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Abstract

Standard models predict that episodes of high unemployment are followed by

recoveries. This paper shows, by contrast, that a large shock may set the economy

on a path towards very high unemployment, with no recovery in sight. First,

I estimate a reduced-form model of �ows in the U.S. labor market, allowing for

the possibility of multiple steady states. Next, I estimate a non-linear search

and matching model, in which multiplicity of steady states may arise due to skill

losses upon unemployment, following Pissarides (1992). In both cases, estimates

imply a stable steady state with around 5 percent unemployment and an unstable

one with around 10 percent unemployment. The search and matching model can

explain observed job �nding rates remarkably well, due to its strong endogenous

persistence mechanism.
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The main lesson of the crisis is that we were much closer to those dark

corners than we thought� and the corners were even darker than we had

thought too. �Olivier Blanchard (2014), in �Where Danger Lurks�.

1 Introduction

A large body of literature has developed models of cyclical swings in the labor market,

often within the search and matching paradigm of Diamond, Mortensen and Pissarides

(DMP). Most of these models predict that, following a one-time shock, unemployment

gradually reverts back to a unique steady-state level (see Figure 1, left panel). Episodes

of sustained high unemployment may occur in these models, but only if the economy is

repeatedly hit by adverse shocks. In models with multiple steady states, by contrast, a

single shock may set the labor market on a path towards a �Dark Corner�: a region of

economic states with high unemployment and no tendency to revert back (see Figure

1, right panel).1

This paper shows that models with multiple steady states �while seldom used for

quantitative purposes�can provide a superior account of the dynamics of the U.S. labor

market over the last 25 years. I reach this conclusion after estimating (i) a reduced-form

model of stocks and �ows in the labor market and (ii) a search and matching model

of the business cycle. Both models allow for multiplicity of steady states but may also

deliver a single steady state, depending on estimation outcomes.

I �rst present a general reduced-form methodology to estimate steady states, based

on a system of forecasting equations. I then apply the method to the U.S. labor market,

estimating a reduced-form model of �ow rates in- and out of unemployment. In this

application, multiple steady states can emerge if either one of the �ow rates is a¤ected

by the unemployment rate.2 Multiplicity can also arise due to non-linearity in the

1For examples of models with multiple steady states, see e.g. Diamond (1982), Pissarides (1992),
and Kaplan and Menzio (2014).

2A simple way to see this is to consider the transition identity ut+1 = ut (1� uet) + (1� ut) eut,
where ut is the unemployment rate in period t; uet is the unemployment out�ow rate, and eut is the
unemployment in�ow rate. If either of the two transition rates depends linearly on ut; the right-hand
side becomes quadratic in ut, giving rise to two solutions for a steady state level u = ut+1 = ut.
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Figure 1: Model illustrations.
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Notes: black solid lines illustrate the relation between unemployment today (ut) and
unemployment tomorrow (ut+1). Points A and B indicate steady states. Red arrows
illustrate transition dynamics.

forecasting relations. I show that allowing for both potential sources of multiplicity can

substantially improve the statistical performance of the model.

After estimating the model, I �nd a stable steady state with about �ve percent

unemployment, and an unstable steady state with around ten percent unemployment.

These results suggest that, following the Great Recession of 2008, the U.S. economy

was nearly drawn into a Dark Corner with high long-run unemployment.

The second set of evidence is based on an estimated search and matching model in

the tradition of DMP, but extended to allow for a loss of human capital upon unem-

ployment, following Pissarides (1992). In this model, skill losses associated with higher

unemployment discourage hiring, which further pushes up unemployment. Depending

on parameter values, this mechanism may give rise to multiple steady states. The

economy is further hit by stochastic shocks to the rate of job loss, which are taken

directly from the data. I �nd that, based on these shocks alone, the model can match

observed job �nding and unemployment rates remarkably well. This quantitative suc-
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cess is due to the presence of a strong endogenous persistence mechanism created by

the incidence of skill losses, coupled with a moderate non-linearity in the �rms�vacancy

posting condition.

Like the reduced-form model, the estimated search and matching model has a stable

steady state with around �ve percent unemployment and an unstable one with around

ten percent unemployment. Perhaps surprisingly, multiple steady states arise despite

the fact that the estimated degree of skill loss upon unemployment is only moderate.

Speci�cally, I estimate that when a worker goes through an unemployment spell, she

su¤ers a one-time productivity loss equivalent to two weeks of output.3 At face value,

the model may therefore seem a minimal departure from a basic DMP model, but the

dynamics are nonetheless dramatically altered.

Considering the aftermath of the Great Recession, the multiple-steady-state models

can account particularly well for the slow recovery of the labor market. The right

panel of Figure 1 clari�es this point. Suppose that the economy starts from the stable

steady state with low unemployment (point A in the �gure, about 5 percent in the

data). Next, a one-time wave of job losses brings unemployment just below the second,

unstable steady state (point B in the �gure, about 10 percent in the data). Ultimately,

unemployment will revert back to its initial level, following the step-wise path illustrated

by the red line. Initially, however, the speed of this transition is slow. By contrast, in the

single-steady-state model (Figure 1, left panel), the speed of transition is particularly

high when the economy is far away from steady-state point A. The latter is di¢ cult to

reconcile with the fact that, following the Great Recession, the job �nding rate declined

to an unprecedented level and stayed very low for a sustained period of time.

The presence of non-linearities further generates countercyclical �uctuations in un-

certainty about aggregate unemployment. According to the model, unemployment

uncertainty rose particularly sharply during the Great Recession, which is in line with

suggestive evidence from the Survey of Professional Forecasters.

3An extensive literature shows that job displacement has large and persistent e¤ects on earnings,
see e.g. Schmieder, von Wachter, and Bender (2014). Jarosch (2014) presents evidence that a loss of
human capital is an important driver behind these earnings losses.
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The analysis relates to an empirical literature which analyzes labor market tran-

sition rates, see e.g. Hall (2005b), Shimer (2005), Elsby, Solon, and Michaels (2006),

Fujita and Ramey (2009), and Kroft, Lange, Notowidigdo, and Katz (2014). Barnichon

and Nekarda (2012) develop a reduced-form forecasting model for unemployment and

emphasize the bene�ts of conditioning separately on unemployment in- and out�ows.

This is important since the two �ow rates have distinctly di¤erent time series proper-

ties and therefore each contain valuable information on the state of the economy, which

would be lost when conditioning on only the current level of unemployment. I fol-

low this ��ow approach�, but focus on estimating steady-state rates of unemployment

rather than constructing near-term forecasts. Finally, the �nding that there may be

multiple steady states connects this paper to an empirical literature investigating the

possibility of �hysteresis�in unemployment, see Ball (2009) for an overview.

On the theoretical side, I integrate the endogenous persistence mechanism of Pis-

sarides (1992) into a business cycle model, and estimate the model while fully account-

ing for non-linearities.4 The latter connects the paper to Petrosky-Nadeau, Kuehn,

and Zhang (2013), who study the importance of non-linearities in generating episodes

of very high unemployment in a DMP model with a single steady state. The relevance

of endogenous persistence is emphasized in Mitman and Rabinovich (2014), who study

a quantitative model with endogenous unemployment bene�t extensions. I show that

the interaction of non-linearities and endogenous persistence can produce a close �t to

the data and give rise to multiplicity of steady states. The analysis further relates to

a recent strand of literature which studies business cycle models with �non-standard�

equilibrium properties.5 The estimation results presented in this paper may help im-

pose quantitative discipline on such models. A practical advantage of the search and

matching model presented here is further that it has a unique equilibrium, even when

4Esteban-Pretel and Faraglia (2008) and Laureys (2014) also integrate skill losses in DMP-style
models. They, however, calibrate their models and solve them by linearization. Further, they stay
away from parameterizations with multiple steady states. Here, instead, I estimate the model, using a
global solution method. The latter is crucial to allow for the possibility of multiple steady states.

