent at non-

competitive schools, the change in ranking probability at the boundary is statistically indis-

tinguishable from zero for both paid-lunch and free-lunch students. However, we view the

estimates for free-lunch students as inconclusive because the point estimates are fairly large

and imprecise for both competitive and non-competitive schools. Our findings are consis-

tent with paid-lunch students responding to significant strategic pressures in the Cambridge

mechanism, and free-lunch students with an undetectable response to the lower strategic

incentives.

Finally, we consider a placebo test in which we constructed the figures and estimates

above assuming that proximity priority is only given at the closest school. Panel (f) in figure

1 shows no discernable difference in the ranking probability at this placebo boundary. The

estimated size of the discontinuity, presented in the last column of table 5, is only 0.07%

and statistically indistinguishable from zero. Figure D.1 (panel d) in the appendix presents

a second placebo boundary, dropping the two closest schools and constructing priorities at

the two closest remaining schools. As expected, we do not find a discontinuous response at

this placebo boundary.

Together, these results strongly suggest that ranking behavior is discontinuous at the

boundary where proximity priority changes. However, there are two important caveats that

must be noted before concluding that agents in Cambridge are behaving strategically. First,

the results do not show that all students are responding to strategic incentives in the mech-

anism, or that their reports are optimal. We begin by assuming that all agents are sophis-

10Figure D.1 (panels b and c) in the appendix shows the plots by free-lunch status.
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ticated in their choiced before considering alternatives with biases in beliefs and behavior.

Second, it is possible that the response is driven in part by residential choices with which

parents picking a home so that the student receives priority at a more preferred school. A

full model that considers the joint decision residential and school choices is left for future

research.

These results contrast with Hastings et al. (2009), who find that the average quality

of schools ranked did not respond to a change in the neighborhood boundaries in the year

the change took place. Assuming that students prefer higher quality schools, their finding

suggests that students did not strategically respond to the change in incentives. As suggested

by Hastings et al. (2009), strategic behavior may not be widespread if the details of the

mechanism and the change in neighborhood priorities are not well advertised. Charlotte-

Mecklenberg had adopted the school choice system just a year prior to their study and the

district did not make the precise mechanism clear. In contrast, Cambridge’s Controlled

Choice Plan is published on the school district’s website and has been in place for several

years. These institutional features may account for the observed differences in the student

behavior.

3 Model

We consider school choice mechanisms in which students are indexed by i ∈ {1, . . . , n} and

schools indexed by j ∈ {0, 1, . . . , J} = S. School 0 denotes being unmatched. Each school

has qnj seats, with q0 =∞. We now describe how students are assigned to these seats, their

preferences over the assignments, and the equilibrium behavior.

3.1 Assignment Mechanisms

School choice mechanisms typically use submitted rank-order lists and defined student prior-

ity types to determine final assignments. As is the convention in the school choice literature,

let Ri ∈ Ri be a rank-order list, where jRij
′ indicates that j is ranked above j′.11 Students,

if they so choose, may submit a rank-order list that does not reflect their true preferences

over schools. Let student i’s priority type be denoted ti ∈ T . In Cambridge, ti defines the

free-lunch type, the set of schools where the student has proximity priority and whether or

not the student has a sibling in the school.

11The set Ri may depend on the student’s priority type ti and may be constrained. For example, students
in Cambridge can rank up to three schools, and programs are distinguished by paid-lunch status of the
student.
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A mechanism is usually described as an outcome of an algorithm that takes these rank-

order lists and priorities as inputs. To study properties of a mechanism and our methods,

it will be convenient to define a mechanism as a function that depends on the number of

students n.

Definition 1. A mechanism Φn is a function (Φ1, . . . ,Φn) where

Φn
i : Rn × T n → ∆S

such that for all R = (R1, . . . , Rn) ∈ Rn, and t = (t1, . . . , tn) ∈ T n,

1

n

n∑
i=1

Φn
ij(R, t) ≤ qnj .

In this notation, the i−j component of Φn(R, t), denoted Φn
ij(R, t) is the probability that

student i is assigned to school j. Hence, the outcome for each student is in the J-simplex

∆S. In the Cambridge school system, there is a random number used to break ties between

students. Such tie-breakers are a common source of uncertainty faced by students.

3.2 Utilities and Preferences

We assume that student i’s utility from assignment into program j is given by V (zij, ξj, εi),

where zij is a vector of observable characteristics that may vary by program or student or

both, and ξj and εi are (vector-valued) unobserved characteristics. Let

vi = (vi1, . . . , viJ)

be the random vector of indirect utilities for student i with conditional joint density fV (vi1, . . . , viJ |ξ, zi),
where ξ = (ξ1, . . . , ξJ) and zi = (zi1, . . . , ziJ). We normalize the utility of not being assigned

through the assignment process, vi0, to zero.12

This formulation allows for heterogeneous preferences conditional on observables. For

instance, one may specify these indirect utilities as

vij = zijβi + ξj + εij,

with parametric assumptions on the distribution of βi, ξj, and/or εi = (εij, . . . , εiJ). The

primary restriction thus far is that a student’s indirect utility depends only on their own

12Scale normalizations needed for identification and estimation will be discussed in Section 6.
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assignment and not of other students. This rules out preferences for peer groups or for

conveniences that carpool arrangements may afford.

3.3 Equilibrium

Our baseline model assumes that agent behavior is described by a type-symmetric Bayesian

Nash Equilibrium. Specifically, let σ : RJ × T → ∆R be a (symmetric) mixed strategy.

The first argument of σ is the vector of utilities over the various schools, and the second

argument is the priority type of the student. If a student forecasts that other students in

the district are playing according to σ, her (ex-ante) probability of assignment probability

when she reports Ri ∈ Ri is given by the vector

Lσn,Ri,ti
= Eσ[Φn((Ri, ti), (R−i, T−i))|Ri, ti]

=

∫
Φn((Ri, ti), (R−i, T−i))

∏
k 6=i

σRk
(vk, tk)dFV−i,T−i

, (1)

where σRi
(vi, ti) is the probability that an agent with utility vector vi and priority type ti

reports Ri and FV−i,T−i
=
∏

k 6=i FV,T is the distribution of utility and priority types of the

other agents in the population. The (ex-ante) probability of assignment therefore depends

on both the draw of the tie-breaker and the realization of the reports by the other students

in the district.

Definition 2. The strategy σ∗ is a type-symmetric Bayesian Nash Equilibrium if

vi · Lσ
∗
n,Ri,ti

≥ vi · Lσ
∗

n,R′i,ti
for all R′i ∈ Ri whenever σ∗Ri

(vi, ti) > 0.

The focus on equilibrium play implies that students submit the report that maximizes

their expected utility with correct notions of the distribution of play by other students. A

student faces uncertainty due to both the distribution of reports that the other students will

submit and due to uncertainty inherent in the mechanism. This approach contrasts with

ex-post concepts of Nash Equilibria common in the literature on assignment mechanisms (see

Ergin and Sonmez, 2006, for example). However, it is a natural starting point for analyzing

mechanisms that are not dominant-strategy and is commonly taken in the empirical analysis

of auction mechanisms (Guerre et al., 2000; Cassola et al., 2013, among others). Section 8.5

considers version in which agents have biased beliefs.

Evidence presented in Section 2 suggests that agents are responding to strategic incentives

in the Cambridge mechanism. Further, anecdotal evidence suggests that parent groups and

forums discussing ranking strategies are active (Pathak and Sonmez, 2008), and laboratory

experiments suggests that strategic behavior is more common for manipulable mechanisms
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than strategy-proof mechanisms (Chen and Sonmez, 2006; Calsamiglia et al., 2010). While

direct evidence showing that agents play equilibrium strategies is limited, Calsamiglia and

Guell (2014) observe a strategic response in the distribution of reports to a change in the

allocation of neighborhood priorities. However, assuming equilibrium behavior implies a

strong degree of rationality and knowledge, particularly if parents vary in their level of

sophistication as postulated by Pathak and Sonmez (2008, 2013). We therefore consider

extensions with biased beliefs and heterogeneous sophistication in Section 8.5.

4 A Revealed Preference Approach

This section illustrates the key insight that allows us to learn about the preferences of

students from their (potentially manipulated) report, and present an overview of our method

for estimating preferences.

Equation (1) reveals that a student’s optimal choice depends on the expected assignment

probabilities given her report and priority type. The choice of a report by a student can be

interpreted as a choice over the set of lotteries,

Lσ∗ti =
{
Lσ
∗

Ri,ti
: Ri ∈ Ri

}
.

These are the assignment probabilities that a student with priority type ti can achieve by

making different reports to the mechanism when the other agents are playing according to

σ∗. We will suppress the dependence on σ∗ and ti in the notation for expositional simplicity,

focusing on students with a given priority type and a Bayesian Nash Equilibrium.

Assume, for the moment, that the assignment probabilities available to a student is

known to the analyst and consider her decision problem.13 Figure 2 illustrates an example

with two schools and an outside option. Each possible report corresponds to a probability of

assignment into each of the schools and a probability of remaining unassigned. Figure 2(a)

depicts three lotteries LR, LR′ , LR′′ corresponding to the reports R, R′ and R′′ respectively

on a unit simplex.14 The dashed lines show the linear indifference curves over the lotteries

for an agent with utility vector v ∈ RJ . A student that is indifferent between LR and LR′

must have indifference curves that are parallel to the line segment connecting the two points

and, therefore, a utility vector that is parallel to vR,R′ (depicted in figure 2(b)). Likewise,

students with a utility vector proportional to vR,R′′ are indifferent between LR and LR′′ . It

13The next section presents conditions under which the available data can be used to consistently estimate
the assignment probabilities available to a student in the Bayesian Nash Equilibrium that generated the
observed data.

14The simplex is often referred to as the Marschak-Machina triangle.
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is now easy to see that the shaded region in figure 2(b) denotes all utility vectors for which

LR is the optimal choice. More generally, for any J and set of lotteries L, choosing LR is

optimal if the utility vector belongs to the normal cone (or the polar dual):

CR = {v ∈ RJ : v · (LR − LR′) ≥ 0 for all R′ ∈ R}. (2)

For all values of v in this cone, the expected payoff from choosing R is at least as large as

choosing any other report. Figure 2(c) illustrates the regions that correspond to R′ and R′′

being optimal choices in our example. It easy to see that the normal cones to any set of

lotteries may intersect only at their boundaries, and together cover the utility space. Figure

2(d) shows this visually in our example. Specifically, in the space of utilities, the types

vR,R′ , vR,R′′ and vR′,R′′ are indifferent between two of the three choices. Reports R, R′ and

R′′ are optimal for students with utility vectors in the regions CR, CR′ and CR′′ respectively.

The student’s report therefore reveals which of the normal cones, CR ⊆ RJ for R ∈ R,

contains her utility vector. We can use this insight to construct the likelihood of observing

a given choice as a function of the distribution of utilities, fV :

P(R|z, ξ) =

∫
1{v ∈ CR}fV (v|z, ξ)dv. (3)

This expression presents a link between the observed choices of the students in the market

and the distribution of the underlying preferences, and will be the basis of our empirical

approach. Note that the number of regions of the utility space that we can learn about from

observed choices is equal to the number of reports that may be submitted to a mechanism,

which grows rapidly with the number of schools or the number of ranks submitted.

There are three remaining issues to consider which we address in the subsequent sec-

tions. First, we introduce a large class of mechanisms for which the equilibrium assignment

probabilities can be consistently estimated. This is essential for determining the regions

CR needed to construct the likelihood. The objective is to estimate the assignment proba-

bilities for the equilibrium that generated the data, and therefore our procedure allows for

multiple equilibria. Second, we provide conditions under which the distribution of utilities

is non-parametrically identified. We can obtain point identification by “tracing out” the

distribution of utilities with either variation in lottery sets faced by students or by using an

additively separable student-school specific observable characteristic. Third, we propose a

computationally tractable estimator based on Gibbs’ sampling that can be used to estimate

a parametric form for fV . Here, we use an estimate of the lotteries obtained from the first

step.
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5 A Class of Mechanisms and their Limit Properties

The first step of our procedure requires an estimate of the assignment probabilities. These

probabilities are a result of mechanisms that are usually described in terms of algorithms that

using a profile of reports and priority types of all the students in the district. There are few a

priori restrictions on these algorithms, allowing for mechanisms that may be ill-behaved. For

instance, a small changes in number of students or their reports could potentially have large

effects on the assignment probabilities.15 Moreover, our objective is to estimate assignment

probabilities simultaneously for all priority-types and each possible rank-order list that can

be submitted by a student. These complications can create difficulties in obtaining precise

estimates of assignment probabilities from the data.

This section presents a large class of mechanisms that have properties that allow for

consistent estimation of assignment probabilities.

5.1 A Convergence Condition

To state our convergence condition, we first restrict attention to semi-anonymous mecha-

nisms. These mechanisms treat students with the same priority type and report symmetri-

cally. Formally,

Definition 3. Φn is semi-anonymous if there exists a function φn : (R×T )×∆(R×T )→
∆S, such that

φn((Ri, ti),m−i) = Φn
i ((Ri, ti), (R−i, t−i)),

where m−i = 1
n−1

∑
k 6=i δ(Rk,tk) is the measure of reports of students other than i.16

Semi-anonymous mechanisms use only the priority types and reports of students to de-

termine assignments, and do not depend directly on the identities of the specific students.

