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Abstract

Differential unit non-response in household wealth surveys biases estimates of top tail wealth

shares downward. Using Monte Carlo evidence, I show that adding only a few extreme obser-

vations to wealth surveys is sufficient to remove the downward bias. Combining extreme wealth

observations from Forbes World’s billionaires with the Survey of Consumer Finances, the Wealth

and Assets survey and the Household Finance and Consumption Survey, I provide new improved

estimates of top tail wealth in the US, UK and nine euro area countries. These new estimates

indicate significantly higher top wealth shares than those calculated from the wealth surveys

alone.
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1 Introduction

Understanding the wealth distribution is important for a number of reasons. For instance,

any analysis of taxation and redistribution policies crucially depend on the shape of the

wealth distribution. As wealth is usually very concentrated at the top, measures such as

the share of wealth held by the top 1 or 5 percent of households carry a broader importance

as measures of wealth inequality. Despite the obvious importance, accurate measurement

of the wealth distribution, and especially its upper tail, has proven to be very difficult.

Recently a new survey, the Household Finance and Consumption survey (HFCS),

covering in its first wave 15 countries using the euro, expands enormously the number of

countries for which wealth distribution estimates can be made. In the years to come, this

survey is likely to add substantially to the knowledge of the wealth distribution in Europe.

Similarly, the UK Wealth and Assets survey (WAS) is a relatively recent addition to set of

wealth surveys. A better understanding of these recent European surveys and especially

their measurement of top tail wealth is our first concern. The US Survey of Consumer

finances (SCF), sponsored by the Board of Governors of the Federal Reserve System, is

added to the analysis as it oversamples heavily especially at the top of the distribution

and forms an interesting comparison.

The first contribution of this paper is to provide new estimates of the share of wealth

held by the top 1 and 5 percent richest households in the US, UK, Germany, France, Italy,

Spain, The Netherlands, Belgium, Austria, Finland and Portugal. It does so based on an

analysis of household survey data combined with Forbes World’s billionaires list. For the

euro area countries we therefore restrict our analysis to those which have individuals on

the Forbes list. The new estimates for the euro area countries has been made possible by a

recent massive undertaking in Europe by the European Central bank, other central banks

and a number of government statistical agencies that has given birth to a new household

wealth survey, the Household Finance and Consumption Survey (HFCS). For the US, the

Survey of Consumer finances (SCF), sponsored by the Board of Governors of the Federal

Reserve System is used. The UK is not part of the HFCS but has independently collected

household wealth data. For the UK, the first wave of the Wealth and Assets survey (WAS)

started collecting data in July 2006.

Besides providing new estimates, this paper also makes a methodological contribution.

Wealth estimates from surveys will (almost) always underestimate top tail wealth. The

main reason causing this downward bias is the existence of differential unit non-response,

the fact that richer households are less likely to take part in such surveys. When non-

responding households have higher wealth in some systematic but unobserved way, wealth

estimates will be biased downwards, particularly estimates of tail wealth will be affected.1

1Another source of potential bias is underreporting of assets for the participating households. To the
extent that underreporting is homogeneous across the population, the share of wealth of the tail should be
little affected. When underreporting is positively correlated with wealth, wealth shares of the top would
be biased downwards. Effectively, there is relatively little detailed information about underreporting and
differential underreporting.
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On the methodological side, I provide new insights on the importance of differential unit

non-response of the wealthy in the SCF, WAS and HFCS for tail wealth measurement.

Finally, I propose a method to alleviate the effect of differential unit non-response on

the estimates of tail wealth. The method consists in replacing the tail observations with

a Pareto distribution that is estimated on a combined sample of survey tail observations

and extreme wealth observations obtained from another data source. I show, using Monte

Carlo simulation, that this method, under the assumption that tail wealth is Pareto

distributed, is able to recover unbiased estimates of tail wealth, even if surveys suffer

from differential unit non-response. I apply this method and add the Forbes World’s

billionaires list to the survey data and provide new tail wealth estimates.

This paper belongs to a literature with a long tradition of wealth distribution estima-

tion. Essentially, researchers have come up with widely different methods to estimate top

tail wealth, mainly as function of the data at hand.2 Methods can broadly be divided

into five groups. First, in a few countries with a wealth tax, researchers have been able

to use official wealth (tax) records. This has been the case e.g. in Roine and Walden-

ström (2009) for Sweden; Alvaredo and Saez (2009) for Spain and Dell, Piketty and Saez

(2007) for Switzerland. Second, estate tax records, which give information on taxable in-

heritances can be used through the estate multiplier method to estimate wealth holdings

of the living. This is an old and large literature. Some of the more recent findings are

Kopczuk and Saez (2004) for the US and Piketty, Postel-Vinay, and Rosenthal (2006)

for France. Third, capital income information from tax records can be used to construct

wealth estimates assuming certain rates of return on wealth. See, for instance, the most

recent study by Saez and Zucman (2014) for the US. Fourth, household wealth surveys

that are representative of the population can provide direct estimates of the wealth dis-

tribution. And finally, lists of wealthy individuals provided in the media or other sources

can be used to estimate top tail wealth. This paper combines household wealth surveys

with such data.

Using household wealth surveys to estimate wealth distributions is likely to remain

important in the future. First, only few countries have a wealth tax and many have large

exemptions on inheritance tax so that administrative records don’t exist or are limited

in scope. Second, where tax or other records exist they might not be made available to

researchers for confidentiality reasons. Gaining a deeper understanding of the limitations

of survey data and proposing methods to alleviate some problems has been the main

motivation for this study.

The remainder of the paper is structured as follows. Section 2 describes the data used,

the SCF, WAS, HFCS and Forbes World’s billionaires. It also contains a discussion of the

issue of oversampling and non-response. Section 3 discusses how the Pareto distribution

can be estimated using survey data. The section draws on the power law literature. My

addition to this literature is a discussion of how to deal with complex survey data, where

2Roine and Waldenström (2014) provide a recent overview of the literature.
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the weights of the sample points are important. It also contains a Monte Carlo study,

illustrating that information from rich lists can improve Pareto estimates in the presence

of differential unit non-response. Section 4 provides new estimates of the share of wealth

held by the top one and five percent households. Section 5 concludes.

2 The data

2.1 The US SCF, the UK WAS and the Eurosystem HFCS

This paper combines the 2010 wave of the US SCF, the second wave of the UK WAS, the

first wave of the HFCS, and the Forbes World’s billionaires list (years 2009 to 2011) to

estimate wealth at the upper tail of the distribution. The SCF is a triennial survey of US

household wealth, sponsored by the Board of Governors of the Federal Reserve System. It

provides the most comprehensive source of wealth information of US households, collecting

detailed data on assets and debts of around 6,000 households. The HFCS provides detailed

information on household assets and debts of individual households in fifteen euro area

countries. In total, there are more than 62,000 households in the dataset. The collection

period of the data differs across countries and ranges from 2008 to 2010. For most countries

the wealth recorded in the survey is that on the time of the interview. The only exceptions

are Finland and the Netherlands where wealth is provided for the 31st of December of

2009 and Italy for the 31st of December of 2010. The WAS is a longitudinal sample

survey of households in Great Britain. Wave 2 of the survey collected household wealth

data over a period from July 2008 to June 2010. Around 20,000 households responded in

the second wave of the WAS survey.

I use the HFCS data for Germany (2010), France (2010), Italy (2010), Spain (2008),

The Netherlands (2009), Belgium (2010), Portugal (2010), Austria (2010) and Finland

(2009) (in brackets are the reference dates for the wealth). I drop Greece, Cyprus, Malta,

Luxembourg, Slovakia and Slovenia from the dataset, as these countries had no Forbes

billionaires at the time of the survey. The concept of wealth that is used is that of

“household disposable net wealth”. As discussed in Wolff (1990), that is a conventional

measure of all assets that have a current market value less liabilities.3

The SCF, WAS and the HFCS survey samples are purposefully designed to be repre-

sentative of the household population of the respective countries. The survey samples are

obtained through probability sampling, using a complex survey design. Complex survey

designs imply a combination of stratification, clustering and weighting of the data. By

design, sample inclusion probabilities vary across households. Sample weights are pro-

3The list of assets that are included are owner-occupied housing, other real estate, vehicles, valuables
and self-employment businesses, non-self employment private businesses, checking accounts, saving ac-
counts, mutual funds, bonds, shares, managed accounts, other assets, private lending, voluntary pension
plans or whole life insurance contracts. Liabilities include both mortgage and non-mortgage debt. House-
hold disposable net wealth explicitly excludes future claims on public pensions or occupational pension
plans, human capital and the net present value stream of future labour income.
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vided and each sample weight signifies the number of households in the population that

the sample point represents. The total sum of weights for each country is equal to the

total number of households in the population.

The SCF and HFCS do multiple imputation to deal with missing observations. For

each missing observation there are five imputations made. This implies that the data

are provided as five replicates of the dataset, called ’implicates’ in the parlance of the

SCF (Kennickell, 1998). For variance estimation, the survey provides bootstrap weights.

In the estimation results below, these bootstrap weights are used to provide standard

errors around the mean estimates. The WAS uses single imputation and does not provide

bootstrap weights for variance estimation. The WAS results therefore do not allow to

construct standard errors for the estimates relating to the UK wealth distribution.

A more detailed description of the SCF, WAS and HFCS methodologies can be found in

Kennickell (2000), Office for National Statistics (2012) and HFCN (2013). For comparison

purposes, the SCF data are converted into euro using the dollar/euro exchange rate of

12 feb 2010, 1.3572 (which coincides with the date of the Forbes list); the WAS data are

converted into euro using the pound/euro exchange rate of 0.867183 (which is the average

over the data collection period July 2008 to June 2010).

2.2 Oversampling the wealthy and differential unit non-response

Wealth is heavily concentrated at the top tail of the distribution. To increase efficiency,

wealth surveys usually attempt to oversample the wealthy. The word ‘attempt’ is used

purposefully here, as success is not guaranteed. In practice, extraneous information such

as tax registers or other information are used to construct a sampling frame that allows

oversampling of a part of the population thought to be on average wealthier.

Efficiency is not the only challenge (one can always increase the sample size), likely the

biggest challenge in wealth estimation at the top is the existence of differential unit non-

response. There is a strong presumption among survey specialists that unit non-response

is positively correlated with wealth.4 Whereas unit non-response is generally dealt with

by rescaling the weights of all respondent households, differential unit non-response of

wealthy households can only be dealt with effectively if weights are rescaled selectively.

Stratified sampling from a special sampling frame to oversample the wealthy allows

for selective reweighting. This is the case for the SCF. The SCF uses a dual frame to

sample households. A representative area probability sample is combined with a high-

income sample which is drawn from a sampling frame constructed using Federal tax

returns. From the high-income sampling frame different strata are constructed, with

higher strata having higher income (and higher expected wealth) and higher oversampling

4Household wealth survey specialists would generally agree that there is a strong presumption that
non-response is positively correlated with wealth. Of course, the wealth of the non-respondent households
is in principle unknown. However for evidence that non-response is correlated with financial income in
the SCF see Kennickell and McManus (1993).
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rates.5 The different strata from the high-income frame allow to address differential unit

non-response by selective rescaling of weights. For the high income sample points of the

SCF a wealth index (an estimate of wealth based on income tax information) can be

constructed. Kennickell and Woodburn (1997) report that sampled individuals with a

wealth index between 1 million and 2.5 million dollars have a response rate of 34 percent,

whereas those with a wealth index between 100 million to 250 million have a response rate

of 14 percent. This illustrates the differential unit non-response problem. Unfortunately,

outside of the SCF, relatively little is known about the correlation of non-response with

wealth.

As Kennickell (2007) observes: “In the stratum of the SCF list sample that contains

the respondents likely to be the wealthiest, the overall response rate is only 10 percent. The

survey has often been criticized for this low cooperation rate. Regrettable as this rate is, the

fact that it is known is actually a strength of the survey. Presumably, other surveys also

have a similar problem, but without some means of identifying it, they will fail to correct

for an important source of bias in the estimation of wealth. In the SCF the original frame

data for the list sample provides a rich basis to use for adjusting the sampling weights to

compensate for nonresponse.”

Sampling frames used to oversample the wealthy differ dramatically across surveys.

Table 1 provides an overview of the different methods used to oversample the wealthy.

Oversampling using information at the individual level of wealth or income is done in the

US, UK, Spain, France and Finland. Regional income information is used in Germany and

Belgium. Austria and Portugal oversample the largest cities. Finally, in the Netherlands

and Italy no oversampling is done.

One should expect that having wealth tax data to design different strata is better

than income tax data, which in turn is clearly much better than having only auxiliary

information to construct strata such as geography. The geographic criterion uses the idea

that the rich tend to live in particular places. Of course, this is bound to be less precise

than having direct income or wealth information to stratify samples. Otherwise said,

within a geographical stratum the differential unit non-response problem will still exist.6

Given these large differences in oversampling methods it should not come as a surprise

that both the degree of oversampling dramatically differs across countries and also the

possibility to adjust selectively the weights for differential unit non-response. So both

efficiency in top tail estimation and the magnitude of the bias will differ across countries.

5Details are provided in Kennickell (2007).
6Obviously, the extent of the problem will be a function of the granularity of the sample design. For

instance, in Germany, income tax statistics were used to identify small municipalities (defined as those
with less than 100.000 inhabitants) with a large share of wealthy households. These municipalities are
oversampled. Households within those municipalities are randomly selected. So within those municipali-
ties differential unit non-response can still occur. Details of the German sample design are in Kalckreuth
et al. (2012).
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TABLE 1

Oversampling method in SCF, WAS and HFCS

Using individual information

USA list based on income tax information

Spain list based on taxable wealth information

France list based on taxable wealth information

UK tax returns at address level

Finland income information from register

Using geographic income information

Belgium average regional income

Germany taxable income of municipalities

Using geographic information

Austria Vienna oversampled

Portugal Lisbon and Porto oversampled

No oversampling

Italy No oversampling

Netherlands No oversampling

Source: Own construction based on Kennickell (2009), HFCN (2013),

and Office for National Statistics (2012).

Indeed, interestingly, and ultimately not surprisingly, these methods of oversampling

correlate quite nicely with the fraction of the sample observations that are from the tail.

Table 2 enumerates the survey sample size and the number of wealthy. Being wealthy

is defined using three thresholds: having net wealth larger than 2 million euro, 1 million

euro, and 500 thousand euro. In the SCF data the fraction of observations from the tail

is the largest. 15 percent of the SCF sample has wealth over 2 million euro. This is not

just a reflection of the presence of higher wealth in the US, but rather is indicative of

the very high rate of oversampling in the SCF. In Spain, UK and France, three other

countries using individual information to oversample the wealthy, respectively 9, 5 and 4

percent of the sample are households with wealth above 2 million euro. The two countries

using geographic income information, Belgium and Germany, have respectively 3 and 2

percent of the sample with wealth above 2 million euro. The countries for which only

geographic information is used, Portugal and Austria, only have a rather small 2 and 1

percent of the sample in the highest wealth category. The case of no-oversampling, Italy

and the Netherlands, have respectively 1 and 0 percent. Finland is somewhat of an outlier.