5See for example Kaplan and Menzio (2014), Eeckhout and Lindenlaub (2015), Azariadis, Kaas, and
Wen (2015), Fajgelbaum, Schaal, and Taschereau-Dumouchel (2015), Beaudry, Galizia, and Portier
(2015) and Sniekers (2015).
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there are multiple steady states. This enables one to conduct quantitative analysis

without imposing any equilibrium selection rule or modi�cation of the model structure.

Finally, there is a close link between the search and matching model and the reduced-

form model. Essentially, the forecasting equations of the latter are the reduced-form

equivalents of the core Euler equation for vacancies in the search and matching model.

Without skill losses, the unemployment rate is not a state variable for the �rms�vacancy

posting decision, whereas with skill losses the unemployment rate becomes a key state

variable. In the reduced-form analysis, I �nd that omitting the unemployment rate in

the forecasting regression produces strong autocorrelation in forecast errors, suggesting

that a key piece of information on the aggregate state is missing. Including the unem-

ployment rate in the forecasting regression absorbs this autocorrelation and improves

forecast accuracy. The reduced-form analysis thus provides a way of confronting the

Euler equations of DMP-style models with the data. Since Hall (1978), researchers have

used this type of reduced-form approach to scrutinize a large variety of theories, includ-

ing models of investment, asset pricing models, and New-Keynesian models. Somewhat

surprisingly, the DMP model has not received the same kind of attention, even though

its core can be conveniently summarized by a single Euler equation.

The remainder of this paper is organized as follows. Section 2 presents the reduced-

form empirical evidence. Section 3 describes the search and matching model and

presents the estimation results. Section 4 concludes.

2 Reduced-form model

This section presents a framework to estimate steady states without making structural

assumptions. Subsection 2.1 presents the general methodology. In subsection 2.2, the

method is tailored to the U.S. labor market. Section 2.3 presents results.

2.1 General methodology

I start by introducing some notation and de�nitions. Consider a dynamic and stochastic

model with variables that are observed in discrete time. Let St 2 Rm be the vector of
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state variables of the model in period t, which may be unobservable to the researcher,

or even completely unknown. Further, let xt 2 Rn be an outcome vector containing

a subset of all model variables, selected by the researcher. Furthermore, let Fk (St)

be the function that maps the state St into the direct multistep optimal forecast of

xt, i.e. Fk (St) = E [xt+kj St], where E is the expectations operator and k � 0 is the

forecast horizon. Note that F0 (St) is the mapping from the current state to the current

outcome, i.e. F0 (St) = E [xtj St] = xt: Now de�ne a steady state as follows:

De�nition. A steady state is a realization of St such that xt = Fk(St) for any forecast

horizon k � 1.

In general, the function Fk(St) cannot be estimated directly from the data, since

St may not be observed by the researcher. To make progress, let us assume for the

moment that (i) enough variables are included in xt for F0(St) to be invertible, and (ii)

xt is observable.6 In that case, one can express the forecast as a function of observables

only. Speci�cally, it then holds that Fk(St) = Gk (xt), whereGk is a forecasting function

de�ned as Gk(xt) � Fk(F�10 (xt)); where F�10 (xt) denotes the inverse of F0(St). Both

Fk(St) and Gk(xt) are optimal forecasting functions which condition on all available

information in period t. In contrast to Fk(St), however, Gk(xt) can be estimated

from the data since it is a function of only observables. Assuming further that (iii)

Gk is within some known family of parametric functions, we can estimate Gk(xt) by

estimating its parameters using a forecasting regression.

The question now is wether assumptions (i), (ii) and (iii) can be simultaneously

satis�ed. Since the researcher has complete freedom which variables to include in xt, it

can always be ensured that (ii) holds. Validating the other two assumptions is a matter

of checking for misspeci�cation of the forecasting regression equations. Suppose, for

example, that one has included fewer variables in xt than there are state variables.

In that case, F0 is not invertible since it is not generally possible to summarize the

6There always exists some choice of xt such that F0 is invertible. To see this, note that if all model
variables we included in xt then F0 would by construction be invertible, since xt would include all the
state variables.

6



information contained in m state variables using only n < m outcome variables. How-

ever, omitted variables will induce autocorrelation in the errors of (non-overlapping)

forecasts.7 Similarly, misspeci�cation of the assumed functional form of Gk(xt) can

diagnosed based on the residuals of the regression. Thus, the model selection problem

faced by the researcher is the typical one that is routinely encountered in time series

econometrics, and standard diagnostics checks can be applied.

Summarizing the above, I propose the following procedure to estimate steady states:

1. Select a set of candidate reduced-form models, each of which speci�es a functional

form of Gk(xt) and a selection of variables to be included in xt.

2. For each model speci�cation, estimate Gk(xt) for a range of forecast horizons,

using direct multistep forecasting regressions. Dismiss those speci�cations that

produce substantial autocorrelation in the regression residuals at any horizon

k > 0.

3. Compute the implied steady state vector(s) x by solving x = bGk (x), where bGk(xt)
is the estimated function.

A few remarks are appropriate. In step 1, economic theory may help the researcher

to select a reasonable set of candidate models. In step 2, it is possible that several

models survive the speci�cation test. If so, one can either make a choice between models

based on measures of �t and/or check for robustness of the results across speci�cations.

Similarly, it may occur that none of the selected models are well speci�ed. In step 3,

one can select any arbitrary forecast horizon k to compute the steady states. SincebGk(xt) is estimated separately for each k, one can thus check for robustness of the
results across a range of forecast horizons. Finally, the stability properties of the

steady state(s) can be analyzed by considering small perturbations around a steady-

state solution x: Let any such perturbation be denoted by a vector � 2 Rn: Stability
7Since forecasts are made k steps ahead, there correlation between forecast with partly overlapping

horizons naturally arises and does not imply misspeci�cation.
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requires that the outcome variables are expected to move closer to their steady state

values, i.e.



 bGk (x+ �)� x


 < k�k.

2.2 Application to the U.S. labor market

I now apply the method to estimate a reduced-form model of stocks and �ows in the

U.S. labor market. Speci�cally, I estimate a model of the job loss rate, the job �nding

rate and the unemployment rate.

Consider a labor market in which workers �ow stochastically between employment

and unemployment. Time is discrete and indexed by t. Job losses materialize at the

beginning of each period and the probability that a worker loses her job is denoted by

�x;t. After job losses occur, a labor market opens and a matching process between job

searchers and �rms takes place. The pool of job searchers consists of those workers

who just lost their jobs and those who have been unemployed for some time.8 Let the

rate at which job searchers �nd jobs be denoted by �f;t: Those who �nd a job during

period t become employed within the same period. Hence, job losers may immediately

�nd a new job without becoming unemployed. It follows that the unemployment rate,

ut, evolves according to the following transition identity:

ut = �x;t
�
1� �f;t

�
(1� ut�1) +

�
1� �f;t

�
ut�1; (1)

where the �rst and second terms on the right-hand side are, respectively, the number

of new and continuing job seekers, both expressed as a fraction of the labor force.

