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Abstract

When a researcher estimates the parameters of a regression function using information

on all 50 states in the United States, or information on all visits to a website, what is
the interpretation of the standard errors? Researchers typically report standard errors

that are designed to capture sampling variation, based on viewing the data as a random
sample drawn from a large population of interest, even in applications where it is difficult

to articulate what that population of interest is and how it differs from the sample. In this
paper we explore alternative interpretations for the uncertainty associated with regression

estimates. As a leading example we focus on the case where some parameters of the
regression function are intended to capture causal effects. We derive standard errors for
causal effects using a generalization of randomization inference. Intuitively, these standard

errors capture the fact that even if we observe outcomes for all units in the population of
interest, there are for each unit missing potential outcomes for the treatment levels the

unit was not exposed to. We show that our randomization-based standard errors in general
are smaller than the conventional robust standard errors, and provide conditions under

which they agree with them. More generally, correct statistical inference requires precise
characterizations of the population of interest, the parameters that we aim to estimate

within such population, and the sampling process. Estimation of causal parameters is one
example where appropriate inferential methods may differ from conventional practice, but

there are others.
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1 Introduction

In many empirical studies in economics, researchers specify a parametric relation between ob-

servable variables in a population of interest. They then proceed to estimate and do inference

for the parameters of this relation. Point estimates are based on matching the relation between

the variables in the population to the relation observed in the sample, following what Gold-

berger (1968) and Manski (1988) call the “analogy principle.” In the simplest setting with an

observed outcome and no covariates the parameter of interest might simply be the population

mean, estimated by the sample average. Given a single covariate, the parameters of interest

might consist of the slope and intercept of the best linear predictor for the relationship between

the outcome and the covariate. The estimated value of a slope parameter might be used to

answer an economics question such as, what is the average impact of a change in the minimum

wage on employment? Or, what will be the average (over markets) of the increase in demand if

a firm lowers its posted price? A common hypothesis to test is that the population value of the

slope parameter of the best linear predictor is equal to zero.

The textbook approach to conducting inference in such contexts relies on the assumptions

that (i) the observed units are a random sample from a large population, and (ii) the parameters

in this population are the objects of interest. Uncertainty regarding the parameters of interest

arises from sampling variation, due to the difference between the sample and the population. A

95% confidence interval has the interpretation that if one repeatedly draws new random samples

from this population and construct new confidence intervals for each sample, the estimand should

be contained in the confidence interval 95% of the time. In many cases this random sampling

perspective is attractive. If one analyzes individual-level data from the Current Population

Survey, the Panel Study of Income Dynamics, the 1% public use sample from the Census, or

other public use surveys, it is clear that the sample analyzed is only a small subset of the

population of interest. However, in this paper we argue that there are other settings where

there is no population such that the sample can be viewed as small relative to that population,

randomly drawn from it, and when the estimand is the population value of that parameter. For

example, suppose that the units are all fifty states of the United States, all the countries in the

world, or all visits to a website. If we observe a cross-section of outcomes at a single point in time

and ask how the average outcome varies with attributes of the units, the answer is a quantity

that is known with certainty. For example, the difference in average outcome between coastal
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and inland states for the observed year is known: the sample average difference is equal to the

population average difference. Thus the standard error on the estimate of the difference should

be zero. However, without exception researchers report positive standard errors in such settings.

More precisely, researchers typically report standard errors using formulas that are formally

justified by the assumption that the sample is drawn randomly from an infinite population.

The theme in this paper is that this random-sampling-from-a-large-population assumption is

often not the natural one for the problem at hand, and that there are other, more natural

interpretations of the uncertainty in the estimates.

The general perspective we take is that statistics is fundamentally about drawing inferences

with incomplete data. If the researcher sees all relevant data, there is no need for inference, since

any question can be answered by simply doing calculations on the data. Outside of this polar

case, it is important to be precise in what sense the data are incomplete. Often we can consider

a population of units and a set of possible states of the world. There is a set of variables that

takes on different values for each unit depending on the state of the world. The sampling scheme

tells us how units and states of the world are chosen to form a sample, and what variables are

observed, and what repeated sampling perspective may be reasonable.

Although there are many settings to consider, in the current paper we focus on the specific

case where the state of the world corresponds to the level of a causal variable for each unit,

e.g., a government regulation or a price set by a firm. The question of interest concerns the

average causal effect of the variable: for example, the difference between the average outcome

if (counterfactually) all units in the population are treated, and the average outcome if (coun-

terfactually) all units in the population are not. Note that we will never observe the values for

all variables of interest, because by definition we observe each physical unit at most once, either

in the state where it is treated or the state where it is not, with the value of the outcome in

the other state missing. Questions about causal effects can be contrasted with descriptive or

predictive questions. An example of a descriptive estimand is the difference between the average

outcome for countries with one set of institutions and the average outcome for countries with

a different set of institutions. Although researchers often focus on causal effects in discussions

about the interpretation of findings, standard practice does not distinguish between descriptive

and causal estimands when conducting estimation and inference. In this paper, we show that

this distinction matters. Although the distinction between descriptive estimands and causal

estimands is typically not important for estimation under exogeneity assumptions, and is also
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immaterial for inference if population size is large relative to the sample size, the distinction

between causal and descriptive estimands matters for inference if the sample size is more than a

negligible fraction of the population size. As a result the researcher should explicitly distinguish

between regressors that are potential causes and those that are fixed attributes.

Although this focus on causal estimands is rarely made explicit in regression settings, it

does have a long tradition in randomized experiments. In that case the natural estimator for

the average causal effect is the difference in average outcomes by treatment status. In the

setting where the sample and population coincide, Neyman (1923) derived the variance for this

estimator and proposed a conservative estimator for this variance. The results in the current

paper can be thought of as extending Neyman’s analysis to general regression estimators in

observational studies. Our formal analysis allows for discrete or continuous treatments and

for the presence of attributes that are potentially correlated with the treatments. Thus, our

analysis applies to a wide range of regression models that might be used to answer questions

about the impact of government programs or about counterfactual effects of business policy

changes, such as changes in prices, quality, or advertising about a product. We make four

formal contributions. First, the main contribution of the study is to generalize the results for

the approximate variance for multiple linear regression estimators associated with the work by

Eicker (1967), Huber (1967), and White (1980ab, 1982), EHW from hereon, in two directions.

We allow the population to be finite, and we allow the regressors to be potential causes or

attributes, or a combination of both. We take account of both the uncertainty arising from

random sampling and the uncertainty arising from conditional randomization of the potential

causes. This contribution can also be viewed as generalizing results from Neyman (1923) to

settings with multiple linear regression estimators with both treatments and attributes that are

possibly correlated. In the second contribution, we show that in general, as in the special, single-

binary-covariate case that Neyman considers, the conventional EHW robust standard errors are

conservative for the standard errors for the estimators for the causal parameters. Third, we

show that in the case with attributes that are correlated with the treatments one can generally

improve on the EHW variance estimator if the population is finite, and we propose estimators

for the standard errors that are generally smaller than the EHW standard errors. Fourth, we

show that in a few special cases the EHW standard errors are consistent for the true standard

deviation of the least squares estimator.

By using a randomization inference approach the current paper builds on a large litera-
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ture going back to Fisher (1935) and Neyman (1923). The early literature focused on settings

with randomized assignment without additional covariates. See Rosenbaum (1995) and Imbens

and Rubin (2014) for textbook discussions. More recent studies analyze regression methods

with additional covariates under the randomization distribution in randomized experiments,

e.g., Freedman (2008ab), Lin (2013), Samii and Aronow (2012), and Schochet (2010). For ap-

plications of randomization inference in observational studies see Rosenbaum (2002), Abadie,

Diamond and Hainmueller (2010), Imbens and Rosenbaum (2005), Frandsen (2012), Bertrand,

Duflo, and Mullainathan (2004) and Barrios, Diamond, Imbens and Kolesar (2012). In most

of these studies, the assignment of the covariates is assumed to be completely random, as in

a randomized experiment. Rosenbaum (2002) allows for dependence between the assignment

mechanism and the attributes by assuming a logit model for the conditional probability of as-

signment to a binary treatment. He estimates the effects of interest by minimizing test statistics

based on conditional randomization. In the current paper, we allow explicitly for general depen-

dendence of the assignment mechanism of potential causes (discrete or continuous) on the fixed

attributes (discrete or continuous) of the units, thus making the methods applicable to general

regression settings.

Beyond questions of causality in a given cross-section, there are other kinds of questions

one could ask where the definition of the population and the sampling scheme look different;

for example, we might consider the population as consisting of units in a variety of potential

states of the world, where the state of the world affects outcomes through an unobservable

variable. For example, we could think of a population where a member consists of a country

with different realizations of weather, where weather is not in the observed data, and we wish

to draw inferences about what the impact of regulation on country-level outcomes would be in

a future year with different realizations of weather outcomes. We present some thoughts on this

type of question in Section 6.

2 Three Examples

In this section we set the stage for the problems discussed in the current paper by introducing

three simple examples for which the results are well known from either the finite population

survey literature (e.g., Cochran, 1977; Kish, 1995), or the causal literature (e.g., Neyman,

1923; Rubin, 1974; Holland, 1986; Imbens and Wooldridge, 2008; Imbens and Rubin, 2014).
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Juxtaposing these examples will provide the motivation for, and insight into, the problems we

study in the current paper.

2.1 Inference for a Finite Population Mean with Random Sampling

Suppose we have a population of size M , where M may be small, large, or infinite. In the first

example we focus on the simplest setting where the regression model includes only an intercept.

Associated with each unit i is a non-stochastic variable Yi, with YM denoting the M−vector

with ith element Yi. The target, or estimand, is the population mean of Yi,

µM = Y
pop

M =
1

M

M∑

i=1

Yi.

We index µM by the population size M because for some of the formal results we consider

sequences of experiments with populations of increasing size. In that case we make assumptions

that ensure that the sequence {µM : M = 1, 2 . . .} converges to a finite constant µ, but allow

for the possibility that the population mean varies over the sequence. The dual notation for the

same object, µM and Y
pop

M , captures the dual aspects of this quantity: on the one hand it is a

population quantity, for which it is common to use Greek symbols. On the other hand, because

the population is finite, it is a simple average, and the Y
pop

M notation shows the connection to

averages. To make the example specific, one can think of the units being the 50 states (M = 50),

and Yi being state-level average earnings.

We do not necessarily observe all units in this population. Let Wi be a binary variable

indicating whether we observe Yi (if Wi = 1) or not (if Wi = 0), with WM the M-vector with

ith element equal to Wi, and N =
∑M

i=1 Wi the sample size. We let {ρM}M=1,2,... be a sequence

of sampling probabilities, one for each population size M , where ρM ∈ (0, 1). If the sequence

{ρM}M=1,2,... has a limit, we denote it s limit by ρ. We make the following assumption about

the sampling process.

Assumption 1. (Random Sampling without Replacement) Given the sequence of sam-

pling probabilities {ρM}M=1,2,...,

pr (WM = w) = ρ
P

M

i=1 wi

M · (1 − ρM )
M−

P

M

i=1 wi ,

for all w with i-th element wi ∈ {0, 1}, and all M .
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This sampling scheme makes the sample size N random. An alternative is to draw a random

sample of fixed size. Here we focus on the case with a random sample size in order to allow for

the generalizations we consider later. Often the sample is much smaller than the population but

it may be that the sample coincides with the population.

The natural estimator for the population average µM is the sample average:

µ̂M = Y
sample

M =
1

N

M∑

i=1

Wi · Yi.

To be formal, let us define µ̂M = 0 if N = 0, so µ̂M is always defined. Conditional on N > 0

this estimator is unbiased for the population average µM :

EW [ µ̂M |N > 0] = EW

[
Y

sample

M

∣∣∣N > 0
]

= µM .

The subscript W for the expectations operator (and later for the variance operator) indicates

that this expectation is over the distribution generated by the randomness in the vector of

sampling indicators WM : the M-vector YM is fixed. We are interested in the variance of the

estimator µ̂M conditional on N :

VW ( µ̂M |N) = EW

[
(µ̂M − µM )2

∣∣N
]

= EW

[(
Y

sample

M − Y
pop

M

)2
∣∣∣∣N
]

.

Because we condition on N this variance is itself a random variable. It is also useful to define

the normalized variance, that is, the variance normalized by the sample size N :

V
norm (µ̂M ) = N · VW ( µ̂M |N) ,

which again is a random variable. Also define

σ2
M =

1

M − 1

M∑

i=1

(
Yi − Y

pop)2
,

which we refer to as the population variance (note that, in contrast to some definitions, we

divide by M − 1 rather than M).

Here we state a slight modification of a well-known result from the survey sampling literature.

The case with a fixed sample size can be found in various places in the survey sampling literature,

such as Cochran (1977) and Kish (1995). Deaton (1997) also covers the result. We provide a

proof because of the slight modification and because the basic argument is used in subsequent

results.
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Lemma 1. (Exact Variance under Random Sampling) Suppose Assumption 1 holds.

