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Abstract

This paper models how transfers, a tax rate on labor income, and the distribution of govern-
ment debt should respond to aggregate shocks when markets are incomplete. A planner sets a
lump sum transfer and a linear tax on labor income in an economy with heterogeneous agents,
aggregate uncertainty, and a single asset with a possibly risky payo�. Limits to redistribution
coming from incomplete tax instruments and limits to hedging coming from incomplete asset
markets a�ect optimal policies. Two forces shape long-run outcomes: the planner's desire to
minimize the welfare cost of �uctuating transfers, which calls for a negative correlation between
agents' assets and their skills; and the planner's desire to use �uctuations in the return on
the traded asset to compensate for missing state-contingent securities. In a multi-agent model
calibrated to match facts about US booms and recessions, the planner's preferences about dis-
tribution make policies over business cycle frequencies di�er markedly from Ramsey plans for
representative agent models.
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If, indeed, the debt were distributed in exact proportion to the taxes to be paid so that
every one should pay out in taxes as much as he received in interest, it would cease
to be a burden.possible, there would be [no] need of incurring the debt. For if a man
has money to loan the Government, he certainly has money to pay the Government
what he owes it. Simon Newcomb (1865, p.85)

1 Introduction

What are the welfare costs of public debt? What determines whether and how quickly a govern-
ment should retire its debt? How should tax rates, transfers, and government debt respond to
aggregate shocks? We study how answers to these questions depend on a government's eagerness
and ability to redistribute and to hedge �uctuations in de�cits.

We restrict tax collections to be a�ne functions of labor income. Agents di�er in their pro-
ductivities and wealth. They trade a single security whose payo� possibly depends on aggregate
shocks. A Ramsey planner attaches a vector of Pareto weights to di�erent types of agents' dis-
counted utilities and adjusts the proportional labor tax rate, transfers, and asset purchases in
response to aggregate shocks. A distribution of assets gives rise to �ows of asset earnings across
agents that depend on how returns on the asset comove with aggregate shocks. These �ows
require the government to adjust labor taxes and transfers to achieve its distributive and �nanc-
ing goals. Labor taxes distort labor supplies, but �uctuations in transfers also lower welfare. A
decrease in transfers in response to adverse aggregate shocks a�ects agents who have low present
values of earnings especially.

Section 2 sets out preferences and possibilities that de�ne the economic environment. Section
2.1 describes a Ricardian property for our environment that we exploit in concisely formulating
a Ramsey problem. An individual's net asset position equals his assets minus the assets held
be a particular benchmark agent. The vector of all agents' net asset positions a�ects the set of
allocations that can be implemented in competitive equilibria with a�ne taxes. The insight that
net and not gross asset positions matter reduces the dimension of a state su�cient to describe a
Ramsey plan recursively. It also provides a way to separate roles played by government debt and
transfers despite the Ricardian property. We do this by setting the asset holdings of the least
productive agent always to zero and than backing transfers out from the di�erence between this
agent's consumption and his after-tax labor income.

A Ramsey plan induces an ergodic distribution of transfers, the labor tax rate, and the
distribution of assets that is determined by interactions between a) the government's ability to
hedge aggregate shocks by taking advantage of �uctuations in the return on the asset it trades;
and b) the government's preferences about redistribution that a�ect how costly it is to use
�uctuations in transfers to hedge those shocks. The analysis in sections 3, 4, and 5 shows that
these interactions shape the ergodic distribution of government debt in the following ways. If
equilibrium outcomes make the return on the asset low when the net-of interest government
de�cit is high, then the government will run up debt. But if the return on the asset is high when
the net-of-interest government de�cit is high, the government will accumulate assets. The long
run variances of government assets and the tax rate are both lower and rates of convergence to
the ergodic distribution are higher in economies in which the comovement between the net-of
interest de�cit and the return on the asset is bigger in absolute magnitude. Other things equal,
governments that want more redistribution eventually hold fewer assets.

The comovement between the aggregate shock that drives government expenditures and re-
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turns on the single asset is a key intermediating object that shapes the ergodic joint distribution
of the tax rate and government debt. In our general setting, one-period utilities are concave
in consumption. That makes the return on the single asset an equilibrium object partly under
the control of the Ramsey planner. To help us understand forces shaping both the ergodic joint
distribution and rates of convergence to it, we begin by studying a special setting in which re-
turns on the single asset and their correlation with the aggregate shock are exogenous, namely,
a setting with one-period utilities that are quasilinear, meaning linear in consumption. Section
3 completes this analysis in two parts. We begin by analyzing a representative agent economy
with quasilinear preferences, a government restricted to set transfers equal to zero always, and
i.i.d aggregate shocks to public expenditures. Our main �nding here is that for a large class of
payo� structures, debt drifts towards an ergodic set that in a sense maximizes the government's
ability to hedge expenditure shocks, a set that primarily depends on how the payo� on the asset
correlate with �uctuations in the government's net-of-interest de�cit. For special cases in which
the asset payo� is a�ne in government expenditure shocks, we show that the ergodic distribution
is degenerate. For other assumptions about the asset payo�, shock correlation, we develop tools
to approximate the ergodic distribution and tell how the spread of the ergodic distribution of
government debt and the tax rate increases with how far the payo�s are from allowing perfect
�scal hedging.

The representative agent analysis with transfers restricted to zero is informative about out-
comes in multiple agent economies with no restrictions on transfers but with Pareto weights that
make the welfare costs of transfers so high that the Ramsey planner chooses never to use them,
or at least not to use them eventually.1 We show this by analyzing an economy with unrestricted
transfers and two types of agents both of whom have quasilinear one-period utilities and one of
whom is not productive. We study the e�ects of the presence or absence of a nonnegativity con-
straint on the consumption of the unproductive agent as a determinant of the asymptotic level
of government debt and whether and when transfers are used. The asymptotic level of assets is
decreasing in the planner's desire for redistribution. This comes from the fact that welfare costs
of using transfers are lower for a more redistributive government. Consequently it relies more on
transfers and has less cause to accumulate assets to hedge aggregate shocks.

In section 4, we study economies more general in their heterogeneity, preferences, and shock
structures. We formulate the Ramsey problem recursively in terms of two Bellman equation,
one for time 0 and another for times t ≥ 1. That these Bellman equations have di�erent state
variables expresses the time inconsistency of plans that as usual attribute to the Ramsey planner
the ability to commit to an intertemporal plan at time 0. Subsections 4.2 and ?? derive conditions
under which the planner can eventually achieve complete hedging, i.e., both constant labor tax
rate and consumption shares even when the return on the asset is endogenous.

In section 5, we numerically verify that the forces isolated in the more analytically tractable
models of sections 3 and 4 prevail in a version of the model with several types of agents calibrated
to match US data. Our calibration captures (1) the initial heterogeneity wages and assets; (2)
the observation that in recessions the left tail of the cross-section distribution of labor income
falls by more than right tail; and (3) how in�ation and asset return risk comove with labor
productivity. We use this model to quantify the channels discovered in our theoretical analysis
of simpler environments. We also describe features of optimal government policy, especially in
booms and recessions at higher frequencies. During recessions accompanied by higher inequality,

1The analysis also augments what is known about representative agent economies in which a single risk-free
bond is traded (e.g., Aiyagari et al. (2002), Farhi (2010), and Faraglia et al. (2012)).
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it is optimal to increase taxes and transfers and to issue government debt. These outcomes di�er
both qualitatively and quantitatively from those in either a representative agent model or in
a version of our model in which a recession is modelled as a pure TFP shock that leaves the
distribution of skills unchanged.

Two technical contributions facilitate our analysis. First, for the quasilinear preferences stud-
ied in section 3, we obtain sharp characterizations of the ergodic distribution of debt and taxes
by approximating transition dynamics around economies that permit perfect �scal hedging. This
approach also enables a local stability analysis for economies with the more general preferences
of section ??. Second, quantitative applications as ambitious as those in section 5 are made
possible by taking a sequence of polynomial approximations about steady states of a sequence of
deterministic economies and evaluating the polynomials at a current distribution of idiosyncratic
state variables of the incomplete markets economy. This approach allows us to study transition
paths of the optimal allocation that express the dynamics of the joint distribution of individual
wealths and past consumptions, a high dimensional endogenous state vector. These technical
contributions, which build on ideas developed in Evans (2014), will be useful in many other
settings with heterogeneous agents and aggregate risk.

Section 6 o�ers concluding remarks.

1.1 Relationships to literatures

A large literature on Ramsey problems exogenously restricts transfers in the context of repre-
sentative agent, general equilibrium models. Lucas and Stokey (1983), Chari et al. (1994), and
Aiyagari et al. (2002) (henceforth called AMSS) Figure 1.1 shows that an a�ne structure better
approximates the US tax-transfer system than just proportional labor taxes.
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In contrast to those papers, our Ramsey planner cares about the distribution of welfare
among agents with di�erent skills and wealths. Except for not allowing them to depend on agents'
personal identities, we leave transfers unrestricted and let the Ramsey planner set them optimally.
We �nd that some of the same general principles that emerge from the representative agent, no-
transfers literature continue to hold, in particular, the prescription to smooth distortions across
time and states. However, it is also true that allowing the government to set transfers optimally
changes the optimal policy in important respects.2

Some of our results in section 3 relate to Angeletos (2002), Buera and Nicolini (2004), and
Shin (2007). These papers show that for a given initial government debt, the same Ramsey
allocation that emerges from a complete markets like the one in Lucas and Stokey (1983) can
also be supported in a with non-contingent debts with an appropriate set of maturities. In
contrast, we characterize properties of payo�s on government debt that cause the optimal plan
with incomplete markets eventually to converge to a complete markets allocation. That limiting
allocation depends on model primitives but not on the initial level of government debt. We use
this �nding to build tools that allow us to say more about the ergodic distribution of debt and
taxes in economies in which only imperfect �scal hedging is possible.

In a setting with self-interested politicians who issue debt and tax capital and cannot commit
to future government actions, Aguiar and Amador (2011) �nd conditions under which optimal
allocations feature no tax distortions in the limit. Our results about conditions for eventual
complete �scal hedging in our environment have a similar �avor to Aguiar and Amador's. We
delineate conditions under which �uctuations in the tax rates vanish in the limit, although the
constant tax rate may not be zero. Also, for (a deterministic) setting with linear utility, Aguiar
and Amador characterize speeds of convergence of debt and tax rates in neighbourhoods of steady
states and they analyze how political economy frictions can arrest the rate of convergence. In
section 3, we too characterize the speed of convergence and show how it depends on the covariance
structure of the payo�s and aggregate shocks.

Our paper extends both Barro (1974), which showed Ricardian equivalence in a representative
agent economy with lump sum taxes, and Barro (1979), which studied optimal taxation when
lump sum taxes are ruled out. In our environment with incomplete markets and heterogeneous
workers, both forces discovered by Barro play large roles. But the distributive motives that we
include alter optimal policies.

Several other papers impute distributive concerns to a Ramsey planner. Three papers most
closely related to ours are Bassetto (1999), Shin (2006), and Werning (2007). Like us, those au-
thors allow heterogeneity and study distributional consequences of alternative tax and borrowing
policies. Bassetto (1999) extends the Lucas and Stokey (1983) environment to include N types
of agents with heterogeneous time-invariant labor productivities. There are complete markets.
The Ramsey planner has access only to proportional taxes on labor income and state-contingent
borrowing. Bassetto studies how the Ramsey planner's vector of Pareto weights in�uences how
he responds to government expenditures and other shocks by adjusting the proportional labor

2A distinct strand of literature focuses on optimal policy in settings with heterogeneous agents when a gov-
ernment can impose arbitrary taxes subject only to explicit informational constraints (see Golosov et al. (2007)
for a review). A striking result from that literature is that when agent's asset holdings are perfectly observable,
the distribution of assets among agents is irrelevant and an optimal allocation can be achieved purely through
taxation (see, e.g. Bassetto and Kocherlakota (2004)). In the previous version of the paper we showed that a
mechanism design version of the model with unobservable assets generates some of the similar predictions to the
model with a�ne taxes that we study, in particular, the relevance of net assets and history dependence of taxes.
We leave further analysis along this direction to the future.
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tax and government borrowing to cover expenses while manipulating competitive equilibrium
prices to redistribute wealth between `rentiers' (who have low productivities and whose main
income is from their asset holdings) and `workers' (who have high productivities) whose main
income source is their labor.

Shin (2006) extends the AMSS (Aiyagari et al. (2002)) incomplete markets economy to two
risk-averse households who face idiosyncratic income risk. When idiosyncratic income risk is big
enough relative to government expenditure risk, the Ramsey planner chooses to issue debt so
that households can engage in precautionary saving, thereby overturning the AMSS result that a
Ramsey planner eventually sets taxes to zero and lives o� its earnings from assets thereafter. Shin
emphasizes that the government does this at the cost of imposing tax distortions. Constrained to
use proportional labor income taxes and nonnegative transfers, Shin's Ramsey planner balances
two competing self-insurance motives: aggregate tax smoothing and individual consumption
smoothing.

Werning (2007) studies a complete markets economy with heterogeneous agents and transfers
that are unrestricted in sign. He obtains counterparts to our Ricardian results about net versus
gross asset positions, including the legitimacy of a normalization allowing government assets
to be set to zero in all periods. Because he allows unrestricted taxation of initial assets, the
initial distribution of assets plays no role. Our corollary 1 and corollary ?? generalize Werning's
results by showing that all allocations of assets among agents and the government that imply
the same net asset position lead to the same optimal allocation, a conclusion that holds for
market structures beyond the complete markets structure analyzed by Werning. Werning (2007)
provides an extensive characterization of optimal allocations and distortions in complete market
economies, while we focus on precautionary savings motives for private agents and the government
that are absent when markets are complete.3,4

Finally, our numerical analysis in Section 5 is related to McKay and Reis (2013). While our
focus di�ers from theirs � McKay and Reis study the e�ect of a calibrated version of the US
tax and transfer system on stabilization of output, while we focus on optimal policy in a simpler
economy � both papers con�rm the importance of transfers and redistribution over business-cycle
frequencies.