The job �nding rate and the job loss rate are determined as functions of the aggre-

gate state of the economy. In a fully structural model, these functions would be the

equilibrium outcome of agents�decisions, resource constraints, market clearing condi-

tions, and so forth. Here, I treat the underlying model structure as unknown and use

a reduced-form approach instead. The two transition rates �f;t and �x;t are uniquely

pinned down as functions of the state vector St.9 Given these variables and ut�1, ut
8 I abstract from �ows in and out of the labor force and on-the-job search.
9This is consistent with the possibility of multiple short-run equilibria. In that case, outcomes would

8



follows mechanically from Equation (1).

Model speci�cations. The next step is to decide which variables to include in the

outcome vector xt. At the very minimum, I include �f;t and �x;t. Given steady-state

values for �x and �f , one can compute u using the steady-state solution of Equation

(1), which is given by u = �x
�
1� �f

�
=
�
�x
�
1� �f

�
+ �f

�
.10 Doing so guarantees that

the joint steady-state solution is consistent in an accounting sense. It further allows

one to compute the steady-state rate of unemployment without including ut in xt.

That said, it may be the case that including ut in xt is required to fully identify the

state of the economy. Indeed, in the structural model presented in the next section

the unemployment rate is itself a key state variable for the job �nding rate. If so,

omitting ut in the forecasting regression may induce misspeci�cation. I will therefore

consider models with and without ut as a regressor. In those models that include ut, I

will impose the steady-state version of Equation (1) rather than estimating a separate

forecasting equation for ut+k:

Following the procedure described in the previous section, I have considered a bat-

tery of candidate speci�cations. To avoid unnecessary repetition, I discuss in the main

text only three speci�cations, which turn out to summarize the main results. The Ap-

pendix presents results for various alternative models with additional lags, additional

macro variables, and additional higher-order terms. These alternatives, however, either

produce autocorrelation in the forecast errors, or produce results similar to the three

baseline speci�cation.

The �rst speci�cation, labeled Model (I), assumes that the job �nding rate forecast,

Et�f;t+k, can be expressed as a linear function of only �f;t and �x;t: In model (II),

Et�f;t+k is estimated as a linear function of �f;t, �x;t and ut; whereas in model (III)

Et�f;t+k is linear in �f;t, �x;t, ut as well as u2t . All speci�cations also include a constant

be determined by a sunspot variable, which would be part of St:
10 It should be emphasized that steady state solutions for �f , �x and u may not all be between zero

and one. If so, then the solution is not practically relevant. Such a �nding, however, could indicate
a corner solution (i.e. a solution in which one or more variables has value zero or one). The stability
properties of the various steady states determine whether this is the case. I will address this possibility
in more detail when discussing the empirical �ndings.
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term. For the rate of job loss, �x;t, all three models assume an AR(1) process, i.e.

Et�x;t+k is a linear function of only �x;t and a constant. The Appendix considers

various alternative speci�cations, but it turns out that, in contrast to the job �nding

rate, the job loss is well described by a simple AR(1) process.

Note that model (I) excludes the unemployment rate from the state vector and rules

out multiple steady states by construction. Model (II) includes the unemployment rate

in a linear fashion and it is straightforward to verify that this model allows for at most

two interior steady states. Model (III) adds u2t ; which allows for more than two interior

steady state solutions.

Data. The labor market data are taken from the Current Population Survey (CPS).

I obtain monthly observations for ut and �f;t. The job �nding rate, �f;t, is measured

as the unemployment-to-employment transition rate as reported in the CPS section on

gross labor market �ows. These data are available from January 1990 onwards and I

end the sample in November 2015. The job loss rate is constructed to be consistent

with the transition equation (1), i.e. as �x;t =
ut�(1��f;t)ut�1
(1��f;t)(1�ut�1)

.

As a robustness check, I use an alternative data source in the CPS and estimate

transition rates based on unemployment duration data, as in Shimer (2005). While this

series provides a less direct estimate of the job �nding rate, a key variable in the analysis,

it is available over a much longer sample. Having more data points is an advantage,

for obvious reasons. However, using a longer sample also has disadvantages, given

that gradual structural shifts in the economy, for example due to demographics, may

slowly move steady states around. My aim here, however, is to identify steady states

between which the economy may transition in a relatively short period of time, after

being hit by a sudden macroeconomic shock. Gradual structural change may obscure

the identi�cation of such steady states. The Appendix shows that the empirical results

are nonetheless similar to the baseline, both over the baseline sample period as over

and extended sample starting in 1960.

The two upper panels of Figure 2 plot the two transition rates from CPS gross

�ow data. The lower panel plots the unemployment rate, as well as an approximation
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de�ned as u�t �
�x;t(1��f;t)

�x;t(1��f;t)+�f;t
, which is the unemployment rate that would prevail if

the current transition rates, �x;t and �f;t, would be permanently frozen at their current

levels (see Hall (2005b))

Figure 2: Raw data.
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Notes: Monthly data over the period January 1990 until November 2015. ut is the
civilian unemployment rate. �f;t, is measured as the unemployment to employment
rate in the CPS. For the computation of �x;t and u

�
t , see text. Shaded areas denote

NBER recessions.

Figure 2 highlights two important and well-known observations that motivate my

choice to estimate steady-state rates of unemployment based on forecasting equations

for the transition rates (the ��ow approach�). The �rst observation is that the time

series properties of the job �nding rate and the job loss rate are quite di¤erent. It is

therefore likely that the two series convey distinct information about the state of the

11



aggregate economy. The job �nding rate, plotted in the upper panel, is subject to slow-

moving �uctuations. Particularly striking is the slow recovery of the job �nding rate

after the sharp decline in during 2008. The job loss rate, plotted in the middle panel,

displays much less persistence. The increase in �x;t around 2008 is also less persistent

than the decline in �f;t.

The second well-known observation is that there is a very tight link between the

unemployment rate and the two transition rates. The bottom panel of Figure 2 shows

that the unemployment rate approximation u�t , which is a function of only �f;t and

�x;t, closely matches the actual unemployment rate ut for most of the sample period.

Thus, the key to understanding of unemployment rate dynamics lies in the time series

behavior of the two transition rates. Of course, there may be a two-way interaction

between the transition rates and the unemployment rate. In fact, it is exactly such

interaction that may give rise to multiple steady states.

Estimation method. Figure 2 suggests that measured transition rates are noisy.

This is not very surprising, since CPS data are based on a survey among about 60,000

respondents, out of which only a small fraction experiences a change in employment

status in a given month. The presence of i.i.d. noise can induce coe¢ cient bias when

estimating the forecast equations. To avoid such bias, I use an Instrumental Variables

estimator, implemented through a standard Two Stage Least Squares procedure. As

instruments, I use lags of the three variables, �f;t�1, �x;t�1, and ut�1. For completeness,

the appendix reports results obtained using Ordinary Least Squares. While there some

small quantitative di¤erences, the main �ndings are not a¤ected.