Although it uses individual income data from registers to oversample the wealthy, it still

only has 1 percent of the sample with wealth above 2 million.
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TABLE 2

Summary statistics

Number of wealthy households in the survey samples

Absolute number Pct of sample

Sample size > 2 million > 1 million > 500TH > 2 million > 1 million > 500TH

(1) (2) (3) (4) (5) (6) (7)

Country samples with oversampling using individual information

USA 6,482 965 1,259 1,692 0.15 0.19 0.26

France 15,006 638 1,712 3,522 0.04 0.11 0.23

UK 20,165 949 3,467 7,609 0.05 0.17 0.38

Spain 6,197 544 1,129 2,086 0.09 0.18 0.34

Finland 10,989 59 296 1,233 0.01 0.03 0.11

Country samples with oversampling using geographic income information

Germany 3,565 85 246 654 0.02 0.07 0.18

Belgium 2,327 71 207 599 0.03 0.09 0.26

Country samples with oversampling using geographic information

Austria 2,380 47 113 271 0.02 0.05 0.11

Portugal 4,404 24 87 252 0.01 0.02 0.06

Country samples with no oversampling

Italy 7,951 78 300 1,075 0.01 0.04 0.14

Netherlands 1,301 2 32 172 0.00 0.02 0.13

Source: Own construction based on SCF, WAS and HFCS

In practice, successful oversampling leads to many wealthy households in the sample,

all with relatively low survey weights. Unsuccessful oversampling, or no oversampling at

all, leads to few wealthy households in the sample, each with relatively high weights.

To provide further evidence that the high numbers of sample observations in the tail

are really the result of oversampling, Table 3 shows the number of households that those

observations in the tail represent (i.e. their weight). For instance, for the category above 2

million euro, Spain has 544 sample observations (Table 2) representing 139,539 households

(Table 3). Whereas Germany has a sample of 85, representing almost three times as many

households. The Netherlands, with no oversampling, only has 2 households in the sample

above 2 million euro. One immediately observes how efficiency of tail estimation will

dramatically be affected by the different rates of oversampling.
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TABLE 3

Summary statistics

Number of wealthy households in the population

(estimates derived from the survey samples)

Absolute number Pct of population

households HH > 2 million HH > 1 million HH > 500TH > 2 million > 1 million > 500TH

(1) (2) (3) (4) (5) (6) (7)

USA 117,609,217 3,661,191 8,407,106 15,311,762 0.031 0.071 0.130

Spain 17,017,706 139,539 621,067 2,299,825 0.008 0.036 0.135

France 27,860,408 209,668 830,661 2,891,897 0.008 0.030 0.104

UK 24.717,237 694,752 2,974,635 7,386,081 0.028 0.120 0.299

Finland 2,531,500 6,555 34,632 158,436 0.003 0.014 0.063

Belgium 4,692,601 85,386 264,728 890,283 0.018 0.056 0.190

Germany 39,673,000 368,693 1,051,250 3,261,600 0.009 0.026 0.082

Austria 3,773,956 70,939 174,550 427,248 0.019 0.046 0.113

Portugal 3,932,010 14,141 64,443 185,746 0.004 0.016 0.047

Italy 23,817,962 265,782 901,176 3,100,288 0.011 0.038 0.130

Netherlands 7,386,144 2,895 83,813 508,482 0.000 0.011 0.069

Source: Own construction based on SCF, WAS and HFCS

2.3 Forbes data

Media lists of wealthy individuals provide another source of information on the wealth

of the very top of the distribution. The SCF, WAS and the HFCS do not capture the

absolute top. The SCF explicitly excludes individuals of the Forbes 400 wealthiest people

in the U.S., presumably to preserve confidentiality (Kennickell, 2009). One widely known

list is the annual Forbes World’s billionaires list. An individual is on this list if his or her

wealth is estimated to be above 1 billion US dollars. For the purpose of this paper, the

wealth of individuals on the list is recalculated in euro.7

Table 4 shows the number of individuals on the Forbes World’s billionaires list, the

total wealth they have, and their wealth as a percentage of total household wealth of the

country (as estimated directly from the survey). Note that the SCF, WAS and HFCS

surveys differ slightly with respect to the reference years, which range depending on the

country from 2009 to 2011. For most countries the wealth recorded in the survey is that

on the time of the interview. The period over which the set of households is interviewed

lasts multiple months. Therefore, I match the survey of each country with the date of

the Forbes list that comes closest to the interview period. For the Netherlands, Finland

and Italy, where wealth is measured on the 31st of December, I match the survey with

the Forbes list of the following February. As the largest country, the US has the most

individuals on the list, with Germany and the UK second and third. Note that the

individuals on the Forbes list can add significant information on the tail. For instance,

the HFCS survey sample in Germany only has 85 individuals with wealth above 2 million

euro, whereas there are 52 individuals on the Forbes billionaires list. For Italy, these

7The Forbes list calculates wealth at the end of February for each year. I use the dollar/euro exchange
rate of 1.2823 for 2009, 1.3572 for 2010 and 1.344 for 2011. An individual is on the Forbes list if he/she
has a wealth of approximately 740 million euros.
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numbers are 78 versus 14. For the Netherlands, there are more individuals on the Forbes

billionaires list, namely three, than there are households in the HFCS sample above 2

million euro, namely only two.

TABLE 4

The Forbes billionaires list

Number of people and nominal wealth

Date Number of individuals Total wealth As percentage of

Forbes billionaires country wealth

USA 12 Feb 2010 396 978.6 2.3

Germany 14 Feb 2011 52 183.3 2.4

UK 13 Feb 2009 37 84.8 0.7

Italy 14 Feb 2011 14 46.6 0.7

Spain 13 Feb 2009 12 28.3 0.6

France 12 Feb 2010 11 60.1 0.9

Austria 14 Feb 2011 5 13.0 1.2

Netherlands 12 Feb 2010 3 4.8 0.4

Portugal 12 Feb 2010 2 4.1 0.7

Finland 12 Feb 2010 1 1.0 0.2

Belgium 12 Feb 2010 1 1.9 0.1

Source: own calculations based on Forbes, HFCS, WAS and SCF. Total wealth in billion euro.

Table 5 compares the maximum wealth found in the SCF, WAS and HFCS with the

minimum wealth of a person on the Forbes Word’s billionaires list. In principle, the

SCF, HFCS and WAS cover all resident households, thus also potentially billionaires.

In practice, only the SCF survey contains billionaires. In the SCF there are sample

observations that have higher wealth than the ”poorest” Forbes billionaire.8 The very

high oversampling rate of the wealthy in the SCF clearly is very effective. Contrary to

the SCF, there is a serious gap between the richest household in the HFCS and WAS

and the poorest person on the Forbes list. Such a gap can be found in all countries. So

the first observation is that none of the households in the HFCS or WAS comes even

close to the wealth levels of individuals on the Forbes billionaires list. The gap between

the poorest person on the Forbes list and the wealthiest household in the surveys is very

large. So with the only notable example of the SCF, households that fall in between the

richest household surveyed and the poorest Forbes billionaire are not in the sample. Note

that among the HFCS surveys, the Spanish one shows the highest maximum wealth (401

8Note that the SCF explicitly excludes individuals on the Forbes 400 list.
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million euro). This is likely not a coincidence as this survey arguable does a very good

job in oversampling the rich (using wealth tax records).

The method of oversampling of the rich is correlated with this gap. The highest

maximum wealth in the HFCS is found in Spain and France (respectively 409 and 153

million), two countries where oversampling is done based on individual wealth tax records.

Also, the WAS for the UK has a still relatively large maximum wealth of 92 million euro.

The Netherlands, with no oversampling, has a rather low value of the maximum of wealth,

namely 5 million euro. The other country with no oversampling, Italy, also has a low

maximum value of wealth (26 million euro). Also, using only geographic information,

which is the case of Portugal and Austria, or geographic income information, the cases of

Belgium and Germany, does not guarantee to observe a high maximum of wealth.

Concluding, very rich households are not in the HFCS sample due to a combination

of non-response and lack of effective oversampling, with the effectiveness greatly varying

across countries. The few wealthy households at the tail that were sampled (in case of low

oversampling) likely refused to answer the wealth surveys. Effectively, they are replaced

by other households that have lower wealth. Only when a dramatic effort is being done

to oversample, such as in the SCF, WAS and France and Spain for the HFCS, can one

observe a larger maximum of wealth.

TABLE 5

The GAP: Maximum nominal wealth vs minimum at Forbes

Million euros

Maximum wealth SCF/WAS/HFCS Minimum wealth Forbes

US 806 737

France 153 810

UK 92 780

Spain 409 780

Finland 15 958

Germany 76 818

Belgium 8 1920

Austria 22 1560

Portugal 27 1110

Italy 26 893

Netherlands 5 958

Source: own calculations based on Forbes World’s Billionaires, SCF, WAS and HFCS.

Maximum is over all five replicates of the dataset(for HFCS and SCF).
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3 A Pareto law for the tail of the wealth distribution

3.1 The Pareto distribution

Davies and Shorrocks (1999) call two ‘enduring features of the shape of the distribution

of wealth: 1) it is positively skewed 2) the top tail is well approximated by a Pareto

distribution’. The Pareto distribution has been used to approximate the tail of the wealth

distribution in a number of distinct settings. First, extreme wealth observations have

been modelled as a Pareto distribution. For instance, Ogwang (2011) estimates Pareto

distributions for the 100 wealthiest Canadians for the years 1999-2008, Levy and Solomon

(1997) estimate a Pareto distribution for the Forbes 400 wealthiest people in the US for

the year 1996, and Klass et al. (2006) estimate Pareto laws using the Forbes 400 in the

US for the period 1988-2003.9

Another use of Pareto distributions has been to extrapolate existing tail observations

”backward”. E.g. Kopzuck and Saez (2004) use long historical estate tax data to estimate

the evolution of wealth of the top 1 percent of the US wealth distribution. As before 1945

less than 1 percent of the population needed to file, they use a Pareto extrapolation to

estimate the wealth share of the top 1 percent. A third use of the Pareto distribution has

been to extrapolate truncated survey data ”forward”. For instance, Avery, Elliehausen

and Kennickell (1988) extrapolated the first SCF data of 1983 (and the 1963 Survey

of Financial Characteristics of Consumers) beyond 60 million dollar by estimating first

a Pareto distribution on the sample above 10 million dollar. I will show below that

extrapolation using only the survey data leads to too low tail wealth estimates in the

presence of differential unit non-response.

The Pareto distribution has the following complementary cumulative distribution func-

tion (ccdf)10:

P (W > w) = (
wmin

w
)α (1)

defined on the interval [wmin,∞) and α > 0. The parameter wmin determines the

lower bound on the distribution. The parameter α, also called tail index11, determines

the ’fatness’ of the tail. The lower α, the fatter the tail, and the more concentrated is

wealth.

Note that it is useful to keep the distinction between the theoretical Pareto distribution

and the notion of a power law in a finite population. Finite populations that follow a power

9I follow the mainstream literature and approximate the top using a Pareto distribution. With avail-
able sample sizes, other distributions with long fat tails are often hard or impossible to distinguish from
the Pareto distribution. For a study which compares the Pareto distribution with the log-normal and the
stretched exponential see Brezinski (2014).

10In line with the literature, when discussing the Pareto distribution, it is much easier to use the ccdf
than to use the cdf.

11This term appears in Gabaix and Ibragimov (2011). Alternative terms appearing in the literature
are ’Pareto exponent’ and ’tail exponent’.
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law can be seen as a (potentially very large) sample drawn from a Pareto distribution.

Imagine a finite population of N households, each having wealth at or above wmin.
12

Let wi be the wealth of household i, and denote by N(wi) the number of households

that have wealth at or above wi. We say that wealth in this population follows an

(approximate)13 power law if the empirical ccdf of the population follows approximately

the ccdf of a Pareto distribution:

N(wi)

N
∼= (

wmin

wi

)α, ∀wi (2)

3.2 Estimation of the power law on samples from complex sur-

vey designs

3.2.1 Estimation on simple random samples versus samples from complex

survey designs

There exists a large literature on the estimation of power laws in simple random samples.

For detail on different methods, the interested reader is referred to Gabaix (2009) and

Clauset et al. (2009). However, estimation methods on simple random samples cannot

simply be applied to samples from complex survey designs where observations have weights

and are not i.i.d. In this section, I show how to adapt estimation methods of power laws

for simple random samples to methods suitable for samples from complex survey designs,

taking into account the weights of the sample points. As far as I can tell, this exposition

is new to the literature.

The density of the Pareto distribution is given by:

f(w) =
αwα

min

wα+1
, (3)

so that it is straightforward to show that the maximum likelihood estimator of α from a

simple random sample of n observations {wi, i = 1, ...n} drawn from a Pareto distribution

with known wmin is given by:

α̃ml = [
n∑

i=1

1

n
ln(

wi

wmin

)]−1 (4)

Now, n−1

n
α̃ml gives an unbiased estimate of α (Rytgaard,1990).

Without some adjustment, the maximum likelihood estimator should not be used on

complex survey data. The sampling observations of the SCF, WAS and HFCS, due to

the complex survey design, are not i.i.d., a requirement for maximum likelihood. Because

the exact detail of the sampling method is unknown (SCF, WAS and HFCS only provide

12Note that these N households could be part of a larger population. Generally, wmin could thus be a
large number. We only consider here the tail, i.e the N richest households.

13In reality, power laws will always be approximate in the data. However, for simplicity, ‘approximate’
is dropped from the further discussion.
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weights, but not the exact sampling detail) a true likelihood cannot be constructed. Due

to stratification and clustering and possible oversampling some observations will have a

much higher likelihood to occur in the sample than others. Using a maximum likelihood

estimator on such samples would clearly lead to erroneous results.

Remember that survey weights represent the number of households that the sample

point represents. One can therefore construct a pseudo-maximum likelihood estimator

that incorporates the weights of the observations as follows. Denote by Ni the survey

weight of a household sample observation. Sort the sample observations from highest

to lowest wealth w1, w2, w3, .... Thereafter, consider the first n sample observations (i.e

those with the highest wealth). Denote by N the sum of the survey weights of the first

n observations,
∑n

i=1
Ni = N . This represents an estimate of the number of households

that have wealth at least as high as wn , The pseudo-maximum likelihood estimate of the

tail index is defined by

˜αpml = [

n∑

i=1

Ni

N
ln(

wi

wn

)]−1 (5)

The pseudo-maximum likelihood estimator has the same form as the maximum like-

lihood estimator but takes into account the weights of the sample observations. Sam-

ple observations that represent more households have a larger weight and are therefore

weighted more in the estimation.