Then

VW ( µ̂M |N, N > 0) =
σ2

M

N
·
(

1 − N

M

)
.

All proofs are in the appendix.

If the sample is close in size to the population, then the variance of the sample average as an

estimator of the population average will be close to zero. The adjustment factor for the finite

population, 1−N/M , is proportional to one minus the ratio of the sample and population size.

It is rare to see this adjustment factor used in empirical studies in economics.

For the next result we rely on assumptions about sequences of populations with increasing

size, indexed by the population size M . These sequences are not stochastic. We assume that

the first and second moments of the population outcomes converge as the population size grows.

Let µk,M be the kth population moment of Yi, µk,M =
∑M

i=1 Y k
i /M .

Assumption 2. (Sequence of Populations) For k = 1, 2, and some constants µ1, µ2,

lim
M→∞

µk,M = µk.

Define σ2 = µ2 − µ2
1. We will also rely on the following assumptions on the sampling rate.

Assumption 3. (Sampling Rate) The sequence of sampling rates ρM satisfies

M · ρM → ∞, and ρM → ρ ∈ [0, 1].

The first part of the assumption guarantees that as the population size diverges, the (random)

sample size also diverges. The second part of the assumption allows for the possibility that

asymptotically the sample size is a neglible fraction of the population size.

Lemma 2. (Variance in Large Populations) Suppose Assumptions 1-3 hold. Then: (i)

VW (µ̂M |N) − σ2

N
= Op((ρM · M)−1),

(where σ2/N is ∞ if N = 0), and (ii), as M → ∞,

V
norm(µ̂M )

p−→ σ2 · (1 − ρ).

In particular, if ρ = 0, the normalized variance converges to σ2, corresponding to the con-

ventional result for the normalized variance.
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2.2 Inference for the Difference of Two Means with Random Sam-

pling from a Finite Population

Now suppose we are interested in the difference between two population means, say the difference

in state-level average earnings for coastal and landlocked states for the 50 states in the United

States. We have to be careful, because if we draw a relatively small, completely random, sample

there may be no coastal or landlocked states in the sample, but the result is essentially still the

same: as N approaches M , the variance of the standard estimator for the difference in average

earnings goes to zero, even after normalizing by the sample size.

Let Xi ∈ {coast, land} denote the geographical status of state i. Define, for x = coast, land,

the population size Mx =
∑M

i=1 1Xi=x, and the population averages and variances

µx,M = Y
pop

x,M =
1

Mx

∑

i:Xi=x

Yi, and σ2
x,M =

1

Mx − 1

∑

i:Xi=x

(
Yi − Y

pop

x,M

)2
.

The estimand is the difference in the two population means,

θM = Y
pop

coast,M − Y
pop

land,M ,

and the natural estimator for θM is the difference in sample averages by state type,

θ̂M = Y
sample

coast − Y
sample

land ,

where the averages of observed outcomes and sample sizes by type are

Y
sample

x =
1

Nx

∑

i:Xi=x

Wi · Yi, and Nx =
∑

i:Xi=x

Wi,

for x = coast, land. The estimator θ̂M can also be thought of as the least squares estimator for

θ based on minimizing

arg min
γ,θ

M∑

i=1

Wi · (Yi − γ − θ · 1Xi=coast)
2 .

The extension of part (i) of Lemma 1 to this case is fairly immediate. Again the outcomes

Yi are viewed as fixed quantities. So are the attributes Xi, with the only stochastic component

the vector WM . We condition on Ncoast and Nland being positive.
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Lemma 3. (Random Sampling and Regression) Suppose Assumption 1 holds. Then

VW

(
θ̂
∣∣∣Nland, Ncoast, Nland > 0, Ncoast > 0

)
=

σ2
coast,M

Ncoast

·
(

1 − Ncoast

Mcoast

)
+

σ2
land,M

Nland

·
(

1 − Nland

Mland

)
.

Again, as in Lemma 1, as the sample size approaches the population size, for a fixed popula-

tion, the variance converges to zero. In the special case where the two sampled fractions are the

same, Ncoastal/Mcoastal = Nland/Mland = ρ, the adjustment relative to the conventional variance

is again simply the factor 1 − ρ, one minus the sample size over the population size.

2.3 Inference for the Difference in Means given Random Assignment

This is the most of important of the three examples, and the one where many (but not all) of the

issues that are central in the paper are present. Again it is a case with a single binary regressor.

However, the nature of the regressor is conceptually different. To make the discussion specific,

suppose the binary indicator or regressor is an indicator for the state having a minimum wage

higher than the federal minimum wage, so Xi ∈ {low, high}. One possibility is to view this

example as isomorphic to the previous example. This would imply that for a fixed population

size the variance would go to zero as the sample size approaches the population size. However,

we take a different approach to this problem that leads to a variance that remains positive even

if the sample is identical to the population. The key to this approach is the view that this

regressor is not a fixed attribute or characteristic of each state, but instead is a potential cause.

The regressor takes on a particular value for each state in our sample, but its value could have

been different. For example, in the real world Massachusetts has a state minimum wage that

exceeds the federal one. We are interested in the comparison of the outcome, say state-level

earnings, that was observed, and the counterfactual outcome that would have been observed had

Massachusetts not had a state minimum wage that exceeded the federal one. Formally, using

the Rubin causal model or potential outcome framework (Neyman, 1923; Rubin, 1974; Holland,

1986; Imbens and Rubin, 2014), we postulate the existence of two potential outcomes for each

state, denoted by Yi(low) and Yi(high), for earnings without and with a state minimum wage,

with Yi the outcome corresponding to the actual or prevailing minimum wage:

Yi = Yi(Xi) =

{
Yi(high) if Xi = high,
Yi(low) otherwise.
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It is important that these potential outcomes (Yi(low), Yi(high)) are well defined for each unit

(the 50 states in our example), irrespective of whether that state has a minimum wage higher

than the federal one or not. Let YM , and XM be the M-vectors with ith element equal to Yi,

and Xi respectively.

We now define two distinct estimands. The first is the population average causal effect of

the state minimum wage, defined as

θcausal
M =

1

M

M∑

i=1

(
Yi(high) − Yi(low)

)
. (2.1)

We disinguish this causal estimand from the descriptive or predictive difference in population

averages by minimum wage,

θdescr
M =

1

Mhigh

∑

i:Xi=high

Yi −
1

Mlow

∑

i:Xi=low

Yi. (2.2)

It is the difference between the two estimands, θcausal and θdescr, that is at the core of our paper.

First, we argue that although researchers are often interested in causal rather than descriptive

estimands, this distinction is not often made explicit. However, many textbook discussions

formally define estimands in a way that corresponds to descriptive estimands.1 Second, we show

that in settings where the sample size is of the same order of magnitude as the population

size, the distinction between the causal and descriptive estimands matters. In such settings the

researcher therefore needs to be explicit about the causal or descriptive nature of the estimand.

Let us start with the first point, the relative interest in the two estimands, θcausal
M and θdescr

M .

Consider a setting where a key regressor is a state regulation. The descriptive estimand is

the average difference in outcomes between states with and states without the regulation. The

causal estimand is the average difference, over all states, of the outcome with and without that

regulation for that state. We would argue that in such settings the causal estimand is of more

interest than the descriptive estimand.

1For example, Goldberger (1968) writes “Regression analysis is essentially concerned with estimation of such
a population regression function on the basis of a sample of observations drawn from the joint probability
distribution of Yi, Xi.” (Goldberger, 1968, p. 3). Wooldridge (2002) writes: “More precisely, we assume that
(1) a population model has been specified and (2) an independent identically distributed (i.i.d.) sample can
be drawn from the population.” (Wooldridge, 2002 p. 5). Angrist and Pischke (2008) write: “We therefore
use samples to make inferences about populations” (Angrist and Pishke, 2008, p. 30). Gelman and Hill (2007)
write: “Statistical inference is used to learn from incomplete or imperfect data. ... In the sampling model we are
interested in learning some characteristic of a population ... which we must estimate from a sample, or subset,
of the population. (Gelman and Hill, 2007).
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Now let us study the statistical properties of the difference between the two estimands. We

assume random assignment of the binary covariate Xi:

Assumption 4. (Random Assignment) For some sequence {qM : M = 1, 2, . . .}, with qM ∈
(0, 1),

pr (X = x) = q
P

M

i=1 1xi=high

M · (1 − qM)M−
P

M

i=1 1xi=low ,

for all M-vectors x with xi ∈ {low, high}, and all M .

In the context of the example with the state minimum wage, the assumption requires that

whether a state has a state minimum wage exceeding the federal wage is unrelated to the poten-

tial outcomes. This assumption, and similar ones in other cases, is arguably unrealistic, outside

of randomized experiments. Often such an assumption is more plausible within homogenous

subpopulations defined by observable attributes of the units. This is the motivation for in-

cluding additional covariates in the specification of the regression function, and we consider

such settings in the next section. For expositional purposes we proceed in this section with the

simpler setting.

To formalize the relation between θdescr
M and θcausal

M we introduce notation for the means of the

two potential outcomes, for x = low, high, over the entire population and by treatment status:

Y
pop

M (x) =
1

M

M∑

i=1

Yi(x), and Y
pop

x,M =
1

Mx

∑

i:Xi=x

Yi(x),

where, as before, Mx =
∑M

i=1 1Xi=x is the population size by treatment group. Note that because

Xi is a random variable, Mhigh and Mlow are random variables too. Now we can write the two

estimands as

θcausal
M = Y

pop

M (high) − Y
pop

M (low), and θdescr = Y
pop

high,M − Y
pop

low,M .

Define the population variances of the two potential outcomes Yi(low) and Yi(high),

σ2
M (x) =

1

M − 1

M∑

i=1

(
Yi(x) − Y

pop

M (x)
)2

, for x = low, high,

and the population variance of the unit-level causal effect Yi(high) − Yi(low):

σ2
M (low, high) =

1

M − 1

M∑

i=1

(
Yi(high) − Yi(low) −

(
Y

pop
(high) − Y

pop
(low)

))2
.
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The following lemma describes the relation between the two population quantities. Note

that θcausal
M is a fixed quantity given the population, whereas θdescr

M is a random variable because

it depends on XM , which is random by Assumption 4. To stress where the randomness in

θdescr
M stems from, and in particular to distinguish this from the sampling variation, we use the

subscript X on the expectations and variance operators here. Note that at this stage there is

no sampling yet: the statements are about quantities in the population.

Lemma 4. (Causal versus Descriptive Estimands) Suppose Assumption 4 holds. Then

(i) the descriptive estimand is unbiased for the causal estimand,

EX[θdescr
M |Mhigh, Mlow > 0, Mhigh > 0] = θcausal

M ,

and (ii),

VX

(
θdescr

M

∣∣Mhigh, Mlow > 0, Mhigh > 0
)

= EX

[(
θdescr

M − θcausal
M

)2∣∣∣Mhigh, Mlow > 0, Mhigh > 0
]

=
σ2

M (low)

Mlow
+

σ2
M(high)

Mhigh
− σ2

M(low, high)

M
≥ 0.

These results are well-known from the causality literature, starting with Neyman (1923). See

for a recent discussion and details Imbens and Rubin (2014).

Now let us generalize these results to the case where we only observe values for Xi and Yi for

a subset of the units in the population. As before in Assumption 1, we assume this is a random

subset, but we strengthen Assumption 1 by assuming the sampling is random, conditional on

X.

Assumption 5. (Random Sampling Without Replacement) Given the sequence of sam-

pling probabilities {ρM : M = 1, 2, . . .}, and conditional on XM ,

pr (WM = w|XM ) = ρ
P

M

i=1 wi

M · (1 − ρM )M−
P

M

i=1 wi ,

for all M-vectors w with i-th element wi ∈ {0, 1}, and all M .

We focus on the properties of the same estimator as in the second example in Section 2.2,

θ̂ = Y
obs

high − Y
obs

low,

[12]



where, for x ∈ {low, high},

Y
obs

x =
1

Nx

∑

i:Xi=x

Wi · Yi, and Nx =
M∑

i=1

Wi · 1Xi=x.

The following results are closely related to results in the causal literature. Some of the results

rely on uncertainty from random sampling, some on uncertainty from random assignment, and

some rely on both sources of uncertainty: the superscripts W and X clarify these distinctions.