2.3 Findings

This subsection presents the outcomes of the estimated reduced-form model. I �rst

consider diagnostics statistics for the three models. Based on these, I select a baseline

speci�cation. Next, I present the estimated steady-state values for the unemployment

rate and discuss the implications for unemployment dynamics. Finally, I discuss the
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extent to which the U.S. labor market reached a �Dark Corner� during the Great

Recession.

Model selection. I �rst check for misspeci�action of the model. The left panel of

Figure 3 plots the correlation between the residuals in correlations of the residuals in

month t and month t+ k+1 for the three models.11 Each of the two statistics is com-

puted for a range of forecast horizons, between k = 1 and k = 36 months. Underlying

each forecast horizon is a separately estimated direct multi-step forecasting equation

for �f;t+k. The �gure shows that Models (I) and (II) produce positively autocorrelated

residuals for a wide range of forecasting horizons and are thus invalidated. Model (III),

by contrast, does not produce substantial residual autocorrelation at any forecast hori-

zon.12 The level of unemployment thus emerges as a key piece of information about

the state of the economy, once non-linearities are accounted for. Omitting this piece of

information leads to misspeci�cation, and induces persistence in the forecasterrors, i.e.

residual autocorrelation.

Allowing for non-linearities also improves the forecast accuracy of the model. This

is shown in the right panel of Figure 3, which plots the R2 statistic for the three

speci�cations, again for forecast horizons between 1 and 36 months.13 Especially at

longer horizons, model (III) produces a better �t than the other two speci�cations.

Model (III) is the only model out of the three which survives the autocorrelation

test and also delivers the best �t. In what follows, I will therefore use Model (III) as the

baseline speci�cation. As mentioned above, the Appendix shows that adding further

higher-order terms or additional macro variables has little impact on the results. The

baseline speci�cation thus appears to extract enough information about the aggregate

state from the observables, as already suggested by the lack of autocorrelation in the

11The residuals are constructed as "t+k = Et�f;t+k � �zt, where zt is the vector of observables and
� is the vector of estimated coe¢ cients. Due to overlapping forecast horizons, residuals of closer time
periods are generally correlated and hence not useful to diagnose misspeci�cation.
12At a range of longer horizons, all models produce negative correlations. This, however is less

concerning, since omitted variables typically do not produce negative autocorrelation in the residuals.
13The R2 statistic is computed based on the residuals b"t+k = Et�f;t+k � �bzt, where bzt is vector of

the �tted value from the �rst stage regression. This avoids a mechanical reduction in measured �t due
to noise in the observations.
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Figure 3: Diagnostic statistics.
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Estimated steady states. With the estimated forecasting functions at hand, the

steady state(s) can be computed. Figure 4 plots u�t � �x;t
�
1� �f;t

�
=(�x;t

�
1� �f;t

�
+

�f;t) against u
�
t+k,with �x;t and �x;t+k both set to the sample average, and for a range of

values for �f;t, with �f;t+k computed using the estimated forecasting equations. Inter-

sections with the 45 degree lines satisfy the steady-state requirements stated in Section

2.1. The four panels in Figure 4 plot these curves for four di¤erent forecast hori-

zons, equal to, respectively, 6, 12, 24 and 36 months. While the degree of curvature in

these functions naturally depends on the forecast horizon, the steady-state intersections

should be consistent across horizons.

The point estimates of the baseline model, Model (III), deliver one steady state

around 5.5 percent and one around 9.5 percent, which is a robust �nding across the

various forecast horizons. The shape of the curves imply that the steady state with low

unemployment is stable, whereas the one with high unemployment is not. It follows that

there must be a third steady state with even higher, possibly extreme unemployment.

However, the data have little to say about the precise location of this third steady state:

outside the range of values for unemployment observed in the data, con�dence bands
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become very wide.

Figure 4: Estimation results of the reduced-form models.
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Notes: The �gure plots u�t �
�x;t(1��f;t)

�x;t(1��f;t)+�f;t
against u�t+k, where intersections with

the 45-degree line indicate steady states. Here, u�t , is computed by constructing for a
range of values for �f;t; setting �x;t to its sample average �x. Next, u

�
t+k is computed

for each value of u�t by using the forecasting model to evaluate �f;t+k ; again setting
�x;t+k = �x. The shaded areas plot 90 percent con�dence bands for the model (III).
These bands are uniform and have been computed based on a bootstrap method. The
forecast horizon, k, is denoted in months.

For purely illustrative purposes, Figure 4 also plots the corresponding curve for

Model (II), even though this model was invalidated due to residual autocorrelation.

This model has a single steady state over the range of unemployment rates observed

in the data, which is stable and located between six and seven percent unemployment.

The illustration clari�es that including unemployment in the forecasting equation does

not mechanically leads one to conclude that multiple steady states are relevant for the

labor market. Indeed, Model (II) does include the unemployment rate in the forecast
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and does have two steady-state solutions. However, the unstable solution features a

negative unemployment rate and is therefore not relevant.

Dynamics and Dark Corner Figure 5 presents a phase diagram for the estimated

baseline model. In the literature, phase diagrams are often used to study the deter-

ministic dynamics of theoretical models but they can be equally helpful to visualize

dynamic patterns in the data. I simplify the exposition by studying a two-dimensional

diagram with u on the horizontal axis and �f on the vertical axis, setting �x equal to

its sample average as before.

The red solid line (the �u-nullcline�) traces out combinations of �f and u for which,

according to Equation (1), u remains constant (i.e. setting �u = ut+1 � ut = 0).

Similarly, the blue line (the ��f -nullcline�) traces out pairs of �f and u; for which

�f in expectation stays constant according to its forecasting equation (i.e. setting

��f = Et�f;t+k � �f;t = 0). The grey dots represent observed data points over the

sample period.

The two nullclines intersect exactly at the two steady-state points and divide the

diagram into �ve segments with di¤erent forecasted directions of motion, indicated

by black horizontal and vertical arrows. The diagram con�rms that the steady-state

with around 5 percent unemployment is stable, whereas the steady-state with around

10 percent is unstable. Further, for most values of �f and u, the two variables are

forecasted to move in opposite directions, which is in line with the very strong negative

co-movement between the two variables in the data. There are empirically relevant

states in which the two variables co-move positively but as these zones are small so the

economy tends to spend little time in these regions.

To further illustrate the dynamics implied by the estimated model, Figure 5 also

plots three examples of forecasted paths. The starting values for u and �f are chosen

to correspond to actual data points, being September 2000, July 2009, and November

2009. The subsequent forecasted paths are computed by jointly iterating on Equation

(1) and the estimated forecast equation. The paths are illustrated by pink arrows,

varying in size to indicate the speed of transition: larger arrows correspond to faster
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Figure 5: Phase diagram for the estimated reduced-form model.
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Notes: phase diagram for the reduced-form model with k = 36; setting � x;t to its
sample average. Grey dots denote observed data points. The blue and green solid
lines denote the two nullclines. Pink arrows denote three example forecast paths,
initialized at data points observed in September 2000, July 2009, and November 2009.
The size of the arrows indicate the speed of transition. Black arrows denote
forecasted directions of ut and �f;t. The shaded �Dark Corner�area denotes the set of
observations for which the forecasted paths move away from the low-unemployment
steady state. To convert the k-period ahead forecasts for �f;t into one-period ahead
forecasts the following simple average is taken: k�1k �f;t +

1
kEt�f;t+k.

transitions. The paths starting in September 2000 ultimately leads to the stable low-

unemployment steady state, with a gradually declining speed of transition. The path

starting in July 2009 leads to the same stable steady state. However, as the economy is

initially close the unstable steady state with high unemployment, the recovery is initially

slow. Gradually, the speed of recovery accelerates, reaching a maximum once the

unemployment has declined to about 7.5 percent. Subsequently, the speed of recovery

declines, as the economy reaches the low-unemployment steady state. Finally, consider

the path starting in November 2009. Along this path, unemployment does not come
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down to the stable steady state, but instead diverges upward, possibly to an extreme

level.