Therefore, only the number of reports made by each priority-type affect the final outcomes

for each student. Additionally, a student’s assignment probabilities only depends on the

reported rank-order list and her priority type. The restriction that there are only finitely

many priority types rules out a fine metric such as test scores that can be used to distinguish

15Two pathological examples allowed by Definition 1 are instructive. The first example is one in which
the assignment of all students depends only student 1’s report. The second is an algorithm that depends on
whether an odd or even number of students apply to schools.

16This definition is equivalent to the more usual definition: A mechanism is semi-anonymous with
priorities T if (1) for all R, t ∈ Rn × Tn, and i, i′ such that ti = ti′ , we have that Φni (R, t) = Φni′(R, t) and
(2) for all Ri, R−i and permutations π of −i = (1, . . . , i−1, i+1, . . . , n), we have that Φni ((Ri, ti), R−i, t−i) =
Φni ((Ri, ti), Rπ(−i), tπ(−i)).
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between any two students.17

Our identification and estimation results are based on properties of the assignment prob-

abilities in a large market. The key property that will allow us to proceed with the analysis

for a mechanism is that outcomes of the mechanism evaluated at the empirical distribution

of the reports converge in probability to the limiting values as the market grows in size. We

state this condition formally as follows:

Condition 1 (Convergence at m). Suppose the sequence of empirical measures mn−1 on

R× T converges in probability to the population measure m ∈M. Then, for each (R, t),

|φn((R, t),mn−1)− φ∞(R, t,m)| p→ 0

where φ∞((R, t),m) = limn→∞ φ
n((R, t),m).

This condition guarantees that if the distribution of reports and priority-types of other

students converges to a limit m, then the sampling error in estimating the assignment prob-

abilities using the observed sample vanishes as the sample size increases. It provides the

basis for using the sample of reports observed for estimating assignment probabilities.

Specifically, consider assignment probabilities under samples with reports and priority

types drawn from a sequence fo type-symmetric strategies σnR(v, t). These strategies may or

may not be part of an equilibrium. We assume the sample of reports and priority types of

the other players, mn−1, is an empirical measure for a sample from

mσn

(R, t) =

∫
σnR(v, t)dFV,T .

We now show that Condition 1 allows us to consistently estimate the assignment probabilities

when the samples are generated from a sequence of type-symmetric strategies.

Theorem 1. Assume that the sequence of type-symmetric strategies, σn, are such that ‖σn−
σ‖F → 0,18 and φn satisfies Condition 1 at mσ, then

|φn((R, t),mn−1)− φ∞((R, t),mσ)| p→ 0.

Proof. The proof follows from Condition 1. To apply this condition, we need to show that

supR,t |mn−1(R, t) −mσ(R, t)| p→ 0. Note that mn−1(R, t) is a sample of n − 1 independent

17Note that Φni only restricts φn((Ri, ti),m(R−i, t−i)) at a subset of probability measures m, namely,

probability measures of the form 1
n−1

∑n−1
k=1 δRk,tk . We are free to choose φn at other values. Henceforth, we

refer to a specific choice of φn when discussing a semi-anonymous mechanism.
18We use the norm ‖σ − σ̃‖F = supR,t

∫
|σR(v, t)− σ̃R(v, t)|dFV |t.
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draws from mσn
(R, t) = FT (t)

∫
σnR(v, t)dFV |T . The triangle inequality implies that

sup
R,t
|mn−1(R, t)−mσ(R, t)|

≤ sup
R,t
|mn−1(R, t)−mσn

(R, t)|+ sup
R,t
|mσn

(R, t)−mσ(R, t)|.

The first term, converges in probability to 0 uniformly in R, t by the Glivenko-Cantelli

theorem since R× T is finite and therefore a uniform Glivenko-Cantelli class. To show that

the second term converges to zero, note that it can be rewritten and bounded using the

triangle inequality as follows:

sup
R,t
|mσn

(R, t)−mσ(R, t)| = sup
R,t

∣∣∣∣∫ (σnR(v, t)− σR(v, t))dFV |t

∣∣∣∣
≤ sup

R,t

∫
|σnR(v, t)− σR(v, t)|dFV |t

= ‖σnR − σR‖F → 0.

The condition above allows us to show that if σn is a convergent sequence of type-

symmetric strategies, then the corresponding assignment probabilities converge (in proba-

bility) to the limit assignment probabilities. If satisfied, the condition implies that the data

can be used to construct consistent estimates of assignment probabilities under alternative

assumptions on behavior. Condition 1 is agnostic about the solution concept and is best

seen as a regularity condition guaranteeing consistent estimation of assignment probabilities.

This allows to use the techniques developed in this section for extensions in which students

need not be best responding to correct beliefs about assignment probabilities.

For our baseline preference estimates, we will assume that student behavior is described

by an equilibrium and therefore have correct beliefs about assignment probabilities. Theorem

1 implies that we can consistently estimate the beliefs agents must have in an equilibrium.

Since aggregate uncertainty disappears in a large market, we can use two solution concepts to

describe agent behavior. First, we can assume that the data are generated from any sequence

of BNE that converges to a point where condition 1 is satisfied. Requiring a convergent se-

quence of BNE ensures that the equilibrium behavior of agents is well-behaved under the

data generating process. Conditions that guarantee the existence of such a sequence are

presented in Menzel (2012). These conditions are presented in terms of smoothness condi-

tions on the best-response function at the equilibrium of the limit game (the game defined

by φ∞). Unfortunately, these are not easily mapped to primitives. Alternatively, we can
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assume a behavioral model in which agent reports are made according to a limit equilibrium

with a continuum of agents (Kalai, 2004; Azevedo and Budish, 2013).19 The advantage of

this approach is that it avoids analyzing sequences of equilibria to derive consistency results.

It may also be a reasonable behavioral assumption in itself. Appendix B shows that the

difference in payoffs to agents under these two solution concepts are not significant when

there are a large number of agents. Specifically, we show that the limit of a sequence of BNE

is a limit equilibrium and that all limit equilibria are approximate BNE.

Two additional points are worth noting about the approaches. First, in both approaches,

aggregate uncertainty about the distribution of the reports disappears in the limit, although

it is present in any finite BNE. This feature is not unique to our setting and is implied

in any large game (Kalai, 2004; Menzel, 2012). We return to this point when proposing

an estimator for assignment probabilities. Second, we allow for the possibility of multiple

equilibria. The objective is to estimate assignment probabilities for the equilibrium that

generated the data. We can achieve this objective because these are only a function of the

distribution of reported preferences and priority types, which are observed.

Although useful, verifying condition 1 may not be straightforward because matching

mechanisms are usually described using algorithms instead of functions that take a measure

of reports as inputs. Continuity or uniform convergence properties that often allow for econo-

metric consistency are therefore not directly available. A representation of the mechanism

as a function may be necessary before proceeding. The next subsection describes a large

class of mechanisms in which the condition is satisfied.

5.2 Report-Specific Priority and Cutoff Mechanisms

This section introduces a class of mechanisms called Report-Specific Priorities + Cutoff

(RSP+C) mechanisms. These mechanisms admit a particular representation of how reports

and priorities map into assignment probabilities.20

We consider mechanisms in which each student is assigned an eligibility score for each

school, and the student is assigned to her highest ranked choice for which her eligibility score

exceeds the school’s cutoff. In symbols, given cutoffs, p1, . . . , pj, we consider mechanisms that

a student with eligibility scores ei = (ei1, . . . , eiJ) that submitted report Ri is assigned to

school j if

D
(Ri,ei)
j (p) = 1{eij ≥ pj, jRi0}

∏
j′ 6=j

1{jRij
′ or eij′ < pj′}.

19Formally, σ∗ is a Limit Equilibrium if σ∗Ri
(vi, ti) > 0 implies that vi · φ∞((Ri, ti),m

σ∗) ≥ vi ·
φ∞((R′i, ti),m

σ∗) for all R′i ∈ Ri.
20Our representation is for any set of reports, not only for those generated from an equilibrium.

22



The function D
(Ri,ei)
j (p) is an indicator for whether the student is assigned to school j given

cutoffs p, the report Ri and the eligibility scores ei. It equals 1 if and only if a student’s

eligibility score exceeds the cutoff at j (i.e. eij ≥ pj), and the student is not eligible at all

higher-ranked schools (i.e. if j′Rij
′ then eij < pj). We now describe how student eligibility

scores and the school-specific cutoffs are determined.

As the name suggests, eligibility scores in RSP+C mechanisms depend on the report

made by the student and the priority type. Formally, we assume that there is a tie-breaker

νi that is not known to a student at the time the student makes her report. Let γν|t denote

the distribution of the random tie-breaker given the priority type. The vector of eligibility

scores for student i, ei = f(Ri, νi), is given by a (known) function of this tie-breaker and her

report.

By allowing for the distribution of tie-breakers to depend on t, we allow for the case that

sibling priority receive a more favorable distribution of tie-breakers than other students. We

also allow for the distribution of the random priority to be correlated with the student’s

priority type and across schools. The dependence on f allows us to consider mechanisms

such as the Boston mechanism or First Preferences First, which prioritize all students that

rank a school first over other students.

Finally, the allocations are determined by a school-specific cutoff pj ∈ [0, 1]. The cutoff,

pj, will be determined as a function of reports, priorities and random draws of the tie-breaker

for all the students to ensure that schools are not assigned more students than available

positions. Let η ∈ ∆
(
R× [0, 1]J

)
be a measure of student reports, and eligibility scores.

We can now write the measure of students that are eligible for j and rank it above other

eligible schools:

Dj(p|η) = η

(
{eij ≥ pj, jRi0}

⋂
j′ 6=j

({jRij
′} ∪ {eij′ < pj′})

)
. (4)

Given D(p|η) and school capacities q, we can define the set of cutoffs that clear the market

as follows:

Definition 4. The vector of cutoffs p is a market clearing cutoff for economy (η, q) if

for all j ∈ S, Dj(p|η)− qj ≤ 0, with equality if pj > 0.

At a market clearing cutoff, the total number of students that are eligible and seek

assignment at any given school is no higher than the capacity at the school. Moreover,

a school has a strictly positive cutoffs only if assigning students to their highest ranked

choice for which they are eligible (at the market clearing cutoffs) would exhaust the school’s

capacity. RSP+C mechanisms that use market clearing cutoffs to determine who is assigned
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to any given school.

Formally, we say that a mechanism φn is a Report-Specific Priority + Cutoff mech-

anism if there exists a function f : R × [0, 1]J → [0, 1]J and a measure γν|t over [0, 1]J for

each t ∈ T such that

(i) φnj ((Ri, ti),m(R−i, t−i)) is given by∫
. . .

∫
D(Ri,f(Ri,νi))(pn)dγν1|t1 . . . dγνn|tn

where f(Ri, νi)) is the eligibility score,

(ii) pn are market clearing cutoffs for capacity qn and ηn =
1

n

∑
i δ(Ri,f(Ri,νi)).

(iii) f strictly increasing in the last J arguments.

The representation highlights two ways in which these mechanisms can be manipulable.

First, the report of an agent can affect her eligibility score. Fixing a cutoff, agents may have

the direct incentive to make reports that may not be truthful. Second, even if eligibility does

not depend on the report, an agent may (correctly) believe that the cutoff for a school will

be high, making it unlikely that she will be eligible. If the rank-order list is constrained in

length, she may choose to omit certain competitive schools.

This representation extends the characterization of stable matchings by Azevedo and

Leshno (2013) in terms of demand-supply and market clearing to discuss mechanisms. Par-

ticularly, we can use the framework to consider mechanisms that produce matchings that

are not stable. As we show in the next section, a remarkable feature of this representation

is that it encompasses a very broad class of mechanisms that differ essentially by the choice

of f . The representation may therefore be of independent theoretical interest.

5.2.1 Examples

This subsection shows that most commonly used mechanisms can be expressed as RSP+C

mechanisms. The main text focuses on the two most commonly used mechanisms:

The Student Proposing Deferred Acceptance mechanism: For reports R1, . . . , RN

and priorities t1, . . . , tN ,

Step 1: Students apply to their first listed choice and their applications are tentatively held

in order of priority and a tie-breaker until the capacity has been reached. Schools reject

the remaining students.
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Step k: Students that are rejected in the previous round apply to their highest choice that

has not rejected them. Schools pool new applications with those held from previous

steps, and tentatively hold applications in order of priority and a tie-breaker until ca-

pacity has been reached. The remaining students are rejected. The algorithm continues

if any rejected student has not been considered at all their listed schools. Otherwise,

each student is assigned to the school that currently holds her application.

This mechanism is strategy-proof for the students if the students can rank all J schools

(Dubins and Freedman, 1981; Roth, 1982), but provides strategic incentives for students if

students are constrained to list K < J schools (see Abdulkadiroglu et al., 2009; Haeringer

and Klijn, 2009, for details).

