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Abstract

In T -period agency relationships between a risk-neutral principal and a risk-

averse agent where signals can depend on past actions and exhibit serial cor-

relation, near-efficiency obtains when T is large if the monitoring technology

satisfies two basic properties: concentration of measure and informativeness.

The tension between these conditions is used to determine the boundary at

which asymptotic efficiency does and does not obtain in agency models with

frequent actions. Results deepen and extend our understanding of varying effi-

ciency results in the agency literature, quantify the value of knowing details of

the monitoring technology and help solve incentive issues when the monitoring

technology is highly persistent.
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1 Introduction

What basic properties of the monitoring technology help sustain near-efficient out-

comes in agency relationships? What is the value of identifying detailed features of

the monitoring technology such as how past actions persistently affect future signals

and how signals are themselves correlated? While these questions have significant

implications for practical issues such as what information should be included in the

performance evaluation of employees whose contribution takes time to realize and

how social media can help monitor reform plans which take long to generate break-

throughs, they have not been examined systematically by existing studies in the

agency literature, most of which focus on individual cases where near-efficiency does

or does not obtain and do not handle the persistence of the monitoring technology.

The current paper addresses these questions in a T -period agency model between a

risk-neutral principal and a risk-averse agent where signals can depend on past actions

and exhibit serial correlation. The main result attributes the implementability of

near-efficiency when T is large to two basic properties of the monitoring technology:

concentration of measure and informativeness, but not to other technological details.

The tension between these properties is used to determine the boundary at which

asymptotic efficiency does and does not obtain in agency models with frequent actions.

Results deepen and extend our understanding of varying efficiency results in the

agency literature, quantify the value of knowing details of the monitoring technology

and help solve incentive issues in the presence of technological persistence.

The key step in estalibshing the efficiency result is to examine a simple contract,

test contract, which delivers a fixed consumption to the agent in the first T −1 period

and penalizes the agent severely in the last period if the sample value of a performance

test statistic is well below its mean at the efficient action profile — see Figure 1 for a

graphically illustration. Theorem 1 shows that this contract is near-efficient when T

is large so long as the monitoring technology satisfies the aforementioned properties.

Two new insights play central roles in characterizing the performance of test con-

tract. Intuitively, the contract is near-efficient if it provides a near-optimal incentive

and almost full insurance to the agent at the same time. These goals can be achieved

simultaneously if we manage to bound the probability of mistakenly passing (failing)

the agent when he shirks (works) a lot and to limit his gain from fine-tuning the action

choice with past actions and signals despite that the equilibrium strategy is difficult to
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characterize directly. Concentration of measure, a robust property of a large class of

test statistics under general signal processes, says that there is a uniform lower bound

for the probability of the event where the sample test statistic is highly concentrated

around its mean over all feasible data generating action profiles which converges to

one as T grows to infinity. The uniformity of the concentration bound allows us to

draw robust inferences about the equilibrium probability of committing Type I and

II errors without meticulous calculations of the equilibrium strategy which is diffi-

cult to characterize directly because of the persistence of the monitoring technology.

Meanwhile, informativeness says that if the expected value of the test statistic at

the true action profile is close to its counterpart at the efficient action profile, then

the true action profile improves the principal’s payoff significantly and incurs a non-

trivial action cost to the agent. This condition is merely a local restriction on the first

moment of the test statistic and hence is much weaker than the usual likelihood ratio

based assumptions in the agency literature. It is satisfied by most existing studies

and holds automatically in some cases because of the interesting properties of other

model primitives.

The reason why concentration of measure and informativeness are sufficient for

asymptotic near-efficiency is straightforward. Intuitively, the equilibrium consists of

two types of outcomes depending on whether the sample test statistic is concentrated

around its mean or not. Concentration of measure says that the second type of

outcome is rare however complex the equilibrium strategy is whereas informativeness

implies that at the first type of outcome, since the agent gains little from fine-tuning

3



the action choice with past actions and signals, a severe enough penalty suffices to

deter persistent deviations from the efficient action profile.

Our sufficient conditions seem to be minimal as they help identify the boundary at

which asymptotic near-efficiency does and does not obtain in agency problems with

frequent actions. Specifically, consider the typical setting of discrete-time approxima-

tions of continuous-time agency models with Brownian motion signals (e.g., Hellwig

and Schmidt (2002), Biais et al. (2007) and Sadzik and Stacchetti (2013)) where the

horizon is a unit time interval that is divided into T subintervals and the noisiness

of the signal per subinterval measured by ‖ΩT‖/T = (sup ΩT − inf ΩT )/T matches

its counterpart under Brownian motion Θ
(
T−

1
2

)
.1 Exactly at this noise level, many

interesting test statistics cannot have sufficiently concentrated measures and be in-

formative enough simultaneously, and it is shown by previous authors that even the

optimal contract is typically inefficient when T is large. This is not a coincidence.

Since Brownian motion process has poor concentration properties, it is typical for

the test statistic to drift away from its mean as time proceeds. As a result, we need

bT to be large in order to make the concentration bound tight. But then we lose

informativeness because the agent can deviate to inferior action profiles but still pass

the test easily — see Figure 2 for a graphical illustration. In contrast, if signals follow

time-inhomogeneous Poisson processes and delivers either good news or bad news

about the true effort, i.e., ΩT = {0, 1} (e.g., Radner (1985), Biais et al. (2010), My-

erson (2010) and the example of Section 2), or more generally if ‖ΩT‖/T ∼ o
(
T−

1
2

)
is slightly smaller than its counterpart under Brownian motion processes, then it is

straightforward to construct test statistics that satisfy our sufficient conditions even

in the presence of technological persistence. In these situations, the principal’s gain

from specifying details of the monitoring technology decays very fast as the number

of interactions increases.

The result is useful for practitioners in several ways. First, it distinguishes con-

tractual frictions that arise from the monitoring technology itself from those that

are due to other modeling or practical considerations. Thus, it helps practitioners

understand the very nature of the frictions that they face and offer guidance to the

contracting techniques that they should use. Second, it quantifies the principal’s gain

from knowing details of the monitoring technology and helps decide if such invest-

1Throughout, use O(·), o(·) and Θ(·) to denote “at most the order of”, “smaller than the order
of” and “exactly the order of”, respectively.
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ment is worthwhile. Finally, it provides a toolbox for solving incentive issues in a

large class of environments with technological persistence. In this way, it sheds light

on practical issues such as what information should be included in employee evalu-

ations (e.g., Poisson signals such as breakthroughs or Brownian motion signals such

as noisy cash flows) and how to understand the role of social media in monitoring

reform plans especially when the agent’s contribution takes long to realize and when

success (failure) begets success (failure).