Lemma 5. (Expectations and Variances for Causal and Descriptive Estimands)

Suppose that Assumptions 4 and 5 hold. Then:

(i)

EW ,X

[
θ̂
∣∣∣Nlow, Nhigh, Nlow > 0, Nhigh > 0

]
= θcausal

M ,

(ii)

VW ,X

(
θ̂ − θcausal

M

∣∣∣Nlow, Nhigh, Nlow > 0, Nhigh > 0
)

=
σ2

M (low)

Nlow
+

σ2
M(high)

Nhigh
− σ2

M(low, high)

M
,

(iii)

EW

[
θ̂
∣∣∣X, Mlow, Nlow > 0, Nhigh > 0

]
= θdescr

M ,

(iv)

VW ,X

(
θ̂ − θdescr

M

∣∣∣Mlow, Nlow, Nhigh, Nlow > 0, Nhigh > 0
)

=
σ2

M (low)

Nlow
·
(

1 − Nlow

Mlow

)
+

σ2
M(high)

Nhigh
·
(

1 − Nhigh

Mhigh

)
,

(v)

VW ,X

(
θ̂ − θcausal

M

∣∣∣Nlow, Nhigh, Nlow > 0, Nhigh > 0
)

−VW ,X

(
θ̂ − θdescr

M

∣∣∣Nlow, Nhigh, Nlow > 0, Nhigh > 0
)

= VW ,X

(
θdesc

M − θcausal
M

∣∣Nlow, Nhigh, Nlow > 0, Nhigh > 0
)

=
σ2

M (low)

Mlow

+
σ2

M(high)

Mhigh

− σ2
M(low, high)

M
≥ 0.
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Part (ii) of Lemma 5 is a re-statement of results in Neyman (1923). Part (iv) is essentially

the same result as in Lemma 2. Parts (ii) and (iv) of the lemma, in combination with Lemma

4, imply part (v). Although part (ii) and (iv) of Lemma 5 are both known in their respective

literatures, the juxtaposition of the two variances has not received much attention.

Next, we study what happens in large populations. In order to do so we need to modify

Assumption 2 for the current context. First, define

µk,m,M =
1

M

M∑

i=1

Y k
i (low) · Y m

i (high).

We assume that all (cross-)moments up to second order converge to finite limits.

Assumption 6. (Sequence of Populations) For nonnegative integers k, m such that k +

m ≤ 2, and some constants µk,m,

lim
M→∞

µk,m,M = µk,m.

Then define σ2(low) = µ2,0 − µ2
1,0 and σ2(high) = µ0,2 − µ2

0,1, so that under Assumption

6 limM→∞ σ2
M(low) = σ2(low) and limM→∞ σ2

M(high) = σ2(high). Also define, again under

Assumption 6, limM→∞ σ2
M(low, high) = σ2(low, high).

Define the normalized variances for the causal and descriptive estimands,

V
norm
causal = N · VW ,X

(
θ̂ − θcausal

M

∣∣∣Nhigh, Nlow

)
,

and

V
norm
descr = N · VW ,X

(
θ̂ − θdescr

M

∣∣∣Nhigh, Nlow

)
,

where the variances are zero if Nhigh or Nlow are zero.

Assumption 7. (Limiting Assignment Rate) The sequence of assignment rates qM satisfies

lim
M→∞

qM = q ∈ (0, 1).

Lemma 6. (Variances for Causal and Descriptive Estimands in Large Popula-

tions) Suppose that Assumptions 3–7 hold. Then, as M → ∞, (i),

V
norm
causal

p−→ σ2(low)

1 − q
+

σ2(high)

q
− ρ · σ2(low, high) (2.3)

and (ii),

V
norm
descr

p−→
(

σ2(low)

1 − q
+

σ2(high)

q

)
· (1 − ρ). (2.4)
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Lemma 6 contains some key insights. It shows that we do not need to be concerned about

the difference between the two estimands θcausal
M and θdescr

M in settings where the population is

large relative to the sample (ρ close to zero). In that case both normalized variances are equal

to

lim
M→∞

V
norm
causal

∣∣∣
ρ=0

= lim
M→∞

V
norm
desc

∣∣∣
ρ=0

=
σ2(low)

1 − q
+

σ2(high)

q
.

It is only in settings with the ratio of the sample size to the population size non-neglible, and in

particular if the sample size is equal to the population size, that there are substantial differences

between the two variances.

3 The Variance of Regression Estimators when the Re-

gression includes Attributes and Causes

In this section and the next we turn to the setting that is the main focus of the current paper.

We allow for the presence of covariates of the potential cause type (say a state institution or a

regulation such as the state minimum wage), which can be discrete or continuous, and vector-

valued. We also allow for the presence of covariates of the attribute or characteristic type, say

an indicator whether a state is landlocked or coastal, which again can be discrete or continuous

or discrete, and vector-valued. We allow the potential causes and attributes to be systematically

correlated in the sample, because the distribution of the potential causes differs between units.

3.1 Set Up

We denote the potential causes for unit i in population M by XiM , and the attributes for unit

i in population M by ZiM . The vector of attributes ZiM typically includes an intercept. We

assume there exists a set of potential outcomes YiM (x), with the realized outcome for unit i in

population M equal to YiM = YiM (XiM ). We sample units from this population, with WiM the

binary indicator for the event that unit i in population M is sampled. We view the potential

outcome functions YiM(x) and the attributes ZiM as deterministic, and the potential causes XiM

and the sampling indicator WiM as stochastic. However, unlike in a randomized experiment,

the potential cause XiM is in general not identically distributed.

For general regression we have no finite sample results for the properties of the least squares

estimator. Instead we rely on large sample arguments. We formulate assumptions on the

[15]



sequence of populations, characterized by sets of covariates or attributes ZM and potential

outcomes YM(x), as well as on the sequence of assignment mechanisms. To be technically

precise we use a double index on all variables, whether deterministic or stochastic, to reflect

the fact that the distributions general depend on the population. For the asymptotics we let

the size of the population M go to infinity. We allow the sampling rate, ρM , to be a function

of the population, allowing for ρM = 1 (the sample is the population) as well as ρM → 0

(random sampling from a large population). In the latter case case our results agree with the

standard robust Eicker-Huber-White variance results based on random sampling from an infinite

population. The only stochastic component is the matrix (XM , WM ). The randomness in XM

generates randomness in the realized outcomes YiM = YiM (XiM ) even though the potential

outcome functions YiM (x) are non-stochastic.

For a given population, indexed by M , define the population moments

Ωpop
M =

1

M

M∑

i=1




YiM

ZiM

XiM








YiM

ZiM

XiM




′

,

and the expected population moments, where the expectation is taken over the assignment X,

Ω∗,pop
M = EX [Ωpop

M ] = EX



 1

M

M∑

i=1




YiM

ZiM

XiM








YiM

ZiM

XiM




′

 .

Also define the sample moments,

Ωsample
M =

1

N

M∑

i=1

WiM ·




YiM

ZiM

XiM








YiM

ZiM

XiM




′

where N is the random sample size.

The partitioned versions of these three matrices will be written as

Ω =




ΩY Y ΩY Z′ ΩY X ′

ΩZY ΩZZ′ ΩZX ′

ΩXY ΩXZ′ ΩXX ′



 ,

for Ω = Ωpop
M , Ω∗,pop

M and Ωsample
M . Below we state formal assumptions that ensure that these

quantities are well-defined and finite, at least in large populations.

For a population of size M , we estimate a linear regression model

YiM = X ′
iMθ + Z ′

iMγ + εiM ,

[16]



by ordinary least squares, with the estimated least squares coefficients equal to

(θ̂ols, γ̂ols) = arg min
θ,γ

M∑

i=1

WiM · (YiM − X ′
iMθ − Z ′

iMγ)
2
,

where WiM simply selects the sample that we use in estimation. The unique solution, assuming

no perfect collinearity in the sample, is
(

θ̂ols

γ̂ols

)
=

(
Ωsample

XX,M Ωsample
XZ′,M

Ωsample
ZX ′,M Ωsample

ZZ′,M

)−1(
Ωsample

XY,M

Ωsample
ZY,M

)
.

We are interested in the properties of the least squares estimator for descriptive and causal

estimands.

3.2 Descriptive and Causal Estimands

We now define the descriptive and causal estimands that generalize θcausal
M and θdescr

M from Section

2.3. For the descriptive estimand the generalization is obvious: we are interested in the value of

the least squares estimator if all units in the population are observed:
(

θdescr
M

γdescr
M

)
=

(
Ωpop

XX,M Ωpop
XZ′,M

Ωpop
ZX ′,M Ωpop

ZZ′,M

)−1 (
Ωpop

XY,M

Ωpop
ZY,M

)
.

This estimand, even though a population quantity, is stochastic because it is a function of

XM = (X1M , X2M , ..., XMM)′. For the causal estimand we look at the same expression, with

expectations taken over X in both components:
(

θcausal
M

γcausal
M

)
=

(
Ω∗,pop

XX,M Ω∗,pop
XZ′,M

Ω∗,pop
ZX ′,M Ω∗,pop

ZZ′,M

)−1(
Ω∗,pop

XY,M

Ω∗,pop
ZY,M

)
.

These causal parameters are non-stochastic.

To build some insight for the definition of the causal parameters, consider the special case

with the attributes consisting of an intercept only, ZiM = 1, and a single randomly assigned

binary cause, XiM ∈ {0, 1}, the case considered in Section 2.3. In that case, let, as before,

qM = E[
∑M

i=1 Xi/M ]. Then:
(

θcausal
M

γcausal
M

)
=

(
Ω∗,pop

XX,M Ω∗,pop
XZ′,M

Ω∗,pop
ZX ′,M Ω∗,pop

ZZ′,M

)−1 (
Ω∗,pop

XY,M

Ω∗,pop
ZY,M

)

=

(
qM qM

qM 1

)−1 (
qM · Y pop

M (1)

qM · Y pop

M (1) + (1 − qM) · Y pop

M (0)

)

=

(
Y

pop

M (1) − Y
pop

M (0)

Y
pop

M (0)

)
.

Thus θcausal
M = Y

pop

M (1) − Y
pop

M (0), identical to the causal estimand considered in Section 2.3.

[17]



3.3 Population Residuals

We define the population residuals, denoted by εiM , to be the residual relative to the population

causal estimands,

εiM = YiM − X ′
iMθcausal

M − Z ′
iMγcausal

M .

The definitions of these residuals mirrors that in conventional regression analyses, but their

properties are conceptually different. For example, the residuals need not be stochastic. Consider

the special case where YiM (x) = YiM (0) + x′θ, the potential causes XiM are randomly assigned,

and there are no attributes beyond the intercept. Then εiM = YiM (0)−∑M
j=1 YjM (0)/M , which

is non-stochastic. In other cases the residuals may be stochastic. (To be clear, the residuals are

generally non-zero even though they are non-stochastic.)

Under the assumptions we make, in particular the assumption that the XiM are jointly in-

dependent (but not necessarily identically distributed), the products XiM · εiM and ZiM · εiM ,

are jointly independent but not identically distributed. Most importantly, in general the expec-

tations EX [XiM · εiM ] and EX [ZiM · εiM ] may vary across i, although under the assumptions

stated below and the definition of the residuals, the averages of these expectations over the

population are guaranteed to be zero.

3.4 Assumptions

A key feature is that we now allow for more complicated assignment mechanisms. In particular,

we maintain the assumption that the XiM , for i = 1, . . . , M , are independent but we relax the

assumption that the distributions of the XiM are identical. For stating general results, where

the parameters are simply defined by the limits of the expected moment matrices, we do not

need to restrict the distributions of the XiM . However, in the case where the regression function

is correctly specified, for some purposes we restrict the distribution of XiM so that it depends

on the ZiM and not generally on the potential outcomes YiM (x). We also assume independence

between XiM and the sampling indicators, WiM .

Assumption 8. (Assignment Mechanism) The assignments X1M , . . . , XMM are indepen-

dent, but not (necessarily) identically distributed, or inid.

Because of the independence assumption we can apply laws of large numbers and central
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limit theorems for inid (independent but not identically distributed) sequences. For the latter

we rely on sufficient conditions for the Liapunov Central Limit Theorem.

To facilitate the asymptotic analysis we assume that the fourth moments of the triple

(YiM , ZiM , XiM ) are finite and uniformly bounded. We could relax this assumption at the cost of

complicating the proofs. If we assume the sampling frequency ρM is bounded below by ρ > 0 we

can get by with something less than uniformly bounded fourth moments, but here we want to

include ρM → 0 as a special case (leading to the EHW results) and keep the proofs transparent.

Assumption 9. (Moments) For all M the expected value µk,l,m,M = EX[Y k
iM · X l

iM · Zm
iM ] is

bounded by a common constant C for all nonnegative integers k, l, m such that k + l + m ≤ 4.

For convenience, we assume that the population moment matrices converge to fixed values.

This is a technical simplification that could be relaxed, but relaxing it offers little in terms of

substance. We also make a full rank assumption.

Assumption 10. (Convergence of moments) The sequences YM , ZM and XM satisfy

Ωpop
M = EX



 1

M

M∑

i=1




YiM

ZiM

XiM








YiM

ZiM

XiM




′

 −→ Ω =




ΩY Y ΩY Z′ ΩY X ′

ΩZY ΩZZ′ ΩZX ′

ΩXY ΩXZ′ ΩXX ′



 ,

with Ω full rank.

For future reference define

Γ =

(
ΩXX ΩXZ′

ΩZX ′ ΩZZ′

)
.