2 Environment

We consider an in�nite horizon economy in discrete time. There is a mass ni of type i ∈ I
in�nitely lived agents with

∑I
i=1 ni = 1. Preferences of an agent of type i over stochastic processes

for consumption {ci,t}t and labor supply {li,t}t are represented by

E0

∞∑
t=0

βtU i (ci,t, li,t) , (1)

where Et is a mathematical expectations operator conditioned on time t information, β ∈ (0, 1)
is a time discount factor, ci,t and li,t are consumption and labor supply of type i in period t, and
U i is the per-period utility function of type i.

3Werning (2012) studies optimal taxation with incomplete markets and explores conditions under which optimal
taxes depend only on the aggregate state.

4More recent closely related papers are Azzimonti et al. (2008a,b) and Correia (2010). While these authors
study optimal policy in economies in which agents are heterogeneous in skills and initial assets, they do not allow
aggregate shocks.
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Exogenous fundamentals include a stochastic cross section of skills {θi,t}i,t, government ex-
penditures gt, and the payo� pt on a single asset traded between the government and the private
sector. These are all functions of a shock st ∈ S governed by an irreducible Markov process
that takes values in a �nite set S. We let st = (s0, ..., st) denote a history of shocks having joint
probability density π(st). To simplify exposition, we often use notation zt to denote a random
variable z with a time t conditional distribution that is a function of the history st. Occasionally,
we use the more explicit notation z

(
st
)
to denote a realization at a particular history st.

An agent of type i who supplies li units of labor in state st produces θi (st) li units of output,
where θi(st) ∈ Θ is a non -negative state-dependent scalar. Feasible allocations satisfy

I∑
i=1

nici,t + gt =
I∑
i=1

niθi,tli,t. (2)

The time t payo� pt on the traded asset is described by

pt = P(st|st−1),

where P is an S × S matrix normalized to satisfy Etpt+1 = 1. Specifying the asset payo� in this
way lets us investigate consequences of the correlation between asset returns, on the one hand,
and government expenditures or shocks to the skill distribution, on the other hand. Purchasing
b̌t units of the asset at a price of qt units of time t consumption per unit of the asset entitles
the owner to pt+1b̌t units of time t+ 1 consumption. Consequently, Rt+1 = pt+1/qt is the gross
rate of return on the asset measured in units of time t+ 1 consumption good per unit of time t
consumption good. We let bt ≡ qtb̌t denote a time t value of b̌t units of the asset, measured in
units of time t consumption. From now on, we express budget sets in terms of the gross rate of
return Rt and counterparts of the value of assets bt. To facilitate a uni�ed notation for budget
constraints for dates t ≥ 0, we de�ne R0 ≡ p0β

−1.
Households and the government begin with assets {bi,−1}Ii=1 and B−1, respectively. Asset

holdings satisfy the market clearing condition

I∑
i=1

nibi,t +Bt = 0 for all t ≥ −1. (3)

There is a proportional labor tax rate τ t and common lump transfer Tt. The tax bill of an
agent with wage earnings li,tθi,t is

−Tt + τ tθi,tli,t.

A type i agent's budget constraint at t ≥ 0 is

ci,t + bi,t = (1− τ t) θi,tli,t +Rtbi,t−1 + Tt, (4)

and the government budget constraint is

gt +Bt = τ t

I∑
i=1

niθi,tli,t +RtBt−1 − Tt. (5)

De�nition 1. An allocation is a sequence {ci,t, li,t}i,t. An asset pro�le is a sequence
{{bi,t}i , Bt}t. A returns process is a sequence {Rt}t. A tax policy is a sequence {τ t, Tt}t.
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We impose debt limits on asset pro�les. In general they can depend on the history of ex-
ogenous shocks st and the tax policy of the government {τ t, Tt}t and are described by functions
{bi
(
st; {τ t, Tt}t

)
}i and B

(
st; {τ t, Tt}t

)
. This allows both for natural debt limits, which corre-

spond to the maximum debt that an agent can repay almost surely, and for tighter, ad-hoc limits.
So for all t ≥ −1 we impose,

bi,t ≥ bi(st; {τ t, Tt}t) (6)

and
Bi,t ≥ B(st; {τ t, Tt}t). (7)

De�nition 2. For a given initial asset distribution
(
{bi,−1}i , B−1

)
, a competitive equilibrium

with a�ne taxes is a sequence {{ci,t, li,t, bi,t}i , Bt, Rt}t and a tax policy {τ t, Tt}t such that (i)
{ci,t, li,t, bi,t}i,t maximize (1) subject to (4) and (6); and (ii) constraints (2), (3), (5), and (7) are
satis�ed.

A Ramsey planner's preferences over competitive equilibrium allocations are ordered by

E0

I∑
i=1

ωi

∞∑
t=0

βtU it (ci,t, li,t) , (8)

where the Pareto weights satisfy ωi ≥ 0,
∑I

i=1 ωi = 1.

De�nition 3. Given ({bi,−1}i, B−1), an optimal competitive equilibrium with a�ne taxes is a
competitive equilibrium with an allocation that maximizes (8).

2.1 Relevant and irrelevant aspects of the asset distribution

Our economy features both distortionary taxation (since agent-speci�c lump sum taxes are not
available) and debt limits. Despite these frictions, there is a sense in which the value of the
government debt by itself provides little information about welfare costs of servicing it. The
important statistic is not the level of government debt per se, but who holds it. To formalize this
point, we de�ne agents' net assets in period t as agents' asset holdings relative to those of some
benchmark agent, {bi,t− b1,t}i>1. The next proposition shows that it is the initial distribution of
the net assets that determines welfare in the optimal competitive equilibrium.

Proposition 1. For any pair of initial distributions
(
{b′i,−1}i, B′−1

)
and

(
{b′′i,−1}i, B′′−1

)
that

satisfy the debt limits and
b′i,−1 − b′1,−1 = b′′i − b′′1,−1 (9)

the values of (8) at the optimal allocations are the same.

We relegate the proof to the appendix 7.1. The intuition con�rms the quote of Newcomb
(1865) with which we began our paper. To see this, imagine an increase an initial level of
government debt from 0 to some arbitrary level B′−1 < 0 when agents asset holdings are equal
across agents. The optimal way to �nance this increase in public debt is to reduce transfers
and keep distortionary taxes {τ t}t unchanged. If asset holdings were equal to begin with, each
unit of debt repayment achieves the same redistribution as one unit of transfers. The situation
would be di�erent if, say, richer people initially own disproportionately more government debt. A
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government with Pareto weights {ωi}i that favor equality would want to increase both transfers
{Tt}t and the distorting labor tax rate {τ t}t to o�set the increase in inequality associated with
the increase in government debt.5

Proposition 1 holds for arbitrary debt limits. In general, the absolute levels of government
debt will be determinate. As long as there are agents who face debt limits that are binding along
the equilibrium path, changes in government debt can relax (or tighten) borrowing constraints
and alter welfare.6 As a way of contrast, in Corollary 1 we show that with natural debt limits,
only net asset positions are meaningfully determined in any competitive equilibrium.

Corollary 1. Given
(
{bi,−1}i , B−1

)
, let

{
{ci,t, li,t, bi,t}i , Bt, Rt

}
t
and {τ t, Tt}t be a competitive

equilibrium with natural debt limits. For bounded sequences
{
b̂i,t

}
i,t≥−1

that satisfy

b̂i,t − b̂1,t = b̃i,t ≡ bi,t − b1,t for all t ≥ −1, i ≥ 2, (10)

there exist sequences
{
T̂t

}
t

and
{
B̂t

}
t≥−1

that satisfy (3) and that make{{
ci,t, li,t, b̂i,t

}
i
, B̂t, Rt

}
t

and
{
τ t, T̂t

}
t

constitute a competitive equilibrium given({
b̂i,−1

}
i
, B̂−1

)
.

In some parts of the discussion below we will �nd it useful to normalize assets of the least
productive agents to zero. With such normalization the usual intuition that higher level of
government debt leads to higher distortions and lower welfare is recovered, due to the fact that
it e�ectively corresponds to higher asset inequality. This normalization is helpful to relate our
�ndings to studies of government debt in representative agent models.

3 Quasilinear preferences

In our general section 2 setting, the endogeneity of the return on the single asset and the multi-
plicity I of types of agents makes it di�cult to parse the forces that govern how transfers should
be used to smooth tax rate distortions and to redistribute across people. In this section, we
analyze a special case that helps us isolate key forces. We assume two types of agents who have
one-period utility functions that are quasi-linear in consumption. This makes the return on the
asset exogenous and allows us to focus on how the comovement between returns and aggregate
risk a�ects how transfers are used to smooth tax distortions and to redistribute.

Assumption 1. Quasilinear preferences: u(c, l) = c− l1+γ

1+γ .

Assumption 2. θ1 > θ2 = 0.

Assumption 3. IID shocks to expenditure: g(st) is i.i.d over time.

5This logic implies that government debt that is widely and evenly distributed (e.g., implicit Social Security
debt) is less distorting than government debt owned mostly by people whose incomes are at the top of the income
distribution (e.g., government debt held by hedge funds). It is possible to extend our analysis to open economy
with foreign holdings of domestic debt. The more government debt is owned by the foreigners, the higher are the
distorting taxes that the government needs to impose.

6This intuition is similar to that in Woodford (1990). The government can relax the ad-hoc debt limits because
of the implicit assumption that it is easier to collect taxes than to enforce debt payments by citizens.
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Assuming one type of agent who cannot work makes redistribution between rich and poor
transparent, and i.i.d shocks help with analytical tractability. Without loss of generality we can
restrict our attention to payo� matrices P that have identical rows, denoted by a vector P of
dimension S such that

∑
s∈S π(s)P (s) = 1. At interior solutions, the �rst-order conditions for

the household's problem for l1,t and bi,t imply that

lγ1,t = (1− τ t)θ,
Rt =

pt
β
,

where we set R0 = β−1pt. Substituting these into the budget constraint (4) gives

c1,t + b1,t = l1+γ
1,t +

pt
β
b1,t−1 + Tt, t ≥ 0, (11a)

c2,t + b2,t =
pt
β
b2,t−1 + Tt, t ≥ 0. (11b)

Subtract the budget constraint of the unproductive agent (11b) from (11a) to eliminate transfers
Tt and get

c1,t − c2,t + b1,t − b2,t = l1+γ
1,t +

pt
β

(b1,t−1 − b2,t−1) , t ≥ 0. (12)

Equation (12) presents a recursive version of the implementability constraints appropriate for
the quasilinear setting. Note from equation (12) that only relative assets, b1,t − b2,t matter, so
we adopt a normalization where we set the assets b2,t of the unproductive agent always to zero.
This makes the asset market clearing condition imply that nb1,t = −Bt and also implies that
transfers Tt = c2,t. Next we make

Assumption 4. c2,t ≥ 0.

Requiring that c2t ≥ 0 is an easy way to make transfers too costly to a Ramsey planner who
cares too little about the unproductive agent. Since the only income of the unproductive agents
comes from transfers, the non-negativity constraints ensures that such transfers are always weakly
positive.

We impose bounds on the planner's asset positions Bt. Given our normalization b2,t = 0,
bounds on planner's asset are equivalently restrictions on net assets positions. Imposing these
bounds turns out to be useful as they map to debt limits in a representative agent economy,
a special case of our quasilinear economy as we shall show below. Households are assumed to
operate under debt limits that are looser than those implied by the bounds on the planner's
assets. Let (ω, n) ∈ [0, 1]× [0, 1] be the Pareto weight and mass assigned to the productive type
1 agent. We can exploit the recursive nature of constraint (12) to write the recursive problem
that characterizes the optimal policy as a function of the beginning of the period government
assets B_.

V (B_) = max
{c1(s),c2(s),l1(s),B(s)}s

∑
s

π(s)

{
ω

(
c1(s)− l1(s)1+γ

1 + γ

)
+ (1− ω)c2(s) + βV (B(s))

}
(13)

where the maximization is subject to

c1(s)− c2(s)− n−1B(s) = l1(s)1+γ − n−1β−1P (s)B_, (14a)
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nc1(s) + (1− n)c2(s) + g(s) = nθl1(s), (14b)

c2(s) ≥ 0, (14c)

B ≤ B(s) ≤ B. (14d)

As we shall see in later sections, the government has two tools to smooth aggregate shocks:
use �uctuations in asset returns to obtain state-contingent payo� or adjust taxes and transfers
in response to a shock. Typically it is optimal to use both instruments simultaneously. In the
quasilinear economy analysis simpli�es because in the long run the planner only uses one of these
tools. Which tool is used depends on how much the government cares about the redistribution.
We show that if government's concern for redistribution is su�ciently low, i.e. the Pareto weight
assigned to the productive agent is su�ciently high, then the government uses only �uctuations
in assets returns to hedge the aggregate risk. Conversely, with su�ciently high concerns for
redistribution the government eventually uses only �uctuations in transfers to smooth aggregate
shocks. The threshold Pareto weight is de�ned by ω̄ = n

(
1+γ
γ

)
and the two regions exists as

long as n
(

1+γ
γ

)
< 1. If it is not satis�ed, we only have the second region.

Pareto weights ω > ω̄

We start our analysis by considering the problem of the government which has a su�ciently low
concern for redistribution. The key intermediate step is the following lemma

Lemma 1. Suppose that n < γ
1+γ . If ω > ω̄ then Tt = 0 ∀t ≥ 0.

The proof is relegated to appendix 7.2. For Pareto weights attached to the productive agent
above ω̄, using transfers is too costly for the planner because positive transfers subsidize the
unproductive type 2 agent whose welfare the planner values too little. This makes the Ramsey
outcomes identical to those for an economy in which a Ramsey planner is restricted to use a
linear tax schedule (he cannot use transfers) and in which there is a representative agent whose
allocation equals the allocation to the productive agent in our economy. The characterization of
this case is of independent interest as we can compare our results with the literature, Lucas and
Stokey (1983) and Aiyagari et al. (2002), both of which studied a representative agent economy
with linear taxes.