The notion of a �Dark Corner� is illustrated by the grey shaded area in Figure 5.

This area represents the collection of starting values for which unemployment is not

forecasted to revert back to the stable low-unemployment steady state. According to

the model, the U.S. labor market entered the Dark Corner in September 2009 and in

November 2009. Two remarks are appropriate here. First, measured job �nding rates

are somewhat noisy and the precise location of the Dark Corner is subject to estimation

uncertainty. Second, and perhaps more importantly, entering the Dark Corner does not

imply that unemployment will not come down. A benign shock may be su¢ cient to

move the economy out of the Dark Corner. Such a shock may be fairly small, since

in the proximity of the unstable steady state, deterministic dynamics are slow and

hence the e¤ects of shocks are relatively important. With these nuances in mind, the

estimation results do suggest that during the Great Recession the U.S. economy was

nearly drawn into a Dark Corner with high long-run unemployment.

3 Search and matching model

The estimates of the previous section suggest that structural models with multiple

steady-state rates of unemployment may provide a better description of �uctuations in

the U.S. labor market than standard models with a single steady state. This section

presents an explicit structural model of �uctuations in the labor market. Depending on

the structural parameters, the model may feature either one or more steady states. I es-

timate these parameters using the same data as in the previous subsection and compute

the steady state(s) of the estimated structural model. Thus, the structural estimation

in this section complements the reduced-form approach of the previous section.

The model is based on a discrete-time version of the search and matching model of

Pissarides (1985) and Pissarides (2000), extended in two dimensions. First, I introduce

aggregate uncertainty. Speci�cally, I introduce aggregate shocks to the rate of job loss,

which are taken directly from the data. The model is then evaluated on the basis of
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whether, given observed job loss rates, it can replicate observed job �nding rates and

unemployment rates. Secondly, I introduce a loss of skill upon unemployment, following

Pissarides (1992), which gives rise to the possibility of multiple steady states.

The remainder of this section is organized as follows. The model is described in

Section 3.1. Section 3.2 discusses the properties of the equilibrium and explains under

what conditions multiple steady states may arise. Section 3.3 discusses the estimation

procedure, the estimated parameter values and the �t of the model. In Section 3.4

I present the key implications of the estimated model. Speci�cally, I quantify (i) the

implied steady state values, (ii) the states of the world in which the economy is in a

Dark Corner and (iii) endogenous �uctuations in unemployment uncertainty.

3.1 Model

The economy is populated by a unit measure of risk-neutral workers who own the �rms.

Workers. The transition structure and timing of the labor market are the same as

in the reduced-form model. Employed workers lose their job with a probability �x;t at

the very beginning of a period. This probability is exogenous, but subject to stochastic

shocks, which are revealed when job losses occur. Subsequently, a labor market opens

up to �rms and to workers searching for a job. The pool of job searchers consists of those

workers who just lost their jobs and those who were previously unemployed. The labor

market is subject to search and matching frictions and only a fraction �f;t 2 [0; 1] of the

job searchers meets with a �rm. In the equilibrium, all workers who meet a �rm become

employed, so �f;t is also the job �nding rate. It follows that the aggregate unemployment

rate, ut, evolves as in Equation (1). After the labor market closes, production and

consumption take place. Unemployed workers obtain a �xed amount of resources b

from home production, whereas employed workers receive wage income. Note that

some job losers immediately �nd a new job, whereas others become unemployed.

As in Pissarides (1992), workers who become unemployed lose some skills. In par-

ticular, the productivity of any worker who is hired from unemployment is reduced by
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a certain, time-invariant amount in the initial period of re-employment. After being

employed for one period, a worker regains her old productivity level. One can think

of the productivity loss as the cost required to re-train a worker to become suitable

for employment. The fraction of job searchers with reduced skills is denoted by pt and

equals the ratio of the number of previously unemployed workers to the total number

of job searchers:

pt =
ut�1

ut�1 + �x;t (1� ut�1)
: (2)

Wages are determined by Nash bargaining between workers and �rms. It will be shown

that workers who need to be re-trained are subjected to a wage deduction upon being

hired, reducing their net wage relative to the wages of other workers. Aside from this

deduction, wages of all workers are the same, since wages are re-bargained in every

period.

Firms. On the supply side of the economy, there is a unit measure of identical �rms

who maximize the expected present value of net pro�ts, operating a constant returns-

to-scale technology to which labor is the only input. In order to hire new workers, �rms

post a number of vacancies, denoted vt, which come at a cost � > 0 per unit. Firms�

search for workers is random. When choosing the optimal number of vacancies, �rms

take as given the stochastically �uctuating rate of job separations, �x;t, the fraction of

new hires with reduced skills, pt, and the rate at which vacancies are �lled, denoted

qt. Let the total cost of retraining a worker be denoted by � and let the deduction be

denoted dt. The value of a �rm, V , can be expressed recursively as:

V (nt�1;St) = max
ht;nt;vt

Ant � wtnt � (�� dt) ptht �
�

qt
ht + �EtV (nt;St+1);

subject to

nt =
�
1� �x;t

�
nt�1 + ht;

ht = qtvt;

ht � 0;
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where nt denotes the number of workers in the �rm, St is the state of the aggregate

economy, ht is the number of new hires and wt is the wage of a worker, excluding a

possible deductions related to re-training. The output of the �rm is given by Ant,

where A > b is a productivity parameter. The costs faced by the �rms consist of three

components. First, wtnt is the baseline wage bill (again excluding deductions). Second,

(�� dt) ptht is the amount spent on re-training workers, net of the wage deductions.

Third, �qtht are the costs of posting vacancies.

The �rst constraint in the �rms�decision problem is the transition equation for the

number of workers in the �rm. The second constraint relates the number of vacancies

to the number of new hires. The third constraint states that the number of new hires

cannot be negative, preventing the �rms from generating revenues by �ring workers.

In line with the empirical results, the rate of job loss is assumed to follow an AR(1)

process:

�x;t = (1� �x) �x + �x�x;t�1 + "x;t;

where bars denote steady-state levels, �x 2 [0; 1) is a persistence parameters and "x;t
is a normally distributed shock innovation with mean zero and standard deviation �x.

Matching technology and wage determination. Let the number of job searchers

at the beginning of period t be denoted by st � ut�1+�x;t (1� ut�1). Job searchers and

vacancies are matched according to a Cobb-Douglas matching function, mt = s
�
t v
1��
t ,

where mt is the number of new matches and � 2 (0; 1) is the elasticity of the matching

function with respect to the number of searchers.14 From the matching function it

follows that the vacancy yield, qt = mt
vt
, and the job �nding rate, �f;t =

mt
st
, are related

as:

qt = �
�

��1
f;t : (3)

The evolution of the aggregate employment rate is identical to the evolution of �rm-level

employment due to symmetry across �rms.

