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Towards a Rational Theory of
Heuristics
Gerd Gigerenzer

Herbert Simon left us with an unfinished task, a theory of bounded
rationality. Such a theory should make two contributions. First, it
should describe how individuals and institutions actually make deci-
sions. Understanding this process would advance beyond as-if theories
of maximizing expected utility. Second, the theory should be able to
deal with situations of uncertainty where ‘the conditions for rationality
postulated by the model of neoclassical economics are not met’ (Simon,
1989, p. 377). That is, it should extend to situations where one can-
not calculate the optimal action but instead has to satisfice, that is, find
either a better option than existing ones or one that meets a set aspi-
ration level. This extension would make decision theory particularly
relevant to the uncertain worlds of business, investment, and personal
affairs.

Simon proposed satisficing as a general alternative to optimizing and
also used the term to refer to a specific decision-making heuristic. Con-
sider his account of why he studied political science and economics:
‘I simply picked the first profession that sounded fascinating’ (Simon,
1978, p. 1). This process is the essence of the satisficing heuristic, to set
an aspiration level that defines what a satisfactory option would be and
then choose the first alternative that meets that level. Satisficing can
deal with uncertainty, that is, with situations where not all alternatives
and consequences can be foreseen. The same rule is used for business
decisions. Developers of high-rise office buildings and malls report that
they decide in favor of an investment if they can get at least x return in y
years (Berg, 2014a), and BMW dealers price used cars by setting an aspi-
ration level and lowering it when the car is not sold after about 30 days
(Artinger and Gigerenzer, 2015). Satisficing is a heuristic in the adaptive
toolbox of individuals and organizations, but not the only one. When
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making his own retirement investments, economist Harry Markowitz
did not use his Nobel Prize winning ‘optimal’ mean-variance model,
but a simple heuristic. ‘I thought, “You know, if the stock market goes
way up and I’m not in it, I’ll feel stupid. And if it goes way down and
I’m in it, I’ll feel stupid,”’ Markowitz recalls, ‘so I went 50-50’ (interview
with Bower, 2011, p. 26). An equal split between bonds and equities is
an instance of the 1/N heuristic. When wealth is allocated across a menu
of N stocks (instead of stocks and bonds, as Markowitz did), studies indi-
cate that 1/N typically outperforms the mean-variance model in the real
world of finance, where the assumptions of the mean-variance model
are not met (DeMiguel et al., 2009).

Simon himself never systematically studied the heuristics in the adap-
tive toolbox, nor did he analyze the conditions under which these
heuristics are successful – their ‘ecological rationality’ (Gigerenzer and
Selten, 2001). Simon was well aware that he had provided a direction,
but not a theory.1 As he wrote to me shortly before his death, ‘I did not
want to give the impression that I thought I had “solved” the problem
of creating an empirically grounded theory of economic phenomena.
What I was trying to do is to call attention for the need for such a theory’
(see Gigerenzer, 2004, p. 406). Earlier, he had wondered why his call for
realism was received with ‘something less than unbounded enthusiasm’
and ‘largely ignored as irrelevant for economics’ (Simon, 1997, p. 269).
I believe the answer is that he challenged two profound methodological
commitments of neoclassical economists, the twin allegiance to opti-
mization and as-if theories (Berg, 2014b). Going beyond these, Simon
called for a shift towards:

1. Uncertainty: Analyze decision-making under uncertainty, where the
optimal action cannot be determined.

2. Process: Design formal theories of the process of decision-making
rather than as-if theories.

Let me explain. In this chapter, I use the term risk to describe situa-
tions in which all alternatives, outcomes, and probabilities are known
for sure. The prototype is the choice between monetary gambles where
all payoffs are well-defined. Correspondingly, I use the term uncer-
tainty for situations where not all is known or can be foreseen. Sim-
ilar distinctions have been made before. Knight (1921) distinguished
between measurable probabilities, that is, frequencies and propensi-
ties, and those that cannot be measured empirically: ‘a measurable
uncertainty, or “risk” proper . . . is so far different from an unmeasurable
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one that it is not in effect an uncertainty at all’ (p. 20). L. J. Savage
drew a comparable line between small worlds where Bayesian deci-
sion theory applies and situations where it does not. For instance,
Savage (1972, p. 16) believed it would be ‘utterly ridiculous’ to apply
Bayesian decision theory to problems such as planning a picnic or
playing chess, and for different reasons. Planning a picnic, like choos-
ing a profession, is an ill-defined situation, where it is impossible
to foresee every possible outcome and where surprises may happen.
Thus, the best course of action cannot be calculated in advance.
Chess, in contrast, is a well-defined game with an optimal sequence
of moves, which, however, no machine or mind can find. In tech-
nical terms, the game is computationally intractable – as are most
problems that computer scientists work on (Tsotsos, 1991). This dif-
fers from tic-tac-toe, where players can easily determine the best
sequence of moves, which makes it monotonous for all but small
children.

The prototype of an as-if theory is the Ptolemaic model, with the Earth
in the center and the planets and the sun orbiting around it in circles
and epicycles. Few astronomers believed that planets actually move in
such odd-looking epicycles; rather, the theory was designed as a guide
for making predictions about planetary positions. Based on Copernicus’s
heliocentric revolution, Kepler’s laws of planetary motion model the
actual process of movement, with the planets moving around the sun
in ellipses. After Ptolemy’s as-if theory was overthrown in favor of a
theory of the process, theoretical realism eventually led to better predic-
tions. In the natural sciences, moving from as-if to process is considered
progress. Not so in neoclassical economics. In his defense of as-if mod-
els, Friedman (1953) argued that the goal is not realism, but prediction.
Yet, as I will argue, and as seen in the above example, increased realism
is likely to improve prediction.