The key force at play here is how market incompleteness, as captured by the structure of
payo� on the asset P , impedes tax-smoothing in a joint ergodic distribution for the tax rate and
government debt. To organize analytical results in this section, it is useful to collect some P
vectors that are perfectly correlated with expenditure shocks g in the following set

P∗ =

{
P : P (s) = 1 +

β

B∗
(g(s)− Eg) ∀sfor some B∗ ∈ [B,B]

}
. (15)

Payo�s in the set P∗ have a property that it is feasible for the government to perfectly hedge
�uctuations in net-of interest de�cits by holding debt level B∗. Note that for each P ∗ ∈ P∗ there
is a unique B∗(P ∗) that satis�es conditions of equation (15). The relationship between any such
pair of (P ∗, B∗(P ∗)) can be written as

B∗(P ∗) = β
var(g(s))

cov(P ∗(s), g(s))
. (16)

Finally, observe that the set of payo�s P∗ is non-generic: it has a measure 0 in the space of
possible asset payo�s.
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Proposition 2. Suppose that n < γ
1+γ . If ω > ω̄, the value function V (B_) in equation (13)

is strictly concave and the behavior of government assets under a Ramsey plan is characterized
as follows:

1. If P ∈ P∗ then government assets converge to a degenerate steady state

lim
t
Bt = B∗(P ) a.s ∀B−1.

There is τ∗(P ) such that limt τ t = τ∗(P ) a.s ∀B−1.

2. If P (s) 6∈ P∗ there exists an invariant distribution of government assets with the property,

∀ε > 0, Pr{Bt < B + ε and Bt > B − ε i.o} = 1.

There is a τ(B) such that the tax rate τ t = τ̂(Bt) and τ̂ ′ < 0.

Moreover, if P (s) − P (s′) > β
B [g(s) − g(s′)] ∀s, s′ and B − B is su�ciently large, there exist

B1, B2 such that

EV ′(B(s)) > V ′(B_) for B_ > B2,

EV ′(B(s)) < V ′(B_) for B_ < B1.

The �rst part of Proposition 2 shows that if there is any asset level which allows the gov-
ernment to hedge its risk, it converges to that level almost surely. In that steady state the tax
level is constant and the government uses �uctuations in asset return to �nance stochastic ex-
penditures. This dynamics resembles that of a complete market economy a-la Lucas and Stokey
(1983), except the long-run level of debt and taxes in pinned down by vector P in our incomplete
market economy, while with complete market economy it is pinned down by the initial value of
government assets. Expression (16) tells us that whether the government eventually holds assets
or owes debt is determined by the sign of the covariance of P (s) with g(s). In particular, the
government accumulates positive (negative) assets if returns are high (low) in the states when
g(s) is high.

As we discussed above, the payo�s that allow the government to hedge its risks, are not
generic. The second part of Proposition 2 shows that in general, when perfect hedging is impos-
sible, the support of the invariant distribution is wide in the sense that almost all asset sequences
recurrently revisit small neighborhoods of any arbitrary lower and upper bounds on government
assets. With incomplete markets a long enough sequence of high or low shocks takes government
assets arbitrarily far from any starting level of debt. Because the labor tax rate is decreasing in
government assets, it varies too. These outcomes contrast sharply with those in a corresponding
complete market benchmark like Lucas and Stokey's, where both debt and tax rates would be
constant sequences, and with those in the incomplete markets economy of Aiyagari et al., where
government assets would approach levels that allow the limiting tax rate to be zero and the
tail allocation to be �rst-best. Finally, the last part of the proposition shows that with incom-
plete markets government assets exhibit a form of mean-revision: if the government accumulated
su�ciently high or low level of assets, future debt levels revert towards the middle.
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To acquire more information about the invariant distribution of government assets when the
payo� vector P does not allow for perfect hedging, we consider linear approximations of the
policy rules. For any P consider the closest perfect hedging payo� P ∗ that solves

min
P ∗∈P∗

∑
s

π(s) [P (s)− P ∗(s)]2 . (17)

Use this P ∗ to �nd a component P̂ of P that is orthogonal to g:

P (s) = P̂ (s) + P ∗(s).

We linearize policy rules around P̂ = 0 and study the properties of the ergodic distribution
generated by such rules.

Proposition 3. The linearized policy rules induce a unique ergodic distribution of government
debt with the following properties.

• Mean: The ergodic mean of asset distribution, E(B), satis�es

E(B) = B∗(P ∗).

• Variance: The ergodic coe�cient of variation of government assets B is

σ(B)

E(B)
=

√
var(P (s))− |cov(g(s), P (s))|

(1 + |cov(g(s), P (s))|)|cov(g(s), P (s))| ≤
√

var(P̂ (s))

var(P ∗(s))
.

• Convergence rate: The rate of convergence to of the mean to its ergodic value is described
by,

Et−1(Bt −B∗) =
1

1 + var(P )corr2(P, g)
(Bt−1 −B∗),

where corr(P, g) is the correlation coe�cient between P and g
We relegate the proof to appendix 7.4, where we describe how we take a �rst-order Taylor

approximation to the decision rules and laws of motion for the state variables of our economy
around complete market counterparts associated with P ∗ ∈ P∗.

Proposition 3 describes how deviations from P∗ map into larger variances for government debt
and the tax rate under the ergodic distribution. The last part of Proposition 3 decomposes the
the speed of convergence of assets Bt into two components: variance of P (s) and the correlation
between P (s) and g(s). If P were to belong to P∗, the second term relating to correlation would
be equal to one, and this bounds the (exponential) rate of convergence of the conditional mean
(for payo� P (s) close to P∗) by variance of P (s). Figure 1 illustrates how the ergodic distribution
of government debt and the tax rate spread as we exogenously alter the covariance of P (s) with
g(s).7

7For the purposes of these graphs we used the global approximation to the policy rules using standard projection
methods rather than the linear approximations appealed to in Proposition 3. The ergodic distribution associated
with the approximate linear policies is similar.
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Figure 1: Ergodic distribution for government assets Bt and the labor tax rate τ t in the repre-
sentative agent quasilinear economy for three di�erent asset payo� vectors P .

Pareto weights ω ≤ ω̄
The previous subsection described the optimal plan in the case where the Pareto weight on the
productive type 1 agent was so high that the Ramsey planner chose not to use transfers to hedge
aggregate shocks. Proposition 4 now completes the characterization by describing the case when
the Ramsey planner has larger redistributive concerns and the Pareto weight attached to the
productive agent are lower. This induces the planner to use transfers to hedge shocks.

Proposition 4. For ω < ω̄, and mins{P (s)} > β, there exist a B(ω) satisfying B′(ω) > 0 and
the optimal tax rate, transfer, and government asset policies {τ t, Tt, Bt}t are characterized as
follows:

1. If B−1 > B (ω) then

Tt > 0, τ t = τ∗(ω), and Bt = B−1 ∀t ≥ 0.

2. If B−1 ≤ B (ω) then

(a) If P ∈ P∗ or P ∈ P∗ and B∗(P ) > B(ω)

Tt > 0 i.o., lim
t
τ t = τ∗(ω) and lim

t
Bt = B(ω) a.s.

(b) Otherwise,

Pr{lim
t
Tt = 0, lim

t
τ t = τ∗∗, lim

t
Bt = B∗(P ) or Tt > 0 i.o. and lim

t
τ t = τ∗(ω), lim

t
Bt = B(ω)} = 1.
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Greater concerns for redistribution lower costs of transfers and this expands the planner's hedging
possibilities against aggregate shocks. Proposition 4 asserts that the ergodic distribution is
degenerate and long run level of assets in general depends on both the initial assets and how
much the planner values the welfare of the unproductive agent. If the government begins with
enough assets (as in part 1 of Proposition 4), the planner chooses an interior allocation in which
all �uctuations in net-of interest de�cits are always �nanced by �uctuating transfers Tt. Here
government assets remain at their initial level and the tax rate is constant at a level that is
independent of the initial assets.

Part 2 describes a setting in which government assets are initially too low to validate the part
1 outcome. Part 2a shows that if perfect spanning is not feasible, then the planner eventually
accumulates government assets until they reach the threshold B(ω) at which the welfare costs of
transfers are low enough to induce the planner to keep the tax rate constant.8 Pareto weights that
indicate that the planner cares more about the unproductive agent lower the marginal welfare
costs of collecting revenue from labor taxes paid by the productive agent. This induces the
planner to increase the labor tax rate, lowering the threshold level of assets that are required to
�nance all shocks by transfers. In this way, a more redistributive planner relies more on transfers
and consequently is less motivated to accumulate assets to hedge aggregate shocks. Part 2b
shows that if P ∈ P∗, then assets converge either to the bound B(ω) or to the perfect spanning
asset level B∗(P ).

4 Optimal allocation with risk aversion

In this section we extend our analysis to economies with risk aversion. The main di�erence from
the analysis in the previous section is that the return R(s) depends both on the structure of
asset payo�s and on the marginal utilities of consumption of agents. The latter term in general,
depends on the realization of shocks and government policy. We begin our analysis with a pair
of Bellman equations that formulate the Ramsey plan recursively for the general settings with
I > 2 agents and one-period utility functions that are concave in consumption. We assume that
U i : R2 → R is concave in (c,−l) and twice continuously di�erentiable. We let U ix,t or U

i
xy,t

denote �rst and second derivatives of U i with respect to x, y ∈ {c, l} in period t. Finally, we
impose natural debt limits, which ensures that all �rst order conditions are interior.

In this section, we restrict attention to interior solutions and standard steps (see e.g. Chari
et al. (1994)) ensure that

{
{ci,t, li,t, bi,t}i , Rt, τ t, Tt

}
t is a competitive equilibrium allocation if

and only if they satisfy the constraints,

(1− τ t) θi,tU ic,t = −U il,t, (18)

U ic,t = βEtRt+1U
i
c,t+1, (19)

ci,t + bi,t = −
U il,t
U ic,t

li,t + Tt +
ptU

i
c,t−1

βEt−1ptU ic,t
bi,t−1 ∀i ≥ 1, t ≥ 1, (20)

8The planner's choice under the conditions of part 2 to accumulate enough government assets so that even-
tually the government can use earnings on its assets together with �uctuating positive transfers to hedge �scal
shocks is reminiscent of outcomes in the Aiyagari et al. (2002) economy. There, with a representative agent
and non-negativity constraints on transfers, the planner accumulated enough assets to �nance shocks with zero
distortionary labor taxes while costlessly using transfers to dispose of any excess earnings on its asset holdings.
With multiple agents, �uctuating transfers may bring welfare costs that depend on the Ramsey's planner attitude
about redistribution.
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ci,0 + bi,0 = −
U il,0
U ic,0

li,0 + T0 + p0β
−1bi,−1 ∀i ≥ 1, (21)

together with feasibility (2). We can simplify (20) and (21) by substituting for Tt and deriving
the implementability constraints in terms of net asset positions as in of equation (12):

(ci,t − cI,t) + b̃i,t (22)

= −
U il,t
U ic,t

li,t +
U Il,t

U Ic,t
lI,t +

ptU
i
c,t−1

βEt−1ptU ic,t
b̃i,t−1 for i < I and t ≥ 1.

We are now ready to write the problem recursively. Let x =
(
U Ic b̃1, ..., U

I
c b̃I−1

)
, ρ =(

U1
c /U

I
c , ..., U

I−1
c /U Ic

)
, and R (s|s_) ≡ P (s|s_)

(
UIc (s)

Es_PUIC

)
. Following Kydland and Prescott

(1980) and Farhi (2010), we split the Ramsey problem into a time-0 problem that takes
({b̃i,−1}I−1

i=1 , s0) as state variables and a time t ≥ 1 continuation problem that takes (x,ρ, s_)
as state variables. For t ≥ 1, let V (x,ρ, s_) be the planner's continuation value given
xt−1 = x,ρt−1 = ρ, st−1 = s_. Let a(s) = {ci(s), li(s)}i denote the allocation, the optimal
allocation solves:

V (x,ρ, s_) = max
{a(s),x′(s),ρ′(s)}

∑
s

π(s|s_)

([∑
i

ωiU
i(s)

]
+ βV (x′(s),ρ′(s), s)

)
(23)

where the maximization is subject to

U Ic (s) [ci(s)− cI(s)] +

(
U il (s)li(s)

U ic(s)
U Ic (s)− lI(s)U Il (s)

)
+ x′i(s) =

xiR(s|s_)

β
for all s, i < I

(24a)
Es_PU i

c

Es_PU I
c

= ρi for all i < I (24b)

U il (s)

θi(s)U ic(s)
=

U Il (s)

θI(s)U Ic (s)
for all s, i < I (24c)∑

i

nici(s) + g(s) =
∑
i

niθi(s)li(s) ∀s (24d)

ρ′i(s) =
U ic(s)

U Ic (s)
for all s, i < I (24e)

Constraints (24b) and (24e) imply (19). The de�nition of xt and constraints (24a) together
imply equation (22) scaled by U Ic . Period 0 maximization problem is similar, except that it does
not have constraints (24b). For completeness we provide the time t = 0 Bellman equation in
appendix 7.6.

4.1 A formula for optimal taxes

We summarize the main tradeo� that the planner faces in setting labor taxes and transfers in
the following proposition. Let {µi(s)}i<I , ξ(s) be the multipliers on constraints (24a) and (24d).

Proposition 5. Suppose preferences are separable and have a constant Frisch elasticity,
U i(c, l) = U i(c)− l1+γ

1+γ . Then the optimal labor tax rate can be expressed as,
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1

1− τ(s)
= −

(
w̄(s)ȳ(s) + cov (wi(s), yi(s))

ξ(s)ȳ(s)

)
, (25)

where wi(s) = (1 + γ)µ̂i(s) + γ
[
n−1
i ωiU

i
c(s)

]
, w̄(s) =

∑
i niwi(s), ȳ(s) =

∑
i niyi(s) and µ̂i(s) =

U Ic (s)µi(s)− n−1
i ωiU

i
c(s) for i < I and µ̂I(s) = −

∑
i<I µ̂i(s)ni

nI
− n−1

I ωIU
I
c (s).

The weights {wi}Ii=1, de�ned in this Proposition, show how the social planner evaluates
�uctuations in inequality in this economy. It consists of Pareto-weight adjusted marginal utility
of consumption of the agents adjusted to the cost of raising revenues, represented by the Lagrange
multiplier {µ̂i}Ii=1.