1.1 Related Literature

Efficiency in agency models and mechanisms The current analysis deepens

and extends our understanding of varying efficiency results in the agency literature,

including Mirrlees (1974), Müller (1997), Rubinstein and Yaari (1983), Radner (1981)

and Radner (1981), among many others. In static contracting problems where the

agent’s utility function is unbounded from below, the first order approach is valid and

the likelihood ratio becomes infinitely negative at the lower bound of the signal space,

Mirrlees (1974) and subsequently Müller (1997) show that a two-step scheme that pays

a fixed consumption most of the time and penalizes only terrible outcomes is near-

efficient. Concentration of measure, which requires persistent deviations from the

target action profile to cause drastic changes in the tail distribution of the performance

test statistic, can be thought of as a dynamic analog of their likelihood ratio condition,

though it is a more common and robust feature of the monitoring technology that

holds uniformly over a large class of test statistics.

The result suggests that the insight of Radner (1981) and Radner (1985) carries

over even if the monitoring technology exhibits persistence and signals are much

noisier than the author assumes. Radner (1981) considers a finite-horizon agency

game where signals depend only on the concurrent action and take value in a uniformly

bounded space that is independent of the number of interactions. In that setting,

he examines a different question of whether exerting high effort all the time until

the mean of signals falls short of a threshold for the first time is ex-ante ε-optimal

when the horizon is long. And his construction makes use of point-wise convergence

theorems (e.g., the Law of the iterated logarithm) which are silent about the relative

convergence rate of the test statistic at varying action profiles and hence cannot

be used immediately for equilibrium characterizations especially when action choices
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can depend heavily on past actions and signals. Radner (1985) uses the analysis of

Radner (1981) as a building block to construct an equilibrium in an infinite-horizon

agency game with a high discount factor under the assumption that signals depend

only on the concurrent action. The current work shows that transitory technology

and uniformly bounded signal space are superfluous for attaining asymptotic near-

efficiency in his setup.

Several authors have demonstrated how to attain asymptotic near-efficiency by

matching the empirical and theoretical distributions of preference types in multi-

agent screening problems without monetary transfers, including Jackson and Son-

nenschein (2007) and Escobar and Toikka (2013), among others.2 In these studies,

the bounds on the empirical distribution of reported types are meant to overcome

the challenge due to the lack of monetary transfers. Furthermore, preference types

are assumed to follow exogenous i.i.d. or Markov processes and details of the type

processes are being exploited to obtain equilibrium characterizations. In contrast, I

consider a single-agent moral hazard problem with monetary transfers where signals

depend endogenously on the agent’s actions, identify basic properties of the moni-

toring technology that help sustain asymptotic near-efficiency and use concentration

bounds to draw robust inferences about the equilibrium outcome.

Contracting with frequent actions Several authors, including Hellwig and

Schmidt (2002), Biais et al. (2007) and Sadzik and Stacchetti (2013), have considered

the discrete-time analog of continuous-time agency models with Brownian motion

signals. All these studies match the noisiness of the signal per time interval of length

1/T the to its counterpart under Brownian motion. The most relevant to the current

work is Sadzik and Stacchetti (2013) which shows that at this noise level, the optimal

contract is typically inefficient even when T is large in general infinite-horizon agency

models with transitory technologies. The current analysis shows that exactly at

this a noise level, many heuristic test statistics cannot have sufficiently concentrated

measures and be enough informative at the same time. This suggests using the tension

2Jackson and Sonnenschein (2007) shows that if players simultaneously observe their i.i.d. pref-
erence types over many replicas of the same social choice problem and must announce types whose
empirical distribution fits exactly the theoretical distribution of true types, then Pareto-efficiency
is virtually implementable when the number of problems is sufficiently large. Escobar and Toikka
(2013) extends Jackson and Sonnenschein (2007) to a dynamic setting with AR(1) types and shows
that when the horizon is long but finite, reporting as truthfully as possible is an ε-equilibrium of
a game where the conditional distribution of announced types given other players’ announcements
must be bounded tightly around the theoretical distribution of true types given others’ true types.
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between basic properties of the monitoring technology to identify the boundary at

which asymptotic efficiency does and does not obtain.

Contracting with persistent monitoring technologies The uniformity of

the concentration bound dispenses us with the burden of knowing signal processes at

deviation action profiles. This feature distinguishes the test contract from standard

incentive contracts which vary the payment with the outcome of a likelihood ratio

test that compares the signal distribution at the target action profile versus deviation

action profiles. While the latter method yields useful characterizations of the opti-

mal policy in certain environments (e.g., static settings (Laffont and Tirole (1993))

or dynamic settings where actions affect only the concurrent outcome (Spear and

Srivastava (1987), Sannikov (2008)), it becomes restrictive when signals can depend

on past actions because then the principal has to keep track of the action history

in order to construct the relevant likelihood ratio test, a problem which quickly be-

comes intractable when the monitoring technology is highly persistent. Test contract

circumvents this dimensionality issue because the concentration bound holds uni-

formly over all feasible actions profiles. Sannikov (2013) examines contracting with

persistent technologies by allowing actions to affect the mean of future revenues. He

assumes that signals follow Brownian motion processes and makes detailed parametric

assumptions whereas the current analysis does exactly the opposite.

The rest of the paper proceeds as follows: Section 2 presents a simple example;

Section 3 lays down the statistical background; Section 4.1 describes the baseline

model (Section 4.1); Section 4.2 states the main result; Section 4.3 illustrates the

theoretical and practical implications of the main result in special cases; Section 5

considers an extension of the baseline model; Section 6 concludes. See Appendix A

for simulation results, Appendix B for omitted proofs and the online appendix for

robustness properties of the test contract.

2 An Example

This section uses a simple example to illustrate the key idea behind our main result. A

risk-neutral principal and a risk-averse agent interact over finite T instances without

discounting. They face zero outside options at the outset when they sign a binding

contract. At each instant t = 1, · · · , T , the agent exerts high or low effort at ∈ A =

{0, 1} which costs him c(1) = c > c(0) = 0 and generates a random revenue Xt that
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is defined on ΩT = {H,L} and can depend on the past only through the effort history

in an arbitrary manner. The agent’s payoff equals the utility of consumption minus

the effort cost
∑T

t=1 u(ψt) − c(at) where the flow utility function u(·) is increasing,

concave and unbounded from below. The principal’s profit equals the revenue minus

the consumption payment
∑T

t=1Xt−ψt. The high effort profile is efficient and yields a

per-period expected revenue w. In the complete information benchmark, it is optimal

for the principal to elicit this effort profile, pay a fixed consumption u−1(c) to the

agent and earn a per-period expected profit w−u−1(c). The current analysis concerns

how to approximate this profit level as T →∞ when the principal observes only the

revenue for arbitrary technologies that satisfy the aforementioned assumptions.