These two methodological commitments, optimization and as-if,
are closely related. The ideal of optimization requires full knowledge
of the relevant conditions and thus promotes as-if theories of eco-
nomic agents who inhabit a world of known risks, not uncertainty.
Yet in the real world of business, these risks (such as the space
of all possible outcomes and the probability distributions over out-
comes and payoffs) are often not known. The standard procedure of
neoclassical economics is to transform situations of uncertainty into
those of risk in order to be able to determine the best course of action.
Whether this optimal solution is actually optimal in the real situa-
tion (i.e., under uncertainty) remains up in the air. Consider chess
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again, where it is impossible to calculate the optimal sequence of moves
although it does exist. In order to optimize, an as-if modeler could
reduce the 8x8 board to a 4x4 board with a smaller set of figures.
Yet this method would contribute little to mastering the real game.
The alternative program is to accept that optimization has its lim-
its and instead focus on analyzing the heuristics that chess masters
and computer programs actually use. For some economists, however,
a model without optimization does not belong to economics and is
therefore inadmissible. Methodological commitments can unite a dis-
cipline but may also prove to be a mental straightjacket that inhibits
progress.

The Neoclassical Counterrevolution

If we think of Simon’s vision as a revolutionary program, the rea-
son why it has been largely ignored can be called a ‘neoclassical
counterrevolution’ supported, surprisingly, by the majority of behav-
ioral economists.

First, neoclassical economists have declared bounded rationality to be
nothing but full rationality in disguise. It is nothing new, so the argu-
ment goes, and we can therefore ignore it. For instance, in his essay
in memory of Herbert Simon, Arrow (2004) insisted that ‘boundedly
rational procedures are in fact fully optimal procedures when one takes
account of the cost of computation in addition to the benefits and
costs inherent in the problem as originally posed’ (p. 48). In many
economists’ view, bounded rationality is simply as-if optimization under
constraints; Simon’s bounds can be modeled by merely adding new con-
straints, such as those of memory and problem-solving ability, to the
standard budget constraints. Simon once told me that he had consid-
ered suing colleagues who misused his term bounded rationality to refer
to optimization.

Second, consider behavioral economics. Simon was one of its cre-
ators, but soon dropped out when Kahneman, Tversky, Thaler, and
their followers took over and changed its course. Contrary to Simon,
these researchers argued that there is nothing wrong with the theory of
expected utility maximization but that the fault lies with people who do
not follow it. ‘Our research attempted to obtain a map of bounded ratio-
nality, by exploring the systematic biases that separate the beliefs that
people have and the choices they make from the optimal beliefs and
choices assumed in rational-agent models’ (Kahneman, 2003, p. 1449).2

Yet, suboptimal beliefs were not what Simon had in mind; as he points
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out, ‘bounded rationality is not irrationality’ (Simon, 1985, p. 297).
Nevertheless, many psychologists have come to believe that bounded
rationality is the study of deviations from rationality.

Although behavioral economists started out with the promise of
greater psychological realism, most have surrendered to the as-if
methodology. Cumulative prospect theory, inequity-aversion theory,
and hyperbolic discounting are all as-if theories. They retain the
expected utility framework and merely add free parameters with psy-
chological labels (Berg and Gigerenzer, 2010), which is like adding more
Ptolemaic epicycles in astronomy. The resulting theories are more unre-
alistic than the expected utility theories they are intended to improve
on. Behavioral economics has largely become a repair program for
expected utility maximization.

In sum, both neoclassical and behavioral economists altered and fitted
Simon’s program of bounded rationality to their programs, emphasizing
rationality and irrationality, respectively. Despite this apparent contra-
diction, both groups regard the classical utility maximization framework
as the sole way to model rational decisions. The behavioral economics
‘revolution,’ as it was once called, has boiled down to defending the
neoclassical commitments to optimization and as-if theories.

Adding Parameters to the Utility Function Helps Predict
the Past, Not Necessarily the Future

But what is wrong, one might ask, with these commitments, given that
they provide a general framework of rationality? The price paid for
the lack of realism is predictive power, which is exactly what Milton
Friedman held to be the benchmark of a successful theory. Adding more
parameters to the utility function leads to a better fit, but may mean
losing predictive power. For instance, a study showed that cumulative
prospect theory excelled in predicting the past, that is, when its param-
eters were fitted to known data, but when predicting the future, it did
systematically worse than a simple rule called the priority heuristic (for
hard choices, that is, gambles with similar expected values) and than
expected value theory (for easy choices; see Brandstätter et al., 2006).
This result is not accidental. Neither the priority heuristic nor expected
value theory has free parameters, and thus both avoid error due to
parameter estimation, a source of prediction error I consider below. This
simplicity can be a strength; the priority heuristic implies the four-fold
pattern of risk attitude and other violations of expected utility theory
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without needing a new set of parameters for each class of violations
(Katsikopoulos and Gigerenzer, 2008). Note that predictive performance
is not the same as R2 in data fitting, which amounts to hindsight; predic-
tion is about foresight, as in out-of-sample prediction when an inference
is made from a sample to another sample or a population.

In their review of half a century of research, D. Friedman, Isaac,
James, and Sunder (2014) analyzed the empirical evidence for how
well Bernoulli functions – such as utility of income functions, utility
of wealth functions, and the value function in prospect theory – per-
form in terms of predictive accuracy. They concluded: ‘Their power to
predict out-of-sample is in the poor-to-nonexistent range, and we have
seen no convincing victories over naïve alternatives’ (p. 3). Similarly,
Stewart, Reimers, and Harris (2014) experimentally showed that no sta-
ble mapping exists between attribute values and subjective equivalents,
as assumed in expected utility theories and their modifications, such
as prospect theory and hyperbolic discounting theory. This instabil-
ity was documented long ago in psychophysical research (Brunswik,
1934; Parducci, 1965). If D. Friedman et al. (2014) are correct, then
expected utility theories and their modifications fail both at describing
the process of decision-making and at accurately predicting the actual
outcomes.