The Boston mechanism (or Immediate Acceptance mechanism): For reportsR1, . . . , RN

and priorities t1, . . . , tN , each school

Step 1: Assign students to their first choice in order of priority and a random tie-breaker

until the capacity has been reached. Reject the remaining students.

Step k: Assign students that are rejected in the previous round to their k-th choice in order

of priority and a random tie-breaker until the capacity has been reached. Schools reject

the remaining students. Continue if any rejected student has not been considered at

all their listed schools.

This mechanism is a canonical example for one that provides strategic incentives to students

(Abdulkadiroglu et al., 2006).

Proposition 1. The Deferred Acceptance mechanism and the Boston mechanism with tie-

breakers are RSP+C.

Proof. See Appendix B.4. We use e = f(R, ν) = ν for Deferred Acceptance and ej =

fj(R, ν) =
νj −#{k : kRj}

J
+
J − 1

J
for the Boston Mechanism. This choice of f for Boston

upgrades the priority of the student at her first choice relative to all students that list that

school lower.

Remark 1. Serial Dictatorship, First Preferences First, Chinese Parallel Mechanism and

the Pan London Admissions scheme are also report-specific priority + cutoff mechanisms.

For completeness, we discuss these mechanisms in Appendix B.4.

Hence, all mechanisms in table 1 except the TTC and Cambridge mechanisms are report-

specific priority + cutoffs mechanisms. As we discuss below, our convergence result will

require an additional assumption that the mechanism uses a random number to break ties.
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A researcher with data from one of these mechanisms will need to verify that priorities

used by the mechanism satisfy our assumptions above before applying the methods that

follow. An important restriction is that the function f does not depend on the reports and

priorities of the other agents. This may rule out some mechanisms that use the reports of

other agents to determine eligibility in a program. Alternatively, one may prove condition 1

directly, as we do for the Cambridge mechanism.

5.2.2 Condition 1 for Report-Specific Priority + Cutoff mechanism

Our main result in this section shows that this class of mechanisms satisfy the key conver-

gence condition needed to proceed with the rest of our analysis.

We make the following assumption on η in the limit continuum economy:

Assumption 1. 1. (Non-degenerate tie-breakers) For some κ > 0, and each p, p′ ∈
[0, 1]J , (R, t) ∈ R× T and j, ηe|R,t({pj ∧ p′j ≤ ej ≤ pj ∨ p′j}) ≤ κ|pj − p′j|.

2. (Unique Cutoff) (η, q) admits a unique market clearing cutoff, p∗.

Non-degenerate tie-breakers is a strengthening of strict preferences in Azevedo and Leshno

(2013). The assumption is straightforward to verify with knowledge of the mechanism. For

example, it is satisfied if a random number is used to break ties between multiple students

with the same priority type. It also allows for a situation in which a single tie-breaking

number that is used by all schools to break ties. This assumption, however, is not satisfied if

the school district uses an exam to determine eligibility and does not use a random number

to break ties between students with identical exam scores.

Assuming a unique cutoff restricts the joint distribution of reports and priorities, and

the school capacities. Existence of a market clearing cutoff is guaranteed by corollary A1 of

Azevedo and Leshno (2013) for any η. Uniqueness is a restriction on an equilibrium object.

Although the assumption is not made on primitives, it is a restriction on features that are

observed in the data. Sufficient conditions that imply this assumption are therefore testable

in principle. Further, using the reports observed in the data it is feasible to check if there

are multiple cutoffs that approximately clear the market that are sufficiently different. Not

finding approximate market clearing cutoffs that are far might provide confidence in the

assumption above. We refer the reader to Appendix B.2 for a more formal discussion of

sufficient conditions for assumption 1. This discussion borrows from results in Azevedo and

Leshno (2013) and Berry et al. (2013).

We are now ready to state the first main result of this section.
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Theorem 2. Assume that (η, q) satisfies assumption 1, where

η({R, e ≤ p}) =
∑
t∈T

m(R, t)γν|t({f(R, ν) ≤ p}).

φn satisfies condition 1 if it is a Report-Specific Priority + Cutoff mechanism.

Proof. See Appendix B.3.

The proof is based on a lemma showing that the market clearing cutoffs faced by an in-

dividual agent in the finite economy converges to the limiting cutoff p∗, irrespective of their

draw of the tie-breaker. This uniform convergence follows from standard empirical process

results applied to the function Dj(p|η) defined in equation (4) and the market clearing con-

dition. Intuitively, in the large market, any single agent has a negligible effect on the fraction

of students demanding assignment at any school given cutoffs p. Therefore, individual stu-

dent reports and tie-breakers have negligible effects of market clearing cutoffs. We then use

assumption 1, which implies that the probability that a student with priority ti and report

Ri has an eligibility draw that is pivotal is negligible. Hence, the assignment probabilities

in a large finite economy approach the limiting case.

An important feature of the representation of the mechanism in terms of the cutoffs and

the use of these cutoffs in the proof is that is significantly reduces the dimensionality of the

assignment probabilities that need to be estimated. The number of cutoffs is equal to the

number of schools which is far fewer than |R × T |, the number of assignment probabilities

that need to be estimated. This representation also implies that students only need to have

correct beliefs about the cutoffs in equilibrium. This is a lower dimensional object than

assignment probabilities over which beliefs need to be formed.

6 Identification

In Section 4, we showed that the choice of report by a student allows us to determine the

normal cone, CR ⊆ RJ for R ∈ R, that contains her utility vector v. This deduction required

knowledge of the assignment probabilities LR, which we showed can be consistently estimated

under certain regularity conditions on the mechanism. We now articulate how one can learn

about the distribution of utilities fV |T (v|z, ξ) using implications of equation (3):

P(R ∈ R|z, t, ξ, b) =

∫
1{v ∈ Cb,R,t}fV |t(v|z, ξ)dv,
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where b is a market subscript and the dependence on t has been reintroduced for notational

clarity. It allows us to consider different market conditions for the same set of schools or

students with different priority types.

The expression above shows that two potential sources of variation are available to the

analyst that can be used to “trace out” the densities fV |T (v|z, ξ). First, we can consider

choice environments with different values of Cb,R,t. Second, we can consider variation in the

observable characteristics z. We consider each of these in the subsequent sections.

As is standard in the literature on identification, our results in this section abstract

away from sampling noise. Hence, we treat the assignment probabilities and the fraction

of students that choose any report as observed. We view these results as articulating the

empirical content of the data and highlighting which parametric assumptions are used only

to assist estimation in finite samples.

6.1 Identification Under Varying Choice Environments

In some cases, a researcher is willing to exclude certain elements of the priority structure t

from preferences, or may observe data from multiple years in which the set of schools are

the same, but the capacity at schools varies across years. For instance, some students are

grandfathered into Kindergarten from pre-K before the January assignment in Cambridge.

This affects the number of seats available at a school during this process. This variation as-

sists in identification if it is excluded from the distribution of utilities. This section illustrate

what can be learned from such variation without any further assumptions.

When t is excluded from the distribution of preferences, i.e. v|z, ξ, t ∼ v|z, ξ, t̃ for t, t̃ ∈ T ,

we effectively observe students with the same distribution of preferences facing two different

choice sets for assignment probabilities. For example, assume that the choice sets faced by

t and t̃ are L = {LR, LR′ , LR′′} and L̃ = {LR, L̃R′ , LR′′} respectively. Figure 3(a) illustrates

these choice sets. The change from LR′ to L̃R′ affects the set of utilities for which the various

choices are optimal. Now, the set of types for which LR is optimal also includes the dotted

cone. These utilities in this cone can be written as linear combinations of ṽR,R′ and vR,R′

with positive coefficients. Observing the difference in likelihood of reporting R for students

with the two types allows us to determine the weight on this region:

P(R|z, t̃)− P(R|z, t) =

∫
(1{v ∈ C̃R} − 1{v ∈ CR})fV |t(v|z)dv.

Since utilities may be determined only up to positive affine transformations, normalizing the

scale as ‖vi‖ = 1 for each student i is without loss of generality. Hence, it is sufficiently to

consider the case when fV |t has support only on the unit circle. Figure 3(b) illustrates that
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this variation allows us to determine the weight on the arc h̃R−hR. Appendix C.2 formalizes

this argument and characterizes the identified set under such variation.

The discussion suggests that enough variation in the set of lotteries faced by individuals

with the same distribution of utilities can be used to identify the preference distribution. If

such variation is available, the arc above traces the density of utilities along the circle. Of

course, we do not expect that typical variation in the data will be rich enough to use non-

parametric estimation methods based on this form of variation. However, this observation

articulates the sources of choice set variation that are implicitly used when utilities are not

linked directly with priority types.

While this variation may not be rich enough for a basis for non-parametric identification,

it makes minimal restrictions on the distribution of utilities. In particular, the result allows

for the distribution to depend arbitrarily on residential locations. Although beyond the scope

of this paper, this framework may be a useful building block for a model that incorporates

both residential and schooling choices.

6.2 Identification With Preference Shifters

In this section we assume that the set of observables zij ∈ RKz can be partitioned into

z2
ij ∈ RKz−1 and z1 ∈ R, and that indirect utilities are given by

V (zij, ξj, εi) = U(z2
ij, ξj, εi)− z1

ij (5)

where εi ⊥ z1
ij. The magnitude of the coefficient on z1 can be viewed as a scale normalization,

and the model is observationally equivalent to one with random coefficient αi that has support

only on negative real numbers. This scale normalization replaces the normalization, ‖vi‖ = 1,

made in the previous section. We use variation in z1 within a market, which fixes the school

unobservables ξ, and consider sets of students with identical values of z2. For simplicity of

notation, we therefore drop ξ, z2. Let ζ be the support of z1. Since fV (v|z1) is a location

family, fV (v|z1) = g(v + z1) where g is the density of u = v + z1. Since the distribution of

z1 is observed in the data, our objective in this section is to identify the density g.

The term z1
ij is sometimes referred to as a special regressor (Lewbel, 2000; Berry and

Haile, 2010). The combination of the additively separable form and independence of ε is the

main restrictions in this formulation. In the school choice context, these assumptions needs to

be made on a characteristic that varies by student and school. For instance, Abdulkadiroglu

et al. (2014) assume that distance to school is independent of student preferences. The

assumption is violated if unobserved determinants of student preferences simultaneously

determine residential choices.
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We now illustrate how variation in z1 can be used to “trace-out” the density of u. Consider

the lottery set faced by a set of students in figure 2 and the corresponding region, CR, of the

utility space that rationalizes choice R. A student with z1 = z chooses R if v = u− z ∈ CR.

The values of u that rationalize this choice is given by z + a1vR,R′ + a2vR,R′′ for any two

positive coefficients a1 and a2. Figure 4 illustrates the values of u that make R optimal.

As discussed in Section 4, observing the choices of individuals allows us to determine the

fraction of students with utilities in this set. Similarly, by focusing on the set of students with

z1 ∈ {z′, z′′, z′′′}, we can determine the fraction of students with utilities in the corresponding

regions. Figure 4 illustrates the sets that make R optimal for each of these values of z1. By

appropriately adding and subtracting the fractions, we can learn the fraction of students

with utilities in the parallelogram defined by z − z′ − z′′′ − z′′. This allows us to learn the

total weight placed by the distribution g on such parallelograms of arbitrarily small size.

It turns out that we can learn the density of g around any point z in the interior of ζ by

focusing on local variation around z. The next result formalizes this intuition.

Theorem 3. Suppose CR is spanned by J linearly independent vectors {w1, . . . , wJ}. If

hCR
(z1) = P (v ∈ CR|z1) is observed on an open set containing z1, then g(z1) is identified.

Hence, fV (v|z1) is identified everywhere if ζ = RJ .

Proof. Let W = (w′1, . . . , w
′
J)′ be the matrix containing linearly independent vectors such

that CR = {v : v = Wa for some a ≥ 0}. Assume, wlog, |detW | = 1. Evaluating hCR
at

Wx, we have that

hCR
(Wx) =

∫
RJ

1{u−Wx ∈ C}g (u) du.

After the change of variables u = Wa:

hCR
(Wx) =

∫
RJ

1{W (a− x) ∈ CR}g(Wa)da

=

∫ x1

−∞
. . .

∫ xJ

−∞
g (Wa) da

where the second inequality follows because 1{W (a− x) ∈ CR} = 1{a− x} ≤ 0. Then:

∂JhCR
(Wx)

∂x1 . . . ∂xJ
= g (Wx)

and g (z1) is given by ∂JhC(Wx)
∂x1...∂xJ

evaluated at x = W−1z1.

Intuitively, we use local changes in z1 to shift the distribution of cardinal utilities to favor

certain lotteries over others. Since simplicial cones are spanned by linearly independent
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vectors, we can decompose the change in how often a lottery is chosen into the principal

directions to identify the density.

Note that the local nature of this identification result articulates precisely the fact that

identification of the density at a point does not rely on observing extreme values of z1. Of

course, identification of the tails of the distribution of u will rely on support on extreme

values of z1. Also note that our identification result requires only one convex cone generated

by a lottery, and therefore, observing additional lotteries with simplicial cones generates

testable restrictions on the special regressor.