The power law relationship (2) also leads heuristically to an alternative estimation

method in simple random samples. Start from a population of N households that follows

a power law as in (2). Assume that a simple random sample {wi, i = 1, ...n} is drawn

from the population; observations are sorted from largest to smallest: w1 ≥ w2 ≥ w3, etc..

Then i denotes the number of sample observations that have wealth at or above wi, also

called the rank of the observation. So the rank of the richest household in the sample is

one, the rank for the second richest is two, and so on. Now, the tail distribution (or one

minus the cumulative relative frequency) in the sample provides an estimate of the tail

distribution in the population, i.e.:

i

n
∼=

N(wi)

N
, ∀wi (6)

As the sample gets larger, the estimate will obviously become closer to the true pop-

ulation figure. Combining this with the power law relationship in the population (2) we

get

i

n
∼= (

wmin

wi

)α, ∀wi (7)

Taking logs on both sides and rearranging we get a ”log rank-log size” relationship,

i.e. the log of the rank of the observation is a downward sloping function of the log of

14



wealth.

ln(i) = C − α ln(wi), (8)

with C = ln(n) + α ln(wmin).

It is well known that for a simple random sample drawn from a Pareto distribution,

a linear regression of the log-rank-log size relationship leads to a biased estimate of α.

(See e.g. Aigner and Goldberger, 1970). Gabaix and Ibragimov (2011) show that the bias

can be removed (up to first order) by subtracting 1/2 from the rank. They propose the

following regression:

ln(i− 1/2) = C − α ln(wi) (9)

In a complex survey sample, the survey weights have to be taken into account. For

such a survey, rank the sample households according to wealth. That is, the wealthiest

household has wealth w1 and a survey weight of N1, and the second wealthiest household

has wealth w2 and survey weight of N2, and so on. Define N̄ , the average weight of a

sample point (i.e. N̄ =
∑n

j=1
Nj

n
), and N̄fi, the average weight of the first i sample points

(i.e. N̄fi =
∑i

j=1
Nj

i
). Then one can show that taking into account the weights leads to

the following regression, whose derivation is in Appendix III.

ln((i− 1/2)
N̄fi

N̄
) = C − α ln(wi) (10)

3.2.2 Combining survey with Forbes data

As discussed above, the SCF, WAS and the HFCS do not contain the very top of the

wealth distribution. The Forbes data can easily be combined with the survey data in

the regression method of estimation. First pool the Forbes with the survey data and

rank the households from highest to lowest wealth. The richest Forbes individual will

have wealth w1 and a weight of 1, and the second wealthiest Forbes individual has wealth

w2 and a weight of 1, and so on. In other words, the Forbes observations are treated

as if they were sample points with a weight of 1. The richest household in the survey

will have wealth wK+1 (if there are K Forbes individuals richer than this household) and

survey weight NK+1, etc... Equation (10) can then be estimated on the pooled dataset.

Note that combining survey with Forbes data raises the issue of measurement error in

both datasets. Capehart (2014) discusses measurement error problems in rich lists. In

addition, a combination of both datasets in the regression method is only warranted

under the assumption that both sample and rich list are consistent with the same Pareto

distribution.

Equation (2) implies that if the data follows a power law, there is a linear relationship

15



between the empirical ccdf and wealth (scaled by wmin) on a graph with a log-log scale.

To illustrate this, Figure 1 shows for the SCF, WAS and HFCS the empirical ccdf and

wealth on a log-log scale for the tail of the data.14 The tail is assumed to start at a

value of 1 million euro (i.e. wmin = 106) so that a value of 1 on the x-axis corresponds

to 1 million euro in wealth.15 The crosses represent the Forbes billionaires, the dots

represent the survey households. Both the dots and the crosses seem to closely follow

a linear relationship, suggestive of a potential good fit by a Pareto power law. Figure

1 also visualizes an earlier finding, namely that there is a substantial gap between the

highest ranked survey household and the lowest ranked Forbes individual for the HFCS

and WAS, but not so for the SCF. The graphs further show that most survey sample

observations fall in the range of [0.01, 1] for the empirical ccdf (Shown on the graphs by

the two horizontal lines). Otherwise said there are relatively few sample points at the top

1 percent of the tail of the wealth distribution. The exceptions are the SCF, and Spain

and France and the UK.
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Figure 1: Empirical CCDF on log-log scale

14To draw the graph for the SCF and HFCS the first replicate dataset is used. Other replicate datasets
lead to very similar graphs.

15Figure 1 is for illustrative purpose. In the empirical section of the paper I estimate the tail at a
number of different thresholds.
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3.3 Monte Carlo results: power law when survey data has dif-

ferential unit non-response

The presence of unobserved and uncorrected differential unit non-response correlated with

wealth will have serious consequences for tail wealth estimation. Such non-response causes

the empirical sample distribution of the tail to systematically differ from the actual tail

distribution in the population. As wealthy households respond less frequently when being

sampled than less wealthy ones the tail in the survey sample will be truncated. This causes

the tail index to be biased upward, i.e. showing a lower degree of wealth concentration.

Total wealth in the tail will be biased downward.

How biased are estimates of α in the presence of differential unit non-response? How

much bias reduction is possible when oversampling the wealthy and selectively correcting

for non-response (as in the SCF)? Can extra observations of wealthy individuals from

rich lists in the regression method reduce bias and increase precision, especially when

oversampling is lacking or limited? How much improvement of estimates can we expect?

These questions are important. First, they determine our degree of confidence in estimates

of concentration of wealth in the tail of the population. Second, combining rich lists with

survey data provides potentially a method to improve on estimates of the level of tail

wealth.

To get a handle on those questions, a Monte Carlo study is performed. The central

idea is to model a wealth survey in the presence of differential unit non-response under two

possible sampling schemes: no oversampling versus oversampling of the wealthy. The no

oversampling case corresponds to a simple random sample of the population, whereas the

oversampling of the wealthy corresponds to a stratified sampling where the population

is divided in wealth strata. Obviously, both sampling schemes are approximations to

the complicated (unfortunately unknown) complex survey designs. In reality, to allow

for oversampling of rich households, stratification is based on some characteristic (e.g.

income) correlated with wealth.

The no oversampling case is more relevant to understand results of surveys such as

those in the Netherlands and Italy, whereas the oversampling case is more relevant for

surveys such as the SCF and the Spanish and French HFCS. The other surveys are

somewhat in the middle as they attempt to oversample the rich but are not as successful

as say the SCF.

First, I explain the main features of the Monte Carlo experiment. Consider a large

country with a tail population of 1 million households, each with wealth above 1 million

euro. Each individual household’s wealth is drawn from a Pareto distribution with given

tail index α, and threshold wmin=1million. For instance, such a country could be imagined

to be of roughly the size of Germany or France.16 Imagine further that all households

16According to the HFCS survey results in Germany, about 1 million households have wealth above 1
million euro; in France, this is about 800,000 households. As we are only interested in the tail, the Monte
Carlo only models the tail of the distribution.
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with wealth above 740 million euro are also on a media rich list, say a dollar billionaires

list. It is assumed that the rich list is exhaustive.

A survey sample is drawn from this tail population, with a sample size of 750 house-

holds. Some households respond to the survey, others don’t, according to the non-response

mechanism in place. From the sample of survey respondents, the tail index is estimated

using the two estimation methods (equation (5) and (10)). For the regression method

there are two estimates, one using only the survey observations, and another one combin-

ing the survey observations with the rich list. To construct mean estimates and standard

errors of the tail index, the experiment is performed 20,000 times; i.e. a new popula-

tion of 1 million households is drawn from the same Pareto distribution, a new sample

of 750 households is drawn from that population, the tail index is estimated from the

respondents (with or without the rich list).

The experiment is performed for 10 different α’s (i.e. α = 1.1, 1.2, ...2.0). According

to Gabaix (2009), the tail exponent of wealth found in earlier studies is around 1.5, so

that the interval of α’s considered here should suffice. Each experiment for a given α is

performed for the two sampling strategies.

The differential unit non-response mechanism attempts to model a reasonable rela-

tion of wealth with non-response in the population, i.e. a differential unit non-response

that mimics reality. There is relatively little existing earlier research on this issue that

would guide one in choosing a reasonable function that links wealth with non-response.

However, Kennickell and Woodburn (1997) provide response rates for different strata of

the wealth index from the list sample for the 1989, 1992 and 1995 SCF. The response

rates across different strata are relatively stable across different SCF waves, indicating

that the positive correlation of wealth with non-response is a relatively robust feature

of the SCF, and one can assume also likely of surveys in other countries. In the 1992

SCF, individuals with a wealth index between 1 million and 2.5 million dollars have a

response rate of 34.4 percent. This rate gradually declines to 14.3 percent for individu-

als with a wealth index between 100 and 250 million dollars. Households non-response

probability as a function of wealth is then calibrated to mimic the non-response rate as

a function of the wealth index in the 1992 SCF. This is done the following way. The

non-response rate of the six strata in the 1992 SCF are regressed on the log of wealth,

taking the midpoint of the stratum and translating back into 2010 euros. This regres-

sion results in the following relationship between the probability of non-response and the

log of wealth: P(non-response)=0.097167+0.036594*ln(Wealth). This relationship is our

differential unit non-response mechanism.17 The combination of a random sample of 750

17The aggregate expected non-response probability of this non-response mechanism can be found by
taking the expectation of 0.097167+0.036594*ln(Wealth) (where wealth has a Pareto distribution). This
itself will depend on the threshold of 1 million and α. The formula for this expectation is P(non-
response)=0.097167 + 0.036594 ∗ ln(106) + (0.036594/α). This gives an aggregate non-response rate
between 62.1 percent (for α = 2) to 63.6 percent (for α = 1.1) for this tail population. This number
looks high but is actually quite reasonable. For instance, the aggregate non-response rate in the German
HFCS is 81.3 percent (HFCN,2013) (this aggregate includes all households not just the tail), even higher
than assumed in the Monte Carlo.
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households with the non-response function defined above leads to roughly 280 households

responding and 470 non-responding. According to the HFCS in Germany, there are 246

households in the sample with wealth above 1 million euro.

In the no oversampling case, the survey sample is a simple random sample where only

the aggregate non-response rate is observed. For the case of oversampling of the wealthy

one first needs to define the oversampling mechanism. Unfortunately, the SCF and HFCS

only provide very limited information on this issue. For the SCF, oversampling occurs

using seven strata based on a calculated wealth index derived from income tax data.

For the Spanish HFCS, eight strata are constructed using tax wealth data. However the

oversampling rates are not made public. Both the SCF and Spanish HFCS report that

oversampling is done at progressively higher rates for higher strata. To approximate, in a

simplified way, the SCF and Spanish HFCS we use four strata. We assume that the tail

population is divided into four strata corresponding to the quartiles of the distribution.

We assume again a sample size of 750 households with an increasing oversampling rate:

out of the lowest stratum 75 households are sampled, 150 out of the second, 225 out of

the third and 300 out of the last.18

Non-response correction of the weights for the no oversampling case is only based on

aggregate non-response rates. Survey weights are constructed for the responding house-

holds so that they sum up to 1 million. For instance, if all 750 household would respond,

the household weight for each individual would be equal to 106/750. When less than 750

households respond, divide the 750 into non-responding Nnr and responding households

Nr. Then each responding household gets a weight of (106/750)∗(750/Nr), so that house-

hold weights again sum up to 1 million. For the oversampling case, the survey weight

correction use the stratum non-response rate. E.g. for the first stratum, divide the 75

households into non-responding N1
nr and responding households N1

r . Then each respond-

ing household gets a weight of (106/(4∗75))∗(75/N1
r ). This stratum-specific non-response

correction is the key to reduce the bias caused by differential unit non-response.19

Table 6 presents the results of the Monte Carlo. Reported are mean estimates and

standard errors of the Pareto tail index under the two sampling scenarios, using the

different estimation methods. Column (1) shows the true α, columns (2) to (5) show

the results under the no oversampling case, and columns (6) to (9) the results under the

oversampling case. Column (10) shows the number of households on the rich list, i.e. the

number of households with wealth higher than 740 million euro.

The (pseudo) maximum likelihood estimates αml are in columns (2) and (6). They are

clearly different under the two sampling cases. As expected, under no oversampling, the

18Note that oversampling with identical total sample size of the no oversampling case will, lead to a
lower number of actual observations (as we sample more out of the higher non-response regions).

19I experimented with different degrees of oversampling, i.e. keeping the sample size constant but sam-
pling progressively more out of the higher strata and less out of the lower strata. The results are presented
in Appendix IV. These experiments show that the bias reduction from no oversampling to oversampling
does not vary much across different degrees of oversampling. This shows that the bias reduction is mainly
due to the stratum-specific non-response correction which oversampling makes possible, not so much the
degree of oversampling itself.
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estimates of α are significantly upward biased, indicating an estimated lower concentration

of wealth in the tail than the true concentration. The bias is around 0.11 for all α’s. The

upward bias in the estimated α’s is much reduced to around 0.02 for the oversampling

case (column 6). Note that also the standard error is more than cut in half, which is due

to the efficiency gained by stratified sampling.

The regression estimates, αreg, using only the survey data are in columns (3) and (7).

For both the no oversampling and oversampling case they show an upward bias. In the

no oversampling case, the estimates are practically identical to the (pseudo) maximum

likelihood estimates so showing the same upward bias of around 0.11. In the oversampling

case they show a lower upward bias then the no oversampling case, but a higher upward

bias then the (pseudo) maximum likelihood estimates.

The regression estimates, αregfor , derived from combining the survey data with the

observations on the rich list, are reported in columns (4) and (8). The number of obser-

vations from the rich list are shown in column (10). Obviously, the number decreases as

true α increases. When α is equal to 1.5, there are on average 50 observations on the rich

list (with a standard deviation of 7) (remember out of a population of 1 million: compare

this with an actual number of 53 in the German case). This drops to only 2 observations

when α is equal to 2. The improvement of the estimate of the tail index, in terms of a

reduction in bias, under no oversampling is dramatic. Essentially, when including the rich

list with the survey data in the regression method, the tail index is estimated with almost

no bias (a tiny upward or downward bias of 0.01 occurs). Also important, the reduction in

standard error is impressive. Again, as one should expect, the reduction in the standard

error is much larger when the tail index is lower, i.e. the number of observations on the

rich list is higher. But strikingly, even when the rich list contains very few individuals,

both the bias in the estimate of α almost disappears, and the standard error is reduced.

Similarly, combining the survey data with the observations on the rich list also help in

the oversampling case. The tail index becomes unbiased. So importantly, the rich list is

useful for both the no oversampling and oversampling case.