Consider the average-revenue test contract which delivers a fixed consumption ψ

to the agent at each date t = 1, 2, · · · , T and tests whether the arithmetic mean of

realized revenues ϕ(X) = 1
T

∑T
t=1 Xt is above or below a threshold w − bT at date

T where bT = T−
1
2

+ε for some arbitrary ε ∈
(
0, 1

2

)
. If the result is affirmative, then

the agent passes the test and earns the same consumption ψ as before. Otherwise

he fails the test and earns a lower consumption ψ which causes him a utility loss

u(ψ)− u(ψ) = αcT for some arbitrary α > 1.

Albeit simple, this contract allows the principal to extract almost full surplus when

T is large. Intuitively, near-efficiency obtains if the contract provides a near-optimal

incentive and almost full insurance at the same time. In the current context, these

two goals can be achieved simultaneously if the contract effectively deters two types of

deviations: passing the test by sheer luck or by manipulating the test outcome via fine-

tuning the effort choice with past efforts and revenues. Fortunately, concentration of

measure says that the first type of deviation is rare whereas informativeness suggests

that the gain from the second type of deviation is limited.

First, consider the event where the mean of revenues differs from its expected value

by more than bT . Since revenues are bounded independent random variables for each

given effort profile, it follows from Hoeffding (1963)’s concentration inequality for

sums of bounded independent random variables that the probability of this event is

bounded uniformly from above by µT = 2 exp
(
− 2Tb2T

(H−L)2

)
over all feasible effort pro-

files. The uniformity of the concentration bound allows us to bound the equilibrium

probability of this event by µT , too, without going through meticulous calculations of

the equilibrium strategy which is difficult to characterize directly because the effort

choice can vary subtly with the history of efforts and revenues.
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Second, suppose that the mean of revenues is bT -concentrated around its expected

value and the agent passes the test, i.e., E[ 1
T

∑T
t=1 Xt|aT ]+ bT ≥ 1

T

∑T
t=1Xt ≥ w− bT .

By assumption, we have E[ 1
T

∑T
t=1Xt|aT ] ≥ w − 2bT . Then the informativeness of

the revenue process which, in the current example, follows from the very definition of

efficiency, implies that 1
T

∑T
t=1 c(at) ≥ u ◦ (u−1(c) − 2bT ). That is, the agent cannot

save much effort cost however carefully he adjusts the effort choice with past efforts

and revenues. The reason is simple: if the contrary is true, then there is a much

cheaper way to generate more or less the same revenue as by exerting the efficient

effort profile, a contradiction.

The uniformity of the probability and payoff bounds leads to an analytic lower

bound for the equilibrium profitability of the average-revenue test contract for each

T ∈ N which converges to w − u−1(c) as T → ∞. Intuitively, the equilibrium

consists of two types of outcomes depending on whether the mean of revenues is bT -

concentrated around its expected value or not. The probability of the second type of

outcome is at most µT and hence is negligible when T is large. At the first type of

outcome, the agent either passes the test and spends approximately u◦ (u−1(c)−2bT )

per-period on the effort cost or fails the test and pays a per-period penalty αc, and it

is clearly optimal for her to pass the test most of the time. Indeed, we can quantify

the equilibrium probability of failure based on the observation that a lower bound for

the agent’s equilibrium loss per-period πT ·αc+(1− µT − πT )·u◦(u−1(c)−2bT ) where

πT = P {Failure at the concentration event} is weakly smaller than an upper bound

for his per-period loss at the efficient action profile c + 1
2
µT · αc. Straightforward

algebra yields the result.

3 Statistical Background

Concentration Inequality Concentration of measure is fairly general phenomenon

which, roughly speaking, says that a well-behaved function defined on a high di-

mensional probability space almost always takes values that are close to its mean.

Concentration inequalities prescribe for each sample size T ∈ N and ε > 0 a uni-

form upper bound for the probability that a large class of well-behaved functions

differ from their expected values by more than ε. Until recently, researchers have

developed varying methods of obtaining concentration bounds. Interested readers

should consult Boucheron et al. (2003) and Kontorovich and Ramanan (2008) for
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thorough reviews on existing results and methodologies. Most examples considered

below make use of McDiarmid (1989)’s concentration inequality for independent (but

not necessarily identical) random variables and Kontorovich and Ramanan (2008)’s

concentration inequality for Markov chains with bounded contraction coefficients.

McDiarmid (1989) Fix T ∈ N and let X = (X1, X2, · · · , Xt) be T independent

random variables defined on a sample space Ω. If a test statistic ϕ : ΩT → R has

bounded differences, i.e.,

∣∣ϕ(x1, · · · , xt, · · ·xT )− ϕ(x1, · · · , x′t, · · · , xT )
∣∣ ≤ γt, ∀xt, x′t, xs, s 6= t (3.1)

for some γ1, · · · , γT > 0, then for any ε > 0, we have

P {ϕ(X)− Eϕ(X) ≥ ε} ≤ exp

(
− 2ε2∑T

t=1 γ
2
t

)
(3.2)

and

P {ϕ(X)− Eϕ(X) ≤ −ε} ≤ exp

(
− 2ε2∑T

t=1 γ
2
t

)
(3.3)

Remark 1. If Ω ⊂ R is bounded and ϕ(X) = 1
T

∑T
t=1Xt, then the right hand side

of (3.2) and (3.3) equals exp
(
− 2Tε2

‖Ω‖2

)
where ‖Ω‖ = sup Ω− inf Ω.

Remark 2. If Ω ⊂ R is bounded and ϕ(X) =
∑T

t=1 exp(− rt
T )Xt∑T

t=1 exp(− rt
T )

for some r > 0, then

the right hand side of (3.2) and (3.3) equals approximately exp
(
−2Tε2g(r)
‖Ω‖2

)
for some

g(r) that depends only on r when T is large.

Remark 3. If Ω ⊂ R is bounded and ϕ(X) = 1−δ
1−δT

∑T
t=1 δ

t−1Xt for some δ ∈ (0, 1),

then the right hand side of (3.2) and (3.3) equals exp
(
− 2ε2(1−δT )(1+δ)
‖Ω‖2(1+δT )(1−δ)

)
.

Kontorovich and Ramanan (2008) Fix an arbitrary T ∈ N and let X =

(X1, X2, · · · , Xt) be a (possibly inhomogeneous) Markov chain that is defined on

a countable sample space Ω and a Markov measure P. Denote the initial distribu-

tion, the transition kernels and the contraction coefficients by p0(·), {pt(·|·)}T−1
t=1 and
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{θt}T−1
t=1 , respectively.3 If ϕ : ΩT → R is c-Lipschitz with respect to the normalized

Hamming metric for some c > 0,4 i.e.,

|ϕ(x)− ϕ(x′)|
1
T

∑T
t=1 1xt 6=x′t

≤ c for all x,x′ ∈ ΩT (3.4)

then for any ε > 0,

P {ϕ(X)− Eϕ(X) ≥ ε} ≤ exp

(
− Tε2

2c2M2
T

)
(3.5)

and

P {ϕ(X)− Eϕ(X) ≤ −ε} ≤ exp

(
− Tε2

2c2M2
T

)
(3.6)

where

MT = max
1≤t≤T−1

(1 + θt + θtθt+1 + · · ·+ θt · · · θT−1) (3.7)

In particular, if there exists θ ∈ (0, 1) such that θt ≤ θ for all t = 1, 2, · · · , T , then

MT ≤ 1
1−θ and hence (3.5) and (3.6) are bounded from above by exp

(
− (1−θ)2Tε2

2c2

)
.