9

This equation shows the main trade-o� that the social planner faces with heterogeneous
agents. The planner can respond to an aggregate shock either by adjusting transfers, which
leads to �uctuation in equality represented by

{
ωiU

i
c

}I
i=1

, or by changing taxes, the deadweight
loss of which is represented by {µ̂i}Ii=1. In the optimum the planner equilizes distortions from
the two policies. All things being equal, labor taxes are high if inequality in consumption is high
or the deadweight loss of taxation is low.

We discuss two scenarios where things simplify and we can interpret these weights more
tightly. The �rst case is when preferences are quasilinear and our formula (25) reduces to

1

1− τ(s)
= 1−

(
cov(n−1

i ωi, yi(s)

γ−1ȳ(s)

)
. (26)

Since marginal utilities are constant, planner's concerns for equity are captured by the co-
varaince between exogenous Pareto weights and pre-tax income. The covaraince is negative when
Pareto weights are higher on agents with low pre-tax labor income and this calls for higher labor
taxes. The covariance and the optimal taxes vary across states if the distribution of skills {θi(s)}
changes with aggregate shocks, otherwise we have constant tax rates.10

Formula (25) is closely related to classical results on optimal commodity taxation and re-
distribution derived Diamond (1975) and Atkinson and Stiglitz (1976). These papers studied
optimal commodity taxes in static settings and derived formulae for optimal taxes similar ex-
pressed in terms of average elasticities on one hand and cross sectional covariances that captured
equity considerations on the other. In absence of savings, our problem (23) is a special case of
their setting and formula (25) reduces to

1

1− τ = −
(
cov(n−1

i ωiU
i
c, yi)− ȳ((1 + γ)γ−1ξ − 1)

ξε̄

)
, (27)

where σi = −U icc(s)ci(s)
U ic(s)

[1 − T (s)
ci(s)

] as the elasticity of substitution with respect to consumption

(net of transfers) for agent i, and ε̄ =
∑

i

(
1−σi
σi+γ

)
niyi .

9In particular µ̂i(s) is agent i's contribution to the planner's total cost of reducing agent i asset holdings and
simultaneously increasing transfers by one unit.

10In section 3, we imposed non-negativty constraints on the consumption of the unproductive agent as a way of
modeling costs of transfers that typically come from spreading of marginal utilities for more general preferences
in adverse aggregate shocks. As summarized by Theorems (2)-(4), these can vary across states even if the skill
distribution is unchanged.
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4.2 Eventual complete hedging with binary shocks

In section 3 with quasilinear preferences, we studied scenarios where optimal policy perfectly
hedged aggregate shocks. Although the conditions required were restrictive, speci�cally that the
payo� vectors had to be perfectly correlated with expenditure shocks, these economies served as
useful benchmark and a point of approximation to study optimal policy in more general cases
where perfect hedging was not feasible for any asset levels. In this section we extensions of those
insights to the economy with risk-aversion.

With risk aversion, perfect spanning corresponds to an allocation such that the (adjusted)

payo�s R(s|s_) o�set movements in U Ic (s) [ci(s)− cI(s)] +
(
U il (s)

U ic(s)
U Ic (s)− lI(s)U Il (s)

)
for all

agents keeping x(s) = x and at the same time provide full insurance i.e ρ(s) = ρ. For a
given state (x,ρ, s_), let Ψ (s;x,ρ, s_) = (x′ (s) , ρ′ (s)) solve the value functions (23) so that
Ψ (s;x,ρ, s_) is the law of motion for the state variables under a Ramsey plan at t ≥ 1.

De�nition 1. A steady state satis�es
(
xSS ,ρSS

)
= Ψ

(
s;xSS ,ρSS , s−

)
for all s, s_.

At such steady states, outcomes resemble those in the complete market economy of Werning
(2007). The tax rate and transfers both depend only on the current realization of shock st.11

Arguments of Werning can be adapted to show that the tax rate is constant when preferences
have the CES form c1−σ/(1− σ)− l1+γ/(1− γ) and relative skills are constant across aggregate
shocks. We discuss the conditions for existence of steady states and then study a simple example
that will allow us to identify forces also present in the quasilinear economy of section 3 and the
more general economies to be analyzed with numerical methods in section 5.

Lemma 2. When utility is strictly concave in consumption, ‖S‖ = 2 is necessary for a steady
state to exist generically.

The existence of steady state depends on the solution to a non-linear system, which can be
veri�ed only numerically. Appendix 7.8 discusses the structure of these equations in more detail.
Here we present an example with risk averse agents where existence and comparative statics can
be established analytically.

Our example is an economy consisting of two types of households with θ1 > θ2 = 0 and
common one-period utilities ln c− 1

2 l
2. The shock s takes two values {sL, sH} that are i.i.d across

time. We assume that g (sH) > g (sL) . With natural debt limits, Corollary 1 applies and we are
free to normalize the assets of the unproductive agent to zero and interpret x(s) = U Ic (s)B(s)
as the marginal utility adjusted government's assets. In this example we show,

Proposition 6. Suppose that g(s) < θ1 for all s and let R(s|x, ρ) ≡ P (s)U2
c (s|x,ρ)

EPU2
c (x,ρ)

be the adjusted

payo� vector. If P (s) = 1 for all s, then there exists a steady state (x, ρ) with x > 0 and
R (sL|x, ρ) < R (sH |x, ρ). In addition, there exists a payo� vector P such that x < 0 and
R (sL|x, ρ) > R (sH |x, ρ).

Proposition 6 establishes the existence of steady states and isolates how the comovement
of the return on the asset with expenditure shocks predicts the sign of government assets.12

In the quasilinear case we could disentangle the considerations for spanning and redistribution
11However note that the distribution of assets in the steady state for us is endogenous, it only depends on

the technology and preference parameters, as against in Werning (2007) where it is pinned down by the initial
distribution of assets.

12This parallels the quasilinear case, see expression (16)
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explicitly. With risk aversion, costs of transfers come from �uctuations in marginal utilities and
are interlinked with �uctuations in endogenous returns. A decrease in transfers in states with
high expenditure disproportionately a�ects the low-skilled agent, so his marginal utility falls by
more than the marginal utility of a high-skilled agent. Choosing policies such that the net assets
of the high-skilled agent decrease over time makes the two agents' after-tax and after-interest
income become closer, allowing decreases in transfers to have smaller e�ects on inequality in
marginal utilities. This force pushes the government to accumulate assets in the long run. On
the other hand, if (adjusted) payo�s are su�ciently low in states with high expenditures, holding
negative assets or debt is optimal from hedging perspective; as doing so lowers the interest rate
burden. The sign of long run assets ultimately depends on the balance of these forces.

5 Quantitative investigation

In sections 3 and 4, we studied steady states as a way of summarizing the asymptotic behavior
of Ramsey allocations in particular distribution of assets and taxes. In this section, we use a
calibrated version of the economy a) to revisit the magnitude of these forces; and b) to study
optimal policy responses at business cycle frequencies when the economy is possibly far away
from a (stochastic) steady state.

We calibrate parameters and shock process to re�ect stylized facts about dynamics of U.S.
distribution of earnings, assets, and returns on government assets for the period 1978-2010. We
match those facts in a competitive equilibrium with an arbitrary government policy chosen to
re�ect the U.S. tax-debt policy for the same period. We then solve for the optimal Ramsey
allocation for the same initial distribution of relative assets with Pareto weights chosen to match
the average tax level in the competitive equilibrium. We can then compare outcomes predicted
under the optimal policy to actual U.S. data. The numerical calculations use methods adapted
from Evans (2014) and described in the appendix 7.10.

5.1 Calibration

To facilitate calibration, we construct a competitive equilibrium with incomplete asset markets
using an arbitrary tax-debt policy that �ts US tax, debt and expenditure data for the period
1978-2010. We set the tax and debt policy to follow

logBt = (1− ρB) log B̄ + ρB,B logBt−1 + ρB,Y log Yt + σBεB,t,

τ t = τ̄ + ρτ ,Y log Yt + στ ετ ,t.

To estimate the parameters that describe these rules we use (HP) �ltered annual data on debt,
aggregate labor earnings, and the time series for average marginal (federal) tax rates from Barro
and Redlick (2009). Government expenditures are exogenous and follow

log gt = log ḡ + σgεg,t.

Transfers are obtained as a residual from the government budget constraint. Table 1 summarizes
the estimates.

We use I = 9 so that our agents represent 10th to 90th quantiles of (working) US households
labor earnings distribution. To calibrate the wealth inequality, we use Survey of Consumer
Finances [1989-2007] to compute average net assets by earnings quantiles. We set initial assets
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such that the relative assets match the SCF and they add up to the total federal debt held by
the public. We assume that all households have isoelastic preferences u(c, l) = c1−σ

1−σ − l1+γ

1+γ . We
set σ = 2.5 and choose γ = 2 to target a Frisch elasticity of labor supply of 0.5. We set the time
discount factor β = 0.98, which implies the annual interest rate in an economy without shocks
would be 2% per year.

Our theoretical analysis emphasized two forces that determine cyclicality of the optimal
policy: the correlation of income inequality and asset returns with aggregate shocks. To parsi-
moniously capture the behavior of labor income inequality, we assume that agents productivity
follows a two-parameter family of stochastic processes

log θi,t = log θ̄i + εt[1 + (.9−Q(i))m], (28)

where Q(i) is the percentile of agent i. In this speci�cation εt is a common aggregate productivity
shock, and parameterm governs relative volatility of wages of agents in di�erent quantiles of labor
income distribution. For example, when m = 1./0.8 > 0 the percentage decline in productivity
in a recession for agents in the 10th percentile is twice that of the 90th percentile. Aggregate
productivity shock followsan AR(1) process

εt = ρεεt−1 + σεεθ,t.

As in the Ramsey taxation problem, the agents trade a single asset with exogenous payo�s pt.
We assume

pt = 1 + χεt,

where χ captures the ex-post comovement in returns on government assets and aggregate shocks.
The parameters θi,m, ρε, σε and χ are calibrated so the a competitive equilibrium matches the
following moments for the U.S. economy in the 1978-2010 period.

We set {θ̄i} such that the dispersion earnings in the competitive equilibrium matches the
average dispersion per quantile as reported by Guvenen et al. (2014).13 To calibrate m use use
the �nding in Guvenen et al. (2014) that in the past four recessions, the average fall in income for
agents in the �rst decile of earnings was on an average three times that experienced by the 90th
percentile. Furthermore, between the 10th and the 90th percentiles, the change in the percentage
drop in earnings was almost linear. From these facts we infer a slope m = 0.90. The persistence
and standard deviation of the productivity shock, ρε, σε are set to match auto-correlation and
the standard deviation of aggregate labor earnings. Finally the real return on 3 month treasury

13These authors use recently available high quality administrative data to document labor income loss across
for di�erent percentiles of earning distribution in the last four US recessions These include 1979-83, 1990-92,
2000-02, 2007-10 recessions.

Parameter Value Parameter Value

B̄ 0.6 τ̄ 0.24

ρB,B, ρB,Y (0.87, -1.21) ρτ ,Y 0.09

σB 0.023 στ 0.006

Table 1: Estimates for US tax-debt policies
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bill is acylical in the data for our sample. We set χ = 0.85 to make the pt
qt−1

, which is the return
on government assets in our model approximately acylical.

Lastly Pareto weights are set from a one parameter family such that the average tax rate
under the optimal allocation is equal to τ̄ = 0.24. Table 2 summarizes the parameters underlying
the benchmark calibration.

Parameter Value Description

γ 2 Average Frisch elasticity of labor supply of 0.5
β 0.98 Average (annual) risk free interest rate of 2%
σ 2.5 Standard
m 0.9 Relative 90-10 drop in recessions = 3.2
χ 0.85 Covariance between holding period returns and output
σε, ρε 0.015, 0.55 Standard deviation and autocorrelation of aggregate labor earnings
ḡ, σg .10 %, 0.014 Federal government consumption expenditures

Table 2: Benchmark calibration

5.2 Long run outcomes

In this section we verify that the main �ndings in our theoretical analysis of the quasi linear
settings hold in more general settings.

We being with Proposition 3 that points to the importance of correlation of payo�s and
aggregate shocks for the speed and the long run average level of taxes and debt. In the more
general case, as analyzed in this section, the correlation between marginal utility adjusted pay-
o�s, Corr[UcP, ε], will govern these properties. A su�ciently positive χ generates lower payo�s
in recessions relative to booms which makes Corr[UcP, ε] less negative. Figure 2 simulations of
5000 periods for the government debt to output ratio, the labor tax rate, and the transfers to out-
put ratio for three values of χ that generate Corr[UcP, ε] ∈ {−0.88,−0.60(benchmark),−0.22}
in dashed, bold, and dotted, respectively. The three simulations start from the same initial
conditions and all share the same sequence of underlying shocks.

Two features emerge. Di�erent values χ give rise to di�erent locations of the long-run
marginal distribution of government assets and also to di�erent rates of convergence to that
long-run distribution. In line with assertions of Proposition 3, the long run level of assets is
inversely related to the magnitude of this correlation. Also the speed of convergence is slower
when the absolute magnitude of Corr[UcP, ε] is low.

In order to get a clearer picture of the speed of convergence, we plot paths of the conditional
means for debt and the tax rate in �gure 3. To explain how we generated these plots, let
B(st+1,xt,ρt) be the Ramsey decision rules that generate the assets B of the government and
let Ψ (st+1;xt,ρt) be the law of motion for the state variables for the Ramsey plan. For a given
history, the conditional mean of government assets is:

Bcm
t+1 = EB(st+1,x

cm
t ,ρcmt )

xcmt ,ρcmt = EΨ(st,x
cm
t−1,ρ

cm
t−1)

Note how these conditional mean paths smooth the high frequency movements in the dynamics
of the state variables but retain the low frequency drifts. As before, di�erent lines correspond
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Figure 2: The dashed, bold and dotted lines plot simulations for a common sequence of shocks
for di�erent values of χ that generate Corr[UcP, ε] = {−0.88,−0.60(benchmark),−0.22} respec-
tively
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to di�erent values of χ that general generate Corr[UcP, ε] ∈ {−0.88,−0.60(benchmark),−0.22}.
Thicker lines depict outcomes associated with larger values of χ in absolute magnitude. The
�gure shows that the speed of convergence is increasing and the magnitude of the limiting assets
in decreasing in the strength of correlation between productivities and payo�s. This pattern
con�rms the approximation results characterized in Proposition 3.

