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Abstract

In this article, we review the development of agent-based computational eco-
nomics (ACE) in light of Herbert Simon’s lifetime contributions to a variety of sci-
entific areas. We take an integrated view of Simon’s contributions to economics,
computational-theoretic underpinnings of bounded rationality (algorithmic foun-
dations of behavioral economics), artificial intelligence, expert systems, problem-
solving and decision-making heuristics and cues, near decomposability (modular-
ity) and complex systems. We address how agent-based economic and financial
modeling has developed along each of the aforementioned “Simon dimensions”
over the last two decades. At the end, we discuss the possible implications of the
legacy of Simon for the future of ACE.

1 Introduction

Herbert Simon’s place in the field of economics requires no elaboration. He was a
scholar who straddled different fields and donned different hats with such ease that
is the defining feature of a polymath. He is a quintessential interdisciplinary scholar
who has made pioneering contributions concerning the notion of bounded rationality,
has built models based on it, and has also made important advances in understanding
complex systems. The former was largely realized in the realm of cognitive science and
the latter was rephrased as modularity by the later scholars.1 His importance in the field
of artificial intelligence, which is in turn the inspiration of agent-based computational
economics (ACE), is discussed in detail in Chen (2005). From Simon’s side, the only
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comment that is more explicitly related to ACE was his positive endorsement of genetic
algorithms (Simon, 1996b).

Among all the Nobel Laureates in Economics, there are at least three whose work
has been acknowledged by the ACE community. They are Friedrich Hayek (1899-1992),
Thomas Schelling, and Elinor Ostrom (1933-2012). The last two directly worked on
ACE. Schelling’s celebrated work on the segregation model is considered as one of ear-
liest publications on ACE (Schelling, 1969, 1971, 1972). Ostrom had contributed to the
development of the empirical agent-based models (Janssen and Ostrom, 2006). Hayek
did not work on ACE, but the connection of his work to ACE has been pointed out by
Vriend (2002). We believe that there is a strong connection between the development
of agent-based computational economics and Herbert Simon and that his influence on
ACE is not less, if not more, profound than the previous three. However, to the best of
our knowledge, there seems to be no single document that from a holistic perspective
addresses this linkage explicitly.2 We conjecture that the burgeoning of ACE was too
late for the time of Simon, who ended his professional life in 2001. However, even so, it
still surprises us that so few attempts have been made to connect Simon and ACE, par-
ticularly considering that the latter was founded on artificial intelligence and cognitive
psychology, the two pillars to which the former has contributed substantially.3.

In this chapter, we attempt to explore and identify the connections between Simon’s
contributions and the development of ACE. We concentrate on his influence on the
conception of an individual within an economic or social system, his philosophy re-
garding how the social systems are organized and can be understood, and finally about
how the underlying rules that govern social interactions can be unearthed by the in-
vestigator, in this case a social scientist. We also suggest ways with which the future
developments within ACE can be geared to be more Simonian in character and to be
closer to his vision.

The rest of the chapter is structured as follows. Section 2 provides an overview
of the setting in which we place our arguments. We then divide our arguments into
three main departments: individuals, complex systems and the epistemology of ACE.
In Section 3, the modeling of software agents in light of Simon’s bounded rationality
is discussed. In Section 4, various aspects of complex systems are included here. In
Section 5, we elaborate on ACE’s potential as an alternative to neoclassical economics.
We conclude the paper in the last section.

2 The Setting

Simon’s contributions to behavioral economics and artificial intelligence are composed
of many different, original ideas, all of which are grounded, either explicitly or implic-
itly, in the theories and models of computation. On the other hand, ACE routinely
studies rule-following agents, computing within an environment that can be best con-
sidered as a complex adaptive system. ACE, as a research program, can be considered
as being mounted up on, at least, four pillars: individuals (decomposition), interaction,
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Figure 1: Four Pillars of ACE placed on the foundation of Simon

aggregation and learning (adaptation). Each of these pillars has an important compu-
tational component in its characterization. In this background, it is fairly evident that
computation, and consequently simulation, can be one possible anchor around which
one can attempt to explore the influence of Simon’s legacy in the development of ACE.

Since we are exploring the intellectual links between Simon and ACE, it may be in-
structive to be aware that Simon did not emphasize all of these pillars uniformly. For
instance, he placed more emphasis on the characteristics of economic entities (agents,
institutions) as being boundedly rational (Simon, 1957, 1976) and adaptive (Simon,
1996b), and on features such as the near decomposability of complex systems (Simon,
1962, 1995). He appears to have focused less on the interaction aspect, except for his
celebrated contributions on stochastic models(Simon, 1955b) and the resulting aggre-
gate distributions underpinned by preferential attachment (see Section 5.1). However,
despite the varying degrees of emphasis laid by Simon, all of the above ideas seem to
have had an important and direct impact on ACE.

Figure 1 illustrates the perspective which we use to organize and develop this chap-
ter. Out of these four pillars, learning seems to be the only pillar that is at the intersec-
tion of the ideas from both bounded rationality and complex systems. Learning is an
important feature that is relevant for the components within the system (individuals)
and also for the system as a whole. Learning or evolution becomes critical when the
environment where the agents live and act is ever changing and complex. In such en-
vironments, optimal survival rules that are suitable for all agents at all times simply do
not exist. Boundedly rational organisms acting in complex environments, has always
been Simon’s view of economic agents (Simon, 1959).

There has never been any direct conversation between Simon and ACE, at least ACE
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in the way we understand it today. This is perhaps due to the timing of the devel-
opment of the latter. However, Simon has commented on many building blocks of
ACE, such as various ways of modeling boundedly rational individuals, the form of
complexity in social systems, learning and the evolution of complex systems, and the
stochastic mechanisms or models that could explain stylized aggregate distributions
and so on. In this study, we are also interested in identifying the less direct and the pos-
sible unidentified legacies of Simon with regard to ACE. These ‘hidden’ links include
Simon’s epistemological point of view towards simulation and his chunking theory
(modularity, in its modern form). Besides, Simon’s methodological pursuits also pro-
vide a hint for carving out a vision for the potential roles of ACE as it evolves, which
could include market (more broadly, institutional) design (Marks, 2006), and act as a
mode of hypothesis discovery. We argue that these could be important directions that
the ACE community could explore in order to broach new and interesting frontiers.

2.1 Computation-Theoretic Underpinning

Given the general frame as depicted in Figure 1, we begin from the bottom. The com-
mon thread that connects Simon and ACE is their view on how economic agents and
systems should be meaningfully modelled and studied, based on the advantages of-
fered by digital computers. A brief survey on the origins of ACE here can be useful
to highlight a common ground, which happens to be the theories of computation and
complexity (the bottom level of Figure 1). Four distinct, yet interconnected origins
of ACE are identified in a recent survey by Chen (2012). They are market, cellular-
automaton, economic-tournament, and experimental economic origins, respectively.
Except perhaps for the market origin, we can find Simon’s direct or indirect influence
on ACE through the other three origins. In particular, we would like dwell a little more
on the cellular-automaton origin.

One important and probably the earliest example of the use of cellular automata in
social sciences is Schelling’s segregation model (Schelling, 1971), which is built upon
on a checkerboard topology, also known as a checkerboard model. Albin (1975, 1998)
explores the connection between Schelling’s checkerboard model and the cellular au-
tomata tradition, which, in turn, places ACE on its computational theoretic foundation,
underpinned by notions like Turing computability and Wolfram’s computational irre-
ducibility. Schelling showed, via many illustrations (Schelling, 1978), how interdepen-
dent decisions can lead to unexpected social phenomena, even though the individuals
follow simple, or even simplistic, and identical rules. This is an origin that Schelling
himself also has acknowledged:

What I did not know when I did the experiments with my twelve-year-
old son using copper and zinc pennies was that I was doing later became
known as ‘agent-based computational models’, or ‘agent-based computa-
tional economics’. (Schelling (2007), p. xi.)