4 The Model

4.1 Setup

Environment A principal (she) and an agent (he) interact over finite T instances

and face zero outside options at the outset when they sign a binding contract. At each

instant t = 1, · · · , T , the agent takes an action at ∈ A = R+ and earns a consumption

ψt ∈ R. His total payoff over T instances is U(ψ1, · · · , ψT )−C (a1, · · · , aT ) where U :

RT → R is the utility of consumption and C : AT → R+ is the cost of taking actions

that satisfies C(0, · · · , 0) = 0. The principal earns an expected payoff W (a1, · · · , aT )

from a T -period action profile aT = (a1, · · · , aT ). The cheapest way of awarding the

agent a gross utility level V is to pay him a stream of fixed consumptions which costs

the principal Ψ(V ) for some increasing function Ψ : R→ R. The current framework

3P{(X1, X2, · · · , Xt) = (x1, x2, · · · , xt)} = p0(x1)
∏t−1

s=1 ps(xs+1|xs) for each t = 1, · · · , T and
(X1, · · · , Xt) ∈ Ωt. θt = supx,x′∈Ω ‖pt(·|x)− pt(·|x′)‖TV where “TV” stands for the total variation
metric.

4For example, the function in Remark 1 is ‖Ω‖-Lipschitz with respect to the normalized Hamming
metric.
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nests the example of Section 2 where W
(
aT
)

= E[
∑T

t=1Xt|aT ], C
(
aT
)

=
∑T

t=1 c(at),

U (ψ1, · · · , ψT ) =
∑T

t=1 u(ψt) and Ψ(V ) = Tu−1
(
V
T

)
but allows for more sophisticated

inter-temporal preferences such as discounting and non-separability.

The principal observes neither the agent’s action nor her payoff directly. At the

end of each instant t = 1, · · · , T , a random signal Xt defined on a measurable space

(ΩT ,FT ) is publicly realized. Denote by
{
X1, · · · , XT : aT

}
the signal process gen-

erated by an arbitrary action profile aT . Define the monitoring technology by the

collection of signal processes at varying action profiles:

I(T ) =
{{
X1, · · · , XT : aT

}
: aT ∈ AT

}
(4.1)

Assume throughout that I(T ) is common knowledge.

A test statistic ϕT : ΩT
T → R is a mapping from the sample space to the reals. For

an arbitrarily action profile aT , I say that the sample test statistic ϕT (X) generated

by aT is bT -concentrated around its mean for some bT > 0 (denote this event by

E
(
aT ; bT , ϕT

)
) if ∣∣ϕT (X)− E

[
ϕT (X)|aT

] ∣∣ < bT (4.2)

Likewise, I say that the sample test statistic generated by aT is bT -semi-concentrated

around its mean for some bT > 0 (denote this event by E−
(
aT ; bT , ϕT

)
) if

ϕT (X)− E
[
ϕT (X)|aT

]
> −bT (4.3)

Key Assumptions For illustrative purpose, I assume that monitoring has no

direct welfare impacts, i.e., W (·) and C(·) depend only on the agent’s actions, and

restrict attention to the commonly considered case in the agency literature with pure

moral hazard where there is a pure action profile maximizes the social surplus (sub-

sequently referred to as the target action profile):

Assumption 1. There exists a∗T = (a∗1,T , · · · , a∗T,T ) such that

a∗T ∈ arg max
σT∈∆(AT )

E
[
W
(
aT
)
|σT
]
−Ψ

(
E
[
C
(
aT
)
|σT
])

These assumptions will be relaxed in Section 5 where I allow monitoring to have

direct welfare impacts and consider the virtual implementation of arbitrary target

strategies.
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Define W ∗
T = W

(
a∗T
)
, C∗T = C

(
a∗T
)

and Π∗T = W ∗
T − Ψ (C∗T ) as the pay-

off to the principal, the cost to the agent and the social surplus that is gener-

ated by a∗T , respectively, all of which are assumed to be strictly positive. Let

W T = infσT∈∆(AT )

{
E
[
W
(
aT
)
|σT
]}

> −∞ and use ηT =
WT

W ∗T
to denote the ratio

between the infimum of the principal’s payoff over all feasible action profiles and its

counterpart at the target action profile.

The monitoring technology satisfies the following properties:

Assumption 2. There exist {bT , ϕT}∞T=1 such that

(i) (Concentration of measure) For each T ∈ N, P
(
E
(
aT ; bT , ϕT

)
|aT
)
> 1 − µT

and P
(
E−
(
aT ; bT , ϕT

)
|aT
)
> 1 − µ−T for all aT ∈ AT for some µT ≥ µ−T > 0

where limT→∞ µT = limT→∞ µ
−
T = 0.

(ii) (Informativeness) For each T ∈ N, if E
[
ϕT (X)|aT

]
≥ E[ϕT (X)|a∗T ] − 2bT ,

then W
(
aT
)
≥ W ∗

T (1 − wT ) and C
(
aT
)
≥ C∗T (1 − cT ) where limT→∞wT =

limT→∞ cT = 0.

Part (i) says that there is a test statistic that is bT -concentrated around its mean

with a probability that is bounded uniformly from below over all feasible action

profiles and converges to one as the as the sample size increases. This assumption

holds for a wide range of test statistics under general signal processes especially when

the correlation between signals at each given action profile is not too strong and

individual signals have small and even contributions to the variation of the aggregate

test statistic. It substantially generalizes many commonly made assumptions about

the monitoring technology in the agency literature by allowing signals to depend

arbitrarily on past actions and to exhibit moderate serial correlation.

Example 1 (Conditionally independent signals). If X1, · · · , XT are independent ran-

dom variables for each aT ∈ AT and if ϕT has bounded differences defined by (3.1),

then one can apply McDiarmid (1989)’s concentration bound prescribed by (3.2) -

(3.3). In the example of Section 2, since the revenue space ΩT = {H,L} is uniformly

bounded and hence the contribution of individual revenues to the variation of the test

statistic ϕT (X) = 1
T

∑T
t=1Xt is at most H−L

T
, it follows that µT = 2 exp

(
− 2Tb2T

(H−L)2

)
=

2µ−T .