14 In the literature, it is common to introduce a scaling�s parameter in front of the matching function.
However, in my application this parameter is isomorphic to the vacancy cost �. I therefore normalize
the scaling�s parameter immediately to one.
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Wages are set according to Nash bargaining, as mentioned previously. I assume

that if bargaining were to fail, the worker and the �rm have to wait for the next period

in order to search again. This implies that the worker would become a reduced-skill

worker. Let � be the bargaining power of the worker. The Appendix shows that the

wage wt and the deduction dt are given by:

wt = (1� �)
�
b� �Et���f;t+1

�
(4)

+�
�
A+ �Et�f;t+1

�
1� �x;t+1

� �
� (1� �) pt+1 + ��

�
1��
f;t+1 � �t+1

��
;

dt = ��: (5)

Note that the deduction dt is equal to a fraction � of the total training cost. A version

of the model with a fully rigid wage (wt = b < A) is obtained by setting � equal to

zero.

Equilibrium. As shown in the Appendix, the �rms��rst-order optimality conditions

deliver an Euler Equation for vacancy posting, which can be expressed as:

� (1� �) pt� �t+��
�

1��
f;t = A�wt+�Et

�
1� �x;t+1

� �
� (1� �) pt+1 + ��

�
1��
f;t+1 � �t+1

�
;

(6)

where �t is the Lagrange multiplier on the constrained restricting hiring to be non-

negative, which satis�es the Kuhn-Tucker conditions �f;t � 0; �t � 0 and �t�f;t = 0 at

any point in time. The above equation is useful to characterize the equilibrium:

De�nition. An equilibrium is characterized by policy functions for the job �nding rate,

�f (St), for the unemployment rate u (St), for the wage w (St), and for the fraction

of reduced-skill hires, p (St), and the Lagrange multiplier � (St), which satisfy the un-

employment transition equation (1), the equation for the fraction or reduced-skill hires

(2), the wage equation (4), the vacancy Euler equation (6), the Kuhn-Tucker conditions

�f;t � 0; �t � 0 and �t�f;t = 0, as well as the exogenous law of motion for �x;t. The

state of the aggregate economy can be summarized as St =
�
�x;t; ut�1

	
:
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Note that ut�1 is a state variable only because it enters the the de�nition of pt, Equation

(2), which in turn enters the vacancy posting condition (6). In the absence of skill losses

(� = 0), Equation (2) can be dropped from the model, eliminating pt as a variable.

Then, the equilibrium policy function for �f;t can be solved from a dynamic system

containing only Equation (6) and the wage equation (4). In this system, �x;t is the only

state variable. Given a simulation for �f;t and �x;t; and an initial level of unemployment,

the path of the unemployment rate can be computed separately using Equation (1).

Relation to the reduced-form model. There is a close connection between the

search and matching model and the reduced-form models of the previous section, due to

the fact that the central Euler equation of the DMP model, Equation (6), is essentially a

one-period ahead forecasting equation for a nonlinear transformation of the job �nding

rate, �f;t+1. The unemployment rate enters this equation non-linearly through pt and

pt+1, but drops out when skill losses are removed from the model and unemployment

is no longer a state variable for the job �nding rate.

3.2 Equilibrium properties

This subsection discusses the equilibrium properties of the model. I �rst show that

the equilibrium is unique and then discuss how the existence of multiple steady states

depends on parameter values.

From now on, I will follow Hall (2005a) and assume a rigid real wage. That is, I

set � = 0, which, as mentioned above, implies wt = b and dt = 0. The possibility of

multiple steady states, however, does not hinge on this assumption.

Uniqueness of the equilibrium. It is straightforward to show that the equilibrium

of the model is unique. To this end, let us express the Euler equation for vacancies,

Equation (6), as:

��
�

1��
f;t � �t =

1P
k=0

�t;t+k
�
A� b

�
� �pt (7)
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where �t;t+k � �kEt
kQ
i=1

�
1� �x;t+i

�
is the rate at which �rms discount future pro�ts,

accounting for the survival probability of the match. The above condition equates the

marginal costs of hiring to the marginal bene�ts. On the left-hand side, ��
�

1��
f;t = �=qt

represents expected vacancy cost associated with hiring an additional worker, and �t

is the Lagrange multiplier on the constraint that hiring cannot be negative. On the

right-hand side,
1P
k=0

�t;+k
�
A� b

�
is the expected net present value of pro�ts that a

worker will generate, before re-training costs. The term �pt on the right-hand side is

the expected re-training cost for a new hire.

The �rst step in demonstrating uniqueness of the equilibrium is to note that the

right-hand side of Equation (7) is exclusively pinned down by the two state variables

of the model: the exogenous rate of job loss �x;t and the previous unemployment rate

ut�1. Speci�cally, the current level �x;t pins down the present value
1P
k=0

�t;+k
�
A� b

�
,

whereas from Equation (2) it can be seen that pt is a function of only the two state

variables, �x;t and ut�1.

It is now useful to distinguish between two cases. First, suppose that the right-

hand side is strictly positive. It follows from Equation (1) and the Kuhn-Tucker

conditions that �t = 0 and that the job �nding rate is pinned down uniquely as

�f;t =
�P1

k=0 �t;+k
�
A� b

�
=�� �pt=�

� 1��
� > 0. Given �f;t and the state variables,

Equation (1) can then be used to solve for ut. Next, consider the complementary case

in which the right-hand side of Equation (6) is negative. From the Kuhn-Tucker condi-

tions it follows that in this case �t =
1P
k=0

�t;t+k
�
A� b

�
� �pt � 0 and �f;t = 0. Again,

ut can then be found using Equation (1). From the fact that in both cases we can

solve uniquely for �f;t and ut, given the state variables �x;t and ut�1, it follows that the

equilibrium is unique.

Multiplicity of steady states. While the equilibrium is always unique, there can

be multiple steady states. I now illustrate how the existence of multiple steady states

depends on parameter values, focusing on cases that are most relevant in light of the

estimation results. A more complete and formal discussion of multiplicity of steady
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states in a model with skill losses can be found in Pissarides (1992).

Figure 6: Multiplicity of steady states: illustration.
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A steady state is de�ned as a state of the economy in which variables remain con-

stant in expectation. Let upper bars denote steady-state values. It is straightforward

to verify that in any steady state it holds that p = 1 � �f . Let LHS = ��
�

1��
f � �

and RHS =
1P
k=0

�+k
�
A� b

�
� �

�
1� �f

�
be, respectively, de�ned as the left- and

right-hand side of Equation (7) in the steady state.

Figure 6 illustrates LHS and RHS as a function of �f , for a case in which � >
1
2

and � > 0. For positive values of �f , LHS is a convex and monotonically increasing

function. For �f = 0, the left-hand side is not uniquely determined. When �f equals

zero, the only restriction is that that � � 0. The right-hand side of the equation is a

linearly increasing function of �f . In the illustration, there are three steady-state points.