If we trace the connection between cellular automata and economics, one goes all
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the way up to John von Neumann, whose pioneering study on self-reproducing au-
tomata (von Neumann et al., 1966) laid out a general theory, along with his important
contributions to general equilibrium theory and the theory of games in economics.
von Neumann did not apply cellular automata to study social or economic problems.
Despite being the originator of the theory of cellular automata, von Neumann does
not seem to dave explored possible, direct economic applications, as seen, for exam-
ple, in Albin (1998), p. xv. Furthermore, the pioneering work by Thomas Schelling on
checkerboard models was not a priori motivated by automata theory and hence may
be viewed as “serendipitous one-shot play” rather than being a systematic intent to
advance a new paradigm. These considerations lead us to place Peter Albin as a pio-
neer in endowing ACE with a general computation-theoretic underpinning. His two
important articles on ACE (Albin, 1982, 1992), reprinted in Albin (1998), along with his
first book (Albin, 1975) may qualify him for this position.

Albin (1982), reprinted as Chapter Two of Albin (1998), may be considered as one
of the early articles to address computability issues in economics, while a more com-
prehensive treatment of this issue comes much later in Velupillai (2000, 2010a). Later
on in his preface in Albin (1998) and the introductory chapter authored by Duncan Fo-
ley, they proposed a Chomsky-Wolfram synthesis as a framework to address complexity
in economics. In this effort, they were trying to find a thread passing through John
von Neumann, Alan Turing, Noam Chomsky, Kurt Gödel, John Conway, and Stephen
Wolfram. The thread, called the automata-theoretic foundation of economics also nicely
connects computer science, linguistics, and dynamical systems.

Albin (1992) applies Wolfram’s one-dimensional elementary cellular automata to
his proposed spatial (network) prisoner’s dilemma game. The class of the spatial pris-
oner’s dilemma game not only provides the simplest explanation of the prevalence of
cooperative behavior, but, more importantly, provides the first illustration that ACE
models can be richly studied in light of the theory of automata and the associated hi-
erarchy of complexity.

For Simon, his awareness of the automata theory and its possible implications for
the social sciences can be dated back to the very early stage of the development. It
turns out that von Neumann in fact presented his work The General Theory of Automata
at a session during the meeting of the Econometric Society held on September 5th,
1950 at Havard University, where Simon was the discussant4. Simon made important
remarks concerning hierarchies of rationality and their connection with cellular au-
tomata. From Simon’s discussion, it is evident that social scientists did show interest in
drawing an analogy between automata and social organisms at least as early as 1950,
much earlier than Schelling’s checkerboard models. It is worth noting that Simon’s
comment dates back to before his proposal of bounded rationality and his theorem
proving machine (Newell et al., 1958). Unfortunately, the abstract of the discussion by
von Neumann was not made available and the details of the talk by von Neumann
remain unknown to us. We can only at best speculate as to whether the concept of
automata, underpinned by the theory of computation, was already in Simon’s reper-
toire while he was developing his ideas of procedural rationality. In the light of this
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background, we will explore more of the content of Simon’s ideas that are intertwined
with ACE in the rest of this chapter.

3 Agents as Programs - Bounded Rationality

First and foremost, the influence of Herbert Simon on ACE will be apparent once we
understand the way agents in an economic system are conceived. Arguably, bounded
rationality is one of the most famous terms coined by Simon, and this has been devel-
oped in many directions and has managed to acquire many different interpretations
over the years. Many of these have forged promising lines of research in their own
right. From its definition, as shown in Simon (1957), it states that human minds may
often fail to solve the problems to the level that is objectively optimal. Impressed by the
human’s ability to solve difficult problems, Simon began to painstakingly observe the
processes of human thinking and devised computer programs to explain the qualitative
and quantitative data that he gathered.

This initiative happened during the high wave of Cognitive Revolution in the mid-
1950s and the 1960s, which is also considered to have marked the birth of artificial
intelligence. The results of this research project by Simon gradually developed into the
theory of Human Problem Solving, in which the information processing systems (IPS) are
the models that characterize problem solvers in various domains (Newell and Simon,
1972). This approach lies at the foundation of information processing psychology - an
important branch of cognitive science, knowledge engineering and domain expertise
in modern computer science. Simon’s firm belief seems to be that we have to open
the black box of decision making and understand its procedural (algorithmic) aspects.
Only then can we begin to appreciate human wisdom and the complexity of the soci-
eties that they live in.

3.1 LISP and Genetic Programming

We argue that it might be fruitful to associate bounds of rationality with the complexity
of the algorithm (or procedures) that the human agents or software agents can handle
and will potentially apply to solve the problems that they encounter. Simon himself has
implicitly acknowledged, although with some caveats, this interpretation of bounded
rationality through the concept of computational complexity5. In any case, the central
idea in Simon’s conception of an economic agent is that of a problem solver; his em-
phasis was on understanding how or, in other words, the procedural aspects. This de-
mand for the transparency of agents is actively answered in ACE in various forms, such
as simple programmed agents, entropy-maximizing agents (zero-intelligence agents),
human-written programmed agents, and autonomous agents, which constitute a long
glossary of artificial agents with transparent behavioral rules (Chen, 2012).6

In the context of the problem-solver analogy, it is appropriate to discuss Logic Theo-
rist (Newell et al., 1958), which is the very first realization of IPS. Simon viewed prob-
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Figure 2: LISP and Genetic Programming

lem solving in general as being analogous to theorem proving, where one starts with a
current state and tries to search for the paths to reach the target states with the assump-
tions or propositions that are available to him/her. Logic Theorist was programmed
with Information Processing Language, a kind of list processing. This language is strongly
motivated as a practical implementation of the lambda calculus or the recursive func-
tion theory that was developed in the 1930s by Alonzo Church (1903-1995), Stephen
Klenne (1909-1994) and Alan Turing (1912-1954). It was later formally introduced as
LISP by John Marcarthy (1927-2011).

The syntax of LISP has very broad usage to represent problems in many different do-
mains. The universality of LISP is briefly mentioned in the lecture notes of Newell and
Simon’s Turing Award (Newell and Simon, 1976). One of the successful examples uti-
lizing LISP that Simon developed is the Elementary Perceiver and Memorizer (EPAM)
(Feigenbaum and Simon, 1984; Gobet and Simon, 1996). It is an important model in
the theories of expert systems that can be used to explain the evolution and the orga-
nization of the associative memory of human subjects.

It is worth noting that genetic programming (GP) (Koza, 1992, 1994), which is used
in ACE to model the autonomous agents, is essentially inspired by the LISP environ-
ment (Figure 2). The connection between GP and Simon, however, goes beyond just
the syntax of LISP. Automatic theorem proving, which motivates the problem solvers in
Simon’s idea of rationality and computation, also motivates a notion of autonomous
agents in ACE (Figure 2). The latter point has been elaborated in Chen (2012). GP is a
tool for autonomous learning or the evolution of programs (can be rules, strategies, or
recipes) without any external intervention. It, therefore, equips artificial agents (pro-
gram solvers) with a novelty-discovering or chance-discovering capability so that they may
constantly exploit the surrounding environment without external intervention, which
in turn may also cause the surrounding environment to change or react, and the cycle

7



may continue indefinitely.
Genetic programming as one of the most powerful models of autonomous agents

has been widely acknowledged in the ACE literature (Duffy, 2006; Chen, 2008). Appli-
cations of genetic programming to modeling the constant searching for better strategies
or products have been illustrated in various ACE models, including double auction
markets (Chen and Tai, 2003; Chen and Yu, 2011), artificial stock markets (Kampouridis et al.,
2012a,b), and oligopolistic competition with product innovation (Chie and Chen, 2013,
2014).

The modeling principle of leaving artificial agents a larger degree of autonomy
arises because the problem introduced by the environment is frequently not well-
defined, and may vary with agents’ perceptions of the problem. In this case, external
intervention is neither necessary nor feasible, and leaving agents to go wild on their
own is the proper way of modeling this process as they are placed in a jungle or maze,
searching for “truth” or proving a “theorem”. This jungle is everywhere in life, but a
good theoretic model to exemplify such a complex and perplexing environment is not
often seen. In this regard, Simon’s story of Apple (Simon, 1991) provides an illuminat-
ing demonstration, a subject to which we now turn.