Figure 3: Conditional mean paths for di�erent values of χ that generate Corr[UcP, ε] =
{−0.88,−0.79,−0.60(benchmark),−0.22}. Thicker lines representing more negative values.

Next we turn to the implications of Theorem 2 that the support of ergodic distribution can
be very wide. To verify this we take the initial conditions at the end of the long simulation and
subject the economy to a sequence of 100 periods of εθ,t shocks that are 1 standard deviations
below the mean. In �gure 4 we see that given a su�ciently long sequence of negative productivity
shocks the economy will eventually deviate signi�cantly from its ergodic mean. However the tax
rates spread very slowly (approximately 4 basis points per year) for the �rst 60 periods. From
this we expect that the the ergodic distribution of taxes will be concentrated towards the mean.
Theorem 3 and 4 suggest that the spread in tax rates depend on the size of the underlying
shocks and how far away the economy from complete spanning. At our benchmark calibration
for both reasons; redistributive concerns that imply the use of transfers to hedge aggregate shocks
and �uctuations in endogenous returns that aid in spanning the required needs for revenues are
important for the outcome that taxes do not spread too much.

Theorem 4 predicted that government assets B (in the long run) are decreasing in the re-
distributive motive of the government. We check this numerically here by plotting the long
run assets of the government for di�erent Pareto weights, indexed with a single parameter. Let
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Figure 4: Taxes for a sequence of -1 s.d shocks to aggregate productivity of length 100

ω1(α) = ω1 + α and ωN (α) = ωN − α. Increasing the parameter α shifts Pareto weights from
the least productive agent towards the most productive agent relative to the benchmark α = 0.
In �gure 5.2 we plot mean of the government assets in the ergodic distribution as a function of
α and validate that higher values of α are associated with larger values long run government
assets.

5.3 Short run

The analysis of the previous subsection studied very low frequency components of a Ramsey plan.
Here we focus on business cycle frequencies to a) emphasize the role of inequality shocks and b)
compare outcomes to actual US tax and debt policy. We compute the competitive equilibrium
with tax-debt policy �tted to US, the optimal allocation with and without inequality, i.e., set
the parameter m = 0 for two types of shock sequences:

1. A sequence that induces a one time one standard deviation impulse to εθ,t and εg,t respec-
tively.

2. A sequence {εθ,t, εg,t} recovered using data on aggregate labor earnings, tax rates, govern-
ment expenditures and total debt for the period 1978-2010.

Figures 5.3 shows the impulse responses. The left panel plots responses to a one standard
deviation fall in aggregate labor productivity εθ,t in period 4 followed by no further productivity
or expenditure shocks.

Under the benchmark calibration, the optimal policy (bold line) increases transfers and tax
rates to counteract the e�ects of higher inequality in recessions. As compared to this the com-
petitive equilibrium with US tax-debt policies(dashed line) implies a larger response in transfers
but a decrease in tax rates. The optimal policy when we keep the relative skill distribution
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Figure 5: Long run debt-gdp ratio as a function of α: Higher α represent higher weights on
productive agents.

unchanged (dotted line) has both taxes and transfers lower in recessions and the magnitude of
change is smaller than the what is predicted under the benchmark calibration or the competitive
equilibrium �tted to US tax-debt policies. The right panel of Figure 5.3 plots responses to a
one standard deviation increase in government expenditure. Since relative skills are unchanged
the tax and transfers policies under the optimal policy with and without inequality shocks are
similar. We conclude that both the direction and magnitude of how taxes and transfers react to
shocks is shaped by potential movements in inequality.

Next we �lter the actual sequence of actual shocks {εθ,t, εg,t} using US data. To do this
we use the policy rules from the solution to the competitive equilibrium with tax -debt policies
�tted to U.S.. For all t > 0, given state variables (Bt−1, εt−1) and the distribution of assets,
we have a map from the realized shocks (εB,t, ετ ,t, εg,t, εθ,t) to endogenous outcomes. Using HP
�ltered data on aggregate labor earnings, tax rates, government expenditures and total debt
we invert this map to extract the values for these shocks . The �exibility of adding shocks to
taxes, debt, and expenditure allows us extract the shocks that reconstruct all components of
the government budget constraint and aggregate labor earnings in the competitive equilibrium.
For simulating the Ramsey outcomes we only use the subset of shocks {εθ,t, εg,t} and compute
the optimal taxes, transfers and debt. Figure 5.3 plots the recovered time series for {εg,t, εθ,t}.
Figures 5.3 compares the movements in debt, taxes and transfers for the optimal policy under
the benchmark calibration with US data (left) and the optimal outcomes if we ignore inequality,
i.e., set m = 0.

We �nd that the movements in debt under the optimal policy are in line with the data. The
main di�erences are apparent in transfers and tax rates which are much less volatile under the
optimal policy relative to what we see in data. Table 5.3 averages over sample paths of length
100 periods and reports the standard deviation, auto correlation, and correlation with exogenous

25



IRF: Productivity Shock IRF Expenditure Shock

Figure 6: Impulse responses to productivity (left) and expenditure shocks (right).
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Figure 7: Recovered productivity and expenditure shocks
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shocks for the tax rate and transfers. We see that under the optimal policy the movements
in taxes and transfers are not only smaller but they have a much larger auto correlation. The
optimal policy thus �nances transitory �uctuations by small but long lasting changes in taxes
and transfers.

Competitive Ramsey Ramsey Data
Model Equilibrium Benchmark No inequality

Average Taxes 0.2399 0.2398 0.2400 0.2431
Average Transfers 0.1164 0.1183 0.1177 0.1069
S.D. Taxes 0.0062 0.0008 0.0004 0.0063
S.D. Transfers 0.0181 0.0008 0.0025 0.0109
Autocorrelation Taxes 0.0310 0.7475 0.8280 0.1893
Autocorrelation Transfers 0.0184 0.6677 0.6405 0.1814
Correlation Taxes and Output 0.2165 -0.7906 0.3218 0.1965
Correlation Transfers and Output -0.1757 -0.4472 0.8505 -0.4046

Table 3: Sample moments for taxes and transfers averaged across simulations of 100 periods

28



Optimal Policy with and without
Optimal Policy Vs Data changes in inequality

Figure 8: Outcomes along extracted shocks. The left panel compares the optimal policy under
the benchmark calibration with data. The right panel compares the optimal policy with and
without movements in inequality.
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6 Concluding remarks

In a complete markets model like those of Lucas and Stokey (1983) and Chari et al. (1994),
government debt is not a state variable. We have chosen to study a class of incomplete markets
economies because the second and third questions posed in our �rst paragraph of this paper are
interesting only in settings in which government debt is a state variable. The same �scal-hedging
motive that in complete markets economies eradicates government debt as a state variable also
operates in our economy, but instead of wiping the slate clean each period, it now shapes a
history-dependent plan for government debt. Another way that we depart from both the complete
markets economies of Lucas and Stokey (1983) and Chari et al. (1994) and the incomplete markets
economies of Aiyagari et al. (2002) and Farhi (2010) is that (a) we allow tax collections be
a�ne rather than linear history-dependent functions of labor income, and (b) our economies are
inhabited by agents heterogeneous in their human and �nancial assets. These two features make
income redistribution through transfers join imperfect �scal hedging as a force that contributes
to the optimal dynamics of both government debt and the tax rate on labor income. They
also add a smoothing motive along another dimension to the wish list of a Ramsey planner: in
addition to an interest in smoothing �uctuations in the tax rate on labor income identi�ed by
Barro (1979), our Ramsey planner wants to smooth �uctuations in transfers, at least he does
when he cares enough about poorer agents.

In the process of answering the three questions posed in our �rst paragraph, we have recast
them by re�ning an appropriate notion of the state variable for an incomplete markets, het-
erogeneous agent economy like ours. The pertinent state variable is really the distribution of
net assets across agents, not total government debt alone. Who owns government debt is as
important as the total amount of government debt. We used this insight to rethink how the tax
rate and transfers should respond to shocks at business cycle frequencies.

7 Appendix

7.1 Proofs of Proposition 1 and Corollary 1

Proof. Let W
(
{bi,−1}i , B−1

)
be the welfare in the best equilibrium associated with initial

assets ({bi,−1}i, B−1) and consider any two initial asset distributions
({
b′i,−1

}
i
, B′−1

)
and(

B′′−1,
{
b′′i,−1

}
i

)
that satisfy (9). Suppose W

({
b′i,−1

}
i
, B′−1

)
> W

({
b′′i,−1

}
i
, B′′−1

)
. Let

{τ ′t,T ′t}t be the optimal policy and
{
{c′i,t, l′i,t, b′i,t}i, B′t, R′t

}
t
be the optimal competitive alloca-

tion that attains W
({
b′i,−1

}
i
, B′−1

)
. Consider the following policy T̂0 = T ′0 +R′0

(
b′1,−1 − b′′1,−1

)
and T̂t = T ′t ∀t ≥ 1 and τ̂ t = τ ′t for all t ≥ 0. We show that

{
{c′i,t, l′i,t, b′i,t}i, B′t, R′t

}
t
is a com-

petitive equilibrium for
({
b′′i,−1

}
i
, B′′−1

)
given {τ̂ t, T̂t}t, which implies W

({
b′i,−1

}
i
, B′−1

)
≤

W
({
b′′i,−1

}
i
, B′′−1

)
.

The allocation
{
{c′i,t, l′i,t, b′i,t}i, B′t, R′t

}
satis�es all the feasibility constraints by construction,

so it remains to show that {c′i,t, l′i,t, b′i,t}i remains the optimal choice for each consumer i. Suppose

that some other
{
ĉi,t, l̂i,t, b̂i,t

}
t
gives agent i strictly higher utility than {c′i,t, l′i,t, b′i,t}i. Then
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the choice
{
ĉi,t, l̂i,t, b̂i,t

}
t
is also feasible for consumer i who has initial assets b′i,−1 and faces

taxes {τ ′t, T ′t}t, which contradicts the assumption that {c′i,t, l′i,t, b′i,t}i is the optimal choice in the

economy with taxes {τ ′t, T ′t}t and assets
({
b′i,−1

}
i
, B′−1

)
. This proves Proposition 1.

To prove Corollary 1, let,

T̂t = T t +
(
b̂1,t − b1,t

)
−Rt

(
b̂1,t−1 − b1,t−1

)
for all t ≥ 0.

Since
{
b̂i,t

}
i,t

satis�es 10 and is bounded,

b̂i,t = Et
∑
T≥t

(
c(sT )− (1− τ(sT ))θi(s

T )li(s
T )− T̂ (sT )∏k=T−t

k=0 Rk

)
≥ inf

s∞

∑
T≥t,sT∈s∞

−(1− τ(sT ))θi(s
T )li(s

T )− T̂ (sT )∏k=T−t
k=0 Rk

and
{
{ci,t, li,t, b̂i,t}i, B̂t, Rt, τ t, T̂t

}
t
satis�es the natural debt limits. Then the same steps

as above imply that
{
{ci,t, li,t, b̂i,t}i, B̂t, Rt

}
t
is a competitive equilibrium for

{
τ̂ t, T̂t

}
t
and(

{bi,−1}i , B−1

)
.

7.2 Proof of Lemma 1

Proof. Let µ(s), φ(s), λ(s) be the Lagrange multipliers on the constraints (14a), (14b), (14c). We
take the �rst order conditions of with respect to c1(s), c2(s), l1(s).

ω − µ(s) = nφ(s), (30a)

1− ω + µ(s)− φ(s)(1− n) + λ(s) = 0, (30b)

− ωlγ(s) + µ(s)(1 + γ)lγ(s) + nφ(s)θ = 0. (30c)

To prove Lemma 1, we show that ωn >
1+γ
γ is su�cient for the Lagrange multiplier λ(s) ≥ 0 on

the non-negativity constraint (14c) to be strictly positive. Summing (30a) and (30b) we establish
that φ(s) ≥ 1. Therefore (30c) implies that µ(s) ≤ ω

1+γ . Use these bounds in equation (30b) to
show that if ω − n − ω

1+γ > 0 then λ(s) > 0 for all s. The last inequality can be re-written as

ω > n
(

1+γ
γ

)
. If it holds, then c2(s) = 0 for all s. Agent 2 budget constraint then implies that

Tt = 0 ∀t ≥ 0.

7.3 Proof of Proposition 2

Proof. For ω > ω̄ we can simplify the problem (13). We �rst show that the value function V (B_)
is strictly concave and use this to derive some properties of policy rules B(s,B_) for arbitrary
payo�s P to prove Part 1 and Part 2.

Lemma 1. V (B_) is strictly concave and di�erentiable for interior B_.
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Proof. Transform the variable l such that L ≡ l1+γ . We will recast problem14 where the max-
imization problem using L and show that the problem is convex. Substituting for nc1 (s) we
get,

V (B_) = max
L(s),B(s)

∑
s∈S

π (s)

[
nγ

1 + γ
L (s)− 1

β
P (s)B_ +B (s) + βV (B (s))

]
, (31)

subject to

B(s)− 1

β
P (s)B_ + g (s) ≤ nθL (s)

1
1+γ − nL (s) , (32a)

B ≤ B(s) ≤ B̄.
Let φ(s) be the multiplier constraint (32a). The �rst order condition with respect to L(s) is

nγ

1 + γ
+ nφ(s)

[
θ

1 + γ
L(s)

−γ
1+γ − 1

]
= 0. (33)

If φ(s) = 0, the optimal L (s) solves maxL(s)≥0 π (s) nγ
1+γL (s) which sets L (s) = ∞. This

violates feasibility for any �nite B_, B (s) . This implies φ(s) > 0 and consequently,

L(s)
γ

1+γ ≥ θ

1 + γ
. (34)

Inequality (34), which is a lower bound for L(s), simply means that it is not optimal to set tax
rates to the right of the peak of the La�er curve. In this region, the right hand side of equation
(32a) (which are the total tax revenues) is decreasing as a function of L(s). We can therefore
de�ne a function Φ(.) such that

Φ

(
nγ

1 + γ
L

)
= nθL

1
1+γ − nL. (35)

We next verify that Φ(.) is decreasing and strictly concave in the interior. To see this note

Φ′(.) γ
1+γ =

[
θ

1+γL(s)
−γ
1+γ − 1

]
< 0 and Φ′′(.)n

(
γ

1+γ

)2
=

[(
θ

1+γ

)(
−γ
1+γ

)
L(s)

−
(

2γ+1
1+γ

)]
< 0. Let

D = Φ

(
nγ

1+γ

(
θ

1+γ

) 1+γ
γ

)
be the maximum revenue the government can raise. We can rewrite

the problem (31) as

V (B_) = max
B(s)

∑
s∈S

π (s)

[
Φ−1

(
B(s)− 1

β
P (s)B_ + g (s)

)
+B(s)− 1

β
P (s)B_ + βV (B (s))

]
(36)

subject to

B(s)− 1

β
P (s)B_ + g (s) ≤ D, (37a)

B ≤ B (s) ≤ B̄. (37b)

14We allow the resource constraint to hold with a weak inequality. This allows us to show the desired properties
of V (B_) and we will also show that in this general problem the inequality constraint always binds. Hence the
solutions to both the problems, with or without the weak inequality are identical.
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Since Φ(.) is concave and strictly decreasing, the period utility function in objective (36) is
strictly concave too. Standard arguments as in Proposition 4.6-4.8 in Stokey, Lucas, and Prescott
(1989) apply and we conclude that V (B_) is strictly concave in the interior. Di�erentiability at
interior points comes from Benveniste-Scheinkman (1979).