It turns out that considering cones CR that are spanned by linearly independent vectors is

sufficient for J = 2, but may not be useful for some sets of assignment probabilities if J > 3.

This is because for J = 2, the normal cone CR is spanned by linearly independent vectors

if LR is extremal (in the convex hull of L). Intuitively, an extremal lottery can have only

two other adjacent lotteries and therefore the cone CR is spanned by two vectors. However,

when J > 2, a lottery may have more than J adjacent lotteries, resulting in a cone CR that

is spanned by more than J vectors. These vectors cannot be linearly independent.

Fortunately, we can still identify g if z1 has full support on RJ as long as the tails of g are

exponentially decreasing. Theorem C.3 in Appendix C.3 states the results and conditions

formally. The proof is based on Fourier-deconvolution techniques since the distribution of

v is given by a location family parametrized by z1. This allows us to learn about g from

observing how choices over lotteries change with z1. However, because the result is based

on deconvolution techniques, it requires stronger support assumptions than in Theorem

3. Nonetheless, the conditions on G are quite weak, and are satisfied for commonly used

distributions with additive errors such as normal distributions, generalized extreme value

distributions or if u has bounded support.21

7 Estimation

Non-parametric estimation of random utility models can be computationally prohibitive and

imprecise in finite samples, particularly if the number of schools is large. Following the dis-

crete choice literature, we parametrize the distribution of indirect utilities FV (v|z, ξ) with

FV ;θ(v|z, ξ) where θ belongs to a compact set Θ ∈ RK . We view this parametric represen-

tation as a parsimonious approximation to the primitives. The identification results in the

previous section show that these parametric assumptions may be relaxed in the presence of

21We do not require that g has a non-vanishing characteristic function. When u has bounded support, the
support conditions on ζ can also be relaxed. In this case, we can allow for ζ to be a corresponding bounded
set.

31



richer data.

We consider a two-step estimator where in the first step we replace φ∞((R, t),m) with

a consistent estimate φ̂(R, t). For example, φ̂(R, t) = φn((R, t),mn−1) where mn−1 is the

empirical measure on the reports and priority types of n−1 agents in the sample. Condition

1 implies that φ̂(R, t)
p→ φ∞((R, t),m). Our second step is defined as an extremum estimator:

θ̂ = inf
θ∈Θ

Qn(θ, φ̂)

Consistency of such a two-step procedure is straightforward to establish under mild condi-

tions on Qn. The result is formally stated and proved in Appendix D.1.

The objective function Qn could be based on a likelihood or a method of moments.

We will implement our second-step as a Gibbs’ sampler, and interpret the posterior mean

of this sampler as asymptotically equivalent to the Maximum Likelihood Estimator. We

now describe each of the steps for the Cambridge Mechanism and the particular parametric

specification used in the second step.

7.1 First Step: Estimating Assignment Probabilities

The first step requires a (consistent) estimate of the assignment probabilities φ((R, t),m)

as function of the reports and priority types, (R, t). Given condition 1, there are several

feasible methods for obtaining consistent estimates. For instance, one may use the observed

assignment probabilities conditional on the ranks and priority types of the students. A

significant disadvantage of this method is that several feasible rank-order lists may not be

observed for a given priority-type, or may not be observed frequently enough to obtain

accurate estimates.

Our preferred method is to simulate the mechanism directly and resample other students

for each rank and priority type from the observed data. This uses the knowledge of the

details of the mechanism and avoids the small sample size problem that a method that uses

the observed assignments confronts. While one may simply use the observed reports of the

other students, we believe that resampling the other students is likely to better approximate

the uncertainty the students face in finite samples. In our dataset, we implement this by

categorizing students into various types and iterating through feasible rank order lists. For

each list, we use 1,000 draws of the tie-breakers and N − 1 other students (drawn with

replacement) along with their observed rank-order lists and priority types.

A final possibility is to take advantage of the representation of mechanisms as RSP+C

mechanism and directly simulate the cutoffs. Then, for each rank-order list, one may compute

the probability of assignment for each student. This can alleviate computational difficulties
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in simulating the mechanism when the number of feasible rank order lists or the number

of priority types is large. The complexity of the brute force methods grows exponentially

in number of schooling options because one iterates through various rank lists. In contrast,

since the cutoffs grow linearly in the number of schools, estimating them directly may ease

computation.22 We cannot apply this method because the Cambridge mechanism is not a

Rank Specific Priority + Cutoffs mechanism although it satisfies condition 1.

7.2 Second Step: Preference Estimates

While our identification results do not make parametric assumptions on utilities, we imple-

ment the following parametric specification to assist estimation in finite samples. Student

i’s indirect utility for school j is:

vij =
K∑
k=1

δkjxijk − dij + εij (6)

vi0 = 0

where dij is the road distance between student i’s home and school j; xijk are student-school

specific covariates; δkj are school specific parameters to be estimated; εi = (εi1, . . . , εiJ) ∼
N(0,Σ).23 The normalization of vi0 = 0 is without loss of generality, and the scale nor-

malization is embedded in the assumption that the coefficient on dij is −1. Our estimated

specification constructs xijk by interacting indicators of student paid-lunch status, sibling

priority, ethnicity, home-language and a constant with school-specific dummies.

For this step, we adapt the Gibbs’ sampler used by McCulloch and Rossi (1994) to

estimate a discrete choice model to this context. The Gibbs’ sampler obtains draws of δ and

Σ from the posterior distribution by constructing a Markov chain of draws from any intial

set of parameters (δ0,Σ0). The invariant distribution of the Markov chain is the posterior

given the prior and the data. It offers a computationally convenient likelihood-based method

for estimating parameters in some cases when an analytic form for the likelihood function is

not available.24

As in the discrete choice case, we first use data augmentation to pick a utility vector

for each agent consistent with their choice. Here, we initialize v0
i ∈ CRi

for each student

22Lemma B.1 in the appendix shows consistency of the cutoffs estimated from the data for a Rank Specific
Priority + Cutoff mechanism.

23Note that our specification allows for heteroskedastic errors εij and arbitrary correlation between εij
and εij′ . This specification relaxes homoskedastic and independent preference shocks commonly used in logit
specifications.

24The Bernstein von Mises theorem implies that posterior means we report have the same asymptotic
distribution as maximum likelihood estimates (see chapter 10.1 van der Vaart, 2000).
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i. The chain is constructed by sampling from the conditional posteriors of the parameters

and the utility vectors given the previous draws. The sampler iterates through the following

sequence of conditional posteriors:

δs+1 | vsi ,Σ
s

Σs+1 | vsi , δ
s+1

vs+1
i | vsi , CRi

, δs+1,Σs+1

The first step updates the parameter δ of equation (6). We use the standard procedure

in Bayesian approaches to draw δs+1 from the posterior distribution of δ given its prior, the

data (vs, x) and the distribution of error terms N(0,Σs). A new draw Σs+1 is drawn from the

posterior distribution of Σ given the prior and εs+1, which can be solved for using equation

(6), vsi and δs+1. The last step draws vs+1
i for each student. This occurs by iterating through

the various schools and sampling from the following conditional posteriors:

vs+1
ij |vs+1

i1 , . . . , vs+1
ij−1, v

s
ij+1, . . . , v

s
iJ , δ

s+1, CRi
,Σs+1.

This step requires us to draw from a (potentially two-sided) truncated normal distribution

with mean, variance and truncation points determined by δs+1, Σs+1, CRi
and vi,−j.

25 This

procedure ensures that vs+1
i ∈ CRi

for every student i in every step.

We specify independent and diffuse prior distributions for δ = {δjk}j=1..J,k=1..K ∈ RJK

and Σ. It is convenient to use a normal prior on δ, δ ∼ N(δ, A−1) and an independent inverse

Wishart prior on Σ,Σ ∼ IW (ν0, V0). These priors are convenient because (conditional) con-

jugacy is maintained at each step of the algorithm. Additional details on the implementation

of our Gibbs’ sampler are in Appendix D.2.

8 Application to Cambridge

8.1 Estimated Assignment Probabilities

Table 6 presents estimates of the assignment probabilities. As in table 4, the estimates

indicate considerable heterogeneity in school competitiveness. The typical student isn’t

guaranteed assignment at the more competitive schools even if she ranks it first. On the

other hand, several schools are sure shots for students that rank them first. The probability

25Our problem is therefore slightly is different from, although not more difficult than, a Gibbs’ sampler
approach to estimating standard discrete choice models in McCulloch and Rossi (1994). The standard
discrete choice models only involve sampling from one-sided truncated normal distributions.
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of not getting assigned to a school also differs with paid-lunch status. A comparison of

estimates in panel A with those in panels D and E indicates that having priority at a school

significantly improves the chances of assignment. The differential is larger if the school is

ranked first.

Perhaps one surprising feature is that the estimated probability of assignment is zero in

very few cases. Indeed, paid-lunch students ranking Graham & Parks as the second choice, or

one of Graham & Parks, Haggerty or Baldwin as the third choice are the only cases in which

the probability of assignment is estimated to be zero. Table 4 might have suggested that it

students are much less likely to be assigned to the latter two schools if they rank it second.

One reason for this difference is that the calculation in table 6 accounts for uncertainty in

the set of students that are drawn. Although this uncertainty vanishes in the large market,

the calculation that resamples students from the observed data may better approximate the

uncertainty perceived by students if they do not know the reports of other students.

8.2 Preference Estimates: Truthful vs Sophisticated Players

We compute the posterior distribution of preference parameters using the set of students

that submitted a rank-order list consistent with optimal play (i.e. submitted a list corre-

sponding to an extremal lottery). A total of 1,958 students (92% of the sample) submitted

a rationalizable list.26 The large fraction of students with rationalizable lists may initially

appear surprising. However, theorem C.1 in the appendix indicates that the lists that are

not rationalized are likely the ones where assignment probabilities for one of the choices is

zero. Our estimates in table 6 suggest that this is rare, except for a few schools. Most of the

students with lists that cannot be rationalized listed Graham & Parks as their second choice.

Indeed, the reports can be rationalized as optimal if agents believe that there is a small but

non-zero chance of assignment at these competitive schools. One concern with dropping

students with lists that cannot be rationalized is that we are liable to underestimate the

desirability of competitive schools. Although not reported below, estimates that add a small

probability of assignment to each of the ranked options yield very similar results.

Panel A of table 7 presents the (normalized) mean utility for various schools net of

distance, by student group for two specifications. The first specification treats the agent

reports as truthful, while the second treats all agents as sophisticated. The underlying

parameter estimates for the model with sophisticated agents are presented in table D.2. In

both specifications, we find significant heterogeneity in willingness to travel for the various

school options. Paid-lunch students, for instance, place a higher value on the competitive

26One student was dropped because the recorded home address data could not be matched with a valid
Cambridge street address.
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schools as compared to the non-competitive schools. Although not presented in the mean

utilities, Spanish and Portuguese speaking students disproportionately value schools with

bilingual and immersion programs in their home language. Students also place a large

premium on going to school with their siblings.

The estimates suggest that treating stated preferences as truthful may lead to underes-

timates of the value of competitive schools relative to non-competitive schools. This differ-

ential is best illustrated using Graham & Parks as an example. Treating stated preferences

as truthful, we estimate that paid-lunch students have an estimated mean utility that is an

equivalent of 1.29 miles higher than the average public school option. This is an underes-

timate relative to the model that treats agents as sophisticated. In contrast, the value of

Graham & Parks for free-lunch students is over-estimated by the truthful model. Specifically,

treating agents as sophisticated reveals that it is less desirable than the typical public school

option for the average free-lunch student. The difference can be explained by observing that

Graham & Parks is not competitive for free-lunch students, and therefore, the low number of

applications it receives indicates particular dislike for the school from this group of students.

Another significant difference between the two sets of estimates is the number of schools

students find preferable to the outside option. Panel B shows that estimates that treat

stated preferences as truthful suggest that about half the students have five or more schools

where assignment is preferable to the outside option. On the other hand, treating agents as

sophisticated suggests that about half the students find at most two schools in the system

preferable to the outside option. Treating preferences as truthful extrapolates from the few

students (about 13%) that do not have complete rank order lists. On the other hand, the

model that treats students as sophisticated interprets the decision to rank long-shots in the

second and third choices as evidence of dislike for the remaining schools relative to the outside

option. These results should be viewed in light of Cambridge’s thick after-market. About

92% of the students that are not assigned though the school choice process are assigned

to one of the schools in the system. In fact, more than a quarter of unassigned students

are placed at their top ranked school through the wait-list. There are also charter school

and private school options that unassigned students may enroll in. The value of the outside

option is therefore best interpreted in terms of the inclusive value of participating in this

after-market.27

27There are two issues worth noting about this interpretation. First, students that are assigned through
the process can choose to enroll elsewhere, should there be open seats. This may question the interpretation
of the mean utility estimates for the inside options. However, approximately 91% of the students that are
assigned through the school choice process enroll in their assigned school. Second, the wait-list process in
Cambridge allows students choose a set of schools to apply for. We avoid modeling this second-stage for
simplicity and to keep the empirical analysis close to the methodological framework presented earlier.
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8.3 Ranking Behavior, Out-of-Equilibrium Truthtelling and As-

signment to Top Choice

In this section we investigate the ranking strategy of agents, whether they would suffer

large losses from out-of-equilibrium truth-telling, and how strategic manipulation may affect

student welfare.