Example 2 (Moderate serial correlation). Suppose that ΩT is countable and Xt

depends only on at, Xt−1, · · · , Xt−d where d ∈ N is independent of T for each t =
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1, · · · , T . Define Zt = (Xt, · · ·Xt−d+1), taking obvious care when dealing with Z1, · · · , Zd.
Clearly,

{
Z1, · · · , ZT : aT

}
is a Markov chain for each aT ∈ AT . Denote the tth con-

traction coefficient of this Markov chain by θt
(
aT
)
. Define MT

(
aT
)

= max1≤t≤T−1 1+

θt
(
aT
)

+ θt
(
aT
)
θt+1

(
aT
)

+ · · · + θt
(
aT
)
· · · θT−1

(
aT
)
. If MT

(
aT
)
≤ MT for all

aT ∈ AT for some MT and ϕT : ΩdT
T → R is Lipschitz with respect to the normalized

Hamming metric defined by (3.4), then one can apply Kontorovich and Ramanan

(2008)’s concentration bound prescribed by (3.5) - (3.6).

A sufficient condition for MT to exist is that θt(a
T ) ≤ θ for some θ ∈ (0, 1)

for all t and aT . That is, the serial correlation is not too strong and is relatively

homogeneous across different action profiles. Meanwhile, the Lipschitz condition is

satisfied if individual signals have small and even contribution to the variation of ϕT .

For example, if ΩT is bounded and ϕT (Z) = 1
T

∑T
t=1Xt, then ϕT is ‖ΩT‖-Lipschitz

with respect to the normalized Hamming metric.

Part (ii) says that if mean of the test statistic at the true action profile is close to

its counterpart at the target action profile, then the true action profile significantly

improves the principal’s payoff and incurs non-trivial cost to the agent. This part

is merely a restriction on the first moment of the test statistic and hence is much

weaker than the usual density-based on assumptions in the agency literature. In

certain cases, it holds automatically because of the interesting properties of other

model primitives.

Remark 4. In the example of Section 2, since ϕT (X) equals the mean of revenues,

E[ϕT (X)|aT ] ≥ w − 2bT implies W (aT ) = E[ 1
T

∑T
t=1 Xt|aT ] ≥ w ·

(
1− 2bT

w

)
. Further-

more, it follows from the efficiency of the target action profile that 1
T

∑T
t=1 c(at) ≥

u ◦ (u−1(c) − 2bT ) ≈ c ·
(

1− u′(u−1(c))
c

· 2bT
)

. Thus, we have wT = 2bT
w

and cT =

u′(u−1(c))
c

· 2bT .

Finally, assume that the agent can be effectively penalized by decreases in the last

period consumption:

Assumption 3. There exists α > 1 independent of T such that for each T ∈ N,

U (ψ, · · · , ψ, ψ) = C∗T (1 + αµ−T ) and U (ψ, · · · , ψ, ψ) − U (ψ, · · · , ψ, ψ′) = αC∗T for

some ψ and ψ′.

14



This assumption is not as restrictive as it seems. In particular, if players have

future interactions, then the agent can be penalized by changes in the continuation

value instead. See Section 4.3 for further discussions on this subject.

4.2 Main Result

A test contract
(
ϕT (·),RT , ψT , ψT

)
consists of (1) a test statistic ϕT , (2) a rejection

region

RT =
(
−∞,E[ϕT (X)|a∗T ]− bT

]
(4.4)

and (3) a pair of consumptions (ψT , ψT ) where

U(ψT , · · · , ψT ) = C∗T (1 + αµ−T ) (4.5)

and

U (ψT , · · · , ψT , ψT )− U
(
ψT , · · · , ψT , ψT

)
= αC∗T (4.6)

The contract pays a performance-independent consumption ψT to the agent at each

t = 1, · · · , T−1 and computes the sample test statistic ϕT (X) at the end of instant T .

If ϕT (X) ∈ Rc
T , then the agent passes the test and consumes ψT as before. Otherwise

he fails the test and consumes ψ
T

instead. The contract induces a dynamic game

where the agent’s strategy σT = {σt,T : At−1×Ωt−1 → ∆(A)} is a collection of history-

dependent action choice rules. The solution concept is Bayesian Nash equilibrium.

The equilibrium strategy σ∗T is defined by

σ∗T ∈ arg min
σT

E
[
C
(
aT
)

+ 1ϕT (X)∈RT
· αC∗T

∣∣∣∣σT] (IC)

And the contract satisfies the agent’s ex-ante participation constraint if

U(ψT , · · · , ψT )− E
[
C
(
aT
)

+ 1ϕT (X)∈RT
· αC∗T

∣∣∣∣σ∗T] ≥ 0 (IR)

The main result of this paper establishes an analytic lower bound for the prof-

itability of the test contract and shows that this bound converges to the full surplus

under mild assumptions about players’ preferences and the production technology:

Theorem 1. Under Assumptions 1 - 3, there exists a Bayesian Nash equilibrium σ∗T
of
(
ϕT ,RT , ψT , ψT

)
where for each T ∈ N,
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(i) The probability of failure is bounded from above by

P (ϕT (X) ∈ RT |σ∗T ) ≤ µT +
αµ−T + µT (1− cT ) + cT

α− 1 + cT

(ii) The ratio between the expected profit and the full surplus is bounded from below

by

1− 1

Π∗T

{
W ∗
T ·
[
wT +

(
µT +

αµ−T +µT (1−cT )+cT
α−1+cT

)
(1− wT − ηT )

]
+Ψ

(
C∗T · (1 + αµ−T )

)
−Ψ (C∗T )

}

As T →∞,

(a) The probability of failure is vanishing: P (ϕT (X) ∈ RT |σ∗T ) ∼ O(max{µT , cT});

(b) The profit-surplus ratio converges to one if the second term of Part (ii) is van-

ishing.

The second term of Part (ii) is vanishing if the social surplus is a non-trivial

fraction of the principal’s payoff, the infimum of the principal’s payoff over all feasible

action profiles is not too small and the compensation function is not increasing too fast

in the agent’s utility level such that
W ∗T
Π∗T
∼ Θ(1),

(
µT +

αµ−T +µT (1−cT )+cT
α−1+cT

)
ηT → 0 and

Ψ(C∗T ·(1+αµ−T ))−Ψ(C∗T )
Π∗T

→ 0 as T →∞. As far as the author is aware, these assumptions

are satisfied by most existing studies in the agency literature.

In principle, one can certainly vary the incentive payment with the agent’s perfor-

mance score in a more continuous manner. While such subtlety may not help improve

the asymptotic efficiency, it is certainly useful if parties have only a few number of

interactions or if the probability and payoff bounds are not as tight as assumed.

4.3 Special Cases

This section illustrates how the tension between our sufficient conditions helps de-

termine the boundary at which asymptotic efficiency does and does not obtain in a

large class of agency problems.