We list the �rst order condition with respect to B(s) for (36) and will refer to them for the
rest of the proof:

Φ−1′
(
B(s)− 1

β
P (s)B_ + g (s)

)
+ 1 + βV ′(B(s))− κ̄(s) + κ(s). (38)

The multiplier on the constraint (37a) is zero for all s. This follows from the de�nition of D as
the tax revenues associated with the highest tax the government can raise. The implied L(s)
violates equation (33).
The next lemma uses the Lemma 1 to characterize some properties of the policy rules B(s,B_).

Lemma 2. Let B(s,B_) be the optimal policy for assets. It has the following properties:

• B (s,B_) is strictly increasing in B_ for all s where B(s,B_) is interior.

• For any interior B_ ∈ (B, B̄), there are s, s′ s.t. B (s,B_) ≥ B_ ≥ B (s′, B_) . Moreover,
if there are any states s′′, s′′′ s.t. B (s′′, B_) 6= B (s′′′, B_) for some B_ those inequalities
are strict.

Proof. Suppose B
′
< B

′′
but B

(
s,B

′
)
≥ B

(
s,B

′′
)
. Strict concavity of V (.) implies,

V ′
(
B
(
s,B

′′
))
≥ V ′

(
B
(
s,B

′
))

.

At an interior solution, the �rst order condition with respect to B(s) from the formulation
in (36) implies that

Φ−1′
(
B
(
s,B

′′
)
− 1

β
P (s)B

′′
+ g (s)

)
≤ Φ−1′

(
B
(
s,B

′
)
− 1

β
P (s)B

′
+ g (s)

)
,

B
(
s,B

′′
)
−B

(
s,B

′
)
≥ 1

β
P (s) [B

′′ −B′ ].

The last inequality yields a contradiction and this shows that B(s,B_) is increasing.
Equation (38) together with the envelope proposition gives us

EP (s)βV ′(B(s)) = βV ′(B_) + EP (s)κ̄(s)− EP (s)κ(s).

We can rewrite this as
ẼβV ′(B(s)) = βV ′(B_)− κ+ κ, (39)

with π̃(s) = P (s)π(s), κ = Ẽκ(s), and κ̄ = Ẽκ̄(s).
First we show that ∃s such that B(s,B_) ≥ B_. Suppose not, then B(s,B_) < B_ for all

s. Strict concavity of V implies

ẼV ′(B(s,B_)) > V ′(B_).

Since B(s,B_) < B_ < B, the multipliers κ = 0 and (39) implies
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ẼV ′(B(s,B_)) ≤ V ′(B_).

This yields a contradiction.
Similar arguments show that if there is at least one B (s,B_) s.t. B (s,B_) > B_, then there

must be some s′ s.t. B (s′, B_) < B_. For an arbitrary B_, either we have B(s,B_) = B_ for
all s or there exists a s such that B(s,B_) > B_. Under the condition that there exists s′′, s′′′

such that B(s′′, B_) 6= B(s′′′, B_) the former cannot hold. This shows that the inequalities can
be made strict.

Let µ(s,B_) = −βV ′(B(s,B_)), our next lemma orders µ(s,B_) relative to P (s).

Lemma 3. For a pair of shocks s′, s′′ if P (s′) > P (s′′) then there exists a B∗(s′s′′) such that
for all B_ > (<)B∗(s′, s′′) we have µ(s′, B_) > (<) µ(s′′, B_). If B < B∗(s′s′′) < B then
µ(s′, B∗(s′s′′)) = µ(s′′, B∗(s′s′′)).

Proof. De�ne B∗(s′, s′′) = β[g(s′)−g(s′′)]
P (s′)−P (s′′) . For an interior solution, the �rst order condition with

respect to B(s) requires

Φ−1′
(
B(s)− 1

β
P (s)B_ + g(s)

)
+ βV ′(B(s)) + 1 = 0.

Concavity of Φ−1 and V implies that the left hand side of this equation is a decreasing function of
B(s). If B_ > (<)B∗(s′, s′′) then g(s′)− 1

βP (s′)B_ < (>)g(s′′)− 1
βP (s′′)B_, which immediately

implies that B(s′, B_) > (<)B(s′′, B_). As V is strictly concave we conclude that µ(s′, B_) >
(<) µ(s′′, B_). Finally if B < B∗(s′, s′′) < B then continuity and monotonicity of the function
µ(s′, B_) with respect to B_, µ(s′, B_)− µ(s′′, B_) is zero uniquely at B_ = B∗(s′s′′).

Now we will use these lemmas to prove the proposition. Lemma 2 states that B(s,B_) is
increasing. Given that shocks are i.i.d, the existence of a invariant distribution of Bt follows
from Hopenhayn and Prescott (1992) (see corollary 5).

To show Part 1, note that P ∈ P∗ is necessary and su�cient for existence of B∗ such that
B(s,B∗) = B∗ for all s. The necessary part follows from taking di�erences of the (32a) for s′,s′′,
which yields

[P (s′′)− P (s′)]
B∗

β
= g(s′)− g(s′′).

Thus P ∈ P∗. The su�cient part follows from the Lemma 3. If P 6∈ P∗, then B∗(s′, s′′) that
de�nes the pairwise crossing will not be same across all pairs s′, s′′. Thus B∗ that satis�es
B(s,B∗) independent of s will not exist.

Let µ_ = −V ′(B_), for . Equation (39) implies,
µ_ = EP (s)µ(s) + κ(s). (40)

By decomposing Eµ(s)P (s) in equation (40), we obtain (using EP (s) = 1)

µ_ = Eµ(s) + cov(µ(s), P (s)) + κ(s). (41)

Lemma 3 implies that for B_ > B∗, the covariance term cov(µ(s), P (s)) > 0. Thus

µt ≥ Etµt+1.
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In this region µt is a super martingale. Denote µ∗ ≡ −V ′(B∗) and note that,

∂µ(s,B_)

∂µ(B_)
=
∂µ(s,B_)

∂B(s,B_)︸ ︷︷ ︸
>0

∂B(s,B_)

∂B_︸ ︷︷ ︸
>0

(
∂µ(B_)

∂B_

)−1

︸ ︷︷ ︸
>0

> 0.

This implies µt > µ∗ =⇒ µt+1 > µ∗. Thus the super martingale is bounded below by µ∗.
Using standard martingale convergence proposition we can conclude that µt converges . The
uniqueness of steady state implies that it can only converge to µ∗. Since µ(s,B_) is continuous
and monotonic in B_, as µt converges to µ

∗, Bt converges to B∗. The argument for the B−1 < B∗

is symmetric and we omit it for brevity. From equation (38), as the µt converges, labor supply
converges too and the tax rate is eventually constant.
For Part 2, when P ∗ 6∈ P∗, there is no interior absorbing B_ such that B(s,B_) = B_. Using
Lemma 2, from any B_, we can construct a �nite sequence of shocks such that B(sT |B_) > B̄−ε
and some other �nite sequence of shocks such that B(s̃T |B_) < B+ ε. Thus there is a T ′ that is
equal to the maximum length of sT and s̃T across B_ such that both the thresholds are crossed
in �nite steps. For ε > 0 and B−1, let AT = {Bt < B + ε and Bt′ > B̄ − ε for some t, t′ ≤ T}
and let k(n) = nT ′. Since AT ⊂ AT+1, a su�cient condition for Pr{AT occurs i.o } = 1 is that∑

n Pr{Ak(n)+1|Ak(n)} diverges. From the previous discussion we can see that Pr{Ak(n)+1|Ak(n)}
is (uniformly) bounded from below and hence the

∑
n Pr{Ak(n)+1|Ak(n)} =∞.

For the last implication of Part 2, let B1, B2 be de�ned by

B1 = min
s′,s′′

{
B∗(s′, s′′)

}
,

B2 = max
s′,s′′

{
B∗(s′, s′′)

}
.

For B_ > B2 Lemma 3 showed that P (s) > P (s′) implies µ(s,B_) > µ(s′, B_) and hence
cov(µ(s), P (s)) > 0. From equation (41), we have

µ_ > Eµ(s,B_).

If P is su�ciently volatile, P (s′′)− P (s′) > β(g(s′′)−g(s′))
B and therefore

B1 = min
{
B∗s′,s′′

}
> B

Similar arguments imply that for B_ < B1 the cov(µ(s), P (s)) < 0 and

µ_ < Eµ(s,B_).

For the implications on the tax rates, note from equation (38) we have,

− µ(s,B_) = −Φ−1′
[
θnL(s,B_)

1
1+γ − nL(s,B_)

]
− 1. (42)

This de�nes L(s,B_) = L(µ(s,B_)) and the implicit function proposition implies,

−1 = −nΦ−1′′(.)

[
θ

1 + γ
L
−γ
1+γ − 1

]
L′.
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Since Φ−1(.) is concave, and
[

θ
1+γL(s)

−γ
1+γ − 1

]
< 0 for the relevant range for L, we can conclude

that L′ > 0. The household's optimal choice of labor implies τ(s,B_) = 1 − L(s,B_)
γ

1+γ

θ . We
can de�ne a function τ̂(B) by

τ̂(B) = 1− θ−1L[−V ′(B)]
γ

1+γ , (43)

and τ̂ ′ = θγ
1+γL

− 1
1+γL′V ′′ < 0.

7.4 Proof of Proposition 3

To facilitate our approximations required to prove Proposition 3, we will use a recursive repre-
sentation of the optimal allocation using state variable µ_ where µ_ = −βV ′(B_). Given some
payo� vector P , we solve for B(µ_, P ) and µ(s, µ_, P ) that satisfy the following equations for
all µ_,

B(µ(s, µ_, P ), P ) = Φ

(
nγ

1 + γ
L[µ(s, µ_, P )]

)
− g(s) +

P (s)

β
B(µ_, P ), (44)

µ_ = Eµ(s, µ_, P )P (s). (45)

We will explicitly recognize the fact that the unknown functions B(.) and µ(.) depend on the
payo� vector P . The functions Φ(.) and L(.) are de�ned in equations (35) and (42) in the proof

of Proposition 2. With a slight abuse of notation, we will use Φ(µ) to mean Φ
(

γ
1+γL[µ]

)
.

We will approximate these functions around around economy with payo�s in P̄ ∈ P∗. For
P̄ ∈ P∗ and an associated B̄(P̄ ) we can de�ne µ̄(P̄ ) = −V ′(B̄(P̄ )).15 First we di�erentiate (44)
and (45) to solve for the derivatives of the the functions µ(s, µ_, P ) and B(µ_, P ) with respect
to (µ_, P ) at (µ̄

(
P̄
)
, P̄ ) where P̄ ∈ P∗.16 Next we will use these expressions to compute the

mean and variance of the ergodic distribution associated with the approximated policy rules and
�nally as a last step we propose a particular choice of the point of approximation to get the
expressions in Proposition 3.

From now, we drop P from the arguments of the functions to keep the notation simple.
Di�erentiating equations (44) and (45) with respect to µ_ around (µ, P ) we obtain

∂B(µ̄)

∂µ_
=

Φ′(µ)
β
B̄2σ2

g + 1−β
β

,

∂µ′(s, µ̄)

∂µ_
=

P (s)
β2

B̄2σ2
g + 1

=
P (s)

EP (s)2
.

We can perform the same steps for and di�erentiate with respect P (s) for all s.

∂B(µ̄)

∂P (s)
= −π(s)B̄

(
EP (s)2 − P̄ (s)

EP (s)2

)
,

15µ̄(P̄ ) also solves the equation B̄(P̄ ) = β
1−β (Eg − Φ(µ̄)).

16Usually perturbation approaches to solve equilibrium conditions as above look for the solutions to {µ(s|µ_)}
and b(µ_) around deterministic steady state of the model. However the �rst order expansion of µ(s, µ_) will
imply that it is a martingale. Such approximations are not informative about the ergodic distribution.
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∂µ(s′, µ̄)

∂P (s)
=

−B̄
β
[
Φ′(µ)− ∂B

∂µ

] (1s,s′ −
π(s)P̄ (s)P̄ (s′)

EP̄ 2

)
.

Using the derivatives that we computed at
(
µ̄, P̄

)
, we can characterize the dynamics of µ̂t ≡ µt−µ

using the approximation:

µ̂t+1 =
∂µ(st+1, µ̄)

∂µ_
µ̂t +

∂µ(st+1, µ̄)

∂P (st+1)
[P (st+1)− P̄ (st+1)]. (48)

Let D(s) and C(s) be the respective coe�cients and we express equation (48) as:

µ̂t+1 = D(st+1)µ̂t + C(st+1). (49)

Note that both D(s) and C(s) are random variables and denote their means D and C, and
variances σ2

D and σ2
C . Taking expectations of equation (49), we solve for the ergodic mean Eµ̂,

Eµ̂ =
C

1−D,

and analogously for the ergodic variance σ2
µ̂ we get

σ2
µ̂ =

σ2
D(Eµ̂)2 + σDCEµ̂+ σ2

C

1−D2 − σ2
D

.