The Argument: Better Realism, Better Prediction

In the following, I start with Milton Friedman’s statement that the mea-
sure of a good theory is its predictive power and derive Simon’s realism –
rather than Friedman’s as-if – as a logical consequence. Friedman (1953,
p. 41) wrote that a theory should be evaluated ‘only by seeing whether
it yields predictions that are good enough for the purpose in hand or
that are better than predictions from alternative theories.’ I will argue:
(1) that simple heuristics can predict better than highly parameterized
models under a wide range of conditions; and also (2) model the pro-
cess of how individuals and organizations actually make decisions; and
therefore, (3) that Friedman’s goal of prediction implies studying simple
heuristics, not only as-if theories. In this way, I derive Simon’s call for
realism from Friedman’s call for good theories.

Specifically, I show that the error in prediction (unlike in data fitting)
has two components that we can influence: bias and variance. Predic-
tion by simple heuristics tends to decrease the variance component,
while adding free parameters increases it (Gigerenzer and Brighton,
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2009). Next, I distinguish three ways of reducing error from variance
and show that these correspond to three classes of heuristics that
humans rely on. Finally, I show that in natural environments, the bias
component of error generated by heuristics appears to be surprisingly
low. Together, the analysis of bias and variance specifies the condi-
tions for when simple heuristics predict better than complex ‘rational’
models and provides an explanation of why simple heuristics can be
rational.

The Ecological Rationality of Heuristics

In my own work, I have tried to lay the foundations for a theory of
bounded rationality. Such a theory addresses not only Simon’s descrip-
tive question (how do people make decisions?), but also a normative
one (how should people make decisions under uncertainty?). The study
of the adaptive toolbox asks the descriptive question: What is the reper-
toire of heuristics available to an individual or organization? Its methods
are experimentation and observation, and the results are algorithmic
models of heuristics, such as satisficing and 1/N. The study of the ‘eco-
logical rationality’ of heuristics asks the normative question: What are
the conditions under which a heuristic leads to a better outcome than a
competing strategy? Its methods are analysis and computer simulation,
and the results are the conditions under which a class of heuristics is
successful according to a metric such as predictive accuracy.

The study of ecological rationality reaches beyond Simon’s call for
descriptive process models. However, it was inspired by an analogy of
Simon’s: ‘Human rational behavior (and the rational behavior of all
physical symbol systems) is shaped by a scissors whose two blades are
the structure of the task environment and the computational capabili-
ties of the actor’ (Simon, 1990, p. 7). We have fleshed out his analogy
into a systematic theory of ecological rationality (Gigerenzer et al., 2011;
Gigerenzer and Selten, 2001). The results explain when and why one
should rely on simple heuristics in order to make predictions superior
to those of highly parameterized models.

Such a theory of bounded rationality is not about human failure.
Rather, it explains how and when people can make good decisions by
using less information. In what follows, I will deal exclusively with the
ecological rationality of heuristics, focusing on the conditions of their
predictive power. For general reviews, see Gigerenzer, Todd, and the ABC
Research Group (1999); Hertwig, Hoffrage, and the ABC Research Group
(2013); Todd, Gigerenzer, and the ABC Research Group (2012).
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The Bias–Variance Dilemma

The cause of error is sometimes conceived as

Error = bias + ε, (1)

where ε is unsystematic noise (mean zero and uncorrelated with bias),
and bias is the systematic difference between the (average) prediction
a model makes and the true state. For instance, if the true temporal
trajectory of a variable is a polynomial of third degree and a linear
regression is used to predict the variable, the model has a systematic
bias. Equation (1) is implicit in the argumentation of the heuristics-and-
biases program (Kahneman, 2011), where a cognitive error is defined in
terms of a systematic bias that arises from ignoring information such as
base rates. In this view, if the bias is eliminated, rational judgments are
obtained. Yet equation (1) is appropriate only in a world of known risks
or data fitting, not for making predictions.

Enter prediction. Consider the problem of estimating the true value
μ in a population on the basis of random samples. Each of S samples
(s = 1, . . . ,S) generates an estimate xs. The variability of these estimates
xs around their mean x̄, which is called variance in machine learning,
is another source of prediction error (Brighton and Gigerenzer, 2012;
Geman et al., 1992). The variance component reflects the sensitivity of
the predictions to different samples drawn from the same population.
Thus the prediction error (the sum of squared error) can be captured in
the equation:

Prediction error = bias2 + variance + ε, (2)

where

bias = x̄ − μ,, that is, the average deviation of the mean of the sample
estimates from the true value, and

variance = 1
s

∑
(xs − x̄)2, that is, the mean squared deviation of the

sample estimates from their mean x̄.

Figure 3.1 provides a visual depiction of bias and variance. The bull’s eye
represents the true value, and each dart the estimate from a sample. Mr.
Bias, whose darts landed on the left dartboard, has a systematic bias but
low variance. Mr. Variance, whose darts landed on the right dartboard
has no bias because the darts line up exactly around the bull’s eye. How-
ever, his dart throws show considerable variance. Thus, in prediction,
two sources of error (ignoring noise) need to be considered, not one.
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Figure 3.1 A visual depiction of bias and variance
A visual analogy of the two components of prediction error: bias and variance. The bull’s
eye is the unknown true value μ (here: 0,0) to be predicted. Each dart represents a predicted
value xs based on a random sample from the population with the true value μ. Bias is zero
if the mean prediction ‘hits’ the target. Left: Mr. Bias’s strategy results in a systematic bias,
whose size is the distance between the mean of the darts thrown and the bull’s eye (x̄ − μ,),
and a low variance, that is, the darts are close together. Right: Mr. Variance’s strategy results
in zero bias (x̄ = μ,), that is, the darts are lined up exactly around the bull’s eye, but with
considerable variance.