Example 3 (Contracting with frequent actions). Time evolves continuously over [0, 1]

and players share a common interest rate r > 0. The economy indexed by T ∈ N
divides the unit time interval into T sub-intervals of equal length ∆ = 1/T . Over
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each sub-interval [(t− 1)∆, t∆], t = 1, · · · , T , the agent spends an effort cost c(at)∆,

generates a random public revenue Xt∆ and earns a net payoff [u(ψt)− c(at)]∆. For

each T -period action profile aT , define W (aT ) = E
[∑T

t=1 exp(−rt∆)Xt∑T
t=1 exp(−rt∆)

∣∣aT] as the per-

period expected revenue and C(aT ) =
∑T

t=1 exp(−rt∆)c(at)∑T
t=1 exp(−rt∆)

as the per-period effort cost.

Assume that Xt is defined on a bounded sample space ΩT ⊂ R and W ∗
T , C

∗
T ∼ Θ(1)

as T →∞.

Consider the discounted average-revenue test contract which tests if ϕT (X) =∑T
t=1 exp(−rt∆)Xt∑T
t=1 exp(−rt∆)

belongs to the corresponding rejection region or not. Since wT = 2bT
W ∗T

,

cT =
u′(u−1(C∗T ))

C∗T
· 2bT are both Θ(bT ) whereas µT ≈ 2 exp

(
−2Tb2T g(r)

‖ΩT ‖2

)
for some g(r)

that depends only on r when T is large (see Remarks 2 and 4), Assumption 2 is

satisfied if and only if {bT}∞T=1 and {µT}∞T=1 are both vanishing in T , or

‖ΩT‖
T
∼ o

(
T−

1
2

)
as T →∞ (4.7)

Condition (4.7) says that the noisiness of the signal per-period does not increase too

fast as the period length shrinks. It is satisfied by many theoretical and applied

works, including the notable work of Radner (1981) which examines a finite-horizon

agency game where the monitoring technology is transitory and the signal space does

not expand as the horizon grows. Theorem 1 suggests that these assumptions are

superfluous for attaining asymptotic efficiency in his setup. It also suggests that in

a large class of environments where asymptotic efficiency does obtain, the value of

knowing exact details of the monitoring technology decays very fast as the number

of interactions increases.

Example 4 (Contracting with Poisson monitoring technology). In the setup of Ex-

ample 3, suppose that a binary signal Xt ∈ {0, 1} is publicly realized at each instant

t∆, t = 1, · · · , T where Xt = 1 conveys good news about the agent’s action and oc-

curs with probability λ (at) ∆ over [(t− 1)∆, t∆]. When ∆ is small, Bernoulli process

generated by aT can be thought of as a discrete-time analog of a time-inhomogeneous

Poisson process with arrival rates λ (at) , t = 1, · · · , T .

Consider a contract that tests the discounted mean of good signals ϕT (X) =∑T
t=1 exp(−rt∆)Xt∑T
t=1 exp(−rt∆)

. Since ‖ΩT‖ = 1 satisfies Condition (4.7), there exist {bT}∞T=1 and

{µT}∞T=1 that are both vanishing in T and hence Assumption 2 (i) is satisfied. If, in ad-

dition, that there exist vanishing sequences {wT , cT}∞T=1 such that
∑T

t=1 exp(−rt∆)λ(at)∑T
t=1 exp(−rt∆)

≥
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∑T
t=1 exp(−rt∆)λ(a∗t)∑T

t=1 exp(−rt∆)
− bT implies W (aT ) ≥ W ∗

T (1− wT ) and C(aT ) ≥ C∗T (1− cT ), then

Assumption 2 (ii) is also satisfied. As far as the author is aware, this is true for most

existing studies on contracting with Poisson monitoring technologies, including Biais

et al. (2010) and Myerson (2010).

An immediate corollary of this observation is that near-efficiency obtains in infinite-

horizon contracting problems with Poisson monitoring technologies where parties

share a common interest rate r > 0 and the agent has bounded flow utilities provided

that we can divide the horizon into many small blocks and confine the technological

persistence within individual blocks. Indeed, this observation is made by Biais et al.

(2010) and Myerson (2010) for transitory monitoring technologies. To see why, let

us fix an arbitrarily small ε > 0 and divide the infinite horizon into many blocks

of length L where
∫ L

0
e−rsc(a∗s)ds � ε

∫∞
L
e−rsds. That is, from the agent’s point of

view, the cost of taking the target actions in current block is much smaller than the

present value of earning a net payoff ε from the next block onward. Now consider a

contract that implements the contract described in the previous paragraph in each

block and rewards the agent a net flow payoff ε so long as the relationship continues

but switches to no production and the lowest consumption payment when the agent

fails the test for the first time. Standard arguments suggest that there is an equilib-

rium of this contract that yields almost full surplus when interactions are sufficiently

frequent.

Existing models with Poisson monitoring technologies all assume additional con-

tractual frictions to make the contract design problem non-trivial. For example,

Biais et al. (2010) makes the agent more impatient than the principal whereas My-

erson (2010) imposes an exogenous bound on the agent’s continuation payoff. The

current analysis explains why these modeling assumptions are necessary. It also helps

practitioners differentiate the contractual frictions used by these authors from those

that arise from the monitoring technology itself.

Example 5 (Discrete-time approximation of models with Brownian motion signals).

This example is taken from Sadzik and Stacchetti (2013)’s discrete-time approxima-

tion of continuous-time agency models with Brownian motion signals. In the setup

of Example 3, suppose that Xt = at + Zt
√
T where Z1, · · · , ZT are i.i.d. random

variables with mean 0 and variance σ2. By independence, we have Var
(
ϕT (X)|aT

)
=∑T

t=1 exp(−2rt∆)Var(Xt|at)

(
∑T

t=1 exp(−rt∆))
2 ≈ σ2

g(r)
for all aT ∈ AT when T is large. Now fix any vanishing
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sequence {bT}∞T=1 that makes both {wT}∞T=1 and {cT}∞T=1 vanishing. Notice that there

exists no vanishing sequence {µT}∞T=1 that satisfies Assumption 2 (i) because if the

contrary is true, then σ2

g(r)
= Var

(
ϕT (X)|aT

)
≤ (1− µT )b2

T + µT
σ2

g(r)
→ 0 as T → ∞,

a contradiction to the assumption that {bT}∞T=1 and {µT}∞T=1 are both vanishing.

Intuitively, since Brownian motion tends to drift apart from its mean, we need to

keep bT large in order to keep the concentration bound µT small. But then we lose

informativeness. See Figure 2 for a graphical illustration.

Indeed, the same is true for Hellwig and Schmidt (2002)’s discrete-time approx-

imation of Holmstrom and Milgrom (1987) where Xt ∈ {x1

√
T , · · · , xN

√
T}, and

for Biais et al. (2007)’s discrete-time analog of DeMarzo and Sannikov (2006) where

Xt ∈ {x1

√
T , x2

√
T}. All these authors essentially assume that ‖ΩT ‖

T
∼ Θ(T−

1
2 ).