Figure 2 shows the intuition for the reduction in bias, and lower standard error, when

a rich list is added to the data. It shows the empirical CCDF of a Monte Carlo sample

and the rich list, together with the true power law from which the Monte Carlo sample

was drawn (for the no oversampling case).20 It also shows the power law implied by the

three estimates of the tail index, the pseudo-maximum likelihood, and the two estimates

using the regression method. Due to the non-response, the empirical ccdf from the sample

observations of wealthy households will be below the line implied by the true power law,

i.e. provide an underestimate of the relative frequency of the households that are richer.

On the contrary, the households on the rich list will follow the true power law.21 By

20The empirical CCDF is constructed as follows. The individuals on the rich list each have a weight of
one. The weights of the survey observations have a weight of (106/750)∗ (750/Nr). The empirical CCDF,
P (X > x), is then given by the sum of the weights of sample and rich list observations above wealth x,
divided by 106.

21Note that even in a population of 1 million individuals drawn from a Pareto distribution there is
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adding the rich list to the survey sample the regression line shift to the right. Intuitively,

by adding the rich list in the presence of differential non-response the regression line gets

“anchored.” This will be reflected in a lower standard error of the slope of the regression

line, and a lower (to almost no) bias.

sampling variation, i.e. the number of individuals on the rich list (and their wealth) will vary. So although
the extreme rich are drawn from the true Pareto distribution, they do not position themselves exactly on
the true CCDF. This can be seen in Figure 2, where the ’richest’ of the rich are below the true Pareto
CCDF.
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TABLE 6

Monte Carlo estimates of Pareto tail index

using different estimation methods

under differential unit non-response

No oversampling Oversampling of the rich

α αml αreg αregfor Obs αml αreg αregfor Obs Rich list

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1.10 1.21 1.22 1.09 273 1.13 1.18 1.10 264 698

0.07 0.10 0.01 13 0.03 0.08 0.01 13 26

1.20 1.31 1.32 1.19 275 1.23 1.28 1.20 267 360

0.08 0.11 0.01 13 0.03 0.09 0.01 13 19

1.30 1.41 1.41 1.29 277 1.33 1.38 1.30 269 186

0.08 0.12 0.02 13 0.03 0.09 0.02 13 14

1.40 1.51 1.51 1.39 278 1.43 1.47 1.40 271 96

0.09 0.13 0.02 13 0.04 0.10 0.02 13 10

1.50 1.61 1.61 1.49 280 1.52 1.57 1.50 273 50

0.10 0.13 0.03 13 0.04 0.11 0.03 13 7

1.60 1.71 1.71 1.60 281 1.62 1.67 1.60 275 26

0.10 0.14 0.04 13 0.04 0.12 0.04 13 5

1.70 1.80 1.81 1.70 282 1.72 1.77 1.70 276 13

0.11 0.15 0.06 13 0.04 0.12 0.06 13 4

1.80 1.90 1.91 1.80 283 1.82 1.87 1.80 277 7

0.11 0.16 0.08 13 0.04 0.13 0.07 13 3

1.90 2.00 2.00 1.91 284 1.92 1.97 1.90 278 4

0.12 0.17 0.10 13 0.05 0.14 0.09 13 2

2.00 2.10 2.10 2.01 284 2.02 2.07 2.00 279 2

0.12 0.17 0.13 13 0.05 0.14 0.12 13 1

Notes: Reported are mean estimates of Pareto tail index. Standard errors are reported in the line below

the mean. Means and standard errors are derived from 20,000 Monte Carlo iterations. In each iteration 1

million households draw wealth from a Pareto distribution with true tail index given in column (1) From

each population a survey sample of 750 households is drawn. Each household drawn has a non-response

probability equal to 0.097167+0.036594*log(wealth). Estimates of tail index using maximum likelihood

are in columns (2) and (6). Estimates using regression method excluding rich list are in columns (3) and

(7). Estimates using regression method including rich list are in columns (4) and (8). Columns (5) and

(9) report the mean number of respondent obervations (and standard error). Column (10) reports the

mean number of observations on the rich list (and standard error).

The ultimate interest in the estimation of the power law is to provide an estimate of

total wealth in the tail. Total wealth can be directly calculated from the estimated power

law. Alternatively, total wealth in the tail can be calculated from the survey directly

as the weighted sum of wealth of the sample; remember that survey weights sum up to
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Figure 2: Monte Carlo Example of Tail of the wealth distribution

population totals. To see how far off estimated wealth is from the truth, Table 7 shows

total wealth in the population estimated from the survey sample and from the estimated

power laws, as a ratio to true total wealth in the population.22 A ratio of 1 signifies no

bias in estimated wealth.

22True total wealth in the population is simply the sum of wealth of the 1 million households.
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TABLE 7

Monte Carlo estimates of tail wealth

as a proportion of actual tail wealth

No oversampling Oversampling of the rich

α survey est. αml αreg αregfor survey est. αml αreg αregfor

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1.10 0.53 0.76 1.00 1.39 0.59 1.07 1.13 1.30

0.33 0.79 5.63 0.23 0.32 0.32 6.21 0.20

1.20 0.67 0.78 0.83 1.09 0.73 0.96 0.91 1.06

0.32 0.21 0.69 0.10 0.29 0.15 0.93 0.10

1.30 0.77 0.83 0.86 1.04 0.82 0.96 0.91 1.02

0.35 0.15 0.30 0.06 0.27 0.09 0.26 0.06

1.40 0.83 0.87 0.89 1.02 0.87 0.97 0.93 1.01

0.37 0.12 0.19 0.04 0.23 0.07 0.39 0.04

1.50 0.87 0.90 0.91 1.01 0.91 0.97 0.94 1.01

0.25 0.10 0.15 0.04 0.23 0.05 0.14 0.04

1.60 0.90 0.92 0.93 1.01 0.93 0.98 0.95 1.00

0.15 0.08 0.12 0.04 0.12 0.04 0.11 0.04

1.70 0.92 0.93 0.94 1.01 0.95 0.98 0.96 1.00

0.13 0.07 0.11 0.04 0.28 0.03 0.10 0.04

1.80 0.93 0.95 0.95 1.00 0.96 0.99 0.97 1.00

0.10 0.06 0.09 0.05 0.08 0.03 0.09 0.05

1.90 0.94 0.95 0.96 1.00 0.97 0.99 0.97 1.01

0.10 0.06 0.09 0.06 0.07 0.03 0.08 0.05

2.00 0.95 0.96 0.96 1.00 0.97 0.99 0.98 1.01

0.07 0.05 0.08 0.06 0.06 0.02 0.07 0.06

Notes: Reported are means of the ratio of estimated tail wealth on actual tail wealth.

Standard errors are reported in the line below. Means and standard errors are derived from

20,000 Monte Carlo iterations as described in footnote to table 6. Estimated tail wealth

used to construct ratio in columns (2) and (6) is calculated from survey only. Estimated

tail wealth used to construct ratio in columns (3),(4),(5),(7),(8),(9) is constructed using the

estimated Pareto tail index.

Under no oversampling, there is a downward bias in the estimated wealth from the

survey sample. The size of the bias depends very much on the level of the tail index.

The intuition is clear, with higher tail indexes the bias gets smaller. A higher tail index

indicates lower degree of wealth concentration at the top, so that differential non-response

is less of a problem (with a higher tail index the very wealthy are much less numerous).
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The wealth estimate using the survey sample is expected to be 13 percent too low at a

tail index level of 1.5 (the level mentioned by Gabaix (2009)) or even lower, in case of

power laws with low tail indexes. However, the striking feature of the ratio of estimated

wealth from the survey to true wealth (column 2) is not so much the bias, but its large

standard error. Estimating total tail wealth from the survey directly implies having a

very imprecise estimate! This obviously depends on sample size. Note however that the

Monte Carlo has around 280 observations of wealth above 1 million. This is a larger

number than the observations above 1 million for the HFCS surveys of Germany (246),

Belgium (207), Austria (113), Portugal (87) and the Netherlands (32). So precision for

some surveys in reality, compared to the Monte Carlo, is likely even worse. Estimating a

power law and then calculating the wealth using the estimated law reduces the standard

error enormously. The biggest reduction is when using the regression method including

the rich list. E.g. the reduction in standard error is by a factor of 6(!) in the case

of α = 1.5. Although that leads to a very small upward bias of wealth estimates, the

reduction in variability of the estimate is quite substantial.

For the oversampling case the biases are reduced but still notable. E.g. the wealth

estimate using the survey sample is expected to still be 9 percent too low at a tail index

level of 1.5. It is again preferable to add a rich list. The bias practically disappears and

the standard error is reduced. An exception occurs when α is very low below around

1.2. Note that biases and standard errors are generally large for such low α. This is not

surprising as α approaches 1, the mean of the Pareto distribution approaches infinity. In

any case such low α are likely not commonly found anyway.

Combining all these results, the Monte Carlo shows that differential unit non-response

clearly biases top tail wealth estimates downward. Under the assumptions of the Monte

Carlo, the bias could easily be more than 10 percent. It also shows that when a rich list

is available, adding it to the survey data and estimating wealth through the estimated

power law is a reasonable idea; it removes the downward bias caused by differential unit

non-response and reduces the variance of the estimated wealth. When no rich list is

available, the difference in downward bias between the (pseudo) maximum likelihood and

regression method are on average not that large, except that the (pseudo) maximum

likelihood estimates show lower variance. These ideas are taken up in the next section

where the results of power law estimation are shown.

4 Estimation results

This section provides new estimates of the share of wealth held by the top one and five

percent derived from the US SCF, the UK WAS and the HFCS.23 A detailed set of

estimation results is tabulated in Appendix I. Here only key results are discussed. The

emphasis is on documenting the downward bias when estimates are based on surveys only

23For the HFCS and SCF data the estimates are based on all five implicates of the multiple imputed
datasets and standard errors are provided using the bootstrap weights.
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and its remedy, including extreme observations and estimating a Pareto tail using the

regression method.

Percentage shares for the one and five percent richest households for various countries

can also be found elsewhere, although somewhat scattered in the literature. Summaries

can be found in Davies et al. (2010) and, more recently, in Roine and Waldenström (2014).

Using the SCF, Wolff (2006) provides historical US series for the eighties and nineties and

Kennickell (2009) calculates series for the period 1989-2007. Saez and Zucman (2014)

construct historical series for the US based on capitalized income tax data and Kopcuk

and Saez (2004) provide top wealth shares for the US based on estate tax returns. Piketty

(2014) discusses the evolution of top wealth shares going back as far as the 18th century

using various data sources.

Estimates of top wealth shares are constructed either as direct estimates from the

surveys or by replacing the tail observations of the surveys with the estimated Pareto

distribution. The Pareto distribution is estimated either using the pseudo-maximum

likelihood method or the regression method. For this last method, estimates using the

survey only and using the survey combined with the Forbes World’s billionaire list are

given. As it is unclear where the tail exactly starts, and to investigate the variability of tail

estimates depending on the level of wealth where the tail starts, estimates are presented

for up to six different threshold levels (10 million euro, 5 million euro, 3 million euro, 2

million euro, 1 million euro and 500 thousand euro). Estimates for all six thresholds are

provided for the US, UK, France and Spain. For the other countries, due to too few survey

observations at the top, estimates are provided for the three lower tresholds (2 million

euro, 1 million euro and 500 thousand euro). Using lower thresholds increases the sample

size over which the Pareto distribution is estimated. However, there is a tradeoff. On

the one hand, the increased sample size leads to more precise tail index estimates, but on

the other hand it also includes observations that potentially do not obey the Pareto tail

behaviour. This itself might lead to biased estimates. Using a high level of the threshold

leads to fewer observations and hence more imprecise estimates but is more likely to

restrict the estimation on a sample that truly follows Pareto tail behaviour.

Alternatively, a ”best-fit” threshold can be found using a methodology developed in

Clauset, Shalizi and Newman (2009). First, the Pareto tail is estimated on different

threshold levels. Second, at each threshold level the fit of the Pareto tail is tested using

a Kolmogorov-Smirnov test. The Kolmogorov-Smirnov test statistic measures the maxi-

mum distance between the CDF of the data and the CDF of the estimated Pareto distri-

bution. The best-fit threshold is the one which leads to the smallest maximum distance,

therefore providing the threshold where the Pareto tail has the best fit. Following this

methodology, the Pareto tail was estimated on a fine grid of thresholds between 100,000

euro and 10 million euro (varying the threshold each time by by 25000). Detailed results

of the Pareto tail index and the ”best-fit” threshold are in Appendix V. However a word

of caution is at place. The Clauset, Shalizi and Newman methodology was developed with
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simple random samples in mind and not for complex survey data that have differential

non-response problems. Therefore, just as a Pareto tail index that might be biased using

such data, a ”best-fit” threshold might not necessarily coincide with the ”true” threshold.

Notwithstanding this caveat, the estimates of top wealth shares obtained using the Pareto

tails at the ”best-fit” thresholds fall pretty much within the intervals provided by the 6

threshold levels considered above. The discussion below considers the estimates of the

wider set of thresholds considered above.

TABLE 8

Average Pareto tail index

Regression Regression ∆

excl. Forbes incl. Forbes

(1) (2) (3)=(1)-(2)

countries using individual information to oversample

USA 1.59 1.52 0.07

UK 2.05 1.74 0.31

France 1.76 1.62 0.14

Spain 1.77 1.69 0.07

Finland 2.11 1.88 0.23

countries using geographic income to oversample

Germany 1.68 1.39 0.29

Belgium 2.18 1.87 0.31

countries using geographic information to oversample

Austria 1.65 1.46 0.20

Portugal 1.45 1.47 -0.02

countries using no oversampling

Italy 2.02 1.58 0.44

Netherlands 5.09 1.48 3.61
Notes: Column (1) provides average of estimated Pareto tail indexes

using the regression method on the survey data at three thresholds

500 thousand euro, 1 million euro and 2 million euro. Column (2)

provides same as (1) when adding Forbes billionaires to survey sample.

Column (3) shows average reduction in Pareto tail index when Forbes

billionaires are added.

The Monte Carlo results showed that in the presence of differential unit non-response

Pareto tail index estimates from the survey data only are biased upward. Including

extreme observations, the tail index estimates should drop and become unbiased. The

drop should be highest when there is no oversampling. Table 8 shows the average24 Pareto

24The average is taken over the three estimates corresponding to the 2 million, 1 million and 500,000
euro thresholds as these are available for all countries.
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tail index estimates for the regression method both when excluding or including the Forbes

billionaires. For all countries, except Portugal, the Pareto tail index drops when adding

the Forbes billionaires. The drop is the largest for the Italian and Dutch surveys, the two

surveys that don’t oversample the rich. The lowest drop is observed for the US SCF and

the Spanish survey, which both use heavy oversampling.