Table 8 presents the fraction of students that find truthful reporting optimal and losses

from truthful behavior relative to optimal play as estimated using the two assumptions on

student behavior. The first three columns are based on the assumption that the observed

reports are truthful and analyze the losses as a result of such näıvete. These estimates can

be interpreted as analyzing the true loss to students from not behaving strategically if they

are indeed out-of-equilibrium truth-tellers. The estimates suggest that the truthful report

is optimal for 57% of the students. The average student suffers a loss equal to 0.18 miles

by making a truthful report, or 0.42 miles conditional on regretting truthful behavior. We

also estimate heterogeneous losses across student groups. Free-lunch students, for instance,

suffer losses from truthful play less often and suffer lower losses conditional on any losses.

This reflects the fact that the Cambridge school system is not competitive for these students

because of the seats specifically reserved for this group.

The last three columns use estimates based on sophisticated agents and tabulate losses

from non-strategic behavior.28 Again, these estimates suggest that a little less than half the

students, and disproportionately paid-lunch students have strategic incentives to manipulate

their reports. Together, the observations suggest that markets where students face large

competitive pressures are precisely the markets where treating preferences as truthful may

lead to biased assessments of how desirable various schools are.

The estimated losses using both specifications may seem small on first glance, but can

be explained by noting that whenever a student has a strong preference for a school, she will

rank it as her first choice in her optimal report (and potentially manipulate lower ranked

choices). The priority given to the first ranked choice results in a low chance that the student

is not assigned to this highly desired school. This fact significantly lowers the potential of

large losses from truthful reporting.

Our estimates that about half the students find it optimal to behave truthfully is likely

to affect our assessment of how many students are assigned to their top choice. Table 9

presents this fraction by student paid-lunch status. The last column indicates that 87.4% of

the students rank their top choice first. This occurs because many students avoid ranking

28These estimates differ from the ones based of truthful reporting only because of differences in preference
parameters.
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competitive schools as their top rank in favor of increasing the odds of assignment to a less

preferred option. As a result, fewer students rank Graham & Parks as their top choice,

instead favoring Haggerty or Baldwin. We therefore see over-subscription to Haggerty and

Baldwin by paid-lunch students relative to the true first choice. The last column indicates

that while 84% were assigned to their stated first choice, only 75% were assigned to their

true first choice. This pattern is particularly stark for paid-lunch students, who are assigned

to their true first choice only 69.3% of the time. Table 6 indicated that assignment to

competitive schools is less likely for paid-lunch students. Together, these results suggest

that calculations of whether students are assigned to their preferred options based on stated

preferences may be misleading, and differentially so by student demographics.

8.4 Evaluating Assignments under Alternative Mechanisms

A central question in the mechanism design literature is whether variants of the Boston

Mechanism are worse for student welfare as compared to strategy-proof mechanisms such

as the Deferred Acceptance Mechanism. This question has been debated in the theoretical

literature with stylized assumptions on the preference distribution (see Miralles, 2009; Ab-

dulkadiroglu et al., 2011; Featherstone and Niederle, 2011). The Boston mechanism exposes

students to the risk that they are not assigned to their top listed choices, which can harm

welfare when they strategically choose not to report their most preferred schools. However,

this risk has a countervailing force that only agents with particularly high valuations for their

top choice will find it worthwhile listing competitive schools on top. Hence, the mechanism

screens agents for cardinal preferences and can result in assignments with higher aggregate

student welfare. Addtionally, assignments under the Boston mechanism may be preferable

under a utilitarian criterion because they need not eliminate justified envy (equivalently, may

not be stable). These are situations in which a student envies the assignment of another

student even though the envied student has lower priority at that school.

In this section, we quantitatively evaluate the assignments under the Cambridge mech-

anism and the Student Proposing Deferred Acceptance mechanism29 using the two sets of

preference estimates presented earlier. The stark assumptions of fully truthful and fully

sophisticated behavior is relaxed in the next section. Because the Deferred Acceptance

Mechanism is strategy-proof, evaluating the counterfactual market with this mechanism

29We construct a Deferred Acceptance mechanism by adapting the Cambridge Controlled Choice Plan.
Schools consider students according to their total priority + tie-breaking number. A paid-lunch student’s
application is held if the total number of applications in the paid-lunch category is less than the number of
available seats and if the total number of held applications is less than the total number of seats. Free-lunch
student applications are held in a similar manner. We allow students to rank all available choices.
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is relatively straightforward and does not require computing an equilibrium.30 Table 10

presents the results, first assuming that students report their preferences truthfully to the

Cambridge mechanism, and then implementing our proposed method that treats agents as

sophisticated.

An approach that treats agents’ stated preferences in the Cambridge Mechanism as truth-

ful finds little difference in the average welfare between the two mechanisms. Even though

agents that behave truthfully risk losing out on their lower ranked choices, panel B shows

that a large fraction of students are assigned to their top choice under the Cambridge mech-

anism due to the additional priority awarded to students at schools that are ranked first.

This feature of the mechanism results in instances of justified envy. Treating preferences as

truthfully reported, about 10% of students prefer the assignment of another student that has

lower priority at that school. This may seem like a small number at first glance, but note

that potential instances of justified envy are limited because a large majority of students are

assigned to their top choice.

These estimates may be biased if strategic behavior is widespread. In contrast to esti-

mates assuming truthful behavior, the results that treat agents as sophisticated indicates

that the assignments produced by the Cambridge mechanism are preferable to those pro-

duced by the Deferred Acceptance mechanism. The fraction of students assigned to their

true first choice choice remains higher under the Cambridge mechanism. Interestingly, the

Cambridge mechanism also places students at their true second choices with high probabil-

ity if agents are sophisticated. This is a consequence of of strategic behavior because some

students report their true second choice as their top choice. Further, we estimate that there

are fewer instances of justified envy if agents are sophisticated (4.8% instead of about 10%)

because of the greater ability to obtain assignment at one of the top two choices.

Panel C shows that more than half the students prefer the Cambridge mechanism’s

assignments to the Deferred Acceptance mechanism’s assignments. This observation suggests

that the mechanism is effectively screening based on cardinal utilities. The average student

prefers the assignments under the Cambridge mechanism by an equivalent of 0.07 miles. This

magnitude is similar to the difference between Deferred Acceptance and Student Optimal

Stable Matching in New York City, as measured by Abdulkadiroglu et al. (2014). However,

the Cambridge mechanism does not result in a Pareto improvement relative to the Deferred

Acceptance mechanism. The table also illustrates differences across student groups. Paid-

lunch students prefer the Cambridge assignments more than free/reduced lunch students.

Our quantitative results contribute to the debate in the theoretical literature about the

30It may be possible to simulate counterfactual equilibria for manipulable Rank-Specific Priority + Cutoff
mechanism since only equilibrium cutoffs need to be obtained.
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welfare properties of the Boston mechanism, which is similar to the Cambridge mechanism.

The results are different in spirit from Ergin and Sonmez (2006), that suggests that full-

information Nash equilibria of the Boston Mechanism are Pareto inferior to outcomes under

Deferred Acceptance. This difference stems from our focus on Bayesian Nash Equilibria

that accounts for ex-ante uncertainty faced by the students. Abdulkadiroglu et al. (2011)

theoretically show that the Boston mechanism can effectively screen for the intensity of

preferences and can have better welfare properties than the Deferred Acceptance mechanism.

Troyan (2012) shows that the theoretical results in this literature that are based on notions

of interim efficiency are not robust to students having priorities, and advocates for an ex-ante

comparison such as the one performed in this paper.

It is important to note that agents may face costs of strategizing since students may

need to gather additional information about the competitiveness of various schools before

formulating ranking strategies. These costs may weigh against using Boston-like mechanisms

for school assignment. Additionally, there may be distributional consequences if agents vary

in their ability to strategize (Pathak and Sonmez, 2008). While we cannot quantify the

direct costs of strategizing and gathering information with out data, we extend our model

to address distributional consequences of heterogeneous sophistication and biased beliefs in

the next section.

8.5 Alternative Models of Agent Behavior

The baseline results presented above make two alternative, but equally stark, assumptions

about agent behavior i.e., agents are either fully sophisticated or act as naifs. While the

evidence on strategic behavior based on a regression discontinuity design presented in Section

2.4 rejects the latter model, it cannot definitively prove that all agents are behaving optimally.

A model which assumes equilibrium behavior requires agents to have correct beliefs about

assignment probabilities, and for agents to optimally respond to these probabilities. These

assumptions can be violated in two ways. First, agents may have biased beliefs about the

probability of assignment to various options. For instance, agents may base their beliefs on

information from previous years or may not be fully aware of distinctions made by student

priority types and free-lunch status. Second, agents may heterogeneous in their ability to

use information about the mechanism and optimize their rank-order list. In this section, we

extend our empirical analysis to allow for certain forms of suboptimal behavior.
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8.5.1 Biased Beliefs

Our two-step approach extends naturally to allow researchers to assess whether their main

conclusions are robust to alternative forms of agent beliefs. Perhaps two important concerns

are that agents in Cambridge elementary schools are not aware of the fine details of the

priority system, or that they base their beliefs on information from prior years. We re-

estimate preferences based on two forms of biased beliefs about assignment probabilities to

assess the student welfare consequences of using the Deferred Acceptance Mechanism. The

first model endows agents with coarse beliefs that are not attuned to the fine details of the

priority structure or free-lunch status in Cambridge, but one in which agents have a sense of

which schools are relatively more competitive. This model assumes that agents believe that

the probability of assignment as a function of their report is given by the average assignment

probability for that report across all students in the district.31 This approach approximates

beliefs for an agent who has knowledge about the capacity of the schools and programs

along-with and the number of students ranking the school, but is unaware of sibling and

district priorities, and differences in the treatment of free-lunch and paid-lunch students.

The second models endows agents with adaptive expectations from the previous year

of the mechanism. In this model, agents perceive that the probability of assignment for a

report based on information from the previous year, which they may have garnered from

word-of-mouth.

Table 11 presents the (normalized) mean utility for various schools net of distance, by

student free-lunch status. Estimates that endow agents with coarse beliefs continues to

indicate that treating reports as truthful underestimates the relative preference for the most

competitive schools such as Graham & Parks, Haggerty, Baldwin and Morse. The results are

more mixed for the less desirable schools. As in the models that treat preferences as truthfully

reported, free-lunch and paid-lunch students are in broad agreement on the relative ranking

of the various schools. Similar to estimates treating agents as sophisticated, but unlike the

truthful reports model, these estimates indicate that the few inside options are preferable to

remaining unassigned.

Estimates based on modeling expectations as adapative are strikingly similar to those

from treating reports as sophisticated. In part, this occurs because the relative competitive-

ness of the various schooling options in Cambridge is fairly stable even though there is some

annual variation in assignment probabilities across school. This result is comforting for the

robustness of our estimates to small mis-specifications of agent beliefs.

31Specifically, we assume that agents believe that the (limit) probability of assignment given report R and

strategy σ̃ followed by the other agents is given by φ̃∞(R) =
1

n

∑
i φ
∞((R, ti),m

σ̃).
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Table 12 compares the Deferred Acceptance mechanism with the Cambridge mechanism

under these two alternative models of agent beliefs. As we saw in table 10, panels A and B

of table 12 show that the number of students placing at their true second choices in both

mechanisms. However, the results show that the cardinal screening benefits of a Boston-like

mechanism may be diminished and instances of justified envy may be larger if beliefs are not

well aligned with true assignment probabilities. This effect can be seen in panel C of table

12. In the alternative models, free-lunch students tend to prefer the assignment produced

by the Deferred Acceptance mechanism relative to the one produced by the Cambridge

mechanism. Further, the benefits to paid-lunch students are lower than the model that treats

agents as sophisticated. The significant aggregate benefits to free-lunch students under the

Deferred Acceptance mechanism is driven, in part, by the large fraction of students assigned

to their top two choices. In both specifications, the fraction of free-lunch students assigned

to one of their top two choices is lower in the Cambridge mechanism as compared to the

Deferred Acceptance mechanism. Paid-lunch students continue to prefer assignments in the

Cambridge mechanism to the strategy-proof counterpart.

8.5.2 Heterogeneous Agent Sophistication

Another possible violation of equilibrium behavior may arise from a population of agents

that differ in their ability to strategize when reporting preferences. These differences may

be driven by either heterogeneity in the information about the competitiveness of various

schools or a mis-understanding of the mechanism. There are a large number of possible

ways in which agents may differ in their ability to game the mechanism. The difficulty in

empirically analyzing extremely flexible models of heterogeneous sophistication stems from

the fact that a researcher has to disentangle heterogeneity in sophistication from preference

heterogeneity by simply observing the actions of the agents. Theorem C.1 in the appendix

shows it is typically possible to rationalize each submitted rank order list as optimal for

some vector of utilities for the various schools. Simultaneously identifying preferences and

heterogeneity in sophistication will therefore be based on restricting behavioral rules and

parametric assumptions.