A moderate bias with low variance (left) may lead to better results than
would a zero bias with high variance.

The dart analogy in Figure 3.1 does not capture the trade-off between
bias and variance. Adding free parameters to a model, which happens
when replacing expected utility theory with prospect theory, is likely to
reduce the bias component of error, but at the cost of increased vari-
ance. By taking away free parameters, such as when replacing expected
utility with expected value theory, the opposite happens, a likely reduc-
tion in variance at the cost of higher bias. Variance is also influenced
by how the parameters are combined, which is determined by the func-
tional form of the model (e.g., multiplicative or exponential). A strategy
without any free parameter likely has some bias but no variance. The
reason is that the strategy is not sensitive to specific samples and always
produces the same prediction. Consider again the 1/N heuristic and
the mean-variance model for allocating one’s wealth across N stocks.
Mean-variance needs to estimate its numerous parameters from stock
data and will generate error from both variance and bias. In con-
trast, 1/N does not estimate any parameters but in fact ignores past
data and thus does not generate error from variance but likely from
higher bias.
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Figure 3.2 Empirical illustration of the bias–variance trade-off when predicting
the average daily temperature in London
The bias–variance dilemma in prediction. Left: Data fitting. Each point is the average tem-
perature in London for one of 365 days in the year 2000. The figure shows the best-fitting
degree-3 polynomial (thin line) and degree-12 polynomial (thick line), using the least squares
method. Clearly, the 12-degree model fits the data best. The error is the sum of squared error.
Right: Prediction. The task is to predict the average temperature in London on every day,
based on random samples of 30 days. Although the fit increases with higher-degree poly-
nomials (lower curve), the prediction error does not follow this pattern. Rather, there is a
u-shaped function between prediction error and complexity of polynomial. For instance, a
degree-1 polynomial (i.e., a straight line) generates less error than the degree-12 polynomial,
which has less bias but more variance. Adapted from Gigerenzer and Brighton (2009).

Figure 3.2 provides an empirical illustration of the bias–variance trade-
off when predicting the average daily temperature in London. The left
panel shows the temperature for each day, and a 3-degree and a 12-
degree polynomial fitted to the data. The right panel shows that the fit
improves (i.e., the error decreases) when the polynomial grows in com-
plexity. A polynomial of degree 364 would guarantee a perfect fit, so
that a line can be drawn through each point. But that is not true for
prediction. The u-shaped curve in the right panel reveals the trade-off
between bias and variance in prediction. Bias is highest for the 1-degree
polynomial and lowest for the 12-degree polynomial, while variance
shows the opposite pattern. The 4-degree polynomial has the best trade-
off between bias and variance, that is, the lowest total error. Note that
the 12-degree polynomial, which has the best fit and thus the least bias,
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predicts less accurately than the 1-degree polynomial that has a strong
bias but less variance.

Let me summarize. The bias–variance dilemma decomposes the total
prediction error into bias, variance, and noise. The variance compo-
nent can be reduced by decreasing the number of parameters and
by increasing the sample size. To arrive at good predictions, simpler
models predict more accurately to a point, which represents the bias–
variance trade-off, while further simplification may lead to an increase
in error. Thus, to minimize total error, a certain amount of bias is
needed to counteract variance, which is the error due to oversensitiv-
ity to characteristics of specific samples. Bias per se is not the problem,
as assumed in the heuristics-and-biases program. Rather, it can be part
of the solution.

Simple Heuristics Can Make Better Predictions

How to Reduce Prediction Error

Consider predicting which of two alternatives will have a higher value
on a variable of interest. Assume that the true state of nature can be
represented by a linear equation with n attributes (predictors). We do
not know what the weights are and want to reduce prediction error due
to variance. There are several ways to proceed, each corresponding to a
class of simple heuristics that people rely on (Gigerenzer and Gaissmaier,
2011):

1. One-reason heuristics. The prediction is based solely on a single pre-
dictor among n>1 observable predictors; the other n − 1 are ignored.
This class of heuristics can be seen as a special case of sequential
search heuristics with only one predictor (next class).

2. Sequential search heuristics. The prediction is based on a lexicographic
rule, that is, if the first predictor does not allow for a decision, then
the second is used, and so on. The predictors are ordered by sim-
ple correlations between each and the variable of interest, ignoring
dependencies (i.e., the covariance structure) among predictors.

3. Tallying heuristics. The prediction is based on all n predictors by
assigning equal weights to each one and then summing their values.

In each of these classes of heuristics, error due to variance is reduced
(relative to a full linear model) because the number of parameters to
be estimated is reduced. For instance, the common rationale for all
three classes is to avoid the prediction error that results from estimat-
ing the n(n+1)/2 covariances. Tallying does not estimate the order of the
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predictors either, but only their signs (positive or negative). The price
for reducing variance is that bias is likely increased (but not necessarily;
see below). Consider a few cases.

One-Good-Reason Heuristics

Companies such as catalog retailers, airlines, and hotel chains target
their previous customers with product information and special offer-
ings. Not all customers are active, that is, will buy in the future, and
predicting which are active is important when reducing marketing costs.
The state-of-the-art approach is the Pareto/NBD model and its vari-
ants (Schmittlein and Petersen, 1994), where NBD stands for negative
binomial distribution. For each previous customer, it yields the proba-
bility that he or she is still active, based on the following assumptions
(Wübben and von Wangenheim, 2008):

Pareto/NBD model: While the customer is active, purchases follow a
Poisson process with purchase rate λ. Customer lifetime is exponen-
tially distributed with dropout rate μ. The purchase rates λ and the
dropout rates μ are distributed according to a gamma distribution
across the population of customers. The rates λ and μ are distributed
independently of each other.