Table 9 shows a summary of the estimates for the top one percent shares. The first

column shows the estimates directly calculated from the surveys. In the presence of

differential non-response these should be biased downward. Again, for surveys using over-

sampling of the wealthy, the bias should be smaller. The second column shows the range

of estimates when the tail observations are replaced by an estimated Pareto distribution

using the regression method applied on the tail survey observations including the Forbes

data.25 As expected, estimates of the percentage wealth share of the top 1 percent of

households are affected the most for countries with no or low oversampling, the Nether-

lands and Italy. Indeed, a direct sample calculation for the Netherlands results in an

estimate of a percentage wealth share of 9 percent, the lowest across all countries. In-

cluding the three Forbes observations in the regression method, the wealth share of the

top 1 percent is estimated between 10 and 19 percent. Such an increase in the estimated

percentage suggests that 9 percent is a severely downward biased estimate of wealth at

the tail in the Netherlands. Likewise for Italy, the top 1 percent share calculated directly

from the survey is 14 percent. Including the Forbes data and estimating a power law,

the share rises to a range between 20 and 21 percent. The top 1 percent share in Italy is

therefore relatively insensitive to the threshold.

For the SCF, the wealth share calculated from the survey is 34 percent, while it is

estimated to be between 31 and 37 percent when including the Forbes data and estimating

a power law. It is interesting to note that the low estimate of 31 percent only occurs if

the tail is estimated with a treshold of 500,000 euro. Likely, this threshold is too low.26

Replacing SCF observations with a Pareto tail from 10 million euro onwards leads to the

higher estimate of 37 percent, 3 percentage points higher than the SCF. Note that the

SCF explicitely excludes the Forbes 400, which have an estimated wealth of 2.3 percent of

total household wealth. The discrepancy between the SCF survey estimate, 34 percent,

and the estimate of 37 percent can therefore largely be explained by the addition of the

Forbes billionaires. Saez and Zucman (2014) obtain an estimate of 39.5 percent.27 This

number is hard to compare however as they are using a completely different methodology

and dataset, i.e. the capitalisation of capital income tax data. A further major difference

is that the SCF uses households, whereas Saez and Zucman (2014) use tax units.

25Note that in this case total wealth is estimated using the estimated Pareto tail, i.e using the survey
to calculate the sum of wealth below the Pareto threshold and adding to this the wealth in the estimated
Pareto tail.

26The ”best-fit” threshold for the SCF is 3.1 million euro. Using the Pareto tail at this threshold, the
top 1 percent wealth share is 37 percent.

27Figure for the year 2010. See the Appendix to Saez and Zucmam (2014) Table B1 at
http://eml.berkeley.edu/ saez/.
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TABLE 9

Percentage wealth share of top 1 percent of households

Regression ∆

SURVEY incl Forbes

(1) (2) (3)=(2)-(1)

countries using individual information to oversample

USA 34 31-37 -3 to +3

UK 13 14-18 +1 to +5

France 18 19-21 +1 to +3

Spain 15 15-17 +0 to +2

Finland 12 13-15 +1 to +3

countries using geographic income to oversample

Germany 24 32-34 +8 to +10

Belgium 12 15-16 +3 to +4

countries using geographic information to oversample

Austria 23 31-32 +8 to +9

Portugal 21 23-27 +2 to +6

countries using no oversampling

Italy 14 20-21 +6 to +7

Netherlands 9 10-19 +1 to +10
Notes: Column (1) provides top 1 percent share of wealth directly

derived from the surveys. Column (2) provides the range of estimates

when tail is replaced by estimated Pareto distribution using sample

and Forbes data. Pareto distribution is estimated at thresholds 500

thousand , 1 million, 2 million, 3 million, 5 million and 10 million for

USA, UK, France and Spain and at thresholds 500 thousand, 1 million

and 2 million for other countries.

Note that relative to the direct survey estimate, also in France and Spain, with heavy

oversampling, the estimate using the Forbes data is not that different, adding only one to

three percentage points. Obviously such increases in the estimates are still non-negligible,

but much smaller than the adjustments for the other countries. For the other countries

without strong oversampling, Germany, Belgium, Austria and Portugal, the survey es-

timate is also much below the regression estimate using the Forbes data, indicating the

downward bias caused by differential unit non-response. Note that adjustments can be

quite large but simultaneously not very sensitive to the chosen threshold of where the

Pareto tail starts. For instance, for Germany, the top 1 percent of households hold 24

percent according to the direct estimate from the survey sample, but hold between 32 and

34 percent when replacing the survey sample tail observations by the estimated Pareto

tail. Such a large adjustment indicates, according to this top tail measure, that German

wealth is as unequally distributed as in the US, something which might have escaped
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attention if only the survey estimates of the German HFCS and SCF were compared.

Indeed, a key lesson is that a comparison across countries of wealth inequality based on

top wealth figures derived from surveys is a treacherous exercise. The data user might

not be aware that a technical decision in the background, such as which oversampling

method was used, has such large effects.

Table 10 shows the percentage wealth share of the top five percent of households.28

Similarly here, the direct survey estimates are biased downward. Including the Forbes

data and replacing the survey sample tail by the estimated Pareto tail increases for most

surveys the percentage wealth share by multiple percentage points. Also here the figure

calculated directly from the SCF, 61 percent, is within the bounds of the estimation with

the Forbes data, 53 to 63 percent, when taking into account estimates at all thresholds.

However taking only account of the highest thresholds from 3 million euro onwards, the

estimates range from 62 to 63 percent, a small one to two percent higher than the SCF

survey estimate. Again adjustments are largest for countries that either don’t oversample

or only use geographic income or geographic information to oversample the wealthy.

28Note that the top 1 and 5 percent wealth shares calculated using the Pareto tail at the ”best-fit”
threshold, available in Appendix V, are almost always within the ranges given in Table 9 and 10.
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TABLE 10

Percentage wealth share of top 5 percent of households

Regres ∆

SURVEY incl Forbes

(1) (2) (3)=(2)-(1)

countries using individual information to oversample

USA 61 53-63 -8 to +2

UK 30 31-35 +1 to +5

France 37 38-39 +1 to +2

Spain 31 31-33 +0 to +2

Finland 31 32-33 +1 to +2

countries using geographic income to oversample

Germany 46 51-54 +5 to +8

Belgium 31 33-34 +2 to +3

countries using geographic information to oversample

Austria 48 52-54 +4 to +6

Portugal 41 42-45 +1 to +4

countries using no oversampling

Italy 32 37-38 +5 to +6

Netherlands 26 27-36 +1 to +10
Notes: Column (1) provides top 5 percent share of wealth directly

derived from the surveys. Column (2) provides the range of estimates

when tail is replaced by estimated Pareto distribution using sample

and Forbes data. Pareto distribution is estimated at thresholds 500

thousand , 1 million, 2 million, 3 million, 5 million and 10 million for

USA, UK, France and Spain and at thresholds 500 thousand, 1 million

and 2 million for other countries.

When interpreting the results, it has to be kept in mind that they are obtained un-

der the implicit assumption that the survey responses and Forbes data are reasonably

accurate. Forbes does not provide enough information to validate the data. However,

the consensus seems to be that the numbers are reasonably accurate. A more serious

concern is that respondents in surveys might underreport holdings and values of assets

and liabilities. Underreporting in wealth surveys could lead to a different set of biases as

discussed above. For instance, if wealth in surveys is underreported, combining it with

Forbes data might lead to overestimation of the degree of inequality in the tail.

The existence of underreporting problems in wealth surveys are demonstrated by com-

parisons of the aggregate wealth estimates obtained by household surveys with the wealth

figures from the national Household balance sheet (HBS) (which is part of the system of

national accounts). Those comparisons suggest that underreporting problems are un-

fortunately quite common. The Methodological report of the HFCS (2014) discusses in

some detail a comparison of aggregate wealth estimates using the HFCS survey versus
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HBS estimates. The ratio of aggregate survey wealth on aggregate national wealth based

on HBS ranges from 0.53 in the Netherlands to 0.94 in Belgium. Henriques and Hsu

(2014) discuss a similar SCF-HBS comparison. They estimate that the aggregate wealth

estimate of the 2010 SCF is actually 21 percent larger than the national wealth estimate

based on the HBS. This would suggest an over-reporting problem in the SCF instead of

the underreporting problem in the HFCS.

Both the Methodological report of the HFCS (2014) and Henriques and Hsu (2014)

argue convincingly that a comparison of wealth survey data with national accounts HBS

data is far from straightforward. There are serious comparability issues when comparing

national accounts data and survey data. One important issue is that the target population

of the surveys (households) is not identical to what is reported in the national accounts.

Namely, in national accounts, households are, in many countries, reported upon jointly

with non-profit institutions serving households (also know as NPISH’s such as churches,

labour unions etc..). National accounts often do not provide a separate estimate of the

wealth held by these non-profit institutions. This is however needed if one would want to

compare the HBS with surveys, optimally one would want to exclude from the HBS the

wealth of NPISH’s. Also, the definition, valuation, and recording date of different items in

national accounts and surveys is generally not identical. Correcting for these differences

when comparing HBS and surveys is not trivial. Notwithstanding comparability issues, a

comparison of carefully adjusted HBS aggregate numbers with aggregate wealth estimates

of household surveys seems to be a fruitful avenue to investigate potential problems with

the micro-data. Note that this takes the view that national account numbers are closer

to the ’truth’ than survey numbers, which seems to be a most reasonable assumption.

Shorrocks, Davies and Lluberas (2014) describe a simple strategy to deal with the

underreporting problem in household surveys, which they then use when estimating the

global distribution of wealth (see subsection 1.7 and 3.2 of Shorrocks, Davies and Lluberas

(2014)). Before grafting a Pareto tail to survey data, the survey numbers are scaled up

or down to ensure that the newly estimated aggregate wealth estimate (that is survey

plus Pareto tail) matches the Household Balance Sheet aggregate. Such a strategy seems

reasonable, however as indicated above, comparing household survey data with HBS data

is far from trivial, so that it is unclear what scaling factor one should use. In other

words, it is unclear if and by how much HBS data should be adjusted before one can

construct such a scaling factor. Such a strategy also imposes the implicit assumption

that underreporting is a uniform percentage for each household. There is certainly no

guarantee that this is the case. Rather if underreporting is more likely in financial assets

such as stocks and bonds, this would imply that underreporting is more severe for the

wealthy. If richer households underreport more percentagewise, survey observations of

these households should probably be scaled up more then the observations of poor house-

holds. Unfortunately, not much is known about the degree to which households differ

in underreporting. A further analysis of the degree and distribution of underreporting
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among households remains an important avenue for further research.

5 Conclusion

The wealth distribution is an important variable for research, policy-makers and society

at large. Many analyses of redistribution or tax policy in general will be sensitive to the

concentration of wealth at the top. Yet, our knowledge of the wealth distribution is less

than perfect. This paper has investigated how differential unit non-response in household

wealth surveys affects tail wealth estimates. The results are striking. Survey wealth

estimates are very likely to underestimate wealth at the top and this often by multiple

percentage points. Countries that seem to have a more equal wealth distribution, might

not be so upon closer scrutiny.

This paper has investigated underestimation of wealth at the top in household surveys

caused by differential unit non-response that is not remedied by appropriate reweighting

of sample observations, because by its very nature the wealth of the non-respondents is

unobserved. A first lesson learned is that survey top wealth estimates are best seen as

lower bounds. A second lesson is that the truncation at the top caused by differential

unit non-response cannot be remedied by a simple interpolation of the survey by estimat-

ing a power law using survey data only. The presence of differential unit non-response

leads to upward biased tail index estimates and therefore too low total tail wealth esti-

mates. Rather a main result of this paper is that under the assumption of a true Pareto

distribution for tail wealth the Monte Carlo evidence shows that even very few extreme

observations of wealth are sufficient to largely eliminate the serious downward bias in

the Pareto tail index caused by differential unit non-response in wealth surveys, while

substantially reducing the variance of the wealth estimates.

Rich lists such as the Forbes billionaires can help therefore dramatically in improving

top wealth estimates. This is not so much so because of the wealth numbers of these

billionaires itself, rather, the combination of survey data and rich list leads to unbiased

estimates of the Pareto tail index. Obviously, this is all true under the assumption that

the extreme tail follows the same distribution as the wealthy just below. This need not

be true. However, the fact that tail wealth estimates of surveys that do oversample the

wealthy (such as the US , France and Spain) all change relatively little when the surveys

are combined with the Forbes data suggest that this assumption is a reasonable starting

point.

Of course, as the evidence related to the SCF, and the French and Spanish HFCS

shows, improvement in terms of oversampling, combined with appropriate reweighting of

the wealthy will yield major benefits in terms of estimation of the tail of wealth. Ideally,

wealth surveys should therefore follow this practice in identifying the wealthy a priori,

thereafter heavily oversampling them and thereafter adjusting the weights for differential

unit non-response. In that case, rich lists such as the Forbes World’s billionaires would
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add little to the estimation of tail wealth.

In the meantime however, researchers should be warned of top wealth estimates based

on surveys alone, or on simple interpolations of the survey data if there is evidence that

differential unit non-response problems are serious and have not been completely ad-

dressed by readjustment of the survey weights and oversampling of the wealthy is limited.

In those cases, combining survey data with data from rich lists could at the minimum

provide a check of the robustness of the tail wealth estimates.
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A APPENDIX I

This Appendix provides detailed estimation results of the Pareto tail index and the share

of wealth held by the top one and five percent households, using the pseudo maxiumum

likelihood method and the regression method excluding and including the Forbes billion-

aires.