Using the ergodic means and variances of µ̂, we can obtain those for assets B̂t ≡ Bt − B̄ with

EB̂ = ∂B(µ̄)
∂µ_ Eµ̂ and σ2

B̂
= σ2

µ̂

(
∂B(µ̄)
∂µ_

)2
. To get the expressions in Proposition 3, we solve the

least square projection (17). Since payo�s in P̄ ∈ P∗ are associated with a unique B̄(P̄ ) and
µ̄(P̄ ), we can de�ne a mapping P[s, µ̄(P̄ )] = P̄ (s) and rewrite the problem as choosing µ̃ so as
to minimize the variance of the di�erence between P and the set P∗. Let P ∗ be the solution to
this minimization problem. The �rst order condition gives us

2
∑
s′

π(P (s′)− P ∗(s′))∂P(s, µ∗)

∂µ
= 0. (50)

Since P ∗(s) = 1 + β
B∗(P[s,µ∗]) (g(s)− Eg), we have ∂P(s,µ∗)

∂µ ∝ P ∗(s)− 1. Substituting back in
equation (50), we see that the optimal choice of µ∗ is such that

E [(P − P ∗)P ∗] = 0. (51)

At the optimal P ∗, coe�cients {C(s)}s of the linearized system (49) are given by

C(s) = − B∗

β
[
Φ′(µ∗)− ∂B(µ∗)

∂µ_

] [P (s)− P ∗(s)] .

Taking expectations, we get that C̄ = 0. Thus the linearized system will have the same ergodic
mean for µt as µ

∗(P ∗) and EB = B∗(P ∗). The expressions for ergodic variance of government
assets simpli�es to

σ2
B =

(B∗)2

E (P ∗)2 var(P ∗)
‖P − P ∗‖2.
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Noting that E (P ∗)2 = 1 + var(P ∗) > 1, we obtain the bound

σB
B∗
≤
√
‖P − P ∗‖2

var(P ∗)
.

Lastly we derive the rates at which the conditional mean converges to its ergodic values. Taking
expectations of (49) we get that Eµ̂t+1

µ̂t
= D, where we have used the result that C = 0. We now

express D in terms of the primitives P, g :

D =
1

E (P ∗)2 .

Using the orthogonal decomposition from equation (51) and the expression P ∗(s)−1 = β
B∗ [g(s)−

Eg] we get,

D =
1

1 + var(P )corr2(P, g)
.

Since B̂t is linear in µ̂t, the ergodic mean of assets (under the approximated law of motion) also
converges at the same rate.

7.5 Proof of Proposition 4

Proof. Using the transformation L ≡ l1+γ
1 and function Φ(.) de�ned in (35) we can write the

Bellman equation for ω ≤ ω̄ as

V (B_) = max
B(s),T (s)

E
[
ωΦ−1

(
B(s)− 1

β
P (s)B_ + g (s) + T (s)

)
+ ω

(
B(s)− 1

β
P (s)B_

)
+ nT (s) + βV (B (s))

]
(52)

subject to

B(s)− 1

β
P (s)B_ + g (s) + T (s) ≤ D, (53a)

T (s) ≥ 0, (53b)

B ≤ B (s) ≤ B̄. (53c)

The period gain function is concave in the arguments {B(s), T (s)}, and the choice set is
compact. Using standard arguments and steps as in Lemma 1 we can show that V is con-
cave. Let π(s)λ1(s), π(s)λ2(s) be the Lagrange multipliers on constraints (53a) and (53b) and
π(s)κ(s), π(s) ¯κ(s) on the bounds in constraints (53c). We list the �rst order conditions for prob-
lem (52) with respect to B(s), T (s) and the envelope conditions and refer to them in the rest of
the proof of the proposition:

ωΦ−1′
(
B(s)− 1

β
P (s)B_ + g (s) + T (s)

)
+ n− λ1(s) + λ2(s) = 0, (54a)

ω − n− λ2(s)− κ̄(s) + κ(s) = −βV ′(B(s)), (54b)

βV ′(B_) = −
∑
s

π(s)P (s) [ω − n− λ2(s)] . (54c)
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As before we will use µ(s,B_) = −βV (B(s,B_)).
At an interior solution (λ1(s) = 0, λ2(s) = 0) labor supply is constant; L(s) = L∗ that solves

ωΦ−1′
(

Φ
(
nγ

1+γL
∗
))

+ n = 0 and is given by,

L∗ =

[
nθ

ω − (ω − n)(1 + γ)

]
1+γ
γ . (55)

Under the policy B(s,B_) = B_, the non negativity constraint (53b) is slack in state s if

B_ ≥
g(s)− Φ

(
nγ

1+γL
∗
)

β−1P (s)− 1
.

De�ne a threshold B(ω) as the minimum assets such that a stationary policy for assets,

B(s,B_) = B_ is feasible with T (s,B_) = Φ
(
nγ

1+γL
∗
)

+ B_(P (s)β−1 − 1) − g(s) ≥ 0 for
all s:

B(ω) = max
s

g(s)− Φ
(
nγ

1+γL
∗
)

β−1P (s)− 1

 . (56)

The sign of the ∂B(ω)
∂ω is the same as the sign of − nγ

1+γ Φ′
(

nγ

1 + γ
L∗
)

︸ ︷︷ ︸
<0

∂L∗

∂ω
> 0︸ ︷︷ ︸

>0

.

For Part 1 we need the following intermediate lemma:

Lemma 4. If P 6∈ P∗and B_ < B(ω), there exists an s such that B(s,B_) > B

Proof. Suppose not and B(s,B_) ≤ B_ for all s. Since V (.) is concave, βV ′(B(s,B_) ≥
βV ′(B_). Combining equations (54b) with envelope condition (54c) we get ẼV ′(B(s,B_)) ≤
V ′(B_). Both of these can hold only if for all V ′(B(s,B_)) = V ′(B_) for all s. Non-negativity
of λ2(s) and equation (54c) imply that −βV ′(B_) ≤ ω − n. Using V ′(B(s,B_)) = V ′(B_)
and equation (54b) we see that −βV ′(B_) < ω − n implies λ2(s) > 0 and T (s) = 0 for all s.
In absence of transfers, the value function is strictly concave in the neighborhood of B_ and
as P 6∈ P∗, we can use the same steps in Lemma 2 to show that there exists a s such that
B(s,B_) > B_.

Lastly we rule of cases when −βV ′(B_) = ω−n. Let Binf = inf{B|−βV ′(B) = ω−n ∀s}.
The budget constraint at Binf is T (s) + g(s)−Φ

(
nγ

1+γL
∗
)

= P (s)
β Binf −B(s,Binf ). Concavity

of V implies B(s,Binf ) ≥ Binf for all s. Note that

g(s)− Φ

(
nγ

1 + γ
L∗
)
≤ P (s)

β
Binf −B(s,Binf ) ≤ Binf

(
P (s)

β
− 1

)
,

and from expression (56) Binf≥ B(ω). However µ(s,B_) = ω − n and hence by the de�nition
of Binf we have B_ ≥ Binf . This contradicts our assumption B_ < B(ω).

Using Lemma 4 we can construct a sequence that converges to B(ω) from and B−1 < B(ω). To
show that Bt converges to B(ω) with probability one, we will show B(ω) is reached from any
B_ < B(ω) with a �nite sequence of shocks with probability bounded away from zero. To do
this we show that there is a point strictly smaller than B(ω) from where B(ω) is reached in one
step.

39



Lemma 5. There exists a B̌ < B(ω) we can �nd s with the property that B(s,B_) ≥ B(ω) for
all B_ ≥ B̌

Proof. At B(ω), there exist some s such that T (s,B(ω)) = ε > 0. Now de�ne B̌ as follows:

B̌ = B(ω)− εβ

2P (s)
.

Suppose to the contrary B(s̄, B_) < B(ω) for some B_ ≥ B̌. This implies that τ(s̄, B_) > τ∗(ω)
and T (s,B_) = 0.17 Consider the budget constraint for the government at B_ and B(ω) for
the shock s̄

g(s̄) +B(s̄, B_) =
P (s̄)

β
B_ + nθτ(s̄, B_)l(s̄, B_), (57a)

g(s̄) + B(ω) =
P (s̄)

β
B(ω) + nθτ∗(ω)l∗ − T (s̄,B(ω)). (57b)

Subtracting equation (57a) from (57b) we get

B(ω)−B(s̄, B_) + nθ [τ(s̄, B_)l(s̄, B_)− τ∗(ω)l∗] =
P (s̄)

β
(B(ω)−B_)− T (s̄,B(ω). (58)

The left hand side of equation (58) is strictly positive as the �rst term is greater than zero under
our assumption and the second term pertaining to the tax revenues is also strictly positive as
the government taxes on the left of the La�er curve and τ(s̄, B_) > τ∗(ω). But the right hand
side is strictly negative as

P (s̄)

β
(B(ω)−B_) ≤ ε

2
< ε = T (s̄,B(ω)).

This yields a contradiction.

De�ne B̂(B_) as maxsB(s,B_) and ŝ(B_) as the shock that achieves this maximum. Note
that B̂(B_) − B_ is continuous on [B, B̌], bounded below by zero by Lemma 4 and therefore
attains a minimum at Bmin. Let δ = B̂(Bmin) − Bmin > η > 0. Now consider any initial
B_ ∈ [B,B(ω)]. If B_ ≥ B̌, then by Lemma 5 we know that B(ω) will be reached in one shock.
Otherwise if B_ < B̌, we can construct a sequence of shocks st = ŝ(Bt−1) of length N = B̌−B

δ .
There exits t < N such that Bt > B̌. We can use the same arguments as in the last part of the
proof of Proposition 2 to conclude that Pr{Bt → B(ω)} = 1.

When P ∈ P∗ such that B∗(P ) < B(ω) then there are two di�erent cases: B−1 ≤ B∗

and B∗ > B−1 > B(ω). When B−1 < B∗ we can guess that the optimal policy satis�es
Tt = 0 for all t. Under this guess, it can be veri�ed that the same policy rules that solve (36)
satisfy the �rst order conditions for problem (52). We can therefore conclude that µt → µ∗and
Bt → B∗. For B∗ > B−1 > B(ω), we will order µ(s,B_) relative to P (s) for B_ > B∗ such
that µ(s′, B_) ≥ µ(s′′, B_) when P (s′) ≥ P (s′′). To see this note that if T (s′) > 0 then
µ(s′, B_) = ω − n ≥ µ(s′′, B_). For T (s′) = 0

g(s′)− 1

β
P (s′)B_ ≤ g(s′′)− 1

β
P (s′′)B_ ≤ g(s′′)− 1

β
P (s′′)B_ + T (s′′).

17This follows from the fact that B(s,B_) < B(ω) implies µ(s̄, B_) < µ(B(ω)) and (54a).
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Equation (54b) gives us

ωΦ−1′
(
B(s′′)− 1

β
P (s′′)B_ + g(s′′) + T (s′′)

)
+βV ′(B(s′′)) = ωΦ−1′

(
B(s′)− 1

β
P (s′)B_ + g(s′)

)
+βV ′(B(s′)).

Concavity of Φ−1 and V implies B(s′, B_) ≥ B(s′′, B_) and µ(s′, B_) ≥ µ(s′′, B_) as desired.
The ordering implies that cov(µ(s,B_), P (s)) ≥ 0 for B∗ > B−1 > B(ω) and hence µt ≥ Eµt+1.
From the property that µ(s,B∗) = µ∗, monotonicity, and continuity of function µ(s,B_) with
respect to B_ we have µt ≥ µ∗ for all t ≥ 0. Standard martingale convergence arguments imply
that µt converges almost surely. As there are only two steady states: µ∗(P ∗) and ω − n, Bt will
converge to one of the two associated steady state levels of a government assets: B∗ or B(ω).

7.6 Bellman equation for t = 0

Let V0

(
{b̃i,−1}I−1

i=1 , s0

)
be the value to the planner at t = 0, where b̃i,−1 denotes initial debt. We

retain the normalization R0 = β−1P (s0). The t = 0 Bellman equation solves,

V0

(
{b̃i,−1}I−1

i=1 , s0

)
= max

a0,x0,ρ0

∑
i

ωiU
i(ci,0, li,0) + βV (x0, ρ0, s0)

subject to,

U Ic,0 [ci,0 − cI,0] + xi,0 +

(
U il,0li,0

U Ic,0
U ic,0

− U Il,0lI,0
)

= β−1P (s0)U Ic,0b̃i,−1 for all i < I

U il,0
θi,0U ic,0

=
U Il,0

θI,0U
I,0
c

for all i < I

∑
i

nici,0 + g0 =
∑
i

niθi,0li,0

ρi,0 =
U ic,0

U Ic,0
∀ i < I

7.7 Formula for optimal taxes

The �rst order conditions with respect to li(s) and lI(s) are,

ωiU
i
l (s)−

1

ρ′i(s)
µi(s)

[
U ill(s)li(s) + U il (s)

]
− φi(s)U

i
ll(s)

θi(s)U ic(s)
+ niθi(s)ξ(s) = 0

ωIU
I
l (s) + U Ic (s)

(∑
i<I

µi(s)

)[
U Ill(s)lI(s) + U Il (s)

]
+

U Ill(s)

θI(s)U Ic (s)

(∑
i<I

φi(s)

)
+ nIθI(s)ξ(s) = 0

(60)

Multiplying each equation by θi(s)U ic(s)

U ill(s)
and using li,(s)U

i
ll(s)

U il (s)
= γ we recover,
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ωi
U ic(s)yi(s)

γ
− U Ic (s)µi(s)yi(s)

[
1 +

1

γ

]
− φi(s) + niyi(s)ξ(s)

θi(s)U
i
c(s)

γU il (s)
= 0

ωI
U Ic (s)yI(s)

γ
+ U Ic (s)

(∑
i<I

µi(s)

)
yI(s)

[
1 +

1

γ

]
+
∑
i<I

φi(s) + nIyI(s)ξ(s)
θI(s)U

I
c (s)

γU Il (s)
= 0.