3.2 Environment as a Maze

Two of the features of human problem solving (or decision making, in general) that are
recurrent in the discussions by Simon are representations and procedures, that is, what
and how. Representation is the subjective description of the problem or the solution
(goal) by the decision making organism (not the observer!); a procedure, on the other
hand, provides a sequence of actions which the problem solver can follow to reach
the desired solution. One of the common and important characteristics is that the rep-
resentation and the procedures are not constant over time, but are dynamic (and are
shaped by the perceptions of the environment), even if the exact same problem (to
be more precise, problem space) is encountered by the problem solver. The following
quotation from Simon (1996b) describes the idea concisely:

The external environments of thought, both the real world and long-term
memory, undergo continual change. In memory the change is adaptive. It
updates the knowledge about the real world and adds new knowledge. It
adds new procedures that contribute to the skills in particular task domains
and improve existing procedures. A scientific theory of human thinking
must take account of this process of change in the contents of memory. (Ibid,
p.100)

Simon’s story of Apple serves as the best material for illuminating this idea. In
our view, the constantly changing representation and the resultant procedures to be
applied are in turn a direct consequence of the bounded rationality, subject to the com-
binatorial complexity of the environment that surrounds the decision makers. This

8



idea was first presented formally with equations in Simon (1956)7 and shall be briefly
reviewed here since it enables us to better see the connection between Simon and ACE
in their articulation of autonomous agents.

This story tells us that the problem space in which we try to search for the answer
may often be too enormous for us to have a complete picture of it. With limited time,
energy and memory to explore the environment in its totality, our tastes and goals
are in turn shaped and altered from time to time during the process of search (either
arbitrary or directed). The message of this metaphor is that even if the environment in
which one is acting is absolutely static, we can end up having very different knowledge
and representation about this environment, thereby creating different subproblems for
ourselves and developing different strategies to survive.

Hugo, the ordinary and solitary man in Simon’s Apple story, who lives in the “cas-
tle” all his life, portrays our everyday decision making in environments whose entire
picture is often not known to us. Hugo desires several aspects of daily life, such as
preferred food, aesthetic surroundings and comfort, while the limitation of resources
he suffers is very rigid - his awake time, the energy he has before he collapses due to
hunger, his memory, and a notebook on which he writes down the history of his tra-
verse in detail8. A well-trained economist might soon formulate this problem in terms
of optimizing multiple objectives subject to constraints. Simon realized very early on
that the allocation or search problem based on marginal analysis does not work at all
(Simon, 1983). Instead, Hugo is formally characterized as a set of rules that are gradu-
ally shaped by Hugo’s understanding of the castle.

How is this related to the characterization of agents in the models of ACE? We ad-
dress this question by teasing out the role of GP in these models. It is worth pointing
out that the time-variant procedures used by agents to solve problems can be inter-
preted as a kind of evolutionary algorithm. If one subscribes to this interpretation,
then its relation with GP is quite straightforward. The evolutionary computation as
demonstrated by GP allows us to capture the phenomenon of agents’ changing (evolv-
ing) representations with the change in their employed modules or chunks9, and ac-
cordingly the change in their survival strategies in light of the possible change in their
preferences (the fitness criteria). The notion of adaptivity that Simon discussed is well
inherited by GP in the context of economic agents. In this vein, the literature on mod-
eling innovation in the light of consumers’ changing preferences using GP is very rel-
evant here (Chen and Chih, 2007; Chen and Wang, 2011). However, the rules of evolu-
tion in GP can be enriched in the direction of heuristics rather than stochastic forces, as
they stand now. We will suggest ways of doing so a little later.

3.3 Selectivity, Satisficing and Aspiration Levels

In his Nobel Laureate speech Simon (1979b), Simon spoke on the processes that people
use to make difficult decisions and solve complex problems.

Selectivity, based on rules of thumb or “heuristics”, tends to guide the search
into promising regions, so that solutions will generally be found after search
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of only a tiny part of the total space. Satisficing criteria terminate search
when satisfactory problem solutions have been found. (Ibid, p. 507)

In this section, our discussion is based upon the notion of intelligence (heuristics) - a
major theme in Simon’s research - in characterizing different agents. We do so against the
backdrop of bounded rationality that is increasingly gaining acceptance as the appro-
priate way of characterizing agents even within mainstream economics. In particular,
we will focus on the characterization of intelligence in terms of selectivity, satisficing and
aspiration levels, the key components of bounded rationality as propounded by Simon,
and see the development of ACE models in this light.

3.3.1 Selectivity

The idea of selectivity becomes important in situations when boundedly rational agents
are acting in complex environments, where the problem space is huge and the agents
are cognitively constrained. Humans’ cognitive constraints, such as short-term mem-
ory or working memory capacity, allow them to process a limited portion of informa-
tion to which they can get access, and can only effectively deal with limited number of
alternatives at a time (Miller, 1956). In both cases - that is, a large problem space and
limited cognitive capacity, selectivity helps them to deal with the difficulties of deci-
sion making. While these are the reasons why selectivity may be important, we also
need to understand how such a selection is executed. One way for human beings to be
effective in their selection is to apply familiar chunks10 to increase their memory span
and information-processing and decision-making capability (see also Section 4.2).

In ACE, chunks can be acquired by autonomous agents through information en-
capsulation and compression, and genetic programming can allow us to model such
capability of autonomous agents. The automatic defined terminals (ADTs) as proposed
in Chen and Chih (2007) in their ACE model of product evolution is an example. By
searching for and encapsulating useful chunks, autonomous agents can compress the
knowledge that they have acquired incrementally into simple but effective decision
rules. Perhaps this avenue of exploration will develop GP in such a way that it can
evolve fast and frugal heuristics (Gigerenzer and Selten, 2001; Gigerenzer, 2004). In
fact, in some ACE models, genetic programming has already been applied to enable
autonomous agents to develop their decision heuristics in the form of evolutionary de-
cision trees (Kampouridis et al., 2012a).11

It is worth mentioning that partially in light of the recent developments in cognitive
experimental economics some ACE models have explicitly considered the cognitive
constraints (working-memory constraints) of autonomous agents. For example, the pa-
rameter population size of genetic programming or genetic algorithms has been chosen
as a proxy for the working memory capacity or, simply, intelligence, of agents (Casari,
2004; Chen and Tai, 2010). By setting artificial agents with different population sizes,
their working memory capacity, therefore, become heterogeneous. The consequences
of heterogeneity in a human’s cognitive capability can then be simulated by using these
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models jointly with human-subject experiments. This is entirely in the spirit and the
vision of Simon (2000).12

3.3.2 Satisficing and the Aspiration Level

Satisficing is the other intimately-related notion which is of importance to ACE. Sat-
isficing, as opposed to optimization, is the objective of a boundedly rational agent
according to Simon (Simon, 1955a). This objective is achieved by looking for good
enough solutions, which in turn are judged by aspiration levels. Intuitively, satisficing
is more general than optimization, because one can aspire to find the ‘best’. Satisficing
is a natural consequence of a limited computational capacity and is also a common
characteristic of various decision making organisms.13 In the story Apple (Section 3.2),
Hugo with his set of heuristics (rules) is an example of a satisficing agent, whose sub-
problems can be seen as: what to focus on, how to evaluate, and when to stop.

A prototype of a computer agent (a machine with built-in mechanisms) behaving in
a satisficing manner, and placed in an uncertain environment, can be found in Newell
(1955). Newell’s program appears to be a more concrete format of what Simon has pro-
posed in Simon (1955a, 1956), including his story Apple. The intention of Newell (1955)
is to program the computer to learn to play good chess. Chess is one of Simon’s favorite
theoretical settings, because its problem space is as massive as Hugo’s castle and yet
bounded; in fact, its possible states can be entirely derived from the rules of the game.
In Newell’s program, the machine decides which action to take based on answering
questions that are arranged in a goal structure, and the program is characterized by a
set of rules. Learning happens when the set of rules changes over time.

In an act of deciding what to do, there are a few sub-problems that need to be an-
swered first (an act of divide and conquer); they are problems related to consequences,
horizons, evaluations, and alternatives (Newell, 1955). The key to answering these
questions lies in a thorough understanding of heuristics, aspiration levels, and sets of
rules that the program (computer agent) can use. The architecture of this program co-
incides with the idea of list processing and genetic programming, which suggests that
the satisficing procedures can be more sensibly brought into ACE models.