TABLE A1

Estimates of Pareto tail index

Pseudo max.likelihood Regression method

excluding Forbes including Forbes

≥ 2M ≥1M ≥500k ≥ 2M ≥1M ≥500k ≥ 2M ≥1M ≥500k

USA 1.26 1.21 1.02 1.69 1.59 1.48 1.55 1.52 1.48

0.05 0.04 0.03 0.04 0.03 0.02 0.01 0.01 0.01

France 1.65 1.84 1.75 1.67 1.78 1.83 1.50 1.63 1.73

0.09 0.08 0.04 0.13 0.08 0.06 0.02 0.03 0.03

UK 2.14 2.04 1.50 2.11 2.15 1.88 1.65 1.80 1.77

- - - - - - - - -

Spain 1.71 2.05 1.85 1.67 1.76 1.87 1.59 1.69 1.80

0.27 0.18 0.08 0.13 0.11 0.08 0.05 0.05 0.05

Finland 2.01 2.47 2.26 1.94 2.13 2.27 1.60 1.88 2.16

0.23 0.18 0.06 0.57 0.23 0.10 0.14 0.13 0.08

Germany 1.41 1.43 1.61 1.87 1.64 1.54 1.38 1.39 1.40

0.26 0.17 0.10 0.35 0.23 0.13 0.04 0.02 0.01

Belgium 2.18 1.78 1.77 2.63 2.06 1.85 1.89 1.89 1.82

0.25 0.13 0.08 0.36 0.18 0.09 0.05 0.08 0.06

Austria 1.67 1.42 1.34 1.87 1.65 1.44 1.47 1.47 1.43

0.42 0.30 0.16 0.72 0.45 0.26 0.06 0.05 0.08

Portugal 1.22 1.82 1.58 1.22 1.50 1.63 1.40 1.46 1.55

0.22 0.17 0.09 0.26 0.19 0.13 0.03 0.04 0.04

Italy 1.97 1.84 1.79 2.26 1.95 1.85 1.53 1.57 1.63

0.21 0.12 0.06 0.52 0.20 0.09 0.02 0.01 0.01

Netherlands 0.70 3.44 2.59 9.19 3.14 2.94 1.24 1.48 1.71

0.06 0.60 0.31 30.27 2.27 0.61 0.60 0.05 0.06

Notes: Mean estimate using all five implicates. Standard errors below mean estimate.
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TABLE A2

Estimates of Pareto tail index

thresholds: 3, 5 and 10 million euro

Pseudo max.likelihood Regression method

excluding Forbes including Forbes

≥ 10M ≥5M ≥3M ≥ 10M ≥5M ≥3M ≥ 10M ≥5M ≥3M

USA 1.63 1.56 1.53 1.85 1.80 1.74 1.51 1.54 1.55

0.14 0.08 0.06 0.09 0.07 0.05 0.01 0.01 0.01

France 1.47 1.43 1.76 1.47 1.61 1.60 1.36 1.42 1.45

0.38 0.21 0.18 0.30 0.26 0.18 0.05 0.03 0.02

UK 1.47 2.19 2.06 1.79 1.94 2.08 1.41 1.49 1.58

- - - - - - - - -

Spain 1.55 1.46 1.68 1.80 1.77 1.68 1.53 1.58 1.58

0.20 0.17 0.31 0.37 0.22 0.15 0.08 0.07 0.05

Notes: Mean estimate using all five implicates. Standard errors below mean estimate.
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TABLE A3

Percentage wealth share of top 1 percent of households

when tail is replaced by estimated Pareto distribution

Pseudo max.likelihood Regression method

excluding Forbes including Forbes

data ≥ 2M ≥ 1M ≥ 500T ≥ 2M ≥ 1M ≥ 500T ≥ 2M ≥ 1M ≥ 500T

USA 34 50 55 93 29 30 32 34 33 31

1 4 5 4 1 1 1 0 0 0

France 18 18 17 17 18 18 17 21 21 19

2 2 1 1 2 1 1 1 1 1

UK 13 13 14 17 13 13 15 18 17 17

- - - - - - - - - -

Spain 15 15 13 14 15 16 15 16 17 16

1 3 1 1 1 2 1 1 1 1

Finland 12 13 12 13 13 13 12 15 15 13

1 1 1 1 1 1 1 1 1 1

Germany 24 31 31 26 22 24 27 32 33 34

3 25 10 4 4 5 4 2 1 1

Belgium 12 14 17 16 12 14 16 16 15 16

1 2 2 2 1 2 1 1 1 1

Austria 23 31 42 35 26 29 36 32 31 32

7 20 37 17 15 21 23 2 2 5

Portugal 21 29 19 22 29 26 22 23 27 24

3 48 2 3 35 7 3 1 1 1

Italy 14 15 16 16 14 15 16 21 21 20

1 1 2 1 2 2 1 1 0 0

Netherlands 9 7 9 9 8 9 9 10 18 19

1 1 1 1 1 1 1 1 2 1

Notes: Mean estimate using all five implicates. Standard errors below mean estimate.

TABLE A4

Percentage wealth share of top 1 percent of households

when tail is replaced by estimated Pareto distribution

Pseudo max.likelihood Regression method

excluding Forbes including Forbes

data ≥ 10M ≥ 5M ≥ 3M ≥ 10M ≥ 5M ≥ 3M ≥ 10M ≥ 5M ≥ 3M

USA 34 35 37 37 33 32 31 37 37 37

1 1 2 1 1 1 1 1 1 0

France 18 19 20 18 19 18 19 20 20 21

2 218 13 3 34 11 3 1 1 1

UK 13 14 13 13 13 13 13 14 17 18

- - - - - - - - - -

Spain 15 16 16 15 15 14 15 16 15 16

1 2 3 4 1 1 1 1 1 1

Notes: Mean estimate using all five implicates. Standard errors below mean estimate.
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TABLE A5

Percentage wealth share of top 5 percent of households

when tail is replaced by estimated Pareto distribution

Pseudo max.likelihood Regression method

excluding Forbes including Forbes

data ≥ 2M ≥ 1M ≥ 500T ≥ 2M ≥ 1M ≥ 500T ≥ 2M ≥ 1M ≥ 500T

USA 61 70 73 96 56 54 53 59 57 53

1 3 3 2 1 1 1 1 1 0

France 37 37 36 36 37 37 36 39 39 38

1 1 1 1 2 1 1 1 1 1

UK 30 30 31 33 30 30 31 35 35 34

- - - - - - - - - -

Spain 31 31 29 30 31 33 31 32 34 33

1 2 1 1 1 2 1 1 1 1

Finland 31 31 30 31 31 31 31 32 33 32

1 1 1 1 1 1 1 1 1 1

Germany 46 50 50 47 44 45 48 51 52 54

3 18 7 3 3 4 4 2 1 1

Belgium 31 33 34 34 31 31 33 34 33 33

1 1 2 2 1 2 2 1 1 1

Austria 48 53 60 55 49 50 54 54 52 52

8 15 26 13 12 16 18 4 2 5

Portugal 41 47 39 41 47 44 41 42 45 43

2 36 2 2 26 5 3 1 1 1

Italy 32 33 33 34 32 32 33 37 38 38

1 1 2 1 2 2 2 1 1 0

Netherlands 26 24 26 26 25 26 25 27 33 36

1 1 1 1 1 1 2 1 2 2

Notes: Mean estimate using all five implicates. Standard errors below mean estimate.
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TABLE A6

Percentage wealth share of top 5 percent of households

when tail is replaced by estimated Pareto distribution

Pseudo max.likelihood Regression method

excluding Forbes including Forbes

data ≥ 10M ≥ 5M ≥ 3M ≥ 10M ≥ 5M ≥ 3M ≥ 10M ≥ 5M ≥ 3M

USA 61 62 62 63 60 60 59 63 63 62

1 1 1 1 1 1 1 1 1 1

France 37 38 38 36 37 37 37 38 38 39

1 168 10 2 26 8 2 1 1 1

UK 30 31 30 30 30 31 30 31 33 34

- - - - - - - - - -

Spain 31 31 32 31 31 30 31 31 31 32

1 1 3 3 1 1 1 1 1 1

Notes: Mean estimate using all five implicates. Standard errors below mean estimate.

B APPENDIX II

This Appendix contains a set of figures showing the tail of the wealth distribution (starting

at 1 million euro) together with the estimated relationship on a log-log scale. Dots are

survey observations, crosses are Forbes observations. These figures illustrate how the

regression line changes slope when to the survey data Forbes data is added. Except for

the US, where the slope changes very little, the absolute value of the slope (i.e. α) reduces,

leading to an upward tilting in the regression line. (In other words, a simple extrapolation

of the survey data, which suffers from differential non-response, would lead to a too low

estimate of the number of Forbes billionaires.)
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Figure 3: Tail of the wealth distribution: USA
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Figure 4: Tail of the wealth distribution: Germany
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Figure 5: Tail of the wealth distribution: France
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Figure 6: Tail of the wealth distribution: UK
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Figure 7: Tail of the wealth distribution: Italy
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Figure 8: Tail of the wealth distribution: Spain
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Figure 9: Tail of the wealth distribution: Netherlands
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Figure 10: Tail of the wealth distribution: Belgium
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Figure 11: Tail of the wealth distribution: Portugal
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Figure 12: Tail of the wealth distribution: Austria
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Figure 13: Tail of the wealth distribution: Finland

53



C APPENDIX III

This appendix shows the derivation of the log-rank -log size regression taking into account

the weights of the sample points. How to deal with weighted data in the estimation of

Pareto power laws has thus far largely been ignored in the literature on fitting power laws

on income and wealth data.

Start from the power law relationship in a simple random sample,

i

n
∼= (

wmin

wi

)α (11)

Taking logs on both sides

ln(
i

n
) ∼= −α ln(

wmin

wi

) (12)

Consider a sample from a complex survey design. Rank the sample households ac-

cording to wealth. That is, the wealthiest household has wealth w1 and a survey weight

of N1, and the second wealthiest household has wealth w2 and survey weight of N2, and

so on. Every sample point i has a weight Ni, and the sum of weights totals N .

We replace i
n
with N1+N2+...+Ni

N

ln(
N1 +N2 + ...+Ni

N
) ∼= −α ln(

wmin

wi

) (13)

which equals to

ln(i
(N1 +N2 + ... +Ni)

i

1

N
) ∼= −α ln(

wmin

wi

) (14)

Define N̄ , the average weight of a sample point (i.e. N̄ =
∑n

j=1
Nj

n
), and N̄fi, the

average weight of the first i sample points (i.e. N̄fi =
∑i

j=1
Nj

i
).

Then we have

ln(i
N̄fi

N̄

N̄

N
) ∼= −α ln(

wmin

wi

) (15)

Leading to the regression:

ln(i
N̄fi

N̄
) = C − α ln(wi) (16)
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with C = ln( N̄
N
) + α ln(wmin). Note that this regression is almost identical to the

regression for simple random samples. The difference is that the rank of the sample

observation i is weighted by the ratio of the average weight of the first i observations to

the average weight of all observations. In a simple random sample this ratio is always 1.

Here also we can subtract −1/2 from the rank following the suggestion by Gabaix and

Ibragimov (2011) for simple random samples.

D APPENDIX IV

This appendix shows the results of a sensitivity analysis of the rate of oversampling. In

particular, it shows what happens to the Monte Carlo results discussed in the main text

when one varies the degrees of oversampling out of the four strata. The oversampling

scheme in the main text can be written succinctly as (75,150,225,300), i.e. sampling 75

households in the lowest stratum, 150 out of the second, 225 out of the third and 300 out

of the highest. Results are presented in Table 6 and 7 in the main text.

The oversampling scheme in the main text is of the following form (N,N+a,N+2a,N+3a)

with N=75 and a=75. Results are obtained for 6 different oversampling schemes. They

have monotonically higher rates of oversampling, i.e. consecutively sampling less house-

holds out of the lowest two strata but more out of the highest two strata, keeping the

total sample of 750 households fixed. The oversampling schemes are: I. N=144, a=29

i.e. (144,173,202,231) ; II. N=129, a=39 i.e. (129,168,207,246) ; III. N=102, a=57

i.e. (102,159,216,273) ; IV. N=48, a=111 i.e. (48,141,234,327) ; V. N=21, a =111 i.e.

(21,132,243,354); VI. N=6, a=121 i.e. (6,127,248,369). Tables D1-D6 show the mean

estimates and standard errors of the Pareto tail index under the no oversampling and

the oversampling scenario, using the different estimation methods. Tables D7-D12 shows

total wealth in the population estimated from the survey sample and from the estimated

power laws, as a ratio to true total wealth in the population.
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TABLE D1

Monte Carlo estimates of Pareto tail index

using different estimation methods

under differential non-response

(oversampling scheme I)

No oversampling Oversampling of the rich

α αml αreg αregfor Obs αml αreg αregfor Obs Rich list

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1.10 1.21 1.22 1.09 273 1.13 1.17 1.10 269 698

0.07 0.10 0.01 14 0.03 0.08 0.01 13 26

1.20 1.31 1.31 1.19 275 1.23 1.27 1.20 272 360

0.08 0.11 0.01 13 0.03 0.09 0.01 13 19

1.30 1.41 1.41 1.29 277 1.33 1.37 1.30 274 186

0.08 0.12 0.02 14 0.03 0.09 0.02 13 13

1.40 1.51 1.51 1.39 278 1.42 1.46 1.40 275 96

0.09 0.12 0.02 13 0.04 0.10 0.02 13 10

1.50 1.60 1.61 1.50 279 1.53 1.56 1.50 276 49

0.09 0.13 0.03 13 0.04 0.11 0.03 13 7

1.60 1.70 1.70 1.60 281 1.62 1.66 1.60 279 26

0.10 0.14 0.04 13 0.05 0.12 0.04 13 5

1.70 1.80 1.81 1.70 282 1.72 1.76 1.70 279 13

0.10 0.15 0.06 13 0.05 0.12 0.06 13 4

1.80 1.90 1.90 1.80 283 1.82 1.85 1.80 281 7

0.11 0.16 0.08 13 0.05 0.13 0.07 13 3

1.90 2.00 2.01 1.91 284 1.92 1.95 1.90 282 3

0.12 0.17 0.10 13 0.05 0.13 0.09 13 2

2.00 2.11 2.11 2.02 285 2.02 2.05 1.99 283 2

0.12 0.17 0.13 13 0.06 0.15 0.12 13 1

Notes: Reported are mean estimates of Pareto tail index. Standard errors are reported in the

line below the mean. Means and standard errors are derived from 1,000 Monte Carlo iterations.

In each iteration 1 million households draw wealth from a Pareto distribution with true tail

index given in column (1) From each population a survey sample of 750 households is drawn.

Each household drawn has a non-response probability equal to 0.097167+0.036594*log(wealth).

Estimates of tail index using maximum likelihood are in columns (2) and (6). Estimates using

regression method excluding rich list are in columns (3) and (7). Estimates using regression

method including rich list are in columns (4) and (8). Columns (5) and (9) report the mean

number of respondent obervations (and standard error). Column (10) reports the mean number

of observations on the rich list (and standard error).
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TABLE D2

Monte Carlo estimates of Pareto tail index

using different estimation methods

under differential non-response

(oversampling scheme II)

No oversampling Oversampling of the rich

α αml αreg αregfor Obs αml αreg αregfor Obs Rich list

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1.10 1.21 1.22 1.09 273 1.13 1.17 1.10 268 698

0.07 0.10 0.01 14 0.03 0.08 0.01 13 26

1.20 1.31 1.31 1.19 275 1.23 1.27 1.20 270 360

0.08 0.11 0.01 13 0.03 0.08 0.01 13 19

1.30 1.41 1.41 1.29 277 1.33 1.37 1.30 273 186

0.08 0.12 0.02 14 0.04 0.09 0.02 13 13

1.40 1.51 1.51 1.39 278 1.43 1.46 1.40 275 96

0.09 0.12 0.02 13 0.04 0.10 0.02 13 10

1.50 1.60 1.61 1.50 279 1.52 1.56 1.50 275 49

0.09 0.13 0.03 13 0.04 0.11 0.03 13 7

1.60 1.70 1.70 1.60 281 1.62 1.66 1.60 278 26

0.10 0.14 0.04 13 0.04 0.12 0.04 13 5

1.70 1.80 1.81 1.70 282 1.72 1.76 1.70 279 13

0.10 0.15 0.06 13 0.05 0.12 0.06 13 4

1.80 1.90 1.90 1.80 283 1.82 1.86 1.80 280 7

0.11 0.16 0.08 13 0.05 0.12 0.07 13 3

1.90 2.00 2.01 1.91 284 1.92 1.95 1.90 282 3

0.12 0.17 0.10 13 0.05 0.13 0.09 13 2

2.00 2.11 2.11 2.02 285 2.02 2.06 1.99 282 2

0.12 0.17 0.13 13 0.05 0.14 0.11 13 1

Notes: Reported are mean estimates of Pareto tail index. Standard errors are reported in the

line below the mean. Means and standard errors are derived from 1,000 Monte Carlo iterations.