Given Assumption 10 we can define the limiting population estimands

(
θ∞
γ∞

)
= lim

M→∞

(
θcausal

M

γcausal
M

)
=

(
ΩXX ΩXZ′

ΩZX ′ ΩZZ′

)−1 (
ΩXY

ΩZY

)
= Γ−1

(
ΩXY

ΩZY

)
.

We maintain the random sampling assumption, Assumption 5. This implies that

EW

[
Ωsample

M

∣∣∣N, N > 0
]

= Ωpop
M .

In the proofs of the main results, we combine Assumptions 5 and 8, and use the fact that for all

population sizes M , {(XiM , WiM ) : i = 1, ..., M} is an inid sequence where WiM and XiM are

independent for all i = 1, ..., M , and all populations. We also maintain Assumption 3 concerning
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the sampling rate, which guarantees that as the population size increases, the sample size N

also tends to infinity. Allowing ρM to converge to zero allows for the possibility that the sample

size is a neglible fraction of the population size: ρM = E[N ]/M → 0, so the EHW results are

included as a special case of our general results. Technically we should write NM as the sample

size but we drop the M subscript for notational convenience.

3.5 The General Case

First we state a result regarding the common limiting values of the least squares estimators and

the causal and descriptive estimands:

Lemma 7. Suppose Assumptions 3, 5 and 8-10 hold. Then (i)

(
θ̂ols − θ∞
γ̂ols − γ∞

)
p−→ 0,

(ii)

(
θdescr

M − θ∞
γdescr

M − γ∞

)
p−→ 0,

and (iii)

(
θcausal

M − θ∞
γcausal

M − γ∞

)
−→ 0.

This result follows fairly directly from the assumptions about the moments and the sequence

of populations, although allowing for the limiting case ρM → 0 requires a little care in showing

consistency of the least squares estimators. Note that part (iii) is about deterministic conver-

gence and follows directly from Assumption 10 and the definition of the causal parameters.

Next we study the limiting distribution of the least squares estimator. The key component

is the stochastic behavior of the normalized sample average of the product of the residuals and

the covariates,

1√
N

M∑

i=1

WiM ·
(

XiM · εiM

ZiM · εiM

)
. (3.1)

In our approach this normalized sum of independent but non-identically distributed terms has

expectation zero – something we verify below – even though each of the separate terms XiM ·εiM

and ZiM · εiM may have non-zero expectations. To conclude that (3.1) has a limiting normal
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distribution we must apply a central limit theorem for independent double arrays. Here we use

the Liapunov central limit theorem as stated in Davidson (1994, Theorem 23.11).

Define the limits of the population quantities

∆V = lim
M→∞

VX

(
1√
M

M∑

i=1

(
XiM · εiM

ZiM · εiM

))
, (3.2)

∆ehw = lim
M→∞

1

M

M∑

i=1

EX

[(
XiM · εiM

ZiM · εiM

)(
XiM · εiM

ZiM · εiM

)′]
(3.3)

and their difference

∆E = ∆ehw −∆V = lim
M→∞

1

M

M∑

i=1

[
EX

(
XiM · εiM

ZiM · εiM

)] [
EX

(
XiM · εiM

ZiM · εiM

)]′
. (3.4)

Lemma 8. Suppose Assumptions 3, 5, and 8-10 hold. Then:

1√
N

M∑

i=1

WiM ·
(

XiM · εiM

ZiM · εiM

)
d−→ N (0, ρ · ∆V + (1 − ρ) ·∆ehw). (3.5)

The first part of the asymptotic variance, ρ · ∆V , captures the variation due to random

assignment of the treatment. This component vanishes if the sample is small relative to the

population. The second part, (1 − ρ) · ∆ehw, captures the variation due to random sampling.

This is equal to zero if we observe the entire population.

Now we present the first of the two main results of the paper, describing the properties of the

least squares estimator viewed as an estimator of the causal estimand and, separately, viewed

as an estimator of the descriptive estimand:

Theorem 1. Suppose Assumptions 3, 5 and 8-10 hold. Then (i)

√
N

(
θ̂ols − θcausal

M

γ̂ols − γcausal
M

)
d−→ N

((
0
0

)
, Γ−1 (∆ehw − ρ · ∆E) Γ−1

)
,

(ii)

√
N

(
θ̂ols − θdescr

M

γ̂ols − γdescr
M

)
d−→ N

((
0
0

)
, (1 − ρ) · Γ−1∆ehwΓ−1

)
,

and (iii)

√
N

(
θdescr

M − θcausal
M

γdescr
M − γcausal

M

)
d−→ N

((
0
0

)
, ρ · Γ−1∆V Γ−1

)
.
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Proof: See Appendix.

The standard EHW case is the special case in this theorem corresponding to ρ = 0. For

both the causal and the descriptive estimand the asymptotic variance in the case with ρ = 0

reduces to Γ−1∆ehwΓ−1. Moreover, the difference between the two estimands, θcausal
M and θdesc

M ,

normalized by the sample size, vanishes in this case. If the sample size is non-neglible as a

fraction of the population sizes, ρ > 0, the difference between the EHW variance and the finite

population causal variance is positive semi-definite, with the difference equal to ρ · Γ−1∆EΓ−1.

This shows that the conventional robust sampling variance Γ−1∆ehwΓ−1 is appropriate if either

the sample size is small relative to population size, or if the expected values of XiM · εiM and

ZiM · εiM are close to zero for all i (and thus ∆E vanishes).

3.6 The Variance when the Regression Function is Correctly Speci-

fied

In general the difference between the causal variance and the conventional robust EHW variance,

normalized by the sample size, is ρ ·Γ−1∆EΓ−1. Here we investigate when the component of this

difference corresponding to the causal effect θcausal
M is equal to zero. The difference in variances

obviously vanishes if the sample size is small relative to the population size, ρ ≈ 0, but there is

another interesting case where only the difference between the two variances that corresponds

to the estimator for θcausal
M vanishes, without ∆E being equal to zero. This case arises when

the regression function, as a function of the potential cause XiM , is correctly specified. It is

important to be explicit here about what we mean by “correctly specified.” In the conventional

approach, with random sampling from a large population, the notion of a correct specification

is defined by reference to this large population. In that setting the linear specification is correct

if the population average of the outcome for each value of the covariates lies on a straight

line. Here we define the notion in the finite population where it need not be the case that

there are multiple units with the same values for the covariates XiM and ZiM so that the large

population definition does not apply. We make two specific assumptions. First, and this takes

account of the potential causes part of the specification, we restrict the values of the potential

outcomes. Second, and this takes account of the attributes part of the specification, we restrict

the distribution of the assignments XiM .
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Assumption 11. (Linearity of Potential Outcomes) The potential outcomes satisfy

YiM (x) = YiM(0) + x′θ.

Assumption 11 is not enough to conclude that the least squares estimator consistently esti-

mates the causal parameters θ. We must also restrict the way in which the causes, XiM , depend

on {(ZiM , YiM(0) : i = 1, 2, ..., M}, in an exogeneity or unconfoundedness-type assumption. To

this end, define the vector of slope coefficients from the population regression YiM (0) on ZiM ,

i = 1, 2, ..., M , as

γM =

(
1

M

M∑

i=1

ZiMZ ′
iM

)−1(
1

M

M∑

i=1

ZiMYiM (0)

)
. (3.6)

This vector γM is non-stochastic because it depends only on attributes and potential outcomes.

Assumption 12. (Orthgonality of Assignment) For all M ,

M∑

i=1

(YiM(0) − Z ′
iMγM) · EX

[
XiM

]
= 0.

This assumption requires the mean of XiM to be orthogonal to the population residuals

YiM(0)−Z ′
iMγM , which measure the part of YiM(0) not explained by ZiM . A special case is that

where the XiM are independent and identically distributed (as, for example, in a completely

randomized experiment), so that E[XiM ] = µX , in which case Assumption 12 holds as long as

there is an intercept in ZiM because by the definition of γM , it follows that
∑M

i=1(YiM (0) −
Z ′

iMγM ) = 0. More interesting is another special case where EX[XiM ] is a linear function of

ZiM , say EX[XiM ] = ΛMZiM , i = 1, ..., M , for some matrix ΛM . It is easily seen that in that

case Assumption 12 holds because, by definition of γM ,

M∑

i=1

ZiM (YiM (0) − Z ′
iMγM ) = 0.

In general, Assumption 12 allows XiM to be systematically related to ZiM , and even related to

YiM(0), provided the expected value of XiM is uncorrelated in the population with the residual

from regressing YiM (0) on Z ′
iM . Notice that only the first moments of the XiM are restricted;

the rest of the distributions are unrestricted.
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Definition 1. The regression function

YiM = X ′
iMθ + Z ′

iMγ + εiM ,

is correctly specified if Assumptions 11 and 12 hold.

Now we can establish the relationship between the population estimand θcausal
M and the slope

of the potential outcome function.

Theorem 2. Suppose Assumptions 8, 9, 11, and 12 hold. Then for all M ,

(
θcausal

M

γcausal
M

)
=

(
θ

γM

)

Given Assumptions 11 and 12 we can immediately apply the result from Theorem 1 with θ

instead of θcausal
M , and we also have a simple interpretation for γcausal

M .

An implication of Assumptions 11 and 12 is that the population residual εiM is no longer

stochastic:

εiM = Yi(0) + X ′
iMθ −X ′

iMθcausal
M − Z ′

iMγcausal
M

= Yi(0) − Z ′
iMγM ,

which does not involve the stochastic components XM or WM . This leads to simplifications

in the variance components. The Γ component of the variance remains unchanged, but under

Assumptions 11 and 12, ∆V simplifies, with only the top-left block different from zero:

∆V =

(
limM→∞

1
M

∑M
i=1 ε2

iM · VX (XiM ) 0
0 0

)
. (3.7)

In order to simplify the asymptotic variance of
√

N
(
θ̂ols − θ

)
we add the linearity assumption

mentioned above.

Assumption 13. (Linearity of the Treatment In Attributes) For some K×J matrix

ΛM , and for i = 1, . . . , M ,

EX[XiM ] = ΛMZiM .

Recall that this assumption implies Assumption 12, and so we know least squares consistently

estimates θ, and it has a limiting normal distribution when scaled by
√

N . But with Assumption
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13 we can say more. Namely, the usual EHW variance is asymptotically valid for θ̂ols − θcausal
M

(but remains conservative for γ̂ols − γcausal
M ). Define

ẊiM = XiM − ΛMZiM

Because under Assumptions 11 and 12 the residual εiM is non-stochastic it follows that

EX

[
ẊiM · εiM

]
= EX

[
ẊiM

]
· εiM = (EX [XiM ] − ΛMZiM ) · εiM = 0,

by Assumption 13.

Now define

ΓẊ = lim
M→∞

1

M

N∑

i=1

EX

[
ẊiM Ẋ ′

iM

]
,

and

∆ehw,Ẋ = lim
M→∞

1

M

N∑

i=1

EX

[
ε2

iMẊiM Ẋ ′
iM

]
.

Theorem 3. Suppose Assumptions 8–13 hold. Then

√
N
(
θ̂ols − θ

)
d−→ N

(
0, Γ−1

Ẋ
∆ehw,ẊΓ−1

Ẋ

)
.

The key insight in this theorem is that the asymptotic variance of θ̂ols does not depend on

the ratio of the sample to the population size, ρ. We also know from Theorem 1 that if ρ is close

to zero the proposed variance agrees with the EHW variance. Therefore it follows that the usual

EHW variance matrix is correct for θ̂ols under these assumptions, and it can be obtained, as in

standard asymptotic theory for least squares, by partially out ZiM from XiM in the population.

For this result it is not sufficient that the regression function is correctly specified (Assumptions

11 and 12); we have also assumed linearity of the potential cause in the attributes (Assumption

13). Nevertheless, no other features of the distribution of XiM are restricted.

For the case with XiM binary and no attributes beyond the intercept this result can be

inferred directly from Neyman’s results for randomized experiments. In that case the focus is on

the constant treatment assumption, which is extended to the linearity in Assumption 11. In that

binary-treatment randomized-experiment case without attributes Assumptions 12 and 13 hold

trivially. Generally, if linearity holds and XiM is completely randomized then the conclusions of

Theorem 3 hold.
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The asymptotic variance of γ̂ols, the least squares estimates of the coefficients on the at-

tributes, still depends on the ratio of sample to population size, and the the conventional robust

EHW variance estimates over-estimates the uncertainty in these estimates.

4 Estimating the Variance

Now let us turn to the problem of estimating the variance for our descriptive and causal esti-

mands. This is a complicated issue. The variance in the conventional setting is easy to estimate.

One can consistently estimate Γ as the average of the matrix of outer products over the sample:

Γ̂ =
1

N

M∑

i=1

WiM ·
(

ZiM

XiM

)(
ZiM

XiM

)′

.