Although this model estimates the probability that a customer is active,
it has found little acceptance among experienced managers. Instead,
business executives rely on a toolbox of simple heuristics (Verhoef et al.,
2002). Wübben and von Wangenheim (2008) observed that managers
in an airline and apparel retailer relied on a recency-of-last-purchase
(hiatus) rule:

Hiatus heuristic: If a customer has not made a purchase for nine
months or longer, classify him/her as inactive, otherwise as active.

The hiatus heuristic is an instance of the class of one-reason heuristics.
It considers the hiatus only and ignores other information used by the
Pareto/NBD model, such as the number of purchases made. Given that
the hiatus heuristic uses only a subset of the relevant information used
by the Pareto/NBD model and does not estimate any parameters (if the
hiatus is fixed), it might appear to be second best. Equation (2) shows
the mistake behind that assumption. The real question is whether the
total error that the Pareto/NBD model generates is higher or lower than
that of the hiatus heuristic. Wübben and von Wangenheim (2008) put
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Figure 3.3 Hiatus heuristic made more correct predictions than the Pareto/NBD
model
How to predict which customers will buy in the future? Shown is a competitive test of the
Pareto/NBD model from marketing science against the hiatus heuristic managers rely on.
The heuristic better predicts customer behavior for the airline and the apparel business, and
equally well for the CDNOW retailer. With a fixed hiatus (such as 9 months), the heuristic
has no free parameter and thus does not make errors due to variance. Note that the heuristic
uses only a subset of the data the Pareto/NBD model uses, that is, makes better predictions
with less effort. Adapted from Wübben and von Wangenheim (2008).

the issue to an empirical test. They calibrated the Pareto/NBD model to
the customer databases of three companies, using 40 weeks of data, and
used this calibrated model to predict the next 40 weeks of activities. The
third company was the online CD retailer CDNOW, using a six-month
hiatus. Figure 3.3 shows that the hiatus heuristic made more correct
predictions than did the Pareto/NBD model for the airline customers,
with 77% versus 74%, and for the apparel customers, with 83% versus
75%, and matched the number of correct predictions for the CDNOW
customers. Less information can be more.

With a fixed hiatus, the hiatus heuristic has bias, but no variance.
The Pareto/NBD model likely has less bias, but additional error due to
variance because it needs to estimate four parameters from the sample
data. The success of the heuristic suggests that its error due to bias is less
than the total error made by the Pareto/NDP model.

Sequential Search Heuristics

The take-the-best heuristic was the first heuristic that the ABC Research
Group systematically studied (Gigerenzer and Goldstein, 1996). It helps
decision makers choose between two alternatives based on n attributes,
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not only one, as with the hiatus heuristic. It orders attributes
(i = 1, . . . ,n) by their simple validities vi defined as the proportion of
correct decisions ci:

vi = ci/ti (3)

The denominator ti gives the number of cases where the values of
the two alternatives on the attribute i differ. If the values on the
first attribute do not differ, the next is looked up, and so on in a
lexicographic way. The decision is based on the first attribute that dif-
ferentiates; all other attributes are ignored. Note that their order is
determined by simple validities vi – unlike beta weights in multiple
regression, which require estimating the covariance matrix – and that
these validities are estimated from samples. For simplicity, I assume
here that there is a positive correlation between each attribute and the
outcome (dependent) variable. Take-the-best entails three steps:

Search rule: Look through predictors in the order of their validity.
Stopping rule: Stop search when the first predictor is found where the

values of the two alternatives differ.
Decision rule: Predict that the alternative with the higher predictor

value has the higher value on the outcome variable.

How well does take-the-best predict compared to multiple regression?
Figure 3.4 shows the results for 20 prediction tests on economic, demo-
graphic, and societal questions, such as which of two houses will have
a higher selling price, or which school will have a higher drop-out rate
(Czerlinski et al., 1999). In every test, half of the data points were used to
fit the parameters, and the other half was predicted, a procedure known
as cross validation. On average, multiple regression had the better fit, but
take-the-best predicted better. To excel in fitting and fail in prediction is
known as overfitting.

The take-the-best heuristic was also more frugal than regression,
requiring, on average, only 2.4 predictors compared to 7.7 for regres-
sion. Like the hiatus heuristic and the Pareto/NBD model, take-the-best
used only a subset of the information used by multiple regression, which
protected against estimation error from variance.

Tallying Heuristics

Unlike take-the-best, tallying relies on all predictors but uses equal
weights. Figure 3.4 shows that, on average, tallying predicted better
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Figure 3.4 Results for 20 prediction tests on economic, demographic, and soci-
etal questions
Less-is-more effects across 20 prediction tasks in economics, business, biology, and other
fields. Two heuristics, take-the-best and tallying, are tested competitively against multiple
regression (Czerlinski et al., 1999). Note that many of the tasks are taken from textbooks on
regression. The number of attributes ranged between 3 and 18, and the number of alter-
natives between 11 and 395. Take-the-best orders attributes (predictors) in a simple way
(without analyzing dependencies between cues) and uses only the first cue that differen-
tiates between the alternatives. Tallying introduces a different bias; it uses all attributes
that regression uses but does not estimate their weights, instead using the same weight for
each. Prediction is tested by letting the three strategies estimate their parameters from half
of the data set and then testing performance on the other half (cross-validation). Multiple
regression estimates beta weights, take-the-best estimates only the order of cues, and tallying
only the sign of the cues. By introducing bias, both heuristics make more accurate predic-
tions than regression. For comparison, the performance in fitting data is shown. Regression
excels in data fitting because it has more free parameters, but makes fewer correct predictions.
Adapted from Gigerenzer and Brighton (2009).