Condition (4.7) suggests that exactly at this noise level, it is hard to conceive a test

statistic that has sufficiently concentrated measures and conveys enough information

about the true action at the same time. As a result, asymptotic efficiency may not

obtain even if T is large.

This intuition is confirmed by Sadzik and Stacchetti (2013) which examines an

infinite horizon agency model where the monitoring technology is transitory and the

agent’s flow utility is bounded. More precisely, suppose to the contrary that there is

a near-efficient test contract when T is large in the setup of Sadzik and Stacchetti

(2013). Then the principal can use the trick discussed in the previous example to

extract almost full surplus when interactions are sufficiently frequent. But this con-

tradicts with the result of Sadzik and Stacchetti (2013) which shows that the optimal

contract is strictly inefficient when T is large so long as the Fisher information metric

of Zt is finite, an assumption that is satisfied by many common distributions.

Example 6 (Fixed discount factor). In the setup of Section 2, suppose that par-

ties discount the future by a common factor δ ∈ (0, 1). Notice that the discounted

average-revenue test contract with ϕT (X) = 1−δ
1−δT

∑T
t=1 δ

t−1Xt does not satisfy As-

sumption 2 (i) because the test statistic assigns a disproportionately high weight to

early signals such that for each vanishing sequence {bT}∞T=1, we have limT→∞ µT =

limT→∞ exp
(
− b2T (1−δT )(1+δ)

(H−L)2(1+δT )(1−δ)

)
= 1 (see Remark 3). Nevertheless, the simulation

result of Section A suggests that the contract still yields a high profit guarantee for

the principal when T is neither too big nor too small under reasonable assumptions

about the production technology, discount factor and payoff functions.
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5 Extension

This section allows monitoring to have direct welfare impacts and considers the virtual

implementation of arbitrary target strategies. In the setup of Section 4, suppose that

Xt have full support on ΩT for all t = 1, · · · , T and aT ∈ AT . Each profile of

actions and realized signals (aT ,x) improves the principal’s payoff by W
(
aT ,x

)
and

incurs a total cost C
(
aT ,x

)
to the agent, where infaT∈AT ,x∈ΩT

T
W
(
aT ,x

)
> −∞ and

infaT∈AT ,x∈ΩT
T
C
(
aT ,x

)
= 0 = C(0, · · · , 0,x) for all x ∈ ΩT

T .

Take an arbitrary target strategy σ̂T . Define ŴT = E
[
W
(
aT ,X

)
|σ̂T
]
, ĈT =

E
[
C
(
aT ,X

)
|σ̂T
]

and Π̂T = ŴT −Ψ(ĈT ) as the expected payoff to the principal, the

expected cost to the agent and the expected social surplus that are generated by σ̂T ,

respectively. Define ηT =
inf

aT ,x
W(aT ,x)
ŴT

as the infimum of the principal’s payoff over

all feasible profiles of actions and signals. Under σ̂T , an profile of actions and signals

(âT ,x) are mutually consistent if they occur with a positive probability.

In the remainder of this section, assume that

Assumption 4. There exist {bT , ϕT}∞T=1 such that

(i) (Concentration of measure) For each T ∈ N, P
(
E
(
aT ; bT , ϕT

)
|aT
)
> 1 − µT

and P
(
E−
(
aT ; bT , ϕT

)
|aT
)
> 1 − µ−T for some µT ≥ µ−T > 0 for all aT ∈ AT

where limT→∞ µT = 0.

(ii) (Limited welfare impacts, homogeneity and informativeness) There exist {wT , cT}∞T=1

such that for each T and
(
âT ,x

)
that are mutually consistent under σ̂T , if

E
[
ϕT (X) |aT

]
≥ E

[
ϕT (X) |âT

]
− 2bT , then W

(
aT ,x

)
≥ ŴT (1 − wT ) and

C
(
aT ,x

)
≥ ĈT (1− cT ).

Part (i) is the same as before as it requires the test statistic to be bT -concentrated

around its mean with a uniformly bounded probability that converges to one as T

grows to infinity. Part (ii) says that if the mean of the test statistic at the true action

profile is close to its counterpart at an arbitrary action profile which occurs with a

strictly positive probability under σ̂T , then the payoff to the principal and the cost to

the agent are bounded uniformly from below over all realizations of public signals that

are mutually consistent with this target action profile. This assumption is satisfied if

(1) monitoring has limited welfare impacts, (2) the action profiles prescribed by σ̂T

are relatively homogeneous and (3) signals are informative about the welfare impacts

of true actions.
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The modified test contract works as follows. At each instant t = 1, · · · , T − 1, the

principal pays a fixed consumption ψT and recommends a pure action ât based on

σ̂T , taking the history of recommendations and realized signals (ât−1, xt−1) as given.

At the end of instant T , based on the profile of recommended actions âT and realized

signals x, she tests if ϕT (x) ∈ RT

(
âT
)

where

RT

(
âT
)

=
(
−∞,E[ϕT (X)|âT ]− bT

]
(5.1)

If the result is affirmative, then the agent fails the test and consumes ψ
T

. Otherwise

he passes the test and consumes ψT . ψT and ψ
T

satisfy U(ψT , · · · , ψT ) = ĈT (1+αµT )

and U(ψT , · · · , ψT )− U(ψT , · · · , ψT ) = αĈT .

A straightforward extension of Theorem 1 yields the following result:

Corollary 1. Under Assumptions 4 and an analog of Assumption 3 that replaces C∗T
with ĈT , the test contract

(
ϕT (·),RT (·), ψT , ψT

)
has a Bayesian Nash equilibrium σ∗T

that satisfies Theorem 1 (i)-(ii) where W ∗
T , C

∗
T and Π∗T are replaced by ŴT , ĈT and

Π̂T , respectively.

The result is easy to understand. First, concentration of measure says that no

matter how complex the equilibrium strategy is, one can easily bound the equilib-

rium probability that the sample test statistic is concentrated around its mean based

on the concentration bound. Meanwhile, limited welfare impacts, homogeneity and

informativeness imply that if the agent passes the test at the event where the mean

of the test statistic at the true action profile is close to its counterpart at the realized

recommendation action profile, then the principal’s payoff and the agent’s cost of

taking actions are bounded uniformly from below over all feasible recommendation

action profiles. These properties allow us to bound the equilibrium profitability in

the same way as before.

6 Conclusion

I conclude by discussing several open questions and suggesting directions for future

research. First, the current analysis attributes the implementability of asymptotic

near-efficiency in agency models to several basic properties of the monitoring tech-

nology but not to other model details. It is interesting to see if the same is true for
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dynamic games with imperfect public monitoring. In continuous-time games where

signals follow Levy processes, Sannikov and Skrzypacz (2010) shows that certain

types of Poisson signals can effectively sustain cooperation in public strategy equilib-

ria because they seldom trigger wrongful penalties whereas Brownian motion signals

cannot. It is interesting to see if the insight carries over to more general monitoring

technologies.