Also ∆ehw is easy to estimate. First we estimate the residuals

ε̂iM = YiM − X ′
iM θ̂ols − Z ′

iM γ̂ols,

and then we estimate ∆ehw as:

∆̂ehw =
1

N

M∑

i=1

WiM ·
(

XiM · ε̂iM − XiM · ε̂iM

ZiM · ε̂iM − ZiM · ε̂iM

)(
XiM · ε̂iM − XiM · ε̂iM

ZiM · ε̂iM − ZiM · ε̂iM

)′

, (4.1)

where

XiM · ε̂iM =
1

N

M∑

i=1

WiM · XiM · ε̂iM , and ZiM · ε̂iM =
1

N

M∑

i=1

WiM · ZiM · ε̂iM .

In this case we do not need to subtract the averages, which in fact will be equal to zero, but

this form is useful for subsequent variance estimators. The variance is then estimated as

V̂ehw = Γ̂−1∆̂ehwΓ−1. (4.2)

Alternatively one can use resampling methods such as the bootstrap (e.g., Efron, 1987).

If we are interested in the descriptive estimand it is straightforward to modify the variance

estimator. We simply multiply the ’ehww variance estimator by one minus the ratio of the

sample size over the population size.

It is more challenging to estimate the variance of θ̂ols − θcausal
M . The difficult is in estimating

∆V (or, equivalently, ∆E = ∆ehw − ∆V ). The reason is the same that makes it impossible to
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obtain unbiased estimates of the variance of the estimator for the average treatment effect in the

example in Section 2.3. In that case there are three terms in the expression for Vnorm
causal presented

in (2.3). The first two are straightforward to estimate, but the third one, σ2(low, high) cannot

be estimated consistently because we do not observe both potential outcomes for the same units.

In that case researchers often use the conservative estimator based on ignoring that term. Here

we can do the same. Because

VX

(
1√
M

M∑

i=1

(
XiM · εiM

ZiM · εiM

))
≤ EX

[
1

M

M∑

i=1

(
XiM · εiM

ZiM · εiM

)(
XiM · εiM

ZiM · εiM

)′
]

,

it follows that

∆V = lim
M→∞

VX

(
1√
M

M∑

i=1

(
XiM · εiM

ZiM · εiM

))

≤ lim
M→∞

EX

[
1

M

M∑

i=1

(
XiM · εiM

ZiM · εiM

)(
XiM · εiM

ZiM · εiM

)′
]

= ∆ehw,

and we can use the estimator in (4.2) as the basis for a conservative estimator for the variance,

Γ̂−1∆̂ehwΓ̂−1. However, we can do better. Instead of using the average of the outer product,

∆̂ehw, as an upwardly biased estimator for ∆V , we can remove part of the expected value.

Suppose we split the population into S strata, on the basis of the values of the non-stochastic

variables YiM (x) and ZiM . Let SiM ∈ {1, . . . , S}, for i = 1, . . . , M , M = 1, 2, . . ., be the

indicator for the subpopulations, and let Ms be the stratum-specific population size. Then, by

independence of the XiM (and thus independence of the εiM ), it follows that

VX

(
1√
M

M∑

i=1

(
XiM · εiM

ZiM · εiM

))
=

S∑

s=1

Ms

M
· VX

(
1√
M s

∑

i:SiM =s

(
XiM · εiM

ZiM · εiM

))
.

Now we can obtain a conservative estimator of ∆V by averaging within-stratum estimates after

taking out with within-stratum averages:

∆̂strat =
S∑

s=1

Ms

M
· ∆̂ehw,s,

where

∆̂ehw,s = V̂X

(
1√
M s

∑

i:SiM =s

(
XiM · εiM

ZiM · εiM

))

=
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1

Ms

∑

i:Si=s

((
XiM · ε̂iM − XiM · ε̂iMs

ZiM · ε̂iM − ZiM · ε̂iMs

)(
XiM · ε̂iM − XiM · ε̂iMs

ZiM · ε̂iM − ZiM · ε̂iMs

)′)
,

with

XiM · ε̂iM s =
1

Ms

∑

i:SiM =s

XiM · ε̂iM , and ZiM · ε̂iM s =
1

Ms

∑

i:SiM =s

ZiM · ε̂iM .

Assumption 14. For s = 1, . . . , S, Ms/M → δs > 0.

Lemma 9. Suppose Assumptions 8-14 hold. Then

∆V ≤ ∆strat ≤ ∆ehw,

where

∆strat = plim(∆̂strat).

The proposed estimator for the normalized variance is then

V̂strat = Γ̂−1∆̂stratΓ̂
−1. (4.3)

A natural way to define the strata is in terms of values of the attributes ZiM . If the attributes

are discrete we can simply stratify by their exact values. If the ZiM take on many values we can

partition the attribute space into a finite number of subspaces.

If one is willing to make the additional assumption that the potential outcome function is

correctly specified, then we can make additional progress in estimating ∆V . In that case only

the top-left block of the ∆V matrix differs from zero, as we discussed in Section 3.6. In addition,

this assumption implies that the residuals εiM are non-stochastic, and so they can be used in

partitioning the population.

5 Simulations

Here we present some evidence on the difference between the conventional ehw variance and the

variance for causal effects. We focus on the case with a single binary cause Xi ∈ {−1, 1} and a

single binary attribute Zi ∈ {−1, 1}. The potential outcome function has the form

Yi(x) = Yi(0) + (τ0 + τ1 · Zi + τ2 · ηi) · x,
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where τ1 and τ2 are parameters we vary across simulations. The ηi ∈ {−1, 1} is an unobserved

source of heterogeneity in the treatment effect. If τ1 = τ2 = 0, the regression function is correctly

specified and because the attribute is binary the linearity condition is also satisfied, and thus

the conventional ehw variance will be valid. If either τ1 or τ2 differs from zero, the conventional

variance estimator will be over-estimating the variance. If τ1 is different from zero the variance

estimator based on partitioning the sample by values of Zi will be an improvement over the

conventional variance estimator.

In the population the Zi and ηi are uncorrelated, and satisfy

1

M

M∑

i=1

1ηi=−1 =
1

M

M∑

i=1

1ηi=1 = 1/2, and
1

M

M∑

i=1

1Zi=−1 =
1

M

M∑

i=1

1Zi=1 = 1/2.

Moreover,

1

M

M∑

i=1

Yi(0) = 0,
1

M

M∑

i=1

Y 2
i (0) = 1,

1

M

M∑

i=1

ηi · Yi(0) =
1

M

M∑

i=1

Zi · Yi(0) =
1

M

M∑

i=1

Zi · ηi = 0,

and

pr(Xi = 1) = pr(Xi = −1) = 1/2.

The Yi(0) were generated by first drawing νi from a normal distribution with mean zero and

variance equal to one, and then calculating Yi(0) as the residual from regressing νi on ηi, Zi,

and ηi · Zi.

We estimate a linear regression model using least squares:

Yi = γ0 + γ1 · Zi + θ · Xi + εi.

We focus on the properties of the least squares estimator for θ.

We consider nine designs. In these designs we consider three sets of values for the pair

(τ1, τ2), namely (τ1 = 0, τ2 = 0), (τ1 = 0, τ2 = 10), and (τ1 = 10, τ2 = 0). In all cases τ0 = 0.

The expected sample size ρ ·M is in all cases equal to 1,000, but the value of ρ takes on different

values, ρ ∈ {0.01, 0.5, 1}, so the population size is M = 100, 000, M = 2, 000, or M = 1, 000 in

the three different designs. In each of the nine designs we start by constructing a population,
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as described above. Given the population we then repeatedly draw samples in the following

two steps. We first randomly assign the covariates according to the binomial distribution with

probability 1/2 for the two values x = −1, 1. Finally, we randomly sample units from this

population, where each unit is sampled with probability ρ. For each unit in the sample we

observe the triple (Yi, Xi, Zi).

Table 1: Simulation Results, M · ρ = 1000

τ1 = 0, τ2 = 0 τ1 = 0, τ2 = 10 τ1 = 10, τ2 = 0
ρ = .01 ρ = .5 ρ = 1 ρ = .01 ρ = .5 ρ = 1 ρ = .01 ρ = .5 ρ = 1

std(θcausal) 0.032 0.032 0.030 0.32 0.23 0.037 0.32 0.23 0.035

std(θdesc) 0.031 0.023 0.000 0.32 0.23 0.000 0.32 0.22 0.000

seehw 0.032 0.032 0.032 0.32 0.32 0.318 0.32 0.32 0.318

secausal 0.032 0.032 0.032 0.32 0.23 0.032 0.32 0.23 0.032

sedesc 0.032 0.022 0.000 0.32 0.22 0.000 0.32 0.22 0.000

ŝestrat 0.032 0.032 0.030 0.32 0.23 0.041 0.32 0.32 0.318

The results from the simulations are presented in Table 1. In the first two rows we present

for each of the nine designs the standard deviation of the least squares estimator θ̂ols as an

estimator for θcausal and as an estimator for θdesc. If ρ = 0.01 the two standard deviations are

very similar, irrespective of the values of τ1 and τ2. If ρ = 1, the standard deviation of θ̂ols−θdesc

is zero, whereas the standard deviation of θ̂ols − θcausal remains positive. If ρ = 0.5, the ratio

of the variances depends on the other parameters of the design. The next three rows present

the results of analytic calculations for the three variances, first the conventional ehw variance,

then the variance for the causal estimand and finally the variance for the descriptive estimand.

The latter two closely match the standard deviation of the estimator over the repeated samples,

confirming that the theoretical calculations provide guidance for the sample sizes considered
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here. Finally, in the last row we partition the sample by the values of Zi, and use the variance

estimator in (4.3). We see that in the case with τ1 = τ2 = 0 the properties of the proposed

variance estimator are very similar to those of the conventional ehw estimator. If τ1 > 0 and

τ2 = 0, so the variation in the coefficient on Xi is associated with the observed attribute Zi,

then the proposed variance estimator outperforms the conventional EHW estimator. If τ1 = 0

and τ2 > 0, so the variation in the coefficient on Xi is associated with the unobserved attributes,

then the performance of the proposed variance estimator is similar to that of the conventional

EHW estimator.

6 Inference for Alternative Questions

This paper has focused on inference for descriptive and causal estimands in a single cross-section.

For example, we might have a sample that includes outcomes from all countries in a particular

year, say the year 2013. In words, we analyze inference for estimands of parameters that answer

the following question: “What is the difference between what the average outcome would have

been in those countries in the year 2013 if all had been treated, and what the average outcome

would have been if all had not been treated?” We also analyze inference for estimands of

parameters that can be used to answer descriptive questions, such as “What was the difference

in outcomes between Northern and Southern countries in the year 2013?”

These are not the only questions a researcher could focus on. An alternative question might

be, “what is the expected difference in average outcomes between Northern and Southern coun-

tries in a future year, say the year 2015?” Arguably in most empirical analyses that are intended

to inform policy the object of interest depends on future, not just past, outcomes. This creates

substantial problems for inference. Here we discuss some of the complications, but our main

point is that the conventional robust standard errors were not designed to solve these problems,

and do not do so without strong, typically implausible assumptions. Formally questions that

involve future values of outcomes for countries could be formulated in terms of a population of

interest that includes each country in a variety of different states of the world that might be

realized in future years. This population is large if there are many possible realizations of states

of the world (e.g., rainfall, local political conditions, natural resource discoveries, etc.) Given

such a population the researcher may wish to estimate, say the difference in average 2015 out-

comes for two sets of countries, and calculate standard errors based on values for the outcomes
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for the same set of countries in an earlier year, say 2013. A natural estimator for the differ-

ence in average values for Northern and Southern countries in 2015 would be the corresponding

difference in average values in 2013. However, even though such data would allow us to infer

without uncertainty the difference in average outcomes for Northern and Southern countries in

2013, there would be uncertainty regarding the true value of that difference in the year 2015.

In order to construct confidence intervals for the difference in 2015, the researcher must

make some assumptions about how country outcomes will vary from year to year. An extreme

assumption is that outcomes in 2015 and 2013 for the same country are independent conditional

on attributes, which would justify the conventional EHW variance estimator. However, assuming

that there is no correlation between outcomes for the same country in successive years appears

highly implausible. In fact any assumption about the magnitude of this correlation in the absence

of direct information about it in the form of panel data would appear to be controversial. Such

assumptions would also depend heavily on the future year for which we would wish to estimate

the difference in averages, again highlighting the importance of being precise about the estimand.

Although in this case there is uncertainty regarding the difference in average outcomes in

2015 despite the fact that the researchers observes (some) information on all countries in the

population of interest, we emphasize that the assumptions required to validate the application of

EHW standard errors in this setting are strong and arguably implausible. Moreoever, researchers

rarely formally state the population of interest, let alone state and justify the assumptions that

justify inference. Generally, if future predictions are truly the primary question of interest, it

seems prudent to explicitly state the assumptions that justify particular calculations for standard

errors. In the absence of panel data the results are likely to be sensitive to such assumptions.

We leave this direction for future work.