than multiple regression, although not as well as take-the-best. Simi-
larly, Åstebro and Elhedli (2006) used a version of tallying to forecast
the commercial success for early-stage ventures and reported that the
heuristic predicted 86% of successes and failures correctly, compared to
a log-linear regression model that predicted 79% correctly.
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Two Misconceptions

These results demonstrate the bias–variance trade-off in the real world
of prediction. They also help to correct two widespread misconcep-
tions about heuristics. First, a common explanation for why people rely
on heuristics is the accuracy–effort trade-off: Heuristics reduce effort
but pay for this with less accuracy (Conlisk, 1996). The effort is often
called deliberation costs. Although such a general trade-off sounds plau-
sible, it is incorrect. Heuristics indeed reduce effort, but that does not
necessarily reduce accuracy, as the empirical results in this section
demonstrate. More generally, the bias–variance dilemma implies that
there is no general accuracy–effort trade-off. It also explains when and
why higher accuracy results from less effort. These situations are known
as less-is-more effects.

A second misunderstanding is the claim that the study of heuristics
is unnecessary because a heuristic can always be rewritten as a special
case of the general linear model. Indeed, take-the-best and tallying can
(Martignon and Hoffrage, 2002), but rewriting does not help to make
better predictions. By generalizing a heuristic to a linear model, one can
actually lose predictive power by creating more error due to variance,
as Figure 3.4 illustrates. After all, rewriting the law of falling bodies as a
general polynomial does not add to understanding physics.

Empirical Evidence

There is a large body of empirical studies showing that the classes of
heuristics described in the previous sections are good models for how
people make decisions, and that people tend to use them in an adap-
tive way, that is, in situations where they are ecologically rational. For
instance, sequential search heuristics, such as in take-the-best, have
been studied extensively in both laboratory experiments (e.g., Bröder,
2012; Bergert and Nosofsky, 2007) and ‘in the wild’ (Gigerenzer et al.,
2012). This research showed that decisions made by experts – from air-
port customs officers to police officers to professional burglars – are
best predicted by take-the-best or similar lexicographic rules, while
novices and undergraduates try to consider all n attributes (Pachur
and Marinello, 2013). Hence, experts appear to know intuitively how
to reduce error due to variance, which makes their decisions more
efficient.

Simon started with the concept of satisficing. Today, we have a large
body of empirical evidence for other classes of heuristics, together with
formal models of them (Gigerenzer and Gaissmaier, 2011). These formal
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models are a scientific leap from the premathematical period of vague
labels such as ‘availability’ and ‘System 1’ (Kahneman, 2011). Formal
models can make testable predictions and enable the normative study
of their ecological rationality.

Environmental Structures and Bias

So far, we have focused on variance. But, according to the bias–variance
dilemma, the crucial question is how much bias a heuristic produces by
reducing variance. To assess bias, one needs to compare predicted out-
comes to actual outcomes. Assume again that the actual outcome can
be represented by a linear equation with n predictors. Consider again
a choice between objects A and B, based on n predictors, where the
value of the ith predictor is represented by xi and weighted in the lin-
ear payoff function by wi. To simplify, assume that the predictors are
binary and the weights are nonnegative. The class of strategies we con-
sider are sequential search (lexicographic) heuristics, with one-reason
decision-making as a special case with only one predictor.

Environmental Structures

The term environment refers to the alternatives, outcomes, payoffs, and
all other factors in the model exogenous to the decision maker. Simple
environments may be described as a joint distribution of predictors and
outcome variables, which induce payoff distributions that depend on
actions in the decision maker’s choice set. With this broad interpretation
of environment, we can then investigate which environmental structures
‘help’ lexicographic heuristics perform well so that they have a small
or even zero bias (in addition to small variance). We know of three
structural features: noncompensatoriness, dominance, and cumulative
dominance.

Noncompensatoriness. The weights w1, w2, w3, . . . wn are noncompen-
satory if they satisfy the n − 1 inequality constraints:

wi >

k∑

j=i+1

wj, i = 1,2, . . . ,n − 1. (4)

An example is the set of weights {1, ½, ¼, } (see Figure 3.5). If the
weights are noncompensatory, then a linear rule (with the same order
of predictors) will always lead to the same choice as a lexicographic rule
(Martignon and Hoffrage, 2002). Take the example of weights above.
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Figure 3.5 With a fixed hiatus, the hiatus heuristic has bias, but no variance
Left: A graphical illustration of noncompensatoriness. If the weights of a linear rule are non-
compensatory, such as 1, ½, ¼, , and , then a lexicographic heuristic with the same order
of attributes will always make the same prediction as the linear rule. Therefore, if the true
state of nature can be represented by a linear rule and noncompensatoriness holds, a lexico-
graphic heuristic has no bias. Right: For comparison, a set of weights where tallying has no
bias. Adapted from Martignon and Hoffrage (2002).

If the lexicographic rule yields decisions on the basis of the first predictor
(with weight 1), every linear rule will match this choice, because the
sum of all other weights (½+¼+ . . .) will always be smaller than the
weight of the first predictor. Thus, if the true state of nature is linear
and noncompensatoriness holds, then a lexicographic heuristic with the
same order of predictors has no bias.