Our sufficient conditions for implementing asymptotic near-efficiency are almost

tight at least in a class of agency models with frequent actions. This leaves open

the question of whether the same is true in general. It is the author’s belief that in

order to prove or disprove this conjecture, we need new techniques that yield robust

upper bounds for the optimal profit level without fully characterizing the equilibrium

strategy in general agency models.

While the analysis so far has focused on the issue of efficiency, it is worth noting

that test contract itself has many interesting robustness properties: it depends on

few model parameters that are easy to estimate and thus imposes little knowledge

burden on the principal; it can encompass varying considerations such as hidden

savings, persistent hidden characteristics, limited liability and team production; in

practical situations where the principal knows few details about a potentially complex

monitoring technology, it offers guidance to what to contract upon and provides a

robust profit guarantee that is difficult to improve upon. Interested readers should

consult the online appendix for formal analyses.

A Simulation

This section simulates the performance of the test contract in Example 6 for ΩT =

{0, 1}, ϕT (X) = 1−δ
1−δT

∑T
t=1 δ

t−1Xt and µT = 2 exp
(
− b2T (1−δT )(1+δ)

(H−L)2(1+δT )(1−δ)

)
= 2µ−T . To

make progress, I treat one period as a quarter, apply the standard annual discount

rate 5% and take bT = T−0.05. Under these assumptions, consider two cases:

• α = 2, cT ∈
[

1
15
bT ,

1
8
bT
]
, i.e., if the agent passes the test at the event where the

sample test statistic is bT -concentrated around its mean, then the per-period

effort cost ranges from 88% to 94% of the target action cost. Notice that bT
15

and bT
8

are very conservative estimates of cT because in the example of Section

2, cT = u′(u−1(c))·2bT
c

≈ u′(u−1(12000))·2bT
12000

� 1
15
bT based on a conservative estimate
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of the quarterly labor cost c = 12000. If cT is indeed close to this number, then

the result below obtains when α is slightly greater than one.

• α = 3, cT ∈
[

1
4.5
bT ,

1
7
bT
]
, i.e., if the agent passes the test at the event where the

realized test statistic is bT -concentrated around its mean, then the per-period

effort cost ranges from 78% to 86% of the target action cost.

Figures A.1 - A.4 plot the upper bound for the equilibrium probability of failure

prescribed by Theorem 1 (i) against T . Since the result is well below 11% after 4

periods, it is legitimate to conclude that the contract yields almost full surplus under

reasonable assumptions about the production technology (wT , ηT ) and the compen-

sation function ΨT (·) when T is neither too big nor too small. The result further

implies that the feasibility of penalty — which only needs to be slightly bigger than

the cost of taking efficient actions over one year — may not be an issue after all.

B Omitted Proofs

Lemma 1. Fix an arbitrary T ∈ N. If ϕT (X) is bT -concentrated around its mean at

aT and ϕT (X) ∈ Rc
T , then W

(
aT
)
≥ W ∗

T (1− wT ) and C
(
aT
)
≥ C∗T (1− cT ).

Proof. By assumption, we have (1) ϕT (X) > E[ϕT (X)|a∗T ] − bT and (2)
∣∣ϕT (X) −

E[ϕT (X)|aT ]
∣∣ < bT , or E[ϕT (X)|aT ] > E[ϕT (X)|a∗T ] − 2bT . The result follows from

Assumption 2.

Proof of Theorem 1

Proof. Define

rT =

∫
P
(
E
(
aT ; bT , ϕT

)
|aT
)
dF
(
aT |σ∗T

)
(B.1)

as the equilibrium probability that the realized test statistic is bT -concentrated around

its mean, and

πT =

∫
P
(
E
(
aT ; bT , ϕT

)
, ϕT (X) ∈ RT |aT

)
dF
(
aT |σ∗T

)
(B.2)
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Figure A.1 α = 2, cT = bT
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Figure A.2 α = 2, cT = bT
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Figure A.3 α = 3, cT = bT
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Figure A.4 α = 3, cT = bT
7

as the equilibrium probability that the test statistic is bT -concentrated around its

mean and yet the agent fails the test. By Assumption 2 (i), we have

rT ≥ 1− µT ,∀T (B.3)

Parts (i) and (a): First, bound the agent’s equilibrium payoff from above by

U(ψT , · · · , ψT )−

πT · αC∗T︸︷︷︸
(1)

+(rT − πT )C∗T (1− cT )︸ ︷︷ ︸
(2)

+(1− rT ) · 0︸︷︷︸
(3)


where (1) is attained if the agent pays the penalty for failing the test yet incurs no cost,

(2) is attained if he passes the test when the sample test statistic is bT -concentrated
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around its mean and thus spends at least C∗T (1 − cT ) on the action cost, and (3)

is attained if he takes the lowest action and pays no penalty at the irregular event.

Second, notice that if the agent takes a∗T instead, then he incurs an action cost C∗T
but fails the test only if the test statistic is not bT -semi-concentrated around its mean,

an event whose probability is bounded from above by µ−T . Thus, his expected payoff

is bounded from below by

U(ψT , · · · , ψT )−
{
C∗T + µ−T · αC

∗
T

}
Since the first expression is weakly greater the second one, it follows that

πT ≤
αµ−T + µT (1− cT ) + cT

α− 1 + cT
,∀T

Based on this result, bound the equilibrium probability of failure from below by

P (ϕT (X) ∈ RT |σ∗T ) ≤ πT + 1− rT ≤ µT +
αµ−T + µT (1− cT ) + cT

α− 1 + cT
,∀T

where the RHS is O(max{cT , µT}) when T is large.

Parts (ii) and (b): By Part (i), it suffices to pay U(ψT , · · · , ψT ) ≥ C∗T (1 + αµ−T )

to satisfy the agent’s ex-ante participation constraint. Meanwhile, it follows from

Assumption 2 that the principal’s expected payoff is at least

(rT−πT )·W ∗
T (1−wT )+(1−rT +πT )W T = W ∗

T [(rT − πT )(1− wT ) + (1− rT + πT )ηT ]

Together, bound the equilibrium profitability from below by

W ∗
T [(rT − πT )(1− wT ) + (1− rT + πT )ηT ]−Ψ

(
C∗T (1 + αµ−T )

)
Rearranging yields the result.

Proof of Corollary 1

Proof. We have rT =
∫
P
(
E
(
aT ; bT , ϕT

)
|aT
)
dF
(
aT |σ∗T

)
> 1− µT as before. Define

πT =

∫
P
(
E
(
aT ; bT , ϕT

)
, ϕT (X) ∈ RT

(
âT
)
|aT
)
dF
(
aT |σ∗T

)
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Bound the agent’s equilibrium expected loss from below by πT · αĈT + (rT − πT ) ·
ĈT (1 − cT ) and his expected loss at σ̂T from above by ĈT (1 + αµ−T ). Rearranging

yields the result.
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