7 Conclusion

In this paper we study the interpretation of standard errors in regression analysis when the

assumption that the sample is a random sample from a large population of interest is not at-

tractive. The conventional robust standard errors justified by this assumption do not necessarily

apply in this case. We show that by viewing covariates as potential causes in a Rubin Causal

Model or potential outcome framework we can provide a coherent interpretation for standard

errors that allows for uncertainty coming from both random sampling and from conditional
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random assignment. The proposed standard errors may be different from the conventional ones

under this approach.

In the current paper we focus exclusively on regression models, and we provide a full analysis

of inference for only a certain class of regression models with some of the covariates causal and

some attributes. Thus, this paper is only a first step in a broader research program. The concerns

we have raised in this paper arise in many other settings and for other kinds of hypotheses, and

the implications would need to be worked out for those settings. Section 6 suggests some

directions we think are particularly natural to consider.
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Appendix A: Proofs

Proof of Lemma 1: Conditional on N =
∑M

i=1 Wi the vector W has a multinomial distribution with

pr(W = w|N ) =

(
M

N

)−1

, for all w with

N∑

j=1

wj = N

= 0, otherwise.

The expected value, variance and covariance of individual elements of W are given by

E[Wj|N ] =
N

M

V(Wj|N ) =

(
N

M

)
·
(

1 − N

M

)
=

N · (M − N )

M2

C(Wj, Wh|N ) = −N · (M − N )

M2 · (M − 1)

Now consider the sample average

µ̂M =
1

N

M∑

j=1

Wj · Yj .

For notational simplicity we leave conditioning on N > 0 implicit. Then

E[µ̂M |N ] =
1

N

M∑

j=1

E[Wj|N ] · Yj =
1

N

M∑

j=1

(
N

M

)
· Yj =

1

M

M∑

j=1

Yj = µM .

The sampling variance of µ̂M is can be obtained by writing µ̂M = W
′
Y /N so that

V(µ̂M |N ) =
1

N 2
Y

′
V(W |N )Y .

From the conditional second moments of W it follows that

Y
′
V(W |N )Y =

[
N · (M − N )

M2 · (M − 1)

]
Y

′





M − 1 −1 −1 −1
−1 M − 1 −1 −1

−1
−1 M − 1 −1

−1 −1 −1 M − 1




Y

Straightforward algebra shows that

Y
′





M − 1 −1 −1 −1

−1 M − 1 −1 −1
−1

−1 M − 1 −1
−1 −1 −1 M − 1




Y = M

M∑

j=1

Y 2
j −




M∑

j=1

Yj




2

= M ·
M∑

i=1

(Yj − µM )2 ,
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so that

Y
′
V(W |N )Y =

N · (M − N )

M



 1

M − 1

M∑

j=1

(Yj − µM )2



 =
N (M − N )

M
σ2

M .

Therefore,

V(µ̂M |N, N > 0) =
1

N 2

[
N · (M − N )

M
· σ2

M

]
=

σ2
M

N
·
(

1 − N

M

)
.

�

Note that this result generalizes to any set of constants {cj}j=1,...,M , so that,

V(W ′
c|N ) = c

′
V(W |N )c =

N · (M − N )

M · (M − 1)
·

M∑

j=1

(cj − cM )2,

where cM =
∑M

i=1 ci/M .

Before proving Lemma 2, we state a useful result.

Lemma A.1. Suppose Assumptions 1 and 3 hold. Then:

N

M · ρM

p−→ 1 and
M · ρM

N

p−→ 1 as M −→ ∞.

Proof: Under Assumption 1, for any positive integer M , N ∼ Binomial(M, ρM), which implies

EW [N ] = M · ρM and VW (N ) = M · ρM · (1 − ρM). Therefore,

EW

[
N

M · ρM

]
= 1 and VW

(
N

M · ρM

)
=

M · ρM · (1 − ρM)

M2 · ρ2
M

=
(1 − ρM)

M · ρM
,

which converges to zero by Assumption 3. Therefore convergence in probability follows from conver-

gence in mean square. The second part follows from Slutsky’s Theorem because the reciprocal function
is continuous at all nonzero values. �

Proof of Lemma 2: From Lemma 1,

VW (µ̂M |N, N > 0) =
σ2

M

N
·
(

1 − N

M

)
,

and so

VW (µ̂M |N, N > 0)− σ2

N
=

σ2
M − σ2

N
− σ2

M

M
=

σ2
M − σ2

ρM ·M − σ2
M

M
− σ2

M − σ2

ρM · M ·
(

1 − ρM ·M
N

)
.

Given Assumption 2, σ2
M → σ2 as M → ∞, and therefore {σ2

M} is bounded. It follows that
VW (µ̂M |N, N > 0) − σ2/N = Op((ρMM)−1), finishing the proof of part (i).
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The normalized variance is

V
norm
W (µ̂M |N ) = N · VW (µ̂M |N ) = σ2

M

(
1− N

M

)

By Assumption 2, σ2
M → σ2. By Assumption 1, N ∼ Binomial(M, ρM) and so E(N/M) = ρM and

V

(
N

M

)
=

ρM(1 − ρM)

M
→ 0,

which means that N/M − ρM
p→ 0. Along with Assumption 3 (ρM → ρ) we get Vnorm

W
(µ̂M |N )

p→
σ2(1− ρ).

Proof of Lemma 3: Assumption 1 ensures that the vector of sampling indicators over the two
subpopulations, of size Mcoast and M∧ are independent. Further, conditional on Ncoast and N∧, they

have the multinomial distribution described in the proof of Lemma 1. The result follows immediately
because the covariance between the two sample means, conditional on (Ncoast, N∧) and Ncoast > 0 and

N∧ > 0, is zero. �

Proof of Lemma 4: Conditional on Mlow, Mhigh > 0, write θdescr
M as

θdescr
M =

1

Mhigh

M∑

i=1

1Xi=high · Yi(high) − 1

Mlow

M∑

i=1

1Xi=low · Yi(low)

Conditional on Mhigh (and therefore conditional on both Mhigh and Mlow), E[1Xi=high|Mhigh] = pr(Xi =
high|Mhigh) = Mhigh/M , and so

E

[
θdescr
M |Mhigh, Mlow

]
=

1

Mhigh

M∑

i=1

Mhigh

M
· Yi(high)− 1

Mlow

M∑

i=1

Mlow

M
· Yi(low)

=
1

M

M∑

i=1

(
Yi(high) − Yi(low)

)
= θcausal

M .

To compute the variance of θdescr
M , write

θdescr
M =

M∑

i=1

1Xi=high ·
(

Yi(high)

Mhigh
+

Yi(low)

Mlow

)
−

M∑

i=1

Yi(low)

Mlow

Conditional on Mlow, Mhigh > 0, the calculation is very similar to that in Lemma 1. In fact, take

ci =
Yi(high)

Mhigh
+

Yi(low)

Mlow
,

and then Lemma 1 implies

V

(
M∑

i=1

Xi

[(
Yi(high)

Mhigh

)
+

(
Yi(low)

Mlow

)]∣∣∣∣∣Mlow, Mhigh

)

[39]



=
MlowMhigh

M

[
1

M2
high

σ2(high) +
1

M2
low

σ2(low)

]

+
2

M(M − 1)

M∑

i=1

(
Yi(high) − Ȳ (high)

)
·
(
Yi(low) − Ȳ (low)

)
.

Now

σ2(low, high) =
1

M − 1

M∑

i=1

[(Yi(high) − Ȳ (high)) − (Yi(low) − Ȳ (low))]2

= σ2(high) + σ2(low) − 2(M − 1)−1
M∑

i=1

[Yi(high) − Ȳ (high)][Yi(low) − Ȳ (low)].

or

2(M − 1)−1
M∑

i=1

[Yi(high) − Ȳ (high)][Yi(low) − Ȳ (low)] = σ2(high) + σ2(low) − σ2(low, high).

Substituting gives

V

(
θdescr
M |Mlow, Mhigh

)
=

MlowMhigh

M

[
1

M2
high

σ2(high) +
1

M2
low

σ2(low) +
[σ2(high) + σ2(low) − σ2(low, high)]

MlowMhigh

]

=
MlowMhigh

M

[
M

MlowM2
high

σ2(high) +
M

MhighM2
low

σ2(low) − σ2(low, high)

MlowMhigh

]

=
σ2(high)

Mhigh
+

σ2(low)

Mlow
− σ2(low, high)

M
.

�

Proof of Lemma 5: We prove parts (i) and (ii), as the other parts are similar (and (v) follows
immediately). First, because X and W are independent, we have

D(X |W , Nhigh, Nlow) = D(X |Nhigh, Nlow)

and the distribution is multinomial with

E[1Xi=high|Nhigh, Nlow] = E[1Xi=high|Nhigh, N ) = Nhigh/N

V(1Xi=high|Nhigh, N ) =
NhighNlow

N 2

C(1Xi=high, 1Xh=high|Nhigh, N ) = − NhighNlow

N 2(N − 1)

E[1Xi=high · 1Xh=high|Nhigh, N ] =
Nhigh(Nhigh − 1)

N (N − 1)
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Note that

E[1Xi=high · 1Xh=low|Nhigh, N ] =
Nhigh

N
− Nhigh(Nhigh − 1)

N (N − 1)
=

(N − 1)Nhigh − N 2
high + Nhigh

N (N − 1)

=
NNhigh − N 2

high

N (N − 1)
=

Nhigh(N − Nhigh)

N (N − 1)
=

NhighNlow

N (N − 1)

Now

θ̂M = N−1
high

M∑

i=1

Wi1Xi=highYi(high) − N−1
low

M∑

i=1

Wi1 − Xi = lowYi(low)

E(θ̂M |W , Nhigh, Nlow) =
1

Nhigh

M∑

i=1

Wipr(Xi = high|Nhigh, Nlow)Yi(high)

− 1

Nlow

M∑

i=1

Wipr(Xi = low|Nhigh, Nlow)]Yi(low)

= N−1
high

M∑

i=1

Wi(Nhigh/N )Yi(high) − N−1
low

M∑

i=1

Wi(Nlow/N )Yi(low)

= N−1
M∑

i=1

Wi[Yi(high)− Yi(low)]

and so

E(θ̂M |Nhigh, Nlow) = N−1
E(Wi|Nhigh, Nlow)[Yi(high)− Yi(low)] = N−1

M∑

i=1

(N/M)[Yi(high) − Yi(low)]

= µMhigh − µM low = θcausal
M ,

which proves part (i).

For part (ii) we find

V(θ̂M |Nhigh, Nlow) = V(Ȳhigh|Nhigh, Nlow) + V(Ȳlow|Nhigh, Nlow)− 2C(Ȳhigh, Ȳlow|Nhigh, Nlow).

If we define Zi = Wi ·1Xi=high and Ri = Wi ·1Xi=low then we can apply Lemma 4 to obtain the variances
because

(Z1, ..., ZM)|(Nlow, Nhigh)

has a multinomial distribution with pr(Zi = 1|Nlow, Nhigh) = Nhigh/M and (R1, ..., RM)|(Nlow, Nhigh)
has the distribution with P (Ri = 1|Nlow, Nhigh) = Nlow/N . Therefore,

V(Ȳhigh|Nhigh, Nlow) =
σ2(high)

Nhigh

(
1 − Nhigh

M

)
=

σ2(high)

Nhigh
− σ2(high)

M

V(Ȳlow|Nhigh, Nlow) =
σ2(low)

Nlow
− σ2(low)

M

and so

V(θ̂|Nhigh, Nlow) =
σ2(high)

Nhigh
+

σ2(low)

Nlow
− σ2(high) + σ2(low)

M
− 2C(Ȳhigh, Ȳlow|Nhigh, Nlow)
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We showed in 4 that

σ2(high) + σ2(low) = σ2
low,high +

2

(M − 1)

M∑

i=1

[Yi(high) − µhigh][Yi(low) − µlow]

≡ σ2
low,high + 2ηlow,high

where ηlow,high is the population covariance of Yi(low) and Yi(high). So

V(θ̂|Nhigh, Nlow) =
σ2(high)

Nhigh
+

σ2(low)

Nlow
−

σ2
low,high

M
− 2

[ηlow,high

M
+ C(Ȳhigh, Ȳlow|Nhigh, Nlow)

]

The proof is complete if we show

C(Ȳhigh, Ȳlow|Nhigh, Nlow) = −ηlow,high

M

The usual algebra of covariances gives

ηlow,high

M
=

1

M(M − 1)

M∑

i=1

Yi(high)Yi(low) − µhighµlow

(M − 1)

and so it suffices to show

E(ȲhighȲlow|Nhigh, Nlow)− µhighµlow =
µhighµlow

(M − 1)
− 1

M(M − 1)

M∑

i=1

Yi(high)Yi(low)

or

E(ȲhighȲlow|Nhigh, Nlow) =
Mµhighµlow − M−1

∑M
i=1 Yi(high)Yi(low)

(M − 1)

=

(∑M
i=1 Yi(high)

)(∑M
i=1 Yi(low)

)
−
(∑M

i=1 Yi(high)Yi(low)
)

M(M − 1)

=

∑M
i=1

∑M
h6=i+1 Yi(high)Yh(low)

M(M − 1)
.