Dominance. If alternative A has a value higher than or equal to alter-
native B in all n predictors, and a higher value on at least one predictor,
then alternative A dominates alternative B. Figure 3.6 (top) illustrates
dominance. If A dominates B, a lexicographic heuristic (and tallying)
will arrive at the same prediction as a linear rule. In terms of a lin-
ear rule, dominance means that all differences wi�xi = wi(xiA − xiB)
are nonzero and at least one is positive; thus, the linear rule chooses
A over B. This result holds for any (nonnegative) weights and does
not depend on noncompensatory ones. Thus, if the true state of
nature is linear and dominance holds, a lexicographic heuristic has
no bias.

Cumulative dominance. The cumulative profile of an alternative con-
sists of n values, where the ith value is the sum of the first i values.
Alternative A cumulatively dominates B if its cumulative profile exceeds
or equals the cumulative profile of B in every term and exceeds it in at
least one term (Bauscells et al., 2006). If cumulative dominance holds,
then a linear rule (with the same order of predictors) predicts the cumu-
lative dominant object, just as a lexicographic rule does. Consider the
example in Figure 3.6 (bottom). Unlike in the top panel, dominance
does not hold. To check for cumulative dominance, one first compares
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Figure 3.6 Cumulative dominance
A pictorial illustration of dominance and cumulative dominance. Which of two alternatives,
A and B, is more valuable? The alternatives vary on three attributes, gold, silver, and bronze
coins. In the top panel, A dominates B because it has more gold and bronze coins, and as
many silver coins. In the bottom panel, dominance does not hold, but cumulative dom-
inance does. To check for cumulative dominance, one first compares the number of gold
coins, then the number of gold and silver coins, and finally the number of all coins. In every
comparison, alternative A has as at least as many coins as B, and more coins in one. It has
more gold coins, an equal number of gold and silver coins, and an equal number of gold,
silver, and bronze coins. Thus, A cumulatively dominates B. If dominance or cumulative
dominance holds, a linear model makes the same choice (alternative A) as a lexicographic
heuristic with the same order of cues. Adapted from Şimşek (2014).

A and B on the top attribute (gold), A has two gold coins, and B only
one. Then A and B are compared on the sum of the top two attributes;
here the number of coins is the same. Finally, the comparison is made
on all three attributes, and again there is no difference. Because there is
always zero difference and one difference in favor of A, A cumulatively
dominates B.

Thus, unlike simple dominance, cumulative dominance requires an
order of predictors or attributes. The cumulative difference can be
defined as:

�x′
i =

i∑

j=1

�xj. (5)
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If the weights w1, . . . ,wk are positive and decreasing, then one needs to
check only for cumulative dominance. Otherwise, alternative A cumula-
tively dominates B if all terms w′

i�x′
i are nonnegative and at least one of

them is positive, where w′
i =wi −wi+1, i=1,2, . . . ,n−1, and w′

n =wn. Note
that dominance implies cumulative dominance, but not vice versa.

These three environmental conditions influence the bias component
of the error. Noncompensatoriness refers to the relative strength of the
predictors in the environment, while the two dominance conditions
refer to the relative quality of alternatives (Katsikopoulos, 2011). In sum,
if either noncompensatoriness or dominance or cumulative dominance
holds, then lexicographic heuristics will have no bias, relative to a
linear rule.

How Often Do These Conditions Hold in the Real World?

It is not easy to answer this question because there is no way to
define the set of all prediction problems and draw a random sample.
But it is possible to investigate a large and diverse number of natural
data sets. Şimşek (2013) analyzed 51 data sets from online reposito-
ries, textbooks, research publications, packages for R statistical software,
and individual scientists collecting field data. The data sets spanned
content areas as diverse as biology, business, computer science, ecol-
ogy, economics, education, engineering, and medicine, among others.
The number of attributes ranged from 3 to 21, which were numeric
or binary; the number of objects (alternatives) from 12 to 601, corre-
sponding to numbers of possible pairwise comparisons ranging from
66 to 180,300. Each of these comparisons amounts to a prediction
being made.

How often was one or more of the three conditions – noncompensatori-
ness, dominance, and cumulative dominance – satisfied? The result was
surprising. The median for the 51 data sets was 90% (Şimşek, 2013).
That is, in half of the data sets, more than 90% of the decisions encoun-
tered were such that a lexicographic rule yielded the same prediction as
a linear model. When the predictors were dichotomized at the median,
this number increased to 97%. In other words, in the majority of the
cases, the lexicographic heuristics had the same bias as a linear model.
Together with the potential for reducing variance, this result explains
why simple heuristics often outperform linear models in prediction, as
shown in Figure 3.4.

In summary, the prediction error has two primary components that
can be influenced, bias and variance. Variance can be decreased by
decreasing the number (and kind) of free parameters and by increasing
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the sample size. Simple heuristics decrease variance because they have
few or zero free parameters. To analyze the bias component, one needs
to know the true process that generates actual outcomes, which was
assumed to be a linear function of n predictors or attributes whose order
is known. Under those assumptions, three environmental conditions
were described that guarantee that lexicographic heuristics have no bias
when choosing between two alternatives: noncompensatoriness, dom-
inance, and cumulative dominance. Alternatively, if the true process is
unknown, the bias is equivalent to that of a linear model. An analysis of
a diverse collection of data showed that one or more of these conditions
were in place in 90% (97% for binary attributes) of the cases. Together,
these results provide an explanation of less-is-more effects, that is, situa-
tions where using a subset of the available information (e.g., ignoring all
data except the hiatus) leads to better predictions than using all available
information.

Methodological Principles

Finally, the study of the adaptive toolbox and that of ecological ratio-
nality entail adherence to three methodological principles:

1. Algorithmic models of heuristics, not verbal labels (such as availabil-
ity, System 1, and near-tautologies; see Gigerenzer, 1996; Gigerenzer
et al., 2012).