We estimate a stylized model with heterogeneous agent sophistication based on Pathak

and Sonmez (2008).32 They theoretically compare the Deferred Acceptance mechanism to

the Boston mechanism using a model with two types of agents: näıve and sophisticated.

Näıve agents report their preferences sincerely by ranking the schools in order of their true

32See Calsamiglia et al. (2014) for another model of agents that are heterogeneous in their sophistication.
They use a simulated maximum likelihood to estimate a parametric model with agents that follow one of
two specific rules of thumb when making their reports.
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preferences. Sophisticated agents, on the other hand, recognize that truthful reporting is not

optimal because schools differ in the extent to which they are competitive and the details of

the mechanism. Reports made by sophisticated agents are optimal given the reports of the

other agents in the economy.

We estimate a model in which the population consists of a mixture of sophisticated and

näıve agents that have the same distribution of preferences but differ in their behavior.

Naifs report their preferences truthfully while sophisticated agents report optimally given

their (correct) beliefs about the probability of assignment at each option given their report.

The distribution of preferences is parametrized as in equation (6). In addition to parametric

assumptions, the model embeds several two strong restrictions. First, it is a mixture of two

extreme forms of agent behavior: perfect sophistication and complete näıvete. Second, the

distribution of preferences does not depend on whether the agent is sophisticated. These

simplifications allow us to keep the estimation procedure tractable. Appendix D.3 details

the Gibbs’ sampler for this model, which needed to be modified. The model does not require

us to re-estimate the first-step assignment probabilities.

Table 13 presents the estimated mean utilities and the fraction of agents that are näıve.

The estimated mean utilities are similar to the estimates in the other specifications, and

usually in between the specifications treating agents as either truthful or fully sophisticated

(table 7). Panel B shows that a little under a third of paid-lunch and free-lunch students

are estimated to be näıve.

Table 14 describes the differences between outcomes in the Cambridge and the Deferred

Acceptance mechanism. Since Deferred Acceptance is strategy-proof, both näıves and so-

phisticates report their preferences truthfully. Therefore, their outcomes are identical in the

Deferred Acceptance mechanism. The fractions of students assigned to their first, second

and third choices are similar to the results presented previously. We also see a similar overall

increase in the fraction of students assigned to their top choice school in the Cambridge

mechanism and a decrease in fractions assigned at lower ranked choices. Interestingly, the

probability of a student assigned to their top choice under the Cambridge mechanism is

larger for näıve agents than for sophisticated agents even though they have identical prefer-

ences (78.5% vs 76.4%). This relatively larger probability of assignment at the top choice is

at the cost of a significantly lower probability of assignment at the second choice, which is

6.3% for naifs and 11.8% for sophisticates. These differences are particularly stark for the

paid-lunch students who face a more complex strategic environment. Our estimates suggest

that, relative to sophisticates, naive students effectively increase their chances of placement

at their top choice school at the cost of loosing out at less preferred choices.

These can be explained by the difference between the propensity of naifs and sophisticates
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for ranking popular schools. While näıve students disregard that a school is competitive,

sophisticates are likely to avoid ranking schools that are competitive. Therefore, naifs effec-

tively gain priority at their top choice school relative to sophisticated students with similar

preferences that may not rank that school first. The phenomenon is most common amongst

competitive schools. Although not reported, Graham & Parks is estimated to be the top

choice 17.2% of students, but almost a third of the sophisticated students whom it is the

top choice avoid ranking it first. Consequently, naive students are about 10% more likely

to be assigned to Graham & Parks if it is their first choice. Qualitatively similar patterns

hold for the other competitive schools such as Haggerty, Baldwin and Morse. This increase

in assignment probability at the top choice comes at a significant cost of assignment to the

second choice. For example, while 13.9% of sophisticated paid-lunch students are assigned

to their second choice school, only 6.3% of näıve paid-lunch students get placed at their

second choice. As Pathak and Sonmez (2008) pointed out, näıve students effectively “lose

priority” at their second and lower choice schools to sophisticated students that rank the

school first. It is therefore not surprising that the instances of justified envy are largest

amongst näıve students, and particularly paid-lunch naifs. About 17% of paid-lunch naifs

remain unassigned while about 7% of paid-lunch sophisticates are unassigned. Further, of

the 27% paid-lunch naifs that are not assigned to their top choice, about two-thirds have

justified envy for another student’s assignment.

The aggregate welfare effects for näıve students therefore depends on whether the ben-

efits of increased likelihood of assignment at the top choice outweighs the lost priority at

less preferred options. Although the näıve agents are making mistakes in the Cambridge

mechansim, our comparison of assignments under the Deferred Acceptance mechanism to

those under the Cambridge mechanism in panel B of table 10 shows that only 35.3% of

the naive paid-lunch students prefer the Deferred Acceptance mechanism to the Cambridge

mechanism. This compares with 24.9% for paid-lunch sophisticates and less than 50% for

free-lunch naifs and free-lunch sophisticates. Overall, we find that the average näıve student

prefers assignments under the Cambridge mechanism by an equivalent of 0.042 miles. Since

sophisticates are optimally responding to incentives in their environment, their estimated

value for the assignments in the Cambridge mechanism is larger, at an equivalent of 0.103

miles.

Further, the relatively higher aggregate student welfare under the Cambridge mecha-

nism’s assignments depends on the distribution of preferences. As Table 10 shows, if the

data were generated by all agents reporting their preferences truthfully, then the estimated

parameters result in a slightly higher level of student welfare under the Deferred Acceptance

mechanism.
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9 Conclusion

We develop a general method for analyzing preferences from reports made to a single unit

assignment mechanism that may not be truthfully implementable. We view the choice of

report as a choice from available assignment probabilities. These probabilities can be consis-

tently estimated under a weak condition on the convergence of a sequence of mechanisms to

a limit. The condition is verified for a broad class of school choice mechanisms including the

Boston mechanism and the Deferred Acceptance mechanism. Using these probabilities, we

characterize the identified set of preference distributions under the assumption that agents

play a Bayesian Nash Equilibrium. The set of preference distributions are typically not

point identified, but may be with sufficient variation in the lottery set. We then obtain point

identification if a special regressor is available.

The baseline model in this paper assumes that sophisticated agents are participating

in the mechanism. Ranking behavior in Cambridge indicates that agents respond to the

strategic incentives in the mechanism. Specifically, students that reside on either side of

the boundary where proximity priority changes have observably different ranking behavior.

We take this as evidence against the assumption that agents are ranking schools according

to true preferences. We then implement our method using the proposed estimator. Our

results indicate that treating preferences as truthful is likely to result in biased estimates in

markets where students face stiff competition for their preferred schools. The stated pref-

erences therefore exaggerate the fraction of students assigned to their true top choice. We

also illustrate how our method can be used to evaluate changes in the design of the market.

Specifically, our baseline model finds that the typical student prefers the Cambridge mech-

anism’s assignment to the Deferred Acceptance mechanism’s assignment by an equivalent

of 0.07 miles. These losses are concentrated for the paid-lunch students, who for whom the

scarcity of seats at desirable programs results in the highest advantage from screening based

on intensity of preferences. Free-lunch students, on the other hand, face a less complex

strategic environment in the Cambridge mechanism and the average student is close to in-

different between the two mechanisms. Estimates from models in which agents have biased

beliefs about assignment probabilities have a less optimistic view on the cardinal screening

benefits of the Cambridge mechanism. A model with heterogeneously sophisticated agents

finds that assignments under the Cambridge mechanism are preferable for paid-lunch naifs

but not for free-lunch naifs. Across specifications, we find relatively few instances of justified

envy in the Cambridge mechanism due to the significant majority of students that are as-

signed to their top choice in this school district. The most common instance of justified envy

is estimated using the model with heterogeneous sophistication. We find about 18% of the
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roughly 30% näıve paid-lunch agents have justified envy. These differences across the two

mechanisms should be weighed against potential costs of strategizing in a recommendation

of mechanism choice. Quantifying these costs may be difficult without directly observing

differences in information acquisition activites across mechanisms. More broadly, our results

motivate further research on mechanisms that use the intensity of student preferences in al-

location without some of the potential costs of strategic behavior (see Azevedo and Budish,

2013, for example).

Our methods can be extended in several directions. In the context studied here, schools

are passive players who express their preferences with only coarse priorities and a random

tie-breaker. Extending the techniques to allow for exam scores and finely defined priority

groups will broaden the applicability of the results, but may require technical innovations

for estimating the assignment probabilities. Another important extension is to consider a

college admissions setting where students make application decisions while in consideration

of chance of admission. A challenge in directly extending our approach is that we observe

all priorities relevant for admissions in the data. In the college applications context, admis-

sion may depend on unobservables that also affect preferences, complicating the analysis.

A closely related context is a multi-unit assignment mechanism such as course allocation

mechanisms. The preferences in this context would need to be richer in order to allow for

complementarities over the objects in a bundle that are assigned to an individual. These

extensions are interesting avenues for expanding our ability to analyze agent behavior in

assignment mechanisms.
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Figure 2: A Revealed Preference ArgumentFigure X 
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(b) LR is optimal for v in the normal
cone (shaded region), which is given by
v = a1vR,R′ + a2vR,R′′ for a1, a2 > 0
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Table 1: School Choice Mechanisms

Mechanism Manipulable Examples
Boston Mechanism Y Barcelona1, Beijing2, Boston (pre 2005),

Charlotte-Mecklenberg3, Chicago (pre 2009),
Denver, Miami-Dade, Minneapolis,
Seattle (pre 1999 and post 2009),
Tampa-St. Petersburg.

Deferred Acceptance
w/ Truncated Lists Y New York City4, Ghanian Schools,

various districts in England (since mid ‘00s)
w/ Unrestricted Lists N Boston (post 2005), Seattle (1999-2008)

Serial Dictatorships
w/ Truncated Lists Y Chicago (2009 onwards)

First Preferences First Y various districts in England (before mid ‘00s)
Chinese Parallel Y Shanghai and several other Chinese provinces5

Cambridge Y Cambridge6

Pan London Admissions Y London7

Top Trading Cycles
w/ Truncated Lists Y New Orleans8

Notes: Source Table 1, Pathak and Sonmez (2008) unless otherwise stated. See several references therein

for details. Other sources: 1 Calsamiglia and Guell (2014); 2He (2012); 3Hastings et al. (2009);
4Abdulkadiroglu et al. (2009); 5Chen and Kesten (2013); 6 “Controlled Choice Plan” CPS, December 18,

2001; 7Pennell et al. (2006);
8http://www.nola.com/education/index.ssf/2012/05/new orleans schools say new pu.html

accessed May 20, 2014.
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Table 2: Cambridge Elementary Schools and Students

Year 2004 2005 2006 2007 2008 Average

Schools 13 13 13 13 13 13

Programs 24 25 25 27 27 25.6

Seats 473 456 476 508 438 470

Students 412 432 397 457 431 426

Free/Reduced Lunch 32% 38% 37% 29% 32% 34%

Paid Lunch 68% 62% 63% 71% 68% 66%

White 47% 47% 45% 49% 49% 47%

Black 27% 22% 24% 22% 23% 24%

Asian 17% 18% 15% 13% 18% 16%

Hispanic 9% 11% 10% 9% 9% 10%

English 72% 73% 73% 78% 81% 76%

Spanish 3% 4% 4% 4% 3% 3%

Portuguese 0% 1% 1% 1% 1% 1%

Closest School 0.43 0.67 0.43 0.47 0.45 0.49

Average School 1.91 1.93 1.93 1.93 1.89 1.92

Panel A: District Characteristics

Notes: Students participating in the January Kindergarten Lottery. Free/Reduced lunch 

based on student's application for Federal lunch subsidy.

Panel D: Distances(miles)

Panel B: Student's Ethnicity

Panel C: Language spoken at home
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Table 3: Cambridge Elementary Schools and Students

Year 2004 2005 2006 2007 2008 Average

First 81% 84% 85% 83% 75% 82%

Second  8% 3% 4% 7% 5% 5%

Third 5% 2% 2% 2% 4% 3%

Unassigned 6% 11% 9% 8% 16% 10%

First 80% 77% 78% 79% 68% 76%

Second  5% 4% 5% 8% 5% 5%

Third 6% 3% 4% 2% 3% 4%

Unassigned 9% 16% 14% 11% 24% 15%

First 85% 95% 98% 94% 89% 92%

Second  14% 1% 2% 4% 6% 5%

Third 2% 1% 0% 1% 4% 1%

Unassigned 0% 4% 0% 2% 1% 1%

One 2% 6% 9% 5% 12% 7%

Two 5% 6% 9% 7% 7% 7%

Three 93% 89% 82% 88% 81% 87%

Sibling Priority at 1st Choice 38% 34% 32% 24% 34% 32%

Sibling Priority at 2nd Choice 4% 3% 1% 2% 2% 2%

Sibling Priority at 3rd Choice 0% 2% 1% 1% 0% 1%

Proximity at 1st Choice 53% 52% 50% 51% 52% 51%

Proximity at 2nd Choice 42% 34% 37% 33% 37% 36%

Proximity at 3rd Choice 22% 24% 24% 25% 21% 23%

Ranked first 1.19 1.18 1.24 1.29 1.19 1.22

All ranked schools 1.37 1.41 1.38 1.40 1.34 1.38

Assigned School 1.10 1.01 1.07 1.12 0.92 1.04

Panel A: Round of assignment

Panel D: Number of Programs Ranked

Panel E: Ranking Schools with Priority

Notes: Proximity priority as reported in the Cambridge Public School assignment files.