Steady-state A has the highest job �nding rate (and thus the lowest unemployment

rate). Steady state B has a lower but positive job �nding rate, whereas steady state C

features a zero job �nding rate. It follows that steady states B and C are interior steady

states with u 2 (0; 1) whereas steady state C features hundred percent unemployment

(u = 1):

To better understand the properties of the steady state, note that the e¤ective costs

of hiring an additional worker consist of two components. The �rst is related to costs
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of posting vacancies whereas the other derives from the cost of re-training workers.

In steady state A, the vacancy �lling rate is relatively low and therefore the vacancy

component of hiring costs is relatively high. On the other hand, the unemployment

rate is relatively low in this steady state, which implies that a relatively low fraction

of new hires needs to be re-trained. Thus, the training component of hiring costs is

low. In steady states B the opposite is true: the vacancy component of hiring costs are

relatively low, but because unemployment is high, the re-training component is high

(both relative to steady state A). On net, however, the hiring cost is the same in both

steady states. In steady state C, the vacancy cost of hiring reduces to zero, but all

workers need to be re-trained. In the illustration, the latter cost is high enough for

�rms not to hire at all.

Without skill losses, hiring costs have only one component (vacancies) and there

can only be one interior steady state. When � equals zero, RHS no longer depends on

�f . Given that, for �f > 0, the left-hand side is monotonically increasing in �f , there

can then be maximally one solution.

A special case with maximally one interior steady state (even with skill losses) arises

when the matching function elasticity, �, equals exactly one half. In that case, LHS

becomes linear in �f;t, ruling out multiple interior intersections.

3.3 Estimation

This subsection estimates the parameters of the search and matching model and infers

from this the implied steady states. To illuminate the mechanism behind the results, a

version without skill losses is also estimated.

Estimation procedure. The model period is set to one month, in line with the

frequency of the data. Two parameter values are set a priori. The subjective discount

factor, �, is set to imply an annual real interest rate of 4 percent. The productivity of

a worker, A, is normalized to one.

The remaining parameters are estimated. The parameters of the exogenous process
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for the job loss rate, �x;t, are obtained by estimating an AR(1) process based on its

observed counterpart in the data. As mentioned above, transition rates are rather

noisy and I therefore smooth them using a 3 month moving average �lter. To take

out any slow moving trend, the series is put through the Hodrick-Prescott �lter with a

smoothing coe¢ cient equal to 81 � 105. This value corresponds to one used by Shimer

(2005) for quarterly data, but is converted to the appropriate monthly value using the

adjustment factor recommended by Ravn and Uhlig (2002). The estimated persistence

parameter is computed based on the autocorrelation of the �ltered series at a one-year

horizon. Given this parameter value, the shock innovations are backed out using the

AR(1) equation. I set �x equal to the standard deviation of these shock innovations

over the sample. The estimated values of �x; �x and �x are, respectively, 0:021, 0:896

and 6:95e�4.

The parameters �, �, � and b, are estimated using an indirect inference procedure.

To this end, I construct a grid for these parameters. For each set of values on the

grid, I simulate the model, feeding in job loss shocks to replicate exactly the job loss

rates observed in the data over the period January 1990 until November 2015. Each

simulation is initialized using the unemployment rate and job loss rate observed in

January 1990. Next, I compare the simulated job �nding rate series, labeled b�f;t to the
time series for the actual job �nding rate in the data. I select the parameter values

that minimize Root-Mean-Squared-Error criterion RMSE �
q

1
T

PT
t=1

�
�f;t � b�f;t�2.

To illustrate the importance of skill losses, I also estimate a restricted version of the

model without skill losses, setting � = 0. Throughout the estimation, � is restricted to

be within the 0:5-0:7 range recommended by Petrongolo and Pissarides (2001), based

on an extensive survey of empirical studies.15,16

15For the baseline model, this restriction turns out to be irrelevant. In the model without skill losses,
however, � would otherwise be driven to an implausibly low value of 0:14, which would complicate a
comparison to the baseline. At the end of Section 3.4 I will discuss the role of � in more detail.
16 In each step of the estimation procedure, the model needs to be solved non-linearly and simulated

given a set of parameter values. Towards this end, I exploit two features of Equation (7). First, one can
express the �rst term on the right-hand side as �

�
�x;t

� �
A� b

�
, where �

�
�x;t

�
is a function de�ned

as �
�
�x;t

�
� �kEt

kQ
i=1

�
1� �x;t+i

�
; given an initial value of �x;t. Since �

�
�x;t

�
does not depend on

any of the parameter values to be estimated, it can be computed before searching over the parameter
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Parameter estimates. The top part of Table 1 presents the parameter estimates.

First consider the baseline model. The matching function elasticity, �, is estimated to

be around 0:65, in line with conventional estimates. The re-training cost is estimated

to be almost precisely 0:5, which is equivalent to two weeks of the output generated

by an employed worker. Thus, the estimated degree of skill losses upon unemployment

appears rather moderate. The estimated value b implies that an employed, fully skilled

worker generates a pro�t �ow of about one percent for the �rm.

The middle part of of Table 1 reports the RMSE of the job �nding rate in the

model, relative to the actual data. To facilitate the interpretation of the magnitude,

the number has been scaled by the standard deviation of the observed job �nding rate

over the sample. In the baseline model, the RMSE is about one half of a standard

deviation. An alternative measure of �t is obtained by running a linear regression of

the form b�f;t= 
0+
1�f;t+�t; i.e. a regression of job �nding rate observed in the data
on a constant and the model-predicted job �nding rate over the sample. The R2 of this

regression is about 0:764: To examine the degree of persistence in the model vis-à-vis

the data, I compute the autocorrelation of the job �nding rate at a one year horizon.

In the model, the autocorrelation coe¢ cient is 0:834; which is only one percent lower

than its counterpart in the data (0:842):

The right column of Table 1 reports estimated parameter values for a version of the

model without skill losses (� = 0). The values of � and b are similar to the baseline.

The RMSE, however, is twice as high as in the baseline model. The R2 for this model

version is 0:099: Thus, without skill losses the model can explain less than ten percent

of the observed �uctuations in the job �nding rate. This model further fails to account

for the degree of persistence that is observed in the data. The one-year autocorrelation

in the job �nding rate is only 0:122; which is about 85 percent lower than in the data.

To further illustrate the �t of the models, Figure 7 plots the simulated time and

actual time paths of �x;t, �f;t, and ut. By construction, the time path of �x;t is the

values. With this function at hand, it is straightforward to solve and simulate the model. Given ut�1
and �x;t, we can compute pt and �

�
�x;t

�
, and hence the entire right-hand side of Equation (7). It is

then straightforward to solve for �f;t, �t and ut.
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Table 1: Estimation results search and matching models.

baseline no skill losses
I. estimated parameter values
matching function elasticity � 0:651 0:500
re-training cost � 0:499 0
vacancy cost � 1:035 1:000
�ow from unemployment b 0:989 0:994
steady state job loss rate �x 0:021 0:021
persistence job loss rate �x 0:896 0:896
st.dev. job loss shocks �x 6:95e�4 6:95e�4

II. model �t
RMSE 0:489 0:975
R2 0:764 0:099
1y autocorrelation �f;t relative to data 0:995 0:145

III. steady states
unemployment rate s.s. A (stable) uA 0:0548 0:0587
unemployment rate s.s. B (unstable) uB 0:1016 �
unemployment rate s.s. C (stable) uC 1 �

same as in the data. The job �nding rate series predicted by the model with skill

losses is strikingly similar to its counterpart in the data. During certain periods there

is a discrepancy in the levels of the two series, but even then the dynamics are close.