In fact, the satisficing behavior has been extensively included in many ACE models,
in particular, the recent advent of agent-based macroeconomic models. In these mod-
els, the behavioral adjustments of households and firms, ranging from consumption,
pricing, production, and employment to wages, are not based on the pursuit of opti-
mizing a specific target function, but are based on some satisficing criteria, normally
formed as threshold-based rules or routine-based rules. Take the buffer stock rule, one of
the frequently used rules in agent-based macroeconomics, as an example. By this rule,
the agent will figure out a normal income level, and adjust his consumption based on
his current income and this normal income level (Raberto et al., 2008; Cincotti et al.,
2012). As a generalized behavioral model of this kind we may assume that agents
will basically follow a constant relation between consumption and income, a lifestyle,
unless they experience some “unusual” changes characterized by some pre-selected
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indicators (thresholds). In fact, using what we did yesterday as a default unless some
unusual conditions are met may be quite familiar; this habitual heuristic may be con-
sidered a kind of fast-and-frugal heuristics.

The adjustment of the aspiration level is one of the key components of satisficing
behavior. Simon (1955a) perceives the aspiration level to be tied to the cost of search.

The aspiration level, which defines a satisfactory alternative, may change
from point to point in this sequence of trails. A vague principle would
be that as the individual, in his exploration of alternatives, finds it easy
to discover satisfactory alternatives, his aspiration level rises; as it finds it
difficult to discover satisfactory alternatives, his aspiration level falls. (Ibid.,
p.111)

This dynamics of the aspiration level has also been incorporated into the ACE liter-
ature through its acceptance of prospect theory in general (Mueller and de Haan, 2009;
Cincotti et al., 2010) and the reference points as an important decision anchor (Hommes,
2011). In addition, the recent developments in the field of ACE indicate that social pref-
erence can be another determinant of the dynamics of aspiration levels. People may
anchor their aspiration levels to the satisfaction levels achieved by their neighbors as
defined by their personal networks (Chen and Gostoli, 2012; Zschache, 2012) or anchor
their aspiration levels to their social identities (Delli Gatti et al., 2011).

Having reviewed the connections between Simon and ACE at the level of agents
(the left block in the middle layer of Figure 1), we now shift our focus to that of the
system as whole (the right block).

4 Complex Systems - Modularity

The complex system approach to the social sciences is another aspect of Simon’s legacy
that has had an influence on ACE. We observe, however, the Simon’s impact of com-
plex systems on ACE is weaker than that of bounded rationality. One property that
makes Simon’s idea of complex system unique is that of hierarchy, which is in fact an
ubiquitous property of many complex systems. Despite the divergence of views on
complex systems between Simon and ACE, we think there is a need to raise the ques-
tion as to whether Simon’s idea of complex systems can have more of an impact on
ACE today.

The way in which one can explore and understand a complex system is in itself
nontrivial, especially if cognitively constrained agents are engaging in such a task.
From an observer’s point of view, we try to identify the key forces that govern the
behavior of entities in the system. However, from a stakeholder’s perspective, his
limited capacity may only allow him to act locally with a few relevant entities. It is
important to remember that the world may not appear to be so complex for the agent
within the system in the same way as it is to the observer who is analyzing the system.
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Figure 3: The relationships of modularity, near decomposability and chunking

No matter which perspective we choose to adopt, a recurrent property that aids in
understanding and coping with complex systems is that of modularity.

Modularity is also a modern terminology that refers to Simon’s idea of hierarchy in
complex systems. Callebaut and Diego-Rasskin-Gutman (2005) is a collection of dis-
cussions on modularity from different aspects, in which Simon’s contributions have
been explicitly acknowledged. The word modularity, although not coined or used by
Simon, is an adequate and a broad concept that encompasses two distinct ideas pro-
moted by Simon, namely, near decomposability14 and chunking. However, there is no
clear distinction between the two mentioned in the literature. Therefore, we would
like to emphasize here that near decomposability and chunking are two sides of the
same coin (modularity): chunking is the bottom up concept of the development of a
complex being and near decomposability is a top-down perspective for finding ways
to simplify problems. Both of these notions have connections to hierarchy, and conse-
quently, to modularity. See Figure 3 for an illustration. Near decomposability is tied
to the perspective of an observer who tries to understand or predict the behavior of a
complex system. It is also the unifying hypothesis that helped Simon to understand
a variety of complex systems - such as physical systems, symbolic systems, human
minds, and social systems (Simon, 1962, 1995, 1996a) as an observer.

Chunking, on the other hand, involves assembling several symbols (pieces of in-
formation) into a unit for recognition and operation in problem-solving tasks15. A
chunk can further be joined with other chunks to form a bigger chunk. The ability to
chunk is believed to be an important skill for any effective performance of complex
tasks. The role of chunking (interpreted as recognizing and classifying patterns) in
complex games such as Chess and Go is well documented (Newell and Simon, 1972;
Gobet et al., 2004; Kao, 2013). We consider modularity, in terms of chunking, as an
important element for learning and evolution. We will now explore both aspects -
chunking and near decomposability - in greater detail with a focus on its relevance to
ACE.
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4.1 Complex Systems and Near Decomposability

The economic world that we study is often interconnected, complex and not fully de-
composable. This in part renders the superiority of ACE, which focuses on the interac-
tions among the actors in a system, and makes it a prominent alternative approach to
the conventional economic analysis (Stiglitz and Gallegati, 2011). However, when the
linkages among the actors are not equally strong, the weak feedbacks can be ignored
in the short run. In that case, the description and the simulation of the model can be
simplified. For builders of ACE, near decomposability can help make simulations bet-
ter structured and a little smarter, following the principles of parsimony in modeling.
Koza (Koza, 1994) has also emphasized that fact that decomposition is the regularity
that appears in many situations.

Partial equilibrium analysis in economics employs the assumption of other things be-
ing equal, so that one can analyze the effect of specific changes in a particular market
or a sector at a time, when neglecting others. This assumption contravens to the fact
that economic sectors do interact or that these interactions can be ignored for the pur-
poses of investigation. When there are changes in one sector and these changes affect
the other sectors nontrivially, it may not be admissible to state that the other sectors
can remain unchanged. Even in the case of models based on general equilibrium, for
example, DSGE models, interactions are very often ignored.

Built upon the representative agent (RA) framework, [DSGE] rules out most
of the key macro-economic interactions by assumption: since most of what
is relevant in economics concerns interaction and coordination of hetero-
geneous agents, the RA framework undermines macroeconomic analysis.
. . . In order to develop sound micro founded models, requires a methodol-
ogy which allows for the interactions of economic agents and their links in
a networked economy. . . . A model with heterogeneous agents (ABM) inter-
acting in a network has to be seen as a first step toward modeling serious
microfoundations. (Stiglitz and Gallegati (2011), p.6-7)

When sectors are dependent on each other, the analysis becomes more difficult.
This depends on the degree of coupling that exists between sectors, given the specific
change that is being investigated. One noticeable observation is that the interaction
between two sectors is not necessarily symmetric (Goodwin, 1947). This asymmetric
interaction is referred to as ‘unilateral coupling’ and is related to the idea of ‘causal’ or-
dering which is investigated in Simon (1952, 1953) and Simon and Rescher (1966). The
notion of a nearly decomposable system plays the role of reducing the difficulty and
complication of analyzing coupled systems, a good property of parsimony that science
looks for (Simon, 2001).

Analogous to an economic system solving a problem, Simon considers the phenom-
ena of thinking and the evolution of organisms themselves as problem solving (Simon,
1995, 1996a). The key connection according to him is that the mind and organisms
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have a hierarchical structure16. If the structure is nearly decomposable, we can inves-
tigate the system with a certain degree of isolation. The speed of convergence - that is,
finding a solution- within any subsystem is faster than it is between subsystems. There-
fore, if the system is nearly decomposable, only the output of a certain subsystem will
influence other subsystems. Furthermore, a nearly decomposable structure has certain
implications for the nature of the evolution of the system as a whole. In Simon (2002), it
is concluded that the organisms with a nearly decomposable structure, no matter how
complex they are, will evolve faster than the organisms that have an indecomposable
structure. Again, if evolution is viewed as a process of finding solutions, organisms
with nearly independent components will need less time to find the solution than the
ones without nearly independent components. Having discussed the importance of
near decomposability in the study of complex systems in general, we now focus on the
specific role of near decomposability within ACE.