Panel F: Distance (miles)

Panel C: Round of assignment: Free Lunch Students

Panel B: Round of assignment: Paid Lunch Students
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Table 4: School Popularity and Competitiveness
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Ranked First 60 56 53 47 37 34 33 31 25 18 16 12 5

Ranked Second 72 37 66 25 18 44 39 38 17 10 18 20 0

Ranked Third 56 33 46 31 19 44 37 32 20 15 16 15 0

Ranked Anywhere 192 120 166 102 75 113 114 105 64 48 54 51 6

Capacity 41 41 41 42 41 27 51 48 35 38 41 37 15

First Rejected 1-P 1-R 1-R 1-R 1-R 1-R NR NR 1-R NR NR NR NR

Ranked First 49 45 40 29 25 24 25 17 13 4 7 4 2

Ranked Second 60 28 56 14 12 29 23 27 10 3 6 6 0

Ranked Third 47 29 33 19 15 34 24 18 11 4 8 10 0

Ranked Anywhere 152 95 128 60 51 87 70 65 33 9 21 20 3

Capacity 29 27 27 29 41 18 36 34 29 35 34 27 15

First Rejected 1-P 1-R 1-R 1-R 1-R 1-R NR NR 3-R NR NR NR NR

Ranked First 9 12 12 17 12 11 13 10 12 16 10 9 2

Ranked Second 13 8 7 11 5 12 17 12 8 8 14 11 0

Ranked Third 10 4 9 10 4 12 13 13 9 10 11 4 0

Ranked Anywhere 29 24 25 40 20 36 44 38 31 36 34 25 2

Capacity 25 23 26 26 41 17 33 31 19 18 26 24 15

First Rejected NR NR NR 1-R 1-R 2-P NR NR 1-R NR NR NR NR

Notes: Median number of applicants and seats over the years 2004-2008. First rejected is the round and 

priority of the first rejected student, e.g., 1-P indicates that a student with proximity priority was rejected in 

the first round. S: Sibling priority, PS: both proximity and sibling priority, R: regular/no prioirity, and NR: no 

student was rejected in any round. Free/Reduced lunch based on student's application for Federal lunch 

subsidy.

Panel A: All Students

Panel C: Free Lunch Students

Panel B: Paid Lunch Students

59



Table 5: Regression Discontinuity Estimates

Competitive 

School

Non-

Competitive 

School

Placebo 

Boundary

Rank First Rank Second Rank Third Rank First Rank First Rank First

Estimate -5.75% -2.38% -0.86% -7.27% -2.06% 0.07%

(0.013) (0.012) (0.011) (0.018) (0.019) (0.024)

t-statistic -4.54 -2.02 -0.80 -3.96 -1.10 0.03

Estimate -7.44% -2.65% -0.68% -11.07% -1.22% 1.88%

(0.016) (0.014) (0.015) (0.025) (0.018) (0.031)

t-statistic -4.64 -1.90 -0.46 -4.45 -0.67 0.61

Estimate -3.55% -2.59% -3.15% -1.47% -5.23% -3.55%

(0.022) (0.021) (0.022) (0.031) (0.031) (0.033)

t-statistic -1.60 -1.22 -1.43 -0.47 -1.67 -1.06

Baseline

Panel A: All Students

Panel B: Paid Lunch Students

Panel C: Free Lunch Students

Notes: Regression discontinuity estimates based bandwidth selection rule proposed by Imbens and 

Kalyaraman (2011). All estimates use rankings by 2,128 students. Competitive schools are Graham 

& Parks, Haggerty, Baldwin, Morse, Amigos, Cambridgeport and Tobin. Placebo boundary at the mid-

point of the two-closest schools. Standard errors clustered at the student level in parenthesis.
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Table 6: Estimated Assignment Probabilities
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First 0.44 0.58 0.62 0.59 0.73 0.98 0.52 1 0.95 0.86 0.28 0.35 0.92 1 1 1

Second 0.24 0.23 0.23 0.21 0.33 0.95 0.16 0.9 0.83 0.75 0.03 0.14 0.85 1 0.99 1

Third 0.16 0.15 0.13 0.09 0.2 0.77 0.08 0.59 0.54 0.62 0.02 0.06 0.72 0.84 0.83 0.85

First 0.23 0.44 0.49 0.56 0.73 1 0.42 1 0.94 0.93 0.28 0.37 1 1 1 1

Second 0 0.03 0.04 0.16 0.33 1 0.06 0.86 0.82 0.78 0.01 0.15 1 1 1 1

Third 0 0 0 0.07 0.21 0.83 0.01 0.52 0.54 0.64 0.01 0.08 0.86 0.86 0.86 0.86

First 0.85 0.86 0.89 0.67 0.73 0.97 0.71 1 0.95 0.72 0.28 0.28 0.77 1 1 1

Second 0.7 0.63 0.59 0.3 0.33 0.91 0.36 0.97 0.85 0.71 0.05 0.1 0.56 0.99 0.98 1

Third 0.49 0.44 0.4 0.15 0.2 0.72 0.21 0.73 0.56 0.59 0.03 0.03 0.44 0.79 0.77 0.81

First 0.65 0.97 0.95 0.9 0.94 0.99 0.89 1 0.99 0.92 0.55 0.55 0.95 1 1 1

Second 0.12 0.2 0.14 0.24 0.38 0.97 0.26 0.97 0.84 0.79 0.04 0.14 0.78 1 1 1

Third 0.08 0.08 0.04 0.11 0.24 0.81 0.12 0.7 0.61 0.64 0.02 0.09 0.65 0.89 0.82 0.88

First 0.38 0.55 0.59 0.55 0.71 0.97 0.47 1 0.94 0.86 0.25 0.33 0.93 1 1 1

Second 0.28 0.23 0.23 0.21 0.32 0.96 0.15 0.89 0.83 0.76 0.02 0.13 0.87 1 0.99 1

Third 0.19 0.15 0.14 0.09 0.2 0.81 0.08 0.58 0.53 0.63 0.02 0.06 0.73 0.84 0.83 0.85

Note: Average estimates weighted by number of students of each type. Probabilities estimated from 1,000 simulations 

of the Cambridge mechanism. Ranks and priority types of opposing students are drawn with replacement from the 

observed data. Second and third rank assignment probabilities are conditional on no assignment to higher ranked 

choices, averaged across feasible rank order lists.

Panel A: All Students

Panel B: Paid Lunch

Panel C: Free/Reduced Lunch

Panel D: Proximity Priority

Panel E: No Priority

61



Table 7: Estimated Mean Utilities

 Graham Parks 0.99 1.29 0.40 0.92 1.51 -0.24

  [0.05]  [0.06]  [0.08]  [0.12]  [0.12]  [0.20]

 Haggerty 1.16 1.39 0.72 1.02 1.32 0.41

  [0.07]  [0.07]  [0.11]  [0.12]  [0.13]  [0.17]

 Baldwin 1.01 1.26 0.50 1.04 1.22 0.68

  [0.05]  [0.05]  [0.09]  [0.08]  [0.08]  [0.11]

 Morse 0.67 0.66 0.70 0.77 0.75 0.81

  [0.06]  [0.07]  [0.08]  [0.08]  [0.09]  [0.11]

 Amigos -0.13 -0.01 -0.38 0.10 0.19 -0.09

  [0.12]  [0.13]  [0.15]  [0.17]  [0.17]  [0.21]

 Cambridgeport 0.57 0.77 0.18 0.47 0.55 0.30

  [0.05]  [0.06]  [0.08]  [0.09]  [0.09]  [0.11]

 King Open 0.57 0.65 0.40 0.52 0.62 0.33

  [0.05]  [0.06]  [0.07]  [0.07]  [0.08]  [0.10]

 Peabody 0.31 0.22 0.48 0.14 0.10 0.22

  [0.07]  [0.08]  [0.09]  [0.10]  [0.11]  [0.14]

 Tobin -0.11 -0.49 0.64 -0.37 -0.73 0.34

  [0.10]  [0.11]  [0.12]  [0.18]  [0.20]  [0.21]

 Flet Mayn -0.88 -1.30 -0.05 -1.59 -2.26 -0.26

  [0.12]  [0.14]  [0.10]  [0.22]  [0.27]  [0.16]

 Kenn Long 0.03 -0.19 0.47 -0.04 -0.19 0.25

  [0.07]  [0.09]  [0.07]  [0.11]  [0.13]  [0.11]

 MLK -0.41 -0.66 0.08 -0.61 -0.83 -0.18

  [0.09]  [0.10]  [0.09]  [0.17]  [0.19]  [0.16]

 King Open Ola -3.77 -3.60 -4.13 -2.35 -2.25 -2.56

  [0.32]  [0.35]  [0.39]  [0.42]  [0.43]  [0.47]

Outside Option -1.87 -2.08 -1.44 -0.69 -0.53 -1.01

 [0.09]  [0.10]  [0.09]  [0.04]  [0.05]  [0.06]

up to 1 13% 10% 20% 24% 30% 13%

up to 2 21% 16% 30% 53% 62% 35%

up to 3 29% 23% 40% 74% 84% 57%

up to 4 39% 34% 51% 87% 93% 74%

up to 5 50% 44% 61% 93% 97% 86%

Notes: Panel A presents the average estimated utility for each school, normalizing the 

mean utility of the inside options to zero.  Utilities calculated by averaging the predicted 

utility given the non-distance covariates. Standard errors (standard deviation of the 

posterior distribution) in brackets.  Panel B presents the cumulative distribution of the 

number of acceptable schools, i.e. schools that are preferred to the outside option, as 

implied by the posterior distribution of utilities.

Truthful Sophisticated

Panel B: Number of Acceptable Schools

Panel A: Mean Utility

Paid 

Lunch

Free 

Lunch

All 

Students

Paid 

Lunch

Free 

Lunch

All 

Students
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Table 8: Losses from Truthful Reports

mean s.e.  mean s.e.  mean s.e. mean s.e.  mean s.e.  mean s.e.

All 57% 0.01 0.18 0.02 0.53 0.05 56% 0.01 0.05 0.01 0.20 0.02

Free Lunch 68% 0.02 0.01 0.00 0.09 0.03 72% 0.02 0.01 0.00 0.08 0.02

Paid Lunch 51% 0.01 0.26 0.03 0.64 0.06 48% 0.02 0.07 0.01 0.23 0.03

Black 65% 0.02 0.06 0.02 0.30 0.07 68% 0.02 0.03 0.01 0.15 0.04

Asian 56% 0.03 0.20 0.04 0.56 0.09 56% 0.03 0.05 0.01 0.18 0.04

Hispanic 60% 0.03 0.10 0.03 0.36 0.09 59% 0.04 0.03 0.01 0.13 0.04

White 52% 0.01 0.24 0.03 0.62 0.06 50% 0.02 0.06 0.01 0.22 0.03

Other Race 47% 0.06 0.20 0.07 0.51 0.15 50% 0.05 0.07 0.03 0.20 0.08

Notes: Estimated loss from reporting preferences truthfully, relative to optimal report in distance units (miles).

Truthful

No Loss  Mean Loss Std Loss

Sophisticated

No Loss  Mean Loss Std Loss
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Table 9: Ranking and Assignment of Top Choice
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Preferred School 21.4 11.6 9.2 9.9 8.0 6.3 8.0 7.0 5.6 4.0 4.0 2.6 1.2 99.0

Ranked #1 (simul) 15.2 12.4 10.6 10.9 8.3 7.4 9.3 8.0 5.0 3.9 4.1 2.7 1.2 99.0

Ranked #1 (data) 14.3 12.6 11.9 11.0 8.8 7.7 8.2 7.8 5.7 4.4 3.8 2.7 1.2 100.0

Preferred and Ranked #1 14.3 10.4 8.3 9.6 7.6 5.9 8.0 7.0 4.7 3.9 4.0 2.6 1.2 87.4

Preferred and Assigned 9.4 8.5 6.6 8.3 6.8 5.0 8.0 6.9 3.9 3.6 4.0 2.6 1.2 74.8

Ranked #1 and Assigned 10.0 9.9 8.4 9.4 7.4 6.1 9.3 7.9 4.2 3.6 4.1 2.7 1.2 84.0

Preferred School 8.3 7.5 6.3 11.7 7.1 7.0 7.7 8.5 10.3 10.8 7.6 5.0 1.8 99.4

Ranked #1 (simul) 8.3 7.9 6.6 11.8 7.2 7.2 7.8 8.9 8.7 10.5 7.7 5.1 1.8 99.4

Ranked #1 (data) 6.7 8.3 8.0 12.2 7.8 6.4 7.7 9.0 8.5 10.8 7.1 5.5 2.0 100.0

Preferred and Ranked #1 8.0 7.4 6.2 11.4 6.8 6.8 7.7 8.5 8.6 10.3 7.6 5.0 1.8 96.2

Preferred and Assigned 7.5 7.0 5.9 10.2 6.1 6.0 7.7 8.4 6.7 9.3 7.6 5.0 1.8 89.1

Ranked #1 and Assigned 7.8 7.4 6.2 10.6 6.4 6.3 7.8 8.8 6.7 9.5 7.7 5.1 1.8 92.0

Preferred School 27.3 13.7 10.7 9.1 8.7 6.3 8.5 6.1 3.1 0.7 2.4 1.4 0.9 98.8

Ranked #1 (simul) 18.2 14.6 12.6 10.5 9.1 7.7 10.4 7.4 3.1 0.7 2.4 1.4 0.9 98.8

Ranked #1 (data) 17.6 14.1 13.7 10.9 9.4 7.5 9.3 7.7 3.7 1.3 2.4 1.4 1.0 100.0

Preferred and Ranked #1 17.1 12.0 9.4 8.7 8.3 5.7 8.5 6.1 2.7 0.7 2.4 1.4 0.9 83.7

Preferred and Assigned 10.6 9.6 7.3 7.4 7.4 4.8 8.5 6.0 2.5 0.7 2.4 1.4 0.9 69.3

Ranked #1 and Assigned 11.2 11.4 9.7 8.9 8.2 6.2 10.3 7.2 2.9 0.7 2.4 1.4 0.9 81.2

Notes: Unless otherwise noted, table presents averages over 1,000 simulations from the posterior mean of the parameters treating 

students as sophisticated.