For the years after 2010, the model with skill losses matches almost perfectly the job

�nding rate in the data. The low job �nding rate over this period is ultimately driven

by a spike in the job loss rate during 2008 and 2009. By 2011, however, the rate of

job loss has returned to its pre-crisis level. The fact that the job �nding rate remains

persistently low, highlights the strong endogenous propagation mechanism of the model.

By contrast, the model without skill losses produces hardly any �uctuations in the job

�nding rate. As a result, this model fails to account for the large and persistent increase

in unemployment following the Great Recession. The mild increase in unemployment

that the model does produce, is largely a direct e¤ect of the job loss shocks.

The quantitative success of the baseline model derives from its strong endogenous
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Figure 7: Search and matching models versus data
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persistence mechanism. Via this mechanism, a short-lived wave of job losses creates

long-lasting e¤ects on unemployment. This happens as the job losses increase unem-

ployment, and therefore the incidence of skill losses. This in turn discourages �rms

to post vacancies and, as a result, the labor market remains depressed for a sustained

period.

3.4 Implications of the estimated model

This subsection presents the key results implied by the estimated model.
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Multiple steady states. With the parameter estimates at hand, we can compute

the steady states of the model. The steady-state rates of unemployment are presented

in the three bottom rows of Table 1. The baseline model has three steady states, labeled

A, B and C. Steady state A features an unemployment rate of about 5:5 percent. By

inspecting the dynamics of the model around this steady state, it can be veri�ed that

this steady state is stable. Steady state B is unstable, and features an unemployment

rate of about 10:2 percent. These results are much in line with the estimates from the

reduced-form model.

The baseline model further features an exterior steady state with 100 percent un-

employment. Clearly, this is an extreme prediction. It would be straightforward to

extend the model to generate a more reasonable high-unemployment steady state. To

this end, one would need to introduce some mechanism which pushes down hiring costs

when the unemployment rate becomes very high. For example, it might be reasonable

to assume that wages become more �exible when unemployment reaches very high lev-

els. In this paper, however, I refrain from such extensions given that in the data series

for the U.S. there is no information on where the third steady state would be located.

For other countries which did experience sustained periods of extreme unemployment,

such as Spain or Greece, it might be possible to identify the location of a third steady

state with very high unemployment.

In the restricted model without skill losses, there is by construction only one steady

state. This steady state is estimated to be located at 5:9 percent and is stable. As noted

above, however, this model fails to explain observed job �nding rates and unemployment

rates by a very wide margin.

Dark Corner. Figure 8 illustrates how close the labor market came to reaching a

Dark Corner, according to the estimated baseline model. On the axes of the �gure are

the two state variables, �x;t and ut�1. The white shaded area captures states for which,

in the absence of further shocks, the economy will converge to the low-unemployment

steady state A. The grey area illustrates the Dark Corner, i.e. states for which the

economy diverges towards the high-unemployment steady state C. This happens for a
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su¢ ciently high job loss rate and/or unemployment rate.

The red dots represent data points from the estimated model. Three of these are

just within the Dark Corner region of the state space. Despite moving brie�y into this

region, the economy escaped a transition towards very high unemployment due to the

occurrence of benign shocks. Note also that there is a cluster of data points just outside

the Dark Corner region. In this part of the state space, unemployment is expected to

come down, but the transition is slow.

Figure 8: Dark corner in the estimated model.
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Time-varying uncertainty. Due to its non-linearities, the model generates �uctua-

tions in unemployment uncertainty. Speci�cally, forecast uncertainty about unemploy-

ment moves countercyclically over the business cycle. To illustrate this point, Panel B

of Figure 9 plots the interquartile range (75th minus 25th percentile) of unemployment

rate forecasts one year ahead. In the baseline model, forecast uncertainty is coun-
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tercyclical, increasing particularly sharply during the Great Recession. Without skill

losses, the model generates almost no �uctuations in forecast uncertainty.

The drivers behind the countercyclical uncertainty in the baseline model can be

understood as follows. During times of moderate unemployment, the tendency of the

economy to revert back to the low-unemployment steady state helps to forecast unem-

ployment. As unemployment increases, however, there is an increased probability that

the economy is drawn into the Dark Corner region. If this happens, unemployment

will have a tendency to increase. At the border of the Dark Corner region, unemploy-

ment can thus take two opposite directions, depending on the particular realization of

shocks. This gives rise to particularly high forecast uncertainty. In the model without

skill losses, by contrast, there is no unstable steady state and forecast uncertainty is

roughly constant over time.

Figure 9 also plots the dispersion of one-year unemployment rate forecasts observed

in the Survey of Professional Forecasters. While this series measures the dispersion

across forecasters rather than across forecasts, it nonetheless provides suggestive evi-

dence that uncertainty about aggregate unemployment increases during recessions, as

predicted by the model.17

The interaction between non-linearities and endogenous persistence. The

emergence of multiple steady states is due to the interaction of a strong endogenous

persistence mechanism and a moderate non-linearity. To appreciate this point, recall

that without skill losses, the model has no endogenous persistence and, by construction,

multiple interior steady states cannot arise. Similarly, when the matching function elas-

ticity, �, is set exactly to one half, the left-hand side of the vacancy posting condition,

equation (7) becomes linear and multiple steady states are ruled out by construction.

Indeed, � has been estimated to be larger than zero, and � to be larger than one half.

Above it has been shown that a model without endogenous persistence (� = 0) fails

to account for the data by a wide margin. To investigate the quantitative importance of
17Bachmann, Elstner, and Sims (2013) provide �rm-level evidence that ex ante forecast disagreement

is correlated with dispersion in ex post forecast errors. Jurado, Ludvigson, and Ng (2015) present
evidence that macro forecast uncertainty is countercyclical.
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Figure 9: Unemployment uncertainty.
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the non-linearity, I re-estimated the model (with skill losses) setting � equal to exactly

one half. While such a parameter con�guration rules out multiplicity of steady states

by construction, it does allow for endogenous persistence. For this version, I estimate

� = 0:85 and a steady-state rate of unemployment of 5:98 percent. As anticipated, the

�t of this model is worse than the baseline. In particular, the scaled RMSE is 0:58;

versus 0:49 in the baseline. This reduction in model �t stems mainly from the recovery

period after the Great Recession, which ended in July 2009, according to the NBER.

For the post-recession period, the RMSE is 0:46 in the model with � equal to one

half, versus only 0:21 in the baseline model. I conclude that, while the introduction of

endogenous persistence alone can create a strong improvement in model �t, allowing in

addition for some degree of non-linearity in the vacancy posting condition is important

to account for the slow recovery after the Great Recession.
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4 Concluding remarks

The main �nding of this paper is that models with multiple steady-state rates of un-

employment can provide an empirically compelling description of U.S. labor market

dynamics over the business cycle. I have shown this by estimating a reduced-form

model as well as a search and matching model, both allowing for the possibility of

multiple steady states. Although I am not aware of any prior research that tries to

estimate steady state rates of unemployment in similar ways, various authors have pro-

posed alternative models in which multiple steady states can arise.18 Distinguishing

empirically between such models is important, given that government policies can have

dramatic impacts if they can prevent the economy from slipping into a Dark Corner

with high long-run unemployment.
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