4.1.1 Why or Why not ACE needs Near Decomposability

Simon had long observed that the complex systems have regularities that range far be-
yond chaos and unpredictability alone. Near decomposability is a property that allows
us to break a system into subsystems, where mutual dependencies are not identically
strong. These weak connections can be conveniently assumed to be negligible for the
moment and the description of the system can be simplified. However, if at a certain
level of decomposition, the model still fails to interpret or predict the real phenomena,
we need to break the system further down. We cannot treat the actors in economic sys-
tems (agents or organizations) in terms of simple reaction functions. Instead, as each of
them constitutes a complex system, their detailed architecture needs to be explored as
demanded by the problem at hand. That is also why we see some developments within
agent-based modeling that are geared towards moving hand in hand with advances in
cognitive psychology and neuroscience.

Taking the point of view of reductionism, all observed phenomena are emergent
properties that trace their origin all the way back to quark. However, as a social scien-
tist who tried to understand complex social phenomena, Simon was of the view that
decomposition to a neural level was more than enough. In fact, Davis (2013) brings out
the idea of decomposability to the emergence of ACE and suggests that the basic unit
of simulation is not the individual, but the rules (bits) embedded in the individuals.
However, what is perhaps lacking in contemporary agent-based modeling has to do
with interactions that take place at an organizational level.

We also find that the ACE literature, as it stands now, lacks a consensus on how to
best characterize different institutions within models of economic and social systems.
The most prevalent practice seems to be a binary characterization: individuals and
the aggregate. Simon’s suggestion was to view the relations between each level of
the system in a hierarchical fashion, an idea that dates back to Simon (1962). Such
relations are recurrent across the board according to Simon, regardless of whether they
are between neurons and the mind, mind and behavior, individuals and organizations,
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or organizations and social systems. He observed that each of these systems, which are
potentially complex, are governed by similar modular structures.

However, a comprehensive review of the ACE literature may lead one to find that
most agent-based models developed so far are confined to only two levels, such as
the individual-market hierarchy and the firm-market hierarchy. The recent develop-
ment of agent-based macroeconomics does provide a three-level hierarchy, individual-
market-aggregate. Nonetheless, even in this case, these levels are given exogenously.
For example, firms are not endogenously formed through individuals. Hence, by and
large, it may be fair to say that we have not seen agent-based economic models as
being able to demonstrate the evolving hierarchical near-decomposable systems as an
essential characterization of complex adaptive systems. One may anticipate that the
agent-based models of organizations, specifically those focusing on internal organiza-
tions, may have some behavioral algorithms to form hierarchies endogenously. How-
ever, as Chang and Harrington (2006) have shown in their survey article, such work is
rare, and it is still so.

On the other hand, ACE has started to take inspiration from Neuroeconomics (in
particular the dual system hypothesis) to build software agents (Chen, 2014). It is
not clear how much understanding of the phenomena might be blurred by looking
at the relations between neurons and social networks directly and what is the cost of
overlooking these important acting middle levels. It is also arguable for the ACE com-
munity to question whether the hierarchical fashion in a complex social system can be
unambiguously defined. Information flow among actors is perhaps the essence of so-
cial computations. Due to the breakthroughs in the Internet and platforms of social
interaction, the format of information flow has gone beyond the conventional under-
standing that is underlined by institutions (for example, departments and colleges),
and hence has transcended what Simon could have imagined in his time.

Social scientists might argue that in today’s world, with the revolution in informa-
tion technology, everyone is almost fully connected (via the Internet) and thus near
decomposability might not be valid any more. So one might argue that the complex
social systems that we are capable of studying today, like in ACE, have managed to go
beyond the demands of near decomposability in terms of structure, and thereby ad-
vancing beyond Simon’s vision in some respects. However, it is important to remem-
ber that while social media provides new means for people to connect with each other
faster and in a less costly way, the question of purposiveness behind the establishment
of such a connection or a formation of a social network is yet not fully understood. At
the least, we can say that the importance of near decomposability for ACE still remains
inconclusive.

4.2 Chunking Theory

Chunking theory has important applications in the organization and characterization
of knowledge. The idea of chunks, although not proposed by Simon, was heavily built
in Simon’s research on expertise, which is an interdisciplinary ground of psychology,
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cognitive science and computer science. Some of Simon’s pupils and colleagues in the
area of computer science had elaborated this approach in detail in relation to the field
of expert systems, with particular reference to human cognition and memory, such as,
Feigenbaum and Simon (1984); Gobet and Simon (1996, 2000); Gobet et al. (2004). The
central questions of this research program involve understanding how human beings
develop expertise in a specific, complex field or a task.

Following the Miller tradition (Miller, 1956), Simon was aware that the size or orga-
nization of chunks rather than the number of chunks matters for the excellent perfor-
mance of agents. However, the natural result that happens to an expert who is in a field
for over 10 years is that there are more than 50,000 chunks that are accumulated over
time (see, for example, Simon, 1996b, p.89). If the size of short-term memory is really
small and similar across human minds, then it is possible to conjecture that experts will
further group the isolated chunks into bigger chunks and only retrieve the sub-chunks
when necessary. In other words, experts may organize their chunks in a better and
more complex fashion, and at the same time evolve better heuristics to access subpor-
tions if and when necessary. A piece of evidence can be found in Simon and Schaeffer
(1992) which demonstrates the expert-novice differences in the task of memorizing
chess board configuration. The experiment shows that the expert can reproduce a con-
figuration from a famous game (around 25 pieces) quite correctly with only 5 seconds
of staring time. Unsurprisingly, the novice can at best retrieve 4-5 arbitrary pieces.
However, when both of them are presented with a random and ‘meaningless’ configu-
ration, the expert and the novice perform equally badly. This immediately shows that
the expert is not ‘smarter’ in terms of the ability to memorize, but has the ability to
recognize the meaningful chunks on the board in a very short time17.

One of the immutable laws in the ever changing world is that individuals never
cease to learn, and what Simon suggests is that they learn by chunking or modulariz-
ing. In fact, for a complex adaptive system to grow or to improve, the ability to chunk
can be seen as a necessary property. To handle huge computer programs well, one re-
quires a modular design, and to become an expert in a particular domain, one needs
to have a modular thinking and modular memory for keeping an immense amount of
symbols and information, despite the severe limitations of memory capacity.

Going back to the Apple story (Section 3.2), Hugo is definitely gaining more under-
standing about the castle, and the more he knows, the more picky he becomes. We
know for sure that he is learning to acquire tastes; however, it is not clear how he grad-
ually prefers one kind of bread over the others. His experience and memory play a
heavy role in shaping his tastes. It is quite obvious that his behavior cannot be inter-
preted well in terms of Bayesian learning (a kind of optimal learning), because the state
of affairs that Hugo experiences is neither fixed nor infinite.

It is important to note that GP also uses a similar, modular structure in its encapsula-
tion of knowledge (Roberts et al., 2001). Although chunking theory has been applied to
agent-based modeling in other fields, for example, linguistics (Liang and Zhao, 2005),
it has not yet gained popularity within the ACE community. We believe that the no-
tion of modularity in genetic programming is perhaps the right direction to explore
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Figure 4: ACE and Simon through Peirce

this property (Chen and Wang, 2011).

5 Scientific Discovery and Market Design

After seeing the connections between Simon and ACE at both the individual level and
the system level, we now move to the top layer of Figure 1 and address the connection
between the two in a simulation from an epistemological viewpoint. The layout of
this section is first summarized in Figure 4. We begin by asking: what is the mode
of unearthing new knowledge that ACE has to offer? How is it different from the
rest of the approaches that already exist, and can we know more? To answer this
question, we need to focus on an important aspect of Simon’s contributions to the
philosophy of science and, in particular, to the logic of scientific discovery (Simon,
1977; Langley et al., 1987).