De�ne ω̂i = ωi
ni
, µ̂i = UIc µi−U icωi

ni
for i < I and µ̂I = −UIc

∑
i<I µi
nI

−n−1
I U Ic ωI . The equations above

can be combined to get

1

1− τ(s)
= −

(∑
i ni
[
γω̂iU

i
c(s) + (1 + γ)µ̂i(s)

]
yi(s)

ξ(s)
∑

i niyi(s)

)
. (61)

Formula (25) follows from applying
∑

i niwi(s)yi(s) = (
∑

i niwi(s)) (
∑

i niyi(s)) +∑
i ni (wi(s)−

∑
i niwi(s)) (yi(s)−

∑
i niyi(s)) = wy + cov(wi(s), yi(s)) .

We next specialize (61) to the two special cases. For the quasilinear case, at an interior
solution, the �rst order condition with respect to ci(s) gives us µ̂i(s) = −ξ(s). Furthermore, by
construction,

∑
i niµ̂i(s) = −∑ωi = −1 and substituting in equation (61) we obtain

1

1− τ(s)
= 1− γ

(∑
i niω̂iyi(s)

ȳ(s)
− 1

)
.

For the case without savings, let c̃i = ci − T be net of transfers consumption for agent i. In
absence of (24b) and (24e), the �rst order condition with respect to c̃i can be expressed as

− µ̂ini + φini(1− τ)θiU
i
cc − niξ = 0, (62)

Eliminate φi from equations (60) , substituting σi = −U iccc̃i/U ic and collecting terms we get,

niµ̂i = −niξ
(
γ +

σi
(1− τ)

)
1

γ + σi
. (63)

Using this expression for µ̂i in equation (61) and rearranging terms gives us Formula (27).

7.8 Steady states for more general economies

Restrict shocks to be i.i.d. For constructing steady states we begin with a choice for {τ(s),ρ(s)}
This determines a competitive equilibrium allocation {ci(s), li(s)}i using equations (24c), (24d)

and (24e). Let Zi (s| {τ(s),ρ(s)}) = U Ic (s) [ci(s)− cI(s)] +
(
U il (s)

U ic(s)
U Ic (s)− lI(s)U Il (s)

)
, the im-

plementability constraints for the planner reduces to

Zi(s) + x′i(s) =
R(s)

β
xi for all s, i < I, (64a)

ERρ′i = ρi for i < I. (64b)

Let π(s)µi(s) and λi be Lagrange multipliers on constraints (64a) and (64b). Imposing the
restrictions x′i(s) = xi and ρ′i(s) = ρi, at a steady state {µi, λi, xi, ρi}I−1

i=1 and {τ(s)}s are
determined by the following equations:
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Zi(s) + x′i(s) =
R(s)

β
xi for all s, i < I, (65a)

Uτ (τ(s),ρ, s)−
∑
i

µiZi,τ (τ(s),ρ, s) = 0 for all s, (65b)

Uρi(τ(s),ρ, s)−
∑
j

µjZj,ρi(τ(s),ρ, s) + λi(R(s) + β) = 0. for all s, i < I (65c)

When the shock s takes only two values, (65) is a square system of 4(I − 1) + 2 equations in
4(I − 1) + 2 unknowns {µSSi , λSSi , xSSi , ρSSi }I−1

i=1 and {τSS(s)}s.

7.9 Proof of Proposition 6

Proof. With log quadratic preferences and i.i.d shocks we can reduce (65) to

x(s) =
1 + ρ[l1(ρ, s)2 − 1]
P (s)/c2(ρ,s)

βE[ P
c2

](ρ)
− 1

. (66)

The functions l1(ρ, s) and c2(ρ, s) are given by

l1(s) =
g(s) +

√
g(s)2 + 4C(ρ)θ2

1

2θ1
, (67)

1

c2(s)
=

(
1 + ρ

C(ρ)

)g(s) +
√
g(s)2 + 4C(ρ)θ2

1

2θ2
1

 ,

where C(ρ) = 1+ρ
ω1(1−ρ)+2ρ2ω2

. Since both these functions are increasing in g, they are ordered

with s ∈ {sH , sL} and l1,l < l1,h and 1
c2,l

< 1
c2.h

.

Existence of a steady state is equivalent to �nding a scalar ρ that solves x(sl) = x(sh). When
P (s) = 1 this amounts to showing that the following function crosses zero:

f(ρ) =
1 + ρ[l1(ρ, sl)

2 − 1]

1 + ρ[l1(ρ, sh)2 − 1]
−

1/c2(ρ,sl)

βE[ P
c2

](ρ)
− 1

1/c2(ρ,sh)

βE[ P
c2

](ρ)
− 1

.

The main step is to show that f(.) takes both negative and positive values and then we can
appeal to the intermediate value theorem.

Ordering of l1 and c2 imply that for all ρ > 0

1 + ρ[l1(ρ, sh)2 − 1] > 1 + ρ[l1(ρ, sl)
2 − 1], (68a)

1/c2(ρ, sh)

βE[ Pc2 ](ρ)
− 1 >

1/c2(ρ, sl)

βE[ Pc2 ](ρ)
− 1. (68b)
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Using equation (67), we can construct a ρ 18 such that approaching ρ from the right yields the
following limits,

lim
ρ→ρ+

1 + ρ[l1(ρ, sh)2 − 1]

1 + ρ[l1(ρ, sl)2 − 1]
= 1,

lim
ρ→ρ+

1/c2(ρ,sl)

βE[ P
c2

](ρ)
− 1

1/c2(ρ,sh)

βE[ P
c2

](ρ)
− 1

< 1.

This implies that limρ→ρ+ f(ρ) > 0. Next taking the limit as ρ → ∞ we see that C(ρ) → 0

which, with g(s)
θ1

< 1, implies

lim
ρ→∞

1 + ρ[l1(ρ, s)2 − 1] = −∞.

Consequently there exists ρ such that 1 + ρ[l1(ρ, sh)2 − 1] = 0.19 From equation (68a),

0 = 1 + ρ[l1(ρ, sh)2 − 1] > 1 + ρ[l1(ρ, sl)
2 − 1],

which implies that limρ→ρ−
1+ρ[l1(ρ,sl)

2−1]
1+ρ[l1(ρ,sh)2−1]

= −∞ and along with

1/c2(ρ,sl)

βE[ Pc2
]
−1

1/c2(ρ,sh)

βE[ Pc2
]
−1
≥ −1, we get

limρ→ρ− f(ρ) = −∞. Thus there exists ρSS such that f(ρSS) = 0.

Finally, as ρSS < ρ we know that 1 + ρSS [l1(ρSS , sh) − 1] > 0 and as 1/c2(ρ,sh)

βE[ P
c2

]
> 1, we

conclude,

xSS =
1 + ρSS [l1(ρSS , sh)− 1]

1/c2(ρ,sh)

βE[ P
c2

](ρ)
− 1

> 0.

The ordering for R(s) follows from (68b).
For the second part of the statement in Proposition 6, we need to construct a steady steady

state with xSS < 0. Let ρSS be such that 0 > 1+ρSS [l1(ρSS , sh)2−1] > 1+ρSS [l1(ρSS , sl)
2−1].

Choose a payo� vector P such that 1 < P (s)/c2(ρSS ,s)

βE[ P
c2

]
for all s and

1 >

P (sh)/c2(ρSS ,sh)

βE[ P
c2

]
− 1

P (sl)/c2(ρSS ,sl)

βE[ P
c2

]
− 1

=
1 + ρSS [l1(ρSS , sh)2 − 1]

1 + ρSS [l1(ρSS , sl)
2 − 1]

. (69)

The steady state xSS solves

xSS =
1 + ρSS [l1(ρSS , sh)2 − 1]

P (sl)/c2(ρSS ,sh)

βE[ P
c2

]
− 1

< 0.

At such a P , the ordering for R(s) follows from equation (69).

18Note that we will have to deal with two di�erent cases. If ω1(1− ρ) + 2ρ2ω2 > 0 for all ρ ≥ 0 then C(ρ) ≥ 0
for all ρ ≥ 0 and is bounded above and ρ = 0. If ω1(1 − ρ) + 2ρ2ω2 = 0 for some ρ > 0 let ρ be the largest
positive root of ω1(1− ρ) + 2ρ2ω2. Note that limρ→ρ+ C(ρ) =∞. In the �rst case ρ = 0 and in the second case

l1(ρ, sl) = l1(ρ, sh) as ρ→ ρ+.
19This can be seen from the fact limρ→ρ+ 1 + ρ[l1(ρ, sl)

2 − 1] > 0 and limρ→∞ 1 + ρ[l1(ρ, sl)
2 − 1] > −∞, thus

ρ exists in (ρ,∞)
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7.10 Numerical approximation to a Ramsey plan

This appendix applies a method of Evans (2014) to approximate a Ramsey plan for the I type
of agents economy of section 5. To focus on essential steps, we take a special case where produc-
tivities for agent i are log θi,t = log θi + σεεt and where εt is i.i.d with mean zero and variance
one.

We begin by re-writing the the Bellman equation (23) in section 4 in way that makes it
convenient to apply the numerical algorithm. Let x_ = U ic_bi and m

i_ ∝ 1
U ic

with
∑

im
i = 1.

20The modi�ed Bellman equation for t ≥ 1 is:

V (x−,m−) = max
∑
s

[
Π(s)

∑
i

ωiU(ci(s), li(s)) + βV (x(s)m(s))

]
(70)

subject to

π(s)U ic(s)x
i
−

βE−PU ic
= U ic(s)(c

i(s)− T (s)) + U il (s)l
i(s) + xi(s)

U ic(s) exp ε(s)θi(1− τ l(s)) = −U il (s)
α(s) = mi(s)U ic(s)

γ− = mi
−E−PU ic∑

i

ni
[
exp ε(s)θili(s)− ci(s)

]
= 0

∑
i

ni
xi(s)

mi(s)
= 0∑

i

nimi(s) = 1

It is easy to check that satisfying (71) is equivalent to satisfying (24a)-(24e). For what follows
next, we use the notation,

• zi, as individual state variables that include mi, µi.

• yi, as individual's choice variables that include mi, µi, ci, li and Lagrange multipliers on
individual constraints.

• Y , as the planner's aggregate choice variables that include τ l, T, α, γ− and Lagrange mul-
tipliers on aggregate constraints.

Next, stack the �rst order conditions of problem (70) and constraints (71) in the following form,

Et−1F (yi,t,Et−1yi,t, Yt, yi,t+1, εt; zt−1, σε) = 0, (72a)∑
i

niG(yi,t, Y, εt; zt−1, σε) = 0. (72b)

20Note that Ricardian equivalence implies that we can normalize
∑
i n

i x
i_

Ui
c_

= 0. Thus, the dimension of the

state variables appearing in our modi�ed Bellman equation is also 2I − 2, as in problem (23). However, by not
normalizing with respect to some arbitrary agent's asset holdings (such as i = 1), we attain a symmetry that
turns out to be convenient.
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The Ramsey plan can then be represented as a set of functions (y, Y, Z) that solve (72):

yi,t = yi(εt, zt−1, σε), i = 1, . . . I

Yt = Y (εt; zt−1, σε)

zt = Z(εt; zt−1)

Our goal is to approximate outcomes generated by the system of equations (73). To do this,
we generate a sequence of approximations to the system of equations (73). We generate the tth

outcome along a sample path by drawing εt and applying our approximation of equations (73) for
date t. Our approximation to these functions at date t depends on the outcomes zt−1 generated
at the previous step of the simulation. To generate functions approximating (73) at date t, we
use a small-noise expansion (i.e., around σε = 0) to those functions at state zt−1, an expansion
that exploits economic properties associated with the limiting σε = 0 economy at that state.
Thus, to approximate sample paths drawn from the recursive system (73), we use a sequence
of Taylor series approximations around a sequence of points generated endogenously during a
simulation.

The steps of the algorithm proceed sequentially as follows:

1. Given some zt−1, compute the individual and aggregate choice variables in a limiting
economy with σε = 0. For our problem, we choose state variables that ensure that zt = zt−1

in this limiting economy.21 The allocation in the limiting economy is a set of values(
{ȳi, }i, Ȳ

)
that solve (72a) and (72b) at σε = 0. This logic gives us a set of non-linear

equations
F (ȳi, ȳi, Ȳ , ȳi, 0; z̄t−1, 0) = 0 ∀i (74a)∑

i

niG(ȳ, Ȳ , 0; zt−1, σε) = 0 (74b)

whose solution (ȳ, Ȳ ) depends on zt−1. It is signi�cant that the �steady state� (ȳ, Ȳ ) would
be the outcome for a complete markets economy with initial condition zt−1. This follows
partly from the fact that when σε = 0, a risk free bond is enough to complete markets.

2. Next construct a truncated Taylor series approximation to the functions y, Y appearing
in (73) around the steady state ȳ(zt−1) and Ȳ (zt−1) obtained in the step 1; this yields
approximations

yi(εt; zt−1, σε) ≈ ȳi(zt−1) +
∂yi
∂ε

(0; zt−1, 0)εt (75a)

+
1

2

∂2yi
∂ε2

(0; zt−1, 0)ε2t

+
1

2

∂2yi
∂σ2

ε

(0; zt−1, 0)σ2
ε

21Extensions to more general environments where there do not exist such steady states or where Γt follows a
deterministic path in the non stochastic limit can be found in Evans (2014).
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and

Y (εt; zt−1, σε) ≈ Ȳ (zt−1) +
∂Y

∂ε
(0; zt−1, 0)εt (75b)

+
1

2

∂2Y

∂ε2t
(0; zt−1, 0)ε2t

+
1

2

∂2Y

∂σ2
ε

(0; zt−1, 0)σ2
ε .

The main computational task is to evaluate derivatives at the steady state. This involves
totally di�erentiating system (72a) and (72b) at the non stochastic steady state associated
with zt−1. 22

3. Draw shocks εt and use the approximate policies in (75a) and (75b) to obtain yi,t and Yt.
Remember that zi,t is assumed to be included in the vector yi,t. This yields us the next zt.

4. Advance to t+ 1 and repeat steps 1 to 3 using the updated zt as the initial distribution
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