Panel A: All Students

Panel B: Free Lunch Students

Panel C: Paid Lunch Students
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Table 10: Deferred Acceptance vs Cambridge

Assigned to First Choice 67.7 58.2 86.6 69.9 60.4 88.8

Assigned to Second Choice 12.1 14.2 8.1 14.6 17.5 8.9

Assigned to Third Choice 5.7 8.2 0.8 4.4 6.2 0.8

Assigned to Fourth Choice 3.5 5.3 0.1 1.1 1.6 0.1

Assigned to Fifth Choice 2.1 3.2 0.0 0.2 0.2 0.0

Assigned to First Choice 78.7 74.2 87.6 74.7 67.5 88.8

Assigned to Second Choice 6.7 6.9 6.1 13.3 16.1 7.9

Assigned to Third Choice 3.1 4.0 1.4 3.2 4.1 1.3

Assigned to Fourth Choice 0.0 0.0 0.0 0.8 1.1 0.3

Assigned to Fifth Choice 0.0 0.0 0.0 0.1 0.2 0.0

Mean Utility DA ‐ Cambridge 0.003 ‐0.004 0.016 ‐0.070 ‐0.112 0.011

(0.017) (0.025) (0.006) (0.007) (0.010) (0.006)

Std. Utility DA ‐ Cambridge 0.239 0.287 0.083 0.147 0.155 0.084

Percent DA > Cambridge 39.7 36.9 45.2 36.5 30.8 47.8

Percent with Justified Envy 9.93 12.69 4.46 4.78 4.88 4.60

Notes:  Panels A and B present percentages of students assigned to true k‐th choice. Panel C compares 

the expected utility difference between Deferred Acceptance and Cambridge Mechanism. Simulations 

of the Deferred Acceptance mechanism draw other student reports using the estimated utility 

distribution. All statistics based on the 1,000 draws from simulated posterior distribution.

Truthful Sophisticated

Panel A: Deferred Acceptance

Panel B: Cambridge Mechanism

Panel C: Deferred Acceptance vs Cambridge

All 

Students

Paid 

Lunch

Free 

Lunch

Free 

Lunch

Paid 

Lunch

All 

Students
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Table 11: Estimated Mean Utilities with Alternative Beliefs

 Graham Parks 1.50 1.90 0.72 0.92 1.42 -0.08

  [0.07]  [0.07]  [0.10]  [0.13]  [0.14]  [0.23]

 Haggerty 1.42 1.71 0.84 1.14 1.25 0.90

  [0.08]  [0.09]  [0.13]  [0.11]  [0.12]  [0.15]

 Baldwin 1.44 1.70 0.91 0.65 1.00 -0.07

  [0.07]  [0.07]  [0.09]  [0.19]  [0.12]  [0.37]

 Morse 0.85 0.88 0.78 0.71 0.72 0.70

  [0.10]  [0.10]  [0.14]  [0.09]  [0.10]  [0.12]

 Amigos -0.44 -0.20 -0.91 -0.11 0.01 -0.33

  [0.13]  [0.13]  [0.18]  [0.13]  [0.13]  [0.19]

 Cambridgeport 0.76 0.99 0.31 0.33 0.42 0.16

  [0.08]  [0.08]  [0.12]  [0.12]  [0.12]  [0.15]

 King Open 0.52 0.63 0.30 0.32 0.37 0.23

  [0.07]  [0.08]  [0.10]  [0.09]  [0.10]  [0.12]

 Peabody 0.33 0.27 0.47 0.20 0.05 0.51

  [0.08]  [0.09]  [0.11]  [0.09]  [0.11]  [0.13]

 Tobin -2.01 -2.52 -1.01 -0.31 -0.67 0.39

  [0.27]  [0.29]  [0.30]  [0.16]  [0.19]  [0.21]

 Flet Mayn -1.47 -2.12 -0.19 -0.80 -1.27 0.13

  [0.20]  [0.26]  [0.14]  [0.19]  [0.24]  [0.14]

 Kenn Long -0.22 -0.43 0.21 -0.44 -0.59 -0.15

  [0.12]  [0.14]  [0.12]  [0.16]  [0.18]  [0.19]

 MLK -0.73 -1.03 -0.13 -0.31 -0.62 0.29

  [0.13]  [0.15]  [0.13]  [0.13]  [0.15]  [0.13]

 King Open Ola -1.95 -1.78 -2.30 -2.29 -2.10 -2.69

  [0.32]  [0.32]  [0.38]  [0.45]  [0.41]  [0.61]

Outside Option -0.45 -0.34 -0.67 -0.68 -0.62 -0.80

 [0.05]  [0.05]  [0.06]  [0.05]  [0.05]  [0.06]

up to 1 17% 16% 19% 26% 30% 19%

up to 2 54% 57% 47% 57% 64% 44%

up to 3 79% 84% 71% 79% 86% 68%

up to 4 92% 95% 87% 92% 96% 85%

up to 5 98% 99% 96% 97% 99% 95%

All 

Students
Free Lunch

Adaptive Expectations

All 

Students

Paid 

Lunch

Free 

Lunch

Coarse Beliefs

Paid 

Lunch

Notes: Average estimated utility for each school, normalizing the mean utility of the 

inside options to zero.  Utilities calculated by averaging the predicted utility given the 

non-distance covariates. Standard errors (standard deviation of the posterior 

distribution) in brackets.  Adaptive Expectations based on reported lists from 2005, 2006 

and 2008 with assignment probabilites estimated using data from 2004, 2005 and 2007 

respectively. This specification drops data from 2007 in preference estimates since Tobin 

split by entering age in that year.

Panel B: Number of Acceptable Schools
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Table 12: Deferred Acceptance vs Cambridge with Alternative Beliefs

Assigned to First Choice 69.2 59.7 88.0 70.1 59.5 89.0

Assigned to Second Choice 12.8 14.9 8.6 14.4 18.1 7.8

Assigned to Third Choice 5.1 7.2 0.9 4.4 6.4 0.9

Assigned to Fourth Choice 1.9 2.8 0.1 1.1 1.7 0.1

Assigned to Fifth Choice 0.4 0.6 0.0 0.2 0.2 0.0

Assigned to First Choice 73.8 67.7 86.0 73.0 64.3 88.7

Assigned to Second Choice 10.3 11.0 8.8 11.1 14.1 5.6

Assigned to Third Choice 3.5 4.3 1.7 3.2 4.2 1.3

Assigned to Fourth Choice 1.5 2.0 0.4 1.0 1.4 0.4

Assigned to Fifth Choice 0.4 0.5 0.1 0.2 0.3 0.1

Mean Utility DA ‐ Cambridge ‐0.046 ‐0.086 0.032 ‐0.002 ‐0.033 0.053

(0.007) (0.010) (0.007) (0.010) (0.014) (0.014)

Std. Utility DA ‐ Cambridge 0.172 0.177 0.130 0.132 0.122 0.132

Percent DA > Cambridge 40.2 35.3 49.9 45.5 43.1 50.0

Percent with Justified Envy 7.05 7.69 5.76 6.74 7.76 4.73

Notes:  Panels A and B present percentages of students assigned to true k‐th choice. Panel C compares 

the expected utility difference between Deferred Acceptance and Cambridge Mechanism. Simulations 

of the Deferred Acceptance mechanism draw other student reports using the estimated utility 

distribution. All statistics based on the 1,000 draws from simulated posterior distribution.

Panel A: Deferred Acceptance

Panel B: Cambridge Mechanism

Panel C: Deferred Acceptance vs Cambridge

Adaptive Expectations

All 

Students

Paid 

Lunch

Free 

Lunch

Coarse Beliefs

All 

Students

Paid 

Lunch

Free 

Lunch
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Table 13: Estimated Mean Utilities using a Mixture Model

 Graham Parks 1.14 1.49 0.46

   [0.07]  [0.07] [0.10]

 Haggerty 1.21 1.50 0.62

   [0.09]  [0.09] [0.14]

 Baldwin 1.31 1.48 0.97

   [0.06]  [0.06] [0.08]

 Morse 0.72 0.67 0.81

   [0.07]  [0.08] [0.10]

 Amigos ‐0.20 ‐0.07 ‐0.47

   [0.15]  [0.15] [0.19]

 Cambridgeport 0.60 0.71 0.37

   [0.07]  [0.07] [0.10]

 King Open 0.37 0.47 0.16

   [0.07]  [0.08] [0.11]

 Peabody 0.10 0.08 0.15

   [0.08]  [0.09] [0.12]

 Tobin ‐0.51 ‐0.82 0.11

   [0.14]  [0.16] [0.19]

 Flet Mayn ‐1.09 ‐1.63 ‐0.03

   [0.16]  [0.20] [0.12]

 Kenn Long ‐0.11 ‐0.28 0.23

   [0.10]  [0.11] [0.11]

 MLK ‐0.76 ‐1.04 ‐0.20

   [0.12]  [0.13] [0.13]

 King Open Ola ‐2.77 ‐2.55 ‐3.19

   [0.39]  [0.37] [0.50]

Outside Option ‐1.05 ‐0.88 ‐1.37

 [0.05]  [0.06] [0.07]

Fraction Naïve 0.308 0.277

[0.0203] [0.0146]

Panel B: Agent Behavior

Panel A: Mean Utility

Notes: Panel A presents the average estimated utility for each school, 

normalizing the mean utility of the inside options to zero. Utilities 

calculated by averaging the predicted utility given the non‐distance 

covariates. Panel B reports the estimated fraction of naive agents by 

free‐lunch status.  Standard errors (standard deviation of the 

Mixture Model

All Students Paid Lunch Free Lunch
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Table 14: Deferred Acceptance vs Cambridge using a Mixture Model

Assigned to First Choice
Assigned to Second Choice
Assigned to Third Choice
Assigned to Fourth Choice
Assigned to Fifth Choice

Naïve Sophisticated Naïve Sophisticated Naïve Sophisticated
Percent of Students 29.7 70.3 27.7 72.3 30.8 69.2

Assigned to First Choice 78.5 76.4 90.1 89.4 72.7 69.9
Assigned to Second Choice 6.3 11.8 6.3 7.7 6.3 13.9
Assigned to Third Choice 3.3 4.1 1.7 1.5 4.1 5.5
Assigned to Fourth Choice 0.0 1.7 0.0 0.4 0.0 2.4
Assigned to Fifth Choice 0.0 0.4 0.0 0.1 0.0 0.6

Naïve Sophisticated Naïve Sophisticated Naïve Sophisticated
Mean Utility DA ‐ Cambridge ‐0.042 ‐0.103 0.017 0.005 ‐0.071 ‐0.158

(0.008) (0.008) (0.006) (0.005) (0.011) (0.012)
Std. Utility DA ‐ Cambridge 0.157 0.184 0.098 0.086 0.173 0.196
Percent DA > Cambridge 38.9 31.5 46.0 44.6 35.3 24.9
Percent with Justified Envy 15.49 3.05 9.87 2.77 18.04 3.19

All Students Free Lunch Paid Lunch

69.4
12.6

88.6
9.2

59.7
Panel A: Deferred Acceptance

Panel C: Deferred Acceptance vs Cambridge

Panel B: Cambridge Mechanism

Notes:  Panels A and B present percentages of students assigned to true k‐th choice. Panel C compares the expected utility 
difference between Deferred Acceptance and Cambridge Mechanism. Simulations of the Deferred Acceptance mechanism draw 
other student reports using the estimated utility distribution. All statistics based on the 1,000 draws from simulated posterior 
distribution.

14.4
8.1
3.8
1.2

5.8
2.6
0.8

1.2
0.2
0.0
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