Social sciences that empirically examine the complex interaction of entities are often
categorized as sciences of induction. On the other hand, orthodox economic theoriz-
ing that is underpinned by axioms, assumptions and infinite iterations, is in fact best
approximated as a branch of applied mathematics, where the possible outcomes of
the enquiry are obtained from deduction. While deduction and induction are the two
familiar types of reasoning, one has to realize that agent-based computational model-
ing and simulation constitute neither a method of deduction (theory), nor a method of
induction (statistical inference). The distinction from the usual deduction and induc-
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tion has been well acknowledged by economists and social scientists (Axelrod, 1997;
Axelrod and Tesfatsion, 2006; Gallegati and Richiardi, 2011; Halas, 2011).

Axelrod (1997) proposes that agent-based social simulation can be considered as the
third approach, that is, in addition to deduction and induction, to science.

Simulation in general, and ABM in particular, is a third way of doing sci-
ence in addition to deduction and induction. Scientists use deduction to
derive theorems from assumptions, and induction to find patterns in em-
pirical data. Simulation, like deduction, starts with a set of explicit as-
sumptions. But unlike deduction, simulation does not prove theorems with
generality. Instead, simulation generates data suitable for analysis by in-
duction. Nevertheless, unlike typical induction, the simulated data come
from a rigorously specified set of assumptions regarding an actual or pro-
posed system of interest rather than direct measurements of the real world.
Consequently, simulation differs from standard deduction and induction
in both its implementation and its goals. Simulation permits increased
understanding of systems through controlled computational experiments.
(Axelrod and Tesfatsion (2006), p. 1650.)

While Herbert Simon, to the best of our knowledge, did not address this issue di-
rectly, he did notice the limitation of normal induction.

Students are always told that they can’t run a successful experiment if they
don’t have a hypothesis. ...I believe that is a very bad criterion for the design
of experiments....If you look down the list of outstanding discoveries in the
physical sciences or the biological sciences - look at Nobel awards in those
fields - you will note that a considerable number of the prizes are given
to people who had the good fortune to experience a surprise. (Simon et al.
(1992), p. 22; Italics Added)

At this point, agent-based simulations are related to Simon’s comment since some
emergent phenomena coming out of agent-based simulations bring us novelties and
surprises, which inspire us to make hypotheses of these observations (Figure 4). In this
sense, some social scientists, such as Gallegati and Richiardi (2011) and Halas (2011),
also relate agent-based social simulation to what Charles Peirce (1839-1914) called ab-
duction or retroduction.18 Peirce advocated that there is a type of logical reasoning be-
yond deduction and induction. He called this unique type of reasoning abduction, and
suggested that it was the logic of discovery (Peirce, 1997). While, for many philoso-
phers of science, abduction is treated as a part of induction, Peirce forcefully distin-
guished between the two by indicating that induction is about the test of an estab-
lished hypothesis using observations, and that abduction is about the formation of the
hypothesis.

The connection between Simon and Pierce on abduction is also noticed (Velupillai,
2010a).19 Simon (1998) explicitly supports the view that the aim of science is to dis-
cover, and the process of discovery is neither in the form of pure deduction, nor pure
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induction. However, Peirce’s original notion of abduction is not entirely clear, and its
vagueness has invoked many objections. Simon (1973) actually clarifies the notion of
Peirce’s retroduction.

Peirce coined the term ‘retroduction’ as a label for the systematic processes
leading to discovery....It is the aim of this paper to clarify the nature of retro-
duction, and to explain in what sense one can speak of a ‘logic of discovery’
or ‘logic of retroduction.’ ” (Ibid, pp.471-472)

Simon (1973) presents two examples to demonstrate the retroductive process of law
discovery: recoding a sequence of letters and concept attainment. He states: “A law-
discovery process” is a process for recoding, in parsimonious fashion, sets of empirical
data. This passage can be understood by reading Simon (2001), where he elaborates
that parsimony is the criterion for choosing among possible explanations. This idea
has the agreement of what is stated as being the “best explanation” in the following
quotation

Peirce’s abduction is now generally identified with more developed and re-
fined version called inference to the best explanation (Harman 1965; Lipton
2004), which seems to solve the problem of both what hypothesis we draw
from available data, as well as why we prefer that particular hypothesis.
(Halas (2011))

Hence, abductive reasoning is close to hypothesis discovery. When a phenomenon
is observed, the first question is to find hypotheses that can explain the phenomenon
(what), but there is always more than one explanation, so the next question is to find
the best explanation (why). The simplicity principle or the parsimony principle under-
lying scientific discovery, also known as Occam’s razor, as suggested by Simon, has a
great influence on the ACE practice. In the ACE community, the parsimony principle
has received an even more romantic name, the KISS (keep it simple, stupid) principle, as
originally proposed by Robert Axelrod (Axelrod, 1997).20

The cellular automaton models (Section 2), such as the Schelling segregation model
(Schelling, 1971), the Albin Spatial Prisoners’ dilemma model (Albin, 1992), and the
Keenan-O’Brien local oligopolistic competition model (Keenan and O’Brien, 1993), show
how complex patterns can be formed using simple agents interacting with each other
in a social network by following simple rules. The key message of these models is two-
fold. First, complex unpredictable patterns can emerge from very simple homogeneous
interacting behavior. Second, a small change in the individual rule may fundamentally
change the nature of the system dynamics from a lower hierarchy of complexity to a
higher hierarchy of complexity. This also motivates the name, the ‘edge’ of chaos, that
is, a slight change of the rule on this edge will either result in a stable pattern or a
chaotic pattern. The unexpected complexity of the behavior of these simple rules leads
us to suspect that complexity in nature may be due to similar simple mechanisms. 21
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Epstein and Axtell (1996) is probably the first study introducing the agent-based
model in the study of big history. In Epstein and Axtell (1996), the fundamental collec-
tive behaviors, such as group formation, cultural transmission, combat, and trade, are
seen to emerge from the interaction of individual agents following a few simple rules.
In agent-based financial models, it is found that the models with simple heterogeneity
and simple rules, in particular the variations of the fundamentalist-chartist model, are
sufficient to replicate a number of stylized facts. A complex extension of this model
may gain additional explanatory power, but so far this power has not been well ex-
ploited (Chen et al., 2012). In addition, the simple model makes the later econometric
estimation much more feasible.

Maybe, the most prominent example is the simple device, the zero-intelligence agents
(Gode and Sunder, 1993). The zero-intelligence device is actually the application of the
maximum entropy approach to agent-based modeling (Chen, 2012). The capability of this
approach to replicate complex financial dynamic systems shows that some aggregate
phenomena generated from human-agent systems with complex motives and behav-
ioral rules can be rather well approximated by a system with simple agents charac-
terized by simple motives and simple rules. In a sense, it indicates that adding more
complex strategies to the agent-based models may have little macroscopic effect if these
complex strategies may interact in such a way that they mutually annihilate the forces
of each other. It is this possibility prompting many of us to think about a general
physical system which is equipped with the most rudimentary forces but can overarch
several seemingly unrelated social phenomena, for example, from pedestrian counter-
flow to the Schelling segregation model (Vinković and Kirman, 2006), to the El Farol
Bar problem (minority games), and then to financial markets.

5.1 Preferential Attachment

The search for the universal pattern underlying different disciplinary phenomena is in
line with the pursuit of the parsimony principle. In his book Physics of Social Phenom-
ena: An Essay on Human Development published in 1835, Adolphe Quetelet (1796-1874)
had already attempted to search for some statistical laws underlying a class of social
phenomena. Efforts in search of the universal pattern have been further elucidated
by Simon (1955b), who tries to identify a class of distributions which are applicable
to rather extensive social and natural phenomena. These distributions include two
skewed distributions, which are frequently cited in the ACE community, one being the
Pareto distribution of income and the other the Zipf distribution of the frequency of
the occurrence of words. Simon’s pioneering work provides an empirical foundation
for one kind of universality which motivates physicists to work on economics or the
social sciences.

The skewed distribution studied by Simon has been constantly followed and ex-
tended by others in the economic literature and, recently, also pursued by the ACE
community. The development of this literature can be roughly characterized by three
directions. First, the skewed distributions are found to be applicable to many more
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economic variables. In addition to income and wealth, they have also been applied to
firm size, asset returns, city size, film returns, innovation size, and so on (Gabaix, 2008).
The second direction concerns the statistical or econometric techniques chosen to iden-
tify the appropriate skewed distribution among many possibilities. In addition to the
frequently-cited Pareto and Zipf distributions, there are lognormal and Yule distribu-
tions plus many generalizations of them that are often considered by the ACE com-
munity. These distributions may look similar by simply eye-browsing. Therefore, the
distinction among them requires deliberate statistical analysis (Gallegati et al., 2006).