2. Tests of prediction, not fitting data.
3. Competitive testing (such as testing the predictions of two fully

specified models), not testing of a single model.

For instance, the research on the hiatus heuristic uses an algorithmic
model of the heuristic, tests its performance in prediction, and compares
it to the Pareto/NBD model. Although these methodological principles
should be obvious they are not widely followed in those parts of the
behavioral economics literature that propose verbal labels, rather than
algorithmic models of heuristics, or fit models, such as prospect theory,
to data sets without out-of-sample prediction and without testing them
competitively against models of simple heuristics.

Conclusion

In this chapter, I started with Milton Friedman’s dictum that the mea-
sure of a good theory is its predictive power and derived Simon’s realism,
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rather than as-if, as the logical consequence. Specifically, I showed that
the error in prediction (unlike in data fitting) has two components,
bias and variance. The use of simple heuristics likely decreases variance,
while the use of models with many free parameters tends to increase
it. Moreover, an analysis of natural environments indicates that simple
heuristics generate a surprisingly small bias, relative to linear models.
Investigating the balance between bias and variance allows for deriving
the conditions under which simple heuristics can predict more accu-
rately than complex ‘rational’ models, and vice versa. These results can
unite Friedman’s dictum with Simon’s call for realism. If rationality
means making better predictions, we should seriously investigate the
adaptive toolbox of humans and the ecological rationality of heuristics
rather than adding more parameters to as-if utility functions.

As a consequence, the use of simple heuristics by economic agents
should not be routinely attributed to mere deliberation costs or even
irrationality. Instead, it should be recognized that some degree of bias
actually enables better performance in situations of uncertainty. Risk
and uncertainty can require different sets of tools, of statistics, and of
heuristics. In Simon’s words (1981, p. 36), uncertainty ‘places a premium
on robust adaptive procedures instead of strategies that work well only
when finely tuned to precisely known environment.’

Many years ago, a well-known behavioral economist told me with
utmost conviction: ‘Look, either reasoning is rational or it’s psychologi-
cal.’ This false opposition between what is regarded as rational versus
psychological has haunted me since. It is time to rethink the nature of
rationality. A theory of bounded rationality based on the twin founda-
tions of the adaptive toolbox and ecological rationality can be a start.
Pursuing this goal is a step towards making progress on the unfinished
task Simon left behind and may even contribute to unifying economics
and psychology.3

Notes

1. Simon developed his thinking over decades, a complex process that I can-
not give due justice to in this article. For instance, he introduced a satisficing
heuristic in 1955, but in the Appendix of that article he presented an opti-
mization model that maximizes expected value of the sales price, similar
to the optimization under constraints model that Stigler (1961) later pro-
posed. In the introduction to this article in his collected papers, Simon (1979,
p. 3) made it clear that he thinks of satisficing as nonoptimizing: ‘Satisficing,
aiming at the good when the best is incalculable, is the key device.’ Simi-
larly, in early writings he sometimes linked bounded rationality to cognitive
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limitations, while later he linked it to cognition and environment – the scis-
sors analogy – and argued that it is impossible to understand behavior by
looking at the one blade of cognitive limitations only. Thus, part of the misin-
terpretations of Simon’s concept of bounded rationality I point out later may
be due to his own development in thinking.

2. Although Simon’s bounded rationality is commonly presented as a forerun-
ner of Kahneman’s heuristics and biases program, the latter’s relation to
bounded rationality appears to be an afterthought. In fact, Simon is not
cited at all in Kahneman and Tversky’s major early papers (all reprinted in
Kahneman, Slovic, & Tversky, 1982). Simon is briefly mentioned in the pref-
ace to this anthology, apparently more as a nod to a distinguished figure than
an acknowledgment of a significant intellectual debt (Lopes, 1992).

3. For helpful comments I would like to thank Florian Artinger, Nathan Berg,
Henry Brighton, Ralph Hertwig, Perke Jacobs, Konstantinos Katsikopoulos,
Shenghua Luan, Thorsten Pachur, and Ozgür Simsek.
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Şimşek, Ö. (2013). Linear Decision Rule as Aspiration for Simple Decision
Heuristics. In Advances in Neural Information Processing Systems: Vol. 26: 27th
Annual Conference on Neural Information Processing Systems 2013 [online version],
ed. C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani and K.Q. Weinberger.
Red Hook, NY: Curran Associates, 2904–12.

Stewart, N., Reimers, S. and Harris, A. J. L. (2014). On the Origin of Util-
ity, Weighting, and Discounting Functions: How They Get theirShapes
and How to Change their Shapes. Management Science, 61, 687–705. doi:
10.1287/mnsc.2013.1853



September 9, 2015 17:8 MAC/MMMX Page-59 9781137442499_04_cha03

PROOF
Gerd Gigerenzer 59

Stigler, G. J. (1961). The Economics of Information. Journal of Political Economy,
69, 213–25. doi: 10.1086/258464

Todd, P. M., Gigerenzer, G. and the ABC Research Group. (2012). Ecological
Rationality: Intelligence in the World. New York: Oxford University Press.

Tsotsos, J. (1991). Computational Resources do Constrain Behavior. Behavioral
Brain Sciences, 14, 506–7.

Verhoef, P. C, Spring, P. N., Hoekstra, J. C. and Leeflang, P. S. H. (2002). The Com-
mercial Use of Segmentation and Predictive Modeling Techniques for Database
Marketing in the Netherlands. Decision Support Systems, 34, 471–81.

Wübben, M. and von Wangenheim, F. (2008). Instant Customer Base Analysis:
Managerial Heuristics Often ‘Get It Right.’ Journal of Marketing, 72, 82–93.