To show this equivalance, write

ȲhighȲlow =
1

NhighNlow

(
M∑

i=1

Wi1Xi=highYi(high)

)(
M∑

h=1

Wh1Xi=lowYh(low)

)

=
1

NhighNlow




M∑

i=1

M∑

h6=i

Wi1Xi=highYi(high)Wh1Xh=lowYh(low)




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First condition on the sampling indicators W as well as (Nhigh, Nlow):

E(ȲhighȲlow|W , Nhigh, Nlow) =
1

NhighNlow




M∑

i=1

M∑

h6=i

WiWhpr(Xi = high, Xh = low|W , Nhigh, Nlow)Yi(high)Yh(low)

=
1

NhighNlow




M∑

i=1

M∑

h6=i

WiWhpr(Xi = high, Xh = low|Nhigh, Nlow)Yi(high)Yh(low)





=
1

NhighNlow




M∑

i=1

M∑

h6=i

WiWh[NhighNlow/N (N − 1)]Yi(high)Yh(low)



 =

=
1

N (N − 1)

M∑

i=1

M∑

h6=i

WiWhYi(high)Yh(low).

Finally, use iterated expectations:

E(ȲhighȲlow|Nhigh, Nlow) =
1

N (N − 1)

M∑

i=1

M∑

h6=i

E(WiWh|Nhigh, Nlow)Yi(high)Yh(low)

=
1

N (N − 1)

M∑

i=1

M∑

h6=i

[N (N − 1)/M(M − 1)]Yi(high)Yh(low)

=
1

N (N − 1)

M∑

i=1

M∑

h6=i

[N (N − 1)/M(M − 1)]Yi(high)Yh(low)

=
1

M(M − 1)

M∑

i=1

M∑

h6=i

Yi(high)Yh(low),

which is what we needed to show. �

Proof of Lemma 6:

V
norm
causal =

σ2
M (low)

Nlow/N
+

σ2
M (high)

Nhigh/N
− N

M
· σ2

M (low, high).

By Assumption 3 N/M → ρ. By Assumptions 3 and 7 Nlow/N → (1 − q) and Nhigh/N → q By
Assumption 6

σ2
M (low) −→ σ2(low), σ2

M(high) −→ σ2(high), σ2
M(low, high) −→ σ2(low, high).

Together these imply the two results in the lemma. �

It is useful to state a lemma that we use repeatedly in the asymptotic theory.

Lemma A.2. For a sequence of random variables {UiM : i = 1, ..., M} assume that {(WiM , UiM) :
i = 1, ..., M} is independent but not (necessarily) identically distributed. Further, WiM and UiM are
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independent for all i=1,...,M. Assume that E(U2
iM) < ∞ for i = 1, ..., M and

M−1
M∑

i=1

E(UiM ) → µU

M−1
M∑

i=1

E(U2
iM ) → κ2

U

Finally, assume that Assumptions 1 and 3 hold. Then

N−1
M∑

i=1

WiMUiM − M−1
M∑

i=1

E(UiM )
p→ 0.

Proof: Write the first average as

N−1
M∑

i=1

WiMUiM =

(
MρM

N

)
M−1

M∑

i=1

(
WiM

ρM

)
UiM .

As argued in the text, because N ∼ Binomial(M, ρM) and MρM → ∞ by Assumption 3, (MρM)/N
p−→

1. Because we assume M−1
∑M

i=1 E(UiM ) converges, it is bounded, and so it suffices to show that

M−1
M∑

i=1

(
WiM

ρM

)
UiM − M−1

M∑

i=1

E(UiM )
p→ 0

Now because WiM is indepenent of UiM ,

E

[

M−1
M∑

i=1

(
WiM

ρM

)
UiM

]

= M−1
M∑

i=1

(
E(WiM)

ρM

)
E(UiM ) = M−1

M∑

i=1

E(UiM),

and so the expected value of

M−1
M∑

i=1

(
Wi

ρM

)
UiM − M−1

M∑

i=1

E(UiM )

is zero. Further, its variance exists by the second moment assumption, and by independence across i,

V

[

M−1
M∑

i=1

(
WiM

ρM

)
UiM

]

= M−2
M∑

i=1

1

ρ2
M

V(WiMUiM) = M−2
M∑

i=1

{
1

ρ2
M

E[(WiMUiM)2]− [E(WiMUiM)]2
}

= M−2
M∑

i=1

{
1

ρ2
M

ρME(U2
iM) − ρ2

M [E(UiM)]2
}

≤ M−2ρ−1
M

M∑

i=1

E(U2
iM )

=
1

MρM

[
M−1

M∑

i=1

E(U2
iM)

]
.

By assumption, the term in brackets converges and by Assumption 3 MρM → ∞. We have shown

mean square convergence and so convergence in probability follows. �

[44]



We can apply the previous lemma to the second moment matrix of the data. Define

Ω̂M =
1

N

M∑

i=1

WiM ·




Y 2

iM YiMX ′
iM YiMZ ′

i

XiMYiM XiMX ′
iM XiMZ ′

iM

ZiMYiM ZiMX ′
iM ZiMZ ′

iM



 .

Lemma A.3. Suppose Assumptions 8–10 hold. Then:

Ω̂M − ΩM
p−→ 0.

Proof: This follows from the previous lemma by letting UiM be an element of the above matrix in the

summand. The moment conditions are satisfied by Assumption 9 because fourth moments are assumed
to be finite. �

Note that in combination with the assumption that limM→∞ ΩM = Ω, Lemma A.3 implies that

Ω̂M
p−→ Ω. (A.1)

Proof of Lemma 7: The first claim follows in a straightforward manner from the assumptions and

Lemma A.3 because the OLS estimators can be written as

(
θ̂ols

γ̂ols

)
=

(
Ω̂sample

XX,M Ω̂sample
XZ′,M

Ω̂sample
ZX ′,M Ω̂sample

ZZ′,M

)−1(
Ω̂sample

XY,M

Ω̂sample
ZY,M

)

.

We know each element in the Ω̂M converges, and we assume its probability limit is positive definite.
The result follows. The other claims are even easier to verify because they do not involve the sampling
indicators WiM . �

Next we prove a lemma that is useful for establishing asympotic normality.

Lemma A.4. For a sequence of random variables {UiM : i = 1, ..., M} assume that {(WiM , UiM) :

i = 1, ..., M} is independent but not (necessarily) identically distributed. Further, WiM and UiM are
independent for all i=1,...,M. Assume that for some δ > 0 and D < ∞, E(|UiM |2+δ) ≤ D and

E(|UiM |) ≤ D, for i = 1, ..., M and all M. Also,

M−1
M∑

i=1

E[UiM ] = 0

and

σ2
U,M = M−1

M∑

i=1

V(UiM) → σ2
U > 0

κ2
U,M = M−1

M∑

i=1

[E(UiM )]2 → κ2
U .

Finally, assume that Assumptions 1 and 3 hold. Then

N−1/2
M∑

i=1

WiMUiM
d→ N

(
0, [σ2

U + (1− ρ)κ2
U ]
)
.
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Proof: First, write

N−1/2
M∑

i=1

WiMUiM =

(
MρM

N

)1/2

M−1/2
M∑

i=1

(
WiM√

ρM

)
UiM

and, by Lemma A.2, note that
√

(MρM)/N
p→ 1. Therefore, it suffices to show that

RM = M−1/2
M∑

i=1

(
WiM√

ρM

)
UiM

d→ N
(
0, [σ2

U + (1− ρ) · κ2
U ]
)
.

Now

E (RM) = M−1/2
M∑

i=1

(
E (WiM)√

ρM

)
E (UiM ) =

√
ρMM−1/2

M∑

i=1

E (UiM) = 0

and

V (RM) = M−1
M∑

i=1

V

[(
WiM√

ρM

)
UiM

]
.

The variance of each term can be computed as

V

[(
WiM√

ρM

)
UiM

]
= E

[(
WiM

ρM

)
U2

iM

]
−
{

E

[(
WiM√

ρM

)
UiM

]}2

= E
(
U2

iM

)
− ρM [E(UiM )]2

= V(UiM) + (1 − ρM)[E(UiM)]2.

Therefore,

V (RM) = M−1
M∑

i=1

V(UiM ) + (1 − ρM)M−1
M∑

i=1

[E(UiM)]2 → σ2
U + (1 − ρ)κ2

U .

The final step is to show that the double array

QiM =
M−1/2

[(
WiM√

ρM

)
UiM −√

ρMαiM

]

√
σ2

U,M + (1− ρM)κ2
U,M

=
1√

MρM

(WiMUiM − ρMαiM)√
σ2

U,M + (1 − ρM)κ2
U,M

,

where αiM = E(UiM), satisfies the Lindeberg condition, as in Davidson (1994, Theorem 23.6). Sufficient
is the Liapunov condition

M∑

i=1

E(|QiM |2+δ) → 0 as M → ∞.
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Now the term
√

σ2
U,M + (1 − ρM)κ2

U,M is bounded below by a strictly positive constant because σ2
U,M →

σ2
U > 0. Further,by the triangle inequality,

{
E

[
|WiMUiM − ρMαiM |2+δ

]}1/(2+δ)
≤ [E (WiM) E(|UiM |2+δ)]1/(2+δ) + ρM |αiM |

≤
[
ρ

1/(2+δ)
M + ρM

]
D1

where D1 is constant. Because ρM ∈ [0, 1], ρ
1/(2+δ)
M ≥ ρM , and so

E

[
|WiMUiM − ρMαiM |2+δ

]
≤ ρMD2.

Therefore, the Liapunov condition is met if

M∑

i=1

ρM(√
MρM

)2+δ
=

MρM

(MρM)1+(δ/2)
= (MρM)−δ/2 → 0,

which is true because δ > 0 and MρM → ∞. We have shown that

M−1/2
M∑

i=1

[(
WiM√

ρM

)
UiM −√

ρMαiM

]

√
σ2

U,M + (1− ρM)κ2
U,M

d→ N (0, 1)

and so, with
√

σ2
U,M + (1− ρM)κ2

U,M →
√

σ2
U + (1 − ρ)κ2

U ,

M−1/2
M∑

i=1

[(
WiM√

ρM

)
UiM −√

ρMαiM

]
d→ N

(
0, [σ2

U + (1 − ρ)κ2
U ]
)
. �

Proof of Lemma 8: This follows directly from Lemma A.4. �

Proof of Theorem 1: We prove part (i), as it is the most important. The other two parts follow
similar arguments. To show (i), it suffices to prove two claims. First,

1

N

M∑

i=1

WiM

(
ZiM

XiM

)(
ZiM

XiM

)′
− Γ

p−→ 0 (A.2)

holds by Lemma A.3 and the comment following it. The second claim is

1√
N

M∑

i=1

WiM

(
XiMεiM

ZiMεiM

)
d−→ N

((
0
0

)
, ∆V + (1 − ρ)∆E

)
. (A.3)

If both claims hold then
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√
N

(
θ̂ols − θcausal

M

γ̂ols − γcausal
M

)
=

[
1

N

M∑

i=1

WiM

(
ZiM

XiM

)(
ZiM

XiM

)′
]−1

1√
N

M∑

i=1

WiM

(
XiMεiM

ZiMεiM

)

= Γ−1 1√
N

M∑

i=1

WiM

(
XiMεiM

ZiMεiM

)
+ op(1)

and then we can apply the continuous convergence theorem and Lemma A.4. The first claim follows
from Lemma A.3 and the comment following. For the second claim, we use Lemma A.4 along with the

Cramér-Wold device. For a nonzero vector λ, define the scalar

UiM = λ′
(

XiMεiM

ZiMεiM

)
‘

Given Assumptions 8–10, all of the conditions of Lemma A.4 are met for {UiM : i = 1, ..., M}. There-
fore,

1√
N

M∑

i=1

WiMUiM
d→ N

(
0, [σ2

U + (1 − ρ)κ2
U ]
)

where

σ2
U = lim

M→∞
M−1

M∑

i=1

V(UiM) = λ′
{

lim
M→∞

1

M

M∑

i=1

V

(
XiMεiM

ZiMεiM

)}
λ = λ′∆V λ

κ2
U = λ′

{

lim
M→∞

1

M

M∑

i=1

[
E

(
Xiεi

Ziεi

)][
E

(
Xiεi

Ziεi

)]′}

λ = λ′∆Eλ

and so

[σ2
U + (1 − ρ)κ2

U ] = λ′[∆V + (1− ρ)∆E]λ

By assumption this variance is strictly postive for all λ 6= 0, and so the Cramér-Wold Theorem proves

the second claim. The theorem now follows. �

Proof of Theorem 2: For simplicity, let θ̃M denote θcausal
M and similarly for γ̃M . Then θ̃M and γ̃M

solve the set of equations

E(X ′
X)θ̃M + E(X ′

Z)γ̃M = E(X ′
Y )