One important reason for distinguishing different skewed distributions is that they
may be associated with different underlying mechanisms. An example shown by Si-
mon is that depending on whether the birth process is involved, one can have ei-
ther a Yule distribution or lognormal distribution (Simon and Bonini, 1958). There-
fore, the third development in this line is to build the theory or offer explanations
that underlie these distributions. The mechanism proposed by Simon is a cumula-
tive advantage mechanism, which is based on an early work by a British statistician
Udny Yule (1871-1951). Later on, this mechanism, also known as preferential attachment,
was applied to form the scale-free network by Albert-László Barabási and Réka Albert
(Barabási and Albert, 1999), and had a great influence on the literature of complex net-
works in general (Mitzenmacher, 2004; Gabaix, 2008) and on ACE models specifically
(Alfarano and Milakovic, 2009; Alam and Geller, 2012; Cederman, 2002; Page, 2012).22

5.2 Simulation and Design

There are two related ways in which simulation can provide new knowl-
edge - one of them obvious, the other perhaps a bit subtle. The obvious
point is that, even when we have correct premises, it may be very difficult
to discover what they imply. All correct reasoning is a grand system of tau-
tologies, but only God can make direct use of that fact. The rest of us must
painstakingly and fallibly tease out the consequences of our assumptions.
(Simon (1996b), p.15)

The uniqueness of ACE, as the third way of doing science, is its use of simulation as
a primary tool for discovery. In other words, if we don’t run a simulation, we simply
cannot be assured what may happen. This property is coined as computational irre-
ducibility by Stephen Wolfram (Wolfram, 2002). According to Wolfram (2002), if the
behavior of a system is not obviously simple, then it will generally be computation-
ally irreducible, which means that the only way to predict its evolution is to run the
system itself. There is no simple set of equations that can look into its future. By dis-
tinguishing the phenomena known as computationally reducible from those known
as computationally irreducible, Wolfram (Wolfram, 2002) argues that the conventional
sciences are mainly efforts devoted to computationally reducible phenomena. A new
kind of science can then be considered to be a paradigm shift toward the study of com-
putationally irreducible phenomena. Wolfram’s proposal is not limited to physics or
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biology. If one applies this irreducibility characterization to economics or the social
sciences, one can equally perceive a new kind of economics or a new kind of social
science; for example, see Borrill and Tesfatsion (2011).

Not only in practice, but now also in theory, we have come to realize that
the only option we have to understand the global properties of many social
systems of interest is to build and run computer models of these systems
and observe what happens. (Ibid, p. 230; Italics, added.)

As also mentioned in Vriend (1995), “...we are interested in those regularities that can-
not be deduced from the built-in properties of the individual agents or some other
microeconomic aspect of the model; at least not by any argument which is substan-
tially shorter than producing that regularity by running the simulation itself. (Ibid,
p.212)” As a footnote to this quote, Vriend added “Clearly, the emergent behavior and
self-organization are a function of the underlying configuration. The relevant point is,
however, the following. Given a certain model with a certain parametrization, can one
reason, that is, without running a simulation, which functions of the parametrization
the outcomes are? (Ibid, p. 228)”.

Through agent-based modeling and simulation, one can navigate into the territory
of computational irreducibility, and explore both “known unknowns” and “unknown
unknowns”. This endeavor may be useful for market design and policy design. As
eloquently described by Mirowski (2007), markets in the history of economic theory
have either been taken for granted or have been simplified into just exchange behavior
or have been lumped together as abstract entities. The recently arising field of mi-
crostructure in finance and market engineering draws our attention to the complexity
and variety of markets (Roth, 2002; Mirowski, 2007). Markets are not created by nature,
but are artificial; like other man-made artifacts, markets evolve over time. Successes
and failures are constantly seen in the course of the evolution. McMillan (2003) has
a rich collection of illustrations. Since a market design is not just about a set of rules
operating the market, but also involves agents’ behavior under these rules, either indi-
vidually or collectively through their interactions, it will not be hard to be convinced
that market processes can generally be computationally irreducible. If so, market de-
sign as a science can benefit from the involvement of agent-based modeling and sim-
ulation. Currently, ACE have been applied to financial markets, electricity markets,
fish markets, housing markets, school admission systems, national lottery design, tax
evasion, futures markets, and labor markets. It is a matter of time to see when the state
of the art will advance into reality.

For Simon, simulations or viewing economic entities’ behavioral rules as computer
programs are ways to explore problems and find out possible solutions:

The use of computer simulations will also enable economics to build real-
istic theory of firm that will go far beyond the traditional production func-
tion and short- and long-run cost curves into characteristics of organization
structure and human motivation and their consequences for the decision
making process. (Simon (2000), p.36)
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ACE can be seen as a continuation of what we quote from Simon. It will provide a
realistic theory of markets, hierarchies, and networks by bringing light to deep dark-
ness in the sea of complexity.

6 Concluding Remarks

Based on what we have reviewed in this chapter, it is clear that Simon’s connection to
ACE is probably more comprehensive than that of Thomas Schelling, Elinor Ostrom,
or Friedrich Hayek. Yet, this connection has been much ignored by the ACE commu-
nity, and, sometimes, has been simplified to just ‘bounded rationality’. In this chapter,
from a computational-theoretic underpinning, to artificial cognitive and psychologi-
cal agents, to complex systems, and further to the epistemology of simulation (Figure
1, once again), we give a more thorough systematic treatment, by extending Simon’s
‘one-dimensional’ connection with ACE into a ‘multi-dimensional’ one.

Of course, by ‘connection’, we carefully mean that the current state of ACE was de-
veloped largely outside of Simon’s influence. However, establishing this connection
can still be useful. For example, many ACE models tend to ignore their computational
theoretical underpinnings, and underestimate the complexity of the ACE models as
abstract machines, such as Turing machines. This ignorance and the subsequent igno-
rance of the undecidability property may lead us to be overconfident for the effective-
ness of validation and robustness checks when an effective algorithm to perform these
jobs does not even exist (Velupillai and Zambelli, 2011).

In addition, by ‘connection’, we also mean that ACE may not fully stand on the same
side as each argumentation made by Simon. Whether the system has to be near decom-
posable to be scientifically interesting is not immediately clear for ACE. Presumably,
every single unit (decision maker) can depend upon every other decision unit without
being guaranteed a fixed sub-structure. The network connecting them may constantly
evolve (Davis, 2013), which causes the identification of near decomposable subsystems
to be very challenging. However, at this point, ACE cannot formally address this ques-
tion because as we mentioned earlier most ACE models have only two layers. A truly
hierarchical ACE model is yet to be seen.

“When one finds a vein of gold, was it nature who lost it? If we can find
gold that we haven’t lost, perhaps we can answer questions that we haven’t
asked. ...Hence the dictum of Pasteur: “’Accidents happen to the prepared
mind.”’ Simon (1991), p. 369

Simon’s scientific odyssey was driven largely by one question: how do human be-
ings solve problems? To his surprise, this question led him to many interesting sub-
problems that he needed to find answers to in different spheres, and he never had
to find a new problem to solve! His wonder was not only restricted to “individual”,
but also to any economic or behavioral unit. All the economic entities are subject to
limited time and computational capacity in solving problems, and yet they are able to
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cope with the complex environment with their own heuristics. All precisely specifi-
able heuristics are programmable and hence a paradigm like ACE provides a suitable
laboratory for observing the results of interacting economic entities.

We have identified many possible channels through which the legacy of Simon is
carried on in today’s ACE. We have also suggested ways in which one can carry ACE
a little bit further towards Simon’s views on rationality and complex systems. For
example, first, we are concerned with whether the evolution of heuristics (strategies)
can rake place in more human-like ways; second, we feel that adding one more level
to the agent-based modeling - as institutions in between individuals and aggregate
phenomena - can enhance our understanding and discovery of the complex systems as
perceived by Simon.