In each iteration 1 million households draw wealth from a Pareto distribution with true tail

index given in column (1) From each population a survey sample of 750 households is drawn.

Each household drawn has a non-response probability equal to 0.097167+0.036594*log(wealth).

Estimates of tail index using maximum likelihood are in columns (2) and (6). Estimates using

regression method excluding rich list are in columns (3) and (7). Estimates using regression

method including rich list are in columns (4) and (8). Columns (5) and (9) report the mean

number of respondent obervations (and standard error). Column (10) reports the mean number

of observations on the rich list (and standard error).
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TABLE D3

Monte Carlo estimates of Pareto tail index

using different estimation methods

under differential non-response

(oversampling scheme III)

No oversampling Oversampling of the rich

α αml αreg αregfor Obs αml αreg αregfor Obs Rich list

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1.10 1.21 1.22 1.09 273 1.13 1.18 1.10 266 698

0.07 0.10 0.01 14 0.03 0.08 0.01 13 26

1.20 1.31 1.31 1.19 275 1.23 1.28 1.20 269 360

0.08 0.11 0.01 13 0.03 0.09 0.01 13 19

1.30 1.41 1.41 1.29 277 1.33 1.37 1.30 271 186

0.08 0.12 0.02 14 0.03 0.09 0.02 13 13

1.40 1.51 1.51 1.39 278 1.42 1.47 1.40 273 96

0.09 0.12 0.02 13 0.03 0.10 0.02 13 10

1.50 1.60 1.61 1.50 279 1.53 1.57 1.50 274 49

0.09 0.13 0.03 13 0.04 0.11 0.03 13 7

1.60 1.70 1.70 1.60 281 1.62 1.66 1.60 277 26

0.10 0.14 0.04 13 0.04 0.11 0.04 13 5

1.70 1.80 1.81 1.70 282 1.72 1.76 1.70 277 13

0.10 0.15 0.06 13 0.04 0.12 0.06 13 4

1.80 1.90 1.90 1.80 283 1.82 1.87 1.80 279 7

0.11 0.16 0.08 13 0.05 0.13 0.07 13 3

1.90 2.00 2.01 1.91 284 1.92 1.96 1.90 280 3

0.12 0.17 0.10 13 0.05 0.13 0.09 13 2

2.00 2.11 2.11 2.02 285 2.02 2.07 2.00 281 2

0.12 0.17 0.13 13 0.05 0.14 0.11 13 1

Notes: Reported are mean estimates of Pareto tail index. Standard errors are reported in the

line below the mean. Means and standard errors are derived from 1,000 Monte Carlo iterations.

In each iteration 1 million households draw wealth from a Pareto distribution with true tail

index given in column (1) From each population a survey sample of 750 households is drawn.

Each household drawn has a non-response probability equal to 0.097167+0.036594*log(wealth).

Estimates of tail index using maximum likelihood are in columns (2) and (6). Estimates using

regression method excluding rich list are in columns (3) and (7). Estimates using regression

method including rich list are in columns (4) and (8). Columns (5) and (9) report the mean

number of respondent obervations (and standard error). Column (10) reports the mean number

of observations on the rich list (and standard error).
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TABLE D4

Monte Carlo estimates of Pareto tail index

using different estimation methods

under differential non-response

(oversampling scheme IV)

No oversampling Oversampling of the rich

α αml αreg αregfor Obs αml αreg αregfor Obs Rich list

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1.10 1.21 1.22 1.09 273 1.13 1.19 1.10 262 698

0.07 0.10 0.01 14 0.03 0.08 0.01 13 26

1.20 1.31 1.31 1.19 275 1.23 1.28 1.20 265 360

0.08 0.11 0.01 13 0.03 0.09 0.01 13 19

1.30 1.41 1.41 1.29 277 1.33 1.38 1.30 267 186

0.08 0.12 0.02 14 0.03 0.10 0.02 13 13

1.40 1.51 1.51 1.39 278 1.43 1.48 1.40 269 96

0.09 0.12 0.02 13 0.03 0.10 0.02 13 10

1.50 1.60 1.61 1.50 279 1.52 1.58 1.50 270 49

0.09 0.13 0.03 13 0.04 0.11 0.03 13 7

1.60 1.70 1.70 1.60 281 1.62 1.67 1.60 274 26

0.10 0.14 0.04 13 0.04 0.12 0.04 13 5

1.70 1.80 1.81 1.70 282 1.72 1.77 1.70 274 13

0.10 0.15 0.06 13 0.04 0.12 0.06 13 4

1.80 1.90 1.90 1.80 283 1.82 1.86 1.80 276 7

0.11 0.16 0.08 13 0.04 0.13 0.07 13 3

1.90 2.00 2.01 1.91 284 1.92 1.96 1.90 278 3

0.12 0.17 0.10 13 0.05 0.14 0.09 13 2

2.00 2.11 2.11 2.02 285 2.02 2.06 2.00 278 2

0.12 0.17 0.13 13 0.05 0.14 0.11 13 1

Notes: Reported are mean estimates of Pareto tail index. Standard errors are reported in the

line below the mean. Means and standard errors are derived from 1,000 Monte Carlo iterations.

In each iteration 1 million households draw wealth from a Pareto distribution with true tail

index given in column (1) From each population a survey sample of 750 households is drawn.

Each household drawn has a non-response probability equal to 0.097167+0.036594*log(wealth).

Estimates of tail index using maximum likelihood are in columns (2) and (6). Estimates using

regression method excluding rich list are in columns (3) and (7). Estimates using regression

method including rich list are in columns (4) and (8). Columns (5) and (9) report the mean

number of respondent obervations (and standard error). Column (10) reports the mean number

of observations on the rich list (and standard error).
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TABLE D5

Monte Carlo estimates of Pareto tail index

using different estimation methods

under differential non-response

(oversampling scheme V)

No oversampling Oversampling of the rich

α αml αreg αregfor Obs αml αreg αregfor Obs Rich list

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1.10 1.21 1.22 1.09 273 1.13 1.19 1.10 260 698

0.07 0.10 0.01 14 0.03 0.08 0.01 13 26

1.20 1.31 1.31 1.19 275 1.23 1.29 1.20 263 360

0.08 0.11 0.01 13 0.03 0.09 0.01 13 19

1.30 1.41 1.41 1.29 277 1.33 1.39 1.30 266 186

0.08 0.12 0.02 14 0.03 0.10 0.02 13 13

1.40 1.51 1.51 1.39 278 1.43 1.48 1.40 268 96

0.09 0.12 0.02 13 0.03 0.10 0.02 13 10

1.50 1.60 1.61 1.50 279 1.53 1.58 1.50 269 49

0.09 0.13 0.03 13 0.04 0.11 0.03 12 7

1.60 1.70 1.70 1.60 281 1.62 1.67 1.60 272 26

0.10 0.14 0.04 13 0.04 0.12 0.04 13 5

1.70 1.80 1.81 1.70 282 1.72 1.78 1.70 273 13

0.10 0.15 0.06 13 0.04 0.12 0.06 13 4

1.80 1.90 1.90 1.80 283 1.82 1.87 1.80 274 7

0.11 0.16 0.08 13 0.04 0.13 0.07 13 3

1.90 2.00 2.01 1.91 284 1.92 1.97 1.90 276 3

0.12 0.17 0.10 13 0.05 0.14 0.09 13 2

2.00 2.11 2.11 2.02 285 2.02 2.07 2.00 277 2

0.12 0.17 0.13 13 0.05 0.15 0.12 13 1

Notes: Reported are mean estimates of Pareto tail index. Standard errors are reported in the

line below the mean. Means and standard errors are derived from 1,000 Monte Carlo iterations.

In each iteration 1 million households draw wealth from a Pareto distribution with true tail

index given in column (1) From each population a survey sample of 750 households is drawn.

Each household drawn has a non-response probability equal to 0.097167+0.036594*log(wealth).

Estimates of tail index using maximum likelihood are in columns (2) and (6). Estimates using

regression method excluding rich list are in columns (3) and (7). Estimates using regression

method including rich list are in columns (4) and (8). Columns (5) and (9) report the mean

number of respondent obervations (and standard error). Column (10) reports the mean number

of observations on the rich list (and standard error).
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TABLE D6

Monte Carlo estimates of Pareto tail index

using different estimation methods

under differential non-response

(oversampling scheme VI)

No oversampling Oversampling of the rich

α αml αreg αregfor Obs αml αreg αregfor Obs Rich list

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1.10 1.21 1.22 1.09 273 1.11 1.19 1.10 258 698

0.07 0.10 0.01 14 0.07 0.08 0.01 13 26

1.20 1.31 1.31 1.19 275 1.21 1.28 1.20 262 360

0.08 0.11 0.01 13 0.07 0.09 0.01 13 19

1.30 1.41 1.41 1.29 277 1.32 1.39 1.30 264 186

0.08 0.12 0.02 14 0.07 0.10 0.02 14 13

1.40 1.51 1.51 1.39 278 1.41 1.49 1.40 267 96

0.09 0.12 0.02 13 0.08 0.10 0.02 13 10

1.50 1.60 1.61 1.50 279 1.51 1.59 1.50 268 49

0.09 0.13 0.03 13 0.09 0.12 0.03 13 7

1.60 1.70 1.70 1.60 281 1.60 1.67 1.60 271 26

0.10 0.14 0.04 13 0.09 0.12 0.04 13 5

1.70 1.80 1.81 1.70 282 1.70 1.79 1.70 272 13

0.10 0.15 0.06 13 0.10 0.13 0.06 13 4

1.80 1.90 1.90 1.80 283 1.80 1.88 1.81 274 7

0.11 0.16 0.08 13 0.10 0.14 0.08 13 3

1.90 2.00 2.01 1.91 284 1.90 1.97 1.90 276 3

0.12 0.17 0.10 13 0.11 0.14 0.10 13 2

2.00 2.11 2.11 2.02 285 2.00 2.08 2.01 277 2

0.12 0.17 0.13 13 0.11 0.15 0.12 13 1

Notes: Reported are mean estimates of Pareto tail index. Standard errors are reported in the

line below the mean. Means and standard errors are derived from 1,000 Monte Carlo iterations.

In each iteration 1 million households draw wealth from a Pareto distribution with true tail

index given in column (1) From each population a survey sample of 750 households is drawn.

Each household drawn has a non-response probability equal to 0.097167+0.036594*log(wealth).

Estimates of tail index using maximum likelihood are in columns (2) and (6). Estimates using

regression method excluding rich list are in columns (3) and (7). Estimates using regression

method including rich list are in columns (4) and (8). Columns (5) and (9) report the mean

number of respondent obervations (and standard error). Column (10) reports the mean number

of observations on the rich list (and standard error).
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TABLE D7

Monte Carlo estimates of tail wealth

as a proportion of actual tail wealth

(oversampling scheme I)

No oversampling Oversampling of the rich

α survey est. αml αreg αregfor survey est. αml αreg αregfor

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1.10 0.54 0.74 0.81 1.39 0.58 1.07 1.14 1.28

0.43 0.41 0.70 0.24 0.29 0.34 2.06 0.21

1.20 0.69 0.79 0.84 1.09 0.72 0.97 0.95 1.06

0.51 0.20 0.49 0.10 0.24 0.15 0.60 0.09

1.30 0.77 0.83 0.86 1.03 0.83 0.96 0.93 1.01

0.27 0.15 0.32 0.07 0.46 0.10 0.26 0.07

1.40 0.82 0.87 0.88 1.02 0.88 0.97 0.94 1.01

0.19 0.11 0.17 0.04 0.26 0.07 0.19 0.03

1.50 0.87 0.90 0.91 1.01 0.90 0.97 0.95 1.00

0.16 0.09 0.14 0.03 0.13 0.05 0.15 0.03

1.60 0.90 0.92 0.93 1.01 0.93 0.98 0.96 1.00

0.14 0.08 0.13 0.04 0.15 0.05 0.11 0.04

1.70 0.92 0.93 0.94 1.01 0.95 0.98 0.97 1.01

0.11 0.07 0.11 0.05 0.09 0.04 0.10 0.04

1.80 0.93 0.94 0.95 1.00 0.96 0.99 0.98 1.00

0.09 0.06 0.10 0.05 0.08 0.03 0.08 0.05

1.90 0.94 0.95 0.96 1.00 0.97 0.99 0.98 1.01

0.08 0.06 0.08 0.06 0.07 0.03 0.08 0.05

2.00 0.95 0.96 0.96 1.00 0.98 0.99 0.99 1.01

0.07 0.05 0.07 0.06 0.06 0.03 0.07 0.06

Notes: Reported are means of the ratio of estimated tail wealth on actual tail wealth.

Standard errors are reported in the line below. Means and standard errors are derived from

1,000 Monte Carlo iterations as described in footnote to table 6. Estimated tail wealth

used to construct ratio in columns (2) and (6) is calculated from survey only. Estimated

tail wealth used to construct ratio in columns (3),(4),(5),(7),(8),(9) is constructed using the

estimated Pareto tail index.
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TABLE D8

Monte Carlo estimates of tail wealth

as a proportion of actual tail wealth

(oversampling scheme II)

No oversampling Oversampling of the rich

α survey est. αml αreg αregfor survey est. αml αreg αregfor

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1.10 0.54 0.74 0.81 1.39 0.58 1.07 1.32 1.28

0.43 0.41 0.70 0.24 0.32 0.37 6.55 0.21

1.20 0.69 0.79 0.84 1.09 0.73 0.97 0.93 1.06

0.51 0.20 0.49 0.10 0.32 0.15 0.43 0.09

1.30 0.77 0.83 0.86 1.03 0.80 0.96 0.91 1.02

0.27 0.15 0.32 0.07 0.18 0.11 0.23 0.07

1.40 0.82 0.87 0.88 1.02 0.88 0.97 0.94 1.01

0.19 0.11 0.17 0.04 0.22 0.07 0.17 0.03

1.50 0.87 0.90 0.91 1.01 0.92 0.98 0.96 1.00

0.16 0.09 0.14 0.03 0.17 0.05 0.14 0.03

1.60 0.90 0.92 0.93 1.01 0.93 0.98 0.96 1.00

0.14 0.08 0.13 0.04 0.17 0.05 0.11 0.04

1.70 0.92 0.93 0.94 1.01 0.95 0.98 0.97 1.01

0.11 0.07 0.11 0.05 0.10 0.04 0.10 0.04

1.80 0.93 0.94 0.95 1.00 0.96 0.99 0.97 1.00

0.09 0.06 0.10 0.05 0.07 0.03 0.08 0.05

1.90 0.94 0.95 0.96 1.00 0.97 0.99 0.98 1.01

0.08 0.06 0.08 0.06 0.08 0.03 0.08 0.05

2.00 0.95 0.96 0.96 1.00 0.98 0.99 0.98 1.01

0.07 0.05 0.07 0.06 0.15 0.02 0.07 0.06

Notes: Reported are means of the ratio of estimated tail wealth on actual tail wealth.