E(Z′
X)θ̃M + Z

′
Zγ̃M = E(Z′

Y ),

where we drop the M subscript on the matrices for simplicity. Note that Z is nonrandom and that all

moments are well defined by Assumption 9. Multiply the second set of equations by E(X ′
Z)(Z′

Z)−1

to get

E(X ′
Z)(Z′

Z)−1
E(Z′

X)θ̃M + E(X ′
Z)γ̃M = E(X ′

Z)(Z′
Z)−1

E(Z′
Y )
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and subtract from the first set of equations to get

[E(X ′
X) − E(X ′

Z)(Z′
Z)−1

E(Z′
X)]θ̃M = E(X ′

Y ) − E(X ′
Z)(Z′

Z)−1
E(Z′

Y )

Now, under Assumption 11,

Y = Y (0) + Xθ

and so

E(X ′
Y ) = E[X ′

Y (0)] + E(X ′
X)θ

E(Z′
Y ) = Z

′
Y (0) + E(Z′

X)θ

It follows that

E(X ′
Y ) − E(X ′

Z)(Z′
Z)−1

E(Z′
Y ) = E[X ′

Y (0)] + E(X ′
X)θ

−E(X ′
Z)(Z′

Z)−1
Z

′
Y (0)− E(X ′

Z)(Z′
Z)−1

E(Z′
X)θ

= [E(X ′
X) − E(X ′

Z)(Z′
Z)−1

E(Z′
X)]θ + E{X ′[Y (0)− Z(Z′

Z)−1
Z

′
Y (0)]}

= [E(X ′
X) − E(X ′

Z)(Z′
Z)−1

E(Z′
X)]θ + E{X ′[Y (0)− ZγM ]}

The second term is
∑M

i=1 EX {XiM [YiM (0)− Z ′
iMγM ]}, which is zero by Assumption 12. So we have

shown that

[E(X ′
X) − E(X ′

Z)(Z′
Z)−1

E(Z′
X)]θ̃M = [E(X ′

X)− E(X ′
Z)(Z′

Z)−1
E(Z′

X)]θ

and solving gives θ̃M = θ. Invertibility holds for M sufficiently large by Assumption 10. Plugging

θ̃M = θ into the orginal second set of equations gives

E(Z′
X)θ + Z

′
Zγ̃M = Z

′
Y (0) + E(Z′

X)θ

and so γ̃M = (Z′
Z)−1

Z
′
Y (0) = γM . �

Proof of Theorem 3:
By the Frisch-Waugh Theorem (for example, Hayashi, 2000, page 73) we can write

θ̂ols =

[
N−1

M∑

i=1

WiM(XiM − ZiM Π̂M )(XiM − ZiM Π̂M )′
]−1

N−1
M∑

i=1

WiM(XiM − ZiM Π̂M )YiM

where YiM = YiM (XiM) and

Π̂M =

(
N−1

M∑

i=1

WiMZiMZ ′
iM

)(
N−1

M∑

i=1

WiMZiMX ′
iM

)

Plugging in for YiM = Z ′
iMγM + X ′

iMθ + εiM gives

N−1
M∑

i=1

WiM(XiM − ZiM Π̂M )YiM = N−1
M∑

i=1

WiM (XiM − ZiM Π̂M)X ′
iMθ + N−1

M∑

i=1

WiM(XiM − ZiM Π̂M )εiM

=

[

N−1
M∑

i=1

WiM(XiM − ZiM Π̂M )(XiM − ZiM Π̂M )′
]

θ

+N−1
M∑

i=1

WiM(XiM − ZiM Π̂M )εiM
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where we use the fact that

N−1
M∑

i=1

WiM(XiM − ZiM Π̂M )Z ′
iM = 0

by definition of Π̂M . It follows that

√
N
(
θ̂ols − θ

)
=

[

N−1
M∑

i=1

WiM (XiM − ZiM Π̂M)(XiM − ZiM Π̂M)′
]−1

N−1/2
M∑

i=1

WiM(XiM−ZiM Π̂M)εiM .

Now

N−1
M∑

i=1

WiM(XiM − ZiM Π̂M )(XiM − ZiM Π̂M)′ = N−1
M∑

i=1

WiM (XiM − ZiM Π̂M)(XiM − ZiMΛM)′

= N−1
M∑

i=1

WiM (XiM − ZiMΛM)(XiM − ZiMΛM)′

+N−1
M∑

i=1

WiMZiM (Π̂M − ΛM )(XiM − ZiMΛM)′

= N−1
M∑

i=1

WiM (XiM − ZiMΛM)(XiM − ZiMΛM)′ + op(1)

because Π̂M − ΛM = op(1) and N−1
∑M

i=1 WiMZiM (XiM − ZiMΛM)′ = Op(1). Further,

N−1/2
M∑

i=1

WiM (XiM − ZiM Π̂M)εiM = N−1/2
M∑

i=1

WiM(XiM − ZiMΛM)εiM + op(1)

because N−1/2
∑M

i=1 WiMZiMεiM = Op(1) by the convergence to multivariate normality.
Next, if we let

ẊiM = XiM − ZiMΛM

then we have shown

√
N
(
θ̂ols − θ

)
=

(
N−1

M∑

i=1

WiMẊiMẊ ′
iM

)−1

N−1/2
M∑

i=1

WiMẊiMεiM + op(1)

Now we can apply Theorems 1 and 2 directly. Importantly, εiM is nonstochastic and so

E(ẊiMεiM) = E(ẊiM)εiM = 0

because

E(ẊiM ) = E(XiM) − ZiMΛM = 0

by Assumption 13. We have already assumed that WiM is independent of ẊiM . Therefore, using

Theorem 2, we conclude that

√
N
(
θ̂ols − θ

)
d−→ N (0, Γ−1

Ẋ
∆ehw,ẊΓ−1

Ẋ
)
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where

ΓẊ = lim
M→∞

M−1
N∑

i=1

E

(
ẊiMẊ ′

iM

)

∆ehw,Ẋ = lim
M→∞

M−1
N∑

i=1

E

(
ε2
iM ẊiMẊ ′

iM

)
.

�

Appendix B: A Bayesian Approach

Given that we are advocating for a different conceptual approach to modeling inference, it is useful to

look at the problem from more than one perspective. In this section we consider a Bayesian perspective
and re-analyze the example from Section 2.3. Using a simple parametric model we show that in a

Bayesian approach the same issues arise in the choice of estimand. Viewing it from this perspective
reinforces the point that formally modeling the population and the sampling process leads to the

conclusion that inference is different for descriptive and causal questions. Note that in this discussion
the notation will necessarily be slightly different from the rest of the paper; notation and assumptions
introduced in this subsection apply only within this subsection.

Define Y (low)M , Y ( high)M to be the M vectors with typical elements YiM (low) and YiM (high) respec-
tively. We view the M -vectors Y (low)M , Y (high)M , WM , and XM as random variables, some observed

and some unobserved. We assume the rows of the M × 4 matrix [Y (low)M , Y (high)M , WM , XM ] are
exchangeable. Then, by appealing to DeFinetti’s theorem, we model this, with (for large M) no es-

sential loss of generality as the product of M independent and identically distributed random triples
(Yi(low), Yi(high), Xi) given some unknown parameter β:

f(Y (low)M , Y (high)M , XM) =
M∏

i=1

f(Yi(low), Yi(high), Xi|β).

Inference then proceeds by specifying a prior distribution for β, say p(β).

Let us make this specific, and use the following model. The Xi and Wi are assumed to have binomial
distributions with parameters q and ρ,

pr(Xi = high|Yi(low), Yi(high), Wi) = q, pr(Wi = 1|Yi(low), Yi(high)) = ρ.

The pairs (Yi(low), Yi(high)) are assumed to be jointly normally distributed:

(
Yi(low)

Yi(high)

)∣∣∣∣µ(low), µ(high), σ2(low), σ2(high), κ ∼ N
((

µ(low)

µ(high)

)
,

(
σ2(low) κσ(low)σ(high)

κσ(low)σ(high) σ2(high)

))
,

so that the full parameter vector is β = (q, ρ, µ(low), µ(high), σ2(low), σ2(high), κ).

We change the observational scheme slightly from the previous section to allow for the analytic deriva-
tion of posterior distributions. For all units in the population we observe the pair (Wi, Xi), and for

units with Wi = 1 we observe the outcome Yi = Yi(Xi). Define Ỹi = Wi ·Yi, so we can think of observing
for all units in the population the triple (Wi, Xi, Ỹi). Let WM , XM , and ỸM be the M vectors of these

variables. As before, Y
obs
high denotes the average of Yi in the subpopulation with Wi = 1 and Xi = 1,

and Y
obs
low denotes the average of Yi in the subpopulation with Wi = 1 and Xi = 0.

[51]



The issues studied in this paper arise in this Bayesian approach in the choice of estimand. The

descriptive estimand is

θdescr
M =

1

Mhigh

M∑

i=1

Xi · Yi −
1

Mlow

M∑

i=1

(1 − Xi) · Yi.

The causal estimand is

θcausal
M =

1

M

M∑

i=1

(
Yi(high) − Yi(low)

)
.

It is interesting to compare these estimands to an additional estimand, the super-population average

treatment effect,

θcausal
∞ = µ(high) − µ(low).

In principle these three estimands are distinct, with their own posterior distributions, but in some
cases, notably when M is large, the three posterior distributions are similar.

For each of the three estimands we evaluate the posterior distribution in a special case. In many
cases there will not be an analytic solution. However, it is instructive to consider a very simple case

where analytic solutions are available. Suppose σ2(low), σ2(high), κ and q are known, so that the only
unknown parameters are the two means µ(low) and µ(high). Finally, let us use independent, diffuse
(improper), prior distributions for µlow and µ(high).

Then, a standard result is that the posterior distribution for (µlow, µ(high)) given (WM , XM , ỸM) is

(
µ(low)

µ(high)

)∣∣∣∣WM , XM , ỸM ∼ N
((

Y
obs
low

Y
obs
high

)
,

(
σ2(low)/Nlow 0

0 σ2(high)/Nhigh

))
.

This directly leads to the posterior distribution for θcausal
∞ = µ(high)− µ(low):

θcausal
∞ |WM , XM , ỸM ∼ N

(
Y

obs
high − Y

obs
low,

σ2(low)

Nlow
+

σ2(high)

Nhigh

)
.

A longer calculation leads to the posterior distribution for the descriptive estimand:

θdescr
M |WM , XM , ỸM ∼

N
(

Y
obs
high − Y

obs
low,

σ2(low)

Nlow
·
(

1 − Nlow

Mlow

)
+

σ2(high)

Nhigh
·
(

1 − Nhigh

Mhigh

))
.

The implied posterior interval for θdescr
M is very similar to the corresponding confidence interval based

on the normal approximation to the sampling distribution for Y
obs
high − Y

obs
low. If Mlow, Mhigh are large,

this posterior distribution converges to

θdescr
M |WM , XM , ỸM , Mlow → ∞, Mhigh → ∞ ∼ θcausal

∞ |WM , XM , ỸM .

If, on the other hand, Nlow = Mlow and Nhigh = Mhigh, then the distribution becomes degenerate:

θdescr
M |WM , XM , ỸM , Nlow = Mlow, Nhigh = Mhigh ∼ N

(
Y

obs
high − Y

obs
low, 0

)
.

[52]



A somewhat longer calculation for θcausal
M leads to

θcausal
M |WM , XM , ỸM ∼ N

(
Y

obs
high − Y

obs
low,

Nlow

M2
σ2(high) · (1 − κ2) +

Nhigh

M2
σ2(low) · (1− κ2)

+
M − N

M2
σ2(high) +

M − N

M2
σ2(low) − 2

M − N

M2
κσ(high)σ(low)

+
σ2(high)

Nhigh
·
(

1−
(

1 − κ
σ(low)

σ(high)

)
Nhigh

M

)2

+
σ2(low)

Nlow
·
(

1 −
(

1 − κ
σ(high)

σ(low)

)
Nlow

M

)2
)

.

Consider the special case where κ = 1, σ(low) = σ(high). Then

θcausal
M |WM , XM , ỸM , κ = 1, σ(low) = σ(high) ∼ θcausal

∞ |WM , XM , ỸM .

The same limiting posterior distribution applies if M goes to infinity.

θcausal
M |WM , XM , ỸM , Mlow → ∞, Mhigh → ∞ ∼ θcausal

∞ |WM , XM , ỸM .

The point is that if the population is large, relative to the sample, the three posterior distributions
agree. However, if the population is small, the three posterior distributions differ, and the researcher

needs to be precise in defining the estimand. In such cases simply focusing on the super-population
estimand θcausal

∞ = µhigh − µlow is arguably not appropriate, and the posterior inferences for such

estimands will differ from those for other estimands such as θcausal
M or θdescr

M .
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