Simon described himself as a scientist of problem solving and he believed that sci-
entific knowledge is piled up by a series of actions of problem solving. By standing on
Simon’s shoulders, we aspire that ACE, when it reaches maturity, can provide useful
knowledge for extracting gems from complexity.
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Notes

1Simon may never have used the term modularity, while his notion of near decomposability was
frequently renamed as modularity inthe literature (Egidi and Marengo, 2004), and Simon did not seem
to object to this different name (Callebaut and Diego-Rasskin-Gutman, 2005). Of course, one has to pay
particular attention to the fine difference between the two. In particular, modules, as manifested in
many concrete applications, may be viewed as only parts of near-decomposable systems. They serve
as the elementary units, which are fully decomposable and fully encapsulated and upon which near
decomposable (weakly-interacting) systems can be built. More discussion can be found in Section 4.

2John Davis (Davis, 2013) has recently made an attempt to place agent-based models in the context of
Simon (1962). Using what is called the Simon Hierarchy, his work prompts us to reflect upon agent-based
models as complex adaptive systems. The essence of Davis (2013) will be reviewed later in this chapter.

3For example, we have had a brief overview of the collected papers of Simon and about Simon, such
as Simon (1957, 1977, 1979a, 1982a,b, 1989); Klahr (1989); Simon et al. (1992); Simon (1997); Augier and March
(2004), and Herbert A. Simon (3 volume set) (Wood and Wood, 2007), and we have found almost no such
connections.

4Simon’s discussion along with all other abstracts of papers presented at the meeting were reported
in Report of the Harvard Meeting, August 31-September 5, 1950, Econometrica, Volume 19, Issue 1, pp.
55-72. The one-page discussion was later collected by Simon in Simon (1977), chapter 4.1.

5See Velupillai and Kao (2014) for the details.
6 Simon was quite pleased to see a demonstration of zero-intelligence agents (Gode and Sunder,

1993):
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A parsimonious economic theory, and an empirically verifiable one, shows how human
begins, using very simple procedures, reach decisions that lie far beyond their capacity
for finding exact solutions by the usual maximizing criteria. A recent example that I like
is the work of Shyam Sunder ... and his colleagues on the equilibrium of markets with
‘stupid’ traders, and the near indistinguishability of such markets from those with opti-
mizing traders. When we have remade economic theory on that model, we will be able to
write honest textbooks. (In Simon’s letter to Kumaraswamy Velupillai, on 25 May, 2000,
reprinted in Velupillai (2010a), p. 409-410.)

The reader can also refer to p. 30 in Simon (2000) for more discussion on zero-intelligence agents by
Simon.

7Simon (1956) describes a circumstance where an organism is searching in an environment where
the aim to satisfy its goals. The problem is designed in such a way that the desired objects are scat-
tered randomly in the environment, which has the form of a tree structure (nodes branching into other
different nodes). A few parameters quantify the environment, and other parameters quantify the phys-
ical constraints of the organism. With the aid of the parameters, the probability that the organism can
survive when faced with starvation can be calculated. The situation where the organism cares about
multiple goals can also be formulated using this model. This idea can be better understood if the paper
is read together with Simon (1955a). A more detailed comment from the point of view of computational
complexity can be found in Velupillai and Kao (2014).

8Hugo’s notebook is an analogy of the long-term memory, in our view. After he collected enough
data in the notebook, he began to identify patterns from history. For example, he even started to infer
the correlation between the color of the wall and the food presented on the table. In order to make his
choice slightly more effective, he needs to organize his database for good inductions. Simon seemed to
imply that inference is a very natural action that human beings acquire in the course of decision making.

9In genetic programming, these primitives are known as terminals or functions. Hence, technically
speaking, the agents’ set of terminals and functions may change over time, which helps them gain a
different representation of the problem surrounding them, even though the environment remains un-
changed.

10A chunk is generally defined as an organized or grouped unit that is familiar and can be recog-
nized by the subject. An relevant example is in English language. Each letter of the alphabet can be a
familiar chunk, and in turn, the vocabularies composed by permutations of letters of the alphabet are
also chunks. Likewise, familiar phrases or sentences composed of vocabularies are chunks as well. By
enlarging the organization of a chunk, one can essentially remember more bits of information without
being subject to the limitation on the number of chunks.

11There are a large number of ACE models built upon evolutionary computation algorithms, includ-
ing genetic algorithms (GAs) and genetic programming (Chen, 2002). These algorithms can be consid-
ered biased search in an immense space, which is close in spirit to Simon’s selectivity. In GAs, chunks
are known as building blocks. The implicit parallelism applied to evaluate a large number of building
blocks allows us to identify the promising search area, instead of blindly random search.

12See Simon (2000), pp. 34-36.
13For the formal discussion of this idea, the interested reader is referred to Velupillai (2010b).
14When the data are organized in a matrix, then decomposability can be understood with a rigorous

mathematical definition. A square matrix A is said to be decomposable if there exists a permutation
matrix P such that

PAPT
=

[

B 0
C D

]

(1)

Otherwise A is indecomposable. If 0 is replaced by a small amount ǫ, then A is nearly decomposable.
15See Simon’s famous watchmaker example in Simon (1962)
16Such a structure also appears in programs. Koza made it very clear in the introduction of Koza

(1994) that the automatically defined function can successfully solve many complex problems, especially
when the three-step hierarchical problem solving (divide and conquer) is activated. The three steps
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are decomposing, solving the subproblems and solving the original problem. This is squarely within
Simon’s approach to problem solving.

17According to other related experiments, the number of chunks that the expert can hold in the work-
ing memory is still governed by Miller’s magic 7.

18Peirce used the terms abduction and retroduction interchangeably in his early writings (Chiasson,
2005).

19See Velupillai (2010a), Appendix 2 of Part
20Having said that, we must also point out the opposition to this principle. The equally well-known

alternative is the KIDS (Keep it descriptive, stupid) principle, proposed by Bruce Edmonds and Scott Moss
(Edmonds and Moss, 2005). It was argued that social simulation models are different from analytical
mathematical models, hence the pursuit of simplicity should also change accordingly. The contrast
between KISS and KIDS is an on-going research issue in the methodology of social simulation. The
interested reader is referred to the special issue on “The Methodology of Simulation Models” of the
Journal of Artificial Societies and Social Simulation (Vol 12, No. 4, 2009).

Furthermore, even though the simplicity principle is generally known as the minimum description
length (MDL) principle and can be regarded as a generalized maximum likelihood principle (Rissanen, 1989),
one should be ready to accept any “surprise” that the ACE model may offer, and one such kind of
surprise is the inconsistency between the micro motives and macro behavior (Schelling, 1978). In fact,
given the observed aggregate phenomenon, by the simplicity principle, the most compelling hypothesis
is the one that is consistent between the micro and the macro level. Nothing can be more simple than
linear scaling-up. However, if we do so, we are back to the mainstream representative-agent approach
to economics, and are no longer doing ACE. Hence, what makes the Schelling model intriguing is that
the observed segregation phenomenon can actually emerge from a group of people who can each be
tolerant of different kinds (ethnicities) of people.

21Wolfram (2002) gives a quite lengthy discussion of the behavior generated by his cellular-automation
rule 30 (Ibid., p.27-30), and rule 110 (Ibid., p. 32-38), showing how extremely simple rules can generate
highly complex, random, unpredictable patterns. In addition, a one-bit change from the binary string
rule #126 to #110, may fundamentally change the nature of the system dynamics from a lower hierarchy
of complexity, namely, Class III (linear bounded machines) to a higher hierarchy of complexity, namely,
Class IV (Turing machines).

22The preferential attachment rule is an intuitive behavioral rule for the new nodes (newcomers, im-
migrants) for forming their personal networks with the existing nodes (local residents). Basically, the
newcomers will consider who are the most important persons in the town and attach higher probabil-
ities to connect with them. In the Barabási-Albert scale-free model, the importance is measured by the
number of connections. Hence, the nodes that have been already connected extensively will attract more
newcomers than those who are less connected. This idea of preferential attachment is similar to the classi-
cal “rich get richer” model proposed by Simon (1955b). In fact, the Barabási-Albert model which leads to
the power-law degree distributions is an independent rediscovery of earlier work by Simon (1955b) on
systems with skewed distributions. It can be interpreted as an application of Simon’s growth model in
the context of networks, readily explaining the emergent scaling in the degree distribution.
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