Standard errors are reported in the line below. Means and standard errors are derived from

1,000 Monte Carlo iterations as described in footnote to table 6. Estimated tail wealth

used to construct ratio in columns (2) and (6) is calculated from survey only. Estimated

tail wealth used to construct ratio in columns (3),(4),(5),(7),(8),(9) is constructed using the

estimated Pareto tail index.
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TABLE D9

Monte Carlo estimates of tail wealth

as a proportion of actual tail wealth

(oversampling scheme III)

No oversampling Oversampling of the rich

α survey est. αml αreg αregfor survey est. αml αreg αregfor

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1.10 0.54 0.74 0.81 1.39 0.59 1.07 1.50 1.29

0.43 0.41 0.70 0.24 0.47 0.34 14.50 0.21

1.20 0.69 0.79 0.84 1.09 0.74 0.96 0.91 1.06

0.51 0.20 0.49 0.10 0.39 0.15 0.38 0.09

1.30 0.77 0.83 0.86 1.03 0.81 0.95 0.91 1.02

0.27 0.15 0.32 0.07 0.21 0.10 0.22 0.07

1.40 0.82 0.87 0.88 1.02 0.88 0.97 0.93 1.01

0.19 0.11 0.17 0.04 0.27 0.06 0.18 0.04

1.50 0.87 0.90 0.91 1.01 0.91 0.97 0.94 1.00

0.16 0.09 0.14 0.03 0.14 0.05 0.13 0.03

1.60 0.90 0.92 0.93 1.01 0.93 0.98 0.96 1.00

0.14 0.08 0.13 0.04 0.12 0.04 0.11 0.04

1.70 0.92 0.93 0.94 1.01 0.95 0.98 0.97 1.01

0.11 0.07 0.11 0.05 0.11 0.04 0.10 0.05

1.80 0.93 0.94 0.95 1.00 0.96 0.99 0.97 1.00

0.09 0.06 0.10 0.05 0.08 0.03 0.08 0.05

1.90 0.94 0.95 0.96 1.00 0.97 0.99 0.98 1.01

0.08 0.06 0.08 0.06 0.06 0.03 0.08 0.05

2.00 0.95 0.96 0.96 1.00 0.97 0.99 0.98 1.01

0.07 0.05 0.07 0.06 0.06 0.02 0.07 0.06

Notes: Reported are means of the ratio of estimated tail wealth on actual tail wealth.

Standard errors are reported in the line below. Means and standard errors are derived from

1,000 Monte Carlo iterations as described in footnote to table 6. Estimated tail wealth

used to construct ratio in columns (2) and (6) is calculated from survey only. Estimated

tail wealth used to construct ratio in columns (3),(4),(5),(7),(8),(9) is constructed using the

estimated Pareto tail index.
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TABLE D10

Monte Carlo estimates of tail wealth

as a proportion of actual tail wealth

(oversampling scheme IV)

No oversampling Oversampling of the rich

α survey est. αml αreg αregfor survey est. αml αreg αregfor

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1.10 0.54 0.74 0.81 1.39 0.58 1.06 0.98 1.30

0.43 0.41 0.70 0.24 0.24 0.30 1.05 0.21

1.20 0.69 0.79 0.84 1.09 0.72 0.96 0.90 1.07

0.51 0.20 0.49 0.10 0.24 0.14 0.69 0.09

1.30 0.77 0.83 0.86 1.03 0.83 0.96 0.91 1.02

0.27 0.15 0.32 0.07 0.32 0.10 0.25 0.07

1.40 0.82 0.87 0.88 1.02 0.88 0.97 0.92 1.01

0.19 0.11 0.17 0.04 0.19 0.06 0.17 0.04

1.50 0.87 0.90 0.91 1.01 0.91 0.97 0.93 1.00

0.16 0.09 0.14 0.03 0.13 0.05 0.12 0.03

1.60 0.90 0.92 0.93 1.01 0.94 0.98 0.96 1.00

0.14 0.08 0.13 0.04 0.13 0.04 0.11 0.04

1.70 0.92 0.93 0.94 1.01 0.95 0.98 0.96 1.00

0.11 0.07 0.11 0.05 0.09 0.03 0.10 0.05

1.80 0.93 0.94 0.95 1.00 0.96 0.99 0.97 1.00

0.09 0.06 0.10 0.05 0.07 0.03 0.09 0.05

1.90 0.94 0.95 0.96 1.00 0.97 0.99 0.98 1.01

0.08 0.06 0.08 0.06 0.07 0.03 0.08 0.05

2.00 0.95 0.96 0.96 1.00 0.97 0.99 0.98 1.01

0.07 0.05 0.07 0.06 0.05 0.02 0.07 0.06

Notes: Reported are means of the ratio of estimated tail wealth on actual tail wealth.

Standard errors are reported in the line below. Means and standard errors are derived from

1,000 Monte Carlo iterations as described in footnote to table 6. Estimated tail wealth

used to construct ratio in columns (2) and (6) is calculated from survey only. Estimated

tail wealth used to construct ratio in columns (3),(4),(5),(7),(8),(9) is constructed using the

estimated Pareto tail index.

65



TABLE D11

Monte Carlo estimates of tail wealth

as a proportion of actual tail wealth

(oversampling scheme V)

No oversampling Oversampling of the rich

α survey est. αml αreg αregfor survey est. αml αreg αregfor

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1.10 0.54 0.74 0.81 1.39 0.59 1.06 0.95 1.30

0.43 0.41 0.70 0.24 0.25 0.30 0.95 0.21

1.20 0.69 0.79 0.84 1.09 0.73 0.96 0.88 1.07

0.51 0.20 0.49 0.10 0.28 0.14 0.42 0.09

1.30 0.77 0.83 0.86 1.03 0.82 0.95 0.89 1.02

0.27 0.15 0.32 0.07 0.26 0.10 0.23 0.07

1.40 0.82 0.87 0.88 1.02 0.87 0.96 0.91 1.01

0.19 0.11 0.17 0.04 0.15 0.06 0.16 0.04

1.50 0.87 0.90 0.91 1.01 0.91 0.97 0.93 1.00

0.16 0.09 0.14 0.03 0.16 0.05 0.13 0.03

1.60 0.90 0.92 0.93 1.01 0.93 0.98 0.95 1.00

0.14 0.08 0.13 0.04 0.12 0.04 0.11 0.04

1.70 0.92 0.93 0.94 1.01 0.95 0.98 0.96 1.00

0.11 0.07 0.11 0.05 0.09 0.03 0.09 0.05

1.80 0.93 0.94 0.95 1.00 0.96 0.99 0.97 1.00

0.09 0.06 0.10 0.05 0.07 0.03 0.08 0.05

1.90 0.94 0.95 0.96 1.00 0.97 0.99 0.97 1.00

0.08 0.06 0.08 0.06 0.06 0.03 0.08 0.05

2.00 0.95 0.96 0.96 1.00 0.98 0.99 0.98 1.01

0.07 0.05 0.07 0.06 0.07 0.02 0.07 0.06

Notes: Reported are means of the ratio of estimated tail wealth on actual tail wealth.

Standard errors are reported in the line below. Means and standard errors are derived from

1,000 Monte Carlo iterations as described in footnote to table 6. Estimated tail wealth

used to construct ratio in columns (2) and (6) is calculated from survey only. Estimated

tail wealth used to construct ratio in columns (3),(4),(5),(7),(8),(9) is constructed using the

estimated Pareto tail index.
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TABLE D12

Monte Carlo estimates of tail wealth

as a proportion of actual tail wealth

(oversampling scheme VI)

No oversampling Oversampling of the rich

α survey est. αml αreg αregfor survey est. αml αreg αregfor

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1.10 0.54 0.74 0.81 1.39 0.58 1.07 3.73 1.31

0.43 0.41 0.70 0.24 0.24 0.32 86.07 0.22

1.20 0.69 0.79 0.84 1.09 0.74 0.97 0.94 1.07

0.51 0.20 0.49 0.10 0.30 0.16 1.05 0.09

1.30 0.77 0.83 0.86 1.03 0.81 1.33 0.89 1.02

0.27 0.15 0.32 0.07 0.22 2.44 0.28 0.07

1.40 0.82 0.87 0.88 1.02 0.86 1.10 0.90 1.01

0.19 0.11 0.17 0.04 0.13 0.59 0.15 0.04

1.50 0.87 0.90 0.91 1.01 0.90 1.04 0.93 1.00

0.16 0.09 0.14 0.03 0.14 0.29 0.14 0.03

1.60 0.90 0.92 0.93 1.01 0.93 1.02 0.95 1.00

0.14 0.08 0.13 0.04 0.10 0.19 0.12 0.04

1.70 0.92 0.93 0.94 1.01 0.94 1.02 0.95 1.00

0.11 0.07 0.11 0.05 0.08 0.16 0.10 0.05

1.80 0.93 0.94 0.95 1.00 0.95 1.01 0.96 1.00

0.09 0.06 0.10 0.05 0.07 0.12 0.08 0.05

1.90 0.94 0.95 0.96 1.00 0.97 1.01 0.97 1.00

0.08 0.06 0.08 0.06 0.08 0.10 0.08 0.06

2.00 0.95 0.96 0.96 1.00 0.97 1.01 0.97 1.00

0.07 0.05 0.07 0.06 0.11 0.09 0.07 0.06

Notes: Reported are means of the ratio of estimated tail wealth on actual tail wealth.

Standard errors are reported in the line below. Means and standard errors are derived from

1,000 Monte Carlo iterations as described in footnote to table 6. Estimated tail wealth

used to construct ratio in columns (2) and (6) is calculated from survey only. Estimated

tail wealth used to construct ratio in columns (3),(4),(5),(7),(8),(9) is constructed using the

estimated Pareto tail index.
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E Appendix V

This appendix provides detailed estimation results of the Pareto tail index and the share of

wealth held by the top one and five percent households at a particular ”best-fit” threshold.

The ”best-fit” threshold is found using the methodology developed in Clauset, Shalizi

and Newman (2009). First, the Pareto tail is estimated on a fine grid of 397 different

threshold levels (i.e. varying the threshold from hundred thousand euro to 10 million euro

with steps of 25,000 euro). The fit of the Pareto tail is then tested using a Kolmogorov-

Smirnov test. The Kolmogorov-Smirrnov test statistic measures the maximum distance

between the CDF of the data and the CDF of the estimated Pareto distribution. The

”best-fit” threshold is the one which leads to the smallest maximum distance, therefore

heuristically providing the best-fitting Pareto tail.
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TABLE E1

Estimates of Pareto tail index and threshold

Pseudo max.likelihood Regression method

excluding Forbes including Forbes

Threshold α Threshold α Threshold α

USA 2,950,000 1.51 6,410,000 1.81 3,105,000 1.55

1,319,052 0.24 3,034,420 0.10 1,067,364 0.01

France 660,000 1.89 615,000 1.83 425,000 1.74

158,727 0.09 295,613 0.07 114,734 0.03

UK 1,250,000 2.18 1,250,000 2.16 1,000,000 1.80

- - - - - -

Spain 570,000 1.94 570,000 1.87 515,000 1.80

286,569 0.29 550,708 0.10 457,451 0.07

Finland 450,000 2.25 450,000 2.27 475,000 2.16

72,665 0.08 155,277 0.14 51,682 0.07

Germany 370,000 1.51 365,000 1.55 455,000 1.41

207,267 0.10 177,195 0.11 341,850 0.02

Belgium 560,000 1.74 535,000 1.85 525,000 1.82

172,206 0.09 186,964 0.13 160,409 0.06

Austria 320,000 1.29 330,000 1.38 435,000 1.41

144,295 0.15 293,827 0.28 325,361 0.10

Portugal 180,000 1.53 175,000 1.54 190,000 1.53

43,999 0.06 60,051 0.07 64,679 0.04

Italy 625,000 1.84 625,000 1.89 350,000 1.64

122,450 0.10 153,933 0.15 35,294 0.01

Netherlands 445,000 2.61 540,000 2.94 280,000 1.89

159,378 0.35 214,058 0.69 23,828 0.07

Notes: Mean estimate using all five implicates. Standard errors below mean

estimate. Threshold minimizes the maximum distance between CDF of the data

and CDF of the fitted Pareto tail.
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TABLE E2

Percentage wealth share of top 1 percent of households

when tail is replaced by estimated Pareto distribution

at ”best-fit” threshold

data Pseudo max.lik. Regression method

excl. Forbes incl. Forbes

USA 34 38 33 37

1 36 2 1

France 18 17 18 19

2 2 1 1

UK 13 13 13 17

- - - -

Spain 15 15 15 16

1 5 1 1

Finland 12 13 12 13

1 1 1 1

Germany 24 28 27 33

3 5 3 1

Belgium 12 18 16 16

1 2 2 1

Austria 23 45 38 34

7 18 21 7

Portugal 21 24 24 25

3 2 2 1

Italy 14 16 15 20

1 2 2 0

Netherlands 9 10 9 16

1 2 1 1

Notes: Mean estimate using all five implicates. Standard errors below

mean estimate.Threshold minimizes the maximum distance between

CDF of the data and CDF of the fitted Pareto tail.
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TABLE E3

Percentage wealth share of top 5 percent of households

when tail is replaced by estimated Pareto distribution

at ”best-fit” threshold

data Pseudo max.lik. Regression method

excl. Forbes incl. Forbes

USA 61 63 60 63

1 21 1 1

France 37 36 36 38

1 2 1 1

UK 30 30 30 35

- - - -

Spain 31 31 32 33

1 5 1 1

Finland 31 31 31 31

1 1 1 1

Germany 46 48 47 52

3 4 3 1

Belgium 31 35 33 33

1 2 2 1

Austria 48 62 56 53

8 14 16 6

Portugal 41 43 42 43

2 2 2 1

Italy 32 33 33 37

1 2 2 0

Netherlands 26 27 26 34

1 2 2 1

Notes: Mean estimate using all five implicates. Standard errors below

mean estimate. Threshold minimizes the maximum distance between

CDF of the data and CDF of the fitted Pareto tail.
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